


Abstract

Modular-type transformation formulas are the identities that are invariant under the

transformation α → 1/α, and they can be represented as F (α) = F (β) where αβ = 1.

We derive a new transformation formula of the form F (α, z, w) = F (β, z, iw) that is

a one-variable generalization of the well-known Ramanujan-Guinand identity of the

form F (α, z) = F (β, z) and a two-variable generalization of Koshliakov’s formula of

the form F (α) = F (β) where αβ = 1. The formula is generated by first finding an

integral J that is comprised of an invariance function Z and evaluating the integral

to give F (α, z, w) mentioned above. The modified Bessel function Kz(x) appearing

in Ramanujan-Guinand identity is generalized to a new function, denoted as Kz,w(x),

that yields a pair of functions reciprocal in the Koshliakov kernel, which in turn yields

the invariance function Z and hence the integral J and the new formula. The special

function Kz,w(x), first defined as the inverse Mellin transform of a product of two

gamma functions and two confluent hypergeometric functions, is shown to exhibit a

rich theory as evidenced by a number of integral and series representations as well as

a differential-difference equation.

The second topic of the thesis is 2-adic valuations of integer sequences associated

with quadratic polynomials of the form x2+a. The sequence {n2+a : n ∈ Z} contains

numbers divisible by any power of 2 if and only if a is of the form 4m(8l+7). Applying

this result to the sequences derived from the sums of four or fewer squares when one

or more of the squares are kept constant leads to interesting results, that also points



to an inherent connection with the functions rk(n) that count the number of ways to

represent n as sums of k integer squares. Another class of sequences studied is the

shifted sequences of the polygonal numbers given by the quadratic formula, for which

the most common examples are the triangular numbers and the squares.
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Chapter 1

Introduction

1.1 Transformation formulas involving a general-

ization of the modified Bessel function Kz(x)

For Re(s) > 1, the Riemann zeta function ζ(s) is defined by the absolutely convergent

Dirichlet series,

ζ(s) =
∞�

n=1

1

ns
,

and can be analytically continued to the entire complex plane except for a simple

pole at s = 1 with residue 1. The analytical continuation makes use of the functional

equation,

π− s
2Γ( s

2
)ζ(s) = π− 1−s

2 Γ(1−s
2
)ζ(1− s). (1.1)

Here Γ(s) is the gamma function defined for Re(s) > 0 by the integral

Γ(s) =

� ∞

0

xs−1e−x dx. (1.2)

The integral (1.2) defining the gamma function Γ(s) is the Mellin transform of the

function e−x. The Mellin transform of a function f(x), used often in the thesis, is
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defined as

F(s) :=

� ∞

0

xs−1f(x) dx, (1.3)

where s is restricted to the values for which the integral (1.3) converges and the

inverse Mellin transform is given by [1, p. 33]

f(x) =
1

2πi

�

(c)

x−sF(s) ds. (1.4)

where
�
(c)

denotes the line integral
� c+i∞
c−i∞ throughout the thesis.

The Riemann ξ-function, defined by

ξ(s) := 1
2
s(s− 1)π− 1

2
sΓ( s

2
)ζ(s),

is an entire function satisfying ξ(s) = ξ(1 − s), which means it is symmetric with

respect to the vertical line Re(s) = 1
2
in the complex plane. Riemann’s Ξ-function,

defined by

Ξ(t) := ξ(1
2
+ it),

is an even function of t.

The following integral evaluation, comprising of the Riemann Ξ-function, is well-

known and was used by Hardy [2] to prove the infinitude of the zeros of ζ(s) on the

critical line Re(s) = 1
2
:

2

π

� ∞

0

Ξ( t
2
)

1 + t2
cos

�
1

2
t logα

�
dt =

√
α

�
1

2α
−

∞�

n=1

e−πα2n2

�
(1.5)

Clearly the integral on the left side of the equation (1.5) is invariant under the

transformation α → 1/α. This invariance yields the following formula for complex
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numbers α and β with Re(α2) > 0, Re(β2) > 0 satisfying αβ = 1:

√
α

�
1

2α
−

∞�

n=1

e−πα2n2

�
=

�
β

�
1

2β
−

∞�

n=1

e−πβ2n2

�
, (1.6)

The right side of the equation (1.5) relates to the theta function θ(x) in the

following manner:

θ(x) :=
∞�

n=−∞
e−πn2x = 1 + 2

∞�

n=1

e−πn2x.

The theta function θ(x) satisfies the following transformation property:

θ(x) =
1√
x
θ

�
1

x

�
(1.7)

Letting x = α2 yields the formula (1.6), so henceforth equation (1.6) will be referred

as the theta transformation formula.

The transformation property (1.7) for the theta function θ(x) is reminiscent of the

invariance property of modular transformations under inversion. Indeed, in a slightly

different form obtained by a change of variable, the property (1.7) corresponds to the

inversion τ → −1/τ . On account of this similarity with the modular transformation,

the formulas of the form F (α) = F (β) for αβ = k, where k is a constant, are known as

modular-type transformations. Such formulas can be found in the work of Ramanu-

jan, that have inspired the study of integrals involving Riemann Ξ-function that are

invariant under the transformation α → 1/α to generate the modular-type transfor-

mation formulas. One of the elegant formulas found on page 220 in Ramanujan’s

Lost Notebook [3] is given below.

Theorem 1.1.1. Define

L(x) := ψ(x) +
1

2x
− log x
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where

ψ(z) :=
d

dz
lnΓ(z) =

Γ�(z)

Γ(z)

is the logarithmic derivative of the gamma function. If α and β are positive numbers

such that αβ = 1, then

√
α

�
γ − log(2πα)

2α
+

∞�

n=1

L(nα)

�
=

�
β

�
γ − log(2πβ)

2β
+

∞�

n=1

L(nβ)

�

= − 1

π
3
2

� ∞

0

����Ξ
�
1

2
t

�
Γ

�−1 + it

4

�����
2 cos

�
1
2
t logα

�

1 + t2
dt. (1.8)

The evaluation of the integrals of the type

F (α) =

� ∞

0

f(t) cos

�
1

2
t logα

�
dt, (1.9)

that are invariant under the transformation α → 1/α, by finding their alternate series

or integral representation, is a useful technique to derive modular-type transforma-

tion formulas. N.S. Koshlikov, known for his work on modular-type transformation

formulas, worked with a kernel function given by a combination of trigonometric and

Bessel functions. This kernel, proved to be an essential tool in employing the above

mentioned technique to derive some of the results in the thesis, will be referred to as

Koshlikov kernel. To introduce the kernel, the definitions of the Bessel functions are

presented first. The Bessel functions of the first and second kinds of order z, namely

Jz(x) and Yz(x), are defined by [4, p. 40, 64]

Jz(x) :=
∞�

m=0

(−1)m(x/2)2m+z

m!Γ(m+ 1 + z)
, ||x|| < ∞, (1.10)

and

Yz(x) =
Jz(x) cos(πz)− J−z(x)

sin πz
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respectively. The modified Bessel functions of the first and second kinds of order z

are defined by [4, p. 77]

Iz(x) =





e−
1
2
πziJz(e

1
2
πix), if −π < arg x ≤ π

2
,

e
3
2
πziJz(e

− 3
2
πix), if π

2
< arg x ≤ π,

(1.11)

and [4, p. 78]

Kz(x) :=
π

2

I−z(x)− Iz(x)

sin πz
.

The Koshlikov transform of a function f(x) is

2π

� ∞

0

f(x)
�
cos(πz)M2z(4π

√
x)− sin(πz)J2z(4π

√
x)
�
dx, (1.12)

whenever the integral converges. A pair of functions (ϕ,ψ) is said to be reciprocal in

the Koshlikov kernel if the two functions ϕ and ψ are Koshlikov transforms of each

other as stated explicitly in (2.1) in Chapter 2. Koshliakov proved that, for −1
2
<

Re(z) < 1
2
,

2π

� ∞

0

Kz(2πt)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt = Kz(2πx). (1.13)

Thus the modified Bessel function of the second kind Kz(x) is self-reciprocal in the

Koshliakov kernel. This yields the first known pair of reciprocal functions in the

Koshliakov kernel viz. (
√
αKz(2παx),

√
βKz(2πβx)), where αβ = 1.

A large number of the integrals studied for the modular-type transformations com-

prises of the Riemann Ξ-function or a product of two Ξ-functions in the integrand.

In this thesis, we restrict our discussion to such integrals comprising of Riemann

Ξ-function(s) that generates the modular-type transformation formulas and can be

broadly classified into two categories, both comprising of another function that is in-

variant under the transformation α → 1/α, called as the invariance function. Hence-
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forth α and β satisfy αβ = 1 throughout the thesis. The first family of integrals,

denoted as I(h,∇;w,α), is given by

I(h,∇;w,α) :=

� ∞

0

h

�
t

2

�
Ξ

�
t

2

�
∇
�
α, w,

1 + it

2

�
dt, (1.14)

where h(t) = |φ(it)|2 = φ(it)φ(−it) is an even function of t, for some analytic function

φ and the function ∇ satisfying the invariance property ∇(α, w, s) = ∇(β, iw, s) is

the sum of the normalized Mellin transforms of a pair of functions reciprocal in

the Fourier cosine transform, defined explicitly in Chapter 2. The evaluation of the

integrals I(h,∇;w,α) gives rise to the formulas of the type F (α, w) = F (β, iw),

where w can be identically equal to zero. When w is identically equal to zero, the

invariance function ∇
�
α, 0, 1+it

2

�
reduces to 2 cos

�
1
2
t logα

�
.

The integral (1.5) associated with the theta transformation formula (1.6) is an

example of the first kind I(h,∇;w,α) with w = 0, φ(t) = 1
t+ 1

2

so that h
�
t
2

�
= 4

1+t2

and ∇ = 2 cos
�
1
2
t logα

�
. A variety of integrals of the kind I(h,∇;w,α) are studied

by Ramanujan [5], Koshliakov [6], G. H. Hardy [2], W. L. Ferrar [7] and lately by

A. Dixit [8]. A transformation of the kind F (α, w) = F (β, iw) that is of particular

interest in the thesis is the generalization of the theta transformation formula

1

π

� ∞

0

Ξ( t
2
)

1 + t2
∇

�
α, w,

1 + it

2

�
dt =

√
α

�
e−

w2

8

2α
− e

w2

8

∞�

n=1

e−πα2n2

cos(
√
παnw)

�

=
�

β

�
e

w2

8

2β
− e−

w2

8

∞�

n=1

e−πβ2n2

cos(i
√
πβnw)

�
, (1.15)

for w ∈ C, where

∇(α, w, s) := ρ(α, w, s) + ρ(α, w, 1− s),

ρ(α, w, s) := α
1
2
−se

w2

8 1F1

�
1− s

2
;
1

2
;−w2

4

�
(1.16)
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where 1F1(a; c;w) denotes the confluent hypergeometric function defined as [9, p. 188]

1F1(a; c; z) =
∞�

n=0

(a)nz
n

(c)nn!
,

with (a)n being the Pochhammer symbol given by

(a)n := a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

for a ∈ C. Here ρ(α, w, s) and ρ(α, w, 1 − s) are the normalized Mellin transforms

of the functions
√
αe

w2

8 e−πα2x2
cos(

√
παxw) and

√
βe−

w2

8 e−πβ2x2
cos(i

√
πβxw) respec-

tively. Though the first equality involving the integral in (1.15) is found more recently

in [8] by A. Dixit, the second equality in (1.15) is well-known in another version given

in terms of Ramanujan’s theta function f(a, b):

e
w2

8
√
αf

�
e−α2+izα, e−α2−izα

�
= e−

w2

8

�
βf

�
e−β2+izβ, e−β2−izβ

�
. (1.17)

where

f(a, b) =
∞�

n=−∞
a

n(n+1)
2 b

n(n−1)
2 , |ab| < 1, (1.18)

The second family of integrals, denoted as J (h, Z; z,α), is obtained by introducing

a product of two Riemann Ξ-functions,

J (h, Z; z,α) :=

� ∞

0

h

�
z,

t

2

�
Ξ

�
t− iz

2

�
Ξ

�
t+ iz

2

�
Z

�
1 + it

2
,
z

2
,α

�
dt, (1.19)

where h (z, t) is an even function of t of the form

h (z, t) = |φ(z, it)|2 = φ(z, it)φ(z,−it), (1.20)

where the function φ is analytic in the complex variable z and in the real variable
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t and the function Z satisfying the invariance property Z(s, z,α) = Z(s, z, β) is the

sum of the normalized Mellin transforms of a pair of functions that is reciprocal in

the Koshliakov kernel, defined explicitly in Chapter 2. The evaluation of the integrals

J (h, w;α) generates the formulas of the second kind F (α, z) = F (β, z), which is of a

different kind than F (α, w) = F (β, iw) seen above.

The integral in Theorem (1.1.1) given by Ramanujan is the first example of the

integrals of the second kind J (h, Z; z,α), with the variable z identically equal to

zero. A transformation formula derived by N.S. Koshliakov , though it was also

proved by Ramanujan ten years earlier[10, p. 253], will be referred to as Koshliakov’s

formula throughout the thesis. It is obtained from the integrals of the second kind

J (h, Z; z,α) by letting z = 0 and using φ(t) = 1
(t+ 1

2
)(t− 1

2
)
, so that h

�
t
2

�
= 16

(1+t2)2
. For

α, β > 0,

32

π

� ∞

0

Ξ2( t
2
)

(1 + t2)2
cos

�
1

2
t logα

�
dt =

√
α

�
4

∞�

n=1

d(n)K0(2nπα)−
γ − log(4πα)

α

�

=
�

β

�
4

∞�

n=1

d(n)K0(2nπβ)−
γ − log(4πβ)

β

�
(1.21)

where d(n) is the number of positive divisors of the positive integer n, γ is Euler’s

constant and K0(x) is the modified Bessel function of the second kind of order zero.

The well-known Ramanujan-Guinand identity generalizes Koshliakov’s formula

(1.21) by extending K0(x) to Kz(x). For −1 < Re(z) < 1,

32

π

� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

�
cos

�
1
2
t logα

�

((z + 1)2 + t2)((z − 1)2 + t2)
dt

=
√
α

�
4

∞�

n=1

σ−z(n)n
z
2K z

2
(2παn)− α

z
2
−1π− z

2Γ
�z
2

�
ζ(z)− α− z

2
−1π

z
2Γ

�
−z

2

�
ζ(−z)

�

=
�

β

�
4

∞�

n=1

σ−z(n)n
z
2K z

2
(2πβn)−β

z
2
−1π− z

2Γ
�z
2

�
ζ(z)−β− z

2
−1π

z
2Γ

�
−z

2

�
ζ(−z)

�

(1.22)
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The second equality is the transformation formula known to Ramanujan (see [10])

and rediscovered by Guinand [11] whereas the first equality is proved recently by

A. Dixit [12]. The pair of functions (
√
αKz(2παx),

√
βKz(2πβx)) reciprocal in the

Koshliakov kernel is used for the calculation of the invariance function Z for both

(1.21) and (1.22), where z = 0 for the former. In both the formulas, Z reduce to

cos
�
1
2
t logα

�
, as shown in Chapter 2, independent of the variable z.

A number of interesting formulas involving integrals of the kind J (h, Z; z,α) for

which the invariance function Z is restricted to cos
�
1
2
t logα

�
are known, see for ex-

ample [12–15]. The paper [16] has developed a unified theory for the integrals of

the kind J (h, Z; z,α) for a specific h = 1
(t2+(z+1)2)(t2+(z−1)2)

. The integrals involving

both the Koshlikov’s formula and Ramanujan-Guinand formula are examples for this

particular h. The results in the paper [16] serves as a template for generating new

transformation formulas that can possibly involve an invariance functions Z other

than cos
�
1
2
t logα

�
. To derive a transformation formula that uses a non-trivial in-

variance function Z, the trick is to find a quintessential pair of functions reciprocal

in the Koshliakov kernel for which Z does not reduce to cos
�
1
2
t logα

�
, while being

not too complicated so that we are still able to find an alternate representation for

the integral J (h, Z; z,α). The difficulty lies in generating the reciprocal pairs in

the Koshliakov kernel as it is rare for a function to yield an exact evaluation in the

Koshliakov transform. In course of searching the literature for finding a reciprocal

pair in three variables x, z and w, that reduces to Kz(x) when w = 0, only one useful

equation in Koshliakov’s paper [17] was found, though it proved to be inapplicable for

calculating Z. To the best of the author’s knowledge, the transformation formula de-

rived in the thesis is the first one obtained from the integrals of the kind J (h, Z; z,α)

in which the invariance function Z do not reduce to cos
�
1
2
t logα

�
. It is to be noted

that this is not the case with the invariance function ∇ for the integrals of the first

kind I(h, w;α), as seen above from the generalization of the theta transformation
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formula (1.15) of the kind F (α, w) = F (β, iw).

Evidently the integrals evaluating the theta transformation formula (1.6) and

Koshliakov’s formula (1.21), that are of the first and second kind respectively, com-

prise of the same functions, though all of the functions, except the invariance function

cosine, are squared in the latter. The two formulas exhibit other similarities as well

that is elaborated as follows. The theta transformation formula (1.6) is equivalent to

the functional equation (1.1) of the Riemann zeta function ζ(s) whereas Koshliakov’s

formula (1.21) is shown to be equivalent to that of ζ2(s) as shown by W. L. Ferrar

[7] and F. Oberhettinger and K. L. Soni [18]. The functions appearing in the sums

of the respective formulas, that is e−x2
and K0(x) exhibit similarity in the following

manner.

The Mellin transforms for the functions e−x2
and K0(x) are well-known [19]. For

Re(s) > 0, � ∞

0

xs−1e−x2

dx =
1

2
Γ
�s
2

�
, (1.23)

and again, for Re(s) > 0,

� ∞

0

xs−1K0(x) dx = 2s−2Γ2
�s
2

�
(1.24)

Thus, up to constant factors, the functions e−x2
and K0(x) are the inverse Mellin

transforms of Γ
�
s
2

�
and Γ2

�
s
2

�
respectively.

Ramanujan-Guinand formula is a one-variable generalization of Koshliakov’s for-

mula of the kind F (α, z) = F (β, z). This generalization is of a different kind than

the one seen above for the generalization of the theta transformation formula, that is

F (α, w) = F (β, iw). One of the goals of the thesis is to find a one-variable general-

ization of the Ramanujan-Guinand formula and hence, a two-variable generalization

of Koshliakov’s formula. This formula is of the form F (α, z, w) = F (β, z, iw). To

reach that goal, we first discover the elusive reciprocal pair by defining a new special
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function Kz,w(x), that is first introduced as an inverse Mellin transform as follows.

For z, w ∈ C, x ∈ C\{x ∈ R : x ≤ 0}, and Re(s) > ± Re(z), we define

Kz,w(x) :=
1

2πi
×

�

(c)

Γ

�
s− z

2

�
Γ

�
s+ z

2

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
2s−2x−sds,

(1.25)

The special function Kz,w(x) can be considered as a generalization of the modified

Bessel function of second kind Kz(x). For w = 0

Kz,0(x) =
1

2πi

�

(c)

Γ

�
s− z

2

�
Γ

�
s+ z

2

�
2s−2x−sds = Kz(x). (1.26)

The integral in (1.26) is an inverse Mellin transform representation of Kz(x), as

given in [19, p. 115, formula 11.1], hence the second equality.

The new function Kz,w(x) yields a non-trivial invariance function Z leading to the

desired generalization of the Ramanujan-Guinand formula of the kind F (α, z, w) =

F (β, z, iw) involving two variables z and w as follows, unlike previous formulas which

belong strictly to one of the two kinds, with either one or no variable. Let w ∈ C,

z ∈ C\{−1, 1} and α, β > 0,
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� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

�
Z
�
1 + it

2
,
z

2
, w

�
dt

(t2 + (z + 1)2)(t2 + (z − 1)2)
=

√
α

�
4

∞�

n=1

σ−z(n)n
z
2 e−

w2

4 K z
2
,iw(2nπα)− Γ

�z
2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�

− Γ
�
−z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

��
=

�
β

�
4

∞�

n=1

σ−z(n)n
z
2 e

w2

4 K z
2
,w(2nπβ)− Γ

�z
2

�
ζ(z)π− z

2β
z
2
−1

1F1

�
1− z

2
;
1

2
;−w2

4

�

− Γ
�
−z

2

�
ζ(−z)π

z
2β− z

2
−1

1F1

�
1 + z

2
;
1

2
;−w2

4

��
(1.27)

where

Z(α, z, w, s) := Z(α, z, w, s) + Z(α, z, w, 1− s),

Z(α, z, w, s) := α
1
2
−s

1F1

�
1− s− z

2
;
1

2
;−w2

4

�
1F1

�
1− s+ z

2
;
1

2
;−w2

4

�
.

Here Z(α, z, w, s) and Z(α, z, w, 1 − s) are the normalized Mellin transforms of the

functions
√
αe−

w2

4 Kz,w(2παx) and
√
βe

w2

4 Kz,iw(2πβx) respectively.

Ramanujan-Guinand formula is a special case of (1.27) when w = 0 whereas

Koshliakov’s formula is a special case of (1.27) when both w = 0 and z = 0.

As a special case when only z = 0 in (1.27), we obtain another previously un-

known formula, that is one-variable generalization of Koshliakov’s formula of the

kind F (α, w) = F (β, iw). Let w ∈ C and α, β > 0,
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16

π

� ∞

0

Ξ
�
t
2

�2

(t2 + 1)2

�
α− it

2 1F
2
1

�
1− it

4
;
1

2
;−w2

4

�
+ α

it
2 1F

2
1

�
1 + it

4
;
1

2
;−w2

4

��
dt

=
√
αe−

w2

4

�
4

∞�

n=1

d(n)e−
w2

4 K0,w(2nπα)−
γ − log(4πα)

α

�
1− w2

4

�
+

w2

2α

�

=
�

βe−
w2

4

�
4

∞�

n=1

d(n)e−
w2

4 K0,iw(2nπβ)−
γ − log(4πβ)

β

�
1 +

w2

4

�
− w2

2β

�
.

Note that this transformation formula can be given in the form F (α, w) = F (β, iw),

like most formulas associated with the integrals of the first kind I(h,∇;w,α), never-

theless, the integral equal to it is of the second kind J (h, Z; z,α), as reflected by the

squares or the products of the functions, for example Ξ-function, in the integrand.

The generalization of the theta transformation formula led to the motivation be-

hind the discovery of the function Kz,w(x), as explained in Chapter 2. The function

involved in the theta transformula formula (of the type F (α) = F (β)), that is e−x2
,

is extended to an elementary function e−x2
cos(wx) appearing in its generalization of

the kind F (α, w) = F (β, iw). On the other hand, the special function of Kz(x), that

appears in Ramanujan-Guinand formula of the kind F (α, z) = F (β, z), is extended

to a new special function, namely Kz,w(x) that yields the generalized formula of the

type F (α, z, w) = F (β, z, iw). A significant portion of the thesis is devoted to devel-

oping the theory of Kz,w(x) as much as possible with the intention it might be useful

in other places. Hence, a large part of the analysis of Kz,w(x), given in Chapter 5, is

not integral to the discovery of the desired modular-type transformation but is inde-

pendent of it. A number of integral and series representations of Kz,w(x) are derived

in Chapter 5, motivated by the corresponding representations of the modified Bessel

function Kz(x), and they point to a rich theory of the special function Kz,w(x).

For example, the function Kz,w(x) exhibits the following simple integral represen-
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tation. For z, w ∈ C and |arg x| < π
4
,

Kz,w(2x) = x−z

� ∞

0

e−t2−x2

t2 cos(wt) cos
�wx

t

�
t2z−1 dt. (1.28)

We note that from the definition of Kz,w(x) itself, it is evident that it is an even

function in both the variables z and w. From the above integral representation (1.28)

as well, it is clear that Kz,w(x) is an even function of w and by the change of variable

t → x/t, it follows that it is also an even function in z.

Another integral representation for the function K0,w(x) involving an exponential

and two cosine functions is as follows. For | arg x| < 1
4
π and w ∈ C, we have

K0,w(x) =

� ∞

0

exp

�
− w2x2

2(x2 + u2)

�
cos

�
w2xu

2(x2 + u2)

�
cos u du√
x2 + u2

. (1.29)

This is a generalization of the well-known Basset’s formula for the modified Bessel

function of the second kind Kz(x), given in [4, p. 172],

Kz(xy) =
Γ
�
z + 1

2

�
(2x)z

yzΓ(1
2
)

� ∞

0

cos(yu) du

(x2 + u2)z+
1
2

, (1.30)

for Re(z) > −1
2
, y > 0, and | arg x| < 1

2
π in the case z = 0.

The functionKz,w(x) relates to the modified Bessel functionKz(x) in the following

manner. For z, w ∈ C and | arg x| < π
4
,

Kz,w(2x) =
∞�

n=0

∞�

m=0

(−w2x)n+m

(2n)!(2m)!
Kn−m+z(2x). (1.31)

The special function Kz,w(x) also exhibits a series representation, involving the

three different Bessel functions Jz(x), Iz(x) and Kz(x) as follows. For −1
2
< Re(z) <
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1
2
, w ∈ C, and | arg x| < π

4
,

Kz,w(2x) =
1

2

∞�

n=−∞
(−1)nKz+n(2x)

�
I2n(2w

√
x) + J2n(2w

√
x)
�
. (1.32)

When w = 0, the above result reduces to the trivial relation Kz(2x) = Kz(2x) since

I0(0) = J0(0) = 1 and In(0) = Jn(0) = 0 for n �= 0. It is to be noted that in both

the series (1.31) and (1.32) representing Kz,w(x), the variable z appears only in the

order of the modified Bessel function Kz(x) whereas the variable w appears either in

the arguments of the Bessel functions Jz(x) and Iz(x), as in (1.32) or seperately as

in (1.32). Moreover the Bessel functions themselves are defined as series, see (1.10),

more specially the modified Bessel function Kz(x) is given by

Kz(2x) =
π

2

∞�

k=0

x2k

k! sin(πz)

�
x−z

Γ(k − z + 1)
− xz

Γ(k + z + 1)

�
(1.33)

Hence the function Kz,w(x) is effectively a triple series, one representation of which

is derived using (1.31) and (1.33) and is given by

Kz,w(2x) =
π

2

∞�

n=0

∞�

m=0

∞�

k=0

w2(n+m)x2k

(2n)! (2m)! k! sin(πz)
×

�
x2m−z

Γ(k +m− n− z + 1)
− x2n+z

Γ(k + n−m+ z + 1)

�
, (1.34)

for w ∈ C, z �∈ Z and | arg x| < π
4
. Another representation for Kz,w(x) is an infinite

series of Laplace transform of a special function involving 0F2 as given below. For

w ∈ C, Re(z) > −1
2
and | arg x| < π

4
,

Kz,w(x) =
(2x)z+

1
2

Γ
�
z + 1

2

�
∞�

n=0

�
−w2x

2

�n

(2n)!

� ∞

0

tz−
1
2 (t+ 1)z−

1
2 (2t+ 1)−n+ 1

2Kn+ 1
2
(x(2t+ 1))

× 0F2

�
−;

1

2
,
1

2
+ z;−w2x2t(t+ 1)

4

�
dt. (1.35)
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This is the generalization of the well-known integral [20, p. 236]1 for Kz(x), where it

is expressed as a Laplace transform of an elementary function, that is, for Re(z) > −1
2

and | arg x| < π
2
,

Kz(x) =

√
π(2x)ze−x

Γ
�
z + 1

2

�
� ∞

0

e−2xttz−
1
2 (t+ 1)z−

1
2 dt. (1.36)

The integral in the above representation for Kz,w(x) is indeed a Laplace transform as

[21, p. 934, formula 8.468]

Kn+ 1
2
(y) =

�
π

2y
e−y

n�

k=0

(n+ k)!

k!(n− k)!(2y)k
. (1.37)

In an attempt to derive the asymptotic expansion of the function Kz,w(x), the

following double integral representation is discovered by chance. For w ∈ C,

Re(z) > −1 and | arg x| < π
4
,

Kz,w(x) =
1

2Γ(1 + z)

� ∞

0

� ∞

0

yzt−1/2

�
y + x

2

exp

�
−2

��
t+

x

2

��
y +

x

2

��

× 0F2

�
−;

1

2
, 1 + z;−w2xy

8

�
0F2

�
−;

1

2
,
1

2
;−w2xt

8

�
dt dy.

(1.38)

Letting w = 0 in the above equation (1.38) gives the following double integral repre-

sentation for the modified Bessel function Kz(x) which the author could not find in

the literature. For Re(z) > −1 and | arg x| < π
4
,

Kz(x) =
1

2Γ(1 + z)

� ∞

0

� ∞

0

yzt−1/2

�
y + x

2

exp

�
−2

��
t+

x

2

��
y +

x

2

��
dt dy.

The asymptotic expansion of Kz,w(x) for large values of |x| obtained by Nico M.

Temme is stated in Theorem 5.4.1 in Chapter 5. Its proof is given in the Appendix of

1 There is minor misprint in that (2x)z is typed as (2/x)z.
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[22], the paper that also contains most of the results from the first topic of the thesis.

For small values of |x|, the asymptotic expansion of Kz,w(x) is as follows.

(i) Let w ∈ C be fixed. Consider a fixed z such that Re(z) > 0. Let D = {x ∈ C :

| arg x| < π
4
}. Then as x → 0 along any path in D, we have

Kz,w(x) ∼
1

2
Γ(z)

�x
2

�−z

1F1

�
z;

1

2
;
−w2

4

�
. (1.39)

(ii) Let w ∈ C be fixed. Let | arg x| < π
4
. As x → 0,

K0,w(x) ∼ − log x− w2

2
2F2

�
1, 1;

3

2
, 2;−w2

4

�
. (1.40)

The result in (1.40) shows that, similar to the modified Bessel function K0(x), the

function K0,w(x) also has a logarithmic singularity at x = 0. Note that when w = 0,

the above two results agree with the corresponding ones for Kz(x) given below.

Kz(x) ∼





1
2
Γ(z)

�
x
2

�−z
, if Re z > 0,

− log x, if z = 0.

(1.41)

The function satisfies the differential-difference equation

d4

dw4
Kz,w(2x) + 2x

�
d2

dw2
Kz+1,w(2x) +

d2

dw2
Kz−1,w(2x)

�

+ x2 (Kz+2,w(2x)− 2Kz,w(2x) +Kz−2,w(2x)) = 0.

for z, w ∈ C and | arg x| < π
4
.

The first topic in the thesis, described above, is organized as follows. Chapter

2 presents the motivation behind the definition of the new function Kz,w(x) as the

inverse Mellin transform by inspecting the analogy between Ramanujan-Guinand for-

mula and the theta transformation formula. In Chapter 3, the desired pair of functions
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that is reciprocal in the Koshliakov kernel is derived using the function Kz,w(x). In

Chapter 4, the generalization of the Ramanujan-Guinand transformation formula of

the kind F (α, z, w) = F (β, z, iw) is obtained along with the integral associated with

it. In the last chapter of this topic, that is Chapter 5, the theory of the function

Kz,w(x) is developed. The introduction to the second topic in the thesis is given

below.

1.2 2-adic valuations of integer sequences associ-

ated with quadratic polynomials

The second part of the thesis deals with the 2-adic valuations of the integer sequences.

The p-adic valuation, also known as p-order and denoted by νp(n), of a number n

is the exponent of the highest power of p that divides n. A sequence (sn) is said to

possess infinte p-adic valuation, denoted as νp(sn) → ∞ if for any power of p, say pv,

there is a term in the sequence that is divisible by pv.

The sequences studied in the thesis can all be traced back to those generated by

the quadratic polynomials with integer coefficients and no linear term, for example the

sequence {n2 + 7 : n ∈ N}. The p-adic valuations, for any prime p, of such sequences

are inherently related to the existence of roots of the corresponding polynomials in

the respective p-adic field Fp. The Hensel’s lemma is a useful tool to study the roots

of polynomials in Fp, but it fails to hold in case of the combination of the prime

p = 2 and the polynomials of the kind p(x) = x2 + k since the derivative of p(x)

equals 0 (mod 2). An interesting result that links the distinct sequences studied in

the later part of the thesis is that the sequences generated by the integer polynomials

{x2 + k : x ∈ N} contain numbers divisible by any high power of 2 if and only if k is

of the form 4m(8l + 7). To sum it up, ν2(n
2 + k) → ∞ and only if k is of the form

4m(8l + 7).
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The integers of the form 4m(8l+7) mentioned above are special in the sense that

they are the only integers that cannot be represented as the sum of three or less

squares, a result known as Legendre’s three-square theorem. This leads to the study

of the sequences given by the sums of four integer squares that yields the following

counterintuitive results.

Let the set S be defined as all the possible sums of four integers squares, that is

S = {a2 + b2 + c2 + d2 : a, b, c, d ∈ Z}. By Lagrange’s four-square theorem, every

number can be written as a sum of four integer squares. Thus the set S is essentially

the set of natural numbers, repeated a certain number of times, which in turn implies

that S has numbers divisible by any power of 2. Three different classes of sequences

can be derived from the set S by fixing either one, two or three of the squares in the

sum and letting the rest vary. For example, fixing one of the squares would yield the

integer sequences given by S(a) = {a2+ b2+ c2+ d2 : b, c, d ∈ Z} where a is fixed and

b, c, d takes all integer values. The sets S(a) are the first class of sequences and the

other two classes are given by S(a, b) = {a2 + b2 + c2 + d2 : c, d ∈ Z} and S(a, b, c) =

{a2+ b2+ c2+d2 : d ∈ Z} fixing two and three squares respectively. For every integer

a, it turns out that the set S(a) contains no numbers divisible by high enough power

of 2 (see Theorem 6.2.1). For example, S(3) = {9 + b2 + c2 + d2 : b, c, d ∈ Z} has no

numbers divisible by 8. Moreover the highest power of 2 that divides numbers in the

set S(a) is proportional to the highest power of 2 that divides a, in fact it is equal to

2ν2(a) + 2 (see Theorem 6.2.1).

Similar results holds true for the sets obtained by fixing two and three squares

viz. S(a, b) = {a2 + b2 + c2 + d2 : c, d ∈ Z} (see Theorem 6.2.4) and S(a, b, c) =

{a2 + b2 + c2 + d2 : d ∈ Z} (see Theorem 6.2.7). In a nutshell, for sets of the type

S(a), S(a, b) and S(a, b, c), there is an exponent v, specific to that particular set,

such that no number in the set is divisible by powers of 2 higher than v. On the

contrary, another question is, given a fixed expoenent v, what proportion of the sets
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in either one of the three classes, say S(a, b), contains no numbers divisible by 2v?

For example, only half of the sets of the class S(a, b) have numbers that are divisible

by 4. In contrast with the natural numbers for which every fourth number is divisible

by 4, half of the sets of the class S(a, b) are devoid of any multiples of 4 whereas for

the other half the multliples of 4 are fewer and inherently related to the sequence of

triangular numbers defined below.

The function rk(n), that counts the number of ways n can be represented as sums

of k integer squares, allows zeros and distinguishes between signs and order in the

representations. The collection of the sets S(a) forms a disjoint partition of the set

S if the numbers equal in value but coming from different representations as sums

of squares are considered different. Similarly, the collections of the sets of both the

classes S(a, b) and S(a, b, c) always gives respective partitions of the set S. The

connection of this analysis with the function r3(n) is evident in Theorem 6.2.9 in

Chapter 6 that says the proportion of subsets of the type S(a, b, c) that has numbers

divisible by 22v is 1/23v. This can be compared with the asymptotic behavior of the

function r3(n) (see [23]):
�

n≤x

r3(n) ∼
4

3
πx

3
2

which implies the following identity satisfied asymptotically by the function r3(n):

1

23v

22vk�

n=1

r3(n) ∼
k�

n=1

r3(n)

It is elaborated in the last section of Chapter 6 that the combination of prime p = 2

and the sums of four squares is special and the results cannot be generalized if the

problem is even slightly modified. For example if any other prime p is considered, then

the above property will no longer hold true. For example, the set {1+1+0+n2 : n ∈ Z}

contains numbers divisible by all powers of 3. Similarly, if prime p = 2 but sum of

more than four squares are considered, then again some sets will contain numbers
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divisible by any power of 2, for example the set {1 + 1 + 1 + 4 + n2 : n ∈ Z}. This is

because of the beautiful confluence of the conditions for which Hensel’s lemma fails

to hold, an integer is a sum of three squares as given by the Legendre’s three-square

theorem and the polynomials n2 + k yields finite 2-adic valuations.

The sequence arising from the polynomials n2 + k can be considered as the

translations of the sequence of squares in the number line. It is an interesting

observation that, much more often than not, when an integer is added to each

square, the resulting sequence contains no number is divisible by high enough pow-

ers of 2. Like squares, there is another type of figurate numbers called triangular

numbers given by the formula n(n + 1)/2. The sequences of triangular numbers

{1, 3, 6, 10, 15, 21, 28, 36, 45, . . . } contains infinitely many numbers divisible by any

power of 2, similar to the sequence of squares. However unlike squares, when shifted

by adding any integer the resulting sequence always contains infitinely many num-

bers divisible by any power of 2 no matter what integer is added uniformly to the

sequence. Both squares and traingular numbers are examples of polygonal numbers

that are given by a quadratic formula and hence it is natural to ask what is the

pattern exhibited in general by polygonal numbers. It turns out that the behaviour

of squares is truly unique whereas the behaviour of the remaining polygonal numbers

can be put into two categories, that is summed up as follows.

1. For s = 4, the sequence obtained by adding an integer k to s-gonal numbers

(that is squares) have numbers divisible by all powers of 2 if and only if k is of

the form 4m(8l + 7).

2. For s �≡ 0 (mod 4), the sequence obtained by adding an integer k to s-gonal

numbers have numbers divisible by all powers of 2 for any k.

3. For s �= 4 and s ≡ 0 (mod 4), let ν2(s− 4) = u, then the sequence obtained by

adding an integer k to s-gonal numbers have numbers divisible by all powers of
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2 if and only if k ≡ 0 (mod 22u−1).
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Chapter 2

Analogy between the theta

transformation formula and

Ramanujan-Guinand formula

The motivation behind the definition of special function Kz,w(x) can be clearly seen

by understanding the analogy between the theta transformation formula and its gen-

eralization on one hand and Koshliakov’s formula and Ramanujan-Guinand formula

on the other. The former are the transformation formulas associated with the inte-

grals of the first kind I(h,∇;w,α) while the latter are the ones associated with the

integrals of the second kind J (h, Z; z,α). The pair of functions involved in the gen-

eralization of the theta transformation formula gives a clue about the corresponding

pair needed to find the generalization of Ramanujan-Guinand formula. In view of

this, the mechanism behind deriving the formulas along with the associated integrals

using pairs of functions is demonstrated for the above known formulas of both the

kinds. A comparison is made pointing the similarities and the differences in the re-

spective mechanisms for the two distinct kinds of formulas mentioned above leading

to the definition of the generalized modified Bessel function Kz,w(x).
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2.1 Transformation formulas associated with the

integrals of the second kind J (h, Z; z,α)

A pair of functions ϕ and ψ is said be reciprocal in the Koshliakov kernel if the pair

satisfies the following.

ϕ(x, z, w) = 2π

� ∞

0

ψ(t, z, w)
�
cos (πz)M2z(4

√
tx)− sin (πz) J2z(4

√
tx)

�
dt,

ψ(x, z, w) = 2π

� ∞

0

ϕ(t, z, w)
�
cos (πz)M2z(4

√
tx)− sin (πz) J2z(4

√
tx)

�
dt. (2.1)

The pair of functions that is reciprocal in the Koshliakov kernel (ϕ,ψ) yields

invariance function Z
�
1+it
2
, z
2
, w

�
, an example of which is the function cos

�
1
2
t logα

�
.

More specifically, the invariance function Z is the sum of the normalized Mellin

transforms of the functions ϕ and ψ from the reciprocal pair.

The normalized Mellin transforms Z1(s, z, w) and Z2(s, z, w) of the functions

ϕ(x, z, w) and ψ(x, z, w) are given by

π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
Z1(s, z, w) =

� ∞

0

xs−1ϕ(x, z, w) dx, (2.2)

π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
Z2(s, z, w) =

� ∞

0

xs−1ψ(x, z, w) dx, (2.3)

where each equation is valid in a specific vertical strip in the complex s-plane. The

function Z(s, z, w) is defined as

Z(s, z, w) := Z1(s, z, w) + Z2(s, z, w), (2.4)
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so that

π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
Z(s, z, w) =

� ∞

0

xs−1Θ(x, z, w) dx,

for values of s in the intersection of the above two vertical strips, where

Θ(x, z, w) := ϕ(x, z, w) + ψ(x, z, w). (2.5)

For a pair of functions ϕ and ψ reciprocal in the Koshliakov kernel to eventually

generate a transformation formula, the functions ϕ and ψ must satisfy additional

conditions. The ♦η,ω class, that was originally defined in [16] for functions in two

variables ϕ(s, z) and ψ(s, z), is slightly modified below to be used for ϕ(s, z, w) and

ψ(s, z, w).

Definition 2.1.1. Let 0 < ω ≤ π and η > 0. For fixed z and w, if u(s, z, w) is such

that

(i) u(s, z, w) is an analytic function of s = reiθ regular in the angle defined by

r > 0, |θ| < ω,

(ii) u(s, z, w) satisfies the bounds

u(s, z, w) =





Oz,w(|s|−δ) if |s| ≤ 1,

Oz,w(|s|−η−1−|Re(z)|) if |s| > 1,

(2.6)

for every positive δ and uniformly in any angle |θ| < ω, then we say that u belongs

to the class ♦η,ω and write u(s, z, w) ∈ ♦η,ω.

For the second family of integrals of the kind J (h, Z; z,α) and the specific function

h = ((t2+(z+1)2)(t2+(z−1)2))−1, the following result is given in [16, Theorem 1.2]
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Theorem 2.1.2. Let η > 1/4 and 0 < ω ≤ π. Suppose that ϕ,ψ ∈ ♦η,ω, are reciprocal

in the Koshliakov kernel, and that −1/2 < Re(z) < 1/2. Let Z(s, z, w) and Θ(x, z, w)

be defined in (2.4) and (2.5). Let σ−z(n) =
�

d|n d
−z. Then

32

π

� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

�
Z

�
1 + it

2
,
z

2
, w

�
dt

(t2 + (z + 1)2)(t2 + (z − 1)2)

=
∞�

n=1

σ−z(n)n
z/2Θ

�
πn,

z

2
, w

�
−R(z, w), (2.7)

where

R(z, w) := πz/2Γ

�−z

2

�
ζ(−z)Z

�
1 +

z

2
,
z

2
, w

�
+ π−z/2Γ

�z
2

�
ζ(z)Z

�
1− z

2
,
z

2
, w

�
.

(2.8)

The rigth side of the equation (2.7) comprises of Θ (x, z, w) in the summation, that

is itself the sum of the functions ϕ(s, z, w) and ψ(s, z, w) in the reciprocal pair, as

well as the invariance function Z(s, z, w,α) that satisfies Z(s, z, w,α) = Z(s, z, iw, β).

When Theorem 2.1.2 is applied to a pair of functions, the integral on the rigth side

of the equation (2.7), say J , is equal to a function that can be broken into two parts

in the following manner.

J =
1

2
(F (α, z, w) + F (β, z, iw)) . (2.9)

The intermediate step is to prove that the two parts are equal to this each other, that

is

F (α, z, w) = F (β, z, iw), (2.10)

which implies

J = F (α, z, w) (2.11)

The equation (2.10) is the modular-type transformation formula associated with the
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integral J . Thus the application of Theorem 2.1.2 to a pair of functions gener-

ates a transformation formula, without proving it. The lemma 4.0.1 by Guinand

[11, equation (1)] stated in Chapter 4 is a useful tool in the proof of such formulas.

To summarize, Theorem 2.1.2 not only helps in finding modular-type transformation

formulas but also gives an integral that is equal to the known or newly found trans-

formation formulas. Finding new formulas is the trickier part than proving them in

most cases, however with the help of Theorem 2.1.2, the task boils down to finding

an approriate pair of functions reciprocal in the Koshliakov kernel.

One of the goal of the thesis is to obtain the transformation formula of the kind

F (α, z, w) = F (β, z, iw) that is a one-variable generalization of the Ramanujan-

Guinand formula (1.21) and hence, a two-variable generalization of Koshliakov’s for-

mula (1.21). We first demonstrate the application of Theorem 2.1.2 in these two

formulas using the reciprocial pairs in both cases so as to motivate the definition of

the new special function Kz,w(x) that gives the reciprocal pair leading to the desired

generalization.

For Koshliakov’s formula

√
a

�
4

∞�

n=1

d(n)K0(2nπα)−
γ − log(4πα)

α

�
=

√
b

�
4

∞�

n=1

d(n)K0(2nπβ)−
γ − log(4πβ)

β

�
,

(2.12)

for α, β > 0, the integral associated with the formula is

32

π

� ∞

0

Ξ2( t
2
)

(1 + t2)2
cos

�
1

2
t logα

�
dt, (2.13)

whereas for the Ramanujan-Guinand identity of the kind F (α, z) = F (β, z), which is
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essentially the generalization of Koshliakov’s formula,

√
α

�
4

∞�

n=1

σ−z(n)n
z
2K z

2
(2παn) + α

z
2π

z
2Γ

�
−z

2

�
ζ(−z) + α− z

2π− z
2Γ

�z
2

�
ζ(z)

�

=
�

β

�
4

∞�

n=1

σ−z(n)n
z
2K z

2
(2πβn) + β

z
2π

z
2Γ

�
−z

2

�
ζ(−z) + β− z

2π− z
2Γ

�z
2

�
ζ(z)

�
,

(2.14)

for −1 < Re(z) < −1, the integral associated with it is obtained by introducing

variable z in (2.13) in the following manner [16]

32

π

� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

�
cos

�
1
2
t logα

�

((z + 1)2 + t2)((z − 1)2 + t2)
dt. (2.15)

Both the formulas (2.12) and (2.14) comprises of the modified Bessel function of the

second kind Kz(x), that is self-reciprocal in the Koshliakov kernel and yeilds the

reciprocal pair as shown below. The invariance function, derived from the reciprocal

pairs, in the integral of both the formulas is cos
�
1
2
t logα

�
which turns out to be

independent of z, even though the reciprocal pair in case of Ramanujan-Guinand

formula is not independent of z, as demonstrated below.

The modified Bessel function of the second kind Kz(x) is reciprocal in the Koshli-

akove kernel, as proved in [17],

2π

� ∞

0

Kz(2πt)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt = Kz(2πx). (2.16)

for −1
2
< Re(z) < 1

2
. The reciprocal pair (

√
αKz(2παx),

√
βKz(2πβx)) is derived

using the self-reciprocity of Kz(2πx) by change of variables as follows.

2π

� ∞

0

�
βKz(2πβt)

�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt =

√
αKz(2παx),

2π

� ∞

0

√
αKz(2παt)

�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt =

�
βKz(2πβx).
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The Mellin transform for Kz(x) [19, p. 115, formula 11.1] is

� ∞

0

xs−1Kz(x) dx = 2s−2Γ

�
s− z

2

�
Γ

�
s+ z

2

�
, (2.17)

for Re(s) > ± Re(z). Using change of variables in (2.17), the Mellin transforms

derived for the functions in the reciprocal pair (
√
αKz(2παx),

√
βKz(2πβx)) are given

below.

� ∞

0

xs−1
√
αKz(2παx) dx = π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
α

1
2
−s

4
,

� ∞

0

xs−1
�

βKz(2πβx) dx = π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
β

1
2
−s

4
.

By definition (2.2), the normalized Mellin transforms are

Z1(α, s, z) =
α

1
2
−s

4
,

Z2(β, s, z) =
β

1
2
−s

4
. (2.18)

Hence the invariance function is

Z

�
1 + it

2
,
z

2

�
=

α
−it
2 + α

it
2

4
=

1

2
cos

�
1

2
t logα

�
.

as expected. Note that Z1(α, s, z) and Z2(β, s, z) are independent of the variable z

and satisfy Z1(α, s, z) = Z2(β, 1 − s, z). For Koshliakov’s formula, that is a special

case of Ramanujan-Guinand formula when z = 0, the pair of reciprocal functions

(
√
αK0(2παx),

√
βK0(2πβx)) is used instead of (

√
αKz(2παx),

√
βKz(2πβx)) and all

the calculations above are the same. Since the invariance function Z(α, s, z) for the

pair (
√
αKz(2παx),

√
βKz(2πβx)) turned out to be independent of z, it is the exactly

the same for both the reciprocal pairs.

We expect the generalized reciprocal pair we are looking for to appear in the
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generalization of Ramanujan-Guinand formula, in the same manner that the recip-

rocal pairs (
√
αKz(2παx),

√
βKz(2πβx)) and (

√
αK0(2παx),

√
βK0(2πβx)) appeared

in the summations of the Ramanujan-Guinand formula and Koshlikov formula respec-

tively. The desired pair of functions in three variables x, z and w must also reduce to

(
√
αKz(2παx),

√
βKz(2πβx)) when w = 0. Since Kz(x) is itself a special function,

so must be the function that is used in the generalization.

For a function to be a part of the reciprocal pair, it is to be integrated with the

Koshliakov kernel and the evaluation must give the other function in the pair and vice

versa. An extensive search for functions involving Kz(x) that have exact evaluation in

the Koshliakov transform lead to only one identity in [24], that is not helpful for this

purpose. The desired generalization formula require introduction of a new function,

namely Kz,w(x), that eluded discovery by trial and error. The function Kz,w(x) is

intuitively found by observing the analogy between the theta transformation formula

and Koshliakov’s formula. The generalization of the theta transformation formula of

the kind F (α, w) = F (β, iw) is known and a close inspection of this generalization

leads to defining Kz,w(x) as the inverse Mellin transform of the product of two gamma

and two confluent hypergeometric functions as follows.

2.2 Transformation formulas associated with the

integrals of the first kind I(h,∇;w,α)

For the theta transformation formula

√
α

�
1

2α
−

∞�

n=1

e−πα2n2

�
=

�
β

�
1

2β
−

∞�

n=1

e−πβ2n2

�
, (2.19)
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for Re(α2) > 0 and Re(β2) > 0, the integral associated with the formula is

� ∞

0

Ξ( t
2
)

1 + t2
cos

�
1

2
t logα

�
dt. (2.20)

The integrals for the theta transformation formula and its generalization are of the

kind I(h,∇;w,α) whereas Theorem 2.1.2 is applicable to those of a different kind that

is J (h, Z; z,α). However, Theorem 2.1.2 covers the integral for which the h function

is essentially the square of the h function used for these two formulas. It turns out

the mechanism is inherently the similar to that of the two formulas discussed above

except that the Koshliakov kernel is replaced with another kernel as explained below.

Laplace’s integral gives

e−πx2

= 2

� ∞

0

e−πt2 cos(2πxt) dt. (2.21)

Thus e−x2
is self reciprocal in the Fourier cosine transform. So the natural kernel to

work with for choosing the reciprocal pair (ϕ,ψ) is the Fourier cosine transform. The

invariance function ∇ is given by ∇(α, w, s) := ρ1(α, w, s)+ ρ2(α, w, 1− s) where the

normalization in the normalized Mellin transforms ∇1(α, w, s) and ∇2(β, w, s) are

adjusted accordingly to a single gamma factor devoid of the variable w as follows.

π−sΓ
�s
2

�
∇1(α, w, s) =

� ∞

0

xs−1ϕ(x, w,α) dx,

π−sΓ
�s
2

�
∇2(β, w, s) =

� ∞

0

xs−1ψ(x, w, β) dx,

where each equation is valid in a specific vertical strip in the complex s-plane.

The self-reciprocity of the function e−x2
yields the pair (

√
αe−πα2x2

,
√
βe−πβ2x2

)
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reciprocal in the Fourier cosine transform as follows.

√
αe−πα2x2

= 2

� ∞

0

�
βe−πβ2t2 cos(2πxt) dt,

�
βe−πβ2x2

= 2

� ∞

0

√
αe−πα2t2 cos(2πxt) dt.

The Mellin transform of the function e−x2
derived from the definition of the gamma

function (1.2) by a change of variable is

� ∞

0

xs−1e−πx2

dx = π− s
2
1

2
Γ
�s
2

�
, (2.22)

for Re(s) > 0. The respective Mellin transform for the reciprocal pair are as follows.

� ∞

0

xs−1
√
αe−πα2x2

dx = π− s
2
α

1
2
−s

2
Γ
�s
2

�
, (2.23)

� ∞

0

xs−1
�

ββe−πβ2x2

dx = π− s
2
β

1
2
−s

2
Γ
�s
2

�
. (2.24)

The equations (2.23) and (2.24) implies that the following normalized Mellin trans-

forms are exactly the same as those obtained for both Koshliakov’s formula and

Ramanujan-Guinand formula, up to a factor by a constant.

ρ1(α, w, s) =
α

1
2
−s

2
, (2.25)

ρ2(β, w, s) =
β

1
2
−s

2
. (2.26)

Hence the invariance function is also the same as that of the above two formulas

∇
�
α, w,

1 + it

2

�
= cos

�
1

2
t logα

�
.

For all the three formulas above, the invariance function is the same cos
�
1
2
t logα

�
.
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To generalize the Ramanujan-Guinand formula of the kind F (α, z) = F (β, z) to that

of the kind F (α, z, w) = F (β, z, iw), it requires a non-trivial invariance function

that is achieved by introducing a generalization of the function Kz(x) by adding

another variable, say w. The invariance function in the integral associated with the

generalization of theta transformation formula is non-trivial and it is helpful to study

the mechanism for this formula since the function h is essentially similar, except for the

being squared in case of Koshliakov’s formula. The generalized theta transformation

formula of the kind F (α, w) = F (β, iw) is

√
α

�
e−

w2

8

2α
− e

w2

8

∞�

n=1

e−πα2n2

cos(
√
παnw)

�

=
�
β

�
e

w2

8

2β
− e−

w2

8

∞�

n=1

e−πβ2n2

cos(i
√
πβnw)

�
(2.27)

for w ∈ C, for which the associated integral [8] given by

e
w2

8

� ∞

0

Ξ( t
2
)

1 + t2

�
α− it

2 1F1

�
1− it

4
;
1

2
;−w2

4

�
+ α

it
2 1F1

�
1 + it

4
;
1

2
;−w2

4

��
dt,

as demonstrated below. The generalized theta transformation formula is inherently

related to the pair (
√
αe

w2

8 e−πα2x2
cos(

√
παxw),

√
βe−

w2

8 e−πβ2x2
cos(i

√
πβxw)) that

appeared in the summation of the formula and is reciprocal in the Fourier cosine

transform [21, p. 527, Formula 4.133.2] as stated below.

√
αe

w2

8 e−πα2x2

cos(
√
παxw) = 2

� ∞

0

�
βe−

w2

8 e−πβ2t2 cos(i
√
πβtw)) cos(2πxt) dt,

�
βe−

w2

8 e−πβ2x2

cos(i
√
πβxw)) = 2

� ∞

0

√
αe

w2

8 e−πα2t2 cos(
√
παtw) cos(2πxt) dt.

Note that the above pair is a one-variable generalization of the reciprocal pair

(
√
αe−πα2x2

,
√
βe−πβ2x2

) obtained by introducing the cosine function.
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For 0 < Re(s) < 1, the Mellin transform for the functions in the pair [19] is

� ∞

0

xs−1
√
αe

w2

8 e−πα2x2

cos(
√
παxw) dx = π− s

2
α

1
2
−s

2
Γ
�s
2

�
e−

w2

8 1F1

�
1− s

2
;
1

2
;
w2

4

�
,

(2.28)

� ∞

0

xs−1
�

βe−
w2

8 e−πβ2x2

cos(i
√
πβxw)) dx

= π− s
2
β

1
2
−s

2
Γ
�s
2

�
e

w2

8 1F1

�
1− s

2
;
1

2
;−w2

4

�
. (2.29)

Hence the normalized Mellin transform is given by

ρ1(α, w, s) :=
α

1
2
−s

2
e−

w2

8 1F1

�
1− s

2
;
1

2
;
w2

4

�
, (2.30)

ρ2(β, w, s) :=
β

1
2
−s

2
e

w2

8 1F1

�
1− s

2
;
1

2
;−w2

4

�
. (2.31)

Kummer’s first transformaion for the confluent hypergeometric function [9, p. 191,

Equation (4.1.11)] is

1F1(a; c;−z) = e−z
1F1(c− a; c; z). (2.32)

Using (2.32) in the second equality below, we get

ρ2(β, w, s) =
β

1
2
−s

2
e

w2

8 1F1

�
1− s

2
;
1

2
;−w2

4

�

=
αs− 1

2

2
e−

w2

8 1F1

�
s

2
;
1

2
;
w2

4

�

= ρ1(α, w, 1− s). (2.33)
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Hence the invariance function is given by

∇ (α, w, s) = ρ1(α, w, s) + ρ2(β, w, s)

= ρ1(α, w, s) + ρ1(α, w, 1− s)

= e−
w2

8

�
α

1
2
−s

2
1F1

�
1− s

2
;
1

2
;
w2

4

�
+

αs− 1
2

2
1F1

�
s

2
;
1

2
;
w2

4

��
.

We check that the function ∇ is invariant under the transformation α → 1/α and

w → iw, that is ∇(α, w, s) = ∇(β, iw, s), using (2.32) in the second equality below.

∇ (β, iw, s) = e
w2

8

�
β

1
2
−s

2
1F1

�
1− s

2
;
1

2
;−w2

4

�
+

βs− 1
2

2
1F1

�
s

2
;
1

2
;−w2

4

��

= e−
w2

8

�
αs− 1

2

2
1F1

�
s

2
;
1

2
;
w2

4

�
+

α
1
2
−s

2
1F1

�
1− s

2
;
1

2
;
w2

4

��

= ∇ (α, w, s) .

This implies that the following integral (2.34) is invariant under the transformation

α → 1/α.

e−
w2

8

2

� ∞

0

Ξ( t
2
)

1 + t2

�
α− it

2 1F1

�
1− it

4
;
1

2
;
w2

4

�
+ α

it
2 1F1

�
1 + it

4
;
1

2
;
w2

4

��
dt. (2.34)

The rigorous proof that integral (2.34) is equal to the generalization of the theta

transformation formula can be found in [8]. In the paper [8], this integral is first

converted into a line integral and then evaluated using the residue calculus and the

theory of Mellin transforms.

For w = 0

∇
�
α, 0,

1 + it

2

�
=

1

2

�
α− it

2 + α
it
2

�
= cos

�
1

2
t logα

�

as expected since the integral is obtained from (2.20) by generalizing the function
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cos
�
1
2
t logα

�
to ∇

�
α, w, 1+it

2

�
.

2.3 Rationale behind the definition of the gener-

alized modified Bessel function Kz,w

For finding the function Kz,w(x) that leads to the pair (ϕ(α, x, z, w),ψ(α, x, z, w))

reciprocal in the Koshliakov kernel, we first start with the normalized Mellin transform

motivated from the ones (2.30) used for the generalization of the theta transformation

formula. We replace the 1F1 in these normalized Mellin transforms with a product of

two 1F1 along with introducing another variable z as follows.

Z1(α, s, z, w) :=
α

1
2
−s

4
e−

w2

4 1F1

�
1− s− z

2
;
1

2
;−w2

4

�
1F1

�
1− s+ z

2
;
1

2
;−w2

4

�

=
α

1
2
−s

4
e−

w2

4 1F1

�
s+ z

2
;
1

2
;
w2

4

�
1F1

�
s− z

2
;
1

2
;
w2

4

�
, (2.35)

Z2(β, s, z, w) :=
β

1
2
−s

4
e

w2

4 1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
. (2.36)

Using (2.32) in the second equality below, we get

Z2(β, s, z, w) :=
β

1
2
−s

4
e

w2

4 1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�

=
α

1
2
−s

4
e−

w2

4 1F1

�
s+ z

2
;
1

2
;
w2

4

�
1F1

�
s− z

2
;
1

2
;
w2

4

�

= Z1(α, 1− s, z, w).

Similarly, it is easy to check the invariance function Z given by

Z(s, z, w) = Z1(α, s, z, w) + Z2(β, s, z, w)

= Z1(α, s, z, w) + Z1(α, 1− s, z, w),
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is invariant under the transformation α → 1/α and w → iw, that is Z(α, s, z, w) =

Z(β, s, z, iw).

The normalized Mellin transform Z1(α, s, z, w) and Z2(β, s, z, w) yields the Mellin

transform of the reciprocal pair (ϕ(α, x, z, w),ψ(α, x, z, w)) as follows.

� ∞

0

xs−1ϕ(α, x, z, w) dx = π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
α

1
2
−s

4
e−

w2

4 ×

1F1

�
s+ z

2
;
1

2
;
w2

4

�
1F1

�
s− z

2
;
1

2
;
w2

4

�
(2.37)

� ∞

0

xs−1ψ(β, x, z, w) dx = π−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
β

1
2
−s

4
e

w2

4 ×

1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
(2.38)

This implies that the functions in the reciprocal pair (ϕ(α, x, z, w),ψ(α, x, z, w)) are

given by the following inverse Mellin transforms.

ϕ(α, x, z, w) =
1

2πi

�

(c)

π−sα
1
2
−s

4
e−

w2

4 Γ

�
s− z

2

�
Γ

�
s+ z

2

�
×

1F1

�
s− z

2
;
1

2
;
w2

4

�
1F1

�
s+ z

2
;
1

2
;
w2

4

�
x−sds, (2.39)

and

ψ(β, x, z, w) =
1

2πi

�

(c)

π−sβ
1
2
−s

4
e

w2

4 Γ

�
s− z

2

�
Γ

�
s+ z

2

�
×

1F1

�
s− z

2
;
1

2
;−w2

4

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
x−sds. (2.40)

This in turn leads to the definition of the new function Kz,w(x) as follows. For
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z, w ∈ C, x ∈ C\{x ∈ R : x ≤ 0}, and Re(s) > ± Re(z),

Kz,w(2πx) :=
1

2πi
×

�

(c)

π−s

4
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
x−sds.

(2.41)

The pair of functions given by ϕ(α, x, z, w) =
√
αe

w2

4 Kz,w(2παx) and

ψ(β, x, z, w) =
√
βe−

w2

4 Kz,iw(2πβx) reduces to the pair (
√
αKz(2παx),

√
βKz(2πβx)),

seen above in relation to the Ramanujan-Guinand formula, when w = 0. Note that

the pair itself is invariant under the transformations α → 1/α and w → iw, that is

ψ(β, x, z, iw) = ϕ(α, x, z, w). In the next chapter, we prove that this pair (ϕ,ψ)

is reciprocal in the Koshliakov kernel and then proceed to apply Theorem 2.1.2

for this pair to find the desired modular-type transformation formula of the kind

F (α, z, w) = F (β, z, iw) in Chapter 4.
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Chapter 3

A pair of functions reciprocal in

the Koshliakov kernel

The new function Kz,w(x) given as an inverse Mellin transform can be considered as

a generalization of the modified Bessel function of the second kind function Kz(x), in

the sense that the function Kz,w(x) reduces to Kz(x) when w = 0. To the best of the

author’s knowledge, the modified Bessel function Kz(x) is the only known function

that is self-reciprocal in the Koshlikov kernel. The self-reciprocity of Kz(x) leads

to the pair (
√
αKz(2παx),

√
βKz(2πβx)) reciprocal in the Koshliakov kernel, that

is central to Koshliakov’s formula and Ramanujan-Guinand formula, as seen in the

previous chapter. It is to be noted that there are pairs of functions, not involving

Kz(x), known to be reciprocal in the Koshliakov kernel that are not derived from a

self-reciprocal function.

The function Kz,w(x) is introduced with an intention to generate a pair recip-

rocal in the Koshliakov kernel that can yield a transformula formula. It turns out

that the function Kz,w(x) is not self-reciprocal in the Koshlikov kernel like the mod-

ified Bessel function Kz(x) and its definition cannot be easily tweaked to yield a

self-reciprocal function. This is because the extra variable w introduced in the con-
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fluent hypergeometric functions 1F1 in the definition of the function Kz,w(x) do not

play along well. However, the Koshliakov transform of a slightly modified function

e
w2

4 Kz,w(x) yields e
−w2

4 Kz,iw(x) and vice versa. The pair of functions are almost the

same except for the change in variable w → iw. Thus, even though Kz,w(x) itself is

not self-reciprocal in the Koshliakov kernel, it conveniently yields a pair of functions

(
√
αe

w2

4 Kz,w(2παx),
√
βe−

w2

4 Kz,iw(2πβx)) that is reciprocal in the Koshliakov kernel

exhibiting the desired symmetry.

To show the reciprocity of the pair, the Koshliakov transform of the function

e
w2

4 Kz,w(x) is taken and first shown to be convergent and then evaluated to give back

the e−
w2

4 Kz,iw(x). For the convergence of the integral, the asymptotics of the function

Kz,w(x) is required, that is stated in Theorem 5.4.1 in Chapter 5. The derivation of

the asymptotics do not use the reciprocity of the functions involving Kz,w(x) in the

Koshliakov kernel and hence, it can be used in the proof of reciprocity given below. On

a side note, the results of Chapter 5 establishing the theory of the function Kz,w(x)

are studied independently of the goal of proving the reciprocity in the Koshliakov

kernel and the transformation formula.

Let the Koshlikov kernel be denoted as g(x), that is

g(x) := cos(πz)M2z(4π
√
x)− sin(πz)J2z(4π

√
x) (3.1)

Then the Koshlikov transform of a function f(x) is given by

2π

� ∞

0

f(x)
�
cos(πz)M2z(4π

√
x)− sin(πz)J2z(4π

√
x)
�
dx = 2π

� ∞

0

f(x)g(x) dx

(3.2)

To evaluate the Koshlikov transform of any function f(x) in general, a very useful

tool is the Parseval identity given below. If F and G respectively denote the Mellin

transforms of g and h satisfying appropriate conditions, and if the line Re(s) = c

lies in the common strip of analyticity of F(1− s) and G(s), then Parseval’s identity
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[25, p. 82, Equation (3.1.11)] gives

� ∞

0

f(x)g(x) dx =
1

2πi

�

(c)

F(1− s)G(s) ds. (3.3)

A variant of this formula is [25, p. 83, Equation (3.1.13)]

� ∞

0

f(x)g

�
t

x

�
dx

x
=

1

2πi

�

(σ)

F(s)G(s)t−sds. (3.4)

Thus to evaluate the integral (3.2), we need the Mellin transforms for both the func-

tions f(x), which is Kz,w(x) in our case, and g(x), that is the Koshlikov kernel. The

Mellin transform for the function Kz,w(x) follows directly from its definition whereas

the Mellin transform the Koshliakov kernel is derived below by first using the Mellin

transforms of the Bessel functions in its definition.

Lemma 3.0.1. For ±Re(z) < Re(s) < 3
4
and t > 0, the Mellin transform of the

Koshlikove kernel is

� ∞

0

xs−1
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

=
1

22sπ1+2sts
Γ(s− z)Γ(s+ z) (cos(πz) + cos(πs)) (3.5)

Proof. The Mellin transform

� ∞

0

xs−1
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx, (3.6)

where the function Mz(x) is defined by

Mz(x) :=
2

π
Kz(x)− Yz(x),

can be evaluated by considering the mellin transforms for the Bessel functions appear-
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ing in the Koshliakov kernel. The Mellin transform of the modified Bessel function

Kz(x), as given in [19, p. 115, formula 11.1], is

� ∞

0

xs−1Kz(ax) dx = 2s−2a−sΓ

�
s− z

2

�
Γ

�
s+ z

2

�
, (3.7)

for Re(s) > ± Re(z) and a > 0. This implies

� ∞

0

xs−1 2

π
K2z(4π

√
xt) dx = 2−2sπ−1−2st−sΓ(s− z)Γ(s+ z), (3.8)

for Re(s) > ± Re(z) and t > 0. Similarly, the Mellin transform of the Bessel function

of the second kind Yz(x), as given in [19, p. 93, formula 10.2], is

� ∞

0

xs−1Yz(ax) dx = − 1

π
2s−1a−s cos

�π
2
(s− z)

�
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
, (3.9)

for ±Re(z) < Re(s) < 3
2
. This implies

� ∞

0

xs−1Y2z(4π
√
xt) dx = 2−2sπ−1−2st−s cos (π(s− z))Γ(s− z)Γ(s+ z), (3.10)

for ±Re(z) < Re(s) < 3
4
. This in turn implies

� ∞

0

xs−1M2z(4π
√
xt) dx = 2−2sπ−1−2st−s (1 + cos (π(s− z)))Γ(s−z)Γ(s+z) (3.11)

for ±Re(z) < Re(s) < 3
4
. On the other hand, the Mellin transform of the Bessel

function of the first kind Jz(x), as given in [19, p. 93, formula 10.1], is

� ∞

0

xs−1Jz(ax) dx = −1

2

�a
2

�−s Γ
�
s+z
2

�

Γ
�
1 + z−s

2

� (3.12)
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for −Re(z) < Re(s) < 3
2
. This implies

� ∞

0

xs−1J2z(4π
√
xt) dx = 2−2sπ−2st−s Γ(s+ z)

Γ(1− s+ z)
(3.13)

for −Re(z) < Re(s) < 3
4
. Using the reflection formula for the gamma function

[20, p.46]

Γ(ω)Γ(1− ω) =
π

sin(πω)
(3.14)

the equation (3.13) yields

� ∞

0

xs−1J2z(4π
√
xt) dx = 2−2sπ−1−2st−s sin (π(s− z))Γ(s− z)Γ(s+ z) (3.15)

Combining the evaluations (3.11) and (3.15), we get

� ∞

0

xs−1
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

=
1

22sπ1+2sts
Γ(s− z)Γ(s+ z) (cos(πz) + cos (π(s− z)) cos(πz)− sin (π(s− z)) sin(πz))

=
1

22sπ1+2sts
Γ(s− z)Γ(s+ z) (cos(πz) + cos(πs)) .

Hence proved.

Lemma 3.0.2. The Mellin transform of the generalization of the modified Bessel

function Kz,w(x), for z, w ∈ C, and Re(s) > ± Re(z), is

� ∞

0

xs−1Kz,w(2πx) dx

=
π−s

4
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
. (3.16)

Proof. Follows directly from the definition (2.41) of the functionKz,w(x) as the inverse

Mellin transform of the right side of equation (3.16).

The reciprocal behavior of the generalized modified Bessel function Kz,w(x) in the
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Ksohliakov kernel is stated and proved as follows.

Theorem 3.0.3. Let −1
2
< Re(z) < 1

2
. Let w ∈ C and x > 0.

2π

� ∞

0

e
w2

4 Kz,w(2πx)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

= e−
w2

4 Kz,iw(2πt). (3.17)

Proof. Note that from Theorems 5.4.1, 5.4.2 and from the bound [16, Eqn. (2.11)]

���cos (πz)M2z(4π
√
tx)− sin (πz) J2z(4π

√
tx)

��� �z





1 + | log(tx)|, if z = 0, 0 ≤ tx ≤ 1,

(tx)−|Re(z)|, if z �= 0, 0 ≤ tx ≤ 1,

(tx)−1/4, if tx ≥ 1,

we see that the integrals in Theorem 3.0.4 indeed converge for −1
2
< Re(z) < 1

2
. From

Lemma 3.0.1, we have

� ∞

0

xs−1
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

=
1

22sπ2s+1ts
Γ(s− z)Γ(s+ z) (cos(πz) + cos(πs)) , (3.18)

for ±Re(z) < Re(s) < 3/4 and t > 0. From Lemma 3.0.2, we have

� ∞

0

xs−1Kz,w(2πx) dx

=
π−s

4
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
, (3.19)

for Re(s) > ±Re(z). Note that by the hypothesis, we have −1
2
< Re(z) < 1

2
so that

±Re(z) < 1±Re(z). Then by Parseval’s identity (3.3), and the evaluations (3.18) and
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(3.19), we have

2π

� ∞

0

e
w2

4 Kz,w(2πt)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt

=
1

2πi

�

(c)

e
w2

4 Γ

�
1− s− z

2

�
Γ

�
1− s+ z

2

�
Γ(s− z)Γ(s+ z)

22s+1πs+1ts
(cos(πz) + cos(πs))×

1F1

�
1− s− z

2
;
1

2
;−w2

4

�
1F1

�
1− s+ z

2
;
1

2
;−w2

4

�
ds, (3.20)

for ±Re(z) < c = Re(s) < min
�
3
4
, 1± Re(z)

�
, by an application of (2.32). Legren-

dre’s duplication formula for the gamma function is

Γ(2z) =
22z−1

√
π

Γ(z)Γ

�
z +

1

2

�
. (3.21)

Hence, we have

Γ(s− z) =
2s−z−1

√
π

Γ

�
s− z

2

�
Γ

�
s− z + 1

2

�
,

Γ(s+ z) =
2s+z−1

√
π

Γ

�
s+ z

2

�
Γ

�
s+ z + 1

2

�
.

This implies

Γ

�
1− s− z

2

�
Γ

�
1− s+ z

2

�
Γ(s− z)Γ(s+ z) =

22s−2

π
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
×

Γ

�
s− z + 1

2

�
Γ

�
1− s+ z

2

�
Γ

�
s+ z + 1

2

�
Γ

�
1− s− z

2

�

=
22s−2π

sin(π
�
s−z+1

2

�
) sin(π

�
s+z+1

2

�
)
Γ

�
s− z

2

�
Γ

�
s+ z

2

�
, (3.22)

where the last equality is obtained by using the reflection formula (3.14) for the

gamma function. Using the trigonometric identity for the product of the sine functions
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yields

Γ

�
1− s− z

2

�
Γ

�
1− s+ z

2

�
Γ(s− z)Γ(s+ z) (cos(πz) + cos(πs))

= π22s−1Γ

�
s− z

2

�
Γ

�
s+ z

2

�
. (3.23)

Thus from (3.20) and (3.23), we have

2π

� ∞

0

e
w2

4 Kz,w(2πt)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt

=
1

2πi

�

(c)

π−s

4
e

w2

4 Γ

�
s− z

2

�
Γ

�
s+ z

2

�
×

1F1

�
1− s− z

2
;
1

2
;−w2

4

�
1F1

�
1− s+ z

2
;
1

2
;−w2

4

�
t−s ds.

Using Kummer’s first transformationn 2.32 for 1F1, we get

2π

� ∞

0

e
w2

4 Kz,w(2πt)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dt

=
1

2πi

�

(c)

π−s

4
e−

w2

4 Γ

�
s− z

2

�
Γ

�
s+ z

2

�
×

1F1

�
s− z

2
;
1

2
;
w2

4

�
1F1

�
s+ z

2
;
1

2
;
w2

4

�
t−s ds

= e−
w2

4 Kz,iw(2πt),

where the last step follows from the definition (2.41) of Kz,iw(x). Hence proved.

Replacing w by iw on both sides of (3.17) in Theorem 3.0.3 above proves the

reciprocity of the pair of function (e
w2

4 Kz,w(2πx), e
−w2

4 Kz,iw(2πx)) in the Koshliakov

kernel. The technique used to prove the reciprocity can be summarized as first de-

riving the Mellin tranform of one of the functions in the pair say ϕ, then applying

Parseval’s identity (3.3) using the Mellin transforms of function ϕ as well as that of

the Koshliakov kernel, and then evaluating the integral to give back the other function
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in the pair say ψ, along with showing the convergence of the Koshliakov transform

integral and then repeating the process with the other function ψ. This technique is

one of the reasons that starting with a function defined as an inverse Mellin trans-

form has worked so well in generating the transformation formula, as shown below in

Chapter 4. to derive the transformation formulas.

Theorem 3.0.4. Let −1
2
< Re(z) < 1

2
, w ∈ C, x > 0 and α, β > 0. The functions

√
αe

w2

4 Kz,w(2παx) and
√
βe−

w2

4 Kz,iw(2πβx) form a pair of reciprocal functions in the

Koshliakov kernel, that is

2π

� ∞

0

√
αe

w2

4 Kz,w(2παx)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

=
�

βe−
w2

4 Kz,iw(2πβt), (3.24)

2π

� ∞

0

�
βe−

w2

4 Kz,iw(2πβx)
�
cos(πz)M2z(4π

√
xt)− sin(πz)J2z(4π

√
xt)

�
dx

=
√
αe

w2

4 Kz,w(2παt). (3.25)

Proof. The equation (3.24) follows from Theorem 3.0.3 by the change of variables

x → αx and t → βt. Similarly the equation (3.25) follows from Theorem 3.0.3 by the

change of variables x → βx and t → αt.

This gives the desired reciprocal pair (
√
αe

w2

4 Kz,w(2παx),
√
βe−

w2

4 Kz,iw(2πβx))

that is used below in Chapter 4 in deriving the generalization of the Ramanujan-

Guinand formula, that is of the form F (α, z, w) = F (β, z, iw).
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Chapter 4

A generalization of

Ramanujan-Guinand formula of

the form F (α, z, w) = F (β, z, iw)

The transformation formula of the kind F (α, z, w) = F (β, z, iw) given in 4.0.2 is

the desired generalization of Ramanujan-Guinand formula. Theorem 4.0.4 gives the

integral associated with this formula. The formula is first proved independently using

Lemma 4.0.1 by Guinand [11, equation (1)] given below and then the formula itself

is later used as an intermediate step in the proof of Theorem 4.0.4.

Lemma 4.0.1. If f(x) and f �(x) are integrals, f tends to zero as x → ∞, f(x), xf �(x),

and x2f ��(x) belong to L2(0,∞), and

g(x) = 2π

� ∞

0

f(t)
�
cos

�πz
2

�
Mz(4π

√
xt)− sin

�πz
2

�
Jz(4π

√
xt)

�
dt, (4.1)
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then the following identity holds true:

∞�

n=1

σ−z(n)n
z
2 f(n)− ζ(1 + z)

� ∞

0

x
z
2 f(x) dx− ζ(1− z)

� ∞

0

x− z
2 f(x) dx

=
∞�

n=1

σ−z(n)n
z
2 g(n)− ζ(1 + z)

� ∞

0

x
z
2 g(x) dx− ζ(1− z)

� ∞

0

x− z
2 g(x) dx

Theorem 4.0.2 (Generalization of Ramanujan-Guinand identity). Let w ∈ C,

z ∈ C\{−1, 1}. For α, β > 0,

√
α

�
4

∞�

n=1

σ−z(n)n
z
2 e

w2

4 K z
2
,w(2nπα)− Γ

�z
2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�

− Γ
�
−z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

��

=
�

β

�
4

∞�

n=1

σ−z(n)n
z
2 e−

w2

4 K z
2
,iw(2nπβ)−Γ

�z
2

�
ζ(z)π− z

2β
z
2
−1

1F1

�
1− z

2
;
1

2
;−w2

4

�

− Γ
�
−z

2

�
ζ(−z)π

z
2β− z

2
−1

1F1

�
1 + z

2
;
1

2
;−w2

4

��
. (4.2)

Proof. We first prove the result for a fixed z such that −1 < Re(z) < 1 and then

extend it by analytic continuation. Let f(x) =
√
αe

w2

4 K z
2
,w(2παx) and g(x) =

√
βe−

w2

4 K z
2
,iw(2πβx). Then from Theorem 3.0.4 f(x) and g(x) satisfy (4.1) when

−1 < Re(z) < 1. Now (2.41) implies that for Re(s) > ±Re( z
2
),

� ∞

0

xs−1f(x) dx =

√
αe

w2

4

4(πα)s
Γ
�s
2
− z

4

�
Γ
�s
2
+

z

4

�
×

1F1

�
s

2
− z

4
;
1

2
;−w2

4

�
1F1

�
s

2
+

z

4
;
1

2
;−w2

4

�
. (4.3)

Since Re(z) > −1, we can let s = 1 + z
2
in the above equation so that

� ∞

0

x
z
2 f(x) dx =

1

4
(πα)−

(1+z)
2 Γ

�
1 + z

2

�
1F1

�
1 + z

2
;
1

2
;−w2

4

�
, (4.4)



50

since 1F1

�
1
2
; 1
2
;−w2

4

�
= e−

w2

4 . Since Re(z) < 1, we can let s = 1− z
2
in (4.3) whence

� ∞

0

x− z
2 f(x) dx =

1

4
(πα)−

(1−z)
2 Γ

�
1− z

2

�
1F1

�
1− z

2
;
1

2
;−w2

4

�
. (4.5)

Furthermore, for Re(s) > ±Re( z
2
),

� ∞

0

xs−1g(x) dx =

√
βe−

w2

4

4(πβ)s
Γ
�s
2
− z

4

�
Γ
�s
2
+

z

4

�
×

1F1

�
s

2
− z

4
;
1

2
;
w2

4

�
1F1

�
s

2
+

z

4
;
1

2
;
w2

4

�
,

so that

� ∞

0

x± z
2 g(x) dx =

1

4
(πβ)−

1±z
2 Γ

�
1± z

2

�
1F1

�
1± z

2
;
1

2
;
w2

4

�
. (4.6)

Hence from (4.4), (4.5) and (4.6) and Lemma 4.0.1, we see that

∞�

n=1

σ−z(n)n
z
2
√
αe

w2

4 K z
2
,w(2παn)−

(πα)−
(1+z)

2

4
Γ

�
1 + z

2

�
ζ(1+z) 1F1

�
1 + z

2
;
1

2
;
w2

4

�

− (πα)−
(1−z)

2

4
Γ

�
1− z

2

�
ζ(1− z) 1F1

�
1− z

2
;
1

2
;
w2

4

�
=

∞�

n=1

σ−z(n)n
z
2

�
βe

w2

4 K z
2
,w(2πn

¯
)− (πβ)−

(1+z)
2

4
Γ

�
1 + z

2

�
ζ(1 + z) 1F1

�
1 + z

2
;
1

2
;−w2

4

�

− (πβ)−
(1−z)

2

4
Γ

�
1− z

2

�
ζ(1− z) 1F1

�
1− z

2
;
1

2
;−w2

4

�
.

Using the functional equation of the Riemann ζ(s) in the following forms

π− (1+z)
2 Γ

�
1 + z

2

�
ζ(1 + z) = π

z
2Γ

�
−z

2

�
ζ(−z),

π− (1−z)
2 Γ

�
1− z

2

�
ζ(1− z) = π− z

2Γ
�z
2

�
ζ(z),
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replacing α by β−1 and β by α−1 and multliplying by 4 on both sides, we get

4
∞�

n=1

σ−z(n)n
z
2
√
αe

w2

4 K z
2
,w(2παn)− α

(1+z)
2 π

z
2Γ

�
−z

2

�
ζ(−z) 1F1

�
1 + z

2
;
1

2
;
w2

4

�

− α
(1−z)

2 π− z
2Γ

�z
2

�
ζ(z) 1F1

�
1− z

2
;
1

2
;
w2

4

�

= 4
∞�

n=1

σ−z(n)n
z
2

�
βe

w2

4 K z
2
,w(2πn

¯
)− β

(1+z)
2 π

z
2Γ

�
−z

2

�
ζ(−z) 1F1

�
1 + z

2
;
1

2
;−w2

4

�

− β
(1−z)

2 π− z
2Γ

�z
2

�
ζ(z) 1F1

�
1− z

2
;
1

2
;−w2

4

�
.

This simplifies to (4.2) completing the proof of Theorem 4.0.2 for −1 < Re(z) < 1.

Note that both sides are analytic, as functions of z, in C\{−1, 1} since the poles of

Γ
�
± z

2

�
at z = ∓2,∓4, · · · are the trivial zeros of ζ(±z). Hence the result holds in

C\{−1, 1} by analytic continuation.

Remark: In [26, p. 60], it is shown that the Ramanujan-Guinand formula is

equivalent to the functional equation of the non-holomorphic Eisenstein series on

SL2(Z). (See also [10, p. 23] for discussion on this topic.) The generalization of the

Ramanujan-Guinand formula that we have obtained in Theorem 4.0.2 now poses a

very interesting question - is this generalization equivalent to the functional equation

of some generalization of the non-holomorphic Eisenstein series on SL2(Z)?

The following corollary is obtained by letting z → 0 in Theorem 4.0.2.

Corollary 4.0.3. Let w ∈ C. For α, β > 0,

√
α

�
4

∞�

n=1

d(n)e−
w2

4 K0,iw(2nπα)−
1

α

�
(γ − log(4πα))

�
1− w2

4

�
+

w2

2

��

=
�

β

�
4

∞�

n=1

d(n)e
w2

4 K0,w(2nπβ)−
1

β

�
(γ − log(4πβ))

�
1 +

w2

4

�
− w2

2

��
. (4.7)

Proof. The Laurent series expansion of the gamma function is given by [21, p. 903,
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formula 8.321, no. 1]

Γ(z) =
1

z
− γ + · · · , (4.8)

where as the power series expansion of ζ(z) around z = 0 is given by [1, p. 19-20,

Equations (2.4.3), (2.4.5)]

ζ(z) = −1

2
− 1

2
log(2π)z + · · · , (4.9)

Also,

�α
π

� z
2
= 1 +

z

2
log

�α
π

�
+ · · · , (4.10)

and

1F1

�
1− z

2
;
1

2
;
w2

4

�
= 1 +

w2

4
− w2

4
z + · · · . (4.11)

From (4.8), (4.9), (4.10) and (4.11),

Γ
�z
2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�

=
1

α

�
2

z
− γ + · · ·

��
− 1

2
− 1

2
log(2π)z + · · ·

��
1 +

z

2
log

�α
π

�
+ · · ·

�
×

�
1 +

w2

4
− w2

4
z + · · ·

�

=
1

α

�
− 1

z

�
1 +

w2

4

�
+

�
1 +

w2

4

��γ
2
− log(2

√
πα)

�
+

w2

4

+ terms with positive powers of z

�
.

(4.12)
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Similarly,

Γ
�
−z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

�

=
1

α

�
1

z

�
1 +

w2

4

�
+

�
1 +

w2

4

��
γ

2
− log(2

√
πα)

�
+

w2

4

+ terms with positive powers of z

�
.

(4.13)

From (4.12) and (4.13),

lim
z→0

�
Γ

�
z

2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�
+

Γ
�
−z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

��

=
1

α

��
1 +

w2

4

�
(γ − log(4πα)) +

w2

2

�
. (4.14)

Letting z → 0 in (4.2) and using (4.14) for the left side of (4.2), and then replacing

α by β and w by iw in (4.14) and using it for the right side of (4.2), gives (4.7) upon

simplification.

Theorem 4.0.4. Let w ∈ C, −1 < Re(z) < 1 and α, β > 0

16

π

� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

� Z
�
α, 1+it

2
, z
2
, w

�
dt

(t2 + (z + 1)2) (t2 + (z − 1)2)

= e−
w2

4
√
α

�
4

∞�

n=1

σ−z(n)n
z
2 e−

w2

4 K z
2
,iw(2nπα)−Γ

�z
2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�

− Γ
�
−z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

��
. (4.15)
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where

Z
�
α,

1 + it

2
,
z

2
, w

�
= e−

w2

4

�
α− it

2 1F1

�
1 + z + it

2
;
1

2
;
w2

4

�
1F1

�
1− z + it

2
;
1

2
;
w2

4

�

+ α
it
2 1F1

�
1 + z − it

2
;
1

2
;
w2

4

�
1F1

�
1− z − it

2
;
1

2
;
w2

4

��
.

(4.16)

Proof. We show that Theorem 4.0.4 follows from (2.7) upon choosing the pair (ϕ,ψ)

of functions reciprocal in the Koshliakov kernel to be

(
√
αe

w2

4 Kz,w(2παx),
√
βe

w2

4 Kz,w(2πβx)). The reciprocal property for this choice of

the pair follows from Theorem 3.0.4. First we show that these two functions are in

the diamond class ♦η,ω defined in the introduction. It suffices to show only Kz,w(x) as

a member of the class. To that end, note that Theorem 2.3 from [20, p. 30-31] implies

that Kz,w(x) defined by the integral in Theorem 5.1.1 is analytic in x in | arg x| < π
4
,

so the ω in the definition of ♦η,ω can be taken to be π/4. Now Theorem 5.4.2 implies

that the first bound in (2.6) is satisfied where as Theorem 5.4.1 implies that Kz,w(x)

satisfies the second bound as well. This prove that Kz,w(x) ∈ ♦η,ω.

The normalized Mellin transforms (2.35) and (2.36) for the above pair (ϕ,ψ) from

Chapter 2 are

Z1(α, s, z, w) =
α

1
2
−s

4
e−

w2

4 1F1

�
s+ z

2
;
1

2
;
w2

4

�
1F1

�
s− z

2
;
1

2
;
w2

4

�
,

Z2(β, s, z, w) =
β

1
2
−s

4
e

w2

4 1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
,

so that

Z(s, z, w) =
α

1
2
−s

4
e−

w2

4 1F1

�
s+ z

2
;
1

2
;
w2

4

�
1F1

�
s− z

2
;
1

2
;
w2

4

�

+
β

1
2
−s

4
e

w2

4 1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
. (4.17)
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Using Kummer’s first transformation (2.32) for 1F1 in the second equality below:

Z2(β, s, z, w) =
β

1
2
−s

4
e

w2

4 1F1

�
s+ z

2
;
1

2
;−w2

4

�
1F1

�
s− z

2
;
1

2
;−w2

4

�

=
αs− 1

2

4
e−

w2

4 1F1

�
1− s− z

2
;
1

2
;−w2

4

�
1F1

�
1− s+ z

2
;
1

2
;−w2

4

�

= Z1(α, 1− s, z, w).

This implies

Z(s, z, w) = Z1(α, s, z, w) + Z2(β, s, z, w),

Z(α, s, z, w) = Z1(α, s, z, w) + Z1(α, 1− s, z, w).

Hence

Z

�
α,

1 + it

2
,
z

2
, w

�
=

e−
w2

4

4

�
α− it

2 1F1

�
1 + z + it

2
;
1

2
;
w2

4

�
1F1

�
1− z + it

2
;
1

2
;
w2

4

�

+ α
it
2 1F1

�
1 + z − it

2
;
1

2
;
w2

4

�
1F1

�
1− z − it

2
;
1

2
;
w2

4

��
.

(4.18)

Now

Θ
�
πn,

z

2
, w

�
=

√
αe

w2

4 K z
2
,w(2παn) +

�
βe

w2

4 K z
2
,w(2πβn). (4.19)

To compute R(z, w), we first compute

Z
�
1 +

z

2
,
z

2
, w

�
=

α− 1+z
2

4
1F1

�
1 + z

2
;
1

2
;
w2

4

�
+

β− 1+z
2

4
1F1

�
1 + z

2
;
1

2
;−w2

4

�
,

Z
�
1− z

2
,
z

2
, w

�
=

α− 1−z
2

4
1F1

�
1− z

2
;
1

2
;
w2

4

�
+

β− 1−z
2

4
1F1

�
1− z

2
;
1

2
;−w2

4

�
.
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From the definition of R(z, w) given by (2.8) in Chapter 2,

R(z, w) =

π− z
2

4
Γ
�z
2

�
ζ(z)

�
α− 1−z

2 1F1

�
1− z

2
;
1

2
;
w2

4

�
+ β− 1−z

2 1F1

�
1− z

2
;
1

2
;−w2

4

��

+
π

z
2

4
Γ
�
−z

2

�
ζ(−z)

�
α− 1+z

2 1F1

�
1 + z

2
;
1

2
;
w2

4

�
+ β− 1+z

2 1F1

�
1 + z

2
;
1

2
;−w2

4

��
.

(4.20)

Thus substituting (4.18), (4.19) and (4.20) in Theorem 2.1.2, we get

32

π

� ∞

0

Ξ

�
t+ iz

2

�
Ξ

�
t− iz

2

� Z
�
α, 1+it

2
, z
2
, w

�
dt

(t2 + (z + 1)2) (t2 + (z − 1)2)

= F(z, w,α) + F(z, iw, β), (4.21)

where Z
�
α, 1+it

2
, z
2
, w

�
is given by (4.16) and

F(z, w,α) =
√
α

�
4

∞�

n=1

σ−z(n)n
z
2 e

w2

4 K z
2
,w(2nπα)

− Γ
�z
2

�
ζ(z)π− z

2α
z
2
−1

1F1

�
1− z

2
;
1

2
;
w2

4

�

− Γ

�
− z

2

�
ζ(−z)π

z
2α− z

2
−1

1F1

�
1 + z

2
;
1

2
;
w2

4

��
.

However, Theorem 4.0.2 implies that F(z, w,α) = F(z, iw, β), which simplifies (4.21)

to (4.15).

If we let z → 0 in Theorem 4.0.4 and note that Corollary 4.0.3 is the special case

when z → 0 of Theorem 4.0.2, we readily obtain the corollary given below.
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Corollary 4.0.5. For w ∈ C,

16

π

� ∞

0

Ξ
�
t
2

�2

(t2 + 1)2

�
α− it

2 1F
2
1

�
1− it

4
;
1

2
;−w2

4

�
+ α

it
2 1F

2
1

�
1 + it

4
;
1

2
;−w2

4

��
dt

=
√
αe−

w2

4

�
4

∞�

n=1

d(n)e−
w2

4 K0,iw(2nπα)−
γ − log(4πα)

α

�
1− w2

4

�
+

w2

2α

�
.

When w = 0, the above corollary gives the integral associated with Koshliakov’s

formula [27, Equation (17)] (see also [28, p. 169]).
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Chapter 5

Properties of the generalized

modified Bessel function Kz,w(x)

5.1 Some integral representations for the function

Kz,w(x)

The following integral representation for the generalized modified Bessel function

Kz,w(x) involving the product of the exponential and two cosine functions is very

useful. It is used in the derivation of the asymptotic expansion Kz,w(x) for small as

well as large values of x, the differential-difference equation for Kz,w(x), and a few

interesting representations forKz,w(x), for example the series representation (5.24) in-

volving Kz(x) and the representation given by an infinite series of Laplace transforms

of a special function (5.39).

Theorem 5.1.1. For z, w ∈ C and |arg x| < π
4
, we have

Kz,w(2x) = x−z

� ∞

0

e−t2−x2

t2 cos(wt) cos
�wx

t

�
t2z−1 dt. (5.1)
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Proof. For c = Re s > 0 and Re(a) > 0, we have [19, p. 47, Equation 5.30]

e−at2 cos bt =
1

2πi

�

(c)

1

2
a−

s
2Γ

�s
2

�
e−

b2

4a 1F1

�
1− s

2
;
1

2
;
b2

4a

�
t−s ds, (5.2)

Using Kummer’s first transformation for the confluent hypergeometric function (2.32)

in (5.2) and then using the resultant with s replaced by s − z, a = 1 and b = w, we

obtain

1

2πi

�

(c)

1

2
Γ

�
s− z

2

�
1F1

�
s− z

2
;
1

2
;−w2

4

�
t−s ds = t−ze−t2 cos(wt),

for c = Re(s) > Re(z). Similarly for c = Re(s) > −Re(z),

1

2πi

�

(c)

1

2
Γ

�
s+ z

2

�
1F1

�
s+ z

2
;
1

2
;−w2

4

�
t−s ds = tze−t2 cos(wt).

So for c = Re(s) > ±Re(z) and Re(x2) > 0, that is, for |arg x| < π
4
, the above two

equations along with Parseval’s identity (3.4) and the definition of Kz,w(x) (2.41)

imply

Kz,w(2x) =

� ∞

0

tze−t2 cos(wt)
�x
t

�−z

e−
x2

t2 cos
�wx

t

� dt

t

=

� ∞

0

t2z−1e−t2−x2

t2 cos(wt) cos
�wx

t

�
dt.

The following lemma is needed to prove the next integral representation for

Kz,w(x).

Lemma 5.1.2. For |arg x| < π
4
and w ∈ C,

� ∞

0

e−t2−x2/t2 cos(wt)
dt

t
=

� ∞

0

exp

�
− w2x2

4(x2 + t2)

�
cos(2t)√
x2 + t2

dt. (5.3)
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Proof. Consider the left-hand side. Expanding cos(wt) into its Taylor series and then

interchanging the order of summation and integration because of absolute conver-

gence, we see that

� ∞

0

e−t2−x2/t2 cos(wt)
dt

t
=

∞�

n=0

(−w2)n

(2n)!

� ∞

0

t2n−1e−t2−x2/t2 dt

=
1

2

∞�

n=0

(−w2)n

(2n)!

� ∞

0

un−1e−u−x2/u du.

From [29, p. 344, Formula 2.3.16.1], for Re(p) > 0, Re(q) > 0,

� ∞

0

ys−1e−py−q/y dy = 2

�
q

p

�s/2

Ks(2
√
pq). (5.4)

This gives for Re(x2) > 0, that is, for |arg x| < π
4
,

� ∞

0

e−t2−x2/t2 cos(wt)
dt

t
=

∞�

n=0

(−w2x)n

(2n)!
Kn(2x). (5.5)

On the other hand, expanding the exponential function in the integrand on the right

side of (5.3), separating the n = 0 term and then interchanging the order of summa-

tion and integration because of absolute convergence [20, p. 30, Thm. 2.1], we find

that

� ∞

0

exp

�
− w2x2

4(x2 + t2)

�
cos(2t)√
x2 + t2

dt

=

� ∞

0

cos(2t)√
x2 + t2

dt+
∞�

n=1

(−w2x2)n

n!4n

� ∞

0

cos(2t)

(x2 + t2)n+
1
2

dt.

It is to be noted that the first integral on the above right-hand side is not absolutely

convergent which is why we need to first separate it before interchanging the order.
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Employing (5.7) and making use of the fact that (1
2
)n = (2n)!/(n!4n), we arrive at

� ∞

0

exp

�
− w2x2

4(x2 + t2)

�
cos(2t)√
x2 + t2

dt = K0(2x) +
∞�

n=1

(−w2x)n

(2n)!
Kn(2x). (5.6)

The identity in the lemma follows immediately from (5.5) and (5.6).

The following theorem gives the generalization of Basset’s formula for the modified

Bessel function of the second kind [4, p. 172]

Kz(xy) =
Γ
�
z + 1

2

�
(2x)z

yzΓ(1
2
)

� ∞

0

cos(yu) du

(x2 + u2)z+
1
2

, (5.7)

valid for Re(z) > −1
2
, y > 0, and | arg x| < 1

2
π.

Theorem 5.1.3. For | arg x| < 1
4
π and w ∈ C, we have

K0,w(x) =

� ∞

0

exp

�
− w2x2

2(x2 + u2)

�
cos

�
w2xu

2(x2 + u2)

�
cos u du√
x2 + u2

. (5.8)

Proof. From [30, p. 121, Eqn. (43)], we have

1F1(a; c; u)1F1(a; c; v) =
∞�

n=0

(a)n(c− a)n
n!(c)n(c)2n

(−uv)n1F1(a+ n; c+ 2n; u+ v). (5.9)

First assume x > 0. Let

I(x, w) :=
1

2πi

�

(c)

Γ2

�
s

2

�
1F

2
1

�
s

2
;
1

2
;
−w2

4

�
x−sds

so that from (2.41),

K0,w(x) =
1

4
I
�x
2
, w

�
. (5.10)
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Now from (5.9), we have

I(x, w) =
1

2πi
×

�

(c)

Γ2

�
s

2

� ∞�

n=0

�
s
2

�
n

�
1−s
2

�
n

n!
�
1
2

�
n

�
1
2

�
2n

�
−w4

16

�n

1F1

�
s

2
+ n;

1

2
+ 2n;−w2

2

�
x−s ds

=: I1(x, w) + I2(x, w),

where

I1(x, w) :=
1

2πi

�

(c)

Γ2

�
s

2

�
1F1

�
s

2
;
1

2
;−w2

2

�
x−s ds, (5.11)

I2(x, w) :=
1

2πi

�

(c)

Γ2

�
s

2

� ∞�

n=1

�
s
2

�
n

�
1−s
2

�
n

n!
�
1
2

�
n

�
1
2

�
2n

�
−w4

16

�n

×

1F1

�
s

2
+ n;

1

2
+ 2n;−w2

2

�
x−s ds. (5.12)

We first evaluate I1(x, w). First employing (2.32) in (5.2), and then using the resultant

with a = 2 and b = 2w and t replaced by t/
√
2, we find that for c = Re(s) > 0,

1

2πi

�

(c)

Γ

�
s

2

�
1F1

�
s

2
;
1

2
;−w2

2

�
t−s ds = 2e−t2 cos(

√
2wt). (5.13)

Also for c = Re(s) > 0,

1

2πi

�

(c)

Γ
�s
2

�
t−s ds = 2e−t2 . (5.14)

Hence from (5.13), (5.14) and Parseval’s identity (3.4), we see that for 0 < c =

Re(s) < 1,

I1(x, w) = 4

� ∞

0

e−t2−x2

t2 cos(
√
2wt)

dt

t
. (5.15)

We now evaluate I2(x, w). Let 0 < c = Re(s) < 1. Stirling’s formula for Γ(s),
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s = σ + it, in a vertical strip α ≤ σ ≤ β is given by

|Γ(s)| = (2π)
1
2 |t|σ− 1

2 e−
1
2
π|t|

�
1 +O

�
1

|t|

��
, (5.16)

as |t| → ∞. The exponential decay of the gamma function, seen from (5.16), allows

us to interchange the order of summation and integration on the right side of (5.12).

Hence

I2(x, w) =
∞�

n=1

(−w4/16)n

n!
�
1
2

�
n

�
1
2

�
2n

An(x, w),

where

An(x, w) :=
1

2πi

�

(c)

Γ
�
s
2

�
Γ
�
s
2
+ n

�
Γ
�
1−s
2

+ n
�

Γ
�
1−s
2

� 1F1

�
s

2
+ n;

1

2
+ 2n;−w2

2

�
x−s ds.

Now write the 1F1 in the above equation in the form of series and again interchange

the order of summation and integration using (5.16) to arrive at

An(x, w) = Γ

�
1

2
+ 2n

� ∞�

m=0

(−w2/2)m

m!
Bn,m(x), (5.17)

where

Bn,m(x) :=
1

2πi

�

(c)

Γ
�
s
2

�

Γ
�
1−s
2

� Γ
�
1−s
2

+ n
�
Γ
�
s
2
+ n+m

�

Γ
�
1
2
+ 2n+m

� x−s ds. (5.18)

We now evaluate Bn,m(x). Using elementary properties of the gamma function, one

can show [31, p. 73] that

Γ
�
s
2

�

Γ
�
1−s
2

� = π− 1
221−sΓ(s) cos

�πs
2

�
.
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Hence for 0 < c = Re(s) < 1,

1

2πi

�

(c)

Γ
�
s
2

�

Γ
�
1−s
2

�x−s ds =
2√
π

1

2πi

�

(c)

Γ(s) cos
�πs
2

�
(2x)−s ds

=
2√
π
cos(2x), (5.19)

as can be seen from [19, p. 42, Eqn. 5.2]. Next, Euler’s beta integral gives for 0 < d =

Re(s) < Re(z),

1

2πi

�

(d)

Γ(s)Γ(z − s)

Γ(z)
x−s ds =

1

(1 + x)z
,

so that for −2n− 2m < c = Re(s) < 1 + 2n, n,∈ N,m ∈ N ∪ {0},

1

2πi

�

(c)

Γ
�
1−s
2

+ n
�
Γ
�
s
2
+ n+m

�

Γ
�
1
2
+ 2n+m

� x−s ds =
2x2n+2m

(1 + x2)
1
2
+2n+m

. (5.20)

From (5.19), (5.20), (5.18) and (3.4), we deduce that for 0 < Re(s) < 1,

Bn,m(x) =
4x2n+2m

√
π

� ∞

0

t2n cos(2t) dt

(x2 + t2)
1
2
+2n+m

,

which implies through (5.17),

An(x, w) =
4x2n

√
π
Γ

�
1

2
+ 2n

� ∞�

m=0

(−w2x2/2)m

m!

� ∞

0

t2n cos(2t) dt

(x2 + t2)
1
2
+2n+m

. (5.21)

Note that
�∞

m=0
(−w2x2/2)m

m!(x2+t2)
1
2+m

converges uniformly on any compact interval of (0,∞)

to exp
�
− w2x2

2(x2+t2)

�
. Moreover, it is easy to see that

∞�

m=0

� ∞

0

�����
t2n cos(2t)(−w2x2/2)m

m!(x2 + t2)
1
2
+2n+m

dt

�����

is finite. Then, [20, p. 30, Thm. 2.1] permits us to interchange the order of summation
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and integration in (5.21) so that

An(x, w) =
4x2n

√
π
Γ

�
1

2
+ 2n

�� ∞

0

t2n cos(2t)

(x2 + t2)
1
2
+2n

∞�

m=0

(−w2x2/2)m

m!(x2 + t2)m
dt

=
4x2n

√
π
Γ

�
1

2
+ 2n

�� ∞

0

t2n cos(2t)

(x2 + t2)
1
2
+2n

exp

�
− w2x2

2(x2 + t2)

�
dt. (5.22)

Now (5.12) and (5.22) imply

I2(x, w) = 4
∞�

n=1

�
−w4x2

16

�n

n!
�
1
2

�
n

� ∞

0

t2n cos(2t)

(x2 + t2)
1
2
+2n

exp

�
− w2x2

2(x2 + t2)

�
dt.

Note that
�∞

n=1

(−w4x2/16)
n

n!( 1
2)n(x

2+t2)2n
converges uniformly to cos

�
w2xt

2(x2+t2)

�
− 1 on compact

intervals of (0,∞) and

∞�

n=1

� ∞

0

�����
(−w4x2/16)

n

n!
�
1
2

�
n

t2n cos(2t)

(x2 + t2)
1
2
+2n

exp

�
− w2x2

2(x2 + t2)

�
dt

�����

is finite. Hence another appeal to [20, p. 30, Thm. 2.1] allows us to interchange the

order of summation and integration so that

I2(x, w) = 4

� ∞

0

exp

�
− w2x2

2(x2 + t2)

�
cos(2t)√
x2 + t2

�
cos

�
w2xt

2(x2 + t2)
− 1

��
dt, (5.23)

so that from (5.15) and (5.23), we finally arrive at

I(x, w) = 4

� ∞

0

e−t2−x2

t2 cos(
√
2wt)

dt

t

+ 4

� ∞

0

exp

�
− w2x2

2(x2 + t2)

�
cos(2t)√
x2 + t2

�
cos

�
w2xt

2(x2 + t2)
− 1

��
dt

= 4

� ∞

0

exp

�
− w2x2

2(x2 + t2)

�
cos(2t)√
x2 + t2

cos

�
w2xt

2(x2 + t2)

�
dt,

as can be seen from Lemma 5.1.2. From (5.10), we now obtain (5.8) upon change of

variable. This completes the proof of Theorem 5.1.3 for x > 0. Since both sides of
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(5.8) are analytic when | arg x| < π/4, the identity holds for | arg x| < π/4 by analytic

continuation.

5.2 Some series representations for the function

Kz,w(x)

The first series representation for the generalized modified Bessel function Kz,w(2x)

is given in terms of the modified Bessel function Kz(2x) as follows.

Theorem 5.2.1. For z, w ∈ C and | arg x| < π
4
, we have

Kz,w(2x) =
∞�

n=0

∞�

m=0

(−w2x)n+m

(2n)!(2m)!
Kn−m+z(2x). (5.24)

Proof. Using Theorem 5.1.1, expanding each of the cosines into its Taylor series and

then interchanging the order of summation and integration each time, we arrive at

Kz,w(2x) = x−z

� ∞

0

e−t2−x2

t2 cos(wt) cos
�wx

t

�
t2z−1 dt

= x−z

� ∞

0

∞�

n=0

(−w2)n

(2n)!
e−t2−x2

t2 cos
�wx

t

�
t2n+2z−1 dt

= x−z

∞�

n=0

(−w2)n

(2n)!

� ∞

0

e−t2−x2

t2 cos
�wx

t

�
t2n+2z−1 dt

= x−z

∞�

n=0

(−w2)n

(2n)!

� ∞

0

∞�

m=0

(−w2x2)m

(2m)!
e−t2−x2

t2 t2n−2m+2z−1 dt

= x−z

∞�

n=0

(−w2)n

(2n)!

∞�

m=0

(−w2x2)m

(2m)!

� ∞

0

e−t2−x2

t2 t2(n−m+z)−1 dt

=
∞�

n=0

∞�

m=0

(−w2x)n+m

(2n)!(2m)!
Kn−m+z(2x),

where in the last step we used (5.4).

From the above series representation (5.24), we get the following triple series
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representation for Kz,w(2x).

Theorem 5.2.2. For w ∈ C, z �∈ Z and | arg x| < π
4
,

Kz,w(2x) =
π

2

∞�

n=0

∞�

m=0

∞�

k=0

w2(n+m)x2k

(2n)! (2m)! k! sin(πz)
×

�
x2m−z

Γ(k +m− n− z + 1)
− x2n+z

Γ(k + n−m+ z + 1)

�
(5.25)

Proof. The following series representation for the modified Bessel function Kz(x) is

derived from the definition ofKz(x) (1.1) using the series representation for the Bessel

function Iz(x) (1.10). For z �∈ Z,

Kz(2x) =
π

2

∞�

k=0

x2k

k! sin(πz)

�
x−z

Γ(k − z + 1)
− xz

Γ(k + z + 1)

�
. (5.26)

Using this series representation for Kz(x) in the double series representation (5.24),

the desired triple series representation for Kz,w(x) is obtained.

Another series representation for the function Kz,w(x) in terms of Bessel functions

is given as follows.

Theorem 5.2.3. For −1
2
< Re(z) < 1

2
, w ∈ C, and | arg x| < π

4
,

Kz,w(2x) =
1

2

∞�

n=−∞
(−1)nKz+n(2x)

�
I2n(2w

√
x) + J2n(2w

√
x)
�
. (5.27)

Proof. Let x ∈ C such that | arg x| < π/4 and w ∈ C. By Basset’s formula (5.7) and

the fact that Kν(x) is an even function of its order, we have
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Kn−m+z(2x) =





Γ(n−m+ z + 1
2
)(2x)n−m+z

2n−m+zΓ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)n−m+z+ 1
2

,

if Re(n−m+ z) ≥ −1
2
,

Γ(m− n− z + 1
2
)(2x)m−n−z

2m−n−zΓ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)m−n−z+ 1
2

,

if Re(m− n− z) ≥ −1
2
.

(5.28)

By an application of Lemma 5.2.1,

Kz,w(2x) =
∞�

n=0

n�

m=0

(−w2x)n+m

(2n)!(2m)!
Kn−m+z(2x) +

∞�

n=0

∞�

m=n+1

(−w2x)n+m

(2n)!(2m)!
Km−n−z(2x).

By the hypothesis, −1
2
< Re(z) < 1

2
. Now Re(z) > −1/2 implies Re(z) + n+ 1

2
> n.

So if m ≤ n, then m < Re(z) + n+ 1
2
, that, is, Re(n−m+ z) > −1

2
. Also, Re(z) < 1

2

implies Re(z) + n − 1
2
< n. Hence if m ≥ n + 1, then Re(z) + n − 1

2
< m, that is,

Re(m− n− z) > −1
2
. Hence along with (5.28), we find that

Kz,w(2x) = S1(z, w, x) + S2(z, w, x), (5.29)

where

S1(z, w, x) =
∞�

n=0

n�

m=0

(−w2x)n+m

(2n)!(2m)!

Γ(n−m+ z + 1
2
)xn−m+z

Γ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)n−m+z+ 1
2

(5.30)

S2(z, w, x) =
∞�

n=0

∞�

m=n+1

(−w2x)n+m

(2n)!(2m)!

Γ(m− n− z + 1
2
)xm−n−z

Γ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)m−n−z+ 1
2

.

(5.31)

We first simplify S1(z, w, x). Writing S1(z, w, x) as a doubly infinite series, we see that
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S1(z, w, x) =
∞�

m=0

∞�

d=0

(−w2)2m+dx2m+2d+z

(2m)!(2m+ 2d)!

Γ(d+ z + 1
2
)

Γ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)d+z+ 1
2

=: T1(z, w, x) + T2(z, w, x), (5.32)

where

T1(z, w, x) =
Γ(z + 1

2
)

Γ(1
2
)

∞�

m=0

w4mx2m+z

((2m)!)2

� ∞

0

cos(2u) du

(u2 + x2)z+
1
2

T2(z, w, x) =
∞�

m=0

w4mx2m+z

(2m)!

� ∞

0

cos(2u) du

(u2 + x2)z+
1
2

∞�

d=1

�
− w2x2

x2+u2

�d

(2m+ 2d)!

Γ(d+ z + 1
2
)

Γ(1
2
)

.

Employing (5.7), we have

T1(z, w, x) =
Γ(z + 1

2
)

Γ(1
2
)

∞�

m=0

w4mx2m+z

((2m)!)2

√
πx−zKz(2x)

Γ(z + 1
2
)

= Kz(2x)
∞�

m=0

w4mx2m

((2m)!)2

=
1

2
Kz(2x)

�
I0(2w

√
x) + J0(2w

√
x)
�
, (5.33)

where the last step follows from the definitions (1.10) and (1.11) of the two Bessel

functions. Now it is easy to see that

∞�

d=1

�
− w2x2

x2+u2

�d

(2m+ 2d)!

Γ(d+ z + 1
2
)

Γ(1
2
)

=
−w2x2

(u2 + x2)

Γ(z + 3
2
)

Γ(1
2
)Γ(2m+ 3)

×

2F2

�
1, z +

3

2
;m+

3

2
,m+ 2;

−w2x2

4(u2 + x2)

�
.

To see this, we use the series representation of the right side and apply twice the
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duplication formula (3.21) for the gamma function to arrive at the left side. Thus,

T2(z, w, x) = −w2xz+2Γ(z +
3
2
)

Γ(1
2
)

∞�

m=0

w4mx2m

(2m)!(2m+ 2)!

×
� ∞

0

cos(2u)

(u2 + x2)z+
3
2
2F2

�
1, z +

3

2
;m+

3

2
,m+ 2;

−w2x2

4(u2 + x2)

�
du.

The case d = 0 in (5.32) is singled out to guarantee absolute convergence. This then

allow us to interchange the order of summation and integration as well as the order

of two summations. (Note that we could not have done the interchange had we kept

the d = 0 term in the infinite sum over d in (5.32). Thus writing the 2F2 in the form

of a series and making the interchanges, we arrive at

T2(z, w, x) = −w2xz+2Γ
�
z + 3

2

�

Γ(1
2
)

∞�

k=0

�
z +

3

2

�

k

�−w2x2

4

�k

×
� ∞

0

cos(2u) du

(u2 + x2)z+k+ 3
2

∞�

m=0

w4mx2m

(2m)!(2m+ 2)!(m+ 3
2
)k(m+ 2)k

After representing the rising factorials in the inner series over m in terms of gamma

functions and applying the duplication formula (3.21) for the gamma function, we are

led upon simplification to

∞�

m=0

w4mx2m

(2m)!(2m+ 2)!(m+ 3
2
)k(m+ 2)k

= 22k
∞�

m=0

w4mx2mΓ(2m+ 3)

(2m)!(2m+ 2)!Γ(2m+ 2k + 3)

= 22k
∞�

m=0

w4mx2m

(2m)!Γ(2m+ 2k + 3)

=
22k−1

w2k+2xk+1

�
I2k+2(2w

√
x) + J2k+2(2w

√
x)
�
,

where the last step follows, as in (5.33), by employing the series definitions of the two
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Bessel functions and simplifying. Thus,

T2(z, w, x) = − xz+1

2Γ(1
2
)

∞�

k=0

Γ

�
z + k +

3

2

�
(−x)k

�
I2k+2(2w

√
x) + J2k+2(2w

√
x)
�

×
� ∞

0

cos(2u) du

(u2 + x2)z+k+ 3
2

=
1

2

∞�

k=0

(−1)k+1Kk+1+z(2x)
�
I2k+2(2w

√
x) + J2k+2(2w

√
x)
�
, (5.34)

where in the last step, we applied (5.7) again. Therefore from (5.32), (5.33) and

(5.34), we see that

S1(z, w, x) =
1

2

∞�

k=0

(−1)kKk+z(2x)
�
I2k(2w

√
x) + J2k(2w

√
x)
�
. (5.35)

We still need to evaluate S2(z, w, x). To that end, let � = m− n in (5.31) so that

S2(z, w, x) =
∞�

n=0

∞�

�=1

(−w2)2n+�x2n+2�−zΓ(�+ 1
2
− z)

(2n)!(2n+ 2�)!Γ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)�−z+ 1
2

= S1(−z, w, x)−
∞�

n=0

(−w2)2nx2n−zΓ(1
2
− z)

((2n)!)2Γ(1
2
)

� ∞

0

cos(2u) du

(u2 + x2)−z+ 1
2

as can be seen from (5.32). Since Re(z) < 1/2, we can employ (5.7) in the single

series over n in the above equation. Then simplifying as in (5.33) and making use of

the fact that Kν(λ) is an even function of ν, we see from the above equation that

S2(z, w, x) = S1(−z, w, x)− 1

2
Kz(2x)

�
I0(2w

√
x) + J0(2w

√
x)
�

=
1

2

∞�

k=1

(−1)kKk−z(2x)
�
I2k(2w

√
x) + J2k(2w

√
x)
�
, (5.36)

where the last step follows from (5.35). Now replace k by −k in (5.36), again make

use of the fact that Kν(λ) is an even function of ν along with the identities J−n(λ) =
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(−1)nJn(λ) and I−n(λ) = In(λ) so as to obtain

S2(z, w, x) =
1

2

−1�

k=−∞
(−1)kKk+z(2x)

�
I2k(2w

√
x) + J2k(2w

√
x)
�
. (5.37)

Finally, (5.29), (5.35) and (5.37) imply (5.27).

5.3 More representations for the function Kz,w(x)

The following representation for the function Kz,w(x) is an infinite series of Laplace

transformation of a special function. The integral in the below representation is

indeed a Laplace transform as [21, p. 934, formula 8.468]

Kn+ 1
2
(y) =

�
π

2y
e−y

n�

k=0

(n+ k)!

k!(n− k)!(2y)k
. (5.38)

Theorem 5.3.1. Let w ∈ C, Re(z) > −1
2
and | arg x| < π

4
. Then

Kz,w(x) =
(2x)z+

1
2

Γ
�
z + 1

2

�
∞�

n=0

�
−w2x

2

�n

(2n)!

� ∞

0

tz−
1
2 (t+ 1)z−

1
2 (2t+ 1)−n+ 1

2Kn+ 1
2
(x(2t+ 1))

× 0F2

�
−;

1

2
,
1

2
+ z;−w2x2t(t+ 1)

4

�
dt. (5.39)

Proof. Replace x by x/2 in (5.1) and then let t =
�

xu
2

in the resulting equation to

arrive at

Kz,w(x) =
1

2

� ∞

0

exp

�
−x

2

�
u+

1

u

��
cos

�
w
√
xu√
2

�
cos

�
w
√
x√

2u

�
u−z−1 du, (5.40)

where the last step follows from the fact that Kz,w(x) = K−z,w(x). Now using [19,
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p. 186, Equation (4.25)] 1, it can be seen that from Re(z) > −1/2,

u−z− 1
2 cos

�
w
√
x√

2u

�
=

1

Γ
�
z + 1

2

�
� ∞

0

e−yuyz−
1
2 0F2

�
−;

1

2
,
1

2
+ z;−w2xy

8

�
dy. (5.41)

This result can be easily obtained by writing the 0F2 as a series and then integrating

term by term. Now substitute (5.41) in (5.40) and interchange the order of integration,

which is permissible due to absolute convergence, to arrive at

Kz,w(x) =
1

2Γ
�
z + 1

2

�
� ∞

0

yz−
1
2 0F2

�
−;

1

2
,
1

2
+ z;−w2xy

8

�
dy

×
� ∞

0

exp
�
−u

�
y +

x

2

�
− x

2u

�
cos

�
w
√
xu√
2

�
du√
u
. (5.42)

Arguing as in the first part of Lemma 5.1.2, we find that

� ∞

0

e−v2−x2

v2 cos(wv)v2z−1 dv = xz

∞�

n=0

(−w2x)n

(2n)!
Kn+z(2x).

In the above equation let z = 1/2, v =
�
y + x

2

√
u and replace w by

w
√

x/2√
y+x/2

and x

by
�

x
2

�
y + x

2

�
so that

� ∞

0

exp
�
−u

�
y +

x

2

�
− x

2u

�
cos

�
w
√
xu√
2

�
du√
u

=
2(x

2
)1/4

(y + x
2
)1/4

∞�

n=0

1

(2n)!

�
−w2x3/2

23/2
�
y + x/2

�n

Kn+ 1
2

�
2

�
x

2

�
y +

x

2

��
. (5.43)

Substituting (5.43) in (5.42) and interchanging the order of summation and integra-

1 There is a typo in the argument of 0F2 in the version given there in that the −a2y
2 should be

−a2y
4 .
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tion due to absolute convergence, we see that

Kz,w(x) =
(x
2
)1/4

Γ
�
z + 1

2

�
∞�

n=0

�
−w2x3/2

23/2

�n

(2n)!

×
� ∞

0

yz−
1
2

�
y + x

2

�n
2
+ 1

4

Kn+ 1
2

�
2

�
x

2

�
y +

x

2

��
0F2

�
−;

1

2
,
1

2
+ z;−w2xy

8

�
dy

Next, make a change of variable l =
�

y + x
2
/
�

x
2
so as to obtain

Kz,w(x) =
xz+ 1

22−z+ 1
2

Γ
�
z + 1

2

�
∞�

n=0

�
−w2x

2

�n

(2n)!

×
� ∞

1

(l2 − 1)z−
1
2 l−n+ 1

2Kn+ 1
2
(xl)0F2

�
−;

1

2
,
1

2
+ z;−w2x2(l2 − 1)

16

�
dl.

(5.44)

Finally let l = 2t+ 1 to arrive at (5.39).

The following is a double integral representation for the function Kz,w(x) involving

a product of two hypergeometric functions.

Theorem 5.3.2. Let w ∈ C. For Re(z) > −1 and | arg x| < π
4
,

Kz,w(x) =
1

2Γ(1 + z)

� ∞

0

� ∞

0

yzt−1/2

�
y + x

2

exp

�
−2

��
t+

x

2

��
y +

x

2

��

× 0F2

�
−;

1

2
, 1 + z;−w2xy

8

�
0F2

�
−;

1

2
,
1

2
;−w2xt

8

�
dt dy.

(5.45)

Proof. Replace z by z + 1
2
in (5.41) so as to have for Re(z) > −1,

u−z−1 cos

�
w
√
x√

2u

�
=

1

Γ (z + 1)

� ∞

0

e−yuyz0F2

�
−;

1

2
, 1 + z;−w2xy

8

�
dy. (5.46)

Substitute the above equation in (5.40) and interchange the order of integration,
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which is valid by absolute convergence, so that

Kz,w(x) =
1

2Γ (z + 1)

� ∞

0

yz0F2

�
−;

1

2
, 1 + z;−w2xy

8

�
dy

×
� ∞

0

exp
�
−u

�
y +

x

2

�
− x

2u

�
cos

�
w
√
xu√
2

�
du. (5.47)

Next, replace u by 1/u in (5.46) and then let z = −1/2 so that

cos

�
w
√
xu√
2

�
=

1√
πu

� ∞

0

e−t/ut−1/2
0F2

�
−;

1

2
,
1

2
;−w2xt

8

�
dt. (5.48)

Now substitute (5.48) in (5.47) and again interchange the order of integration. This

gives

Kz,w(x) =
1

2
√
πΓ (z + 1)

� ∞

0

� ∞

0

yzt−1/2
0F2

�
−;

1

2
, 1 + z;−w2xy

8

�

× 0F2

�
−;

1

2
,
1

2
;−w2xt

8

�� ∞

0

exp

�
−u

�
y +

x

2

�
−
�
t+

x

2

� 1

u

�
du√
u
dt dy.

(5.49)

Using (5.4), the innermost integral is now evaluated to

2

�
t+ x

2

y + x
2

�1/4

K 1
2

�
2

��
t+

x

2

��
y +

x

2

��
=

√
π�

y + x
2

exp

�
−2

��
t+

x

2

��
y +

x

2

��
,

(5.50)

since we have K 1
2
(x) =

�
π

2x
e−x (see [21, p. 934, formula 8.468]). The representation

in (5.45) now follows from (5.49) and (5.50).

5.4 Asymptotic exapansion of the function Kz,w(x)

The asymptotic expansion of Kz,w(x) for large values of |x| stated below is obtained

by Nico M. Temme, and its proof is given in the Appendix of the paper [22].
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Theorem 5.4.1. Let the complex variables w and z belong to compact domains, then

for large values of |x|, |arg x| < 1
4
π, we have the representation

Kz,w(2x) =
1

4

�
π

x
e−2x

�
cos(2w

√
x)P − sin(2w

√
x)Q+ e−

1
4
w2

R
�
,

where P,Q and R have the asymptotic expansions

P = 1 +
32z2 − 3w2 − 8

128x
+O

�
x−2

�
,

Q =
w

8
√
x
+O

�
x− 3

2

�
,

R = 1 +
(4z2 − 1)(2− w2)

32x
+O

�
x−2

�
.

For small values of x, the following result is obtained, of which the first part is

proved using (5.1) and the second using (5.27).

Theorem 5.4.2. (i) Let w ∈ C be fixed. Consider a fixed z such that Re(z) > 0. Let

D = {x ∈ C : | arg x| < π
4
}. Then as x → 0 along any path in D, we have

Kz,w(x) ∼
1

2
Γ(z)

�x
2

�−z

1F1

�
z;

1

2
;
−w2

4

�
. (5.51)

(ii) Let w ∈ C be fixed. Let | arg x| < π
4
. As x → 0,

K0,w(x) ∼ − log x− w2

2
2F2

�
1, 1;

3

2
, 2;−w2

4

�
. (5.52)

Proof. Replacing x by x/2 in (5.1), we get

Kz,w(x) =
�x
2

�−z
� ∞

0

e−t2− x2

4t2 cos(wt) cos
�wx
2t

�
t2z−1 dt. (5.53)



77

Next, for Re(z) > 0,

lim
x→0

� ∞

0

e−t2− x2

4t2 cos(wt) cos
�wx
2t

�
t2z−1 dt =

� ∞

0

lim
x→0

e−t2− x2

4t2 cos(wt) cos
�wx
2t

�
t2z−1 dt

=

� ∞

0

e−t2 cos(wt)t2z−1 dt

=
1

2
Γ(z)1F1

�
z;

1

2
;−w2

4

�
,

as can be seen from [19, p. 47, Eqn. 5.30]. The above two equations lead us to (5.51)

for x lying in the region D and tending to 0.

To prove (ii) of Theorem (5.4.2), we note the following asymptotic formulas for

the modified Bessel functions Iz(x) and Kz(x) as x → 0 [32, p. 375, equations (9.7.1),

(9.7.2)]:

Iz(x) ∼
(x/2)z

Γ(z + 1)
, z �= −1,−2,−3, · · · . (5.54)

and

Kz(x) ∼





1
2
Γ(z)

�
x
2

�−z
, if Re z > 0,

− log x, if z = 0.

(5.55)

From (5.27), for | arg x| < π
4
,

K0,w(x) =
1

2
K0(x)

�
I0(w

√
2x) + J0(w

√
2x)

�
+

∞�

n=1

(−1)nKn(x)
�
I2n(w

√
2x) + J2n(w

√
2x)

�
.

Consider the first term on the above right-hand side. Note that as x → 0, I0(w
√
2x) →

0 and J0(w
√
2x) → 0, so along with the second part of (5.55), this implies that

1

2
K0(x)

�
I0(w

√
2x) + J0(w

√
2x)

�
→ − log x. (5.56)
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Now from (5.54), as x → 0,

I2n(w
√
2x) ∼

�
w
�

x
2

�2n

Γ(2n+ 1)
.

Also, from (1.11) and (5.54), we find that as x → 0,

J2n(w
√
2x) = (−1)nI2n(−iw

√
2x) ∼ (−1)n

�
−iw

�
x
2

�2n

Γ(2n+ 1)
.

Interchanging the order of limit and summation using [33, p. 149, Theorem 7.11] and

combining the above two equations with the first part of (5.55), we find that

lim
x→0

∞�

n=1

(−1)nKn(x)
�
I2n(w

√
2x) + J2n(w

√
2x)

�

=
∞�

n=1

lim
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(−1)nKn(x)
�
I2n(w

√
2x) + J2n(w

√
2x)

�

=
∞�

n=1

lim
x→0

(−1)n

2
Γ(n)

�x
2

�−n
��

w
�

x
2

�2n

Γ(2n+ 1)
+ (−1)n

�
−iw

�
x
2

�2n

Γ(2n+ 1)

�

=
∞�

n=1

Γ(n)

Γ(2n+ 1)
(−w2)n

= −w2

2
2F2

�
1, 1;

3

2
, 2;−w2

4

�
, (5.57)

where in the last step we used (3.21). The required asymptotic formula is obtained

from (5.56) and (5.57).

5.5 A differential-difference equation for Kz,w(x)

The differential-difference equation for Kz,w(x) is proved below for which we state

and prove two simple lemmas.
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Lemma 5.5.1. For z, w ∈ C and | arg x| < π
4
,

xzKz,w(2x) =
e2x

2

� ∞

0

e−(t+x
t
)2 cos

�
w
�
t+

x

t

��
t2z−1 dt

+
e−2x

2

� ∞

0

e−(t−x
t
)2 cos

�
w
�
t− x

t

��
t2z−1 dt.

Proof. The proof readily follows from (5.1) and the elementary trigonometric identity

2 cosA cosB = cos(A+ B) + cos(A− B).

Lemma 5.5.2. Let z, w ∈ C and | arg x| < π
4
. Let

I(z, w, x) :=
e2x

2

� ∞

0

e−(t+x
t
)2 cos

�
w
�
t+

x

t

��
t2z−1 dt.

Then

−d2I(z, w, x)

dw2
= I(z + 1, w, x) + 2xI(z, w, x) + x2I(z − 1, w, x).

Proof.

d

dw

�
cos

�
w
�
t+

x

t

���
= −

�
t+

x

t

�
sin

�
w
�
t+

x

t

��

− d2

dw2

�
cos

�
w
�
t+

x

t

���
=

�
t+

x

t

�2

cos
�
w
�
t+

x

t

��

= t2 cos
�
w
�
t+

x

t

��
+ 2x cos

�
w
�
t+

x

t

��
+

x2

t2
cos

�
w
�
t+

x

t

��
(5.58)

The identity now follows by differentiating under the integral sign.

Theorem 5.5.3. Let z, w ∈ C and | arg x| < π
4
. Then

d4

dw4
Kz,w(2x) + 2x

�
d2

dw2
Kz+1,w(2x) +

d2

dw2
Kz−1,w(2x)

�

+ x2 (Kz+2,w(2x)− 2Kz,w(2x) +Kz−2,w(2x)) = 0.
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Proof. Let K(z, w, x) = xzKz,w(2x). From Lemma 5.5.1,

K(z, w, x) = I(z, w, x) + I(z, w,−x), (5.59)

where as Lemma 5.5.2 gives

d2I(z, w, x)

dw2
= −I(z + 1, w, x)− 2xI(z, w, x)− x2I(z − 1, w, x), (5.60)

d2I(z, w,−x)

dw2
= −I(z + 1, w,−x) + 2xI(z, w,−x)− x2I(z − 1, w,−x). (5.61)

From (5.59), (5.60) and (5.61), we obtain

d2K(z, w, x)

dw2
= −K(z + 1, w, x)− x2K(z − 1, w, x)− 2x(I(z, w, x)− I(z, w,−x)).

(5.62)

Taking the second derivative with respect to w on both sides of the above equation

leads to

d4K(z, w, x)

dw4
= −d2K(z + 1, w, x)

dw2
− x2d

2K(z − 1, w, x)

dw2

− 2x

�
d2I(z, w, x)

dw2
− d2I(z, w,−x)

dw2

�
. (5.63)

Using (5.60), (5.61) and (5.62) in (5.63), we arrive at

d4K(z, w, x)

dw4
= K(z + 2, w, x) + 6x2K(z, w, x) + x4K(z − 2, w, x)

+ 4x(I(z + 1, w, x)− I(z + 1, w,−x)) + 4x3(I(z − 1, w, x)− I(z − 1, w,−x)).

(5.64)
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Employing (5.62) in (5.64) twice, we get

d4

dw4
K(z, w, x) + 2

d2

dw2
K(z + 1, w, x) + 2x2 d2

dw2
K(z − 1, w, x)

= −K(z + 2, w, x) + 2x2K(z, w, x)− x4K(z − 2, w, x).

The desired differential-difference equation follows readily by substituting back

K(z, w, x) = xzKz,w(2x).
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Chapter 6

2-adic valuations of sums of four

integer squares

6.1 Introduction

Lagrange’s four-square theorem says every natural number can be written as a sum

of four integer squares. Let S = {a2 + b2 + c2 + d2 : a, b, c, d ∈ Z}, then set S is

effectively the set of natural numbers with each number repeating a certain number

of times. Given any power of 2, no matter how large say v, there are infinitely many

natural numbers that are divisible by 2v periodically spaced in the number line at

intervals of length 2v. Consequently, the set S also contains infinitely many numbers

divisible by any power of 2, though not necessarily in the same frequency as above.

Let the set S be restricted by fixing one of the four squares, say a2, while letting

the other three squares take all the possible values, and the subset so obtained be

denoted as S(a) = {a2+ b2+ c2+ d2 : b, c, d ∈ Z}. Counterintuitively, the set S(a) no

longer contains numbers divisible by all powers of 2. For any number a, there is a large

enough power of 2, say v, such that no number in the set S(a) is divisible by 2v (see

Theorem 6.2.1). For example, for a = 1, the set S(1) = {1+ b2 + c2 + d2 : b, c, d ∈ Z}
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has no numbers divisible by 8. On the other hand, given any power of 2, no matter

how large, there exists infinitely many natural numbers a such that the set S(a) has

infinitely many numbers divisible by that power (see Theorem 6.2.2). The existence

of such an a such that S(a) has numbers divisible by any given power of 2 is not

surprising since the union of the sets S(a) as a vary over natural numbers gives back

the set S that has numbers divisible by all powers of 2. However, the existence of

infinitely many such a’s placed in a characteristic pattern in the number line (see

Remark 6.4.6) such that in each set S(a) there are infinitely many numbers divisible

by that power of 2 presents an interesting pattern of divisibility by 2. The next

question analysed is for a fixed v, how often the sets of the type S(a) contains no

numbers divisible by 2v (see Theorem 6.2.3). For example, as we look at sets S(a)

for different values of the natural number a, the proportion of the sets that contains

no numbers divisible by 16 is exactly half.

Apart from the sets S(a), two more kinds of sets obtained by fixing two or three

sqaures respectively in the sums of four squares are studied. The sets S(a, b) =

{a2 + b2 + c2 + d2 : c, d ∈ Z} and S(a, b, c) = {a2 + b2 + c2 + d2 : d ∈ Z} exhibits the

properties very similar in nature to S(a).

It is noteworthy to mention that this property of infinite sets having no numbers

divisible by higher powers of a prime p no longer holds true if either the number

of squares or the prime is changed. For the sums of five or more squares, even

the sets of the smallest cardinality among them viz the ones obatined by fixing all

but one squares, often contains numbers divisible by all powers of 2, for example

{1 + 1 + 4 + 9 + n2 : n ∈ Z} . Similarly for any odd prime and the sets obtained by

summing any number of squares, some of which fixed, a number of such sets contains

numbers divisible by all powers of p. For example, the set {1 + 1 + 0 + n2 : n ∈ Z}

contains numbers divisible by all powers of 3.

The combination of p = 2 and sums of four squares is special in view of the
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following facts:

1. Hensel’s lemma does not hold true for certain cases and the quadratic x2 + n

and p = 2 precisely fits the criteria.

2. For a fixed integer n, the set of integer polynomials {x2+n : x ∈ N} has numbers

divisible by any high power of 2 if and only if n is of the form 4m(8l + 7).

3. Legendre’s three-square theorem: An integer n can be written as sum of three

or less squares if and only if n is not of the form 4m(8l + 7).

It is also noteworthy to mention the inherent connection of this analysis with the

widely known function rk(n) that counts the number of ways n can be represented as

sum of k integer squares, allowing zeros and distinguishing signs and order in counting

the number of ways. The set S itself is natural numbers repeated r4(n) number of

times. If two numbers are considered different even if they are equal in value but

comes from two different represenation as sums of squares, then the collection of

subsets S(a) as a varies over integers forms a disjoint partition of the set S. From

this perspective, the chapter considers the three different ways of partitioning the set

S viz using subsets of the types S(a), S(a, b) and S(a, b, c) respectively and studies

the divisibility by powers of 2 of the subsets taken as an whole as well as the numbers

the subsets contains. The most direct connection with the function rk(n) in this

analysis is evident in Theorem 6.2.9 that says the proportion of subsets of the type

S(a, b, c) that has numbers divisible by 22v is 1/23v. On the other hand, the function

r3(n) satisfies the identity asymptotically [23]:

1

23v

22vk�

n=1

r3(n) ∼
k�

n=1

r3(n)

Theorems 6.2.3, 6.2.6 and 6.2.9 indicates that in contrast with the highly regular

spacing of numbers divisible by powers of 2 in the number line, the numbers divisible
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by powers of 2 are distributed in an highly uneven pattern in all the three partitions

of S. For example, 31 out of 32 subsets of the type S(a, b, c) picked at random will

have no numbers divisible by 24. The partitioning inherently involves r3(n) and r2(n),

so it is likely these functions play a role in the skewed proportions. However, the rest

of the analysis concerning the divisibility by powers of 2 especially Theorems 6.2.1,

6.2.4 and 6.2.7 does not seem to show a direct connection with the functions rk(n).

Incidentally, the triangular numbers kept recurring in the proofs of these theorems in

interesting ways.

The proofs presented here are straighforward, elementary and self-sufficient to

appreciate the results. The second section of the chapter lists all the results. The

third section covers the preliminary lemmas that can be skipped altogether. The

fourth, fifth and sixth sections comprises of Propositions 6.4.1, 6.5.1 and 6.6.1 that

gives insight into the divisibility of sums of four squares by powers of 2 while fixing

one, two and three of the squares respectively and prove all the theorems from the

second section. The concluding section discusses the failing of the phenomena for any

other combination of primes and the sums of squares.

6.2 Main Theorems

Definition. For n ∈ Z, the 2-adic valuation of n denoted as ν2(n) is defined as the

exponent of the highest power of 2 that divides n.

Theorems 6.2.1, 6.2.2 and 6.2.3 concerns the set obtained by fixing one out of the

four squares:

Theorem 6.2.1. Given a �= 0, there exists v such that no number in the set S(a) :=

{a2 + x2 + y2 + z2 : x, y, z ∈ Z} is divisible by 2v. Moreover, the highest power of 2

that divides any number in the set S(a) is directly proportional to the highest power

of 2 that divides a, i.e. it is equal to 2ν2(a) + 2.
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Theorem 6.2.2. Given v, there exists infinitely many non-zero numbers a’s such

that the sets S(a) = {a2 + x2 + y2 + z2 : x, y, z ∈ Z} has infinitely many numbers

divisible by 2v.

Theorem 6.2.3. For arbitrary but fixed a �= 0, the probability that the set S(a) =

{a2 + x2 + y2 + z2 : x, y, z ∈ Z} has a number divisible by 22v is equal to 1/2v−1.

Theorems 6.2.4, 6.2.5 and 6.2.6 concerns the set obtained by fixing two out of the

four squares:

Theorem 6.2.4. Given a couple (a, b) �= (0, 0), there exists v such that no term in

the set S(a, b) := {a2+b2+x2+y2 : x, y ∈ Z} is divisible by 2v. Moreover, the highest

power of 2 that divides any number in the set S(a, b) is directly proportional to the

highest power of 2 that divides a2 + b2, i.e. it is equal to ν2(a
2 + b2) + 1.

Theorem 6.2.5. Given v, there exists infinitely many couples (a, b) �= (0, 0) such

that the sets S(a, b) = {a2 + b2 + x2 + y2 : x, y ∈ Z} has infinitely many numbers

divisible by 2v.

Theorem 6.2.6. For arbitrary but fixed couples (a, b) �= (0, 0), the probability that

the set S(a, b) = {a2 + b2 + x2 + y2 + z2 : x, y ∈ Z} has a number divisible by 2v is

equal to 1/2v−1.

Theorems 6.2.7, 6.2.8 and 6.2.9 concerns the set obtained by fixing three out of

the four squares:

Theorem 6.2.7. Given a triplet (a, b, c) �= (0, 0, 0), there exists v such that no number

in the set S(a, b, c) := {a2 + b2 + c2 + x2 : x ∈ Z} is divisible by 2v. Moreover, the

highest power of 2 that divides any number in the set S(a, b, c) is directly proportional

to the highest power of 2 that divides a2+b2+c2 i.e. it is proportional to ν2(a
2+b2+c2).

Theorem 6.2.8. Given v, there exists infinitely many triplets (b, c, d) �= (0, 0, 0) such

that the sets S(a, b, c) = {a2+b2+c2+x2 : x ∈ Z} has infintely many numbers divisible

by 2v periodically spaced if the set is considered a sequence.
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Theorem 6.2.9. For arbitrary but fixed triplets (a, b, c) �= (0, 0, 0), the probability

that the sets S(a, b, c) = {a2 + b2 + c2 + x2 : x ∈ Z} has a number divisible by 2v is

equal to 1/2f(v) where f(v) equals
�
3v
2

�
− 1.

Remark 6.2.10. The function f(v) takes the values 0, 2, 3, 5, 6, 8, 9, 11, 12 . . . for v =

1, 2, 3, . . . .

6.3 Preliminaries

Definition. The 2-adic valuation of a number, denoted as ν2(n), is defined as the

exponent of the highest power of 2 that divides n.

Notation. For a set A, we define {ν2(A)} as the set of the 2-adic valuations of each

number in the set A. Moreover, ν2(A) → ∞ means the sequence {ν2(A)} diverges

to infinity. In other words, ν2(A) → ∞ implies any given power of 2 divides some

number in the set A.

The following result is proved in [34] using modular trees.

Theorem 6.3.1. ν2(x
2 + k) → ∞ ⇐⇒ k is of the form 4m(8l + 7) .

Lemma 6.3.2. For any integer x:

1. x2 ≡ 0 (mod 22r) ⇐⇒ x ≡ 0 (mod 2r)

2. x2 ≡ 22r (mod 22r+2) ⇐⇒ x ≡ 2r (mod 2r+1)

3. x2 ≡ 0 (mod 22r+1) ⇐⇒ x ≡ 0 (mod 2r+1)

4. x2 ≡ 22r (mod 22r+1) ⇐⇒ x ≡ 2r (mod 2r+1)

Proof. By Unique Factorization Theorem: x2 = 22r(2k + 1) ⇐⇒ x = 2r(2l + 1). It

follows.

Lemma 6.3.3. For x, y ∈ Z and r > 0:
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1. x2 + y2 ≡ 0 (mod 22r) ⇐⇒ x ≡ y ≡ 0 (mod 2r).

2. x2 + y2 ≡ 0 (mod 22r+1) ⇐⇒ x ≡ y ≡ 0 or 2r (mod 2r+1).

Proof. 1. Let x2 + y2 ≡ 0 (mod 4r) which implies x2 + y2 ≡ 0 (mod 4). Since x2

can only be 0 or 1 (mod 4), x2 ≡ y2 ≡ 0 (mod 4) which means x = 2x1, y = 2y1

with x2
1 + y21 ≡ 0 (mod 4r−1). Proceeding this way we get x = 2rxr, y = 2ryr

and thus, x ≡ y ≡ 0 (mod 2r).

Conversely, using Lemma 6.3.2 it is obvious x ≡ y ≡ 0 (mod 2r) =⇒ x2+y2 ≡

0 (mod 4r)

2. Let x2 + y2 ≡ 0 (mod 22r+1) which implies x2 + y2 ≡ 0 (mod 4) for r ≥ 1.

Similar arguments as above gives x = 2r−1xr−1, y = 2r−1yr−1 with x2
r−1+y2r−1 ≡

0 (mod 2), the solution for which is x2
r−1 ≡ y2r−1 ≡ 0 or 1 (mod 2) and thus,

x ≡ y ≡ 0 or 2r (mod 2r+1).

Conversely, using Lemma 6.3.2 it is obvious x ≡ y ≡ 0 or 2r (mod 2r+1) =⇒

x2 + y2 ≡ 0 (mod 22r+1)

Lemma 6.3.4. For x, y, z ∈ Z:

1. x2 + y2 + z2 ≡ 0 (mod 22r) ⇐⇒ x ≡ y ≡ z ≡ 0 (mod 2r).

2. x2 + y2 + z2 ≡ 3 · 4r−1 (mod 22r) ⇐⇒ x ≡ y ≡ z ≡ 2r−1 (mod 2r).

Proof. 1. Let x2 + y2 + z2 ≡ 0 (mod 4r) which implies x2 + y2 + z2 ≡ 0 (mod 4).

Since x2 can only be 0 or 1 (mod 4), x2 ≡ y2 ≡ z2 ≡ 0 (mod 4) which means

x = 2x1, y = 2y1, z = 2z1 with x2
1 + y21 + z21 ≡ 0 (mod 4r−1). Proceeding this

way we get x = 2rxr, y = 2ryr, z = 2rzr and thus, x ≡ y ≡ z ≡ 0 (mod 2r).

Conversely, using Lemma 6.3.3 it is obvious x ≡ y ≡ z ≡ 0 (mod 2r) =⇒

x2 + y2 + z2 ≡ 0 (mod 4r)
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2. Using similar arguments we get, x = 2r−1xr−1, y = 2r−1yr−1, z = 2r−1zr−1 and

x2
r−1+y2r−1+z2r−1 ≡ 3 (mod 4), the solution for which is x2

r−1 ≡ y2r−1 ≡ z2r−1 ≡ 1

(mod 4). This means xr−1 ≡ yr−1 ≡ zr−1 ≡ 1 (mod 2)) by Lemma 6.3.3. Hence,

x ≡ y ≡ z ≡ 2r−1 (mod 2r).

Conversely, using Lemma 6.3.3 it is obvious x ≡ y ≡ z ≡ 2r−1 (mod 2r) =⇒

x2 + y2 + z2 ≡ 3 · 4r−1 (mod 22r)

6.4 Fixing one of the four squares in the sums of

squares

Definition. Let λ(n) := sup
x,y,z∈Z

{ν2(x2 + y2 + z2 + n)} i.e. λ(n) is the supremum of

the powers of 2 that divides any number in the set {x2 + y2 + z2 + n : x, y, z ∈ Z}.

Proposition 6.4.1. 1. For any r, k ∈ N, let n = 4r(8k + 1), then λ(n) = 2r + 2.

Moreover, there are infinitely many numbers in the set S(n) = {x2+y2+z2+n :

x, y, z ∈ Z} divisible by 22r+2.

2. For n not of the form 4r(8k + 1), λ(n) → ∞.

Remark 6.4.2 (Legendre’s Three square theorem). A non-zero number n is sum of

three squares ⇐⇒ n �= 4r(8k + 7). In other words, any number n not of the form

4r(8k + 7) can be written as sum of three squares.

Proof of Proposition 6.4.1. 1. Let n = 4r(8k+1). By the remark 6.4.2, x2+y2+z2

takes all values except the numbers of the form 4s(8l + 7). The possible cases

for x2 + y2 + z2:

(a) Let x2 + y2 + z2 = 22s+1(2l + 1), then

ν2(x
2+ y2+ z2+n) = ν2(2

2s+1(2l+1)+4r(8k+1)) = min(2r, 2s+1) ≤ 2r
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.

(b) Let x2 + y2 + z2 = 4s(4l + 1), then

ν2(x
2 + y2 + z2 + n) =





min(2r, 2s) ≤ 2r if r �= s

2r + ν2(8k + 1 + 4l + 1) = 2r + 1 if r = s

(c) Let x2 + y2 + z2 = 4s(8l + 3), then

ν2(x
2 + y2 + z2 + n) =





min(2r, 2s) ≤ 2r if r �= s

2r + ν2(8k + 1 + 8l + 3) = 2r + 2 if r = s

From the remark 6.4.2, for every natural number l, there exists x, y, z ∈ Z such

that x2+y2+z2 = 4r(8l+3) for which ν2(x
2+y2+z2+n) = 2r+2. Hence there

are infinitely many numbers in the set S(n) = {x2 + y2 + z2 + n : x, y, z ∈ Z}

divisible by 22r+2.

2. Let n be not of the form 4r(8k + 1). Then n must be of one of the form:

22r+1(2k+ 1), 4r(4k+ 3) and 4r(8k+ 5). In each of these forms of n, a suitable

form for x2+ y2+ z2, that is not equal to 4s(8l+7) in view of remark 6.4.2, can

be chosen as follows:

(a) For n = 22r+1(2k + 1), let x2 + y2 + z2 = 22r+1(2l + 1). Then,

ν2(x
2+y2+z2+n) = ν2(2

2r+1(2l+1)+22r+1(2k+1)) = 2r+2+ν2(k+l+1)

(b) For n = 4r(4k + 3), let x2 + y2 + z2 = 4r(4l + 1). Then,

ν2(x
2+y2+z2+n) = ν2(4

r(4l+1)+4r(4k+3)) = 2r+2+ν2(k+ l+1)
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(c) For n = 4r(8k + 5), let x2 + y2 + z2 = 4r(8l + 3) Then,

ν2(x
2+y2+z2+n) = ν2(4

r(8l+3)+4r(8k+5)) = 2r+3+ν2(k+ l+1)

In all the above cases n is given, and the sum x2+y2+ z2, whose form is chosen

based on the form of n, can take different values. Thus k is fixed once n is

given, but l can take different values. Moreover, the remark 6.4.2 implies for

any number of the form 22r+1(2l + 1), 4r(4l + 1) or 4r(8l + 3), it is equal to

x2 + y2 + z2 for some x, y, z ∈ Z. Thus l ranges over all natural numbers which

implies ν2(k + l + 1) → ∞. Hence, ν2(x
2 + y2 + z2 + n) → ∞ for all n not of

the form 4r(8k + 1).

Lemma 6.4.3. A non-zero number n is a square implies n = 4r(8k + 1) for some

r, k ∈ N.

Proof. If n = (2m+ 1), then n2 = 4m2 + 4m+ 1 = 4m(m+ 1) + 1 = 8k + 1.

For n = 2r(2m+ 1), it follows that n2 = 4r(8k + 1).

The converse is not true, i.e. a number of the form n = 4r(8k + 1) need not be a

square. In fact, it is a square if and only if k is a triangular number as defined below.

Definition 6.4.4. Triangular numbers are numbers of the form n(n+1)
2

for n ∈ N.

Lemma 6.4.5. A number of the form 8t + 1 is a square ⇐⇒ t is a triangular

number.

Proof. t = n(n+1)
2

⇐⇒ 8t+ 1 = 4n(n+ 1) + 1 = (2n+ 1)2

Now, we are ready to give proofs of the first three main theorems given in Section

6.2.
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Proof of Theorem 6.2.1. Given a �= 0, Lemma 6.4.3 implies a2 = 4r(8k + 1) where

r = ν2(a). Proposition 6.4.1 implies λ(a2) = 2r+2 which means the highest power of

2 that divides any number in the set S(a) is 2ν2(a)+2. Moreover, for any v > 2r+2,

no number in the set S(a) = {a2 + x2 + y2 + z2 : x, y, z ∈ Z} is divisible by 2v.

Proof of Theorem 6.2.2. Given v > 0, let r be defined in the folowing manner: if v

is even, then let r = v/2, else let r = (v − 1)/2 so that in either case 2r ≥ v. From

Proposition 6.4.1, for any k, ν(4r(8k + 1)) = 2r ≥ v and there are infinitely many

x, y, z ∈ Z such that x2 + y2 + z2 + 4r(8k + 1) is divisible by 2v. On the other hand,

from Lemma 6.4.5, 8k+1 is a square whenever k is a triangular number. Since there

are infinitely many triangular numbers, it implies there are infinitely many a’s of the

form a2 = 4r−1(8k + 1). Hence there exists infinitely many non-zero numbers a’s of

the form a2 = 4r−1(8k + 1) such that the sets S(a) = {a2 + x2 + y2 + z2 : x, y, z ∈ Z}

has infinitely many numbers divisible by 2v.

Remark 6.4.6. In Theorem 6.2.2, the even exponent of all such a’s is solely determined

by the power v whereas for every traingular number k = n(n + 1)/2, there is a

corresponding a whose odd part equals 2n+ 1.

Proof of Theorem 6.2.3. For arbitrary but fixed a �= 0, the probability that the set

S(a) = {a2 + x2 + y2 + z2 : x, y, z ∈ Z} has a number divisible by 22v is given

by the probability that λ(a2) ≥ 2v. From Proposition 6.4.1, λ(a2) = 2v ⇐⇒ a2 =

4v−1(8k+1) ⇐⇒ ν2(a) = v−1. Therefore λ(a2) ≥ 2v ⇐⇒ ν2(a) ≥ v−1 ⇐⇒ a ≡ 0

(mod 2v−1).

Hence, Prob(λ(a2) ≥ 2v) = Prob(a ≡ 0 (mod 2v−1)) = 1
2v−1 .
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6.5 Fixing two of the four squares in the sums of

squares

Definition. Let µ(n) := sup
x,y∈Z

{ν2(x2 + y2 + n)} i.e. µ(n) is the supremum of the

powers of 2 that divides any number in the set {x2 + y2 + n : x, y ∈ Z}.

Proposition 6.5.1. 1. For any r, k ∈ N, let n = 2r(4k + 1), then µ(n) = r + 1.

Moreover, there are infinitely many numbers in the set {x2 + y2 + n : x, y ∈ Z}

divisible by 2r+1.

2. µ(2r(4k + 3)) → ∞.

Before we proceed to the proof of Proposition 6.5.1, we need a few lemmas.

Lemma 6.5.2. A non-zero number n is sum of two squares ⇐⇒ n has no prime

p ≡ 3 (mod 4) with an odd exponent in its factorization. The latter implies n =

2r(4k + 1) for some r, k ∈ N

Lemma 6.5.2 is well-known in number theory and its proof is readily available in

textbooks.

Lemma 6.5.3. A number of the form 4l+1 is a sum of two squares ⇐⇒ l is either

itself a triangular number or a sum of two triangular numbers.

Proof. Let l = n(n+1)
2

. Then, 4l + 1 = n2 + (n+ 1)2.

Let l = n(n+1)
2

+ m(m+1)
2

. Then, 4l + 1 = (m− n)2 + (m+ n+ 1)2.

Conversely, let 4l + 1 = c2 + d2. Then, setting a = m − n and b = m + n + 1, we

get m = a+b−1
2

and n = b−a−1
2

. let l1 =
m(m+1)

2
= (a+b)2−1

8
and l2 =

n(n+1)
2

= (b−a)2−1
8

.

Then, 4(l1 + l2) + 1 = a2 + b2 = 4l + 1 which implies l = l1 + l2.

Lemma 6.5.4. Let {l} = {1, 3, 6, 10, 15, 21, . . . } be the sequence of all triangular

numbers. Then for arbitray but fixed integer m, the sequence {ν2(l +m)} → ∞.
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Proof. From the definition 6.4.4 of triangular numbers, l = n(n+1)
2

for n ∈ N. Let

m = 2n + 1, then l = m2−1
8

where m is odd. For any fixed r ∈ Z, ν2(l + r) =

ν2(
m2−1

8
+ r) = ν2(m

2 + 8r − 1) − 3. From Proposition 6.6.1, since 8r − 1 is of the

form 8k + 7, ν2(m
2 + 8r − 1) → ∞ when m ranges over odd numbers and hence

{ν2(l +m)} → ∞.

Proof of Proposition 6.5.1. 1. Let n = 2r(4k + 1). From Lemma 6.5.2, x2 + y2 =

2s(4l + 1) for some s, l ∈ N.

ν2(x
2 + y2 + n) =





min(r, s) ≤ r if r �= s

r + ν2(4k + 1 + 4l + 1) = r + 1 if r = s

Thus ν2(x
2 + y2 + n) ≤ r + 1 for all x, y ∈ N. Lemma 6.5.2 implies given any

r and l ∈ N, there exists x, y ∈ Z such that x2 + y2 = 2r(4l + 1) for which

ν2(x
2+y2+n) = r+1. Here r is fixed once n is given, however l ranges over all

natural numbers giving infinitely many numbers in the set {x2+y2+n : x, y ∈ Z}

divisible by 2r+1.

2. Let n = 2r(4k + 3). As explained above, there exists x, y such that x2 + y2 =

2r(4l + 1).

ν2(x
2 + y2 + n) = ν2(2

r(4l + 1) + 2r(4k + 3)) = r + 2 + ν2(k + l + 1)

Here n is given, and the sum x2 + y2 can take different values. Thus, k is fixed

while l can only take values for which 4l + 1 is a sum of two squares x2 + y2.

Lemma 6.5.3 implies 4l + 1 is a sum of two squares whenever l is a triangular

number and Lemma 6.5.4 implies {ν2(k+ l+ 1)} → ∞ for the set of triangular

numbers l. Hence, {ν2(x2 + y2 + n)} → ∞.



95

Now, we are ready to give proofs of the three main theorems given in Section 6.2.

Proof of Theorem 6.2.4. Given a couple (a, b) �= (0, 0), Lemma 6.5.2 implies a2+b2 =

2r(4k + 1) where r = ν2(a
2 + b2). Proposition 6.5.1 implies µ(a2 + b2) = r + 1

which means the highest power of 2 that divides any number in the set S(a, b) is

ν2(a
2 + b2) + 1. Moreover, for any v > r + 1, no number in the set S(a, b) =

{a2 + b2 + x2 + y2 : x, y ∈ Z} is divisible by 2v.

Proof of Theorem 6.2.5. Given v > 0, from Proposition 6.5.2, µ(2v−1(4k + 1)) = v

for any k and there are infinitely many x, y ∈ Z such that x2 + y2 + 2v−1(4k + 1)

is divisible by 2v. On the other hand, from Lemma 6.5.3, 4k + 1 is a sum of two

squares whenever k is itself a triangular number or a sum of two triangular numbers.

Since there are infinitely many triangular numbers, it implies there are infinitely

many couples (a, b) such that their sum a2 + b2 equals 2v−1(4k + 1). Hence there

exists infinitely many couples (a, b) with a2 + b2 = 2v−1(4k + 1) such that the sets

S(a, b) = {a2 + b2 + x2 + y2 : x, y ∈ Z} has infinitely many numbers divisible by

2v.

Proof of Theorem 6.2.6. For arbitrary but fixed couples (a, b) �= (0, 0), the probability

that the set S(a, b) = {a2 + b2 + x2 + y2 + z2 : x, y ∈ Z} has a number divisible by 2v

is given by the probability that µ(a2 + b2) ≥ v.

1. For v odd, say 2r + 1:

Prob
�
µ(a2 + b2) ≥ 2r + 1

�
= Prob

�
a2 + b2 ≡ 0 (mod 22r)

�

= Prob
�
a ≡ 0 & b ≡ 0 (mod 2r)

�

=
1

2r
· 1

2r
=

1

22r
=

1

2v−1
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2. For v even, say 2r + 2:

Prob
�
µ(a2 + b2) ≥ 2r + 2

�
= Prob

�
a2 + b2 ≡ 0 (mod 22r+1)

�

= Prob
�
a ≡ 0 & b ≡ 0 (mod 2r+1)

�
+

Prob
�
a ≡ 2r & b ≡ 2r (mod 2r+1)

�

=

�
1

2r+1

�2

+

�
1

2r+1

�2

=
1

22r+1
=

1

2v−1

In both the cases, Lemma 6.5.1 implies the first step and Lemma 6.3.3 implies the

second step.

6.6 Fixing three of the four squares in the sums of

squares

Definition. Let ν(n) := sup
x≥0

{ν2(x2 +n)} i.e. ν(n) is the supremum of the powers of

2 that divides any number in the set {x2 + n : x ∈ Z}.

Proposition 6.6.1. For any number k:

1. ν(4k) = 2 + ν(k)

2. ν(4k + 1) = 1. Moreover, x2 + 4k + 1 is divisible by 2 iff x is an odd integer.

3. ν(4k + 2) = 1. Moreover, x2 + 4k + 2 is divisible by 2 iff x is an even integer.

4. ν(8k + 3) = 2. Moreover, x2 + 8k + 3 is divisible by 4 iff x is an odd integer.

5. ν(8k + 7) → ∞. Moreover, x2 + 8k + 7 is divisible by powers of 2 only when x

is an odd integer.

Remark 6.6.2. To rephrase Proposition 6.6.1, ν(n) → ∞ if and only if n is of the

form 4m(8l + 7). For any number n not of this form, ν(n) takes either of the three

values ν2(n), ν2(n) + 1 or ν2(n) + 2.
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Proof. 1. If x = 2m, then x2+4k = 4(m2+ k) else let x = 2m+1, then x2+4k =

(2m+ 1)2 + 4k = 4m2 + 4m+ 4k + 1. Hence, ν(4k) = 2 + ν(k).

2. If x = 2m, then x2 + 4k + 1 = 4m2 + 4k + 1 else let x = 2m + 1, then

x2+4k+1 = (2m+1)2+4k+1 = 2(2m2+2m+2k+1). Hence, ν(4k+1) = 1.

3. If x = 2m, then x2+4k+2 = 4m2+4k+2 = 2(2m2+2k+1) else let x = 2m+1,

then x2+4k+2 = (2m+1)2+4k+2 = 4m2+4m+4k+3. Hence, ν(4k+2) = 1.

4. If x = 2m, then x2 + 8k + 3 = 4m2 + 8k + 3 else let x = 2m + 1, then

x2 + 8k + 3 = (2m+ 1)2 + 8k + 3 = 4(m2 +m+ 2k + 1). Hence, ν(8k + 3) = 2.

5. Follows from Theorem 6.3.1.

Remark. ν(2k) �= 1 + ν(k). For e.g. ν(2) = ν(1) = 1.

Corollary 6.6.3. ν(n) → ∞ ⇐⇒ n is of the form 4r(8k+7). Moreover, the highest

power of 2 that divides any number in the set {x2 + n : x ∈ Z}, say v, equals either

ν2(n), ν2(n) + 1 or ν2(n) + 2 depending on n. The x’s corresponding to the numbers

x2+n that are divisible by the above mentioned v are spaced periodically in the number

line with period lengths that are powers of 2.

Now, we give the proof for Theorem 6.2.7 stated in Section 6.2.

Proof of Theorem 6.2.7. Given a triple (a, b, c) �= (0, 0, 0), the remark 6.4.2 implies

a2+b2+c2 takes one of the three forms 4r(4k+1), 4r(4k+2) or 4r(8k+3). Proposition

6.6.1 implies ν(a2 + b2 + c2) ≤ ν2(a
2 + b2 + c2) + 2 as explained in Corollary 6.6.3.

This means the highest power of 2 that divides any number in the set S(a, b, c) is

directly proportional to ν2(a
2 + b2 + c2). Moreover, for any v > ν2(a

2 + b2 + c2) + 2,

no number in the set S(a, b, c) = {a2 + b2 + c2 + x2 : x ∈ Z} is divisible by 2v.
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Lemma 6.6.4. A number of the form 8n+ 3 is a square of three squares ⇐⇒ n is

a sum of three triangular number.

Proof. From Lemma 6.4.3, a square can only be 0, 1 or 4 (mod 8). Hence, 8n + 3 is

a sum of three squares if and only if all the three are odd squares.

8k+ 3 = (2k + 1)2 + (2l+ 1)2 + (2m+ 1)2 ⇐⇒ 8n+ 3 = 4k(k + 1) + 1+ 4l(l+ 1) +

1 + 4m(m+ 1) + 1 ⇐⇒ n = k(k+1)
2

+ l(l+1)
2

+ m(m+1)
2

.

Remark 6.6.5. Guass’s Eureka theorem that every number n is the sum of 3 triangular

numbers and hence every 8n+ 3 is a sum of 3 squares.

Proof of Theorem 6.2.8. Given v > 0, let r be defined in the folowing manner: if v

is even, then let r = v/2, else let r = (v − 1)/2 so that in either case 2r ≥ v. From

Proposition 6.6.6, for any k, λ(4r−1(8k+3)) = 2r ≥ v and there are infinitely many x

periodically spaced in the number line such that x2 + 4r−1(8k + 3) is divisible by 2v.

On the other hand, from Lemma 6.6.4, 8k+3 is a sum of two squares whenever k is a

sum of three triangular numbers. Since there are infinitely many triangular numbers,

it implies there are infinitely many triplets (a, b, c) such that their sum a2 + b2 + c2

equals 4r−1(8k + 3). Hence there exists infinitely many triplets (a, b, c) such that the

sequences S(a, b, c) = {a2 + b2 + c2 + x2 : x ∈ Z} has infinitely many periodically

spaced numbers divisible by 2v.

Lemma 6.6.6. For any r ∈ N and n not of the form 4r(8k + 7),

(i) ν(n) ≥ 2r + 1 ⇐⇒ n is of the form 4rk (k need not be odd).

(ii) ν(n) ≥ 2r ⇐⇒ n is either of the two forms 4rk or n = 4r−1(8k + 3).

Proof. (i) Proof by induction on r: The case r = 0 and r = 1 trivially holds true

from Proposition 6.6.1 and let ν(n) ≥ 2(r − 1) + 1 ⇐⇒ n = 4r−1k holds true.

Let ν(n) ≥ 2r + 1, then ν(n) ≥ 3 since r ≥ 1. From Proposition 6.6.1, this is

possible only if n is divisible by 4, so let n = 4l. Then again using Proposition
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6.6.1, ν(n) = 2 + ν(l). Thus, ν(n) ≥ 2r + 1 implies ν(l) ≥ 2(r − 1) + 1.

By induction hypothesis, l = 4r−1k and hence, n = 4l = 4rk. Conversely,

let n = 4rk, then ν(n) = ν(4rk) = 2 + ν(4r−1k) ≥ 2 + 2(r − 1) + 1. Thus,

ν(n) ≥ 2r + 1.

(ii) It is only left to be proved that ν(n) = 2r ⇐⇒ n = 4r−1(8k + 3) for some k.

Proof by induction on r: The case r = 1 trivially holds true from Proposition

6.6.1 and let ν(n) = 2(r − 1) ⇐⇒ n = 4r−2(8k + 3) holds true.

Let ν(n) = 2r, then ν(n) ≥ 4 since 2r ≥ 4. From Proposition 6.6.1, the

same argument as above gives n = 4l and ν(n) = 2 + ν(l), which in turn

implies ν(l) = 2(r − 1). By induction hypothesis, l = 4r−2(8k + 3) and hence,

n = 4r−1(8k + 3).

Proof of Theorem 6.2.9. For arbitrary but fixed triplets (a, b, c) �= (0, 0, 0), the prob-

ability that the sets S(a, b, c) = {a2 + b2 + c2 + x2 : x ∈ Z} has a number divisible by

2v is given by the probability that ν(a2 + b2 + c2) > v.

(i) Let v be odd, say 2r + 1:

Prob
�
ν(a2 + b2 + c2) ≥ 2r + 1) = Prob

�
a2 + b2 + c2 ≡ 0 mod 4r)

= Prob
�
a ≡ 0 & b ≡ 0 & c ≡ 0 mod 2r)

=
1

2r
· 1

2r
· 1

2r
=

1

23r
.
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(ii) Let v be even, say 2r:

Prob
�
ν(a2 + b2 + c2) ≥ 2r) = Prob

�
a2 + b2 + c2 ≡ 0 mod 4r) +

Prob
�
a2 + b2 + c2 ≡ 3 · 4r−1 mod 4r)

= Prob
�
a ≡ 0 & b ≡ 0 & c ≡ 0 mod 2r) +

Prob
�
a ≡ 2r−1 & b ≡ 2r−1 & c ≡ 2r−1 mod 2r)

=

�
1

2r

�3

+

�
1

2r

�3

=
1

23r−1

In both the cases, Lemma 6.6.6 implies the first step and Lemma 6.3.4 implies the

second step.

6.7 Combination of prime p = 2 and sums of four

squares

From Proposition 6.6.1 and the remark 6.4.2, the set {x2+n : x ∈ Z} has no numbers

divisible by large enough powers of 2 if and only if n = a2 + b2 + c2. Moreover, from

Proposition 6.5.1, if n = a2 + b2 then the set {x2 + y2 + n : x, y ∈ Z} has no numbers

divisible by large enough powers of 2. Similarly, from Proposition 6.4.1, if then n = a2

the set {x2+y2+z2+n : x, y, z ∈ Z} has no numbers divisible by large enough powers

of 2. However, the converse fails to hold true in the second and third cases unlike the

first one. This means that there are sets of the kinds {x2 + y2 + n : x, y ∈ Z} and

{x2 + y2 + z2 + n : x, y, z ∈ Z} that do not come from sums of four squares but still

display the phenomena occuring with the sums of squares. Nevertheless, it is still

striking that the sets coming from sums of four squares fixing one or more squares

always follows the property - that it has no numbers divisible by large enough powers

of 2.

For the sums of five or more squares, even if all except one of the squares are fixed,
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it is evident that the sums of fixed squares in certain cases would add upto numbers

of the form 4r(8k + 7) in light of remark 6.4.2. From Lemma 6.6.1, it follows that

in such cases, the set so obtained will contain numbers divisible by all powers of 2.

However, depending on the constant obtained by the sums of fixed squares, there will

also be sets that have no number divisible by high enough powers of 2. For example,

the set {1 + 1 + 1 + 4 + n2 : n ∈ Z} contains numbers divisible by all powers of 2

whereas no numbers in the set {1 + 0 + 0 + n2 : n ∈ Z} is divisible by 4. Similarly,

for the odd primes and the sums of two or more squares some of which are fixed, the

sets obtained may or may not have numbers divisible by all powers of prime p. For

example, the set {1 + 1 + 0+ n2 : n ∈ Z} contains numbers divisible by all powers of

3 whereas all numbers in the set {1 + 0 + 0 + n2 : n ∈ Z} are indivisible by 3.

Both squares and triangular numbers are polygonal numbers given by quadratic

formula. The equivalent of Lagrange’s four square theorem is Guass’s Eureka Theorem

6.6.5 that says every number is the sum of 3 triangular numbers. Unlike the sums of

four squares, the subsets obtained by taking sums of three triangular numbers with

one or more of the triangular number fixed always contains numbers divisible by all

powers of 2 as evident from Lemma 6.5.4. In general, any number can be written

as sum of s s-gonal numbers and only the sum of four squares is unique among the

polygonal numbers having this property.
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Chapter 7

2-adic valuations of the translations

of sequences of polygonal numbers

7.1 Introduction

The numbers that are squares considered as a sequence sn = {n2 : n ∈ Z} are spread

throughout the number line getting sparser as n → ∞. On the other hand, for any

fixed power of 2, say 4, the multiples of 4 are distributed evenly in the number line

generating a sequence given by 4n. The two sequences intersect at regular intervals

even as the gap in the sequence of square grows wider as n → ∞. On the contrary

the similarly spaced sequence given by n2 + 1 contains no numbers divisible by 4. In

fact, the sequence n2 +1 is not the only example, the sequence n2 +2 do not contain

any number divisible by 4 either. The result 7.2.2 below shows that much more often

than not, when the sequence of squares is shifted uniformly by adding a fixed but

arbitrary integer to each term, the resulting sequence contains no numbers divisible

by high enough power of 2.

On the other hand the sequence of triangular numbers, that are spread in the

number line in a manner similar to squares, considered as a sequence tn = {n(n +
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1)/2 : n ∈ Z} contains numbers divisible by all powers of 2. However unlike squares,

when shifted uniformly by adding an integer k the resulting sequence always contains

numbers divisible by all powers of 2 regardless of the integer k. For both the sequences

of the squares and the triangular numbers, the gap between consecutive terms, that

is 2n + 1 and n + 1 respectively, increases linearly with n. Unlike the widening gap

between the terms in these two sequences, the sequence of multiples of a fixed power

of 2 have a constant difference between consecutive terms, though this difference is

larger for higher powers of 2. The results stated below presents an interesting insight

in the way the squares and triangular numbers are distributed in the number line and

how their distribution intersect with that of fixed but arbitrary powers of 2.

Both squares and triangular numbers are examples of figurate numbers, also

known as polygonal or s-gonal numbers, given by a quadratic formula Ps(n) :=

(n2(s− 2)− n(s− 4)) /2. By the very definition it follows that the sequence of s-

gonal numbers contains numbers divisible by all powers of 2 for any s, as shown

in Theorem 7.2.1. The sequences obtained by shifting the s-gonal numbers by the

addition of a number k may or may not have numbers divisible by all powers of 2 de-

pending the combination of s and k. Except for the truly unique case of the squares,

that is s = 4, all other s-gonal numbers can be categorized into two classes depending

on whether s ≡ 0 (mod 4) or not. For the later case that includes triangular numbers,

the sequences resulting from adding integer k always have numbers divisible by all

powers of 2 regardless of the value of k. For the former case, the sequence obtained

by uniformly adding integer k contains terms divisible by all powers of 2 if and only if

k is of the form 4m(8l+ 7). For the squares, similar to the case of s ≡ 0 (mod 4) the

behavior of the resulting sequence depends on k. As seen previously, the sequence

n2 + k contains terms divisible by all powers of 2 if and only if k ≡ 0 (mod 22u−1).
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7.2 Main results

Definition. The s-gonal number is defined as:

Ps(n) :=
n2(s− 2)− n(s− 4)

2
.

Theorem 7.2.1. The sequence of s-gonal numbers always contains numbers divisible

by all powers of 2, that is ν2(Ps(n)) → ∞, for any s.

Proof.

ν2(Ps(n)) = ν2

�
n2(s− 2)− n(s− 4)

2

�

= ν2(n) + ν2 (n(s− 2)− (s− 4))− 1

Since ν2(n) → ∞ as n → ∞, we have ν2(Ps(n)) → ∞.

Theorem 7.2.2. Let k be a non-zero integer.

1. For s = 4, ν2(Ps(n) + k) → ∞ ⇐⇒ k is of the form 4m(8l + 7). In other

words, the sequence obtained by adding an integer k to s-gonal numbers (that is

squares) have numbers divisible by all powers of 2 if and only if k is of the form

4m(8l + 7).

2. For s �≡ 0 (mod 4), ν2(Ps(n)+k) → ∞ for any k. In other words, the sequence

obtained by adding an integer k to s-gonal numbers have numbers divisible by

all powers of 2 for any k.

3. For s �= 4 and s ≡ 0 (mod 4), let ν2(s− 4) = u, then

ν2(Ps(n) + k) → ∞ ⇐⇒ k ≡ 0 (mod 22u−1). In other words, the sequence

obtained by adding an integer k to s-gonal numbers have numbers divisible by

all powers of 2 if and only if k ≡ 0 (mod 22u−1).
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The first case of Theorem 7.2.2 follows directly from Theorem 6.3.1. To prove the

other two cases, we need the following lemmas:

Lemma 7.2.3. For fixed but arbitrary s ≥ 2 and k ∈ Z, let a = 8(s− 2)k− (s− 4)2,

then ν2(Ps(n) + k) → ∞ if and only if ν2(t
2 + a) → ∞ where t is restricted to take

only the values that satisfy t ≡ s (mod 2(s− 2)).

Proof of Lemma 7.2.3. For s = 2, we have P2(n) = n and a = −4. Clearly ν2(n +

k) → ∞ for every k as well as ν2(t
2 − 4) = ν(t− 2) + ν(t+ 2) → ∞. Now for s > 2,

Ps(n) =
n2(s− 2)− n(s− 4)

2
+ k

=
n2(s− 2)− n(s− 4) + 2k

2

=
4n2(s− 2)2 − 4n(s− 2)(s− 4) + 8k(s− 2)

8(s− 2)

=
(2n(s− 2)− (s− 4))2 + 8k(s− 2)− (s− 4)2

8(s− 2)

=
t2 + 8(s− 2)k − (s− 4)2

8(s− 2)
where t = 2n(s− 2)− (s− 4)

Let a = 8(s− 2)k − (s− 4)2, then

ν2(Ps(n)) = ν2
�
t2 + a

�
− ν2(s− 2)− 3

The condition t = 2n(s − 2) − (s − 4) as n varies over N can be given by t ≡ s

(mod 2(s− 2)). Hence ν2(Ps(n) + k) → ∞ if and only if ν2(t
2 + a) → ∞.

From Theorem 6.3.1 we know that ν2(t
2 + a) → ∞ if and only if a is of the

form 4m(8l + 7) when t takes all values in Z. Hence even if a is in the desired form

4m(8l+7), the restriction on t given in Lemma 7.2.3 needs to be checked to conclude

ν2(t
2 + a) → ∞. For example when s = 5, then a = 24k − 1 = 8(3k − 1) + 7 and the
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restriction on t becomes t ≡ 5 (mod 6). So to confirm whether ν2(t
2 + a) → ∞ or

not, the congruence t ≡ 5 (mod 6) needs to be taken into account. For some cases of

s, it suffices to use Chinese remainder theorem whereas for the cases that needs more

consideration, the following lemmas are used.

Lemma 7.2.4. For an arbitrary but fixed integer l, let u = 3 + ν2(l + 1). When t is

restricted to t ≡ 2u−1 +1 (mod 2u), it follows that ν2(t
2 + (8l+7)) → ∞, that is, the

sequence {t2 + (8l + 7)| t ≡ 2u−1 + 1 (mod 2u)} have numbers divisible by any power

of 2.

Proof. From Theorem 6.3.1, we know that ν2(t
2 + (8l + 7)) → ∞ when t takes all

values in Z. The condition ν2(t
2 + (8l + 7)) → ∞ is equivalent to the existence of a

root of the quadratic t2 + (8l + 7) in the 2-adic field F2. There are atmost two roots

of the quadratic t2 + (8l + 7) in F2 and the modular class given by t ≡ d (mod 2u)

corresponds to a root of t2+(8l+7) in F2 if and only if t2+(8l+7) ≡ 0 (mod 2u+1).

Hence, to prove that ν2(t
2 + (8l + 7)) → ∞ when t is restricted to t ≡ 2u−1 + 1

(mod 2u) it suffices to show that t2 + (8l + 7) ≡ 0 (mod 2u+1) for the modular class

given by t ≡ 2u−1 + 1 (mod 2u). Now

t ≡ 2u−1 + 1 (mod 2u) =⇒ t = 2un+ 2u−1 + 1 for some integer n

=⇒ t = 2u−1(2n+ 1) + 1

=⇒ t2 = 22u−2(2n+ 1)2 + 2u(2n+ 1) + 1

=⇒ t2 + (8l + 7) ≡ 2u + 8(l + 1) (mod 2u+1) since u ≥ 3

=⇒ t2 + (8l + 7) ≡ 0 (mod 2u+1) since ν2(l + 1) = u− 3

Hence proved.

Lemma 7.2.5. For an arbitrary but fixed integer l. When t is restricted to t ≡ 3

(mod 22), it follows that ν2(t
2 + (8l + 7)) → ∞.
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Lemma 7.2.6. The set of congruences

t ≡ a (mod 2c)

t ≡ a (mod 2b+ 1)

have a solution if and only if the congruence

t ≡ a (mod 2c(2b+ 1))

has a solution.

Proof. Since gcd(2u, 2b+1) = 1, it follows from the Chinese remainder theorem given

below. Let gcd(m,n) = 1, then

x ≡ a (mod m)

x ≡ b (mod n)

have a unique solution (mod mn)

Lemma 7.2.7. If ν2(t
2 + a) → ∞ when t is restricted to t ≡ c (mod 2u), then

ν2(t
2 + a) → ∞ when t is restricted to t ≡ c (mod 2u) and t ≡ d (mod 2b + 1) for

any numbers b and d.

Proof. If ν2(t
2+ a) → ∞ for the modular class t ≡ c (mod 2u), it means that for any

k, there exists a ck satisfyting ck ≡ c (mod 2u) such that t ≡ ck (mod 2u+k) and for

this modular class, we have ν2(t
2+ a) ≥ u+ k+1. From Lemma (7.2.6) (the Chinese

remainder theorem), it follows that infinitely many of such t’s also satisfy t ≡ d

(mod 2b+1) for any numbers b and d. Thus for any k, we have ν2(t
2+a) ≥ u+k+1

when t is restricted to t ≡ c (mod 2u) and t ≡ d (mod 2b+ 1). Hence proved.

Proof of Theorem 7.2.2. For k �= 0.
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1. For s = 4, P4(n) = n2. Hence it follows directly from Theorem 6.3.1 that

ν2(Ps(n) + k) → ∞ ⇐⇒ k is of the form 4m(8l + 7).

2. For s �≡ 0 (mod 4), there are two cases:

(a) To use Lemma 7.2.3 with s = 2b+1 and hence a = 8k(2b−1)− (2b−3)2 ≡

−1 ≡ 7 (mod 8), we need to first prove that ν2(t
2 + a) → ∞ when t is

restricted to t ≡ s (mod 2(s− 2)), which is equivalent to the two modular

congruences, viz. t ≡ 1 (mod 2) and t ≡ 2 (mod 2b − 1). Since a is of

the form 8l + 7, clearly ν2(t
2 + a) → ∞ even with the restriction t ≡ 1

(mod 2). From Lemma 7.2.7, it follows that ν2(t
2 + a) → ∞ when t is

restricted to t ≡ 1 (mod 2) and t ≡ 2 (mod 2b − 1). From Lemma 7.2.3,

it follows that ν2(Ps(n) + k) → ∞ for any k.

(b) Similar as above for s = 2u(2b+1)+2 with u ≥ 2 so that s−2 = 2u(2b+1)

and hence a = 4[2u+1(2b + 1)k − (2u−1(2b + 1) − 1)2], we first prove that

ν2(t
2 + a) → ∞ when t is restricted to t ≡ s (mod 2(s − 2)). Since

(2u−1(2b + 1) − 1)2 ≡ 1 (mod 8) and u ≥ 2, we have a = 4(8l + 7) where

l is given as below for two cases u = 2 and u ≥ 3. For u ≥ 3, we have

l = 2u−2(2b+1)k−22u−1b2(b+1)2−22u−1(b(b+1)+1)+2u−2b(b+1)+2u−3−1

and hence ν2(l + 1) = u − 3 for u ≥ 3. On the other hand, for u = 2, we

have l = (2b+ 1)k − b(2b+ 1)− 1.

Now, let t = 2t1, then t2+a = 4(t21+(8l+7)). The restriction on t viz. t ≡ s

(mod 2(s−2)) is equivalent to 2t1 ≡ s (mod 2u+1(2b+1)) which in turn is

equivalent to the two modular congruences, viz. 2t1 ≡ 2u + 2 (mod 2u+1)

and 2t1 ≡ 2 (mod 2b + 1) that reduces to t1 ≡ 2u−1 + 1 (mod 2u) and

t1 ≡ 1 (mod 2b+ 1) respectively. We have ν2(t
2
1 + (8l + 7)) → ∞ when t1

is restricted to t1 ≡ 2u−1 + 1 (mod 2u) from Lemma 7.2.4 in case of u ≥ 3

and from Lemma 7.2.5 for u = 3. Moreover, from Lemma 7.2.7, it follows
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that ν2(t
2
1 + (8l+7)) → ∞ when t1 is restricted to t1 ≡ 2u−1 +1 (mod 2u)

and t1 ≡ 1 (mod 2b+ 1). This in turn implies that ν2(t
2 + a) → ∞ when

t is restricted to t ≡ s (mod 2(s− 2)). From Lemma 7.2.3, it follows that

ν2(Ps(n) + k) → ∞ for any k.

3. For s ≡ 0 (mod 4), let s = 2u(2b + 1) + 4, where u ≥ 2 so that s − 2 =

2(2c + 1) where c = 2u−1(2b + 1). Then a = 8(2(2c + 1)k − 22u(2b + 1)2) =

16((2c + 1)k − 22u−4(8m + 1)). For a to be of the form 4m(8l + 7), we must

have ((2c + 1)k − 22u−4(8m + 1)) in the form 4m(8l + 7) that is possible if

and only if k has a factor of 22u−1, that k ≡ 0 (mod 22u−1). For k = 22u−1k�,

we have a = 4u(8l + 7) where l = (2c + 1)k� − (m + 1). Let t = 2ut1, then

t2+a = 4u(t21+(8l+7)) and hence ν2(t
2+a) → ∞ ⇐⇒ ν2(t

2
1+(8l+7)) → ∞.

The restriction on t, viz. t ≡ s (mod 2(s − 2)) is equivalent to 2ut1 ≡ s

(mod 4(2c+ 1)) that reduces to 2ut1 ≡ 2 (mod 2c+ 1) since u ≥ 2 and further

simplifies to t1 ≡ d (mod 2c + 1) where d is such that 2ud ≡ 1 (mod 2c + 1).

From Theorem 6.3.1 and Lemma 7.2.7, it follows that ν2(t
2
1+(8l+7)) → ∞ when

t1 is restricted to t1 ≡ d (mod 2c+1). This in turn implies that ν2(t
2+a) → ∞

when t is restricted to t ≡ s (mod 2(s− 2)). From Lemma 7.2.3, it follows that

ν2(Ps(n) + k) → ∞ for k ≡ 0 (mod 22u−1). From Theorem ??, it is clear that

ν2(Ps(n) + k) is finite for k �≡ 0 (mod 22u−1). Hence proved.
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