


Abstract

An ongoing effort in the study of microparticle movement in biofluids is the proper

characterization of subdiffusive processes i.e. processes whose mean-squared displace-

ment scales as a sublinear power law. In order to describe phenomena that lead to

subdiffusive behavior, a few models have been developed: fractional Brownian mo-

tion, the generalized Langevin equation, and random walks with dependent incre-

ments. We will present perhaps a simpler model that leads to subdiffusion and is

designed to characterize systems where a regularly diffusive particle intermittently

becomes trapped for long periods of time.

By combining ideas from Hybrid Switching Diffusion and queuing systems litera-

ture we will describe the law of our process. The major obstacle is the introduction

of heavy tail immobilization times and we will overcome it by representing the power

law as an infinite mixture of exponentials. The description of the law allows us also

to solve the First Passage Problem.

Modeling subdiffusion is a very active field of research both in mathematics and

physics. Physicists often use a continuous model that originates in the theory of

random walks - Brownian motion inversely subordinated to an α-stable process. In a

similar way we will describe our process. With this description we will show that our

process under rescaling is equivalent to the inverse subordinated Brownian motion,

i.e., we will present the functional limit theorem for Switching Diffusion.
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Chapter 1

Introduction

An ongoing effort in the study of microparticle movement in biofluids is the proper

characterization of subdiffusive processes, i.e., processes whose mean-squared dis-

placement scales as a sublinear power law [1]. In order to describe phenomena that

lead to subdiffusive behavior, a few models have been developed: Fractional Brownian

motion, the generalized Langevin equation, and random walks with infinite waiting

times [2],[3]. We will present perhaps a simpler model that leads to subdiffusion and

is designed to characterize systems where a regularly diffusive particle intermittently

becomes trapped for long periods of time.

The need to investigate such a model comes from a viral infectivity literature. Ex-

perimentalists such as Sam Lai [4] observed that HIV virions in the presence of virion

specific antibodies becomes trapped in the cervicovaginal mucus. Mucus, which have

a polymer-like structure, is not dense enough to effectively trap virions. Although,

the exact binding interactions between antibodies and mucus are unknown, biologists

have found evidence that antibodies accumulate on the virion sites and then bind to

the mucus fibers - effectively becoming trapped for a long periods of time. Several ex-

perimental approaches have shown that virions in such environments have long times
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between switches, which could then result in long-term subdiffusivity.

Arising from queueing networks, financial engineering and biological systems many

complex problems contain both continuous dynamics and discrete events. That is why

our mathematical model of choice, presented in Chapter 2, will be hybrid switching

diffusion: two component process with continuous-valued component that evolves ac-

cording to some SDE and a discrete-valued component is a continuous-time Markov

chain (CTMC) that encodes the current state of the process. In order to obtain

subdiffusivity, the process has to spend “much more time” being immobilized than

diffusing. In fact, the expected time that a particle spends trapped needs to be infi-

nite! Such distributions are called heavy-tailed and they were extensively studied in

the queueing theory literature [5],[6].

There is no unique definition for what makes a distribution heavy-tailed but what

we usually talk about when we consider heavy-tailed phenomena is some kind of devi-

ation from the “normal” behavior. In heavy-tailed analysis, typically the asymptotic

behavior of variables is determined by the large values or merely a single large value.

This is in contrast to many systems whose behavior is determined largely by an aver-

aging effect. The most commonly studied class of heavy-tailed distributions are the

distributions with regularly varying tails [7], i.e., with tails that behave like a power

law. This class has many desirable properties that will manifest themselves as very

“natural” in context of sums and extremes of independent and identically distributed

random variables.

Modeling subdiffusion is a very active field of research both in mathematics and

physics [1],[8],[9]. In order to capture the phenomenology leading to subdiffusion,

Physicists often use a model that originates in the theory of random walks. Three
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types of models are often invoked, namely random walks in complex geometries, ran-

dom walks with nonindependent increments (resulting in antipersistence effects), and

walks displaying memory effects (aging). These are pathwise constructions for sub-

diffusive processes. Sometimes though, modelers take a population scale approach

and propose the use of fractional diffusion equations. The stochastic formulation of

transport phenomena in terms of random walk, as well as the description through the

deterministic diffusion equation are two fundamental concepts in the theory of both

normal and anomalous diffusion. Meerschaert and Scheffler [2] show the connection

between the limits of CTRW and the fractional diffusion equation; we will fully ex-

plore their ideas in Chapter 3. The anomalous diffusion behavior manifested in the

limiting process is intimately connected with the breakdown of the central limit theo-

rem, caused by either broad distribution or long-range correlations. Here, anomalous

diffusion rests on the validity of generalized central limit theorem - perfect for such

situations where not all moments of the underlying elementary transport events exist.

In Chapter 4, we investigate the first passage time problem. For a stochastic

process, the first passage time (FPT) is defined as the time when the process reaches

a predetermined level for the first time. FPT is a random variable and one usually

studies its tail distribution. Another question that usually arises in this context is

the scaling of the mean first passage time with the interval width. The question is

really interesting here because for many subdiffusive models the mean first passage

time is infinite. We focus on presenting three different type of models: Brownian

motion, Time-fractional diffusion and our own Switching diffusion. Also, we present

simulations for quantile function of Switching Diffusion. We will demonstrate that

it exhibits an interesting behavior of “switchover” between diffusive and subdiffusive

regimes. We will present our results for two simulation procedures: a “Full” and a

“Toy” model. The Full model simulates the exact behavior of the Switching Diffusion
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whereas in the Toy model we make some simplifications that significantly reduce

running times.
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Chapter 2

Subdiffusive Switching

Our model for a subdiffusive particle, which we call Switching Diffusion, is based

on a very simple idea. It switches between two states: diffusive and immobilized.

The times when the particle switches between diffusing and being immobilized is

denoted by τi and immobilized to diffusing is denoted by σi, as illustrated in Figure

2.1. Further, we assume that they are independent and identically distributed (iid)

with τi ∼ Exp(λ) and σi ∼ Fσ, where Fσ is a cumulative distribution function.

Figure 2.1: Sample path of Switching Diffusion.

In Section 2.1 we will start with a Stochastic Differential Equation (SDE) repre-
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sentation of our model. Also, we will introduce a notion of regular variation which is

necessary to present sufficient conditions for the Switching Diffusion to be subdiffu-

sive. The importance of Section 2.2 will be revealed in our further discussion where

we use the idea coming from the queueing systems literature and represent the power

law as an infinite mixture of exponentials. In Section 2.3 we will introduce the back-

ground on so called hybrid switching diffusions, a setting in which we describe the

law of our process. Section 2.4 will present our model as a hybrid switching diffusion,

i.e., in a case when the distribution of σ is a mixture of exponential distributions.

In the final section of this chapter we will comment on going beyond the mixture of

exponentials case and propose the largest class of distributions for Fσ that can be

“successfully” approximated by the exponential mixtures.

2.1 Condition for Subdiffusivity

The model for the position of a switching particle at a given time t, X = {X(t)}t≥0,

which we mention in the introduction, can be represented in the language of stochastic

differential equations. First, we introduce the sequence of times

0 = R0 < S1 < R1 < ..., (2.1)

where

Ri : Switch from being immobilized to diffusing,

Si : Switch from diffusing to being immobilized.
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For simplicity we assume that R0 = 0, i.e., at time zero particle enters diffusive state.

We let {τi}i≥1 be an iid sequence of random variables, such that

τi ∼ Exp(λ), (2.2)

which represent the length of time intervals in which the process X is diffusing. In

terms of switching times, for i ≥ 1

τi := Si −Ri−1. (2.3)

Similarly, let {σi}i≥1 be an iid sequence of random variables

σi ∼ Fσ (2.4)

which represent the length of time intervals in which the process X is immobilized.

Similarly, in terms of switching times, for i ≥ 1

σi := Ri − Si. (2.5)

Finally, let us introduce a discrete valued process φ = {φ(t)}t≥0, illustrated in Figure

2.2, which is defined as

φ(t) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 Ri−1 ≤ t < Si, i ≥ 1

0 Si ≤ t < Ri, i ≥ 1.

(2.6)

The process φ is an ON-OFF process, a well studied object in the renewal theory

[10]. In our model φ plays a role of a switch; it controls whether process is dif-

fusing (ON) or immobilized (OFF). The following equation is the SDE for the pair
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Figure 2.2: A sample path of φ.

󰀃
X(t),φ(t)

󰀄
: 󰀻

󰁁󰁁󰀿

󰁁󰁁󰀽

dX(t) =
√
2D · φ(t)dB(t)

󰀃
X(0),φ(0)

󰀄
= (0, 1)

(2.7)

where D is a diffusivity parameter and B = {B(t)}t≥0 is a standard Brownian motion.

We assume that φ(0) = 1, i.e., our process starts in the diffusive state. From now on

we refer to φ as a switch and X as a Switching Diffusion.

The main goal of this section is to present the conditions under which a Switching

Diffusion is a subdiffusive process. In contrast to a typical diffusion process, in which

the mean squared displacement (MSD:= E[X2(t)]) of a particle is a linear function of

time, the MSD of anomalous diffusion is described by a power law. For the purposes

of this work, we will define a process to be an anomalous diffusion if

E[X2(t)] ∼ ctα, t → ∞. (2.8)
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Note that here and elsewhere we use the notation

f(t) ∼ g(t), t → ∞ (2.9)

as a shorthand for

lim
t→∞

f(t)

g(t)
= 1. (2.10)

We call a process asymptotically diffusive if α = 1. If α > 1 the phenomenon is called

superdiffusion. If α < 1 the particle undergoes subdiffusion. The Switching Diffusion

process X that we presented earlier can be used as model for subdiffusion but one

have to carefully choose the distribution of σ. For example, we can directly calculate

the MSD if distribution of σ is exponential.

Proposition 2.1.1. If σ ∼ Exp(µ) then MSD of X is

E[X2(t)] =
2Dµ

µ+ λ
t− 2Dλ

(µ+ λ)2
(1− e−(µ+λ)t) ∼ 2Dµ

µ+ λ
t, t → ∞ (2.11)

and therefore X is asymptotically diffusive.

Proof. Using the SDE representation for X(t) (2.7) and Ito’s Isometry we have

E[X2(t)] = E
󰀗󰀕√

2D

󰁝 t

0

φ(s)dBs

󰀖2󰀘

= 2D

󰁝 t

0

E[φ2(s)]ds

= 2D

󰁝 t

0

E[φ(s)]ds

= 2D

󰁝 t

0

P{φ(s) = 1}ds

(2.12)

Now, we need to investigate the behavior of the function

P (t) := P{φ(t) = 1}. (2.13)
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Let T1 = τ1 + σ1 be a time of the first renewal. Conditioning on T1 yields

P (t) = P{φ(t) = 1, T1 > t}+ P{φ(t) = 1, T1 ≤ t}

= P{τ > t}+
󰁝 t

0

P (t− s)fT1(s)ds

= (1− Fτ (t)) +

󰁝 t

0

P (t− s)fT1(s)ds.

(2.14)

Now applying Laplace transform
󰀃
f̂(s) =

󰁕∞
0

e−stf(t)dt
󰀄
on the both sides of the

equation we get

P̂ (s) =
1

s+ λ
+ P̂ (s)f̂T1(s)

=
1

s+ λ
+ P̂ (s)f̂σ(s)f̂τ (s)

=
1

s+ λ
+

λP̂ (s)f̂σ(s)

s+ λ
.

(2.15)

Reorganizing above equation gives

P̂ (s) =
1

s+ λ(1− f̂σ(s))
. (2.16)

Since we assume that σ ∼ Exp(µ) we have

P̂ (s) =
s+ µ

s2 + (µ+ λ)s
(2.17)

and by inverting Laplace transform we get

P (t) = e−(µ+λ)t +
µ

µ+ λ
(1− e−(µ+λ)t). (2.18)
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Finally,

E[X2(t)] = 2D

󰁝 t

0

󰀕
e−(µ+λ)s +

µ

µ+ λ
(1− e−(µ+λ)s)

󰀖
ds

=
2Dµ

µ+ λ
t− 2Dλ

(µ+ λ)2
(1− e−(µ+λ)t),

(2.19)

which implies

E[X2(t)] ∼ 2Dµ

µ+ λ
t, t → ∞. (2.20)

Remark 2.1.1. What is more, any choice of σ such that E[σ] < ∞ would lead to a

similar result. We will prove this fact in the next chapter (see 3.2.3). Therefore, we

have to consider distributions that have infinite mean; heavy-tailed distributions.

Roughly speaking, a random variable Y has a heavy tail if there exists a positive

parameter α > 0 such that

F̄ (y) := P{Y > y} ∼ y−α, y → ∞. (2.21)

Examples of such random variables are Cauchy, Pareto, t-student or stable distribu-

tions. The most successful and very well studied class of heavy-tailed distributions

have been distributions with regularly varying tails [7],[11]. They admit very nice

analytical properties that are summed up in Appendix A.1. Here we provide the

definition of regular variation.

Definition 2.1.2. A positive, measurable function L on (0,∞) is called slowly vary-

ing at infinity (L ∈ RV0) if

lim
x→∞

L(tx)

L(x)
= 1, for all t > 0. (2.22)

Definition 2.1.3. A positive, measurable function U is called regularly varying at
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infinity with index α ∈ R (U ∈ RVα) if

lim
x→∞

U(tx)

U(x)
= tα, for all t > 0. (2.23)

Note that if U ∈ RVα then U(x)/xα ∈ RV0, and setting L(x) = U(x)/xα, we can

see that it is always possible to represent a regularly varying function as xαL(x).

Theorem 2.1.4. If F̄σ(t) ∈ RV−α for α ∈ (0, 1) with absolutely continuous, eventu-

ally monotone density f , then the associated Switching Diffusion X is subdiffusive.

Proof. Using the SDE representation of X (2.7) we have that

E[X2(t)] = E
󰀗󰀕√

2D

󰁝 t

0

φ(s)dBs

󰀖2󰀘
. (2.24)

Now performing similar calculations as in Proposition 2.1.1 we arrive at

P̂ (s) =
1

s+ λ(1− f̂σ(s))
. (2.25)

Since F̄σ ∈ RV−α, using Theorem A.1.8 we have

1− f̂σ(s) ∼ Γ(1− α)sαL(1/s), s ↓ 0. (2.26)

Therefore,

P̂ (s) ∼ s−α

λΓ(1− α)L(1/s)
, s ↓ 0. (2.27)

Now, by Karamata’s Tauberian Theorem A.1.6

P (t) ∼ α

λΓ(1− α)Γ(1 + α)

tα−1

L(t)
, t → ∞. (2.28)
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Finally, using Theorem A.1.4 we obtain

E[X2(t)] = 2D

󰁝 t

0

P (s)ds ∼ 2D

λΓ(1− α)Γ(1 + α)

tα

L(t)
, t → ∞, (2.29)

which ends the proof.

2.2 Exponential-Series Representation of Power Laws

Here we want to present the idea that the distribution with a regularly varying tail

can be obtained by mixing the exponential distributions. In other words, we obtain

a cumulative distribution function F (t) so its tail

F̄ (t) := 1− F (t) (2.30)

is in the following form

F̄ (t) ∼ At−α as t → ∞, (2.31)

where A > 0 and α ∈ (0, 1) are constants. Of course, any distribution with a tail as

seen in (2.31) is regularly varying. Let us write

F̄ (tx)

F̄ (x)
=

F̄ (tx)

A(tx)−α
· Ax

−α

F̄ (x)
· t−α → t−α as t → ∞, (2.32)

and therefore F̄ ∈ RV−α.

Abate and Whitt [12] developed such representations and we briefly present their

methods. Let

F̄ (t) =
∞󰁛

n=1

pnF̄n(t) =
∞󰁛

n=1

pne
−λnt, t ≥ 0, (2.33)

where {pn}n≥1 is a probability mass function and {λn}n≥1 is the sequence of rates of

the component exponential pdf’s. Usually one assumes that λn > λn+1 and λn → 0.
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In simulations we will have to truncate the infinite series in (2.33). Unfortunately,

by truncating the resulting mixture, which is in fact a hyperexponential distribution,

has only exponential tail, hence this truncation cannot be a good approximation for

all t at once. Although, it can yield a sufficient approximation for any given interval

[0, t].

We show the outline of the method used in [12] and then calculate it in our

specific setting. The asymptotic form and the truncation point can be found by using

Euler-Maclaurin summation formula to approximate sum by the integral and then

use Laplace’s method [13] to determine the asymptotic of the integral. Let us start

with F̄ (t) such that for t ≥ 0

F̄ (t) =
∞󰁛

n=1

pnF̄n(t). (2.34)

It can be rewriten as

F̄ (t) =
∞󰁛

n=1

e−φ(n,t), where φ(n, t) = − log pn − log F̄n(t). (2.35)

Now, we treat φ(x, t) as a continuous function of x and approximate the sum by the

integral, i.e.,

F̄ (t) ≈
󰁝 ∞

0

e−φ(x,t)dx. (2.36)

We assume there is an unique x∗(t) that minimizes φ(x, t). If φ reaches its minimum

at (x∗(t), t) then for t large enough, the integral is dominated by the neighborhood

of x∗(t). Then using the Laplace’s method in (2.36) yields

󰁝 ∞

0

e−φ(x,t)dx ∼

󰁶
2π

φ′′(x∗(t), t)
e−φ(x∗(t),t) as t → ∞. (2.37)
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To sum up, the method gives the asymptotic form

F̄ (t) ∼

󰁶
2π

φ′′(x∗(t), t)
e−φ(x∗(t),t) as t → ∞ (2.38)

and if we are interested in time t0 the truncation point should be at least x∗(t0). In

the following proposition we will apply the above method in our specific setting.

Proposition 2.2.1. Let F (t) be a mixture of exponential cdfs, with

F̄ (t) =
∞󰁛

n=1

pne
−λnt, (2.39)

where pn = kn−β for k, such that
󰁓

pn = 1, β > 1 and λn = n−1/γ for γ > 0. Then

F̄ (t) ∼ At−(β−1)/γ as t → ∞, (2.40)

where

A = k
󰁳

2π/βγe−β/γ(γ/β)−(β−1)/γ. (2.41)

Proof. By changing F̄ (t) to the form given in (2.35) we get

φ(x, t) = − log k + β log x+
t

xγ
, (2.42)

so that

x∗(t) = (γt/β)1/γ), φ′′(x, t) =
−β

x2
+

γ(γ + 1)t

xγ+2
, (2.43)

φ′′(x∗(t), t) =

󰀕
β

γt

󰀖2/γ

(βγ). (2.44)

Combining everything and substituting into (2.38) gives us

F̄ (t) ∼ At−(β−1)/γ as t → ∞, (2.45)
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where

A = k
󰁳

2π/βγe−β/γ(γ/β)−(β−1)/γ. (2.46)

Remark 2.2.1. Although there is more flexibility in the method described above, for

the remainder of the text we use the following representation. Let k = 6/π2, β = 2

and γ = 1/α, α ∈ (0, 1). Therefore

pn =
6

π2n2
, λn = n−1/α (2.47)

and we obtain

F̄ (t) =
6

π2

∞󰁛

n=1

e−t/n1/α

n2
∼ At−α as t → ∞, (2.48)

where

A =
6

π2

√
παe−2α(2α)−α. (2.49)

2.3 Background: Hybrid Switching Diffusions

This section is based on the chapters in [14], a textbook on Hybrid Switching Diffu-

sions, and [15], a paper that extends the theory from finite to countable switching.

We will work with a probability space (Ω,F ,P). A family of σ-algebras {Ft}, t ≥ 0

is called a filtration if Fs ⊂ Ft for s ≤ t. We say Ft is complete if it contains all

null sets and that the filtration {Ft} satisfies the usual condition if F0 is complete.

A probability space (Ω,F ,P) together with a filtration {Ft} is said to be a filtered

probability space, denoted by (Ω,F , {Ft},P).

Suppose that Z = {Z(i)}i∈M is a stochastic process with right-continuous with

left-hand limits sample paths and discrete state space M, that could be finite or
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countable [15], and x-dependent generator Q(x) so that for a suitable function f(·, ·),

Q(x)f(x, ·)(i) =
󰁛

j∈M

qij(x)f(x, j), for each i ∈ M. (2.50)

Let B = {B(t)}t≥0 be the R-valued standard Brownian motion defined in the filtered

probability space (Ω,F , {Ft},P). Suppose that b(·, ·) : R×M 󰀁→ R and that σ(·, ·) :

R×M 󰀁→ R. Then the two-component process (X(·), Z(·)), satisfying

dX(t) = b(X(t), Z(t))dt+ σ(X(t), Z(t))dB(t)

(X(0), Z(0)) = (x, 0),

(2.51)

and for i ∕= j,

P{Z(t+∆) = j|Z(t) = i, X(s), Z(s), s ≤ t} = qij(X(t))∆+ o(∆), (2.52)

is called a hybrid switching diffusion. For two-component process (X(t), Z(t)), we

call X(t) the continuous component and Z(t) the discrete component, in accordance

with their sample path properties.

There is an associated operator defined as follows. For each i ∈ M and each

f(·, i) ∈ C2, where C2 denotes the class of functions whose partial derivatives with

respect to variable x up to second-order are continuous, we have

Lf(x, i) = b(x, i)
∂

∂x
f(x, i) +

1

2
σ2(x, i)

∂2

∂x2
f(x, i) +

󰁛

j∈M

qij(x)f(x, j). (2.53)

Now, the probability density p(x, t) = (p(x, t, 1), p(x, t, 2), ...) of the process Y (·), with

󰁝

Γ

p(x, t, i)dx = P{X(t) ∈ Γ, Z(t) = i}, (2.54)
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satisfies the adjoint equation, namely the system of equations

∂

∂t
p(x, t, i) =

1

2

∂2

∂x2
(σ2(x, i)p(x, t, i))− ∂

∂x
(b(x, i)p(x, t, i)) +

󰁛

j∈M

p(x, t, j)qij(x)

p(x, 0, i) = gi(x)

for i ∈ M and g(x) = (g1(x), g2(x), ...) is the initial distribution of Y (t).

2.4 Law of Switching Diffusion: Mixture of Expo-

nentials Case

Note that in Section 2.1 when we introduced the Switching Diffusion model, we only

assumed that Fσ has a regularly varying tail. Now we impose further assumptions on

distribution of σ that allow us to obtain the law of subdiffusive Switching Diffusion.

We return to ideas from Section 2.2 and we start with Fσ that has a specific form: it

is a mixture of exponential distributions, i.e., we can write its tail as

F̄σ(t) =
∞󰁛

i=1

pie
−λit, (2.55)

where
∞󰁛

i=1

pi = 1 and λi > 0 for i ∈ Z+, (2.56)

with density

fσ(t) =
∞󰁛

i=1

piλie
−λit. (2.57)

This assumption allows us to use the ideas coming from hybrid switching diffusion

models. The choice for such a class of distributions for σ is a result of natural

restrictions on discrete component of the hybrid switching process. The mixtures

of exponential distributions is a subclass of a more general phase-type distributions.
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A phase-type distribution is constructed by a convolution or mixture of exponential

distributions. It results from a system of one or more inter-related processes occurring

in sequence, or phases. Each of the states of the Markov process represents one of the

said phases. In case of hybrid switching diffusions the phase process is Z. In our case

the phase process is φ and it controls whether the particle is diffusing or immobilized.

In the language of hybrid switching diffusions our model can be written as a two

component process

Y (t) = (X(t), Z(t)) (2.58)

where the continuous component X(t) evolves according to SDE which coefficients

depend on Z(t). The discrete component: Z(t) is a continuous time Markov chain

taking values in N that evolves according to a rate matrix Q:

Q =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

−λ p1λ p2λ p3λ . . .

λ1 −λ1 0 0 . . .

λ2 0 −λ2 0 . . .

λ3 0 0 −λ3 . . .

...
...

...
...

. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(2.59)

In our case the pair (X(t), Z(t)) is a solution to

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

dX(t) =
√
2D · 1{Z(t)=0}dB(t)

(X(0), Z(0)) = (0, 0)

(2.60)

where D is a diffusivity parameter and B is the standard Brownian Motion. Note that

now Z plays the role of a switch. When Z is in state zero, process X is diffusing. The

states {1, 2, 3, ...} are auxiliary states where process X is immobilized for exponential

amount of time and then comes back to state zero. There is a very simple connection
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between the φ in (2.7) and Markov chain Z in (2.60) for t ≥ 0

φ(t) = 1{Z(t)=0}. (2.61)

The density of Y satisfies:

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) +
∞󰁛

i=1

λip(x, t, i) (2.62)

∂tp(x, t, i) = λpip(x, t, 0)− λip(x, t, i) for i = 1, 2, 3, ... (2.63)

with initial distribution p(x, 0) = (δ0(x), 0, 0...).

Theorem 2.4.1. Let X be a Switching Diffusion with iid diffusion times

{τi}i≥1 ∼ Exp(λ) (2.64)

and iid immobilization times

{σi}i≥1 ∼ Fσ, (2.65)

where Fσ is a mixture of exponentials as in Equation 2.55, with density fσ. Then for

t > 0 and Γ ∈ B(R)

P{X(t) ∈ Γ} =

󰁝

Γ

p(x, t)dx (2.66)

where

p(x, t) = p(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds (2.67)

and p(x, t, 0) is a solution to

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds. (2.68)
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Proof. Notice that for every i we can solve (2.63) in terms of p(x, t, 0), i.e.,

p(x, t, i) = λ

󰁝 t

0

pie
−λi(t−s)p(x, s, 0)ds (2.69)

Now, by plugging into (2.62) and changing sum with the integral we obtain au-

tonomous equation for p(x, t, 0):

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

∞󰁛

i=1

piλie
−λi(t−s)p(x, s, 0)ds (2.70)

Combining above we can get a formula for the law of X(t). Notice that we can write

P{X(t) ∈ Γ} =
∞󰁛

i=0

P{X(t) ∈ Γ, Z(t) = i}

=

󰁝

Γ

∞󰁛

i=0

p(x, t, i)dx

=

󰁝

Γ

󰀕
p(x, t, 0) +

∞󰁛

i=1

p(x, t, i)

󰀖
dx

=

󰁝

Γ

󰀕
p(x, t, 0) + λ

󰁝 t

0

∞󰁛

i=1

pie
−λi(t−s)p(x, s, 0)ds

󰀖
dx

=

󰁝

Γ

󰀕
p(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds

󰀖
dx,

(2.71)

where p(x, t, 0) is a solution to (2.70).

2.5 Beyond the Exponential Mixtures

So far we have been able to describe the law of Switching Diffusion when σ is a

countable mixture of exponentials. Our goal is to extend the work beyond this class.

It turns out that it is possible to fully characterize the range of exponential mixtures.

In order to do this we need the notion of a completely monotone function. A positive

function defined on (0,∞) of the class C∞, such that the sequence of its derivatives
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alternates signs at every point, is called completely monotone (CM). Bernstein [16]

showed that a function on positive reals is CM if and only if it is a mixture of

exponentials. Therefore, we would like to prove a stronger result along the lines of

Theorem 2.4.1 with the assumption Fσ has a density which is CM. Unfortunately,

tools that we have developed in this chapter are not enough, but we will explore a

number of results in this direction. In order to do this we have to reach to the theory

of subordinators which introduces a new perspective on Switching Diffusion.
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Chapter 3

Subdiffusion by Subordination

Modeling subdiffusion is a very active field of research both in mathematics and

physics [8],[1],[9]. Physicists often use a continuous model that originates in the

theory of random walks - Brownian motion inversely subordinated to an α-stable

process [2]. We noticed that we can use a similar language to describe the Switching

Diffusion process introduced in Chapter 2.

In this chapter we start with some background information on Lévy processes

and their special relation with infinitely divisible distributions. The most important

examples are given with a focus on the Poisson and stable cases. Then we discuss

non-decreasing Levy processes - subordinators, mostly used as a model of a random

time evolution. Physicists observed that the first passage time process of a subor-

dinator, known as a inverse subordinator, is a great tool in modeling subdiffusive

phenomenons. Magdziarz [17] showed that inversely subordinated Brownian motion

is a martingale. We use this fact to show that Brownian motion inversely subor-

dinated to the compound Poisson process with a drift is a subdiffusive process and

therefore we present another proof for subdiffusivity of Switching Diffusion.
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3.1 Lévy Processes and Infinitely Divisible Distri-

butions

Lévy processes, named after the French mathematician Paul Lévy, are, generally

speaking, processes with stationary independent increments. The most common ex-

amples are Brownian motion and Poisson process. As we will see later this class is in

fact very rich due to an intimate relationship with the infinitely divisible distributions.

Let us start with the definition of Lévy processes [18].

Definition 3.1.1. A process X = {X(t)}t≥0 defined on probability space (Ω,F ,P)

is said to be a Lévy process if it has the following properties:

1. P{X(0) = 0} = 1.

2. Independent and stationary increments: for each n = 1, 2, ... and each 0 ≤

t1 ≤ t2 ≤ · · · < tn+1 < ∞ the random variables {X(tj+1 − X(tj)}1≤j≤n are

independent, moreover each

X(tj+1)−X(tj)
d
= X(tj+1 − tj)−X(0). (3.1)

3. Continuity in probability: for all ε > 0 and for all s ≥ 0

lim
t→s

P{|X(t)−X(s)| > ε} = 0. (3.2)

If X is a Lévy process then one may construct a version of X that has cádlág

paths (right continuous with left limits) [18], therefore throughout the remainder of

the text we will refer the cádlág paths.

Simply looking at the definition it is not immediately obvious which processes

belong to this class. However there is a certain perspective that can give us a good
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idea about the members. As we will see there is a natural connection between Lévy

processes and infinitely divisible distributions.

Definition 3.1.2. A random variable Y has an infinitely divisible distribution if for

each n = 1, 2, ... there exists a sequence of i.i.d random variables {Yj,n}1≤j≤n, such

that

Y
d
= Y1,n + ...+ ..Yn,n. (3.3)

Alternatively, the law µ of a random variable is called infinitely divisible if for any

n ≥ 1, there exists a probability measure µn, such that µ can be expressed as the

n-th convolution power of µn, i.e.

µ = µ∗n. (3.4)

The standard way to establish whether the law of a random variable is infinitely

divisible, is through the characteristic exponent. Let Y be a random variable with

law µ. We calculate the characteristic function

E
󰀅
eiθY

󰀆
=

󰁝

R
eiθxµ(dx) (3.5)

and then we obtain the characteristic exponent given by

Ψ(θ) := − logE
󰀅
eiθY

󰀆
, θ ∈ R. (3.6)

Now, Y has an infinitely divisible distribution if and only if for all n ≥ 1 a character-

istic exponent can be expressed as

Ψ(θ) = nΨn(θ), θ ∈ R, (3.7)

where Ψn is characteristic exponent corresponding to a possibly different random

variable. The following theorem is known as the Lévy-Khintchine formula. It char-
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acterizes all the infinitely divisible distributions by their characteristic exponents.

Theorem 3.1.3 (Lévy-Khintchine formula [Citation). ] A function Ψ : R → C is the

characteristic exponent of an infinitely divisible probability measure on R if and only

if there are a ∈ R, σ ≥ 0, and a measure Π with Π({0}) = 0 and
󰁕
R(1∧x

2)Π(dx) < ∞

such that

Ψ(θ) = iaθ +
θ2σ2

2
+

󰁝

R

󰀃
1− eiθx + iθx1{|x|<1}

󰀄
Π(dx) (3.8)

for every θ ∈ R.

Now we turn our attention to the connection between the Lévy processes and

infinitely divisible distributions. From the definition of a Lévy process X we see that

for any fixed t > 0, X(t) is a random variable with an infinitely divisible distributions.

To obtain that for n = 1, 2..., we write

X(t)
d
= X(t/n) +

󰀃
X(2t/n)−X(t/n)

󰀄
+ ...+

󰀃
X(t)−X((n− 1)t/n)

󰀄
(3.9)

and use independence and stationarity of the increments. Now suppose that we define

Ψt(θ) := − logE
󰀅
eiθX(t)

󰀆
, (3.10)

for all θ ∈ R, t ≥ 0.

By (3.9), for any two positive integers k, l we can show that

kΨ1(θ) = Ψk(θ) = lΨk/l(θ). (3.11)

Therefore for any rational t > 0,

Ψt(θ) = tΨ1(θ). (3.12)

If t is irrational number, then we can choose a decreasing sequence of rational numbers
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tn such that tn ↓ t as n → ∞. Right continuity of X implies right continuity of

exp
󰀃
− Ψt(θ)

󰀄
(by the Dominated Convergence Theorem) and thus (3.12) holds for

all t ≥ 0.

Now we can see that every Lévy process has the following property

E[eiθX(t)] = e−tΨ(θ) (3.13)

for t ≥ 0, where Ψ(θ) := Ψ1(θ) is the characteristic exponent of X(1), which has an

infinitely divisible distribution. We will now refer to Ψ as the characteristic exponent

of the Lévy process.

3.1.1 Examples of Lévy Processes

Poisson Process

Let us begin by recalling the definition of a Poisson process. A process valued on the

non-negative integers N = {N(t)}t≥0, defined on a probability space (Ω,F ,P), is said

to be a Poisson process with intensity λ > 0 if the following hold:

1. The paths of N are P-almost surely right continuous with left limits.

2. P{N(t) = 0} = 1.

3. N has independent and stationary increments.

4. For each t > 0, N(t) is equal in distribution to a Poisson random variable with

rate parameter λt.
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First, consider the Poisson random variableN with a rate parameter λ. Let us observe

that

E
󰀅
eiθN

󰀆
=

∞󰁛

k=0

eiθk
e−λλk

k!

= e−λ(1−eiθ)

=
󰀅
e−

λ
n
(1−eiθ)

󰀆n
.

(3.14)

The right-hand side of (3.14) is the characteristic function of the sum of n independent

Poisson random variables, each with rate λ/n. In the Lévy-Khintchine decomposition

we see that a = σ = 0 and Π = λδ1, where δ1 is the Dirac measure supported on 1.

Now, for the Poisson process {N(t)}t≥0 we have

E
󰀅
eiθN(t)

󰀆
= e−λt(1−eiθ) (3.15)

and therefore its characteristic exponent is given by

Ψ(θ) = λ(1− eiθ), θ ∈ R. (3.16)

Compound Poisson Process

Let N be a Poisson random variable with rate parameter λ > 0 and let {ξi}i≥1 be a

sequence of i.i.d random variables, independent of N , with a common cdf F having
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no atom at zero. By conditioning on N , we get for θ ∈ R,

E
󰀗
eiθ

󰁓N
i=1 ξi

󰀘
=

∞󰁛

n=0

E
󰀗
eiθ

󰁓n
i=1 ξi

󰀘
e−λλn

n!

=
∞󰁛

n=0

󰀕󰁝

R
eiθxF (dx)

󰀖n
e−λλn

n!

= e−λ
󰁕
R 1−eiθxF (dx)

=

󰀗
e−

λ
n

󰁕
R 1−eiθxF (dx)

󰀘n
.

(3.17)

From the above calculations we can conclude that distributions of the random vari-

ables of the form
󰁓N

i=0 ξi are infinitely divisible with the Lévy-Khintchine decompo-

sition with a = −λ
󰁕 1

−1
xF (dx), σ = 0 and Π(dx) = λF (dx). Notice that when F has

an atom of unit mass at 1 then the sum simply has a Poisson distribution.

Suppose that N = {N(t)}t≥0 is a Poisson process with intensity λ. Let us consider

a compound Poisson process X = {X(t)}t≥0 which is defined as

X(t) :=

N(t)󰁛

i=1

ξi, t ≥ 0. (3.18)

Using the fact thatN has stationary independent increments together with the mutual

independence of the random variables {ξ}i≥1, for 0 ≤ s < t < ∞ by writing

X(t) = X(s) +

N(t)󰁛

i=N(s)+1

ξi (3.19)

it is clear that X(t) is the sum of X(s) and an independent copy of X(t − s). The

right continuity and left limits of the process N ensure the right continuity and left

limits of X. Therefore the compound Poisson processes are Lévy processes. Finally

E
󰀗
eiθ

󰁓N(t)
i=1 ξi

󰀘
= e−λt

󰁕
R 1−eiθxF (dx) (3.20)
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and therefore its characteristic exponent is given by

Ψ(θ) = λ

󰁝

R

󰀃
1− eiθx

󰀄
F (dx), θ ∈ R. (3.21)

If a drift of rate c ∈ R is added to a compound Poisson process, i.e.,

X(t) =

N(t)󰁛

i=1

ξi + ct, t ≥ 0 (3.22)

then it is straightforward to see that the resulting process is again a Lévy process. The

associated infinitely divisible distribution is a shifted compound Poisson distribution

with shift c. The Lévy-Khintchine exponent is given by

Ψ(θ) = λ

󰁝

R

󰀃
1− eiθx

󰀄
F (dx)− icθ, θ ∈ R. (3.23)

Brownian motion

A real-valued process B = {B(t)}t≥0, defined on a probability space (Ω,F ,P), is said

to be a standard Brownian motion if the following hold:

1. The paths of B are P-almost surely continuous.

2. P{B(0) = 0} = 1.

3. B has independent and stationary increments.

4. For each t > 0, B(t) is equal in distribution to a normal random variable with

mean 0 and variance t.

From the above definition we can see that the Brownian motion is a Lévy process.
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Consider standard normal random variable Z. It is well known that

E
󰀅
eiθZ

󰀆
= e−

1
2
θ2

=

󰀗
e
− 1

2
( 1√

n
)2θ2

󰀘n
.

(3.24)

From the above it follows that Z has an infinitely divisible distribution with a = 0,

σ = 1 and Π = 0. Finally

E
󰀅
eiθB(t)

󰀆
= e−

1
2
tθ2 (3.25)

and hence its characteristic exponent is given by

Ψ(θ) =
1

2
θ2, θ ∈ R. (3.26)

Stable Lévy Processes

A comprehensive introduction to stable processes, can be found in Samorodnitsky

and Taqqu [19]. A stable Lévy Process is a Lévy process X = {X(t)}t≤0 in which

each X(t) is a stable random variable. A random variable X has a stable distribution

if for all n ≥ 1 there exist an > 0 and bn ∈ R so we have

X1 + · · ·+Xn
d
= anX + bn, (3.27)

where X1, ..., Xn are independent copies of X. A random variable is said to have a

strictly stable distribution if (3.27) is satisfied but with bn = 0. By subtracting bn/n

from each of the terms on the left-hand side of (3.27) one sees that the definition

implies that any stable random variable is infinitely divisible.

In general the stable distributions do not have closed-form densities and the most

common characterization is through the characteristic functions [20].

Theorem 3.1.4. A random variable X is stable if and only if there exists σ > 0,
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β ∈ [−1, 1] and µ ∈ R such that for all θ ∈ R:

• when α = 2,

Ψ(θ) =
1

2
σ2θ2 − iµθ (3.28)

• when α ∕= 1, 2,

Ψ(θ) = σα|θ|α
󰀗
1− iβsgn(θ) tan

󰀕
πα

2

󰀖󰀘
− iµθ (3.29)

• when α = 1,

Ψ(θ) = σ|θ|
󰀗
1 + iβ

2

π
sgn(θ) log(|θ|)

󰀘
− iµθ (3.30)

Note that stable laws cover two very familiar situations: for α = 2, the normal

distribution, X ∼ N(µ, σ2), and for α = 1, β = 0, the Cauchy distribution.

Suppose that Sα(σ, β, µ) is the distribution of a stable random variable with pa-

rameters c > 0,α ∈ (0, 2), β ∈ [−1, 1] and µ ∈ R. From the definition of its char-

acteristic exponent it is clear that at each fixed time t the stable Lévy process has

distribution Sα(σt, β, µ).

One of the reasons why stable laws are so important in applications is the decay

properties of the tails. Whenever α ∕= 2 we have a distribution with regularly varying

tail (with index −α) [19]

lim
y→∞

yαP{X > y} = Cα
1 + β

2
σα, (3.31)

lim
y→∞

yαP{X < −y} = Cα
1− β

2
σα, (3.32)

where Cα > 1.

Moreover, stable processes display self-similarity. Stochastic processX = {X(t)}t≥0

is self-similar with Hurst indexH > 0 if the two processes {X(at)}t≥0 and {aHX(t)}t≥0

have the same finite-dimensional distributions for all a ≥ 0. For example, by examin-
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ing the Theorem 3.1.4 it is easily verified that “rotationally invariant” Levy process

X (β = µ = 0) with the characteristic exponent

Ψ(θ) = σα|θ|α, (3.33)

with α ∈ (0, 2], σ > 0, is self-similar with Hurst index H = 1/α.

3.2 Subordinators

In this section we present some background and examples of subordinators. Relevant

theory can be found in the book about Lévy processes by Applebaum [18].

A subordinator is an almost surely non-decreasing Lévy process. Such processes

can be thought of as a model of a random time evolution, since if T = {T (t)}t≥0 is a

subordinator we have

T (t) ≥ 0 (3.34)

for each t ≥ 0 and whenever t1 ≤ t2

T (t1) ≤ T (t2). (3.35)

One can check whether a given Lévy process is a subordinator by the special form of

its Levy triple (Theorem 1.2 in Bertoin [21]).

Theorem 3.2.1. A Levy process T is a subordinator iff its Levy triple has the form

(b, 0,Π), i.e, its characteristic exponent takes the form

Ψ(θ) =

󰁝 ∞

0

󰀃
1− eiθx

󰀄
Π(dx)− ibθ (3.36)
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where b ≥ 0 and the measure Π satisfies additional requirements

Π{(−∞, 0)} = 0 and

󰁝 ∞

0

(1 ∧ x)Π(dx) < ∞. (3.37)

Conversely, any mapping from R → C of the form (3.36) is the characteristic expo-

nent of a subordinator.

An important feature of the subordinators is that one can work with the Laplace

transform, instead of characteristic function. Since T is nonnegative almost surely,

for each t ≥ 0 the map θ → E[eiθT (t)] can be analytically continued to the region

{iθ : θ > 0}. We obtain the following expression for the Laplace transform of the

distribution

E
󰀅
e−θT (t)

󰀆
= e−tψ(θ), (3.38)

where

ψ(θ) = Ψ(iθ) = bθ +

󰁝 ∞

0

󰀃
1− e−θx

󰀄
Π(dx), (3.39)

for each θ > 0. The function ψ is called the Laplace exponent of the subordinator.

There are two main examples of subordinators that we have already seen in Chap-

ter 3.1.1. It is easy to see that the Poisson process is a subordinator. More generally

compound Poisson process with a drift is a subordinator if and only if the random

variables ξn and drift c in Equation 3.22 are nonnegative. The Laplace exponent is

easily calculated and is equal to

ψ(θ) = cθ + λ

󰁝 ∞

0

󰀃
1− e−θx

󰀄
F (dx), θ ≥ 0. (3.40)

Another important example is an α-stable subordinator. Using straightforward cal-

culus we can show that for 0 < α < 1,

θα =
α

Γ(1− α)

󰁝 ∞

0

(1− e−θx)
dx

x1+α
, θ ≥ 0. (3.41)
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Therefore by Theorem 3.2.1 and Equation 3.39 we see that for each α ∈ (0, 1) there

exists an α-stable subordinator T with Laplace exponent

ψ(θ) = θα, θ ≥ 0. (3.42)

Note that this corresponds to the characteristic exponent in the Theorem 3.1.4 with

µ = 0, β = 1 and σα = cos(απ/2).

One of the most important probabilistic applications of the subordinators is the

“time change”. Let X = {X(t)}t≥0 be a Lévy process and let T = {T (t)}t≥0 be a

subordinator independent of X. Let us define a new stochastic process Z = {Z(t)}t≥0

by the composition

Z(t) := X ◦ T (t) = X(T (t)), t ≥ 0. (3.43)

It turns out that again {Z(t)}t≥0 is a Lévy process (Theorem 1.3.25 [18]). Moreover,

by conditioning we find that

E
󰀅
eiθZ(t)

󰀆
= E

󰀅
e−U(t)ΨX(θ)

󰀆
= eψ(Ψ(θ)), t ≥ 0, θ ∈ R, (3.44)

so the Lévy exponent of process Z is given by

ΨZ(θ) = ψT ◦ΨX(θ), θ ∈ R. (3.45)

For example, let T be an α-stable subordinator, α ∈ (0, 1), and let

X(t) :=
√
2B(t), t ≥ 0. (3.46)

Recall that Laplace exponent for T is ψT (s) = sα and the Lévy exponent of X is

ΨX(θ) = θ2. Therefore

ψZ(θ) = θ2α, (3.47)
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and we recognize Z as a Cauchy process, so each Z(t) has a symmetric Cauchy

distribution with parameters µ = 0 and σ = 1.

3.2.1 Inverse Subordinated Brownian Motion as a Subdiffu-

sive Process

As observed by Revuz and Yor [22] “It is a natural idea to change the speed at which

a process runs through its path”. In this section we look closer at the technique of

time change and we show how it can be used to obtain subdiffusive processes.

Figure 3.1: Path of increasing process T and the way to find it’s inverse T←.

Given a subordinator T = {T (t)}t≥0, the first-passage time process defined as

T←(t) := inf{s : T (s) > t}, t ≥ 0, (3.48)

is called an inverse subordinator. Here and below, it is understood that inf{∅} = ∞.

To better understand what follows, consider Figure 3.1 showing the path of T

and the way to find its inverse T←. Let us observe few things. Note that T being
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increasing process implies its inverse is increasing as well. Similarly, it is always posi-

tive. Therefore the inverse subordinator also seems to be a good choice for a random

time change. The key observation from the point of modeling subdfiffusive processes

is that the jumps of subordinator T correspond to the flat periods of its inverse.

Therefore “sufficiently large” jumps of the subordinator lead to “long” flat periods

of its inverse, very characteristic for the subdiffusive dynamics, since they represent

long immobilization periods. Finally let us note that the inverse subordinators are

in general non-Markovian (they correspond to local times of some Markov processes,

therefore they have memory [23]).

In what follows, we will consider the time changed process X = {X(t)}t≥0 defined

as

X(t) := B ◦ T←(t) = B(T←(t)), t ≥ 0, (3.49)

where B = {B(t)}t≥0 is a standard Brownian Motion independent of an inverse

subordinator T← = {T←(t)}t≥0.

Let us introduce the filtration {Ft} proposed by Magdziarz in [17], where

Ft =
󰁟

u>t

σ
󰀃
{B(y) : 0 ≤ y ≤ u}, {T←(y) : y ≥ 0}

󰀄
. (3.50)

Note that by definition {Ft} is right-continuous, B is a Ft-martingale, and for every

fixed t0 > 0 the random variable T←(t0) is a stopping time with respect to {Ft}.

Therefore {Gt}, where

Gt = FT←(t) (3.51)

is a well-defined filtration. Here, the filtration at the stopping time τ is

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, t ≥ 0}. (3.52)

It turns out that inverse subordinated Brownian motion is a martingale with respect
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to that filtration (Theorem 1 in [17]), i.e, X = B ◦ T← is a Gt martingale.

The above theorem has some interesting consequences. SinceX is a {Gt}-martingale,

we know that X2 − 〈X,X〉 is a {Gt}-martingale as well. Here 〈X,X〉 stands for

quadratic variation of X. By Proposition 1.5 in [22] we have

〈X,X〉(t) = 〈B,B〉(T←(t)) = T←(t), (3.53)

implying that X2 − T← is a {Gt}-martingale as well. Now we have

E[X2(t)− T←(t)] = E[X2(0)− T←(0)] = 0. (3.54)

Therefore we arrive at

E[X2(t)] = E[T←(t)]. (3.55)

Now onto a specific example. First consider a well studied case [9],[24], where T is an

α-stable subordinator Tα, α ∈ (0, 1), discussed in section 3.1.1. Using the fact that

Tα is 1/α similar, we have

P{T←
α (t) ≤ τ} = P{Tα(τ) ≥ t} = P{(t/Tα(1))

α ≤ τ}. (3.56)

That observation allows us to derive some properties of the process T←
α (Corollary

3.1 in [24]).

Theorem 3.2.2. For any t > 0

1. T←(t)
d
= (Tα(1)/t)

−α,

2. for any γ > 0 the γ-moment of T←
α (t) exists and there exists a positive finite

constant C(α, γ) such that

E[(T←
α (t))γ] = C(α, γ)tαγ, (3.57)
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3. the random variable T←
α (t) has density

ft(τ) =
t

α
τ−1−1/αgα(tτ

−1/α), (3.58)

where gα is the density of the α-stable random variable Tα(1).

Furthermore Bingham [25] showed that the Laplace transform of T←
α equals

E
󰀅
e−θT←

α (t)
󰀆
= Eα(−θtα), (3.59)

where Eα(z) is the Mittag-Leffler function, discussed in the Appendix A.2.

Now knowing moments of T←
α we can write

E[X2(t)] = E[T←
α (t)] = C(α, 1)tα, (3.60)

showing that process X is subdiffusive.

Now let us consider a case when subordinator T is a compound Poisson process

with a drift and its inverse T←, i.e,

T (t) =

N(t)󰁛

i=1

σi + t, t ≥ 0, (3.61)

where, N(t) is a Poisson process with intensity λ, {σi}i≥1 is a sequence of i.i.d.

nonnegative random variables, independent of N(t), with distribution with regularly

varying tail, i.e.,

F̄σ(t) ∈ RV−α, α ∈ (0, 1). (3.62)

Recall that the Laplace exponent of compound Poisson process with a drift is

given by

ψ(θ) = θ + λ

󰁝 ∞

0

󰀃
1− e−θx

󰀄
F (dx), θ ≥ 0. (3.63)
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Figure 3.2: Comparison of a path of a compound Poisson process with a drift and it’s inverse.

Note that we can rewrite above in terms of Laplace transform of F , i.e.,

ψ(θ) = θ + λ(1− f̂(θ)), θ ≥ 0. (3.64)

Since F̄σ ∈ RV−α, using Theorem A.1.8 we have

1− f̂σ(θ) ∼ Γ(1− α)θαL(1/θ), θ ↓ 0. (3.65)

Therefore

ψ(θ) ∼ λΓ(1− α)θαL(1/θ), θ ↓ 0. (3.66)

Now let us present a connection to the renewal theory. Notice that subordinator

is a transient Markov process and we can define its potential measure

U(A) := E
󰀕󰁝 ∞

0

1{T (t)∈A}dt

󰀖
. (3.67)
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The distribution function U(x) of the potential measure U

U([0, x]) := U(x) = E
󰀕󰁝 ∞

0

1{T (t)≤x}dt

󰀖
, x ≥ 0, (3.68)

is known as the renewal function. Notice that since the Laplace transform of the

renewal measure is

Û(θ) =

󰁝

[0,∞)

e−θxU(dx) =
1

ψ(θ)
, θ > 0 (3.69)

the renewal measure characterizes the law of the subordinator. The most important

observation is that 3.68 implies that

U(x) = E[T←(x)]. (3.70)

Now combining 3.55 with 3.66 and 3.70 we get

E[X2(t)] = E[T←(t)] = U(t) ∼ 1

λΓ(1 + α)Γ(1 + α)

tα

L(t)
, t → ∞. (3.71)

showing that process X is subdiffusive.

Remark 3.2.3. With the above we can prove the statement we made in Remark 2.1.1.

It has been shown in [26] that if E[T (1)] < ∞ then as t → ∞

U(t) ∼ t

E[T (1)]
. (3.72)
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Note that

E[T (1)] = − d

dθ
E[e−θT (1)]θ=0

= − d

dθ
[e−ψ(θ)]θ=0

= ψ′(0).

(3.73)

Therefore if T is a compound Poisson process with a drift we obtain

E[T (1)] = 1 + λE[σ]. (3.74)

From the above it is pretty visible that the assumption that σ has a finite mean

implies that the process X is diffusive, i.e, as t → ∞

E[X2(t)] = U(t) ∼ t

E[T (1)]
=

t

1 + λE[σ]
. (3.75)

3.2.2 Local Times and Subordinators

The purpose of this chapter is to reveal interesting connection between the excur-

sion intervals of a Markov process Z and inverse subordinator T←, called the local

time, which stays constant on the excursion intervals. This topic is studied in detail

in chapter IV of Bertoin [27], we will use this perspective to show the connection

between the inverse subordinated Brownian motion and the subdiffusive switching

model presented in Chapter 1.

Let Z = {Z(t)}t≥0 be a Markov process, introduced in Chapter 1. Recall the

sequence of switching times

0 = R0 < S1 < R1 < ... (3.76)

In terms of Z, R0 denotes the first return of Z to zero and S1 is the first exit time
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from 0,

S1 = inf{t ≥ 0, Z(t) ∕= 0}. (3.77)

The assumption, that at time zero particle just entered the diffusive state is equivalent

with assuming that 0 is a holding point of Z, that is P{R0 = 0} = 1 and P{S1 =

0} = 0. Now R0 < S1 < R1 < ..., where R0 = 0, Rn = inf{t > Sn, Z(t) = 0},

Sn+1 = inf{t > Rn, Z(t) ∕= 0}, denotes the sequence of successive exits from/returns

to 0 of Z.

Recall that we assumed that the diffusion times {τi}i≥1 are exponentially distributed

τi ∼ Exp(λ), (3.78)

and immobilization times {σi}i≥i

σi ∼ Fσ, (3.79)

where Fσ is a mixture of exponentials.

It has been shown in [27] that for all t ≥ 0 the process

󰁝 t

0

1{Z(s)=0}ds, (3.80)

known as a local time of Z at zero, coincides with the inverse subordinator, i.e,

T←(t) =

󰁝 t

0

1{Z(s)=0}, (3.81)

where T is a compound Poisson process with a drift, with Laplace exponent

ψ(θ) = θ + λ

󰁝 ∞

0

󰀃
1− e−θx

󰀄
Fσ(dx), θ ≥ 0. (3.82)
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Let us recall the SDE representation of Switching Diffusion presented in Chapter 1.

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

dX(t) =
√
2D · φ(t)dB(t)

󰀃
X(0),φ(0)

󰀄
= (0, 1)

(3.83)

where

φ(t) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 Ri−1 ≤ t < Si, i ≥ 1

0 Si ≤ t < Ri, i ≥ 1.

(3.84)

Let n(t) be defined as

n(t) = sup{i : Si ≤ t}. (3.85)

Notice that we can write

X(t) =

󰁝 t

0

φ(s)dB(s)

=

n(t)󰁛

i=1

󰁝 Si

Ri−i

dB(s) +

󰁝 t

Rn(t)

1{Rn(t)<t}dB(s).

(3.86)

Now, let {B}i≥0 be a sequence of independent Brownian motions. We have equality

in distribution

X(t) =

n(t)󰁛

i=1

Bi(τi) + 1{Rn(t)<t}B(t−Rn(t))

= B

󰀕 n(t)󰁛

i=1

τi + 1{Rn(t)<t}(t−Rn(t))

󰀖

= B

󰀕󰁝 t

0

1{Z(s)=0}ds

󰀖

= B(T←(t)).

(3.87)

Therefore we conclude that Switching Diffusion X and Brownian motion inverse sub-

ordinated to compound Poisson process with a drift B ◦ T← have the same one di-

mensional distributions.
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3.2.3 Generalized Diffusion Equation

In the literature there is a formulation for the probability density function of the

process X(t) = B(T←(t)). It was proposed by Gajda and Magdziarz in [28] that

p(x, t) satisfies following integro-differential equation,

∂tp(x, t) =
1

2
Φt∂xxp(x, t), (3.88)

where Φt is an integro-differential operator given by

Φtf(t) =
d

dt

󰁝 t

0

M(t− s)f(s)ds (3.89)

for sufficiently smooth function f . The memory kernel M(t) is defined via its Laplace

transform

M̂(θ) =
1

ψ(θ)
, (3.90)

where ψ is a Laplace exponent of the subordinator T .

The case when T is an α-stable subordinator (and hence infinite activity process)

is well studied [2],[17]. Recall that the Laplace exponent for Tα is given by

ψ(θ) = θα. (3.91)

In this case the operator Φt introduced in 3.89 is the Riemann-Liouville fractional

derivative D1−α
t A.20,

Φtf(t) = D1−α
t f(t) =

1

Γ(α)

d

dt

󰁝 t

0

f(s)

(t− s)1−α
ds. (3.92)

Therefore the density p(x, t) of process X satisfies the following equation

∂tp(x, t) =
1

2
D1−α

t ∂xxp(x, t). (3.93)
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We would like to show that the Generalized Diffusion Equation is not true for all

inverse subordinated Brownian motions. As an counterexample let us consider the

case where T is a compound Poisson process with a drift, with Laplace exponent

ψ(θ) = θ + λ(1− f̂σ(t)). (3.94)

Suppose that σ is exponentially distributed with rate µ. Now we have

M̂(θ) =
θ + µ

θ2 + (µ+ λ)θ
, (3.95)

and by inverting Laplace transform we obtain

M(t) =
µ

µ+ λ
+

λ

µ+ λ
e−(µ+λ)t. (3.96)

In this case operator Φt becomes

Φtf(t) = f(t)− λ

󰁝 t

0

e−(µ+λ)(t−s)f(s)ds. (3.97)

Therefore p(x, t) satisfies

∂tp(x, t) = ∂xxp(x, t)− λ

󰁝 t

0

e−(µ+λ)(t−s)∂xxp(x, s)ds. (3.98)

The Fourier-Laplace transform can be evaluated and is equal to

p̄(u, θ) = p̃(u, 0)

󰀕
θ + µ+ λ

(θ + µ+ λ)θ + (θ + µ)u2

󰀖
. (3.99)

On the other hand recall the equations for the p(x, t) for Switching Diffusion

p(x, t) = p(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds (3.100)



47

where p(x, t, 0) is a solution to

∂tp(x, t, 0) = ∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds. (3.101)

On the Fourier-Laplace side 3.101 becomes

p̄(u, θ, 0) =
p̃(u, 0, 0)

s+ λ(1− f̂σ(θ)) + u2
(3.102)

therefore

p̄(u, θ) = p̃(u, 0, 0)

󰀗
1 + λf̂σ(θ)

s+ λ(1− f̂σ(θ)) + u2

󰀘
. (3.103)

Now since σ ∼ Exp(µ) we get

p̄(u, θ) = p̃(u, 0, 0)

󰀗
θ + µ+ µλ

(θ + µ+ λ)θ + (θ + µ)u2

󰀘
. (3.104)

Comparing the 3.99 and 3.104 we conclude that the one dimensional probability den-

sities for inverse subordinated Brownian Motion and Switching diffusion are different

which is contradicting the equality in distribution between the processes shown in

section 3.2.2.

3.3 Stochastic-Process Limits

This section will be devoted to the topic of stochastic-process limits, i.e., limits in

which a sequence of stochastic processes converges to another stochastic process. The

idea of such limits is to rescale the time and space of a process, so the limiting process

is stripped away from unessential details and only key features remain. The most

famous result of that type is Donsker’s theorem (or functional central limit theorem

(FCLT)) which shows how random walk converges to a Brownian motion.

Let S be a complete, separable metric space with metric d and let S be the Borel
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σ-algebra of subsets of S generated by open sets. Suppose (Ω,F ,P) is a probability

space. A random element X in S is a measurable map from (Ω,F ,P) to (S,S). Given

a sequence of {Xn}n≥0 of random elements of S, there is a corresponding sequence of

distributions on S

Pn = P{Xn ∈ ·}, n ≥ 0. (3.105)

Pn is called the distribution of Xn. Then Xn converges weakly to X0 (written Xn =⇒

X0) if whenever f ∈ C(S), the class of bounded, continuous, real-valued functions on

S, we have

E[f(Xn)] =

󰁝

S
f(x)Pn(dx) → E[f(X0)] =

󰁝

S
f(x)P0(dx). (3.106)

The definition of weak convergence of random variables in R is given in terms of

one-dimensional distribution functions, which does not generalize nicely to higher

dimensions. Often to prove weak convergence, for separable and complete spaces S,

one have to show that the family of distributions {Pn} is tight, i.e., for any 󰂃, there

exist a compact K󰂃 ∈ S such that

P (K󰂃) > 1− 󰂃 for P ∈ {Pn}. (3.107)

Tightness can be checked, however it is rarely easy.

The power of weak convergence theory comes from the fact that once a basic

convergence result has been proved, many corollaries emerge with little effort. There

are many useful techniques but one that will be the most fruitful for our needs is the

continuous mapping theorem.

Theorem 3.3.1 (Continuous mapping theorem). Let (Si, di), i = 1, 2, be two metric

spaces, and suppose {Xn}n≥0 are random elements of (S1,S1) and Xn =⇒ X0. If
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h : S1 → S2 satisfies

P
󰀋
X0 ∈ {s1 ∈ S1 : h is discontinuous at s1}

󰀌
= 0, (3.108)

then in S2

h(Xn) =⇒ h(X0). (3.109)

3.3.1 Central Limit Theorems on R

In our research we are mainly interested in convergence in functional spaces. Most

of the results however are based on the one dimensional theorems. Let us start our

discussion with the most fundamental limit theorem that is used when constructing

Brownian Motion from a random walk - Central Limit Theorem (CLT). Classical

version of CLT states: given iid random variables X1, X2, .. with E[X1] = µ and

E[X2
1 ] = σ2 < ∞ define

Sn :=
n󰁛

i=1

Xi (3.110)

and then as n → ∞, we have

Sn − nµ√
n

=⇒ S, (3.111)

where S ∼ N (0, σ2) (here =⇒ means convergence in distribution). An essential

assumption for classical CLT to work is that the second moment of Xi is finite. In

the world of “heavy tailed” phenomenon that is rarely a case. What would happen

if the collection of random variables had infinite second or even first moment? Let

start with introducing an idea of a domain of attraction.

Definition 3.3.2. We say that random variable X is in a domain of attraction of S

if for n-iid copies of X : X1, X2, ..., Xn there exist sequences an, bn s.t

Sn − bn
an

=⇒ S. (3.112)
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The random variable S in the literature is called an attractor. The Central Limit

theorem shows that normal random variables can be attractors, but it is very natural

to ask what are the other possible attractors? The answer is surprisingly simple;

the only other attractors beside normal are stable random variables. We already

discussed the stable random variables in 3.1.1. Recall that stable random variables

are characterized by four parameters

α ∈ (0, 2], σ ≤ 0, β ∈ (−1, 1), µ ∈ R, (3.113)

and we will denote stable distributions by Sα(σ, β, µ). Next theorem characterizes

the domain of attraction of stable distributions [19].

Theorem 3.3.3 (stable CLT). Let X1, .., Xn be i.i.d. with cumulative distribution

function F . There exist an > 0, bn ∈ R, n = 1, 2, ..., such that the distribution of

a−1
n (Sn − bn) converges as n → ∞ to Sα(1, β, 0) if and only if both

1. xα[1− F (x) + F (−x)] = L(x) is slowly varying at infinity,

2. F (−x)
1+F (−x)+F (−x)

→ 1−β
2

as x → ∞.

The an must satisfy

lim
n→∞

nL(an)

aαn
=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Γ(1− α) cos(πα/2) if 0 < α < 1,

2/π if α = 1

Γ(2−α)
α−1

| cos(πα
2
)| if 1 < α < 2.

(3.114)

The bn can be chosen as follows:

bn =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 for 0 < α < 1,

nan
󰁕∞
−∞ sin(x/an)dF (x) for α = 1

n
󰁕∞
−∞ xdF (x) for 1 < α < 2.

(3.115)
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In all cases, an = n1/αL0(n) where L0 is slowly varying.

3.3.2 Functional Limit Theorems

In this section we will discuss important limit theorems that take place in in the cádlág

space (right continuous functions with left limits). As mentioned before, proving weak

convergence in higher dimensional spaces is not easy and therefore we establish some

main results here and then we will re-use this results to prove new functional theorems.

The following results are often invoked when proving theorems about convergence of

CTRW (continuous times random walks).

We start with discussion about the underlying function space of possible sample

paths for the stochastic processes. We want to consider stochastic processes with

discontinuous sample paths. Therefore for 0 < T < ∞ let C[0, T ) be the space of

all continuous real-valued functions defined on [0, T ), and, D[0, T ) be the space of all

right-continuous functions on [0, T ) with left hand limits on (0, T ]. We define C[0,∞)

and D[0,∞) in a similar way.

The metric on C[0, 1] is the uniform metric

d(x(·), y(·)) = sup
0≤t≤1

|x(t)− y(t)| := ||x(·)− y(·)||. (3.116)

Note that C[0, 1] is a subspace of D[0, 1]. The uniform metric works really well on C

but not on D. Since elements of D are discontinuous, in order for the functions to be

close, under uniform metric, the corresponding jumps had to occur at the same time.

This can be avoided by introducing time deformations

Λ = {λ : [0, 1] → [0, 1] : λ(0) = 0,λ(1) = 1}, (3.117)

such that every λ(·) ∈ Λ is continuous and strictly increasing. Let e(·) ∈ Λ be the
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identity map on [0, 1]. Then the standard J1 metric on D[0, 1] is

dJ1(x(·), y(·)) = inf
λ∈Λ

󰀋
||x ◦ λ− y|| ∨ ||λ(·)− e(·)||

󰀌
(3.118)

The idea behind going from uniform to this metric is to say that two functions

are close if they are uniformly close over [0, 1] after allowing small perturbations of

time. Finally note that converge in the uniform metric implies convergence in the J1

metric.

The most famous result in the theory of weak convergence is Donsker’s theorem,

which shows that a random walk with suitable time and space scaling looks roughly

like a Brownian Motion. A classical proof of Donsker’s theorem using convergence of

the finite-dimensional distributions plus tightness can be found in [29].

Theorem 3.3.4 (Donsker’s theorem). Suppose that {Xi}i≥1 are iid random variables

satisfying

E[Xi] = 0 and E[X2
i ] = 1. (3.119)

Define S0 = 0 and for n ≥ 1

Sn :=
n󰁛

i=1

Xj. (3.120)

Then in D[0,∞), as n → ∞,

S⌊n·⌋√
n

=⇒ B(·), (3.121)

where B = {B(t)}t≥0 is a standard Brownian motion.

All central limit theorems have their functional central limit theorems (FCLT)

counterparts. The next theorem shows that rescaled CTRW with stable “steps” look

like standard stable Lévy motion.

Theorem 3.3.5 (stable FCLT). Under the conditions of Theorem 3.3.3, in addition
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to the stable CLT

Sn − bn
an

=⇒ Sα(1, β, 0), (3.122)

there is convergence in D[0,∞)

S⌊n·⌋ − bn·
an

=⇒ S(·), (3.123)

where the limit S is a standard (α, β)- stable Lévy motion, with

S(t) = t1/αSα(1, β, 0) = Sα(t
1/α, β, 0). (3.124)

3.3.3 Functional Convergence of Switching Diffusion

In this section we present the stochastic-process limit of our own. We show that Brow-

nian motion inversely subordinated to compound Poisson with a drift under rescaling

is equivalent to the inverse subordinated Brownian motion, i.e, we present the func-

tional limit theorem for Switching Diffusion. Let X = {X(t)}t≥0 be a Brownian

motion inverse subordinated to compound Poisson process with a drift,

X(t) = B
󰀃
T←(t)

󰀄
, (3.125)

where T is a compound Poisson process with a drift. Let Xα = {Xα(t)}t≥0 be a

Brownian motion inverse subordinated α−stable process,

Xα(t) = B
󰀃
T←
α (t)

󰀄
, (3.126)

where Tα is a α−stable process with α ∈ (0, 1). The essential result to show the

functional convergence of inverse subordinate processes is to show that there is a

functional convergence of the clocks. Establishing the functional convergence in the
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space D[0,∞) is not easy but fortunately functional convergence of the increasing

processes reduces to finite dimensional convergence (Theorem 3 of [25]).

Theorem 3.3.6. Let {Xn}n≥1 be a sequence of stochastic processes whose path-

functions lie in D[0,∞). If

1. the finite-dimensional distributions of Xn converge as n → ∞ to those of X;

2. the process X is continuous in probability;

3. the processes Xn have monotone path-functions.

Then Xn =⇒ X in D[0,∞).

Notice that since T and Tα are strictly increasing their inverses T← and T←
α are

increasing as well.

Before we prove the main result let us prove well known functional theorem for

Poisson process.

Theorem 3.3.7. As c → ∞,

N(c·)/c =⇒ λ · in D[0,∞) (3.127)

Proof. Fix t1, ..., tm such that 0 < t1 < t2 < ... < tm and x1, ..., xm ≥ 0. For n ∈ N let

Sn =
n󰁛

i=1

τi. (3.128)

Note that we have

{N(t) ≥ x} = {S⌈x⌉ ≤ t}, (3.129)
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where ⌈x⌉ is the smallest integer greater than or equal to x. Therefore we can write

P{N(cti)/c < xi, for i = 1, ...,m} = P{N(cti) < cxi, for i = 1, ...,m}

= P{S⌈cxi⌉ > cti, for i = 1, ...,m}

= P{S⌈cxi⌉/c > ti, for i = 1, ...,m}

(3.130)

Now as c → ∞ by the law of large numbers

P{N(cti)/c < xi, for i = 1, ...,m} = P{λti < xi, for i = 1, ...,m} (3.131)

and we establish convergence in distribution of all finite-dimensional marginal dis-

tributions. Now, since the sample paths of {Nt}t≥0 and {λt}t≥0 are increasing and

{λt}t≥0 is continuous, Theorem 3 of [25] and above calculation give us as c → ∞

N(c·)/c =⇒ λ · in D[0,∞). (3.132)

With the above we are ready to prove the main result of the section.

Theorem 3.3.8. Let T be a compound Poisson process with a drift, i.e,

T (t) =

N(t)󰁛

i=1

σi + t, t ≥ 0, (3.133)

where N is a Poisson process with intensity λ and σ is a random variable with cdf

F , where F̄ ∈ RV−α, α ∈ (0, 1). Let B be a standard Brownian motion. Then as

s → ∞,

B(F̄ (s)T←(s·)) =⇒ B(T←
α (·)) (3.134)

in D[0,∞), where Tα is a α-stable subordinator.
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Proof. Let us define the quantile function of σ

b(s) := (1/F̄ )←(s). (3.135)

Note that F̄ ∈ RV−α, implies that

1/F̄ ∈ RVα. (3.136)

Finally by part (v) of Proposition A.1.1

b = (1/F̄ )← ∈ RV1/α. (3.137)

From above we can conclude that as s → ∞

s

b(s)
→ 0. (3.138)

So we can write

(b(s))−1T (s·) = (b(s))−1

N(s·)󰁛

i=1

σi + o(1), (3.139)

which holds for the finite-dimensional distributions. Now regular variation of F̄ im-

plies that in D[0,∞)

(b(s))−1

[s·]󰁛

i=1

σi =⇒ Tα(·), (3.140)

where Tα is an α-stable subordinator. Therefore

󰀕
N(s·)
s

, (b(s))−1

[s·]󰁛

i=1

σi

󰀖
=⇒ (λ·, Tα(·)) (3.141)

in D([0,∞),R2). By the Continuous Mapping Theorem we conclude that

(b(s))−1T (s·) =⇒ λ1/αTα(·), (3.142)
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where =⇒ refers to the convergence of the finite-dimensional distributions. Since

(b(s))−1T (s·) is non-decreasing and continuous in probability, Theorem 3.3.6 gives us

convergence in D[0,∞). Now since both (b(s))−1T (s·) and Tα are nondecreasing, the

inverse processes also converge in D[0,∞):

󰀃
(b(s))−1T (s·)

󰀄←
=⇒

󰀃
λ1/αTα(·)

󰀄←
. (3.143)

Unwinding the last result, we get in D[0,∞)

T←(b(s)·)
s

=⇒ λT←
α (·), (3.144)

or, simply,

F̄ (s)T←(s·) =⇒ T←
α (·). (3.145)

Finally the Continuous Mapping Theorem yields that in D[0,∞)

B
󰀃
F̄ (s)T←(s·)

󰀄
=⇒ B

󰀃
T←
α (·)

󰀄
, (3.146)

which ends the proof.

3.4 Return to Switching Diffusion

In Chapter 2 we proposed a model of Switching Diffusion with immobilization times

which have a distribution that is a countable mixture of exponentials. This natural

restriction comes from the limitations in a hybrid switching diffusion model. Its

discrete component has to be a continuous time Markov chain therefore its state space

can only be countable. However, the countable mixtures of exponentials are fairly

good approximation class. So the following question emerges: what is the largest class

of densities that can be approximated by the countable mixtures of exponentials? And
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consequently, what is the largest class of Switching Diffusion processes that its law

can be represented as in Theorem 2.4.1. Let us start the discussion with the theory

of exponential mixtures and its connection to the completely monotone functions.

3.4.1 Mixtures of Exponentials and Completely Monotone

Functions

When we talk about convergence of probability distributions on the real line we use

the notion of weak convergence. We already discussed this matter in Section 3.3 so

here we only make extra few comments. On the real line weak convergence of random

variables is given in terms of cumulative distribution functions

Fn(t) → F (t) as n → ∞ (3.147)

for all t that are continuity points of the limiting cdf F , which we denote by

Fn =⇒ F. (3.148)

The exponential distribution is a probability distribution on [0,∞) with density f

and its Laplace transform f̂ given by

f(t) = λe−λt, f̂(s) =
λ

λ+ s
. (3.149)

Mixing with respect to λ leads to distribution on (0,∞) with density f and Laplace

transform f̂ of the form

f(t) =

󰁝

(0,∞)

λe−λtdG(λ), f̂(s) =

󰁝

(0,∞)

λ

λ+ s
dG(λ), (3.150)
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with G a distribution on (0,∞). Observe that the resulting mixture can be viewed

as a scale mixture by putting λ = 1/µ

f̂(s) =

󰁝

R+

1

1 + µs
dH(µ), (3.151)

with H a distribution on [0,∞). This means that an additional mixing with degen-

erate distribution at zero is allowed. This representation has an advantage that the

resulting class of distributions is closed under the weak convergence [30]. It turns out

that there is a close relationship of exponential mixtures and completely monotone

functions, which definition is provided below.

Definition 3.4.1. A function f defined on (0,∞) is completely monotone (CM) if it

is of class C∞ and

(−1)nf (n)(t) ≥ 0, t ∈ (0,∞), n = 0, 1, 2, ... (3.152)

With the above definition we can fully characterize the range of exponential mix-

tures. The following theorem is known as Bernstein theorem on monotone functions.

Theorem 3.4.2 (Bernstein). The function f is CM if and only if

f(t) =

󰁝

[0,∞)

e−λtdµ(dt), (3.153)

where µ(t) is a positive measure on Borel sets of [0,∞) and the integral converges for

0 < t < ∞.

In other words, completely monotone functions are real one-side Laplace trans-

forms of a positive measure on [0,∞). Note that in Bernstein theorem function f

does not have to be a probability density function. However, if f is a probability
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density on [0,∞) after integration with respect to t ∈ (0,∞) we obtain

1 =

󰁝

[0,∞)

1

λ
µ(dt). (3.154)

Defining a new probability measure by ν(Γ) :=
󰁕
Γ

1
λ
µ(dλ), we get

f(t) =

󰁝

[0,∞)

λe−λtν(dλ) =

󰁝 ∞

0

λe−λtG(dλ), (3.155)

where G is the distribution function for ν. Above shows that in the probabilistic

setting Bernstein theorem says that a probability density function is a CM function

if and only if it is a mixture of exponential densities. Now, it is pretty clear that

mixtures of exponential densities are completely monotone. Moreover, using the fact

that cdfs with finite support are dense in the family of all cdfs, we get

Corollary 3.4.1. If F is a cdf with CM pdf f , then there are cdfs {Fn}n≥0, with CM

densities {fn}n≥0 of the form

fn(t) =
kn󰁛

i=1

λnipnie
−λnit, t ≥ 0, (3.156)

with λni ≤ ∞ and
󰁓kn

i=1 pni = 1 such that for t ∈ (0,∞)

fn(t) → f(t) as n → ∞. (3.157)

Note that convergence of densities implies the convergence of cdfs so we also have

Fn =⇒ F . Also it is worth mentioning that Corollary 3.4.1 can be strengthened.

Since for CM functions the pointwise convergence, locally uniform convergence, and

even convergence in space C∞(0,∞) coincide [30].
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3.4.2 Switching Diffusion with CM Immobilization Times

Now, we revisit Section 2.5 and present a collection of results that goes partially

towards the goal of establishing a law for a Switching Diffusion with immobilization

times that have completely monotone densities. Recall that in Chapter 2 we showed

that for Switching Diffusion with fσ a countable mixture of exponentials we have

autonomous equation for p(x, t, 0) which satisfies

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

∞󰁛

i=1

piλie
−λi(t−s)p(x, s, 0)ds

= D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds.

(3.158)

We found a similar formulation for the probability density function in physics liter-

ature. Lomholt et al [31] presented a model for a particle which switches between

diffusing and ballistic relocation. The authors claim that p(x, t) is the probability

density for the position x of the particle at time t (independent of which state the

particle is in):

∂tp(x, t) = D∂xxp(x, t)− λp(x, t) + λ

󰁝 L

−L

󰁝 ∞

0

K∗(x− y, t− s)p(y, s)dsdy, (3.159)

where K∗(x, t) represents relocation kernel. Notice that if K∗(x, t) has a special form:

K∗(x, t) = δ0(x)K(t) (3.160)

then the equation (3.159) becomes:

∂tp(x, t) = D∂xxp(x, t)− λp(x, t) + λ

󰁝 ∞

0

K(t− s)p(x, s)ds, (3.161)

which is the equation (3.158) for the density of Switching diffusion in diffusing state,

where K(t) is a mixture of exponentials. In this paper only the case when K(t) is
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an exponential or Levy density were considered. Unfortunately, the authors did not

justify the equations for the probability density function therefore the validity of these

equations for the choice of Levy density remains in question.

Nonetheless, this paper inspired our research on the maximum class of models we

can present the law for. The perfect theorem would be in the following form.

Theorem 3.4.3. (OPEN PROBLEM) Let X(t) be a switching diffusion with iid

diffusion times

{τi}i≥1 ∼ Exp(λ) (3.162)

and iid immobilization times

{σi}i≥1 ∼ Fσ, (3.163)

where Fσ is a cumulative distribution function with completely monotone density fσ.

Then for t > 0 and Γ ∈ B(R)

P{X(t) ∈ Γ} =

󰁝

Γ

p(x, t)dx (3.164)

where

p(x, t) = p(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds (3.165)

and p(x, t, 0) is a solution to

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds. (3.166)

Unfortunately, we were not able to prove the above. Here we present the partial

results and potential obstacles. Figure 3.3 summarizes the steps needed for the proof.

First, we can use Corollary 3.4.1 to obtain sequence of CM densities fσn , in the

following form

fn(t) =
kn󰁛

i=1

λnipnie
−λnit, t ≥ 0, (3.167)
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Figure 3.3: Sketch of the possible proof of Theorem 3.4.3.

such that fσn(t) → fσ(t). Now, let

X̃n := B ◦ T←
n and X̃ := B ◦ T← (3.168)

be Brownian motions inversely subordinated to Compound Poisson processes with

ψn(θ) = θ + λ(1− f̂σn(θ)) and ψ(θ) = θ + λ(1− f̂σ(θ)). (3.169)

Observe that Tn converges in finite dimensional distributions to subordinator T . To

see that we write

|ψn(θ)− ψ(θ)| = |f̂n(θ)− f̂(θ)|. (3.170)

By Theorem 2 from [32] weak convergence implies convergence in Laplace transforms

and therefore we obtain

Tn =⇒ T, (3.171)

where the convergence is in the finite dimensional distributions. With the help of

Theorem 3.3.6 we get the convergence in D[0,∞). Consequently, we have

T←
n =⇒ T← (3.172)
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in D[0,∞) and finally by the Continuous Mapping Theorem

X̃n = B(T←
n ) =⇒ B(T←) = X̃ (3.173)

in D[0,∞). In Section 3.2.2 we found a link between inverse subordinated Brownian

motion and switching diffusion processes. If we denote by Xn sequence of Switching

diffusions with immobilization times σn and probability density functions pn(x, t) then

Xn and X̃n have the same one dimensional distributions. By Equation 3.173 we can

conclude that one dimensional distributions of Xn converge to that of X, since X

and X̃ have the same one dimensional distributions. It seems plausible that under

appropriate conditions one can show that there exists a function p such that sequence

of probability densities pn converge to p and p is the probability density function of X.

However, this is not the same as showing that the laws of the associated processes Xn

converge in distribution to X. This would require analysis of the finite dimensional

distributions which remains unsolved.
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Chapter 4

First Passage Problem

In this chapter we investigate the first passage time problem for Brownian motion,

Time-Fractional Diffusion and subdiffusive Switching Diffusion. For a stochastic

process, the first passage time (FPT) is defined as the time T when the process,

which starts from a given point, reaches a predetermined level, say L, for the first

time. T is a random variable and usually one tries to compute the survival function

S(t) := P{T > t}. S(t) is called the survival function because it is just the probability

that the particle has not been absorbed by the boundaries during the time interval

[0, t]. Another question that usually arises in this context is the scaling of mean first

passage time with L. The question is really interesting here because for many sub-

diffusive models the mean first passage time is infinite. In Section 4.1 we calculate

the survival function for Brownian motion. In this setting the random variable T is

well understood with explicit density and mean E[T ] = L2/2D. In Section 4.2 we

present calculations for Time-Fractional Diffusion and comment on the mean first

passage time. Section 4.3 is devoted to our subdiffusive Switching Diffusion where

we calculate asymptotic form of the survival function and show that the mean first

passage time is infinite. The next section contains a discussion about the behavior of

a quantile function for Switching Diffusion model and suggests an alternative statis-
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tic that which can be used to study the relationship of T with L. Also, we present

simulations for it in Section 4.5.

4.1 FPT for Brownian Motion

The solution to FPT problem for Brownian motion by way of the evolving law of

the particle is a classical result [33]. Let B = {B(t)}t≥0 denotes Brownian motion

starting from the origin with diffusivity 2D. We denote by TBM the time process

exits the interval [−L,L], i.e.,

TBM := inf{t > 0 : |B(t)| > L, where B(0) = 0}. (4.1)

We demonstrate that E[TBM ] = L2

2D
, while

S(t) = P{TBM > t} =
4

π

∞󰁛

k=0

(−1)k

2k + 1
exp

󰀝
−D

󰀕
(2k + 1)π

2L

󰀖2

t

󰀞
. (4.2)

Let p(x, t) denote the law of the particle in the interval [−L,L] until it reaches either

of the absorbing boundaries. That is

∂tp(x, t) = D∂xxp(x, t), (4.3)

with p(x, 0) = δ(x) and p(−L, t) = p(L, t) = 0. The solution to (4.3) can be obtained

through the method of separation of variables, i.e., we start looking for solutions

which satisfy the boundary conditions, and have special form

p(x, t) = X(x)T (t), (4.4)
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where X and T are functions of variables x and t, respectively. By differentiating and

separating variables from (4.4) we obtain

Tt

DT
=

Xxx

X
= −θ, (4.5)

where θ is a separation constant. Equation 4.5 leads to the following system of ODEs:

X ′′ = −θX − L < x < L, (4.6)

T ′ = −θDT t > 0 (4.7)

which are coupled only by the separation constant θ. First, we focus on (4.6). The

function X should be a solution of the boundary value problem

X ′′ + θX = 0 − L < x < L (4.8)

X(−L) = X(L) = 0. (4.9)

The solution to the above is

Xn(x) =
1

L
sin

󰀗
nπ

2

󰀘
sin

󰀗
nπ(L+ x)

2L

󰀘
, θn =

󰀕
nπ

2L

󰀖2

, n = 1, 2, 3, ... (4.10)

Where the solution to (4.7) is simply

Tn(t) = exp

󰀝
−D

󰀕
nπ

2L

󰀖2

t

󰀞
, n = 1, 2, 3, ... (4.11)

The superposition principle implies that the solution to (4.3) is:

p(x, t) =
1

L

∞󰁛

n=1

sin

󰀗
nπ

2

󰀘
sin

󰀗
nπ(L+ x)

2L

󰀘
exp

󰀝
−D

󰀕
nπ

2L

󰀖2

t

󰀞
. (4.12)
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Then the survival function is given by

S(t) =

󰁝 L

−L

p(x, t)dx

=
1

L

∞󰁛

n=1

sin

󰀗
nπ

2

󰀘󰀗
2L(1− cos πn)

πn

󰀘
exp

󰀝
−D

󰀕
nπ

2L

󰀖2

t

󰀞

=
4

π

∞󰁛

k=0

(−1)k

2k + 1
exp

󰀝
−D

󰀕
(2k + 1)π

2L

󰀖2

t

󰀞
.

(4.13)

Now, using the survival function we can compute the mean first passage time,

E[TBM ] =

󰁝 ∞

0

P{TBM > t}dt = 16L2

Dπ3

∞󰁛

k=0

(−1)k

(2k + 1)3
=

L2

2D
, (4.14)

where we use that
󰁓∞

n=0
(−1)n

(2n+1)3
= π3

32
.

4.2 FPT for Time-Fractional Diffusion

Now, we shift our focus to the FPT problem for Time-Fractional diffusion. As shown

in Section 3.3.3 Time-Fractional diffusion is a stochastic-process limit of Switching

Diffusions. Therefore we decide to investigate this problem first.

Let us present the calculation of survival function for Time-Fractional Diffusion

and show that the mean first passage time is infinite. This result is well known,

for example see [34]. Let X = {X(t)}t≥0 denote Time-Fractional Diffusion with

diffusivity parameter Kα, α ∈ (0, 1), i.e.

X(t) = Kα(B ◦ T←
α )(t), (4.15)

where B = {B(t)}t≥0 is the standard Brownian motion and Tα = {Tα(t)}t≥0 is an
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α-stable subordinator. TTFD is the first time the process X exits the interval [−L,L],

TTFD := inf{t > 0 : |X(t)| > L, where X(0) = 0}. (4.16)

Let p(x, t) denote the law of the particle in the interval [−L,L] until it reaches either of

the absorbing boundaries. Recall that p(x, t) solves the following generalized diffusion

equation

∂tp(x, t) = KαD
1−α
t

∂2

∂x2
p(x, t), (4.17)

with p(x, 0) = δ(x) and p(−L, t) = p(L, t) = 0. Here the operator D1−α
t is the

Riemann-Liouville fractional derivative (A.20). The solution of Equation 4.17 with

the given boundaries and the initial condition can be found by the method of sepa-

ration of variables and is provided below

p(x, t) =
2

L

∞󰁛

n=1

sin

󰀗
nπ

2

󰀘
sin

󰀗
nπ(L+ x)

2L

󰀘
Eα

󰀗
− n2π2

4L2
Kαt

α

󰀘
, (4.18)

where Eα(−z) is the Mittag-Leffler function, discussed in the Appendix A.2.

The survival function is given by

S(t) =

󰁝 L

−L

p(x, t)dx. (4.19)

Substituting for p(x, t) into this equation and using the following fact

󰁝 L

−L

sin

󰀗
nπ(L+ x)

2L

󰀘
dx =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

4L
nπ

n is odd,

0 n is even

(4.20)

we obtain

S(t) =
4

π

∞󰁛

n=0

(−1)n

2n+ 1
Eα

󰀗
− (2n+ 1)2π2

4L2
Kαt

α

󰀘
. (4.21)
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Notice that for α = 1 the Mittag-Leffler function reduces to the exponential e−z and

thus yields the usual solution for the diffusive problem (4.2).

Now, we would like to show the behavior of survival function for large times and

show that the mean first passage time for time-fractional diffusion is infinite. To

address that we need to analyze the behavior of S(t) as t → ∞. For large z the

Mittag-Leffler function behaves as

Eα(−z) ∼
∞󰁛

m=1

(−1)m+1

Γ(1− αm)
z−m, (4.22)

which also implies

Eα(−z) ∼ 1

Γ(1− α)z
. (4.23)

Consequently, for t → ∞,

S(t) ∼ 4

π

∞󰁛

n=0

(−1)n

2n+ 1

(2L)2

Γ(1− α)Kα(2n+ 1)2π2tα

∼ 1

Γ(1− α)

L2

2Kα

t−α.

(4.24)

Here we use a fact that
󰁓∞

n=0
(−1)n

(2n+1)3
= π3

32
. Then it follows that for t → ∞

󰁝 t

0

S(s)ds ∼ 1

(1− α)Γ(1− α)

L2

2Kα

t1−α. (4.25)

Since

E[TFTD] = lim
t→∞

󰁝 t

0

S(s)ds, (4.26)

we thus conclude that for any α ∈ (0, 1) the mean first passage time for a time-

fractional diffusion is infinite.
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4.3 FPT for Switching Diffusion

Here we present two approaches to solve the FPT problem for Switching Diffusion

model introduced in Chapter 1. In the first approach we use the equations for the

law of SD (Section 2.4) and similar techniques to these used in two previous sections.

The second approach uses the analysis of trapping events and the properties of the

regularly varying functions.

4.3.1 FPT for SD using the Law

Let X = {X(t)}t≥0 denote Switching Diffusion defined as in (2.7). Here we assume

that σ has a distribution which is a mixture of exponentials, i.e., for t ≥ 0

F̄σ(t) =
∞󰁛

i=1

pie
−λit, (4.27)

with the density

fσ(t) =
∞󰁛

i=1

piλie
−λit, (4.28)

where the coefficients {pi}i≥1 and rates {λi}i≥1 are chosen as in (2.2.1) so that as

t → ∞

F̄σ(t) ∼ At−α. (4.29)

We denote by TSD the first time process X exits the interval [−L,L],

TSD := inf{t > 0 : |X(t)| > L}. (4.30)

We are interested in obtaining survival function

S(t) = P{TSD > t} =

󰁝 L

−L

p(x, t)dx, (4.31)
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where p(x, t) =
󰁓∞

i=0 p(x, t, i). Therefore we need to solve

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) +
∞󰁛

i=1

λip(x, t, i) (4.32)

∂tp(x, t, i) = λpip(x, t, 0)− λip(x, t, i) for i = 1, 2, 3, ... (4.33)

for x ∈ (−L,L) and t > 0 with boundary conditions p(L, t, i) = p(−L, t, i) = 0 where

i = 0, 1, .... Recall that for every i we can solve (4.33) in terms of p(x, t, 0), i.e.,

p(x, t, i) = λ

󰁝 t

0

pie
−λi(t−s)p(x, s, 0)ds (4.34)

Now by plugging into (4.32) and changing sum with the integral we obtain au-

tonomous equation for p(x, t, 0):

∂tp(x, t, 0) = D∂xxp(x, t, 0)− λp(x, t, 0) + λ

󰁝 t

0

fσ(t− s)p(x, s, 0)ds. (4.35)

Moreover with (4.34) we can rewrite (4.31) in terms of p(x, t, 0), i.e,

S(t) =

󰁝 L

−L

p(x, t)dx

=

󰁝 L

−L

󰀃
p(x, t, 0) +

∞󰁛

i=1

p(x, t, i)
󰀄
dx

=

󰁝 L

−L

󰀕
p(x, t, 0) + λ

󰁝 t

0

∞󰁛

i=1

pie
−λi(t−u)p(x, u, 0)du

󰀖
dx

=

󰁝 L

−L

󰀕
p(x, t, 0) + λ

󰁝 t

0

F̄σ(t− u)p(x, u, 0)du

󰀖
dx.

(4.36)

Now in order to solve (4.35), we use the method of separation of variables, i.e., we

start by looking for solutions that satisfy the boundary conditions and have the special

form

p(x, t, 0) = X(x)T (t). (4.37)
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We obtain

X(x)T ′(t) = DX ′′(x)T (t)− λX(x)T (t) + λX(x)(fσ ∗ T (t)), (4.38)

which leads to the following system of ODE’s

X ′′ = −θX − L < x < L, (4.39)

T ′ + λT − λfσ ∗ T = −θT t > 0 (4.40)

which are coupled only by the separation constant θ. First, we focus on (4.39). The

function X should be a solution of the boundary value problem

X ′′ + θX = 0 − L < x < L (4.41)

X(−L) = X(L) = 0. (4.42)

The solution to above is

Xn(x) =
1

L
sin

󰀗
nπ

2

󰀘
sin

󰀗
nπ(L+ x)

2L

󰀘
, θn =

󰀕
nπ

2L

󰀖2

D, n = 1, 2, 3, ... (4.43)

To solve (4.40) we apply the Laplace transform to obtain

sT̂ (s)− 1 + λT̂ (s)− λf̂σ(s)T̂ (s) = −θT̂ (s). (4.44)

Substituting θn, we get the following solution on the Laplace side

T̂n(s) =
1

s+ λ(1− f̂σ(s)) + θn
, n = 1, 2, 3, ... (4.45)
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Combining (4.43) and (4.45) we obtain Laplace transform of p(x, t, 0):

p̂(x, s, 0) =
1

L

∞󰁛

n=0

(−1)n sin

󰀗
(2n+ 1)π(L+ x)

2L

󰀘
1

s+ λ(1− f̂σ(s)) + θ2n+1

, (4.46)

where we use that for k = 0, 1, 2, ....

sin

󰀗
nπ

2

󰀘
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0 n = 2k,

(−1)k n = 2k + 1.

(4.47)

With the above we can calculate the Laplace transform of the survival function.

Ŝ(s) = L
󰀝󰁝 L

−L

p(x, t)dx

󰀞
(s)

= L
󰀝󰁝 L

−L

󰀕
p(x, t, 0) + λ

󰁝 t

0

F̄σ(t− u)p(x, u, 0)du

󰀖
dx

󰀞
(s).

(4.48)

Now, by observing that

󰁦1− Fσ(s) =
1

s
(1− f̂σ(s)), (4.49)

we obtain

Ŝ(s) =

󰁝 L

−L

󰀃
p̂(x, s, 0) +

λ

s
(1− f̂σ(s))p̂(x, s, 0)

󰀄
dx

=

󰁝 L

−L

p̂(x, s, 0)
1

s
(s+ λ(1− f̂σ(s))

󰀄
dx.

(4.50)

By plugging in (4.46) and integrating with respect to x we finally have

Ŝ(s) =
4

π

∞󰁛

n=0

(−1)n

2n+ 1

s+ λ(1− f̂σ(s))

s(s+ λ(1− f̂σ(s)) + θ2n+1)
. (4.51)

Our goal is to show that as s ↓ 0

Ŝ(s) ∼ λL2

2D
Γ(1− α)Asα−1. (4.52)
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By Theorem A.1.8 the assumption (4.29) implies that as s ↓ 0

1− f̂σ(s) ∼ Γ(1− α)Asα. (4.53)

Fix ε > 0. Choose δ > 0, s.t. for all s < δ

󰀏󰀏󰀏󰀏󰀏
1− f̂σ(s)

sα
− Γ(1− α)A

󰀏󰀏󰀏󰀏󰀏 < ε. (4.54)

We have that

Ŝ(s)

sα−1
=

4

π

∞󰁛

n=0

(−1)n

2n+ 1

s1−α + λ(1− f̂σ(s))/s
α

s+ λ(1− f̂σ(s)) + θ2n+1

:=
4

π

∞󰁛

n=0

anfn(s), (4.55)

where an = (−1)n

2n+1
. The strategy is to show that series

󰁓∞
n=0 anfn(s) converges uni-

formly. Let us start with noticing that

∞󰁛

n=0

an =
π

4
< ∞. (4.56)

Also, since θn’s are decreasing {fn}n≥0 is a monotonic decreasing sequence. What is

more, {fn}n≥0 is uniformly bounded. To see that we write for n ≥ 0

0 ≤ s1−α + λ(1− f̂σ(s))/s
α

s+ λ(1− f̂σ(s)) + θ2n+1

≤ s1−α + λ(1− f̂σ(s))/s
α

θ2n+1

. (4.57)

Now, by (4.54) for s ∈ [0, δ/2]

0 ≤ fn(s) ≤
(δ/2)1−α + λ(Γ(1− α)A+ 󰂃)

(π/2L)2D
. (4.58)

Therefore by Abel’s Uniform Convergence Test we conclude that for s ∈ [0, δ/2]

∞󰁛

n=0

anfn(s) (4.59)
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is uniformly convergent series. This allows us to write

lim
s↓0

Ŝ(s)

sα−1
=

4

π

∞󰁛

n=0

(−1)n

2n+ 1
lim
s↓0

s1−α + λ(1− f̂σ(s))/s
α

s+ λ(1− f̂σ(s)) + θ2n+1

=
4

π

∞󰁛

n=0

(−1)n

2n+ 1

λ

θ2n+1

Γ(1− α)A

=
4

π
λΓ(1− α)A

4L2

π2D

∞󰁛

n=0

(−1)n

(2n+ 1)3

=
λL2

2D
Γ(1− α)A

(4.60)

which shows that

Ŝ(s) ∼ λL2

2D
Γ(1− α)Asα−1. (4.61)

Finally, by Karamata’s Theorem as t → ∞

P{TSD > t} ∼ λL2

2D
At−α. (4.62)

With the above we can calculate the mean first passage time for the subdiffusive

Switching Diffusion. Notice that that for t → ∞

󰁝 t

0

P{TSD > u}du ∼ λL2

2D(1− α)
At−α+1. (4.63)

Since

E[TFTD] = lim
t→∞

󰁝 t

0

P{TSD > u}du, (4.64)

we thus conclude that for any α ∈ (0, 1) the mean first passage time for subdiffusive

Switching Diffusion is infinite.

4.3.2 FPT for SD using Regular Variation

Our calculations in the previous section cover a scenario where σ has distribution that

is a mixture of exponentials. We decide to approach the FPT problem again but using
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different techniques and prove same result for a broader class of distributions. The

main observation here is that due to the structure of immobilization events we can

represent an exit time for Switching Diffusion as a time that Brownian motion takes

to exit the interval plus the amount of time which the particle spends immobilized,

i.e.,

TSD = TBM +
K󰁛

i=1

σi, (4.65)

where K, conditionally on TBM , is a Poisson random variable with rate λTBM .

Theorem 4.3.1. Let {σi}i∈N be i.i.d. sequence of random variables with cdf F such

that F̄ ∈ RV−α, α ∈ (0, 1). Then survival function of FPT of Switching Diffusion has

the following form as t → ∞

P{TSD > t} ∼ λL2

2D
t−αL(t), (4.66)

where L(t) is some slowly varying function.

Proof. Notice that we can write

TSD = TBM +
K󰁛

i=1

σi, (4.67)

whereK, conditionally on TBM , is a Poisson random variable with mean λTBM . First,

observe that

E[K] = E[E[K|TBM ]] = λE[TBM ] =
λL2

2D
< ∞. (4.68)

By Proposition 2.1 in [35] we can write

P{K > k} = λ

󰁝 ∞

0

(λt)k

k!
e−λtS(t)dt, (4.69)

where S(t) is a survival function for Brownian motion (4.2). This shows that P{K >
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k} = o(P{σi > k}). Now Proposition 4.1 from [36] asserts that

P
󰀝 K󰁛

i=1

σi > t

󰀞
∼ E[K]P{σi > t}

∼ λL2

2D
t−αL(t).

(4.70)

Now, we show

P
󰀝
TBM +

K󰁛

i=1

σi > t

󰀞
∼ P

󰀝 K󰁛

i=1

σi > t

󰀞
. (4.71)

This statement would be trivial if TBM and
󰁓K

i=1 σi were independent. In our case

K depends on TBM . Clearly,

P
󰀝
TBM +

K󰁛

i=1

σi > t

󰀞
≥ P

󰀝 K󰁛

i=1

σi > t

󰀞
. (4.72)

If 0 < δ < 1/2 then from

󰀝
TBM+

K󰁛

i=1

σi > t

󰀞
⊂

󰀝 K󰁛

i=1

σi > (1−δ)t

󰀞
∪
󰀝
TBM > (1−δ)t

󰀞
∪
󰀝 K󰁛

i=1

σi > δt, TBM > δt

󰀞
,

it follows that

P
󰀝
TBM +

K󰁛

i=1

σi > t

󰀞
≤ P

󰀝 K󰁛

i=1

σi > (1− δ)t

󰀞
+ P

󰀝
TBM > (1− δ)t

󰀞

+ P
󰀝 K󰁛

i=1

σi > δt, TBM > δt

󰀞
.

(4.73)

From (4.2) we obtain

P
󰀝
TBM > t

󰀞
= o

󰀕
P
󰀝 K󰁛

i=1

σi > (1− δ)t

󰀞󰀖
. (4.74)
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Let fTBM
denote the density of TBM and write

P
󰀝 K󰁛

i=1

σi > δt, TBM > δt

󰀞
= P{TBM > δt}P

󰀝 K󰁛

i=1

σi > δt

󰀏󰀏󰀏󰀏TBM > δt

󰀞

= P{TBM > δt}
󰁝 ∞

δt

P
󰀝 K󰁛

i=1

σi > δt

󰀏󰀏󰀏󰀏TBM = s

󰀞
fTBM

(s)ds

∼ P{TBM > δt}P{σi > δt}
󰁝 ∞

δt

E[K|TBM = s]fTBM
(s)ds

= P{TBM > δt}P{σi > δt}
󰁝 ∞

δt

λsfTBM
(s)ds.

This shows that

P
󰀝 K󰁛

i=1

σi > δt, TBM > δt

󰀞
= o

󰀕
P
󰀝 K󰁛

i=1

σi > (1− δ)t

󰀞󰀖
. (4.75)

Therefore, we can write

P
󰀝
TBM +

K󰁛

i=1

σi > t

󰀞
≤ P

󰀝 K󰁛

i=1

σi > (1− δ)t

󰀞
(1 + o(1)). (4.76)

Finally,

1 ≤ lim
t→∞

P
󰀝
TBM +

󰁓K
i=1 σi > t

󰀞

P
󰀝󰁓K

i=1 σi > t

󰀞 ≤ (1− δ)−α, (4.77)

which proves (4.71) upon letting δ ↓ 0.

4.4 Quantiles of the FPT distribution

The time it takes for a certain fraction of the population to escape a region in a given

time is

Tθ := inf{t : P{T > t} ≤ 1− θ}, (4.78)
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where T is a FPT for some stochastic process. This statistic has been rarely used in

physics and mathematics but is somewhat common in the viral infectivity literature

(see for example [4]).

If we denote the distribution function of T as F then we can write

Tθ = inf{t : P{T > t} ≤ 1− θ}

= inf{t : 1− F (t) ≤ 1− θ}

= inf{t : F (t) ≥ θ}.

(4.79)

Now, let us introduce the right-continuous inverse of a monotone function.

Definition 4.4.1. Suppose H : R → (a, b) is a nondecreasing function on R with

range (a, b), where −∞ ≤ a < b ≤ ∞. With the convention that the infimum of an

empty set is ∞, we define the (right-continuous) inverse H← : (a, b) → R of H as

H←(θ) = inf{t : H(t) ≥ t}. (4.80)

Therefore, we observe

Tθ = F←(θ), (4.81)

which is the quantile function of the random variable T . The quantile function is

another way of describing a probability distribution and is an alternative to the

cumulative distribution function.

In our work we deal with random variables that have regularly varying tails. As

an example we calculate the quantile function of a Pareto distribution. Recall that

a random variable has the Pareto distribution with shape parameter α ∈ (0,∞) if it

has a continuous distribution on [1,∞) with distribution function F given by

F (t) = 1− t−α t ∈ [1,∞). (4.82)
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Then its quantile function F←(θ) is

F←(θ) = (1− θ)−1/α θ ∈ [0, 1), (4.83)

which is easily computed from solving F (t) = θ for t in terms of θ.

Now, we want to calculate the quantile function for the first passage time of

Switching Diffusion- TSD. As shown in Theorem 4.3.1 the distribution of TSD has

a regularly varying tail therefore we expect that the quantile function should be

somewhat similar to one obtained in 4.83. Unfortunately we only know the asymptotic

distribution of TSD therefore we are going to investigate only the asymptotic behavior

of its quantile function.

Theorem 4.4.2. Let TSD has a survival function as in Theorem 4.3.1. Then as θ ↑ 1

Tθ ∼
󰀕
λL2

2D

󰀖1/α

(1− θ)−1/αL∗((1− θ)−1), (4.84)

where L∗ is a slowly varying function.

Proof. Let F be the distribution function of TSD. Therefore, by Theorem 4.3.1 we

have

1− F (t) ∼ λL2

2D
t−αL(t) ∈ RV−α, (4.85)

and this implies the following

1

1− F
(t) ∼ 2D

λL2
tα

1

L(t)
:=

2D

λL2
H(t). (4.86)

Now, since H ∈ RVα and increasing to ∞, we can use Proposition A.1.1 (v) which

gives us

H← ∈ RV1/α, (4.87)

i.e. H←(y) ∼ y1/αL∗(y) as y → ∞, for some slowly varying function L∗. Finally, from
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Proposition A.1.1 (vi) we obtain

󰀕
1

1− F

󰀖←

∼
󰀕
2D

λL2

󰀖−1/α

H←. (4.88)

Now, notice that for y > 1

󰀕
1

1− F

󰀖←

(y) = inf

󰀝
t :

1

1− F
(t) ≥ y

󰀞

= inf

󰀝
t : F (t) ≥ 1− 1

y

󰀞

= F←
󰀕
1− 1

y

󰀖
.

(4.89)

If we make substitution y = (1− θ)−1 in Equation 4.88 we arrive at

Tθ = F←(θ) ∼
󰀕
λL2

2D

󰀖1/α

(1− θ)−1/αL∗((1− θ)−1) as θ ↑ 1, (4.90)

where L∗ is a slowly varying function associated with H← above.

4.5 Tθ - Simulations

In this section we would like to present simulation results for Tθ for the Switching

Diffusion. In the light of Proposition 4.4.2 Tθ scales with L2/α for values of θ close to

one. That was confirmed also through our simulations as seen in Figure 4.1. However

our further numerical investigation suggests that this scaling is true even for small

values of θ if the size of the interval is sufficiently large. Moreover we noticed very

interesting behavior of the Switching Diffusion. It exhibits “switchover” between

diffusive and subdiffusive regimes. We will see in this section that the switchover

point depends on the values of θ and L. We will present our results for two simulation

procedures: a “Full” and a “Toy” model. The Full model simulates the exact behavior

of the Switching Diffusion whereas in the Toy model we make some simplifications
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(a) Full model, α = 0.1 (b) Toy model, α = 0.1

Figure 4.1: The L2/α scaling with the T99 for Full and Toy Model.

that significantly reduce running times.

4.5.1 Full Model

In this section we present the simulation procedure for the Full model. The Tθ is

computed in the following way. First, we simulate 1000 paths of Switching diffusion.

Each path starts from zero and we record the time that it takes to exit an interval

of size 2L, where L ∈ [0.1, 10]. In order to generate these paths we first simulate the

FPT of Brownian motion. We use a standard approach where we simulate brownian

paths through a random walk. We fix a step size dt = 0.001, λ = 1, and D = 1. We

generate consecutive steps of the random walk as normal random variables with mean

equals to 0 and standard deviation
√
dt. The cumulative sum of the random variables

represents the spatial position of the random walk. This procedure is done until the

absolute value of the position is greater than L or equivalently until random walk

leaves the interval. The recorded time is the FPT for Brownian motion. Now, K,

which is the number of immobilizations conditional on the length of the brownian path

is Poisson distributed. Therefore for each path we generate a Poisson random variable

with mean λ ∗ TBM . The length of each immobilization event, σi , is drawn from a

hyperexponential distribution as explained in Section 2.2. The FPT for Switching
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diffusion is obtained by adding the FPT for Brownian motion andK hyperexponential

immobilization times, i.e.,

TSD = TBM +
K󰁛

i=1

σi. (4.91)

The final step of the simulation procedure is to calculate Tθ which is a θ-percentile of

the collection of 1000 simulated TSDs.

First, we test the Full model simulation procedure for θ = 0.99 (Figure 4.1(a)).

As we predicted, the simulation confirms that for values of θ close to 1 the Tθ scales

with L2/α for all values of L. In the next simulation we choose intermediate value

θ = 0.9 which is more likely to be used in real-world applications. Also, we would

like to point out that for the purpose of these simulations the choice of diffusivity

parameter D and rate λ is arbitrary and does not have a significant impact on the

phenomenons (by Proposition 4.4.2).

Figure 4.2 represents the comparison of the change in scalings for T90 with L for

three different values of α ∈ {0.1, 0.5, 0.9}. It is noticeable that in this case scaling

with L is no longer the same on the entire range. We can see that for small values of

L, T90 scales with L2; the slope of the fitted bottom line is 2.1927 in Figure 4.2(a),

2.0727 in Figure 4.2(b), and 2.1356 in Figure 4.2(c). Therefore in this range of L the

particles exhibit diffusive-like behavior. Now, if we let L to be larger, T90 scales again

with L2/α; the slope of the fitted upper line is 20.2492 for α = 0.1, 4.01 for α = 0.5

and 2.2101 for α = 0.9 which is consistent with Proposition 4.4.2.

An interesting object to study is a “switchover” point L∗- the point where Tθ

changes its scaling with L. To further investigate its behavior we generate the same

plots but for different values of θ (Figure 4.3). We observe that for θ → 1 the

L∗ approaches 0. On the other hand even for very small θ’s there is a sufficiently

large L such that there is a switch to the subdiffusive regime. Even though we have

not shown this in our calculations but it seems pretty reasonable that increasing

the interval width extends the time that a particle stays within the boundaries and
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(a) α = 0.1, D = 1,λ = 1

(b) α = 0.5, D = 1,λ = 1

(c) α = 0.9, D = 1,λ = 1

Figure 4.2: The comparison of the change in scalings for T90 with L for different α’s using Full
model.
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consequently has more time to exhibit subdiffusive behavior.

The transition in scaling happens faster for smaller α’s (Figure 4.3(a)) and notice

that if α → 1 then 2/α → 2, therefore it is much harder to detect the switchover

point for larger α’s (Figure 4.3(c)).

4.5.2 Toy Model

As mentioned before, the Full model simulations have very long running times and

therefore the number of simulations and accuracy are limited. Therefore we created

simplified procedure - Toy model which takes advantage of the structure of TSD. Let’s

recall that we can write TSD as

TSD = TBM +
K󰁛

i=1

σi, (4.92)

where K, conditional on TBM is Poisson distributed with rate λTBM . The main

simplification here is that we assume TBM , FPT for Brownian Motion, is exponential

with rate L2/2D. This can be made by Equation 4.2 and the assumption that the

event of leaving the boundaries is a tail event. Furthermore the immobilization times,

σi, are generated from Pareto instead of hyperexponential distribution. Due to this

simplifications, the running times are much shorter and therefore we were able to run

more simulations. For each point in Figures 4.4 and 4.5 we generate 10000 TSD’s.

We start with Toy model simulation procedure for θ = 0.99 (Figure 4.1(b)). The

simulation shows that for θ close to 1 the Tθ scales with L2/α for all values of L,

similarly to Full model. Figure 4.4 represents the comparison of the change in scalings

for T90 with L for three different values of α ∈ {0.1, 0.5, 0.9}. Agin, we can notice

that scaling with L is no longer the same on the entire range. For small values of

L, T90 scales with L2, i.e. displays diffusive behavior; the slope of the fitted blue

line is 2.1120 in Figure 4.4(a), 2.1266 in Figure 4.4(b), and 2.0213 in Figure 4.4(c).
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(a) α = 0.1, D = 1,λ = 1

(b) α = 0.5, D = 1,λ = 1

(c) α = 0.9, D = 1,λ = 1

Figure 4.3: The comparison of the change in scalings for Tθ with L for different percentiles and α’s
using Full model.
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(a) α = 0.1, D = 1,λ = 1

(b) α = 0.5, D = 1,λ = 1

(c) α = 0.9, D = 1,λ = 1

Figure 4.4: The comparison of the change in scalings for T90 with L for different α’s using Toy
model.
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For larger L’s, T90 scales again with L2/α; the slope of the fitted line is 19.9930 for

α = 0.1, 4.0073 for α = 0.5 and 2.4163 for α = 0.9. A study of the switchover point

leads to the similar result as seen in Figure 4.5.

Comparing above with the Full model results it seems that Toy model is reason-

able procedure in order to study switchover behavior of Switching diffusion. The

simplification did not impact the phenomenon in a detrimental way and allowed us

to achieve higher accuracy due to much lower running times.
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(a) α = 0.1, D = 1,λ = 1

(b) α = 0.5, D = 1,λ = 1

(c) α = 0.9, D = 1,λ = 1

Figure 4.5: The comparison of the change in scalings for Tθ with L for different percentiles and α’s
using Toy model.
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Appendix A

Additional topics

A.1 Regular Variation

Asymptotic estimates are widely encountered in applications (mathematical biology,

insurance mathematics and mathematical finance). Very often it is easier to establish

asymptotic of transforms (Laplace, Laplace-Stiltjes). This allows the use of classical

Abel-Tauber theory. Started by Karamata [37] and imported to probability through

Feller [11] the theory of regularly varying functions is a very elegant setting for discus-

sion of heavy-tailed phenomena. We will summarize some of definitions and results,

relevant for our applications. Full treatment and more detail can be found in [7].

Definition A.1.1. A positive. measurable function L on (0,∞) is called slowly

varying at infinity (L ∈ RV0) if

lim
x→∞

L(tx)

L(x)
= 1, for all t > 0. (A.1)

Definition A.1.2. A positive. measurable function U is called regularly varying at

infinity with index α ∈ R (U ∈ RVα) if

lim
x→∞

U(tx)

U(x)
= tα, for all t > 0. (A.2)
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Note that if U ∈ RVα then U(x)/xα ∈ RV0, and setting L(x) = U(x)/xα, we can

see that it is always possible to represent a regularly varying function as xαL(x). An

important result is the fact that the convergence in (A.1) is uniform on each compact

subset of (0,∞).

Theorem A.1.3 (Uniform convergence theorem for regularly varying functions). If

U ∈ RVα for α ∈ R, then

lim
x→∞

U(tx)

U(x)
= tα (A.3)

locally uniformly in t on (0,∞). If α < 0, then uniform convergence holds on intervals

of form (b,∞), b > 0. If α > 0, uniform convergence holds on intervals (0, b] provided

f is bounded on (0, b] for all b > 0.

The following results essentially says that integrals of regularly varying functions

are again regularly varying.

Theorem A.1.4 (Karamata’s Theorem). Let L be slowly varying and locally bounded

in [0,∞). Then

• for α > −1 󰁝 x

0

tαL(t)dt ∼ xα+1L(x)

(α + 1)
, x → ∞,

• for α < −1 󰁝 ∞

x

tαL(t)dt ∼ −xα+1L(x)

(α + 1)
, x → ∞.

Next result is essential for the differentiation of regularly varying functions.

Theorem A.1.5 (Monotone density theorem). Let U(x) =
󰁕 x

0
u(y) dy (or

󰁕∞
x

u(y) dy)

where u is ultimately monotone. If

U(x) ∼ xαL(x), x → ∞. (A.4)
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with α ∈ R and L ∈ RV0, then

u(x) ∼ αxα−1L(x), x → ∞. (A.5)

Next result due to Karamata is extremely useful in determining asymptotic prop-

erties of a function.

Theorem A.1.6 (Karamata’s Tauberian theorem). Let U be a non-decreasing right-

continuous function defined on [0,∞). If L ∈ RV0, α ≥ 0, then the following are

equivalent:

• U(x) ∼ (1/Γ(1 + α))xα−1L(x), x → ∞.

• û(s) =
󰁕∞
0

e−sxdU(x) ∼ s−αL(1/s), s ↓ 0.

We will present a list of useful properties of regularly varying functions. For the

following list, it is convenient to define rapid variation of regular variation with index

∞.

Definition A.1.7. We say U : R+ → R+ is regularly varying with index ∞ (U ∈

RV∞)if for every x > 0

lim
t→∞

U(tx)

U(t)
= x∞ :=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 if x < 1,

1 if x = 1,

∞ if x > 1.

(A.6)

Similarly, U ∈ RV−∞ if

lim
t→∞

U(tx)

U(t)
= x−∞ :=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∞ if x < 1,

1 if x = 1,

0 if x > 1.

(A.7)
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Proposition A.1.1. (i) If U ∈ RVα, −∞ ≤ α ≤ ∞, then

lim
x→∞

logU(x)

log x
= α

so that

lim
x→∞

U(x) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0 if α < 0,

∞ if α > 0.

(ii) (Potter bounds) Suppose U ∈ RVα, α ∈ R. Take 󰂃 > 0. Then there exists t0

such that for x ≥ 1 and t ≥ t0,

(1− 󰂃)xα−󰂃 <
U(tx)

U(t)
< (1 + 󰂃)xα+󰂃. (A.8)

(iii) IF U ∈ RVα, α ∈ R, and {an}, {bn} satisfy 0 < bn → ∞, 0 < an → ∞, and

bn ∼ can as n → ∞ for 0 < c < ∞, then

U(bn) ∼ cαU(an). (A.9)

If α ∕= 0, the result also holds for c = 0 or ∞. Analogous results hold with

sequences replaced by functions.

(iv) If U1 ∈ RVα1 and U2 ∈ RVα2, α2 < ∞, and limx→∞ U2(x) = ∞, then

U1 ◦ U2 ∈ RVα1α2 . (A.10)

(v) Suppose U is nondecreasing, U(∞) = ∞, and U ∈ RVα, 0 ≤ α ≤ ∞. Then

U← ∈ RV1/α. (A.11)

(vi) Suppose U1, U2 are nondecreasing and α-varying, 0 < α < ∞. Then for 0 ≤



95

c ≤ ∞,

U1(x) ∼ cU2(x), x → ∞, (A.12)

iff

U←
1 (x) ∼ c−1/αU←

2 (x), x → ∞, (A.13)

(vii) If U ∈ RVα, α ∕= 0, then there exists a function U∗ that is absolutely continuous,

strictly monotone, and

U(x) ∼ U∗(x), x → ∞. (A.14)

In our work mostly the role of U will be playing the tail of a cumulative distribution-

F̄ (x) := 1 − F (x). Below we rewrite the Karamata’s Tauberian theorem in the

language of probability distribution functions.

Theorem A.1.8. Suppose F is a cumulative distribution function with Laplace-

Sieltjes transform f̂ . For α ∈ (0, 1) and L ∈ RV0, the following are equivalent.

• F̄ (x) ∼ (1/Γ(1 + α))xα−1L(x), x → ∞.

• 1− f̂(s) ∼ sαL(1/s), s ↓ 0.

A.2 Mittag-Leffler Function and Fractional Oper-

ators

MittagLeffler functions are connected with analytical solutions to linear fractional

differential equations just like exponential functions are related to linear differen-

tial equations. In fact one parameter Mittag-Leffler function is a generalization of
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exponential function, defined by the following power series,

Eα(z) :=
∞󰁛

n=0

zn

Γ(αn+ 1)
, α > 0, z ∈ C. (A.15)

to which it reduces for α = 1.

In particular in our work we are interested in the function

eα(t) := Eα(−tα) =
∞󰁛

n=0

(−1)n
tαn

Γ(αn+ 1)
, t > 0, 0 < α ≤ 1, (A.16)

that appears in the solution of the fractional diffusion equation. Let us very briefly

introduce the fractional operators commonly used in the literature. Recall the initial

value problem

du

dt
= −u(t), t ≥ 0, with u(0+) = 1 (A.17)

whose solution is

u(t) = exp (−t) = e1(t). (A.18)

In the literature one can find two alternatives. For α ∈ (0, 1)

du

dt
= −D1−α

t u(t), t ≥ 0, with u(0+) = 1. (A.19)

Here D1−α
t denotes the fractional derivative of order 1− α in the Riemann-Liouville

sense. For generic order µ ∈ (0, 1) and for ’nice’ function f(t) with t > 0 the above

derivative is defined as

Dµ
t f(t) =

1

Γ(1− µ)

d

dt

󰀗 󰁝 t

0

f(τ)

(t− τ)µ
dτ

󰀘
. (A.20)

Also for α ∈ (0, 1)

∗D
α
t u(t) = −u(t), t ≥ 0, with u(0+) = 1, (A.21)
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where ∗D
α
t denotes the fractional derivative of order α in the Caputo sense. For

generic order µ ∈ (0, 1) and for ’nice’ function f(t) with t > 0 the above derivative is

defined as

∗D
µ
t f(t) =

1

Γ(1− µ)

󰁝 t

0

f ′(τ)

(t− τ)µ
dτ. (A.22)

We have the following relationship between the two derivatives

∗D
µ
t f(t) = Dµ

t f(t)− f(0+)
t−µ

Γ(1− µ)
. (A.23)

We can solve Equation (A.19) and (A.21) using the Laplace transform techniques. In

both cases the transform of the solution comes out as

û(s) =
sα−1

sα + 1
, (A.24)

which is the Laplace transform of

u(t) = eα(t) := Eα(−tα). (A.25)

This can be shown by transforming the power series representation of eα(t) in the

Equation (A.16).

One is often interested in the asymptotic behavior of the function eα(t). This func-

tion is known to have an exponential decay as t → 0+ . The short time approximation

is

eα(t) = 1− tα

Γ(1 + α)
+ · · · ∼ exp

󰀗
− tα

Γ(1 + α)

󰀘
, t → 0+. (A.26)

The long time approximation was derived by Erdélyi [38] from the asymptotic power

series representation of eα(t). We get

eα(t) ∼
∞󰁛

n=1

(−1)n−1 t−αn

Γ(1− αn)
, t → ∞, (A.27)
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so that, at the first order it matches negative power law

eα(t) ∼
t−α

Γ(1− α)
, t → ∞. (A.28)
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