


Abstract

In this thesis, I define and study the foundations of the new framework of graded

category theory, which I propose as just one structure that fits under the general

banner of what Andree Eheresman has called “dynamic category theory” [1]. Two

approaches to defining graded categories are developed and shown to be equivalent

formulations by a novel variation on the Grothendieck construction.

Various notions of graded categorical constructions are studied within this frame-

work. In particular, the structure of graded categories in general is then further elu-

cidated by studying so-called “variable-object” models, and a version of the Yoneda

lemma for graded categories.

As graded category theory was originally developed in order to better understand

the intuitive notions of absolute and relative cardinality – these notions are applied

to the problem of vindicating the Skolemite thesis that “all sets, from an absolute

perspective, are countable”. Finally, I discuss some open problems in this frame-

work, discuss some potential applications, and discuss some of the relationships of

my approach to existing approaches in the literature.
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Chapter 1

Graded Categorical Foundations

1.1 An Introduction to Elementary and Partial Graded

Categories

There are many mathematical structures in the literature that have been endowed

with some sort of a graded structure. Since this is a thesis on graded categories, we

will begin by first considering some of the more familiar kinds of gradings that appear

in the literature. Perhaps the first such notion to come to the reader’s mind, might

be that of a graded ring:

Definition 1.1.1. A graded ring consists of a ring R which can be decomposed into

a disjoint union of abelian groups Rn for each n ∈ N such that for all n,m we have

RnRm ⊆ Rn+m.

with the intuition being that elements r of “grade n” in R and elements s of “grade

s” multiply to give elements rs of “grade n+m” in the ring.

In theoretical computer science, various notions of graded monads and comonads

have also been studied. Perhaps the simplest such notion to describe is that of an

M-graded (co)monad, where M is a monoidal category. This is simply (in the case of
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a M-graded monad) a lax monoidal functor T : M → [C, C], where [C, C] denotes the

monoidal category of endofunctors on C (with the monoidal product given by functor

composition) [2]. If we use the convenient notation Tn for T (n), where n ∈ M, it is

easy to see this definition amounts to the following diagrams commuting:

TnTmTk TnTm+k

Tn+mTk Tn+m+k

Tµ

µT µ

µ

Tn T1Tn

Tn

ηT

1Tn

µ

Tn TnT1

Tn

Tη

1Tn

µ

And hence, it is now easier to see why this notion deserves to be called a graded

monad. Moreover, by duality we obtain similar results for M-graded comonads when

we replace lax monoidal functors with oplax monoidal functors (in other words, we

simply reverse all the arrows in the diagrams above). There are also some useful

generalizations of these which involve a richer grading structure (i.e. over semirings, or

more generally weakly distributive categories instead of merely monoids and monoidal

categories) which can be used to fruitfully model various schemes of bounded linear

logic (for more on all of these notions, as well as additional references, the reader may

consult [3]).

However, when dealing with algebras over a graded monad, things become more

complicated, and the definitions are more involved. For instance, Fujii et. al. give

the following definition for a graded T -algebra:

Definition 1.1.2. [4] Given a graded monad T : M → [C, ◦], a graded T -algebra is

a pair (A, h) consisting of a functor A : M → C and a family of morphisms

hm,n : Tm(An) → Am⊗n

natural in m,n and making the following diagrams commute for all objects m,n of
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M:

TnAm

Am Am

hI,mη

id

TmTnAp TmAn⊗p

Tm⊗nAp Am⊗n⊗p

µm,n

Tm(hn,p)

hm,n⊗p

hm⊗n,p

which, although different from the naïve way of taking the usual categorical definition

of T -algebras and “annotating it” with grades, as one can essentially do in the case

of graded (co)monads, at least can be seen as a sort of generalization of definitions

such as 1.1.1.

However, the definition of the kleisli category that Fuji et. al. give is even more

difficult to compare (at least intuitively) with the “un-graded” definition, involving a

coend formula which we will not reproduce here. This is, for instance, different from

the structure that Abramsky considers in [5].

Though it is outside the scope of the present thesis, we hope that with future de-

velopment, the notion of a graded category might help to clarify and further elucidate

these examples from the literate.

1.1.1 Variable sets: The “dynamics” of graded categories

Since at least Gottlob Frege, philosophers and mathematicians have been trying to

formalize the intuitive notion of a set. The basic idea of Frege’s was that sets are

predicates in extension. In other words, sets can be defined defined by a membership

predicate (for an example of this, think of the usual set-builder notation {x | P (x)}),

and moreover we treat these membership predicates extensionally – in other words,

if P (x) ⇐⇒ Q(x) for all x, then {x | P (x)} = {x | Q(x)}. Sets are not determined

up to some finer (syntactic) equivalence relation on the predicates defining them.



4

Another way of thinking about this “extensionality” principle is that sets are defined

by their elements, and nothing else (such as the particular ways the predicates P (x)

and Q(x) are defined).

This idea however, formulated in terms of these two supposedly self-evident axioms

of extensionality and comprehension, infamously led to Russell’s paradox, and hence,

needs to be modified in some way in order to be a useful theory of sets.

One approach, which has been favored by intuitionists over the years (for instance,

both by Bishop and Martin Löf) is to consider a set as instead being determined by:

1. A description for how to build members of a set.

2. The criteria for two members of a set to be considered equal.

The above objects are sometimes referred to as setoids or Bishop sets, and are

written as a pair (A,∼). Such a definition avoids the perils of Russell’s paradox by

defining sets in terms of how to construct elements of a set directly, rather than (in

the “naïve” Fregean approach) defining sets in terms of arbitrary predicates, which

may or not make constructive (or even logical!) sense.

In this thesis, we will consider a slightly different view of sets – one that takes into

account dynamics, and change. Perhaps the easiest (or at least the most intuitive)

example of this is to imagine sets varying in (discrete) time – which we can view

abstractly as the poset (N,≤):

A0 A1 A2 . . .
f0 f1 f2

with the “dynamics” of how the sets evolve in time being given by the functions in the

diagram above. Such objects are well-studied in the literature, especially in relation

to topos theory, as in fact, these “variable sets” are nothing more than objects in

the pre-sheaf topos SetN (where N here is viewed in the standard way as a posetal



5

category) [6, 7]. However, in this thesis, we would like to study a more general class

of objects. We imagine that now, instead of our sets themselves varying over time,

our identity criterion for elements of the sets itself is what varies over time. This

gives rise to what we will call a graded setoid (A,∼n)n∈N.

Example 1. Suppose we wish to model the observations of an agent A about his

world as a graded setoid. In particular, to keep this example simple, we will restrict

our attention to the set X of (descriptions of) entities in agent A′s world. So, for

instance, I might look something like:

X = {A, the_morning_star, the_evening_star, Venus, . . .

We might further assume that initially (n = 0), A assumes that the descriptions

“morning star”, “evening star”, and “Venus” all refer to distinct entities. However,

upon developing further astronomical capabilities (say at n = 1), A in fact discovers

that the_evening_star ∼1 the_morning_star – even though the_evening_star 6∼0

the_morning_star. If we suppose that A′s knowledge remains static after this point,

then this gives an example of a graded setoid over N.

Sets by themselves do not have much interesting structure. So, we will now make

a further methodological assumption. One of the main “philosophical” ideas behind

category theory is that to study a collection of objects (of what have you – sets,

groups, rings, fields, modules, etc...), instead of looking at the “internal structure”

of the objects directly, we instead study the external relationships between different

objects of the same type by studying properties of the morphisms between them.

Thus, if we wish to synthesize this with the idea behind the “variable sets” (more

properly, variable setoids) considered above, a natural definition is the following:

Definition 1.1.3. (tentative): A graded category consists of a category C, a join

semi-lattice M and a grading functor G : C → M.
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Remark. Note that we make the standard identification in this thesis between a

monoid M, and the category with a single object ∗ with Hom(∗, ∗) ∼= M.

The idea behind the above being that a morphism f ∈ HomC(A,B) with G(f) = n

gives us some construction, or some relationship between the objects A and B at stage

n – where the particular interpretation of what a “stage” means will, of course, depend

on the specific application that one has in mind. We choose M to be a join-semilattice,

because this gives us the nice interpretation that the composition of a morphism at

“stage n” with a morphism at “stage m” gives us one at “stage n ∨ m”. And so,

one can think of composing two morphisms of a graded category by first “lifting both

morphisms” to the least stage that is greater than both n and m, and then composing

the two morphisms there. This gives us an interesting “confidentiality” property, in

the sense that “lower” morphisms in a graded category are not affected by (i.e. do

not “leak information to”) morphisms of a strictly higher grade.

Remark. Note that throughout this thesis we will write f : A →n B to denote a

morphism of grade n with domain A and codomain B, whenever the graded category

that f belongs to is clear.

There are several problems with this first tentative definition, however. The first

(and most important) issue being that we would like to have explicit maps in our

graded categories witnessing the “lifting both morphisms to the same grade” inter-

pretation we gave above. We call these maps, fittingly enough, lifts.

Definition 1.1.4. A graded category with lifts is a graded category (as defined

above), such that for every object A, and for every grade n ∈ M, there exists a

morphism liftnA : A →n A such that for all morphisms f : A →m B:

1. If G(f) = m ≥ n, then liftnB ◦ f = f ◦ liftnA = f .

2. liftnB ◦ f = f ◦ liftnA
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In other words, lifting morphisms can also be thought of as “identity morphisms up to

grading”, since they act as identity morphisms for all morphisms above a fixed grade.

This is particularly important to the framework of graded category theory, as it turns

out that for many notions that we want to consider, the most that we can expect is

that the usual notions hold “up to lifts”. For example, in a graded category, requiring

morphisms to be strictly invertible is often too stringent. To see this, consider any

morphism f : A →n B of grade n 6= 0 (the identity element of M) – then by the

“confidentiality” property of the grading, it is impossible for f to be an isomorphism

in the standard sense. It is for this reason that we will later define the weaker notion

of a “pseudoisomorphism”.

The next issue with our definitions above is less of a problem than our first issue.

Rather than being a fundamental deficiency in our definition (since the lack of a

suitable replacement for an identity morphism for non-trivial grades seriously limits

our ability to build a non-trivial theory of graded categories analogously to “vanilla”

category theory), the following example instead shows that in order to consider more

general types of situations, we need to generalize our notion of grading over a join-

semilattice to more general posets.

Example 2. Suppose you are a biologist studying a newly reported species of poi-

sonous dart frog, and you have two competing hypotheses:

1. (H1): The species belongs to genus Colostethus.

2. (H2): The species belongs to genus Silverstoneia.

Being an astute researcher (and follower of David Spivak’s perhaps), you want to keep

an OLOG (i.e. a small category C) with objects which represent classes of various

entities that you care about (e.g. Species,Genus, etc...), and whose morphisms repre-

sent various relationships between these classes [8]. (For instance, is_a_member_of :

Species → Genus).
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We can generalize this notion of an OLOG to take into account different “possible

worlds” (representing different possible states of knowledge) by viewing it as a graded

category. In this context, we can use morphisms of bottom grade (⊥) to represent

a priori relationships between the entities in our OLOG. For instance, although we

may not know what genus the species S belongs to, we can reason a priori that it

must belong to some genus, and hence, the composition is_a_member_of ◦ S makes

sense as a morphism of grade ⊥.

However, if we view H1 and H2 as two other grades (where morphisms at these

grades represent relationships we can infer given the hypothesis H1 and H2 respec-

tively), then we should have

liftH1 ◦ is_a_member_of ◦ S = Colostethus

and

liftH2 ◦ is_a_member_of ◦ S = Silverstoneia

Now, if our set of all grades is to form a join-semilattice, then the composition

liftH1∨H2 ◦ is_a_member_of ◦ S should also be well-defined – but this is incoherent.

H1 ∨H2 does not make sense as a valid “stage”, because H1 and H2 are inconsistent

– they are incompatible.

To treat examples like the above, we need to generalize to a partial version of join-

semilattices, where joins only sometimes exist between elements of the poset. The

notion we will use is referred to in the order-theory literature as a bounded-complete

partial order :

Definition 1.1.5. A poset P is said to be bounded complete if every bounded subset

B ⊂ P (i.e. there exists x ∈ P such that b ≤ x for all b ∈ B) has a join
∨

B. In this

case we say that P is a bounded complete partial order (BCPO).

However, as we have seen from the example above, if we want to grade over
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bounded complete partial orders P instead of join-semilattices, and we have mor-

phisms f : A →a B and g : B →b C with incompatible grades a, b (i.e. grades where

the join a ∨ b doesn’t exist in P), then the composition g ◦ f will not exist. Thus,

for general BCPOs P we technically need to consider partial graded categories C (i.e.

categories where the composition operation is only partially defined), where the well-

definedness of g ◦ f is determined by the grading (i.e. g ◦ f exists if and only if the

morphisms have compatible grades). We define this as follows:

Definition 1.1.6. A partial category C consists of a collection of objects, denoted

Ob(C), for all A,B ∈ Ob(C) a collection Hom(A,B) of morphisms, together with for

all objects A,B,C ∈ Ob(C) a partial binary operation

◦ : Hom(B,C)× Hom(A,B) 7→ Hom(A,C)

such that for all f, g, h for which (f ◦g)◦h is well-defined, f ◦(g◦h) is also well-defined,

and moreover f ◦ (g ◦ h) = (f ◦ g) ◦ h. (We will use the notation g ◦ f ↓ to mean that

the composition g ◦ f is well-defined.)

A (total) functor F between partial categories C,D consists of a (total) map on

both objects and morphisms (i.e. Hom(A,B) 7→ Hom(FA,FB)) which preserves

well-defined compositions of morphisms and identities (if they exist).

From which we can then define:

Definition 1.1.7. Given a partial category C, and a partial semigroup M, we call

C a graded category if it comes equipped with a functor G : C → M of partial

categories, where M is a bounded complete partial order, and G reflects definedness

of composition, in the sense that:

g ◦ f ↓ ⇐⇒ G(g) ∨G(f) ↓
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Aside: Spectra and generalizations of graded categories

Before we move on to the rest of the content of this thesis, there is one final issue

we should mention. Since this issue was not discovered until recently, in the rest of

the thesis, we will not in fact treat the theory of graded categories at this level of

generality. We simply bring this issue to attention here, and a full exposition will

have to be relegated to a later date, as it turns out that this new context significantly

complicates some of the proofs that were discovered earlier in the development in this

thesis.

To see how this one last technical issue can arise, we only need consider the

structure we aim to generalize with our graded categories – the graded setoids that

we introduced above, since it turns out that the hom sets of a graded category with

lifts naturally have the structure of a graded setoid. In particular, the issue that arises

is that graded setoids allow sets to be empty up to a particular stage, and then later

non-empty, and this can lead to some issues with our proposed definition of grading

above. In other words, in the terminology we introduce below, objects in a graded

category can potentially have non-trivial (i.e. non-full) point-spectrum:

Definition 1.1.8. Given a graded category (C, G : C → M) and an object A ∈ C,

we define the point-spectrum (or simply the spectrum, if otherwise understood) to be

the set

Spec+(A) = Spec(A) = {m ∈ M | ∃f : X →m A}

We moreover define the copoint spectrum to be the set

Spec−(A) = {m ∈ M | ∃f : A →m X}

Finally, the total spectrum of an object A is the union of these two sets – Spect(A) =

Spec+(A) ∪ Spec−(A).
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Now, for a specific example illustrating how objects in a graded category with

a non-full spectrum can be problematic, suppose we have a category C graded over

(N,∨), and let A be an object with Spect(A) = {1, 2, 3 . . . }. Since Spec(A) does not

contain 0, A does not have an identity morphism. However, it is still natural to require

that all objects A ∈ C have lifting morphisms for every grade in their spectrum. So,

we can let lift1A : A →1 A. However, since the spectrum of A only contains elements

of grade ≥ 1, by definition of a lifting map, lift1A acts as an identity morphism for all

morphisms with domain or codomain A. Hence, by the uniqueness of identities in a

category, we have lift1A = 1A. Hence G(lift1A) = G(1A) = 0. But also G(lift1A) = 1, a

contradiction!

As the example above shows, if we want to have a graded category containing

objects with non-full spectra (which again, we will not consider here, for the sake

of simplicity), in general we must require G to be a semi-functor (i.e. a mapping

between categories like a functor, which only preserves compositions (where defined),

not necessarily identities), not a functor.

The reader should note here that at this point, so long as we do not wish to

consider examples of graded categories whose object have non-full point spectra, we

do not need to make any modifications to our previous examples, as the existence of

lifts for all grades implies that all object will have full spectrums.

As we will see later, this is a less-than-ideal set of circumstances, as it happens

that categories whose objects have non-full spectra in fact arise quite naturally in our

theory. However, due to time constraints, we will have to leave the development of

this more complete theory as future work.

1.1.2 Graded and Indexed Categories

From this point on, we will call structures of the form (C,M, G : C → M) elementary

graded categories, to contrast them with the indexed structures we will introduce later
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in this section.

The following example (which essentially takes a category C and “trivially” makes

it into a graded category with lifts) is useful for constructing examples/counterexam-

ples to explore various properties of graded categories, so we introduce it here:

Example 3. Given a category C and a monoid M, we define a category CM whose

objects are the same as the objects of C, and whose morphisms are pairs (n, f) :

A → B, with n ∈ M, and f : A → B a morphism of C, and composition defined

by (m, g) ◦ (n, f) = (m ∨ n, g ◦ f). This gives us a category graded over (M, ·) by

defining G(n, f) = n. We call this the category C formally graded over M.

Generally speaking, the natural notion of a morphism between graded categories

is that of a (strictly) grade-preserving functor. That is – given two graded categories

with grading functors G : C → M and G′ : D → M, a functor F : C → D is (strictly)

grade-preserving if it makes the following diagram commute

C D

M
G

F

G′

Although, as implied by the name, some times this kind of morphism will be too strict

for our purposes. Thus, in addition to this we will define another natural notion of

grade-preserving functor later.

Remark. Elementary graded structures on their own do not have much intrinsically

interesting categorical structure, as they are essentially a way of annotating the grades

of a category with additional information in a compositional way. However, such

structures have still found some important uses in the literature, for instance in

Ehresmann’s [1], where she defines such a structure in order to model the firing delay

of individual neurons (which are modeled collectively as a category).
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Remark. Notice that a graded category with lifts in our original sense (i.e. a total

category graded over a monoid) is necessarily one graded over a join-semilattice (or,

in the partially graded case, a partial join-semilattice) – since if we take f = liftmA

in either one of the first conditions, we obtain liftmA ◦ liftmA = liftmA . And with the

naturality condition we can take f = liftnA we obtain liftnA ◦ liftmA = liftmA ◦ liftnA.

Furthermore, using both of these properties, we obtain

liftnA ◦ liftmA = (liftnA ◦ liftmA ) ◦ liftn∨mA

= liftnA ◦ liftn∨mA

= liftn∨mA

for any n,m ∈ M. Hence, given the necessity of lifting morphisms in our theory,

we are very well justified in restricting our attention (in the total case) to join-

semilattices, beyond just our intuitive justification of this choice in the previous

section. In other words, if we wish to study gradings over more general monoids,

this will not be possible in our current framework.

Notice also that, if a lifting map of grade n exists, it is unique. Suppose `n and `′n

are two candidates for liftnA. Then, by our properties we have `′n ◦ `n = `n (`′n acts as

a left identity for all morphisms of grade ≥ n) and similarly we have `′n ◦ `n = `′n (`n

acts as an identity on the right for all morphisms of grade ≥ n). Thus, we conclude

`n = `′n.

It turns out that, as alluded to in the previous section with our discussion of

lifting morphisms, many of the usual concepts that one works with in “vanilla” cat-

egory theory need to be tweaked slightly to work the way one would expect them

to in the context of graded categories. For instance, instead of monomorphisms and

epimorphisms, we have:

Definition 1.1.9. Given a graded category C, we say that f : A → B is a (graded)
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epimorphism if for all grades n and for all morphisms g, h : B →n C, g◦f = h◦f =⇒

g = h.

The notion of a (graded) monomorphism is defined dually.

Remark. It turns out that there are several more-or-less weak versions of graded

epi/monomorphisms one can define in the context of graded categories, not all of

which turn out to be equivalent, but for our purposes in this thesis, we will stick

with this definition. More properly, these should probably be called fiber-wise graded

mono/epi morphisms.

In addition to this, we also have the important notion of a pseudoisomorphism, which

we discussed earlier, and will make ample use of in the next chapter:

Definition 1.1.10. Let C be a graded category over M with lifts. We say that

f : A →n B is a pseudoisomorphism if there exists a morphism g : B →m A such

that g ◦ f = liftn∨mA and f ◦ g = liftn∨mB .

Example 4. In CM, a graded epimorphism is precisely a morphism of the form (n, f),

where f is an epimorphism in C, and similarly for monomorphisms.

The notion of a graded monomorphism allows us to define the so-called strong lifting

property:

Definition 1.1.11. Let C be a graded category with lifts. We say that C has the

strong lifting property if every lifting morphism liftnA is a graded monomorphism.

Intuitively this says that strong lifting morphisms actually act as “embeddings”

of the set of “lower morphisms” into the set of “higher morphisms”, and thus, it is

easy to see that this will not hold in general.

Example 5. CM has the strong lifting property.
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Remark. There are some intuitive properties we would like the lifting morphisms

to satisfy which require the strong lifting property in order to prove. For instance,

suppose we have a commutative diagram:

A A

A

g

liftnA liftmA

where g is a morphism of grade k. Then:

g ◦ liftnA = liftmA

=⇒ g ◦ liftnA ◦ liftmA = liftmA ◦ liftmA

=⇒ g ◦ liftnA = liftmA

=⇒ g ◦ liftnA = liftkA ◦ liftmA

=⇒ g = liftkA (By the strong lifting property)

Much like we have considered weakened versions of the standard notions of mono, epi,

and isomorphism above, in the context of graded category theory, it is also natural to

weaken our notion of a grade preserving functor. In fact, the more natural morphism

between graded categories with lifts actually turns out to be a particular kind of

semifunctor (though, as the reader should keep in mind, this does not change the

fact that in the context we are working in for this thesis, we still require the grading

functor itself to be an honest-to-goodness functor):

Definition 1.1.12. Let G : C → M, G′ : D → M be two elementary graded

categories with lifts. We say that a semifunctor F : C → D is a weakly grade-

preserving if the following diagram commutes for some grade n – which we call the
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grade of the functor:
C D

M M

F

G G′

n

Note that in general, for this definition to be non-trivial, F in fact needs to be a

semifunctor, as for a weakly grade-preserving semifunctor of grade n, idA will have

to map to a morphism of grade n, and hence cannot possibly get mapped to idFA,

which is another morphism of grade zero. Thus, we say that F is additionally a

weakly grade-preserving functor if it satisfies the next best condition: namely, that

F (idA) = liftnFA for all A in the category.

Remark. The reader should take a moment here to ensure they understand the ter-

minology that we are using here. The important notion for us is that of a weakly

grade-preserving functor as defined above. While this is not a functor in the strict

sense, we still use this terminology since a weakly grade-preserving functor can es-

sentially be thought of as a functor up to lifts.

Part of the justification for the above definition is that, in general, since we cannot

expect identity morphisms to show up in equations involving morphisms of non-trivial

(i.e. non-zero) grade, all of the relevant categorical constructions we consider in this

thesis should generally be up to lifting maps.

And thus, in order to be able to define categorical notions (for instance, such as

the colimit of a diagram) up to grading in terms of functors between graded categories

(analogously to how this is done in standard category theory), our functors should

also, generally speaking, be up to lifts. In other words, we wish to consider different

sorts of weakened universal properties which only hold after our morphisms are lifted

to some particular grade, and thus our morphisms between graded categories should

reflect this by not being strictly grade-preserving.
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While in addition to this we could in principle consider even weaker notions of

grade preservation (i.e. grade-monotone maps), and the categories of graded cate-

gories with such weak morphisms likely deserves further study, we will not consider

this here.

Our restriction to this less general setting of weakly-grade preserving functors is

helpful because of the following nice result:

Proposition 1.1.13. The category GCat`M of graded categories with lifts, and

(weakly) grade-preserving functors is itself a graded category with lifts over M.

Proof. Define the grade of a functor as defined in definition 1.1.12 to be the n such

that F (idA) = liftnA, it is then straightforward to verify that this defines a graded

category over M. The lifting functors are defined by LiftC(f) = f ◦ liftnA.

Remark. The category GCat`M can be defined just as well in the partial case, pro-

vided we replace all of the notions with their partial analogs. Notice, however, that

in this case, our weakly grade-preserving functors of grade n actually need to be par-

tial functors (defined only for grades compatible with n), rather than total functors

between partial categories.

We say that this is a “nice result”, because it mirrors the result in standard

category theory that the category Cat of categories is again a category (in fact a

2-category). In fact, this analogy goes even deeper, because it turns out that GCat`M

is actually a “graded 2-category with lifts” – a notion which we expect will be useful in

further developments of the theory of graded categories, but will not formally define

here.

Indexed Structures

One particularly useful way of looking at the more general BCPO-graded categories

with lifts we considered earlier is as a certain sort of (strict) indexed category. In fact,



18

the main result of this section is to show the equivalence between the 2-categories

GCat`M and IndCatM. Notice that, in particular, the presence of lifts is important

here – the construction we will consider in this section does not work for graded

categories without lifts. Hence, we define the following:

Definition 1.1.14. An indexed structure for a graded category is a strict indexed

category (i.e. a functor C : P → Cat) where P is a (connected) bounded complete

poset, and the functors (which we call transition functors) Cj
i : Ci → Cj are identities

on objects – where here, we say that a poset P is connected if the Hasse diagram of

P is connected as an undirected graph. In other words, more formally, we say that

P is connected if there is a “path of zig-zags” p1 ≤ p2 ≥ p3 ≤ · · · ≥ pn between any

two elements of P .

Remark. Here we will sometimes denote C(≤j
i ) as Cj

i , where ≤j
i , if it exists, is the

unique morphism in P from i to j.

The intuition with this definition being that Cn is the collection of objects and mor-

phisms of grade n of the graded category. We can then define the composition of

two morphisms f ∈ Cn(A,B) and g ∈ Cm(B,C) (say, if n ≤ m) by applying the

transition functor from n to m to f , and then composing with g – i.e. g ◦ Cm
n (f) in

order to derive an elementary graded category from this structure.

Remark. While generally speaking, our preferred reserved notation is to use P for

posets (viewed as a posetal category) used as the domain of the functor defining an

indexed category, and M for join-semilattices (more generally, BCPOs) interpreted as

single object (partial) categories in the standard way, we will often abuse notation and

use (for instance) M to refer to both it’s representation as a single object category,

and it’s representation as a posetal category. This should cause no confusion, as the

former use will always arise when M appears as the codomain of a grading functor

G : C → M, and the latter when M is the domain of a functor defining an indexed

category – e.x. C : M → Cat.
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The condition in the above definition that the functor defining an indexed structure

be identity on objects may seem a little arbitrary – if we interpret Ci as the “category

of objects and morphisms at stage i”, then this restriction essentially means that we

never introduce any new objects to our graded category. In other words, every object

that exists, already exists at stage 0.

Arguably, we could generalize this in different ways, and in future work, it may be

fruitful to study such generalizations. However, this definition is in fact quite natural

in light of the structure we are trying to generalize here – the notion of a graded setoid.

Recall that for graded setoids, rather than the objects of the set themselves varying

over some poset, it is instead the identity criterion itself that varies. Similarly, for a

graded category, the set of objects itself is constant across all grades – what changes

is merely the set of morphisms.

The most natural definition of a morphism between indexed structures (i.e. an

indexed functor is simply a natural transformation between the two indexed categories

– in other words, a collection of maps from the objects and morphisms of grade n in

C, to the objects and morphisms of grade n in D that commute with the transition

functors. This is the “strict” notion of functor between indexed structures.

In the case of M = N (which we will often use for simple visualizations of indexed

structures, even when in full generality, the theory we develop here all holds over

general BCPOs), such a functor between graded categories C and D may be pictured

as a commutative diagram as follows:

D0 D1 D2 D3 . . .

C0 C1 C2 C3 . . .

F0 F1 F2 F3

As was the case with elementary graded categories, however, this notion is not always

the most natural one. In the context of indexed categories, the more general thing
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to do is to define a partial functor between indexed structures – that is, given some

subset U ⊆ P of the poset P , a natural transformation:

P Cat

U P

C

DF

This defines a category of indexed structures (which we denote IndCatP) with the

composition of two partial functors between indexed structures defined by the follow-

ing pasting diagram:

U ∩ V

U V

P P P

M

C D E

F G

Such a functor can be pictured (as the name suggests) as the usual commutative

diagram used to visualize functors between indexed structures, except where some of

the required natural transformations are missing, for instance:

D0 D1 D2 D3 . . .

C0 C1 C2 C3 . . .

F2 F3

However, in order to find an equivalence here between elementary graded categories

and indexed structures, we do not want to consider arbitrary subsets U as possible

domains of definition for our partial functors. Given a poset P , we say that a subset



21

U ⊂ P is an upperset if x ∈ U and y ∈ P with y ≥ x implies y ∈ U . The collection of

uppersets forms the set of opens for a topology on P , called the Alexandrov topology ,

which we will denote by A(P). The so-called principal upper set of an element a ∈ P

is the set ↑a = {x | x ≥ a}, which is a basic example of an upperset. Moreover, the

collection of all principal upper sets in fact forms a basis for the Alexandrov topology.

This topology is important in the study of graded categories with lifts, as essen-

tially, the existence of lifting morphisms guarantees us (in general), that

“If something is defined at a lower grade, it might as well be defined at

all higher grades as well”

In other words, our partial functors “might as well” be defined on upper sets. More-

over, we will also consider partial morphisms between indexed structures to be defined

only on principal up-sets. Since these are in one-to-one correspondence with the el-

ements of P , this gives us the analogous situation to the one we had when defining

a notion of “weak” morphisms between (elementary) graded categories – where the

category of graded categories over M (with lifts) is again a graded category over M

(with lifts).

We state and prove this result for more than merely Cat-valued functors, as we

will need this result in more generality later:

Proposition 1.1.15. Let P be a (connected) BCPO viewed as a posetal category,

and P � C denote the category with functors P → C as objects, and morphisms as

partially defined natural transformations as discussed above (i.e. defined on subsets

of the form U = ↑a of P) as morphisms. Then P � C is a graded category over P

with lifts.

Proof. It will be easiest to show that this is an elementary graded category – and so

given the equivalence between elementary graded categories and indexed structures

we will prove below, we show this here. Define the grade of a partial morphism
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between indexed structures to be the a ∈ P such that the partial morphism is defined

on the set ↑a. It is then easy to show that this defines the structure of a graded

category over P (noting that ↑a ∩ ↑b = ↑(a ∨ b) if a ∨ b exists, and that since we are

in a BCPO, the intersection is the empty set otherwise). To define lifting morphisms,

we can simply take restrictions of the identity natural transformation between two

indexed structures to the relevant set ↑a.

Corollary 1.1.16. IndCatP (which is equivalently the full subcategory of P � Cat

consisting of functors P → Cat whose transition functors are all identity-on-objects,

where P is here being viewed as a posetal category) is a graded category over P with

lifts.

1.1.3 2-categories of graded categories and indexed struc-

tures

Now, let us consider some of the possible definitions one might have for a natural

transformation between two functors between elementary graded categories. If F

and G are grade-preserving functors, for instance, and ηA : FA → GA is a family

of morphisms such that the usual naturality square commutes, then under some

fairly mild conditions (i.e. there exists a morphism either from A to B, or from B

to A of grade 0), ηA and ηB will necessarily have the same grade. Thus, it seems

like a reasonable enough condition to assume that our natural transformations have

components with a uniform grade n.

The situation when we consider natural transformations with weakly grade-preserving

functors is slightly different, but notice here that if the grade of F is n and the grade

of G is n, then since we can always factor F (f) as liftnFA ◦ F (f) = F (f) ◦ liftnFB and

G(f) as liftmGA◦G(f) = G(f)◦ liftmGB, we might as well assume the components of such

a natural transformation have grade at least n∨m – and furthermore, for the reasons
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already mentioned, we might as well assume also that all component morphisms must

be of equal grade.

For indexed categories in general, a natural transformation between two functors

F,G : C → D, where C,D : P → Cat is defined as a family of natural transformations

such that, for all n ≤ m, the following diagram commutes:

Dn Dm

Cn Cm

FnGn FmGm

This definition, for instance, is used in Crole [9]. We will denote the set of natural

transformations between two indexed functors F,G : C → D by Nat(F,G). To

extend this definition to partial functors F : C →n D, G : C →m D between indexed

structures, we can simply define a natural transformation between indexed categories

to be a family of natural transformations ηi for i ∈ ↑n ∩ ↑m, satisfying the condition

above for all i ≤ j with i, j ∈ ↑n ∩ ↑m.

For natural transformations between elementary graded categories, we have a

simpler definition, based on our discussion above:

Definition 1.1.17. Let C and D be elementary graded categories and F : C →a

D, G : C →b D be (weakly) grade preserving functors. A natural transformation

α : F →n G of grade n ≥ a ∨ b consists of, for every object A ∈ C a family of

morphisms αA : FA →n GA such that for all f : A → B in C, the usual naturality
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condition holds – i.e. the following diagram commutes:

FA FB

GA GB

Ff

ηA ηB

Gf

1.1.4 The Equivalence of Graded Categories and Indexed

Structures

It is a well-known fact of topos theory that there is an equivalence between fibrations,

and indexed categories, given by the so-called Grothendieck construction. In our

context, we have a similar result, but given the fact that we only consider a vary

particular class of indexed categories in this section, the correspondence is not exactly

the same as the one from the theory of fibrations. Thus, we will now outline a concrete

construction showing the equivalence of graded categories and indexed structures.

Definition 1.1.18. Given an indexed structure C : P → Cat, where P is a (con-

nected) BCPO, we can define a graded category with lifts E(C) (graded over P , now

viewed as a single object partial category) as follows:

• The objects are given by:

Ob(E(C)) := Ob(Ci) for any i ∈ P

• For any A,B ∈ Ob(E(C)), we define:

HomE(C)(A,B) :=
∐

j∈P A,B∈E(C)

HomCj
(A,B)

• We define G(f) := j, where f ∈ HomCj
(A,B).
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• Two morphisms f, g with G(f) = i, G(g) = j are composable if and only if i

and j are compatible elements of P . In this case, let k = i ∨ j ∈ P and define:

g ◦ f := Ck
j (g) ◦ Ck

i (f)

From the last two conditions is is easy to see that this in fact defines a partially

graded category over P in the sense of definition 1.1.7, with lifting maps given by

liftnA := idA ∈ Homn(A,A).

Definition 1.1.19. Given a partial graded category (C, G : C → P) with lifts, we

define an indexed category I(C) by:

• I(C)i is the sub-category of C consisting of the objects of C, together with all

of morphisms of grade i. We will also call this category the ith fiber over the

element i ∈ P , and will sometimes also denote this by G−1(i).

• I(C)ji is given by the identity map on objects, and by mapping f 7→ f ◦ liftjA on

morphisms.

It is then straightforward to see that this defines an indexed structure over P .

Proposition 1.1.20. The constructions outlined in definitions 1.1.18 and 1.1.19 are

mutually inverse, i.e:

I(E(C)) ∼= C for any indexed category C : M → Cat

and

E(I(C)) ∼= C for any partial graded category (C, G : C → M)

Proof. Let (C, G : C → M) be a graded category with lifts over the connected BCPO

M, and note that EIC has the same set of objects as C by construction. Moreover,
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for its set of morphisms we have

HomEIC(A,B) :=
∐
i∈M

HomCi(A,B) ∼= HomC(A,B)

where Ci denotes ICi. Thus, to show that these are isomorphic as categories, it remains

to see that the composition operations of both of these categories are defined in the

same way. Given f : A →n B and g : B →m C in C, the composition is defined as

simply g ◦ f . In EIC the composition is given (under our identification of the homsets

of these categories above) by g ◦EIC f = (liftn∨mC ◦ g) ◦ (liftn∨mB ◦ f), which by the

properties of lifting morphisms we know is equal to g ◦ f .

Now, let C : P → Cat, and consider the indexed structure IEC. Again, it is easy

to see that Ob(Ci) = Ob(IECi) for all i ∈ P , so it remains to show that:

1. The set of morphisms for each of the categories Ci is the same as the set of

morphisms for IECi (and the composition operations in these categories are

defined in the same way).

2. The transition functors for C and IEC are defined in the same way.

1. is easy to see given the decomposition

HomEC(A,B) =
∐
i∈P

HomECi
(A,B) ∼= HomCi

(A,B)

For 2, let Cj
i be an arbitrary transition functor and consider how these transition

functors act on morphisms f ∈ Ci(A,B) in it’s image IE(Cj
i ). Now, notice that in

viewing C as an elementary graded category (which we denote by EC = C), we have

by our construction liftjB ◦ f := Cj
i (f). Thus, we see that the left-hand side (which

is how we define the transition functors in IEC) is defined in the same way as the

transition functors Cj
i are defined.
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Proposition 1.1.21. The maps I and E extend to functors between IndCatP and

GCat`P by defining IF component-wise by

(IF )i = F |ICi

where F : C →n D is a (weakly) grade-preserving functor – and by defining E(F )

(where F : C → D is now a functor between indexed structures) by mapping f ∈

Homi(A,B) to Fi∨n(IC)i∨ni (f) ∈ Homi∨n(FA, FB) for all grades i ∈ P such that i∨n

exists (and leaving the functor undefined otherwise).

Proof. The only non-trivial fact to check here is that both of these operations above

preserve composition and identities of morphisms in IndCatP and GCat`P respec-

tively, but both of these facts are easy enough to check directly by our definitions.

Putting this all together, we can now show:

Theorem 1.1.22. There is an equivalence of categories between IndCatP and GCat`P

induced by the functors defined above.

Proof. By the isomorphisms we showed in proposition 1.1.20 we are almost all the

way to a categorical equivalence. What it remains to show is that both of these

are natural isomorphisms. In other words, for any weakly grade preserving functor

F : C →n D we need to show that the following diagram commutes

EIC EID

C D

EIF

F

where the vertical morphisms in the above diagram denote the identifications that

were implicit in our proof of proposition 1.1.20. To see why this indeed commutes,
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note that this essentially amounts to checking that under our identification, EIF is

defined the same way as F , but this is easy to see from our construction in proposition

1.1.21. Similarly, verifying our other naturality condition

IEC IED

C D

IEF

F

is just as straightforward.

Remark. Oftentimes we can characterize graded categorical properties in a simpler

or more convenient way by passing through this equivalence. For instance, it is easy

to see that an elementary graded category (C, G : C → M) satisfies the strong lifting

property if and only if the transition functors Cm
n in its equivalent indexed structure

are all faithful, since if f and g are two morphisms of grade m, then liftnB ◦f = liftnB ◦g

if and only if Cn
m(f) = Cn

m(g).

Additional Properties of Graded Categories and Natural Transformations

In this section we will explore some of the basic constructions that one can preform

on the different 2-categories of graded categories that one might want to consider.

We first recall some of the basic properties of functors from plain category theory:

Definition 1.1.23. Given a functor between categories F : C → D, we say:

1. F is full if the function induced by F mapping C(A,B) to D(FA, FB) is sur-

jective.

2. F is faithful if the function induced by F mapping C(A,B) to D(FA,FB) is

injective.
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3. F is essentially surjective if for all objects X ∈ D, there exists an object A ∈ C

such that X is isomorphic to FA.

The first two notions can easily be defined just as well for a strictly grade-preserving

functor if we consider C(A,B) to be the disjoint union of the graded hom sets Ci(A,B)

for all i. However, for weakly grade-preserving functors these conditions are too strong.

Also, since in a graded category, pseudoisomorphism is the more important notion

than isomorphism, we will want to modify the last definition slightly as well.

Definition 1.1.24. Given two graded categories C,D and a graded semifunctor F :

C → D, we say:

1. F is pseudo-full if for for all objects A,B and for all grades n the function

induced by F mapping Cn(A,B) to DFn(FA,FB) is surjective.

2. F is pseudo-faithful if for for all objects A,B and for all grades n the function

induced by F mapping Cn(A,B) to DFn(FA,FB) is injective.

3. F is (pseudo)-essentially surjective if for all objects X ∈ D there exists an object

A ∈ C such that X is pseudoisomorphic to FA.

Example 6. Given a graded category C with lifts, and n ∈ M, consider the weakly

grade-preserving functor F : C → C defined by mapping F (f) = f ◦ liftnA. If C has

the strong lifting property, then this functor is pseudo-faithful (and also pseudo-full)

but it is neither full, nor faithful in the traditional sense.

1.2 Variable Object Models and the Graded Yoneda

Lemma

Given a category C with a terminal object, it is often convenient to interpret mor-

phisms 1 → X as “points” or “elements” of X. More generally, even in categories
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without terminal objects, we can view morphisms A → X as so-called “generalized

elements” of X. This observation is essentially what allows us to define a “Cayley

representation” of every (small) category as a category of sets and functions (theorem

1.6 of Awodey [10]). However, if we look at graded categories and want to prove a

similar representation theorem, we need to take a slightly different approach. The

basic observation is, given a morphism f : A →n B of grade n in a graded category

C and a “point” x : X →m A of grade m, the composition f ◦ x gives us a “point”

X →n∨m A of grade n ∨ m. Since generalized points in a graded category come

with a grade, a natural approach to the representation of the objects of a graded

category is to interpret the objects A as an indexed family {An}n∈M of the set of

“points” of grade n of A. Then, given our observation of how composition works in a

graded category, a morphism in this representation should be a family of morphisms

fm : Am → Bm∨n. This is the basic idea of our model.

The following construction works for general elementary graded categories (i.e.

not nescesarialy with lifts, or over a join-semilattice):

Definition 1.2.1. Given a category C and an ordered monoid M, we define the

category of M-variable objects in C and graded functions, denoted VarM(C) whose

objects consist of functors A : M → C, and whose morphisms (of grade n) consist of

indexed families f of morphisms fm : Am → Bn·m in C, where given such a morphism

f of grade n composition is defined

(g ◦ f)m = gn·m ◦ fm

The key theorem in this section is that we can define a “Cayley” representation functor

into this category of variable objects.

Definition 1.2.2. For any (small) graded category C (again, not necessarily with

lifts, and graded over some monoid M), we define its Cayley representation R(C) by
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mapping objects A ∈ C to variable sets

R(A)n = {x : X →n A | X ∈ C}

and by mapping morphisms f : A →n B to the family of functions from R(A)m →

R(B)n·m given by precomposition of points with f .

Theorem 1.2.3. Every elementary graded category C is isomorphic to its represen-

tation R(C).

Proof. Clearly R is a grade-preserving functor from C onto R(C) (i.e. it is full and

surjective on objects by construction). For R to be an isomorphism of graded cate-

gories, we need it to be a bijection on objects and morphisms, and hence, we need to

show that it is injective on objects, as well as faithful.

1. Suppose A and B are distinct objects of C, then the identity morphisms idA and

idB are also distinct. Hence, since idA ∈ R(A) but idA 6∈ R(B) we conclude

that R(A) and R(B) are distinct sets. Hence, R is faithful on objects.

2. Let f, g : A →n B. Suppose that R(f) = R(g), then for all morphisms x we

have f ◦ x = g ◦ x, and hence, f = g since in particular we can take x = idA.

Representations via the graded Yoneda embedding

In the case that we are grading over a join semilattice and our graded category has

lifts, our representation can be simplified somewhat. This is because given a morphism

f : A →n B and a point x : X →m A we have

f ◦ x = (f ◦ liftn∨m
A ) ◦ (liftn∨m

A ◦ x)
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– in other words, in this case, we only ever need to consider families of morphisms of

the form fi : Ai → Bi. Once we generalize this to BCPOs, this leads us to our second

representation theorem, which is more categorical in flavor, and based on a graded

version of the Yoneda lemma.

In plain category theory, the analogous representation of small categories as “con-

crete categories” – i.e. subcategories of the category of sets and functions can be

understood more abstractly as a representation of the objects of the category as

presheaves – i.e. functors Cop → Set. We can do the same in the context of graded

categories, but we must first make some initial observations. First, we have another

application of proposition 1.1.15:

Corollary 1.2.4. Let M be a BCPO, viewed as a posteal category, then the category

M�Set of M-variable sets and partial maps between them forms a graded category

over M.

Now, notice that in ordinary categories Hom(A,B) is always a set, so in the

Yoneda lemma we consider set-valued pre-sheaves Hom(_, C) : SetCop . In the case

of graded categories, we have more structure. Specifically, if C is a graded category

over M with lifts, then Hom(A,B) is an object of the category M � Set (with

objects given by Homm(A,B), and transition functions given by pre/post compositon

by lifting morphisms), which by corollary 1.2.4 is again a graded category over M

(with lifts). In the remainder of this section we will show that this category plays an

analogous role to GCat`M as Set plays to Cat. In other words, by making use of

this fact, we can prove a “graded Yoneda lemma”.

Definition 1.2.5. We define the graded Yoneda embedding as a functor between

indexed structures よ : Cop → M � Set by setting (よB)(A)i = Homi(A,B) – i.e.

the set of morphisms of grade i between A and B in C (with transition functions

given by pre/post composition by lifting morphisms), and on morphisms by defining
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(よC)(f : A →n B) to be the partial map induced by pre-composition by f – i.e. for

all i ∈ ↑n, we define (よC)(f)i by mapping x ∈ Homi(B,C) to x ◦ f ∈ Homi(A,C).

Theorem 1.2.6 (Graded Yoneda Lemma). Let F : Cop →n M � Set be an indexed

pre-sheaf, were M is a connected BCPO, then for all C ∈ C there is a pseudo-natural

isomorphism of variable sets (in other words, a natural transformation for which all

of the component morphisms are pseudo-isomorphisms):

Nat(よC,F ) ∼= FC

Proof. First, a note about the interpretation of this result. FC is a variable set, so we

must first explain in what way we are viewing Nat(よC,F ) as a variable set. This is

done by first passing through the equivalence between (elementary) graded categories

and indexed structures. In the context of indexed structures, natural transformations

between functors of indexed structures are a family of natural transformations be-

tween (ordinary) functors – one natural transformation for each grade i ≥ n (where

n here is the grade of the natural transformation in question). Thus, we can view

Nat(よC,F ) as a variable set by setting Nat(よC,F )i to be empty if i 6∈ ↑n, and

otherwise set Nat(よC,F )i to be the set of all natural transformations between よCi

and Fi arising from the definition of a natural transformation between the indexed

functors corresponding to よC and F . Since a natural transformation between two

indexed functors consists of a family of regular natural transformations, the transition

functions here are defined by mapping a natural transformation ηi ∈ Nat(よCi, Fi) to

the “corresponding one” ηj ∈ Nat(よCj, Fj).

Now, note that it is easy to check that in the category M� Set, a morphism is a

pseudoisomorphism if and only if each of the component functions is an isomorphism.

Thus, we can make use of the fact that by the usual Yoneda lemma, there are isomor-

phisms of sets Nat(よCi, Fi) ∼=よCi, natural in C for all i ∈ ↑n (since F is a morphism
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of grade n, Fi is not defined otherwise). Thus, it remains to show that the morphisms

we get of variable sets φ : Nat(よC,F ) → FC and φ−1 : FC → Nat(よC,F ) by

setting their component functions to the natural isomorphisms we obtain via Yoneda

are indeed (partial) morphisms of variable sets. In other words, we need to verify

that the following diagram

Nat(よCi, Fi) Nat(よCj, Fj)

FCi FCj

φi
C φj

C

commutes for all i ≤ j (as well as the corresponding diagram for φ−1). To see this in

both cases is an easy verification based on the properties of lifting morphisms once

one looks at the concrete definitions of φi and (φi)−1 in the standard proof of the

Yoneda lemma (see [10] for details).

Corollary 1.2.7. The indexed Yoneda embedding is (pseudo) full and faithful.

Proof. For all objects A and B, and all grades n ∈ M, by the general graded Yoneda

lemma we have a pseudo-natural isomorphism of sets:

Homn(A,B) = (よnB)(A) ∼= Natn(よA,よB)

1.3 Graded Categorical Structures

Now that we have elaborated on some of the basic definitions of graded categories, we

will briefly consider some of the theory of graded categorical constructions. Intuitively

speaking, these should be analogs of the usual notions of standard category theory
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that are “up to grading”, rather than “strict”. Moreover, as hinted at earlier, many

of the usual categorical notions do not make much sense in the context of graded

category theory without some alterations. For instance, the following example gives

credence to the fact that that the standard definition of a categorical product is too

strict for our purposes:

Example 7. Given a category C with products, consider the category CN we defined

in example 3. Suppose that A,B ∈ Ob(C), and that:

A A×B Bp q

is a product in C. Then (A×B, (0, p), (0, q)) is not a product in CN. To see this, take

any pair of morphisms f : X → A, g : X → B in C, and consider the universal prop-

erty for the pair of morphisms (f, 0) and (g, 1) in CN – then by grade considerations

alone, there is no morphism 〈(f, 0), (g, 1)〉 : X → A× B making the diagram for the

product commute.

Unfortounately, although there are some simple fixes to this problem that ad-

dress examples like the one above, it turns out that finding the “correct” notion of

limit/colimit in general graded categories with lifts turns out to be a very subtle issue.

In cases where there is not some condition involving the composition of morphisms

in the category (i.e. in the case of initial and terminal objects), there is a obvious

solution to this problem: Namely, we say that 1 ∈ C is a graded terminal object if for

every grade n there is a unique morphism !nX : 1 →n X. We call such a universal con-

struction “universal” or “fiberwise” if it is defined in this way (i.e. uniqueness holds

when restricted to morphisms of a particular grade). However, things become more

subtle when we look at more involved definitions, which actually involve the proper-

ties of composition in a graded category. Just to illustrate some of the proliferation of

the different notions of limits/colimits one might consider in a graded category, some
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other natural conditions one might require of graded universal constructions are:

1. Compatibility: All morphisms satisfying some universal property lift to some

unique morphism of higher grade satisfying the same universal property. (Note

that this property may or may not require fiber-wise uniqueness).

2. Lax Uniqueness: There exists a unique morphism which lifts to all the mor-

phisms satisfying some universal property.

In addition to the above properties, we have the issue of which set of morphisms

our universal construction applies to, and whether for that class of morphisms we

require commutativity either on the nose or merely up to lifts. Ignoring the conditions

of compatibility and lax uniqueness (as well as any other potential types of “up to

grading” uniqueness that one might think of), one natural approach to studying

graded limits/colimits is to treat a diagram as a functor F : D →n C, and to treat

“cones over a diagram with apex X ∈ C” to be natural transformations from one of

the “constant” X-valued diagrams ∆a
X : D →a C of grade a to F .

In this “graded comma category”, the limiting cone η : ∆X →m F satisfies an

appropriate universal property. For instance, if we want to consider “on the nose”

commutativity, then we could require for all other cones ζ : ∆Y →k F , there exists a

unique natural transformation (“unique” here being unique up to grading in whatever

sense we like) such that the following diagram commutes:

∆X F

∆Y

η

ζ

In the case of “vanilla” categories, this is straightforward, and the limit and colimit

of a diagram can be defined as the terminal object in the comma category (or, for
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colimits, the initial object in the cocomma category) above. This is difficult for us in

our current framework, as if C is a (full-spectrum) graded category with lifts, then the

“graded comma categories” we can consider are not generally full-spectrum categories,

and thus, since at the moment we do not we do not have the usual tools (for instance,

the graded Yoneda lemma) needed to be able to work with and prove theorems in

the context of graded categories with objects of a non-full spectrum, we will not say

any more about this approach here – except to note that this all likely merits further

study in future work.

Instead, to avoid these complications, we will discuss some more concrete defini-

tions of graded limits/colimits. But first, we should mention a few more issues that

can arise when thinking about limits/colimits of diagrams in a graded category in this

more concrete way – and how these issues are avoided by the definitions we considered

discussed above. In particular, what we need to be wary of is that our diagrams are

uniform – i.e. that all morphisms in the diagram are of the same grade. If this is not

the case, then non-trivial things can happen with the spectra of the objects involved.

For instance, if we take the limit over a diagram consisting soley of the morphisms

1A and liftnA, then this should correspond to the subset of A consisting of elements of

at least grade n – an object with non-full grade.

For the remainder of this thesis, we will primarialy be considering the fiber-wise

notions of categorical constructions in a graded category – since even though they are

not quite as general as some of the other notions that one might consider, they will

still suffice for our purposes. However, while one can of course also consider the notion

of a simple fiber-wise exponential object in the natural way in a graded category, we

will also need to consider the following restricted notion in the next chapter, so we

define it here:

Definition 1.3.1. Given a graded category C with lifts over M with fiber-wise prod-

ucts, we say that (CB)n is a restricted exponential object of grade n if there exists a
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morphism ε : (CB)n×B →n C such that for all morphisms f : A×B →m C of grade

m ≤ n, there exists a unique morphism f̂ : A →m (CB)n such that the following

diagram commutes:
(CB)n ×B C

A×B

ε

f̂ × idB f

and such that all morphisms g : X →k (CB)n of grade k ≥ n factor as g = f ◦ liftkX

for some f : X →m (CB)n of grade m ≤ n.

This allows us to define a weaker notion of Cartesian closed category in the context

of graded categories:

Definition 1.3.2. Given a graded category C with lifts over a BCPO M, we say that

C is a weakly Cartesian closed graded category if it has:

• A fiber-wise terminal object.

• Fiber-wise cartesian products.

• Restricted exponential objects for all grades.
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Chapter 2

Applications of Graded Categories

2.1 Absolute and Relative Cardinality

“Perhaps we could be pushed in the end to say that all sets are countable…but

really pleasant axioms have not been produced by me or anyone else, and the

suggestion remains speculation.”
– Dana Scott [11]

One of my original motivations for the theory of graded categories was to come up

with a general framework which would allow one to explore the notion of absolute

cardinality from a categorical perspective. In particular, the end goal being the

construction of a model with some nice categorical properties such that all objects

are “absolutely countable”.

This language of “absolute” and “relative” cardinality has its roots in the so called

Skolem’s paradox, which is essentially the observation that there are countable models

of set theory (i.e. models in which all of the sets have countably many elements),

which, since they are still models of ZFC, and Cantor’s theorem is a theorem of ZFC,

must have sets which “internally” are uncountable, even though “externally” we see

that each of the sets in our model in fact only has at most countably many elements.
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This becomes less mystifying once one realizes that, in some formal system (such

as ZFC) what “the infinite set A is uncountable” really means is “there is no bijection

from A onto the natural numbers”. To be even more explicit we could say “there is no

bijection in the model under consideration from A onto the natural numbers.” This is

why it is perfectly valid for us to see that “external to the model”, all sets are in fact

countable. In our meta-theory we can evidently construct a bijection between the

elements of A and the elements of the natural numbers, since both sets are countable

– but this does not contradict Cantor’s theorem (applied to this model of set theory),

because this is a statement about what bijections we can construct inside the model.

Thus, since graded categories naturally encode the “level” of different morphisms,

they give us a natural framework for understanding Skolem’s paradox – namely, we

can construct a category with:

• Objects: Sets in our model of ZFC.

• Morphisms of grade 0: Functions that we can witness “internal” to the

model.

• Morphisms of grade 1: Functions that we can witness “external” to the

model.

Now, in this setup, although a set such as NN (the set of all morphisms within the

model from N → N) is still not isomorphic to N – it can be pseudoisomorphic to N,

as nothing in Cantor’s theorem prohibits such a bijection from existing “outside” the

model (i.e. in our case, at grade 1).

So certainly we can express the notion of “absolute countability” in our framework

of graded categories, as well as even the notion of two objects in a graded category

having the same “relative cardinality” (i.e. up to some particular grade) – but notice

that in order for this to work, we actually need to distinguish between the sets (NN)0

(which consists of functions of grade 0 from N to N) and (NN)1 (which consists of
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functions of grade 1 from N to N) – which then motivates our use of the notion of a

restricted exponential object that we defined in the previous chapter. Thus, it turns

out that formalizing the details of such a model in a satisfactory way brings with it a

number of technical challenges which we will discuss further in the conclusion of this

thesis.

2.1.1 A word on Lawvere’s fixed point theorem and inconsi-

tencies

Since this is a thesis in category theory, and not in set theory – and since we are

here proposing a generalizaton of the notion of Cartesian closed categories to the case

of graded categories in order to allow for a context where we can meaningfully and

non-trivially model a theory where “all sets are countable”, it is worth pointing out:

1. How Cantor’s theorem (a result about the Cartesian closed category Set) relates

to the more general framework of graded categories.

2. Why we in fact need to go beyond the theory of Cartesian closed categories in

order to non-trivially model this notion of absolute countability – i.e. why can’t

we simply have a Cartesian closed category in which the isomorphisms them-

selves express the notion of absolute countability? Why do we need pseudoiso-

morphisms? (beyond the nice interpretation in terms of “what level” morphisms

sit at in some heierarchy of metatheories)

The first question can be answered by a (relatively) little-known result by Lawvere

[12, 13], which generalizes a number of known diagonalization results by lifting them

to the more general context of Cartesian closed categories:

Theorem 2.1.1 (Lawvere’s Fixed Point Theorem). If C is a Cartesian closed category,

A,B ∈ Ob(C), and there exists a point surjective morphism φ : B → AB (i.e. the
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induced map Hom(1, B) → Hom(1, AB) mapping x to φ ◦x is surjective), then A has

the fixed point property – that is, every morphism f : A → A has a fixed point.

which might seem more familiar to the reader in its contrapositive form:

Corollary 2.1.2. If C is a Cartesian closed category, A,B ∈ Ob(C), and there exists

a morphism f : A → A without a fixed point, then there does not exist a weakly

point surjective morphism φ : B → AB.

The traditional interpretation of this theorem with application to self-referential

paradoxes can be understood once one realizes that the property that every morphism

f : A → A has a fixed point is a trivializing condition on A, and that conversely the

existence of a morphism f : A → A without a fixed point is a kind of non-degeneracy

condition on A. For instance, in Set any singleton set {∗} satisfies the fixed point

property, whereas for any set containing at least two distinct elements, we can clearly

construct a map without fixedpoints.

Even so, a natural question that presents itself given Lawvere’s theorem is: Is there

a way of modeling the sort of countable universe that we’re after simply by allowing

such fixed points to occur – even if they are not natural from the perspective of our

set theoretic intuitions? For instance, if we take A = B = N, is it really harmful to

have every morphism f : N → N have a fixed point? Wouldn’t it be OK if our model

had some non-standard natural numbers which are fixed by every morphism N → N?

The short answer is: Yes, it is possible (in categories other than Set) for an object

to satisfy the fixed point property, and yet still have some non-trivial structure. For

instance, this can be seen in categorical models of the untyped lambda calculus as a

reflexive object in a Cartesian closed category. Such a model consists of an object U of

a Cartesian closed category which is interpreted as an (infinite) collection of untyped

lambda terms – and since we can apply any lambda term to any other lambda term,

we need to have an isomorphism (or at least a retraction) U ∼= UU . In this sort of
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model, fixedpoints correspond to non-terminating lambda terms, which is fine, since

we’re trying to model the untyped lambda calculus, in which not all computations

terminate.

However, the moment you try to incorporate additional structure into your cate-

gory, such fixedpoints pose a number of problems. The following results are from [14],

where a category is said to be inconsistent if it is equivalent to the trivial category,

and is said to have fixedpoints if every object A has the fixedpoint property from

Lawvere’s theorem:

Proposition 2.1.3. Let C be a Cartesian closed category with fixedpoints, then:

1. If C has an initial object then C is inconsistent.

2. If the coproduct 1 + 1 exists, then C is inconsistent.

3. If C has equalizers, then C is inconsistent.

4. If C has a natural numbers object N , then N ∼= 1.

In combination with Lawvere’s theorem, these sorts of results prove to be detrimental

towards our goal of modeling a category in which “everything is countable”.

Beyond inconsistency, another more subtle type of degeneracy that can arise be-

cause of fixedpoints (as well as for other reasons) is the condition of C actually being

a preorder category (i.e. each hom set C(A,B) contains at most one element). The

fixedpoints arising from Lawvere’s theorem can also lead to this kind of degeneracy

if we’re not careful:

Proposition 2.1.4. Let C be a bicartesian closed category with an object D such

that 2D is a retract of D, then C is a preorder category with D ∼= 1.

Thus, to summarize, if we wish to model a Set-like category (and thus, to have a

Cartesian closed structure of some sort, a natural number object, as well as cocartesian
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structure, at the very least) where “all sets are countable” – in particular, that there

is a point-surjective morphism φ : N → 2N, we cannot use the standard framework of

category theory.

2.2 Conclusions and Further Research

When I started work on this thesis, one of my central results was:

Proposition 2.2.1. There exists a non-trivial (weakly) Cartesian-closed graded cat-

egory C such that every infinite object in C has the same absolute cardinality as

N.

The construction witnessing this result was simple:

1. Start with a Cartesian closed “base category” C0 with natural numbers ob-

ject whose morphisms correspond to (possibly higher-order) primitive recursive

functions.

2. At each stage Cn, freely adjoin to the set of morphisms of Cn an enumeration

map enumn : N →n+1 (NN)n

3. Close this under products and (weak) exponential objects to form a new cate-

gory Cn+1, into which Cn naturally embeds.

By construction then (ignoring the fact that “closing under products and weak

exponential objects” is already a somewhat involved construction if one wishes to flesh

out the details), this graded category certainly satisfies the desired “all infinite objects

are absolutely countable” property. However, one issue with this construction is that

it is actually a construction of an indexed category – and the transition functors of

this indexed category are merely injective on objects, not identity on objects, so this

is not, in the sense of this thesis, an indexed strucure for a graded category.
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While this is perhaps salvagable, at least in the sense that if we allow graded

categories that have objects with non-full spectra, the correspondence outlined in

section 1.1.4 likely generalizes to the case of injective on object indexed categories, I

am much less confident that the graded Yoneda lemma carries over in this case – and

hence, this still does not show that we have a relatively “nice categorical approach”

for talking about absolute cardinality, which was one of the hopes for this thesis.

In addition, the notion of graded exponential object I used in the above con-

struction was slightly different (and not as well-thought out) as the notion I ended

up settling for in this thesis. However, both the notion of fiber-wise product, and

“restricted” exponential object I ended up using here are still not entirely satisfying

from a theoretical perspective, and much work remains to be done in order to better

understand the nature of the more general kinds of “graded universal constructions”

discussed in section 1.3, and how they relate to notions definable in the 2-categories

GCat`M and IndCatM (either via standard conical, or by weighted limits). Thus,

rather than trying to cobble together some hot fix of my original construction that

would fit with the new definitions that I decided to use for my thesis, I’ll instead

merely be honest, and say: “There is much work that remains to be done.”

And so, my original aspirations for this thesis with respect to some of my original

motivations for “graded categories” has, I think to some extent fallen flat. I took

Dana Scott’s speculation that “perhaps we could be pushed in the end to say that all

sets are countable,” and I ran with it.

But as it turns out, it’s quite hard to get around general incompleteness phenom-

ena (which, arguably Cantor’s theorem is – being akin to both Gödel’s incompleteness

theorem and the undecidability of the halting problem via their generalization in Law-

vere’s fixed point theorem) in a satisfactory way. Eventually, I came to the realization

that the use of restricted exponential objects to come up with a model where “every-

thing is absolutely countable” is interesting, although perhaps “cheating” in a way.
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What can be said about the case when more honest-to-goodness “full” and “up to

grading” notions of exponential object are used rather than the restricted exponential

objects? Is it still possible for everything to be “absolutely countable” in this context?

With regards to this question, what I’d conjecture is this: Even in the prescense

of more “full” graded exponential objects, we can consistently say that “all sets are

absolutely countable” – but this should not be formalizable within the graded category

itself! So in other words, what I’d expect is that what we can formulate is that with

regards to full exponential objects in a graded category, we get a sort of undefinability

theorem with regard to the notion of “absoluteness”. Then, the reason why it is

possible to detect all infinite objects having the same absolute cardinality in the case

of only allowing restricted exponential objects is simply that (over nice enough posets)

we can always move (within the system) to a higher grade where we can witness the

absolute countability at that stage.

Zach Weber ends his paper on paraconsistent naïve set theory [15] (in which he,

interestingly enough, also cites the remark by Dana Scott which I opened this chapter

with) by saying:

The few pages of this paper have not destroyed all cardinals. Rather, the
proofs are robust evidence that Cantor’s ideas about the transfinite are true,
and that this is so independently of classical logic. His ideas are true in a
different light than previously seen

which, I think essentially sums up my approach to tackling this problem of coming

up with a coherent framework in which one can do mathematics where “everything

is absolutely countable.”

I am not ultimately trying to run from the incompleteness that Cantor derived in

his classic theorem – I am merely attempting to understand the same fundamental

phenomenon in a different way – in a way that takes seriously the fact that mathemat-

ics is constructed in stages, and the fact that results (such as countability!) change

according to the various perspectives one might take. This is what I hoped (and still

hope!) to model with the framework of graded categories.
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However, on the subject of my aspirations for the theory of graded categories

(with regards to their application in understanding this notion of absolute contability,

I’d like to bring up one more quote from the paper by Weber, and then to leave with

some intuition that I think best sums up my current aspirations for graded categories

in this area – and shows how perhaps what I am doing might perhaps even be related

to Weber’s approach:

A hierarchy, be it of iterative sets, truth predicates, or transfinite cardinals,
can be understood as a way to control otherwise inconsistent information, by
separating it over distinct levels... Once we forgo consistency, the hierarchy
of ascending cardinalities is merely tracking a contradiction.

Consider: If we want to model some “uncountable” collection like NN in a graded

category – then perhaps a better intuition is not that “everything is countable”, but

rather that “everything is fiberwise countable”. With this in mind, and viewing NN in

terms of our representation of the objects of graded categories as variable sets – NN

should look (without loss of generality) something like

N0 N1 N2 . . .
f1 f2 f3

where each of the transition functions f1, f2, f3 . . . can be interpreted as “keeping

track of a contradiction”. (Here Ni are all countable sets) In other words, if at stage 0

we assume (wrongly – so, a contradiction) that NN can be exhausted at this level by a

countable set, we have to embed N0 into the “larger” set N1 (for instance, by the map

n 7→ 2n – so N0 gets mapped into a proper part of N1) to make room for all the “new

elements” that now are required to inhabit this set by the diagonal construction.

However, with all that said, I still think it is interesting to consider the question of

what “doing mathematics” using a framework where only restricted exponentiation in

a graded category is allowed “looks like”. I.e. what do results in fields like topology,

group theory, analysis, etc... which depend on the fact that some infinite collections

are larger than others look like when we replace exponentiation and powersets with
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their restricted analogues, thus forcing everything to be countable?

This is not quite as outlandish as it may at first seems, as some foundations of

mathematics (such as predicativism) do not allow unrestricted powersets (for instance,

see [16]). And in particular, some recent work by Palmgren [17] towards developing

a theory of “predacative toposes” seems very akin to my approach of only allowing

restricted exponentiation.

There are also many interesting ideas and examples that, due to time limitations,

I was not able to include in the final draft of my thesis. In particular, it is rather

unfortunate that the “dynamic categories” aspect of my thesis had to be mainly

relegated to some motavational remarks towards the beginning of the thesis. This is a

shame, because although this material is less developed than some of my other ideas – I

do believe that they could have a lot of potential, for instance: In artificial intelegence,

or linguistics, where one has to deal with an evolving system of ontologies, if one could

find a way to conviniently represent such an evolving system as a graded category in

a nice way, then perhaps some of the weaker notions of universal constructions “up

to grading” that one can formulate in graded categories might have some explanatory

power that would not otherwise be possible in “static” category theory.

It is interesting to note that Andree Eheresmann (a remark by whom inspired at

least the terminology of the “dynamic categories” aspect of this thesis!) uses some

graded categorical structures in her work on applying category theory to neuroscience

– although these are (N,+)-gradings, not the “idempotent-type” gradings that I con-

sidered in this thesis.

The relationship between these different types of gradings, however, is just one

more potential avenue to be explored. I discovered some preliminary results in this

direction while I was working with Harley Eades III on the semantics of graded

modal type theories (which uses a grading over semirings – the interesting result

being that one of the type theories I was considering for the internal language of my
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graded categories turned out to essentially be a special case of the “resource-semiring

graded” type theories we considered, when join-semilattices are viewed as degenerate

semirings). However, it would be interesting to explore more in the future exactly

what the relationships are between these types of gradings. In general, it seems to me

that these more general (non-idempotent) gradings should be more difficult to deal

with, because they do not allow one to have lifting morphisms in my sense, as is the

case for the idempotent gradings considered in this thesis. How to deal with this, and

whether or not any interesting graded categorical constructions can be formulated in

this more general setting (and whether or not they would be useful) is, I think, an

interesting open question to consider. However, it should be noted that Paul Blain

Levy has shared with me in private communication some of his unpublished work in

what he calls “locally graded categories” – which is a generalization of my work in

the sense that he works with gradings over general monoidal categories.

The original draft of this thesis (before I started cutting things down in order

to get something that was actually feasiable to edit with my time constraints) was

266 pages at it’s max. Thus, even including this summary, there are still many more

topics I have left out. However, I hope that both with this, and with the rest of

the thesis, I have convinced the reader that graded categories are an interesting new

framework with a number of interesting applications. Or, at the very least, I hope

that I have shown that this is a framework that merits further, and more systematic

study.



50

Bibliography

[1] Andrée Ehresmann. Applications of categories in biology and cognition. Cate-

gories for the Working Philosopher, page 358, 2017.

[2] P Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models.

In International Workshop on Computer Science Logic, pages 121–135. Springer,

1994.

[3] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and

Tarmo Uustalu. Combining effects and coeffects via grading. In ACM SIGPLAN

Notices, volume 51, pages 476–489. ACM, 2016.

[4] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Mellies. Towards a formal

theory of graded monads. In International Conference on Foundations of Soft-

ware Science and Computation Structures, pages 513–530. Springer, 2016.

[5] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad

in finite model theory. In Logic in Computer Science (LICS), 2017 32nd Annual

ACM/IEEE Symposium on, pages 1–12. IEEE, 2017.

[6] F William Lawvere and Robert Rosebrugh. Sets for mathematics. Cambridge

University Press, 2003.

[7] John L Bell. Toposes and local set theories: an introduction. Courier Corporation,

2008.



51

[8] David I Spivak. Category theory for the sciences. MIT Press, 2014.

[9] Roy L Crole. Categories for types. Cambridge University Press, 1993.

[10] Steve Awodey. Category theory. Oxford University Press, 2010.

[11] John Lane Bell and Dana Scott. Boolean-valued models and independence proofs

in set theory. 1981.

[12] F William Lawvere. Diagonal arguments and cartesian closed categories. In Cat-

egory theory, homology theory and their applications II, pages 134–145. Springer,

1969.

[13] Noson S Yanofsky. A universal approach to self-referential paradoxes, incom-

pleteness and fixed points. Bulletin of Symbolic Logic, 9(3):362–386, 2003.

[14] Hagen Huwig and Axel Poigné. A note on inconsistencies caused by fixpoints in

a cartesian closed category. Theoretical Computer Science, 73(1):101–112, 1990.

[15] Zach Weber. Transfinite cardinals in paraconsistent set theory. The Review of

Symbolic Logic, 5(2):269–293, 2012.

[16] Nik Weaver. Mathematical conceptualism. arXiv preprint math/0509246, 2005.

[17] Erik Palmgren. A constructive examination of a russell-style ramified type theory.

arXiv preprint arXiv:1704.06812, 2017.



52

Biography

Nathan Bedell was born and raised in Winchester, Virginia. After a long childhood

of exploring a variety of different academic interests such as music theory, linguistics,

and computer science – just to name a few – he eventually fell in love with, and decided

to major in Mathematics. Nathan graduated with his B.S. from Liberty University

in December of 2016, and is graduating this May with his M.S. in Mathematics.


	Acknowledgments
	Graded Categorical Foundations
	An Introduction to Elementary and Partial Graded Categories
	Variable sets: The ``dynamics'' of graded categories
	Graded and Indexed Categories
	2-categories of graded categories and indexed structures
	The Equivalence of Graded Categories and Indexed Structures

	Variable Object Models and the Graded Yoneda Lemma
	Graded Categorical Structures

	Applications of Graded Categories
	Absolute and Relative Cardinality
	A word on Lawvere's fixed point theorem and inconsitencies

	Conclusions and Further Research

	Bibliography

