


Abstract

In this thesis, we tackle the statistical problem of demixing a multivariate stochas-

tic process made up of independent, fractional process entries. We consider both

Gaussian and non-Gaussian frameworks. The observable, mixed process is then a

multivariate fractional stochastic process. In particular, when the components of the

unmixed process are self-similar, the mixed process is operator self-similar. Multi-

variate mixed fractional processes are parameterized by a vector of Hurst parameters

and a mixing matrix. We propose a 2-step wavelet-based estimation method to pro-

duce estimators of both the demixing matrix and the Hurst parameters. In the first

step, an estimator of the demixing matrix is obtained by applying a classical joint

diagonalization algorithm to two wavelet variance matrices of the mixed process. In

the second step, a univariate-like wavelet regression method is applied to each entry

of the demixed process to provide estimators of each individual Hurst parameter.

The limiting distribution of the estimators is established for both Gaussian and non-

Gaussian (Rosenblatt-like) instances. Monte Carlo experiments show that the finite

sample estimation performance is very satisfactory. As an application, we model bi-

variate series of annual tree ring measurements from bristlecone pine trees in White

Mountains, California.
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Chapter 1

Introduction

Fractional processes are widely found in science, technology and engineering systems.

Numerous signals and systems from a wide range of applications have been analyzed

by means of fractional models. Examples include natural systems (hydrodynamic

turbulence [1], geophysics [2], heart rate variability [3], infraslow (i.e., below 1Hz)

brain activity [4], or man-made systems (e.g., Internet traffic [5]).

This thesis is dedicated to a subclass of multivariate processes, i.e., those of the form

{Y (t)}t∈R = {PX(t)}t∈R, (1.1)

where P is a non-singular matrix and {X(t)}t∈R is a vector of independent fraction-

al processes, either Gaussian or non-Gaussian. It was recently shown ([6]) that such

processes naturally emerge as a consequence of the aggregation of measurements from

relevant classes of fractional SDE models (see Section 2.4). In fact, many real data

sets are aggregate. For example, sales of products, industrial production, tree ring

widths (see Section 4.2), river flows, and rainfall are obtained through aggregation

over a certain time interval. Multivariate fractional processes of the form (1.1) are

also a relevant subcase of the so-named operator self-similar processes, which have

been attracting much attention recently ([7–9]). In addition, they also provide an
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extension to the framework of fractional processes of the so-named mixed processes

from the blind source separation literature in signal processing (e.g., [10, 11]).

This thesis is organized as follows. In Chapter 2, we introduce Gaussian multivari-

ate processes with integer integration orders. In Chapter 3, we construct a two-step

wavelet-based estimation method for both P and the Hurst parameters. In addition,

assuming Y in (1.1) is a fractional Gaussian process observed in continuous time, we

prove the asymptotic normality of the estimators. The performance of the method on

finite samples is studied by means of Monte Carlo experiments. We also establish the

joint asymptotic distribution of the eigenvalues and eigenvectors of wavelet variance

matrices, which is of independent interest. In Chapter 4, we make the more realistic

assumption that Y in (1.1) is observed in discrete time instead and prove that the

asymptotic properties of the proposed estimators do not change. In addition, we ap-

ply the proposed method on a bivariate tree-ring data set, and show that the latter

can be modeled by the mixed form (1.1). Chapter 5 illustrates that the proposed

methodology also works for non-Gaussian case (mixed Rosenblatt processes). How-

ever, as expected, the limiting distribution of the estimator is no longer Gaussian, and

hence calls for particular mathematical techniques. All proofs can be found in the

appendix. Moreover, also in Appendix, we analyze the bivariate COS2-NO diffusion

data sets provided by the David B. Hill Lab (UNC-Chapel Hill), and find that we

cannot reject the null hypothesis that the Hurst exponents are equal.
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Chapter 2

Gaussian Fractional Mixed

Multivariate Processes

Consider the models of the form

{Y (t)}t∈R = {PX(t)}t∈R, (2.1)

where P is a n×n non-singular matrix, and X(t) is a vector of independent fractional

processes with so-called Hurst parameters hk, k = 1, · · · , n. The goal of this thesis

is to develop an efficient estimation methodology both for P and h1, · · · , hn. In this

chapter, we lay out the mathematical framework underlying (2.1) in Gaussian case,

i.e., stationary increments, Gaussian factional stochastic processes.

2.1 Processes with N-th order stationary incre-

ments

A stochastic process is (strictly) stationary when its finite dimensional distributions

do not change when shifted in time. Stationary processes can be used to describe
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the time variation of some trait of a steady state phenomenon, for which no choice of

time has any advantage over any other choice. We call wide sense stationary a finite

variance process Y whose covariance function Cov(Y (t), Y (s)) only depends on t− s.

Let X(t) be a real-valued random process on R. For and τ > 0, define the shift

operator Bτ by

BτX(t) = X(t− τ)

and the difference operator △τ by

△τ = I −Bτ .

The N -th order difference of X(t) with lag τ is defined to be

△N
τ X(t) =

N∑
k=0

(−1)k
(
N

k

)
X(t− kτ).

Definition 2.1.1. A finite variance process X is said to have N -th order stationary

increments if △N
τ X is wide sense stationary for all τ > 0.

Yaglom and Pinsker established a harmonizable representation for this class of

processes in the 1950s [12–14]. A process with N -th order stationary increments can

be expressed as

X(t)
d
=

∫
R

(
eixt − 1− ixt− · · · − (ixt)N−1

(N−1)!

(ix)N

)
Ỹ (dx) + Υ0 +Υ1t+ · · ·+ΥN t

N , t ∈ R,

(2.2)

where Υ0, Υ1, · · · , ΥN are some random variables and Ỹ (dx) is a C-valued orthogonal-

increment random measure.
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2.2 Self-similar processes

The paradigm of scale invariance is applied in the analysis of dynamic signals or

systems where no characteristic scale is present. Under scale invariance, a continuum

of time scales contribute to the observed dynamics, and the analyst’s focus is on

identifying mechanisms that relate the scales, often in the form of the so-named

scaling exponents [15–17]. An important form of scale invariance is self-similarity.

Definition 2.2.1. A real-valued stochastic processX = {X(t)}t∈R is self-similar with

Hurst parameter h > 0 if, for any a > 0,

{X(at)}t∈R
d
= {ahX(t)}t∈R,

where
d
= denotes the equality of the finite dimensional distributions. In other words,

(X(at1), · · · , X(atn)) has the same joint distribution as ah(X(t1), · · · , X(tn)), for any

a > 0, (t1, · · · , tn) ∈ Rn, n ∈ N.

Example 2.2.1. The celebrated fractional Brownian motion (fBm) is the only Gaus-

sian, self-similar process with stationary increments [18]. The covariance function of

a fBm Bh(t) with Hurst parameter h is given by

Cov(Bh(t), Bh(s)) =
σ2

2
(|t|2h + |s|2h − |t− s|2h),

where σ2 = Var(Bh(1)). It is called standard if σ2 = 1.

Proposition 2.2.1. Let X = {X(t)}t∈R be a zero mean, Gaussian, self-similar pro-

cess with Hurst parameter

h ∈ (N − 1, N). (2.3)

Suppose, in addition, that X has N-th order stationary increments. Then, {X(t)}t∈R
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admits the harmonizable representation

{X(t)}t∈R
d
= C

∫
R

eitx −
∑N−1

k=0
1
k!
(itx)k

(ix)N
|x|−(h−(N−1/2))B̃(dx), (2.4)

for some constant C ∈ R, where B̃(dx) is a C-valued Gaussian random measure

satisfying B̃(−dx) = B̃(dx).

Proof. We first show that in (2.2),

Υ0 +Υ1t+ · · ·+ΥN t
N a.s
= 0, t ∈ R. (2.5)

Let F (dx) be the control measure associated with Ỹ (dx), i.e., F (x) = EỸ (dx)Ỹ (dx).

Then, by self-similarity,

chX(t)
d
= X(ct)

d
=

∫
R

eixt −
∑N−1

k=0
1
k!
(itx)k

(ix)N
cNY (c−1dx) + Υ0 +Υ1t+ · · ·+ΥN t

N ,

for t ∈ R. However, the measure F is uniquely determined by X(t), therefore,

c2hF (dx) = c2NF (c−1dx), (2.6)

ch(Υ0 +Υ1t+ · · ·+ΥN t
N)

d
= Υ0 +Υ1ct+ · · ·+ΥNc

N tN . (2.7)

Take variance on both sides of (2.7) and let t = 1/c,

∞ > Var(Υ0 + · · ·+ΥN) = c2hVar(Υ0 +Υ1/c+ · · ·+ΥN/c
N). (2.8)

Since N−1 < h < N , the leading term in the righthand side of (2.8) is c2h−2NVar(ΥN)

as c→ 0. This implies Var(ΥN) = 0.

On the otherhand, let c → ∞, the leading term in the righthand side of (2.8) is

c2hVar(Υ0), this implies Var(Υ0) = 0. By using Var(Υ0) = 0, the leading term in
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the righthand side of (2.8) is c2h−2Var(Υ1), this implies Var(Υ1) = 0. By applying

the same procedure, we conclude Var(Υk) = 0, k = 0, 1, · · · , N . Thus, Υk’s are a.s

constants, k = 0, 1, · · · , N , and by (2.7),

Υk
a.s
= 0, k = 0, 1, · · · , N.

This proves (2.5). Moreover, by using (2.6), apply the same argument as in the proof

of Theorem 3.1 in [7], it can be shown that F (dx) is absolute continuous. Thus, there

exists a density function f(x) = F (dx)/dx, and X can be represented as

X(t) =

∫
R

eitx −
∑N−1

k=0
1
k!
(itx)k

(ix)N
f(x)B̃(dx).

By self-similarity,

X(ct)
d
= ch

∫
R

eitx −
∑l−1

k=0
1
k!
(itx)k

(ix)N
f(x)B̃(dx),

for c > 0. On the other hand, through a change of variable x = c−1ξ,

X(ct)
d
=

∫
R

eitξ −
∑l−1

k=0
1
k!
(itξ)k

(iξ)N
cN−1/2f(ξ/c)B̃(dx),

then f(x) = Cx−(h−N+1/2), for some constant C. Let gt be the integrand of (2.4), then

gt(x) behaves like x
N−1/2−h at the origin and like xN−3/2−h at infinity, we obtain that∫

R |gt(x)|
2dx <∞ by using (2.3).

Example 2.2.2. The spectral representation of a standard fBm Bh(t) with Hurst

parameter h ∈ (0, 1) is given by

Bh(t)
d
=

1

C(h)

∫
R

eitx − 1

ix
|x|−(h−1/2)B̃(dx),
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where

C2(h) =
π

hΓ(2h) sinhπ
.

2.3 Gaussian fractional mixed multivariate process-

es

In (2.1), we consider the case where the source signal X satisfies

{X(t)}t∈R = {(Xh1(t), · · · , Xhn(t))
T}t∈R, (2.9)

where, for i = 1, · · · , n, the entries Xhi(t) are independent and have the form

Xhi(t) =

∫
R

eitx −
∑Ni−1

k=0
1
k!
(itx)k

(ix)Ni
|x|−(hi−(Ni−1/2))gi(x)B̃(dx), (2.10)

with Ni−1 < hi < Ni, i.e., Xhi has Ni-th order stationary increments. The so-named

high frequency functions gi(x) are bounded with |gi(0)| > 0, i = 1, · · · , n. Then, each

individual Xhi(t) is a Gaussian fractional process, but is not necessarily self-similar.

In (2.10), if gi(x) is a constant, i = 1 · · · , n, then the source signal X satisfies the

so-named entry-wise scaling property

{X(ct)}t∈R
d
= {cdiag(h1,··· ,hn)X(t)}t∈R, c > 0. (2.11)

However, for most mixing matrices P , the observed signal Y = PX doesn’t generally

satisfy (2.11). Instead, it satisfies the operator self-similarity property, defined next.

Definition 2.3.1. An Rn-valued stochastic process {X(t)}t∈R is operator self-similar

when its law scales according to a matrix (Hurst) exponent H, i.e.,

{X(ct)}t∈R
d
= {cHX(t)}t∈R, c > 0,
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where cH =
∑∞

k=0 log
k(c)Hk/k!.

Thus, if gi(x) is a constant, i = 1 · · · , n, the signal Y = PX of the form (2.1) is

operator self-similar with Hurst matrix

H = Pdiag(h1, · · · , hn)P−1.

Example 2.3.1. Operator fractional Brownian motion is a proper Gaussian, opera-

tor self-similar, stationary increment stochastic process. Under mild conditions, any

operator fractional Brownian motion BH admits a harmonizable representation

{BH(t)}t∈R
d
=

{∫
R

eitx − 1

ix
(x

−(H−1/2I)
+ A+ x

−(H−1/2I)
− A)B̃(dx)

}
t∈R

for some complex-valued matrix A, and x± = max{±x, 0} ([7]).

2.4 Mixed processes and aggregation

Consider the following multi-dimensional fractional Brownian motion driven Langevin

equation for t > 0

dY (t) = ΦY (t) + ΣdBh(t). (2.12)

In (2.12), where Bh(t) = (Bh1(t), · · · , Bhn(t))
T , is a vector of independent fractional

Brownian motions {Bhk(t)} with Hurst parameters hk, k = 1, · · · , n. The solution of

(2.12) can be a.s. written as

Y (t) = eΦtY (0) +

∫ t

0

eΦ(t−u)ΣdBh(u). (2.13)

Suppose all the eigenvalues of Φ have strictly negative real parts. Consider the case

that the continuous-time process {Y (t)} defined by (2.13) is digitalized by aggregation
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over interval △, i.e.,

Y △
i =

∫ i△

(i−1)△
Y (u)du, i ∈ Z+.

Then, it can be shown that, as △ → ∞,

−


△−h1

. . .

△−hn

Σ−1ΦY △
i

d→


Bh1
i −Bh1

i−1

...

Bhn
i −Bhn

i−1

 .

This is proceed in [6] for bivariate case, but the argument extends to any dimension

n. Therefore, for large △, Y △
i can be approximated by

Ỹi = PXi, i ∈ Z. (2.14)

In (2.14), Xi is a vector of n independent fractional Gaussian noises with Hurst

parameters hk, k = 1, · · · , n, and P = −Φ−1Σ


△h1

. . .

△hn

. Note that (2.14)

is a particular case of (2.1), when the latter is measured in discrete time.
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Chapter 3

Two-Step Wavelet-Based

Estimation for Mixed Fractional

Gaussian Processes

In this chapter, we consider the problem of demixing the Gaussian fractional process

Y (t) = PX(t), (3.1)

where X(t) is defined in (2.9). In order to estimate the demixing matrix P−1 and

recover the original source signal X by estimating the Hurst parameters h1, · · · , hn,

we propose a two-step wavelet-based procedure, namely,

(1) demix the process;

(2) estimate h1, · · · , hn by wavelet log-regression.

In step (1), the demixing matrix estimator P̂−1 is obtained by applying a classical

joint diagonalization algorithm to two wavelet variances of the mixed process Y (Sec-

tion 3.5), and the demixed process is then given by X̂ = P̂−1Y . Once the demixing

is done, univariate-like estimation methodology can be applied (e.g., ([17,19–21]). In
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step (2), we use the wavelet-regression method (Section 3.6), which works very well

(see simulation results in Section 3.7.1).

This chapter is organized as follows. Section 3.1 contains the notation, assumptions

and theoretical background of the chapter. In Section 3.2, we establish some prop-

erties of wavelet transform for the mixed process Y . Section 3.3 is dedicated to

asymptotic properties of the wavelet transform at fixed scales. In Section 3.4, the

asymptotic normality of the eigenstructure of the sample wavelet variance matrix is

developed. Sections 3.5 and 3.6 contain the main mathematical results of the chap-

ter. In Section 3.5, the demixing method for the matrix P−1 is laid out in full detail

and its asymptotic properties are established. The post-demixing Hurst parameter

estimation method is put forward in Section 3.6, and the asymptotic normality of the

Hurst estimator is established. The performance of the estimation for both demixing

matrix and the hurst parameters is further investigated by means of Monte Carlo

experiments in Section 3.7. All the proofs can be found in Appendix A.3.

3.1 Preliminaries and assumptions

All through this chapter, the dimension of the mixed process Y is denoted by n ≥ 2.

We shall use throughout the paper the following matrix notation. M(m,n,R) is

the vector space of all m × n real-valued matrices, whereas M(n,R) is a shorthand

for M(n, n,R). GL(n,R) is the general linear group (invertible matrices), O(n) is

the orthogonal group of matrices O such that OO∗ = I = O∗O, where ∗ represents

the matrix adjoint and T is reserved for vector transpose. S(n,R) and S+(n,R)

are, respectively, the space of symmetric and cone of symmetric positive semidefinite

matrices. The symbol 0 represents a vector or matrix of zeroes. A block-diagonal

matrix with main diagonal blocks P1, . . . ,Pn or m times repeated diagonal block P

is represented by

diag(P1, . . . ,Pn), diagm(P), (3.2)
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respectively. The symbol ∥ · ∥ represents a generic matrix or vector norm. The lp

entry-wise norm of the matrix A is denoted by

∥A∥lp = ∥(ai1,i2)i1=1,...,m

i2=1,...,n
∥lp =

( m∑
i1=1

n∑
i2=1

|ai1,i2 |p
)1/p

. (3.3)

For S = (si1,i2)i1,i2=1,...,n ∈M(n,R), let

vecS(S) = (s11, s21, . . . , sn1, s22, s32, . . . , sn2, . . . , snn),

vecD(S) = (s11, s22, . . . , snn), vec(S) = (s11, . . . , sn1, s12, . . . , sn2, . . . , snn). (3.4)

In other words, the operator vecS(·) vectorizes the lower triangular entries of S,

vecD(·) vectorizes the diagonal entries of S, and vec(·) vectorizes all the entries of

S. Note that the expressions in (3.4) are defined as row vectors; this will make the

notation in several statements simpler.

Throughout this chapter, we will make the following assumptions on Y .

Assumption (A1): the observed signal has the mixed form Y = PX, where P is

nonsingular, X is defined in (2.9) and satisfy

0 < h1 < h2 < . . . < hn, Ni − 1 < hi < Ni, i = 1 · · · , n. (3.5)

Assumption (A2):

P ∈ GL(n,R), ∥p·l∥ = 1, pll ≥ 0, l = 1, . . . , n. (3.6)

Assumption (A3): the functions gi(x) ∈ C2(R) in (2.10) are bounded and satisfy

||gi(x)|2 − |gi(0)|2| < L|x|β, L > 0, i = 1, · · · , n, (3.7)
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for any x ∈ (−π, π). In (3.7), β satisfies

1/2 < β < 2h1 + 2α. (3.8)

for some

α > 1. (3.9)

Remark 3.1.1. In (3.5), one incurs no loss of generality by assuming that the Hurst

eigenvalues (individual Hurst exponents) are disposed in ascending order. This fact

can be easily illustrated in dimension n = 2. Suppose that the mixed signal has the

form Y (t) = P (Xh2(t), Xh1(t))
T , where Xhi(t), i = 1, 2, are independent fractional

processes defined in (2.10) with parameters h1 < h2. Let

R =

 0 1

1 0

 .

Then, Y (t) = PR (Xh1(t), Xh2(t))
T , whence PR can be treated as the mixing matrix

with unit vector columns.

Remark 3.1.2. Assumption (A3) is typical in the semi-parametric estimation setting

(e.g., [20,22,23]). The larger the value of β, the smoother the function at the origin.

When establishing bounds, C denotes a positive constant whose value can change

from one inequality to another. All through the chapter, we will make the follow-

ing assumptions on the underlying wavelet basis, which are then omitted from the

statements.

Assumption (W1): ψ ∈ L1(R) is a wavelet function, namely,

∫
R
ψ2(t)dt = 1,

∫
R
tqψ(t)dt = 0, q = 0, 1, . . . , Nψ − 1, Nψ ≥ Nn + 1. (3.10)
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Assumption (W2):

supp(ψ) is a compact interval. (3.11)

Assumption (W3): for α as in (3.9),

sup
x∈R

|ψ̂(x)|(1 + |x|)α <∞. (3.12)

Under (3.10), (3.11) and (3.12), ψ is continuous, ψ̂(x) is everywhere differentiable

and its first Nψ− 1 derivatives are zero at x = 0 (see [24], Theorem 6.1 and the proof

of Theorem 7.4). The condition (W1) is equivalent to asserting that the first Nψ − 1

derivatives of ψ̂ vanish at the origin. This implies, using a Taylor expansion, that

|ψ̂(l)(x)| = O(|x|Nψ−l), l = 0, 1 · · · , Nψ, x→ 0. (3.13)

Example 3.1.1. If ψ is a Daubechies wavelet withNψ vanishing moments, supp(ψ) =

[0, 2Nψ − 1] (see [24], Proposition 7.4).

Remark 3.1.3. Assumption (A1) requires using a number of vanishing moments Nψ

larger than the unknown integration order Nn. In practice, though, the latter param-

eter is rarely greater than 2, so the requirement is easily met even for low values of

Nψ.

3.2 Wavelet transform of the mixed Gaussian frac-

tional process

In this section, we will define and carry out the basic properties of the wavelet trans-

form for the mixed fractional process Y .

For a wavelet function ψ ∈ L2(R) with a number Nψ of vanishing moments, the
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(normalized) vector wavelet transforms of Y as in (3.1) is naturally defined as

Rn ∋ D(2j, k) = 2−j/2
∫
R
2−j/2ψ(2−jt− k)Y (t)dt, j ∈ N ∪ {0}, k ∈ Z, (3.14)

provided the integral in (3.14) exists in an appropriate sense. It will be convenient to

make the change of variable z = 2−jt− k, and reexpress

D(2j, k) =

∫
R
ψ(z)Y (2jz + 2jk)dz.

The wavelet domain process {D(2j, k)}k∈Z is stationary in k (Proposition 3.2.1). The

wavelet spectrum (variance) at scale j is the positive definite matrix

ED(2j, k)D(2j, k)∗ = ED(2j, 0)D(2j, 0)∗ =: EW (2j), (3.15)

and its natural estimator, the sample wavelet variance, is the random matrix

W (2j) =
1

Kj

Kj∑
k=1

D(2j, k)D(2j, k)∗, Kj =
ν

2j
, j = j1, . . . , jm, (3.16)

for a total of ν available (wavelet) data points.

The next proposition describes some nice properties of the wavelet coefficients

(3.14) as well as the general form of the wavelet spectrum (3.15).

Proposition 3.2.1. Under the assumptions (A1− 2), let D(2j, k) and EW (2j, k) be

as in (3.14) and (3.15), respectively. Then,

(P1) the wavelet transform (3.14) is well-defined in the mean square sense, and

ED(2j, k) = 0;

(P2) (stationarity for a fixed scale) {D(2j, k + h)}k∈Z
d
= {D(2j, k)}k∈Z, h ∈ Z;
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(P3) the wavelet transform (3.14) satisfies {D(2j, k)}k∈Z
d
= {2jHD̃j(1, k)}k∈Z, where

D̃j(1, k) = P


∫
R ψ̂(t)

1
(ix)N1

|x|−(h1−N1+1/2)g1(
x
2j
)dtB̃(dx)

...∫
R ψ̂(t)

1
(ix)Nn

|x|−(hn−Nn+1/2)gn(
x
2j
)dtB̃(dx)

 . (3.17)

In (3.17), ψ̂(t) :=
∫
R ψ(t)e

−itxdt;

(P4) the wavelet spectrum (3.15) can be expressed as

EW (2j) = 2jH
{∫

R
|ψ̂(x)|2|x|−(H+I/2)G

(
x

2j

)
|x|−(H+I/2)∗dx

}
2jH

∗
, (3.18)

where

G(x) = Pdiag(|g1(x)|2, · · · , |gn(x)|2)P ∗, (3.19)

and

H = Pdiag(h1, · · · , hn)P−1; (3.20)

(P5) the wavelet spectrum has full rank, namely, detEW (2j) ̸= 0, j ∈ N.

Remark 3.2.1. In regard to (P3) and (P4), we have

2−jHD(2j, k)
P→ P


∫
R ψ̂(t)

1
(ix)N1

|x|−(h1−N1+1/2)g1(0)dtB̃(dx)

...∫
R ψ̂(t)

1
(ix)Nn

|x|−(hn−Nn+1/2)gn(0)dtB̃(dx)

 ,

and

2−jHEW (2j)2−jH
∗ →

∫
R
|ψ̂(x)|2|x|−(H+I/2)G(0)|x|−(H+I/2)∗dx,

as j → ∞. In this sense, {D(2j, k)}k∈Z and {EW (2j)}k∈Z satisfy asymptotic scaling

laws.
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Moreover, by a standard calculation, the wavelet variance (3.18) can be recast as

EW (2j) = PE(2j)1/2diag(22jh1 , · · · , 22jhn)E(2j)1/2P ∗, (3.21)

where

E(2j) = diag

(∫
R
|ψ̂(y)|2|y|−2(h1+1/2)

∣∣∣∣g1( y

2j

)∣∣∣∣2dy, · · · ,∫
R
|ψ̂(y)|2|y|−2(hn+1/2)

∣∣∣∣gn( y

2j

)∣∣∣∣2dy).
(3.22)

3.3 Asymptotic theory for sample wavelet trans-

forms: fixed scales

In this section, we derive the asymptotic behavior of the sample wavelet variance at

fixed scales. As typical in the asymptotic study of averages, we begin by investigating

the asymptotic covariance of the sample wavelet transforms W (2j).

Recall that for a zero mean, Gaussian random vector Z ∈ Rm, the Isserlis theorem

(e.g., [25]) yields

E(Z1 . . . Z2k) =
∑∏

E(ZiZj), E(Z1 . . . Z2k+1) = 0, k = 1, . . . , ⌊m/2⌋. (3.23)

The notation
∑∏

stands for adding over all possible k-fold products of pairs E(ZiZj),

where the indices partition the set 1, . . . , 2k. Proposition 3.3.1 below describes the

asymptotic covariance matrix for the wavelet transform of the mixed fractional process

Y at fixed octaves.

Proposition 3.3.1. Let Y = {Y (t)}t∈R satisfies the assumptions (A1 – 3). As

ν → ∞, for every pair of octaves j, j′,
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(i) √
Kj

√
Kj′

1

Kj

1

Kj′

Kj∑
k=1

Kj′∑
k′=1

ED(2j, k)D(2j
′
, k′)∗ ⊗ ED(2j, k)D(2j

′
, k′)∗

→ 2−(j+j′)/2 gcd(2j, 2j
′
)

∞∑
z=−∞

Φzgcd(2j ,2j′ ) ⊗ Φzgcd(2j ,2j′ ), (3.24)

where

Φz :=

∫
R
ψ̂(2jx)ψ̂(2j

′
x)e−izx|x|−(H+I/2)G(x)|x|−(H+I/2)∗dx; (3.25)

(ii) there is a matrix Gjj′ ∈M(n(n+1)/2,R), not necessarily symmetric, such that

√
Kj

√
Kj′ Cov(vecSW (2j), vecSW (2j

′
)) → Gjj′ , (3.26)

where the entries of Gjj′ can be retrieved from (3.24) by means of (3.23) (see

(3.4) on the notation vecS).

The following theorem establishes the asymptotic distribution of the vectorized

sample wavelet spectrum at a fixed set of octaves.

Theorem 3.3.1. Let Y = {Y (t)}t∈R satisfies the assumptions (A1 – 3). Let j1 <

· · · < jm be a fixed set of octaves. Then

(√
Kj(vecS(W (2j)− EW (2j))

)T
j=j1,...,jm

d→ Nn(n+1)
2

×m(0, F ), (3.27)

as ν → ∞ (see (3.4) on the notation vecS). In (3.27), the matrix F ∈ S(n(n+1)
2

m,R)

has the form F = (Gjj′)j,j′=1,...,m, where each block Gjj′ ∈ M(n(n + 1)/2,R) is de-

scribed in Proposition 3.3.1.
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3.4 The asymptotic behavior of the eigenstructure

of sample wavelet variance matrices

Asymptotic results on the eigenstructure of sample wavelet variance matrices are by

themselves of interest because the latter do not generally follow a Wishart distribu-

tion. This results from the presence of residual correlation after the application of

the wavelet transform. In order to state Theorem 3.4.1 below, consider the matrix

spectral decompositions

W (2j) = ÔjLjÔ
∗
j , EW (2j) = OjΛjO

∗
j , Ôj, Oj ∈ O(n), (3.28)

where Lj := diag(lj,1, . . . , lj,n), Λj := diag(λj,1, . . . , λj,n), Ôj, Oj have columns ôj,·i,

oj,·i, respectively, for i = 1, . . . , n, and

lj,1 ≤ . . . ≤ lj,n, λj,1 ≤ . . . ≤ λj,n, ôj,1i ≥ 0, oj,1i ≥ 0, i = 1, . . . , n, j = j1, . . . , jm.

(3.29)

In other words, the eigenvalues appearing on the main diagonal entries of Lj and Λj

are ordered from smallest to largest, and the entries on the first row of Oj and Ôj are

all nonnegative, which makes these orthogonal matrices identifiable. Following [26],

p. 427, we recall the definition of the so-named duplication matrix D ∈M(n2, 1
2
n(n+

1),R). It consists of the (unique) operator D that performs the transformation

D(vecS(A))
T = (vec(A+ A∗ − dg(A)))T , A = (ai1i2)i1,i2=1,...,n ∈M(n,R), (3.30)

where dg(A) := diag(a11, . . . , ann). Moreover, for S ∈ S(n,R) with ordered eigenval-

ues λ1 < . . . < λn and their respective normalized eigenvectors o·1, . . . ,o·n, we further
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define the operator

J (S) =



(oT·1 ⊗ oT·1)D

...

(oT·n ⊗ oT·n)D

(oT·1 ⊗ (λ1In − S)+)D

...

(oT·n ⊗ (λnIn − S)+)D


(n+n2)×n(n+1)/2

, (3.31)

where we can apply the relation

vec(A)D = vecS(A+ A∗ − dg(A)) (3.32)

(see Lemma 3.7, (i), in [26]). The proof of Theorem 3.4.1 relies on Theorem 3.3.1,

Theorem A.6.1 (on the weak convergence of eigenvalues and eigenvectors) and the

Delta method.

Theorem 3.4.1. Under assumption (A1–2), let {W (2j)}j=j1,...,jm be a set of sample

wavelet variance matrices (see (3.16)). Suppose

EW (2j) has pairwise distinct eigenvalues, j = j1, . . . , jm, (3.33)

and let F be as in (3.27). Let the matrices Lj, Λj, Ôj, Oj be as in (3.28). Then,

(√
KjvecD(Lj − Λj),

√
Kjvec(Ôj −Oj)

)T
j=j1,...,jm

d→ Nn(n+1)m(0, JFJ
∗), ν → ∞,

(3.34)

where J = diag(J1, . . . ,Jm) and Ji, i = 1, . . . ,m, is given by J (S) in (3.31) with

S := EW (2ji).

Remark 3.4.2. The conclusions of Theorem 3.4.1 may not hold when the condition
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(3.33) is not in place. Proposition A.1.1 in Appendix A.1 illustrates this fact in a

particular case.

In spite of Remark 3.4.2, the next proposition shows that the condition (3.33) is

always satisfied at coarse scales. This fact is useful in the context of Theorem 3.5.2

below.

Proposition 3.4.1. Under the assumptions (A1–2), let W (2j) be the sample wavelet

variance (3.16) at octave j ∈ N. Then, for large enough j, the matrix EW (2j) has

pairwise distinct eigenvalues.

3.5 Wavelet-based estimation for the demixing ma-

trix

In this section, we address the first step of the two-step wavelet-based approach,

namely, demixing the process by jointly diagonalizing two wavelet variances.

The joint diagonalization of two matrices is a well-known problem. For the case of

symmetric matrices, its description and full characterization can be stated as follows

(see Theorem 4.5.17, (b), in [27]). Suppose C0 and C1 are symmetric and C0 is

nonsingular. Then, there are a nonsingular S ∈ M(n,R) and complex diagonal

matrices Λ0 and Λ1 such that

C0 = SΛ0S
T , C1 = SΛ1S

T , (3.35)

if and only if the matrix C−1
0 C1 is diagonalizable (in its Jordan form). In light of this,

we can cast a joint diagonalization algorithm in the form of pseudo-code.
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Pseudo-code for exact joint diagonalization (EJD)

Input: C0, C1 are symmetric matrices and the former is positive definite;

Step 1: set W = C
−1/2
0 so that C−1

0 = W ∗W ;

Step 2: compute Q ∈ O(n) in the spectral decomposition WC1W
∗ = Q∗D1Q;

Step 3: compute the demixing matrix B := QW ;

Step 4: stop and exit.

Example 3.5.1. In view of (3.21), it is clear that C0 = EW (2J1), C1 = EW (2J2),

J1 < J2, can be jointly diagonalized, where the underlying process is defined by (3.1)

under the assumptions (A1–2). In addition,

C−1
0 C1 = (P ∗)−1

(
diag(22(J2−J1)h1 , . . . , 22(J2−J1)hn)E(2J1)−1E(2J2)

)
P ∗.

This expression constitutes a diagonal Jordan decomposition, whence (3.35) holds.

The proposed wavelet-based estimator of a demixing matrix B is defined next.

Definition 3.5.1. Consider two octaves 0 ≤ J1 < J2 for which the eigenvalues of

EW (2J1) are pairwise distinct. For ν ∈ N, the wavelet-based demixing estimator B̂ν

is the output of the EJD algorithm when setting

C0 =W (2J1) and C1 = W (2J2). (3.36)

In Theorem 3.5.2, stated next, we establish the consistency and asymptotic nor-

mality of the estimator put forward in Definition 3.5.1. The result involves charac-

terizing the set of solutions to the EJD algorithm. In light of (3.21), this relies on
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reexpressing

(C0 =) EW (2J1) = PE(2J1)1/2diag(22J1 h1 , 22J1 h2 , . . . , 22J1 hn)E(2J1)1/2P ∗ =: RR∗,

(C1 =) EW (2J2) = PE(2J2)1/2diag(22J2 h1 , 22J2 h2 , . . . , 22J2 hn)E(2J2)1/2P ∗ =: RΛR∗,

(3.37)

where

R := PE(2J1)1/2diag(2J1h1 , . . . , 2J1hn),

Λ := diag(22(J2−J1)h1 , . . . , 22(J2−J1)hn)E(2J1)−1E(2J2), (3.38)

and then making use of the matrix polar decomposition of R. Then, consistency and

asymptotic normality stem from obtaining the behavior of the sample counterparts

W (2J1) and W (2J2) vis-à-vis (3.37) by means of Theorem 3.3.1 and Theorem A.6.1,

plus the Delta method when developing limits in distribution.

Theorem 3.5.2. Suppose the assumptions (A1–3) hold, and let E(2j) be as in (3.22).

Also let

I = {Π ∈M(n,R) : Π has the form diag(±1, . . . ,±1)}. (3.39)

(i) Then,

MEJD = {Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2P−1,Π ∈ I} (3.40)

is the set of matrix solutions produced by the EJD algorithm when setting

C0 = EW (2J1) and C1 = EW (2J2); (3.41)

(ii) for any estimator sequence {B̂ν}ν∈N,

B̂ν
P→ Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2P−1, ν → ∞, (3.42)
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for some matrix Π ∈ I;

(iii) in addition, assume that condition (3.33) holds for j = J1. Then, an estimator

sequence {B̂ν}ν∈N as described in (ii) satisfies

√
ν(vec(B̂ν − Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2P−1))T

d→ N (0,ΣF (J1, J2))

(3.43)

for some matrix Π ∈ I, where the covariance matrix ΣF (J1, J2) is a function of

F , and F is defined in Theorem 3.3.1, with m = 2.

Remark 3.5.3. By (3.42), any sequence B̂−1
ν has a limit in probability of the form

B−1 := Pdiag(β1, . . . , βn), |βi| ̸= 0, i = 1, . . . , n, i.e., involving a non-identifiability

factor post-multiplying the mixing matrix P . However, note thatH = Pdiag(h1, . . . , hn)P
−1 =

B−1diag(h1, . . . , hn)B, i.e., the columns of B−1 consist of (non-unit) eigenvectors of

the Hurst matrix H. Consequently, Ĥ := B̂−1
ν diag(ĥ1, . . . , ĥn)B̂ν is a natural estima-

tor of the latter, where ĥ1, . . . , ĥn are univariate (e.g., wavelet-based) estimators of

the individual Hurst exponents obtained from the demixed signal.

Nevertheless, producing a direct estimator of P is straightforward. Just normalize

each column of the matrix estimator B̂−1
ν and multiply it by −1 if necessary as to

arrive at a matrix P̂ with positive diagonal entries (cf. (3.6)). This procedure is used

in Section 3.7 below.

Remark 3.5.4. More precisely, the covariance matrix in the limit (3.43) can be written

as ΣF (J1, J2) = A3Σ3A
∗
3, where Σ3 and A3 are given by expressions (A.54) and (A.55),

respectively. It is clear that the expression for ΣF (J1, J2) is quite intricate, and the

construction of theoretical confidence intervals is a matter for future investigation (cf.

Combrexelle et al. [28]).

Remark 3.5.5. Let TP be a matrix such that

(vec(Îν − I))T = TP (vec(B̂ν − Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2P−1))T ,
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where

Îν = B̂νP (Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2)−1. (3.44)

Then, by (3.43) and the Delta method

√
ν(vec(Îν − I))T

d→ N (0,Σ(J1, J2)), (3.45)

where Σ(J1, J1) = TPΣF (J1, J2)T
∗
P .

We will use (3.45) in next section to establish limiting distribution of the Hurst

parameter estimation.

Remark 3.5.6. Removing the condition (3.5) can alter the limits (3.42) and (3.43).

For example, if h1 = h2 = . . . = hn =: h, then in Step 2 of the algorithm, Ŵ Ĉ1Ŵ
∗ P→

22h (J2−J1)I. Thus, the eigenvectors of Ŵ Ĉ1Ŵ
∗ do not have a limit in probability.

3.6 Wavelet-based estimation for the Hurst pa-

rameters

In this section, we focus on the second step of the two-step wavelet-based approach,

namely, developing the estimation of the Hurst parameters by applying univariate

wavelet analysis on entries of the demixed process. We establish the asymptotic

normality of the Hurst parameters’ estimators as the wavelet scale grows according

to a factor a(ν) → ∞, as ν → ∞. It is necessary to take the coarse scale limit due

to the fact that the source signal X is not self-similar (c.f. (2.10)). Throughout this

section, the factor a(ν) is assumed to be a dyadic sequence such that

a(ν)

ν
+

ν

a(ν)1+2β
→ 0, ν → ∞ (3.46)
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(see Remark 3.6.4 below on the choice of a(ν) in practice).

Let B̂ν be the demixing matrix described by (3.42), let Îν be defined by (3.44), and

let D := Πdiag(2−J1h1 , . . . , 2−J1hn)E(2J1)−1/2. Then, the demixed process is defined

by

X̂ := B̂νY = B̂νPD
−1DX = ÎνDX. (3.47)

The following proposition gives the asymptotic distribution of the sample wavelet

variance of X̂.

Proposition 3.6.1. Let X̂ be the demixed process defined by (3.47), let WX̂ be the

sample wavelet variance of X̂, and let EWX be the wavelet variance of the source

signal X. Then,

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(WX̂(a(ν)2

j)−DEWX(a(ν)2
j)D))T

)
j=j1,··· ,jm

d→ N (0,KWK∗), (3.48)

as ν → ∞ (see (3.4) on the notation vecD). In (3.48), the matrices W and K are

defined by (A.59) and (A.58), respectively.

Remark 3.6.1. Intuitively, the demixing estimator B̂ν yields a signal X̂ that is close

to the unknown source X up to a non-identifiability factor D. In fact the limiting

distribution of

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(WDX(a(ν)2

j)−EWDX(a(ν)2
j)))T

)
j=j1,··· ,jm

is alsoN (0,KWK∗). In particular, the diagonal entries of the sample wavelet variance

WX̂(a(ν)2
j) of the demixed signal X̂ are asymptotically independent.
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Let

σ̂2
X̂i
be the (i, i)-th entry of WX̂ , (3.49)

and let

σ2
Xi
be the (i, i)-th entry of EWX . (3.50)

The wavelet based regression estimator of the Hurst parameters hi, i = 1, · · · , n,

involves regressing the terms σ̂X̂i(a(ν)2
j) on the scale index j, i.e.,


ĥ1
...

ĥn

 :=


∑jm

j=j1
w1
j log(σ̂

2
X̂1
(a(ν)2j))

...∑jm
j=j1

wnj log(σ̂
2
X̂n

(a(ν)2j))

 , (3.51)

where the weight vectors

wi = (wi1, · · · , wim)T (3.52)

satisfy
m∑
j=1

wij = 0, 2 log 2
m∑
j=1

jwij = 1, i = 1, · · · , n. (3.53)

The next proposition gives the difference between the wavelet variance of Xi and

2j2hi , i = 1, · · · , n, and will be used to prove Theorem 3.6.2.

Proposition 3.6.2. For i = 1, · · · , n, let σ2
Xi

be defined by (3.50). Then,

|σ2
Xi
(2j)− 2j2hi|gi(0)|2K(hi)| ≤ C2j(2hi−β), (3.54)

where K(h) =
∫
R |ψ̂(x)|

2|x|−2h−1dx.

Heuristic justification for the regression estimator: By Proposition 3.6.2,

|σ2
Xi
(a(ν))− a(ν)2hi|gi(0)|2K(hi)| ≤ Ca(ν)2hi−β. (3.55)
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By (3.48), we have

√
ν/a(ν)a(ν)−2hi(σ̂2

X̂i
(a(ν))−D(i, i)2σ2

Xi
(a(ν)))

d→ N (0, b),

for some b > 0. Thus, σ̂2
X̂i
(a(ν))

d∼ D(i, i)2σ2
Xi
(a(ν)) +

√
a(ν)/νa2hiZ, Z

d∼ N (0, b).

Now consider

log σ̂2
X̂i
(a(ν))− log(D(i, i)2K(hi)|gi(0)|2a(ν)2hi)

d∼ log

(
D(i, i)2σ2

Xi
(a(ν)) +

√
a(ν)/νa2hiZ

)
− log(D(i, i)2K(hi)|gi(0)|2a(ν)2hi)

d
= logD(i, i)2σ2

Xi
(a(ν))−log(D(i, i)2K(hi)|gi(0)|2a(ν)2hi)+log

(
1+

√
a(ν)a2hi√

νD(i, i)2σ2
Xi
(a(ν))

Z

)
d
= log

(
σ2
Xi
(a(ν))

K(hi)|gi(0)|2a(ν)2hi
− 1 + 1

)
+ log

(
1 +

√
a(ν)a2hi√

νD(i, i)2σ2
Xi
(a(ν))

Z

)
d∼ Ca(ν)−β +

√
a(ν)/νZ/D(i, i)2.

As a consequence,

√
ν/a(ν)

(
log σ̂2

X̂i
(a(ν))− 2hi log(a(ν))− logD(i, i)2K(hi)g

2
i (0)

)
d
= Z/D(i, i)2 + Ca(ν)−β

√
ν/a(ν).

Condition (3.46) ensures that
√
ν/a(ν) → ∞, and the bias term Ca(ν)−β

√
ν/a(ν)

vanishes. Thus, we have the following central limit theorem for the estimators ĥi,

i = 1, · · · , n.

Theorem 3.6.2. Suppose the estimator (ĥ1, · · · , ĥn) be defined by (3.51). Then,

√
ν/a(ν)

[
ĥ1
...

ĥn

−


h1
...

hn


]

d→ N (0,W). (3.56)
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In (3.56),

W = diag((w1)TV (h1)w
1, · · · , (wn)TV (hn)w

n),

the weight vectors wi, i = 1, · · · , n satisfy (3.53), and the matrix V (h) = {Vk1,k2(h)}k1,k2=1,··· ,m

is defined entrywise by

Vk1,k2(h) =
4πb4h+1

jk1 ,jk2

22(jk1+jk2)hK2(h)

∫
R
x−(4h+2)|ψ̂(2jk1x/bjk1 ,jk2 )|

2|ψ̂(2jk2x/bjk1 ,jk2 ))|
2dx,

(3.57)

where K(h) =
∫
R |ψ̂(x)|

2|x|−2h−1dx and bjk1 ,jk2 = gcd(2jk1 , 2jk2 ).

Remark 3.6.3. Theorem 3.6.2 shows that the Hurst estimators ĥ1, · · · , ĥn are asymp-

totically independent. The asymptotic distribution of the Hurst estimator by esti-

mating from X̂ is equal to the asymptotic distribution of directly estimate the Hurst

parameters from the source X.

Remark 3.6.4. In practice, the choice of a(ν) involves a statistical compromise. A

large value of a(ν) with respect to ν implies a relatively small bias, but also cause a

relatively large variance of the estimator. Simulation results suggest the ratio ν/a(ν)2j

should be no less than 23.

3.7 Simulation studies

3.7.1 Performance of demixing procedure for operator frac-

tional Brownian motion

To study the performance of the wavelet demixing method over finite samples, we

simulated R = 500 sample paths of sizes n = 220 and 210 of 4-dimensional operator
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fractional Brownian motion with parameter H = Pdiag(0.2, 0.4, 0.6, 0.8)P−1 and

P =



0.6834 −0.7142 0.6960 −0.1165

−0.0096 0.4539 −0.0908 0.7740

0.4771 −0.2345 0.3359 −0.4243

0.5525 −0.4784 −0.6281 0.4553


(3.58)

(see also Remark 3.7.2 on the choice of P ). For notational simplicity, denote X := Bh,

Y := BH . To investigate the effect of mixing and demixing, we applied the univariate

wavelet regression method of Veitch and Abry [17] and estimated the entry-wise

Hurst exponents hX,i, hY,i, i = 1, . . . , n, starting from simulated sample paths of the

unmixed and mixed processes X and Y . We further used the same procedure to

estimate the entry-wise Hurst exponents hZ,i, i = 1, . . . , n, of the demixed sequence

Z = P̂−1BH for demixing matrix estimates P̂−1.

The results consist of comparisons of the Monte Carlo log-averages log2 ÊWX,i(2
j),

log2 ÊWY,i(2
j) and log2 ÊWZ,i(2

j) for each of the n = 4 components for the sample

sizes 220 and 210 (Figures 3.1 and 3.4); boxplots for ĥX,i − hi, ĥY,i − hi and ĥZ,i − hi,

i = 1, 2, 3, 4 (Figures 3.2 and 3.5); and boxplots for the 16 entries of P̂−1P−I (Figures

3.3 and 3.6). Following the procedure described in Remark 3.5.3, the columns of P̂

were adjusted as to eliminate the non-identifiability factor. In all cases, the sample

wavelet variance matrices were computed based on Daubechies wavelet filters with

Nψ = 2 vanishing moments. Using a different wavelet with Nψ ≥ 2 yields similar

conclusions.

In Figures 3.1 and 3.4, as expected for the mixed data Y all components of

log ÊWY,i(2
j) display patent departures from the original data log ÊWX,i(2

j). After

demixing, all components of log ÊWZ,i(2
j) remarkably superimpose those of log ÊWX,i(2

j),

with the possible exception of a few coarse scales for h = 0.2 and 0.4. In addition, the

boxplots in Figures 3.2 and 3.5 show that the Monte Carlo distributions for ĥZ,i − hi



32

resemble those of ĥX,i − hi, which illustrates the successful demixing of Y . Figures

3.3 and 3.6 further indicate that P̂−1 is very well estimated with negligible biases. In

all comparisons, as expected the observed estimator properties improve significantly

when passing from the relatively small sample size 210 to the large sample size 220,

hence reflecting the asymptotic statement of Theorem 3.5.2, (iii). In addition, sim-

ulation results not displayed also show that the standard deviation of the estimates

decreases with the sample size according to the scaling ratio C/
√
ν for some C > 0,

as anticipated.

Remark 3.7.1. Theorem 3.5.2 leaves open the question of how to optimally choose

the octaves j1 < j2. For multiple choices of wavelet octaves, namely, j1 = 1 (which

involves the largest number of sum terms in (3.16)) and j2 = 2, . . . , 6, Table 3.1 shows

the performance of the individual Hurst eigenvalues’ estimators in terms of Monte

Carlo bias, standard deviation and (square root) mean squared error. For sample

sizes 220 and 210, the results indicate that for low values of the Hurst eigenvalues, the

use of two widely separated wavelet octaves produces better results in terms of mean

squared error, whereas for large values of the Hurst eigenvalues the choice of octaves

has little impact on the estimation.

Remark 3.7.2. Simulation studies not included show that the choice of the mixing

matrix (3.58) does not substantially affect the finite sample results. Moreover, the

demixing estimator is very robust with respect to the condition number of the mixing

matrix P . The distributions of the estimated scalar Hurst eigenvalues after demixing

are barely affected for condition numbers of the order of at least 105.

Remark 3.7.3. In practice, a continuous time sample path is not available and thus

the theoretical wavelet coefficient D(2j, k) cannot be computed. Instead, one approx-

imates the latter by means of the classical recursive (or pyramidal) discrete filter bank

algorithm (see chapter 7 in [24]). In Section 4.1, we lay out the mathematical frame

work for estimation based on discrete time observations. We prove that, under mild
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h j1, j2 ĥ bias sd
√
MSE ĥ bias sd

√
MSE

(220) (210)
0.20 1,2 0.25 0.05 0.04 0.06 0.31 0.11 0.10 0.14

1,3 0.22 0.02 0.03 0.04 0.25 0.05 0.08 0.10
1,4 0.22 0.02 0.03 0.03 0.24 0.04 0.08 0.09
1,5 0.21 0.01 0.02 0.03 0.23 0.03 0.08 0.09
1,6 0.21 0.01 0.02 0.03 0.22 0.02 0.08 0.08

0.40 1,2 0.40 -0.00 0.02 0.02 0.45 0.05 0.08 0.10
1,3 0.40 -0.00 0.01 0.02 0.41 0.01 0.07 0.07
1,4 0.39 -0.01 0.01 0.02 0.40 0.00 0.07 0.07
1,5 0.40 -0.00 0.01 0.01 0.40 0.00 0.07 0.07
1,6 0.39 -0.01 0.01 0.01 0.40 -0.00 0.07 0.07

0.60 1,2 0.59 -0.01 0.01 0.02 0.60 -0.00 0.07 0.07
1,3 0.59 -0.01 0.01 0.02 0.58 -0.02 0.07 0.07
1,4 0.59 -0.01 0.01 0.02 0.58 -0.02 0.07 0.07
1,5 0.59 -0.01 0.01 0.02 0.58 -0.02 0.07 0.07
1,6 0.59 -0.01 0.01 0.02 0.58 -0.02 0.07 0.07

0.80 1,2 0.79 -0.01 0.01 0.02 0.76 -0.04 0.07 0.08
1,3 0.79 -0.01 0.01 0.02 0.77 -0.03 0.07 0.07
1,4 0.79 -0.01 0.01 0.02 0.77 -0.03 0.07 0.07
1,5 0.79 -0.01 0.01 0.02 0.77 -0.03 0.07 0.07
1,6 0.79 -0.01 0.01 0.02 0.77 -0.03 0.07 0.07

Table 3.1: Choice of scales 1,000 Monte Carlo runs, sample sizes 220 and 210, h =
(0.2, 0.4, 0.6, 0.8).
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Figure 3.1: Scaling logW·,·(2
j) vs. j for each of the n = 4 components based on the wavelet variance

scales 21 and 22. The plots were produced by means of 500 Monte Carlo runs of sample size 220,
with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.
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Figure 3.2: Boxplots based on the wavelet variance scales 21 and 22 for i = 1, 2, 3, 4, ĥX,i − hi
(original, left), ĥY,i − hi (mixed, middle) and ĥZ,i − hi (demixed, right), for each of the n = 4
components, sorted by ascending order in terms of h. The plots were produced by means of 500
Monte Carlo runs of sample size 220, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.
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Figure 3.3: Boxplots based on the wavelet variance scales 21 and 22 for the 16 entries of P̂−1P − I.

The (i1, i2)-th boxplot denotes the (i1, i2)-th entry of P̂−1P − I. The plots were produced by means
of 500 Monte Carlo runs of sample size 220, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.
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Figure 3.4: logW·,·(2
j) vs. j for each of the n = 4 components based on the wavelet variance scales

21 and 22. The plots were produced by means of 500 Monte Carlo runs of sample size 210, with
parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.
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Figure 3.5: Boxplots based on the wavelet variance scales 21 and 22 for i = 1, 2, 3, 4, ĥX,i − hi
(original, left), ĥY,i − hi (mixed, middle) and ĥZ,i − hi (demixed, right), for each of the n = 4
components, sorted by ascending order in terms of h. The plots were produced by means of 500
Monte Carlo runs of sample size 210, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.
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conditions, the estimated Hurst parameters stemming from the pyramidal algorithm

also satisfy the weak limits (3.56).

3.7.2 Wavelet-based estimation v.s. spectral maximum like-

lihood estimation

Spectral maximum likelihood estimation is an alternative way to estimate mixed

operator fractional Gaussian noise (see detail in [29]). In this section, we compare the

two-step wavelet-based estimation with spectral maximum likelihood estimation by

means of Monte Carlo simulation. We briefly introduce spectral maximum likelihood

method for the read’s convenience.

Let {Y (t)}t∈R = {PX(t)}t∈R, where P is the mixing matrix, X is a vector of two

independent fractional Gaussian noises with Hurst parameters hi, i = 1, 2. Then, the

matrix-valued spectral density of Y is

f(x;h1, h2, A) = 2(1− cos x)AG(x;h1, h2)A
∗,

where A = Pdiag(e(h1), e(h2)), e(hi) = {Γ(2hi + 1) sin(πhi)/2π}1/2, G(x;h1, h2) =

diag(R(x;h1), R(x;h2)), R(x;hi) =
∑∞

ν=−∞ |x + 2νπ|−2hi−1, for i = 1, 2. Use the

method in [30], f can be approximated by

f̃(x;h1, h2, A) = 2(1− cos x)AG̃(x;h1, h2)A
∗,

where G̃(x;h1, h2) = diag(R̃(x, h1), R̃(x, h2)), and R̃(x, hi)) =
1

4πhi
{(2πM − x)−2hi +

(2πM + x)−2hi} +
∑M

k=−M |x + 2kπ|−2hi−1 for some large integer M . In turn, the

(negative) Whittle log-likelihood function of Y can be approximated by
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l(h1, h2, A) =
T∑
i=1

[
log det f̃(xi;h1, h2, A) + tr{f̃(xi;h1, h2, A)−1IY (xi)}

]

= 2T log | detA|+
T∑
i=1

{
log |2(1− cosxi) det

(
G̃(xi;h1, h2)

)
|
}

+
T∑
i=1

tr

[
(A∗)−1{2(1− cosxi)G̃(xi;h1, h2)}−1A−1IY (xi)

]
, (3.59)

where T = [(ν − 1)/2], ν be the sample size, IY (x) = JY (x)JY (x)
∗/(2πν), JY (x) =∑ν

t=1 Yt exp(itx), xj = 2πj/ν ([31]). And the spectral maximum likelihood estimator

is defined by

θ̂ := argminθl(θ). (3.60)

In (3.60), l(·) is defined by (3.59), θ̂ = (ĥ1, ĥ2, P̂ ). When implementing the estimator

(3.60) in Matlab, we use the function fminsearch.m to minimize l(h1, h2, A) with

respect to the unknown parameters h1, h2 and A.

In the following simulation study, set

ν = 1024, M = ν0.7, (h1, h2) = (0.4, 0.8), P =

 0.4472 0.3162

0.8944 0.9487

 .

Averages of 100 simulations of the spectral maximum likelihood estimators and wavelet

estimators for the parameters h1, h2 and P are shown in the following table.

From the simulation study, although the spectral maximum likelihood estimation

is a bit more accurate, the coupled demixing-wavelet method is far more computa-

tionally efficient. In particular, for the former estimator, we need to minimize (3.59)

with respect to n + n2 unknown parameters, which can be numerically very difficult

for large values of n. Our computational studies also indicate that the minimization

procedure is somewhat sensitive to the initial guess.
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Figure 3.6: Boxplots based on the wavelet variance scales 21 and 22 for the 16 entries of P̂−1P − I.

The (i1, i2)-th boxplot denotes the (i1, i2)-th entry of P̂−1P − I. The plots were produced by means
of 500 Monte Carlo runs of sample size 210, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2.

method and time parameter bias sd
√
MSE

SML h1 0.0134 0.0632 0.0643
99.6548min h2 -0.0094 0.0707 0.0710

p1,1 -0.0040 0.0220 0.0223
p1,2 -0.0234 0.1314 0.1329
p2,1 0.0017 0.0092 0.0093
p2,2 -0.0551 0.3158 0.3190

wavelet h1 0.0346 0.1043 0.1094
0.0555min h2 -0.0193 0.1096 0.1108

p1,1 0.0001 0.0139 0.0138
p1,2 -0.0096 0.0348 0.0359
p2,1 -0.0002 0.0070 0.0070
p2,2 0.0025 0.0105 0.0107

Table 3.2: Biases, standard deviations and mean squared errors (in terms of square root) of 100
replications of the two underlined estimation methods for the parameters h1, h2 and P = (pij)i,j=1,2.
Wavelet estimation: Number of vanishing moments: 1, (j1, j2) = (3, 5), [J1, J2] = [1, 2]. SML
estimation: M=ν0.7. Sample size: ν = 210.
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Chapter 4

Extensions and Applications

Since in practice, only observations in discrete time are available, the theoretical

wavelet coefficients D(2j, k) cannot be computed, it is necessary to study the perfor-

mance of the estimators under the assumption that only a discrete sample

{Y (k)}k∈Z (4.1)

of (3.1) is available. In Section 4.1, we develop the asymptotic distribution of the

estimators, and Section 4.2 provides an application in tree ring data. All the proofs

can be found in Appendix A.4.

4.1 Estimation based on the discretized wavelet

transform

4.1.1 Notation and assumptions

Throughout this chapter, we suppose the wavelet approximation coefficients stem

from Mallat’s pyramidal algorithm, under a multiresolution analysis of L2(R) (MRA;

see [24], chapter 7). Accordingly, we need to replace (W2) with the following more
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restrictive condition.

Assumption (W2′): φ and ψ are compactly supported, integrable and

φ(0) = 1, and

∫
R
ψ2(t)dt = 1.

Moreover, we also need the following additional condition.

Assumption (W4): the function

∑
k∈Z

kmφ(· − k)

is a polynomial of degree m for all m = 0, · · · , Nψ − 1.

All through this chapter, we assume the (W1),(W2′) and (W3−4) hold. Assumption

(W1) and (W4) imply that

∫
R
ψ(2−jt)

∑
l∈Z

φ(t+ l)lmdt = 0, j ≥ 0, m = 0, · · · , Nψ − 1. (4.2)

4.1.2 Main results

Given (4.1), we initialize the algorithm with the vector-valued sequence

Rn ∋ ã0,k := Y (k), k ∈ Z,

also called the approximation coefficients at scale 20 = 1. At coarser scales 2j, Mallat’s

algorithm is characterized by the iterative procedure

ãj+1,k =
∑
k′∈Z

hk′−2kãj,k′ , d̃j+1,k =
∑
k′∈Z

gk′−2kãj,k′ , j ∈ N, k ∈ Z,

where the filter sequences {hk}k∈Z, {gk}k∈Z are called low- and high-pass MRA filters,

respectively. Due to (W2′), only a finite number of filter terms is non-zero, which is
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convenient for computational purposes [32]. The normalized discretized the wavelet

coefficients are defined by

Rn ∋ D̃(2j, k) := 2−j d̃j,k.

By applying (4.2) and direct computation, the integral representation of wavelet

covariance is given in the following proposition.

Proposition 4.1.1. Let {Y (k)}k∈Z be the sequence (4.1). For all j, j′ ≥ 0 and

k, k′ ∈ Z,

Cov(D̃(2j, k), D̃(2j
′
, k′)) =

∫
R
Hj(x)Hj′(x)e

ix(2jk−2j
′
k′)|x|−(H+I/2)G(x)|x|−(H+I/2)∗dx,

where

Hj(x) = 2−j
∫
R

∑
l∈Z

ψ(2−js)φ(s+ l)e−ixlds. (4.3)

Let

EW̃ (2j) = ED̃(2j, 0)D̃(2j, 0)∗, W̃ (2j) =
1

Kj

Kj∑
k=1

D̃(2j, k)D̃(2j, k)∗ (4.4)

be the wavelet variance matrix and its sample counterpart, respectively. The next

result is analogous to Proposition 3.3.1.

Proposition 4.1.2. Let {Y (k)}k∈Z be the sequence (4.1). For every pair of octaves

j, j′ ≥ 0,

(i) √
Kj

√
Kj′

1

Kj

1

Kj′

Kj∑
k=1

Kj′∑
k′=1

ED̃(2j, k)D̃(2j
′
, k′)∗ ⊗ ED̃(2j, k)D̃(2j

′
, k′)∗

→ 2−(j+j′)/2 gcd(2j, 2j
′
)

∞∑
z=−∞

Φ̃zgcd(2j ,2j
′
) ⊗ Φ̃zgcd(2j ,2j

′
), ν → ∞, (4.5)
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where

Φ̃z :=

∫
R
Hj′(x)Hj(x)e

−izx|x|−(H+I/2)G(x)|x|−(H+I/2)∗dx; (4.6)

(ii) there is a matrix G̃jj′ ∈M(n(n+1)/2,R), not necessarily symmetric, such that

√
Kj

√
Kj′ Cov(vecSW̃ (2j), vecSW̃ (2j

′
)) → G̃jj′ , ν → ∞, (4.7)

where the entries of G̃jj′ can be retrieved from (4.5) by means of (3.23) (see

(3.4) on the notation vecS).

The following theorem establishes the asymptotic distribution of the wavelet vari-

ance matrices at fixed octaves.

Theorem 4.1.1. Let {Y (k)}k∈Z be the sequence (4.1). Let j1 < · · · < jm be a fixed

set of octaves. Then

(√
Kj(vecS(W̃ (2j)− EW̃ (2j))

)T
j=j1,...,jm

d→ Nn(n+1)
2

×m(0, F̃ ), (4.8)

as ν → ∞ (see (3.4) on the notation vecS). In (4.8), the matrix F̃ ∈ S(n(n+1)
2

m,R)

has the form F̃ = (G̃jj′)j,j′=1,...,m, where each block G̃jj′ ∈ M(n(n + 1)/2,R) is de-

scribed in (4.7).

By Proposition 4.1.1, EW̃ (2j) can be recast as

EW̃ (2j) = P Λ̃jP
∗, (4.9)

where

Λ̃j = diag

(∫
R
|Hj(x)|2x−(2h1+1)|g1|2(x)dx, · · · ,

∫
R
|Hj(x)|2x−(2hn+1)|gn|2(x)dx

)
.

(4.10)

Expression (4.9) indicates that an estimator B̃ν of P−1 can be estimated by jointly
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diagonalizing W̃ (2J1) and W̃ (2J2), for J1 ̸= J2. Note that, the conclusion in Theorem

3.4.1 also holds when replacing W (2j) by W̃ (2j). Thus, as a consequence of Theorem

4.1.1 and by following the same argument as in the proof of Theorem 3.5.2, we obtain

the limiting distribution of B̃ν .

Theorem 4.1.2. Consider two octaves 0 < J1 < J2 for which the eigenvalues of

EW̃ (2J1) are pairwise distinct. Let B̃ν be the output of the EJD algorithm (see Section

3.5) when setting

C0 = W̃ (2J1) and C1 = W̃ (2J2).

Then,
√
ν(vec(B̃ν − ΠΛ̃

−1/2
J1

P−1))T
d→ N (0,ΣF̃ (J1, J2)), (4.11)

where Λ̃J1 is defined by (4.10), for some matrix

Π ∈ {Π ∈M(n,R) : Π has the form diag(±1, . . . ,±1)}.

In (4.11), the covariance matrix ΣF̃ (J1, J2) is a function of F̃ , and F̃ is defined in

Theorem 4.1.1 with m = 2.

Let the demixed process be

X̃ := B̃νY = ĨνD̃X. (4.12)

In (4.12), Ĩν = B̃νP Λ̃
1/2
J1

Π, D̃ = ΠΛ̃
−1/2
J1

.

The following proposition gives the asymptotic distribution of the sample wavelet

variance of X̃.

Proposition 4.1.3. Let the demixed process X̃ is defined by (4.12), let W̃X̃ be the

sample wavelet variance for X̃, EW̃X be the wavelet variance of the source signal X.
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Then,

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(W̃X̃(a(ν)2

j)−D̃EW̃X(a(ν)2
j)D̃))T

)
j=j1,··· ,jm

d→ N (0, K̃W̃K̃∗), (4.13)

as ν → ∞ (see (3.4) on the notation vecD). In (4.13), K̃ = diag(D̃2, · · · , D̃2︸ ︷︷ ︸
m

). The

(k1, k2)-th entry of the limiting covariance matrix is

W̃(k1, k2) =

 w̃l,v,i, k1 = ln+ i, k2 = vn+ i;

0, otherwise,

where w̃l,v,i = 4π(f ∗
i (0))

224dimax(jl,jv)+min(jl,jv)
∫ π
−π |D|jl−jv |(x; di)|2dx, for l, v = 0, · · · ,m−

1, i = 1, · · · , n, f ∗
i is defined in (A.70), di = hi + 1/2,

Du(x; d) =
∑
k∈Z

|x+ 2kπ|−2deu(x+ 2kπ)ψ̂(x+ 2kπ)ψ̂(2−u(x+ 2kπ)), (4.14)

for all u ≥ 0,

eu(x) = 2−u/2(1, ei2
−ux, · · · , e−i(2u−1)2−ux)T , x ∈ R.

Define the Hurst parameters’ estimators


h̃1
...

h̃n

 :=


∑jm

j=j1
w1
j log(σ̃

2
1(a(ν)2

j))

...∑jm
j=j1

wnj log(σ̃
2
n(a(ν)2

j))

 , (4.15)

where σ̃i is the ith diagonal entry of the sample wavelet variance of X̃, and the weight

vectors wi = (wi1, · · · , wim)T , i = 1, · · · , n, satisfy (3.53). We have the following CLT.

Theorem 4.1.3. Let (h̃1, · · · , h̃n)T be the estimator for (h1, · · · , hn)T defined by
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(4.15). Suppose a(ν) satisfies

a(ν)

ν
+

ν

a(ν)1+2β∗
→ 0, ν → ∞,

where β∗ is defined in (A.71). Then,

√
ν/a(ν)

[
h̃1
...

h̃n

−


h1
...

hn


]

d→ N (0, W̃), (4.16)

where

W̃ = diag((w1)T Ṽ (h1)w
1, · · · , (wn)T Ṽ (hn)w

n),

the weight vectors wi, i = 1, · · · , n satisfy (3.53), Ṽ (h) is a m × m matrix whose

(i, k)-th entry is

Ṽi,k(h) =
4π22(h+1/2)|ji−jk|2min(ji,jk)

K(h)

∫ π

−π
|D|ji−jk|(x;h+ 1/2)|2dx, i, k = j1, · · · , jm,

D|ji−jk|(λ, h+ 1/2) is defined in (4.14), and K(h) =
∫
R |ψ̂(x)|

2|x|−2h−1dx.

4.2 Empirical application

In this section, we illustrate the two-step method with a bivariate series of annual tree

ring measurements from bristlecone pine trees in White Mountains, California. The

period covered ranges from 5142 BC to 1962 AD, yielding a total of 7104 data points.

The data is available on the website https://datamarket. com/data/list/?q=cat:ecw%20

provider:tsdl.

Many tree-ring data sets exhibit long-range dependence properties [33], and annual

tree-ring measurements can be modeled as aggregates of the underlying continuous-

time growth rate process over time intervals between two consecutive sampling time



46

points, which in turn, can be approximated by a mixed fractional process. Figure 4.1

shows the time series plot of the tree ring measurements. The comparative analysis

over different time periods of wavelet scaling plots (Figure 4.2) indicate the presence

of disturbance in the first 1000 data points. For this reason, we only model the data

from 4141 BC to 1962 AD.

As expected, the sample ACFs (Figure 4.3) suggest that the time series of tree-ring

measurements have long memory. However, it is known that spurious cross-correlation

may occur as a result of the presence of fractional memory in each sequence, so it is

pivotal to study the cross-correlation after pre-whitening (e.g., [34]). Figure 4.4 shows

the sample cross-correlation for the pre-whitened data. It reveals that the sequences

are contemporaneously strongly correlated but not cross-correlated at any non-zero

lag values.
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Figure 4.1: Time series plots of the tree-ring measurements.
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Figure 4.2: log2(W (2j)) vs j. First row: scaling plots for the 1-1000 tree-ring measurements of
the bivariate data set; Second row: scaling plots for the 1000-2000 tree-ring measurements of the
bivariate data set; Third row: scaling plots for the 2000-3000 tree-ring measurements of the bivariate
data set.
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Figure 4.3: Sample auto-correlations and cross-correlations of the tree-ring measurements.
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√
N of 5% significant level.
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The wavelet based demixing method gives the estimated demixing matrix

P̂−1 =

 10.4048 −9.3864

1.4360 2.6275

 .

After demixing, wavelet-based estimates of the Hurst parameters The estimated are

ĥ1 = 0.6470, ĥ2 = 0.9295 (using scales (j1, j2)=(3,7)), and ĥ1 = 0.6517, ĥ2 = 0.9564

(using scales (j1, j2)=(3,9)).

Table A.3 shows a Monte Carlo study of the sample mean and sample standard

deviation of ĥ2 − h1 for the case when h1 = h2 = h. The difference between the

estimated Hurst parameters for the tree ring data is ĥ2 − ĥ1 = 0.9564 − 0.6517 =

0.3047 > 1.645 ∗ sd(ĥ2 − h1). Therefore, we conclude that there is evidence that

h2 > h1. The cross-correlation of the demixed tree-ring data after pre-whitening is

showed in Figure 4.5. The rare occurrence of significant spikes in the cross-correlation

plot suggest that the wavelet demixing method demixed the data.

true h parameter mean sd

h=0.7 ĥ1 0.6985 0.0183

ĥ2 0.7229 0.0176

ĥ2 − h1 0.0244 0.0185

h=0.8 ĥ1 0.7957 0.0191

ĥ2 0.8229 0.0195

ĥ2 − h1 0.0272 0.0202

Table 4.1: wavelet estimation: (j1, j2)=(3,9), sample size=6000, number of MC runs=1000.
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Figure 4.5: Sample cross-correlation of demixed data, after prewhitening.
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Chapter 5

Two-Step Wavelet-Based

Estimation for Mixed Fractional

Non-Gaussian Processes

5.1 Introduction

In modern applications, it often happens that data are multivariate and characterized

jointly by scale-free dynamics (self-similarity) and non-Gaussianity. The modeling of

non-Gaussian, multivariate fractional signals, while of great importance in applica-

tions, is an essentially unexplored research topic, with the exception of related work

in the econometric literature (e.g., [35]).

Hermite processes are typically non-Gaussian, self-similar, stationary increment pro-

cesses. They appear as a consequence of non-central limit theorems, i.e., by means

of nonlinear transformations of stationary long-range dependent sequences [36–38].

Fractional Brownian motion (fBm) corresponds to the Hermite process of rank 1, and

is the only Gaussian such process, whereas the Hermite process of rank 2 is called

Rosenblatt process (or fractional Rosenblatt motion, fRm). The integral representa-

tion for fRm is given by the following definition.
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Definition 5.1.1. The standard Rosenblatt process of index d ∈ (1/4, 1/2) is the

continuous time process

R2d(t) = ah

∫ ′′

R2

ei(u1+u2)t − 1

i(u1 + u2)
|u1|−d|u2|−dB̃(du1)B̃(du2), (5.1)

where

ah =

√
h(2h− 1)

2(2Γ(1− h) sin(hπ/2))2
, (5.2)

B̃(du) is a C-valued Gaussian random measure, and the symbol
∫ ′′

R2 indicates that

the diagonal u1 = u2 is excluded from the integration domain.

The integral in (5.1) has finite L2(P ) norm, ER2
2d(1) = 1, and the process is self-

similar with Hurst parameter h = 2d ∈ (1/2, 1). The random variable R2d(1) of (5.1)

evaluated at t = 1 is called a standard Rosenblatt variable with Hurst index 2d.

Statistical inference for Hermite-type processes is challenging: in the univariate con-

text, it was recently shown that wavelet-based estimators may display nonstandard

convergence rates and asymptotic distributions [39, 40]. Mathematically, arguments

involve chaos expansions and Malliavin calculus.

In this chapter, we take the first step in the construction of statistical inference for

Rosenblatt-type operator fractional stochastic processes. We consider the case where

multiple independent subparts of a system are univariate Rosenblatt processes which

get mixed by a number of recording sensors. In other words, the underlying process

Y (t) is defined by

{Y (t)}t∈R = {PR(t)}t∈R, (5.3)

where P is a n × n non-singular matrix, and R = (Rh1 , · · · , Rhn)
T is a vector of

independent fRms with Hurst parameters

1/2 < h1 < · · · < hn < 1. (5.4)
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The two-step wavelet-based approach (see Chapter 3) will be applied to Y (t) defined

in (5.3) to estimate both the mixing matrix P and the Hurst parameters h1, · · · , hn.

We stress that, to the best of our knowledge, this is the first estimation methodology

ever proposed for multivariate Hermite-type processes.

5.2 Wavelet transform of the mixed non-Gaussian

fractional process

Throughout this chapter, let ψ : R → R be a wavelet function with number of

vanishing moments N ≥ 1, and has compact support. The vector wavelet transform

of Y as in (5.3) is defined as

Rn ∋ D(2j, k) = 2−j/2
∫
R
2−j/2ψ(2−jt− k)Y (t)dt, j ∈ N ∪ {0}, k ∈ Z. (5.5)

The wavelet spectrum (variance) at scale j is the positive definite matrix

EW (2j) := ED(2j, k)D(2j, k)∗ = ED(2j, 0)D(2j, 0)∗, (5.6)

and its natural estimator, the sample wavelet variance, is the random matrix

W (2j) =
1

Kj

Kj∑
k=1

D(2j, k)D(2j, k)∗, Kj =
ν

2j
, j = j1, . . . , jm, (5.7)

for a total of ν available (wavelet) data points.

By direct computation, we can show the following properties of the wavelet coefficients

and the general form of the wavelet variance.

Proposition 5.2.1. Let D(2j, k) and EW (2j) be defined by (5.5) and (5.6), respec-

tively. Then,

(P1) the wavelet transform (5.5) is well-defined in the mean square sense, and ED(2j, k) =
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0;

(P2) for a fixed scale j, {D(2j, k)}k∈Z is stationary in k;

(P3)

EW (2j) = Pdiag(22jh1Cψ(h1), · · · , 22jhnCψ(hn))P ∗, (5.8)

where

Cψ(h) = ah

∫
R2

|ψ̂(u1 + u2)|2

(u1 + u2)2
|u1u2|−hdu1du2, (5.9)

and ah is defined in (5.2).

The following theorem establishes the asymptotic distribution of the vectorized

sample wavelet variance at a fixed set of octaves.

Theorem 5.2.1. Let Y = {Y (t)}t∈R be defined by (5.3). Let j1 < · · · < jm be a fixed

set of octaves. Then,

ν1−hn
(
vecS(W (2j)− EW (2j))

)T

j=j1,··· ,jm

d→ R. (5.10)

as ν → ∞. In (5.10),

R d
= vecS

(
P


0 · · · 0

...
. . .

...

0 · · · 22jhnCψ(hn)S(hn)R
hn
j

P ∗
)T

j=j1,··· ,jm
. (5.11)

In (5.11),

S(h) =
4

h+ 1

(
h

2(2h− 1)

)−1/2
∫
R2 ψ(x)ψ(x

′)|x− x′|h+1dxdx′∫
R2 ψ(x)ψ(x′)|x− x′|2hdxdx′

, (5.12)

Rhn
j are normalized Rosenblatt random variables with self-similarity index hn for all

j = j1, · · · , jm, and for all λ1, · · · , λm ∈ R, the k-th cumulant of the random variable
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∑m
k=1 λkR

hn
jm

is
m∑

l1,··· ,lk=1

λl1 · · ·λlkck(Rhn),

where ck(R
hn) denotes the k-th cumulant of the normalized Rosenblatt random variable

with self-similarity index hn.

5.3 Main results

Note that expression (5.8) suggests estimating P by the joint diagonalization algo-

rithm.

Definition 5.3.1. Consider two octaves 0 ≤ J1 < J2 for which the eigenvalues of

EW (2J1) are pairwise distinct. For ν ∈ N, the wavelet-based demixing estimator B̂ν

is the output of the EJD algorithm when setting

C0 =W (2J1) and C1 = W (2J2). (5.13)

By using Theorem 5.2.1, Theorem A.6.1 and the Delta method, and then by

following the same argument as in the proof of Theorem 3.5.2, we can establish the

limiting distribution of B̂ν .

Theorem 5.3.2. Let B̂ν be as in Definition 5.3.1, then

ν1−hn(B̂ν −DP−1)
d→ R, ν → ∞. (5.14)

In (5.14), the finite variance random matrix R is a function of R in (5.11), and

D = Π(diag(22J1h1Cψ(h1), · · · , 22J1hnCψ(hn)))−1/2, (5.15)



57

for some matrix Π ∈ I, where

I = {Π ∈M(n,R) : Π has the form diag(±1, . . . ,±1)}. (5.16)

In (5.15), Cψ(h) is defined in (5.9).

Define Îν := B̂νPD
−1, then Îν − I = Op(ν

hn−1). The demixed process is defined

by

R̂ := B̂νY = B̂νPD
−1DR = ÎνDR. (5.17)

The following proposition gives the asymptotic distribution of the sample wavelet

variance of R̂.

Proposition 5.3.1. Let R̂ be the demixed process defined by (5.17), let

WR̂ be the sample wavelet variance of R̂, (5.18)

and let

EWR be the wavelet variance of the source signal R. (5.19)

Suppose the scaling factor a(ν) satisfies

lim
ν→∞

max
l=1,··· ,n

(
νhn−hl

a(ν)1−hl

)
= 0. (5.20)

Then, (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

(vecD(WR̂(a(ν)2
j)−DEWR(a(ν)2

j)D)T
)
j=j1,··· ,jm

d→ KG, (5.21)

as ν → ∞ (see (3.4) on the notation vecD). In (5.21),

K = diag(D2, · · · ,D2︸ ︷︷ ︸
m

), (5.22)



58

G = (22j1h1Cψ(h1)S(h1)R
h1
j1
, · · · , 22j1hnCψ(hn)S(hn)Rhn

j1
,

· · · , 22jmh1Cψ(h1)S(h1)Rh1
jm
, · · · , 22jmhnCψ(hn)S(hn)Rhn

jm
)T , (5.23)

In (5.23), Rhi
jk1

is independent of Rhl
jk2

, for i ̸= l, k1, k2 = 1, · · · ,m. Moreover, for any

fixed l = 1, · · · , n, Rhl
j are normalized Rosenblatt random variables with self-similarity

index hl for all j = j1, · · · , jm, and for all λ1, · · · , λm ∈ R, the k-th cumulant of the

random variable
∑m

k=1 λkR
hl
jm

is

m∑
l1,··· ,lk=1

λl1 · · ·λlkck(Rhl),

where ck(R
hl) denotes the k-th cumulant of the Rosenblatt random variable with self-

similarity index hl, l = 1, · · · , n.

Let WR̂ and EWR be as in (5.18) and (5.19), respectively. Let

σ̂2
R̂i
(2j)be the (i, i)-th entry of WR̂(2

j), (5.24)

and let

σ2
Ri
(2j)be the (i, i)-th entry of EWR(2

j). (5.25)

Then, by direct computation, σ2
Ri
(2j) = 22jhiCψ(hi), i = 1, · · · , n, where Cψ(h) is

defined in (5.9). The wavelet regression estimator of the Hurst parameters hi, i =

1, · · · , n, involves regressing the terms σ̂R̂i(a(ν)2
j) on the scale index j, i.e.,


ĥ1
...

ĥn

 :=


∑jm

j=j1
w1
j log σ̂

2
R̂1
(a(ν)2j)

...∑jm
j=j1

wnj log σ̂
2
R̂n

(a(ν)2j)

 , (5.26)

where the weight vectors

wi = (wi1, · · · , wim)T (5.27)
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satisfy
m∑
j=1

wij = 0, 2 log 2
m∑
j=1

jwij = 1, i = 1, · · · , n. (5.28)

Then, the following theorem develops the limiting distribution of the estimators

ĥ1, · · · , ĥn.

Theorem 5.3.3. Under the assumptions of Proposition 5.3.1, let estimator (ĥ1, · · · , ĥn)

be defined by (5.26). Then,

diag((ν/a(ν))1−h1 , · · · , (ν/a(ν))1−hn)
[

ĥ1
...

ĥn

−


h1
...

hn


]

d→


Lh1
...

Lhn

 , (5.29)

In (5.29), Lhi = S(hi)
∑m

k=1w
i
kR

hi
jk

are independent random variables depends on hi,

i = 1, · · · , n, and S(h) is defined in (5.12). The random variables Rhi
jk

are defined in

Proposition 5.3.1, k = 1, · · · ,m, i = 1 · · · , n.

Remark 5.3.4. Even though the underlying process is exactly operator self-similar, we

still need to set the scale a((ν)) goes to infinity when estimating the Hurst parameters.

By doing so, the bias introduced by demixing in the first step converges to zero when

multiplying the convergence rate in (5.29).

5.4 Simulation studies

To study the performance of the wavelet demixing method over finite samples, we

conducted Monte Carlo experiments as follows. For n = 2 and sample (path) size

ν = 214, we simulated 500 realizations by mixing 2 independent fRms with Hurst

parameters 0.6 and 0.9, and the mixed process was given by Y = PR. For notational

simplicity, let R, Y and R̂ denote the original, mixed and demixed processes. For

the analysis, Daubechies least asymmetric wavelet with Nψ = 2 vanishing moment
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were used. We set the octaves (J1, J2) = (1, 2) for the demixing, and (j1, j2) =

(3, log2 ν −Nψ) for the Hurst parameter estimation, respectively.

The univariate log-wavelet variance WRi(2
j), WYi(2

j) and WR̂i
(2j), as well as

the univariate wavelet regression estimator ĥRi , ĥYi and ĥR̂i were computed for each

component of R, Y and R̂, respectively. The results are reported for one arbitrarily

chosen matrix P , since the performance for all instances of P was comparable.

We plot the log-averages log2⟨WRi(2
j)⟩, log2⟨WYi(2

j)⟩ and log2⟨WR̂i
(2j)⟩ for each

of the n = 2 respective components, where ⟨·⟩ denotes the Monte Carlo average

(Figure 5.1), as well as the distributions (boxplots) of ĥRi − hi, ĥYi − hi ĥR̂i − hi

(Figure 5.2). In Figure 5.1, as expected all components of log2⟨WYi(2
j)⟩ diverge

from their unmixed original data counterparts log2⟨WRi(2
j)⟩. After demixing, all

components of log2⟨WR̂i
(2j)⟩ remarkably superimpose those of log2⟨WRi(2

j)⟩. The

boxplots in Figure 5.2 show that the Monte Carlo distributions for ĥR̂i − hi resemble

those of ĥRi − hi, which illustrates the successful dimixing of Y .

To show the versatility of the 2-step demixing method, the boxplot in Figure 5.3

shows the successful estimation of Y in the situation where the 4-dimensional process

Y is obtained by mixing 4 independent self-similar processes (2 fBms with Hurst

parameters 0.2 and 0.4 and 2 fRms with Hurst parameters 0.6 and 0.8). Figure 5.4

shows that the variances of the Hurst parameter estimators decrease at the expected

rate. Indeed, for fBm entries, the decrease is proportional to 1/ν, whereas for fRm

entries, the decrease is hi-dependent and proportional to 1/ν2−2hi .
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Figure 5.1: logW.(2
j) vs. j superimposed for processes R (original, black ‘+’), Y (mixed, blue ‘∗

’) and R̂ (demixed, red ‘o’), for each of the n = 2 components, sorted by ascending order of hi.
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Figure 5.2: Boxplots ĥi − hi obtained from R (original, left), Y (mixed, middle) and R̂ (demixed,
right), for each of the n = 2 components, sorted by ascending order of hi.
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Figure 5.3: Boxplots ĥi − hi obtained from R (original, left), Y (mixed, middle) and R̂ (demixed,
right), for each of the n = 4 components, sorted by ascending order of hi.
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Figure 5.4: Decrease of the estimator variance V̂arĥl as a function of the sample size
ν (fBm with h1 = 0.2 and h2 = 0.4; fRm with h3 = 0.6 and h4 = 0.8. The slopes for the

three segments of R̂1 (black, +) and R̂2 (red, ∗ ) are, respectively, −0.8744, −0.9568, −0.8808, and
−0.9925, −0.8987, −0.9577, reflecting the theoretical value −1. The slopes for the three segments of
R̂3 (blue, ▽) and R̂4 (blue, o), respectively, are −0.7161, −0.7720, −0.8367, and −0.6572, −0.6410,
−0.5432, indicating convergence to the theoretical values −0.8 and −0.4, respectively.
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Appendix A

Appendix

A.1 Repeated eigenvalues

Following up on the discussion in Remark 3.4.2, the next proposition describes the

limiting distribution for the eigenvalues ofW (2j) for a special case where EW (2j) has

one repeated eigenvalue. In its statement, we use the multivariate gamma function

Γq(·), which is defined by

Γq(t) = πq(q−1)/4

q∏
i=1

(
t− 1

2
(i− 1)

)
.

Moreover, we replace (A1) with the following assumption.

Assumption (A1′): the observed signal Y = {Y (t)}t∈R has the form (3.1) with

h1 = h2 = . . . = hn =: h, N − 1 < h < N, (A.1)

and the high frequency functions gi(x), i = 1, · · · , n are constants, i.e.,

g1(x) = g1, · · · , gn(x) = gn.
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Proposition A.1.1. Suppose the assumptions (A1′–A2) hold. Let

EW (2j) = OΛO∗, W (2j) = ÔLÔ∗, (A.2)

be the matrix spectral decompositions of the wavelet and sample wavelet variance ma-

trices, respectively. Assume the diagonal matrix Λ has the form

Λ =

 Λ1 0

0 λ∗Iq

 (A.3)

for some 1 < q < n, where the main diagonal entries of the matrix Λ1 are pairwise

distinct and less than λ∗. Let

L = diag(l1, . . . , ln), Λ1 = diag(λ1, . . . , λn−q). (A.4)

Then, as ν → ∞,

√
Kj

(
(l1 − λ1, . . . , ln−q − λn−q), (ln−q+1 − λ∗, . . . , ln − λ∗)

)T d→ (LT1 ,LT2 )T , (A.5)

where L1 and L2 are independent random vectors. Moreover,

L1 ∼ N (0, 2b diag(λ21, . . . , λ
2
n−q)), (A.6)

where

b := 2−j
∞∑

z=−∞

{∫
R
|ψ̂(2jx)|2e−izx|x|−1−hdx

/∫
R
|ψ̂(2jx)|2|x|−1−hdx

}2

, (A.7)
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and L2 has density

2−
1
2
q(
√
bλ∗π)

q(q−1)/4Γ
− 1

2
q

(q
2

)
exp

{
− 1

2
√
bλ∗

n∑
i=n−q+1

d2i

}∏
l<i

(di − dl), (A.8)

where

di = li − λ∗, i = n− q + 1, . . . , n. (A.9)

Proof. Let O and Ô be as in expression (A.2), and define

T = O∗W (2j)O, U =
√
Kj(T − Λ), (A.10)

where O is the orthogonal matrix in the expression (A.2). Then, we can write

T = Y LY ∗, Y = O∗Ô ∈ O(n), (A.11)

and thus

U = O∗√Kj(W (2j)− EW (2j))O. (A.12)

Let h be as in (A.1). From (3.21), we obtain

Λ = O∗Pdiag(g21, . . . , g
2
n)P

∗O22jh
∫
R
|ψ̂(2jx)|2|x|−1−hdx.

For z ∈ Z, let Φz be as in (3.25) (for j = j′). Under the condition (A.1),

O∗ΦzO = O∗Pdiag(g21, · · · , g2n)P ∗O
1

2

∫
R
|ψ̂(2jx)|2|x|−1−hdx

= Λ
{∫

R
|ψ̂(2jx)|2e−izx|x|−1−hdx

/∫
R
|ψ̂(2jx)|2|x|−1−hdx

}
.
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By (3.24) (which also holds under (A.1)),

√
Kj

√
Kj

1

Kj

1

Kj

Kj∑
k=1

Kj∑
k′=1

O∗ED(2j, k)D(2j, k′)∗O ⊗O∗ED(2j, k)D(2j, k′)∗O

→ 2−j
∞∑

z=−∞

O∗Φz2jO ⊗O∗Φz2jO = b(Λ⊗ Λ), ν → ∞, (A.13)

where the scalar b is given by (A.7). Thus, from (A.12),

U
d→ U = {ui1i2}i1,i2=1,...,n, (A.14)

where (vecS(U))T ∼ Nn(n+1)
2

(0,Ω) and Ω can be retrieved from (A.13) by means of

(3.23). In particular, all entries of (vecS(U))T are independent. Moreover, for λ• as

in (A.4),

Var(ui1i1) = 2bλ2i1 , Var(ui1i2) = bλi1λi2 , 1 ≤ i1, i2 ≤ n− q, (A.15)

Var(ui1i1) = 2bλ2∗, Var(ui1i2) = bλ2∗, n− q + 1 ≤ i1, i2 ≤ n (A.16)

(the remaining entries of U will not play a role in the ensuing development). It now

suffices to follow the same arguments as in Sections 13.5.1 and 13.5.2 of Anderson

[41]. For the reader’s convenience, we lay out the main steps. Recast the random

matrices T , Y , U and L in (A.10) and (A.11) as

T =

 T11 T12

T21 T22

 , Y =

 Y11 Y12

Y21 Y22

 , U =

 U11 U12

U21 U22

 , L = diag(L1, L2),

(A.17)

where T11, Y11, U11, L1 ∈M(n− q,R), and let

D =
√
Kj(L− Λ) = diag(D1, D2).
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Define

Y22 = EJF, C2 = EF ∈ O(q), (A.18)

where the first relation is a singular value decomposition, J is diagonal and E,F ∈

O(q) are orthogonal. Also let

W11 =
√
Kj(Y11 − I), W12 =

√
KjY12, W21 =

√
KjY21, W22 =

√
Kj(Y22 − C2).

(A.19)

Based on (A.17) and (A.19), we can reexpress the system of equalities T = Λ +

1√
Kj
U = Y LY ∗ as

T =

 Λ1

λ∗Iq

+
1√
Kj

 U11 U12

U21 U22

 =

[ In−q

C2

+
1√
Kj

 W11 W12

W21 W22

]

·
[ Λ1

λ∗Iq

+
1√
Kj

 D1

D2

]
·
[ In−q

C∗
2

+
1√
Kj

 W ∗
11 W ∗

21

W ∗
12 W ∗

22

]

=

 Λ1

λ∗Iq

+
1√
Kj

[ D1

C2D2C
∗
2

+

 W11Λ1 λ∗W12C
∗
2

W21Λ1 λ∗W22C
∗
2



+

 Λ1W
∗
11 Λ1W

∗
21

λ∗C2W
∗
12 λ∗C2W

∗
22

]
+OP

(
1

Kj

)
. (A.20)

On the other hand, I = Y Y ∗ and the relations (A.19) yield

In =

 In−q

Iq

+
1√
Kj

[ W11 W12C
∗
2

W21 W22C
∗
2

+

 W ∗
11 W ∗

21

C2W
∗
12 C2W

∗
22

]
+OP

(
1

Kj

)
.

(A.21)
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From (A.20) and (A.21), we obtain the system of equations

U11 =W11Λ1 +D1 +Λ1W
∗
11 +OP

(
1√
Kj

)
, 0 = W11 +W ∗

11 +OP

(
1√
Kj

)
, (A.22)

U22 = C2D2C
∗
2 +OP

(
1√
Kj

)
. (A.23)

Recall that the limiting joint distribution of (U11, U22) is given by U11 := {ui1i2}i1,i2=1,...,n−q

and U22 := {ui1i2}i1,i2=n−q+1,...,n from expression (A.14), where

U11 and U22 are independent. (A.24)

By following the same argument as on pp. 546 and 547 in Anderson [41], expressions

(A.22) can be used to show that the limiting distribution of the diagonal entries of D1

is (A.6). Next note that D2 and Y22 are functions of U depending on ν (see (A.10) and

(A.11)), and C2, in turn, is a function of Y22 depending on ν (see (A.18)). Therefore,

by the same argument as in Anderson [41], p. 549, the limiting distribution of D2 and

C2 is the distribution of D2 and Y22 defined by the expression

U22 = Y22D2Y∗
22.

In particular, the limiting distribution of the diagonal entries of D2 is (A.8). In view

of (A.24), the established limiting distributions for the diagonal entries of D1 and D2

yield (A.5).

Example A.1.1. For n = 3, consider the OFBM for which h1 = h2 = h3 =: h,

P ∈ O(3), and 0 < g1 < g2 = g3. Then, by (3.21), the eigenvalues of E(2j) are

λ1 = 22jhg21
∫
R |ψ̂(y)|

2|y|−2(h+1/2)dy < λ∗ = 22jhg22
∫
R |ψ̂(y)|

2|y|−2(h+1/2)dy, where the

latter has multiplicity 2. Now let l1 ≤ l2 ≤ l3 be the ordered eigenvalues of the sample
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wavelet variance W (2j) (cf. (3.29)). Then, by Proposition A.1.1,

√
Kj

(
l1 − λ1, l2 − λ∗, l3 − λ∗

)T d→ (LT1 ,LT2 )T , ν → ∞. (A.25)

In (A.25), L1 is independent of L2, L1 ∼ N (0, 2bλ21) and L2 has density

1

2
(
√
bλ∗π)

1/2Γ
− 1

2
2 (1) exp

{
− 1

2
√
bλ∗

(d22 + d23)
}
(d3 − d2),

where di = li − λ∗, i = 2, 3, and b is given by (A.7).

A.2 Central limit theorem for the wavelet variance

of univariate Gaussian fractional processes

In this section, we will establish the asymptotic normality of the wavelet variance of

univariate Gaussian fractional processes. All through the appendix, we assume the

wavelet basis ψ ∈ L2(R) satisfies the condition (W1-3). Suppose a real-valued process

{X(t)}t∈R has the form

{X(t)}t∈R
d
=

∫
R

eitx −
∑N−1

k=0
1
k!
(itx)k

(ix)N
|x|−(h−(N−1/2))g(x)B̃(dx), (A.26)

where B̃(dx) is a C-valued Gaussian random measure satisfying B̃(−dx) = B̃(dx). In

(A.26), N − 1 < h < N , and the high frequency function g satisfies condition (A3).

The wavelet transform of X in (A.26) is defined as

d(2j, k) = 2−j/2
∫
R
2−j/2ψ(2−jt− k)X(t)dt, j ∈ N ∪ {0}, k ∈ Z.
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The wavelet variance at scale j is

σ2(2j) =: Ed(2j, 0)2, (A.27)

and its natural estimator, the sample wavelet variance, is

σ̂2(2j) =:
1

Kj

Kj∑
k=0

d2(2j, k), Kj = ν/2j, j = j1, · · · , jm, (A.28)

for a total number of ν available data points.

Throughout this section, we assume a sequence {a(ν)} satisfying (3.46).

The following lemma will be used in the subsequent proposition.

Lemma A.2.1. For any fix two octaves j, j′ > 0,

lim
ν→∞

a(ν)−4h

∫
R
x−(4h+2)|ψ̂(a(ν)2j′x)|2|ψ̂(a(ν)2jx)|2||g(x)|2 − |g(0)|2|2dx = 0.

Proof.

a(ν)−4h

∫
R
x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx

= a−4h

∫
|x|≤π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx

+a−4h

∫
|x|>π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx.

By (3.7),

a(ν)−4h

∫
|x|≤π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx

≤ a(ν)−4h

∫
|x|≤π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2x2βdx
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= a(ν)1−2β

∫
|x|≤a(ν)π

x−(4h+2)+2β|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2dx

≤ a(ν)1−2β

∫
R
x−(4h+2)+2β|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2dx,

by (3.12), (3.13) and (3.7),
∫
R x

−(4h+2)+2β|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2dx <∞, so

a(ν)−4h

∫
|x|≤π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx→ 0,

as ν → ∞. On the other hand, by (3.12),

a(ν)−4h

∫
|x|>π

x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx

≤ Ca(ν)−4h

∫
|x|>π

x−(4h+2)(a(ν)x)−4αdx

+Ca(ν)−4h−4α

∫
|x|>π

x−(4h+2)−4αdx→ 0,

as ν → ∞.

Proposition A.2.1. Let σ̂2 be defined by (A.28). Then,

a(ν)−4hν

a
Cov(σ̂2(a(ν)2j), σ̂2(a(ν)2j

′
)) → 4πb4h+1|g(0)|4

∫
R
x−(4h+2)|ψ̂(2jx/b)|2|ψ̂(2j′x/b)|2dx,

(A.29)

as ν → ∞, where b = gcd(2j, 2j
′
).

Proof. The main proof is similar to the proof of Proposition 3.1 in [42], so we outline

the main steps for the reader’s convenience.

It suffices to consider the subsequence ν = a(ν)2j+j
′
ν∗. Then

a(ν)−4h ν

a(ν)
Cov(σ̂2(a(ν)2j), σ̂2(a(ν)2j

′
))
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= a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

Cov(d2(a(ν)2j, k), d2(a(ν)2j
′
, k′))

= 2a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

(
Ed(a(ν)2j, k)d(a(ν)2j′ , k′)

)2

= 2a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

(∫
R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

= 2a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

{(∫
R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

−
(∫

R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}

+2a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

(∫
R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

,

where the second equality is a consequence of the Isserlis theorem. We now show that

a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

{(∫
R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

−
(∫

R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}
→ 0, ν → ∞.

(A.30)

The summation in (A.30) can be reexpressed as (for the details, see the proof of

Proposition 3.1, (iv) in [42])

a(ν)−4h
∑

r∈Π(ν∗)

ξr(ν∗)

ν∗

{(∫
R
eia(ν)rxx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

−
(∫

R
eia(ν)rxx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}
=: Θ1. (A.31)

In (A.31), Π(ν∗) = gcd(a(ν)2j, a(ν)2j
′
)Z ∩ Bjj′(ν∗), Bjj′(ν∗) is the range for r such

that the pairs (k, k′) satisfying 2jk − 2j
′
k′ = gcd(2j, 2j

′
)w for some w ∈ Z lie in the
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region

1 ≤ k ≤ 2j
′
ν∗, 1 ≤ k′ ≤ 2jν∗,

and

ξr(ν∗)

ν∗
→ gcd(2j, 2j

′
), ν → ∞. (A.32)

By Parseval’s Theorem, the sequences

{(∫
R
eia(ν)rxx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}
r∈Z

and {(∫
R
eia(ν)rxx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}
r∈Z

are summable. Moreover, by (A.32), for large enough ν,

Θ1 < (gcd(2j, 2j
′
)+1)a(ν)−4h

∣∣∣∣ ∑
r∈Π(ν∗)

{(∫
R
eia(ν)rxx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

−
(∫

R
eia(ν)rxx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}∣∣∣∣.
By Minkowski’s inequality,

∣∣∣∣a(ν)−4h

{ ∑
r∈Π(ν∗)

(∫
R
eia(ν)rxx−(2h+1)|g(x)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}1/2

−
{ ∑
r∈Π(ν∗)

(∫
R
eia(ν)rxx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}1/2∣∣∣∣
≤

{ ∑
r∈Π(ν∗)

a(ν)−4h

(∫
R
eia(ν)rxx−(2h+1)(|g(x)|2−|g(0)|2)ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2}1/2

≤
(
2πa(ν)−4h

∫
R
x−(4h+2)|ψ̂(a(ν)2jx)|2|ψ̂(a(ν)2j′x)|2||g(x)|2 − |g(0)|2|2dx

)1/2

→ 0,

as ν → ∞. The last inequality is a consequence of Parseval’s theorem, and the
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limit follows from Lemma A.2.1. This proves (A.30), as desired. By an analogous

procedure, we obtain

2a(ν)−4h 1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

(∫
R
eia(ν)(2

jk−2j
′
k)xx−(2h+1)|g(0)|2ψ̂(a(ν)2jx)ψ̂(a(ν)2j′x)dx

)2

= 2
1

ν∗

2j
′
ν∗∑

k=1

2jν∗∑
k′=1

(∫
R
ei(2

jk−2j
′
k)xx−(2h+1)|g(0)|2ψ̂(2jx)ψ̂(2j′x)dx

)2

→ 2 gcd(2j, 2j
′
)

∞∑
z=−∞

(∫
R
ei gcd(2

j ,2j
′
)zxx−(2h+1)|g(0)|2ψ̂(2jx)ψ̂(2j′x)dx

)2

= 2b4h+1

∞∑
z=−∞

(∫
R
eizxx−(2h+1)|g(0)|2ψ̂(2jx/b)ψ̂(2j′x/b)dx

)2

= 4πb4h+1|g(0)|4
∫
R
x−(4h+2)|ψ̂(2jx/b)|2|ψ̂(2j′x/b)|2dx, (A.33)

where the last equality is a consequence of Parseval’s theorem. By (A.30) and(A.33),

(A.29) holds.

Theorem A.2.1. Let σ2 and σ̂2 be defined as (A.27) and (A.28), and fix the octaves

j1 < · · · < jm. Then,

√
ν/a

(
σ̂2(a2j1)/a2h

...

σ̂2(a2jm)/a2h

−


σ2(a2j1)/a2h

...

σ2(a2jm)/a2h


)

d→ N (0,W ),

as ν → ∞, where

Wik = 4πb4h+1
jijk

|g(0)|4
∫
R
x−(4h+2)|ψ̂(2jx/bjijk)|2|ψ̂(2ix/bjijk))|2dx,

and bjijk = gcd(2ji , 2jk), i, k = 1, · · · ,m.
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Proof. The proof can be written as a simple adaption of the proof of Theorem 3.3.1.

A.3 Proofs for Chapter 3

Proof of Proposition 3.3.1: The statement (ii) is a direct consequence of (i),

so we only prove the latter. We proceed as in the proof of Proposition 3.3 (i) in

[43]. It suffices to consider the subsequence ν = 2j+j
′
ν∗, ν∗ → ∞. Then, Kj = 2j

′
ν∗,

Kj′ = 2jν∗, and
√
Kj

√
Kj′K

−1
j K−1

j′ = 2−(j+j′)/2/ν∗. The covariance between wavelet

coefficients can be expressed as

ED(2j, k)D(2j
′
, k′)∗ = E

∫
R

∫
R
ψ(t)ψ(t′)Y (2jt+ 2jk)Y (2j

′
t′ + 2j

′
k′)dtdt′

=

∫
R
dx

∫
R

∫
R
ψ(t)ψ(t′)ei(2

jt+2jk)x|x|−(H+I/2)G(x)|x|−(H+I/2)∗ei(2j
′
t′+2j

′
k′)xdtdt′

=

∫
R
ψ̂(2jx)ψ̂(2j

′
x)ei(2

jk−2j
′
k′)x|x|−(H+I/2)G(x)|x|−(H+I/2)∗dx,

=: Φ2jk−2j′k′ .

Let Ξ2jk−2j
′
k′ = Φ2jk−2j

′
k′ ⊗ Φ2jk−2j

′
k′ . By Theorem 1.8 in [44], p.10, the range of

indices spanned by 2jk − 2j
′
k′ is Zgcd(2j, 2j′). Thus, we would like to show that

∞∑
z=−∞

∥Ξzgcd(2j ,2j′ )∥ <∞. (A.34)

Note that ∥Ξ2jk−2j
′
k′∥l1 = ∥vec(Φzgcd(2j ,2j

′
))vec(Φzgcd(2j ,2j

′
))

∗∥l1 ≤ ∥Φzgcd(2j ,2j
′
)∥2l1 . Thus,

if
∑∞

z=−∞ ∥Φz∥2 < ∞, the expression (3.24) is now a consequence of Lemma A.6.4

below. In fact,

∥Φz∥2 =
∥∥∥∥P ∫

R
eizxψ̂(2jx)ψ̂(2j

′
x)diag(x−(2h1+1)|g1(x)|2, · · · , x−(2hn+1)|gn(x)|2)dxP ∗

∥∥∥∥2
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≤ C∥P∥4 max
1≤k≤n

∣∣∣∣ ∫
R
eizxψ̂(2jx)ψ̂(2j

′
x)x−(2hk+1)|gk(x)|2dx

∣∣∣∣2.
For any 1 ≤ k ≤ n, ψ̂(2jx)ψ̂(2j

′
x)x−(2hk+1)|gk(x)|2 ∈ L2(R). Thus, by Parseval’s

Theorem,
∞∑

z=−∞

∣∣∣∣ ∫
R
eizxψ̂(2jx)ψ̂(2j

′
x)x−(2hk+1)|gk(x)|2dx

∣∣∣∣2

= 2π

∫
R

∣∣∣∣ψ̂(2jx)ψ̂(2j′x)x−(2hk+1)|gk(x)|2
∣∣∣∣2dx <∞,

this proves
∑∞

z=−∞ ∥Φz∥2 <∞, as claimed. �

Proof of Theorem 3.3.1: For notation simplicity, we will restrict ourselves to the

bivariate context (n = 2). the argument for general n can be worked out by a simple

adaptation.

The proof is by means of Cramér-Wold device. Form the vector of wavelet coeffi-

cients

Vν = (d1(2
j1 , 1), d2(2

j1 , 1), · · · , d1(2j1 , Kj1), d2(2
j1 , Kj1); · · · ;

d1(2
jm , 1), d2(2

jm , 1), · · · , d1(2jm , Kjm), d2(2
jm , Kjm))

T ∈ RΥ(ν),

where Υ(ν) = 2
∑jm

j=j1
Kj. Notice that m, j1, · · · , jm are fixed, but each Kj goes to

infinity with ν. let

α = (αj1 · · · , αjm)T ∈ R3m

where

αj = (αj,1, αj,12, αj,3)
T ∈ R3, j = j1, · · · , jm.

Now form the block-diagonal matrix

Dν = diag

(
1

Kj1

√
1

2j1
Ωj1 , · · · ,

1

Kj1

√
1

2j1
Ωj1︸ ︷︷ ︸

Kj1

; · · · ; 1

Kjm

√
1

2jm
Ωjm , · · · ,

1

Kjm

√
1

2jm
Ωjm︸ ︷︷ ︸

Kjm

)
,
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where

Ωj =

 αj,1 αj,12/2

αj,12/2 αj,2

 , j = j1, · · · , jm.

Let Γ(ν) be the covariance matrix of Vν .

We would like to show
√
ν(V ∗

ν DνVν − EV ∗
ν DνVν)

d→ N(0, σ2) for some σ2 < ∞. By

Lemma A.6.1, we only need to prove that

(1) σ2 := limν→∞ Var(
√
νV ∗

ν DνVν) <∞;

(2) limν→∞ ρ(
√
νDν)ρ(Γ(ν)) = 0,

where ρ(·) is the spectral radius of the matrix.

Statement (1) is a consequence of Proposition 3.3.1, i.e.,

Var(
√
νV ∗DV ) =

jm∑
j=j1

jm∑
j′=j1

αTj

{√
ν

2j

√
ν

2j′
Cov(vecSW (2j), vecSW (2j

′
))

}
αj′ →

jm∑
j=j1

jm∑
j′=j1

αTj Gjj′αj′ <∞, ν → ∞.

To show statement (2), note that, by Lemma A.6.2,

ρ(Γ(ν)) ≤ ρ(Γ1) + · · ·+ ρ(Γm),

where Γi is the covariance matrix of Vi := (d1(2
ji , 1), d2(2

ji , 1), · · · , d1(2ji , Kji), d2(2
ji , Kji))

T .

Let Ti be the permutation matrix such that

TiVi = (d1(2
ji , 1), d1(2

ji , 2), · · · , d1(2ji , Kji); d2(2
ji , 1), d2(2

ji , 2), · · · , d2(2ji , Kji))
T =: Ṽi,

and let Γ̃i be the covariance matrix of Ṽi. Then,

Γi = EViV T
i = E(T−1

i ṼiṼ
T
i Ti) =: T−1

i Γ̃iTi.
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Since a similarity transformation of a matrix does not change the eigenvalues, we

have ρ(Γi) = ρ(Γ̃i). By Lemma A.6.2 again,

ρ(Γ̃i) ≤ ρ(Γi1) + ρ(Γi2),

where Γis is the covariance matrix of

Viv := (dv(2
ji , 1), dv(2

ji , 2), · · · , dv(2ji , Kji))
T , i = 1, · · · ,m, v = 1, 2.

Let Yv be the vth entry of Y . Then,

Yv(t) =
2∑
l=1

pvl

∫
R

eitx −
∑Ni−1

k=1
1
k!
(itx)k

(ix)Ni
|x|−(hi−Ni+1/2)gl(x)B̃(dx).

Let {dv(2j, k)}k∈Z be the wavelet transform of Yv at octave j and shift k. Then, the

covariance function of dv(2
j, k) and dv(2

j, k′) is given by

Edv(2j, k)dv(2j, k′) =
2∑
l=1

p2vl2
2jhl

∫
R
ei(k−k

′)y|ψ̂(y)|2y−2(hl+1/2)

∣∣∣∣gl( y

2j

)∣∣∣∣2dy.
Thus, {dv(2j, k)}k∈Z is a stationary sequence for a fixed octave j and its the

spectral density is

fj,s(y) =
2∑
l=1

p2sl2
2jhl

∞∑
k=−∞

|ψ̂(y + 2kπ)|2|y + 2kπ|−2(hl+1/2)

∣∣∣∣gl(y + 2kπ

2j

)∣∣∣∣2

≤ Cj

2∑
l=1

∞∑
k=−∞

|ψ̂(y + 2kπ)|2|y + 2kπ|−2(hl+1/2), −π < y < π. (A.35)

Fix l = 1, 2, the summation in (A.35) is bounded on (−π, π) by using (3.13) for

k = 0, and the decay of ψ̂ given by (W3) for bounding the remaining terms
∑

k ̸=0.

By Lemma A.6.3 below, ρ(Γiv) <∞, i = 1, · · · ,m, v = 1, 2. Thus, ρ(Γν) <∞. Since

ρ(
√
νDν) = O( 1√

ν
), then limν→∞ ρ(

√
νDν)ρ(Γν) = 0. �
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Proof of Theorem 3.4.1: For any matrix S ∈ S+(n,R), define the vector-valued

function

f : vecS(S) → (ξ1, . . . , ξn, vec(O)) (A.36)

such that S = Odiag(ξ1, . . . , ξn)O∗, O ∈ O(n), ξ1 < . . . < ξn, is the spectral decom-

position of S, and O = (oi1i2)i1,i2=1,...,n satisfies o1i ≥ 0, i = 1, . . . , n (cf. (3.29)). Since

EW (2j) has pairwise distinct eigenvalues, Theorem A.6.1 implies that f is infinitely

differentiable on a neighborhood of EW (2j). Moreover, the Jacobian matrix Jj of f at

the point EW (2j) is given by (3.31) with S = EW (2j). So, let J = diag(J1, . . . ,Jm).

Recall the notation (3.2) for block-diagonal matrices. The Delta method and Theorem

3.3.1, imply that

(
√
Kj(vecD(Lj − Λj)),

√
Kj(vec(Ôj −Oj)))

T
j=j1,...,jm

= (
√
Kj(f(vecS(W (2j))−f(vecS(EW (2j))))Tj=j1,...,jm

d→ Nmn(n+1)(0, JFJ
∗), (A.37)

as claimed. �

Proof of Propostion 3.4.1: From (3.21), write out the spectral decomposition

PE(20)P ∗ = EW (20) = Odiag(a1, . . . , an)O
∗, O ∈ O(n), 0 < a1 ≤ . . . ≤ an.

Then, there is Q ∈ O(n) such that E(20)−1/2P−1Odiag(
√
a1, . . . ,

√
an) = Q. Solving

for P yields

P = Odiag(
√
a1, . . . ,

√
an)Q

∗E(20)−1/2. (A.38)

By plugging (A.38) into (3.21),

EW (2j) = Odiag(
√
a1, . . . ,

√
an){Q∗E(20)−1/2E(2j)1/2

diag(22jh1 , . . . , 22jhn)E(2j)1/2E(20)−1/2Q}diag(
√
a1, . . . ,

√
an)O

∗.
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=: OMNMO∗,

where

M = diag(
√
a1, . . . ,

√
an),

and

N = Q∗E(20)−1/2E(2j)1/2diag(22jh1 , . . . , 22jhn)E(2j)1/2E(20)−1/2Q.

The eigenvalues of EW (2j) are equal to the eigenvalues of MNM . Write the

ordered eigenvalues of EW (2j) as λ1(j) ≤ . . . ≤ λn(j). We will show that

λ1(j) < . . . < λn(j) (A.39)

for large enough j. Let Uk be a k-dimensional subspace of Rn and let ⟨x, y⟩ = xTy,

x, y ∈ Rn. By the min-max theorem (e.g., Teschl [45], section 4.4),

λk = min
Uk

max
x∈Uk,x ̸=0

⟨MNMx, x⟩
⟨x, x⟩

= min
Uk

max
x∈Uk,x ̸=0

⟨NMx,Mx⟩
⟨Mx,Mx⟩

⟨Mx,Mx⟩
⟨x, x⟩

.

Moreover,

a1 ≤
⟨M2x, x⟩
⟨x, x⟩

≤ an,

min
Uk

max
x∈Uk,x ̸=0

⟨NMx,Mx⟩
⟨Mx,Mx⟩

= min
Uk

max
x∈Uk,x ̸=0

⟨Nx, x⟩
⟨x, x⟩

= min
Uk

max
x∈Uk,x ̸=0

⟨Ñx, x⟩
⟨x, x⟩

,

where the first equality is a consequence of the fact that M is a full rank matrix, and

Ñ = E(20)−1/2E(2j)1/2diag(22jh1 , . . . , 22jhn)E(2j)1/2E(20)−1/2.

However E(20)−1/2E(2j)1/2 → diag(b1, · · · , bn), as j → ∞, where

bi =

∫
R
|ψ̂(y)|2|y|−hi−1|gi(0)|2dy

/∫
R
|ψ̂(y)|2|y|−hi−1|gi(y)|2dy > 0, i = 1, · · · , n.
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Thus, for large enough j,

bk2
2jhk − 1 < min

Uk
max

x∈Uk,x ̸=0

⟨Ñx, x⟩
⟨x, x⟩

< bk2
2jhk + 1,

and a1(bk2
2jhk − 1) ≤ λk ≤ an(bk2

2jhk + 1). So, (A.39) holds for any j such that

an(bk2
2jhk + 1) < a1(bk+12

2jhk+1 − 1), k = 1, . . . , n− 1. �

Proof of Theorem 3.5.2: We first show (i). Let C0, C1, R and Λ be as in (3.37)

and (3.38). We now show that, under (3.41), any solution B produced by the EJD

algorithm is in the set MEJD. In view of (3.21), consider the polar decomposition

R = PO, P is positive definite, O ∈ O(n). (A.40)

The decomposition (A.40) always exists for nonsingular, real matrices, and is unique.

Thus,

C0 = RR∗ = POO∗P∗ = P2,

Since square roots are unique, Step 1 yields

W = P−1. (A.41)

Step 2 and (3.37) imply that

WC1W
∗ =W (POΛO∗P∗)W ∗ = OΛO∗. (A.42)

By (3.5), we can assume that the eigenvalues of Λ (see (3.38)) are ordered from

smallest to largest, in which case the column vector o·i in O is associated with the

eigenvalue 22(J2−J1)hi , i = 1, . . . , n. However, in the spectral decomposition in Step

2, each orthogonal eigenvector is determined up to multiplication by −1. Thus, for I

as in (5.16), Q∗ ∈ OI, and any demixing matrix B produced by the EJD algorithm
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has the form

B = QW ∈ I(PO)−1 = IR−1 = I(PE(2J1)1/2diag(2J1h1 , . . . , 2J1hn))−1. (A.43)

In other words, B ∈ MEJD. Conversely, it is clear that any matrix in MEJD can be

attained as a solution to the EJD algorithm under (3.41). This establishes (i).

To show (ii), consider the EJD algorithm with input matrices Ĉ0 = W (2J1),

Ĉ1 = W (2J1) (we write Ĉk to avoid confusion with their deterministic counterparts

Ck = EW (2Jk), k = 1, 2). By replacing all matrices in the proof of (i) with their

sample counterparts and following the same argument, the set of solutions to the

EJD algorithm is made up of matrices of the form

B̂ν = ΠÔ∗Ĉ
−1/2
0 , where Π ∈ I, Ĉ

−1/2
0 Ĉ1Ĉ

−1/2
0 = ÔΛ̂Ô∗,

for some spectral decomposition with orthogonal Ô and diagonal Λ̂. Note that

Ĉ0
P→ C0, by Theorem 3.3.1. Since the square root is unique and C0 is invertible, then

Theorem A.6.1 implies that, with probability going to 1, the inverse square root Ĉ
−1/2
0

exists. Thus, by Theorem 3.3.1, and Slutsky’s theorem, Ĉ
−1/2
0 Ĉ1Ĉ

−1/2
0

P→ P−1C1P−1.

However, P−1C1P−1 is a symmetric positive definite matrix that admits the spec-

tral decomposition OΛO∗ with pairwise distinct eigenvalues (see (A.41) and (A.42)).

Then, by Theorem A.6.1, so is Ĉ
−1/2
0 Ĉ1Ĉ

−1/2
0 with probability going to 1. Therefore,

Theorem A.6.1 implies that there is a spectral decomposition of Ĉ
−1/2
0 Ĉ1Ĉ

−1/2
0 whose

eigenvector and eigenvalue matrices Ô and Λ̂, respectively, satisfy Ô
P→ O, Λ̂

P→ Λ.

So, B̂ν = ΠÔ∗Ĉ
−1/2
0

P→ ΠO∗C
−1/2
0 = Π(PO)−1, i.e., the sequence B̂ν satisfies (3.42).

We now show (iii). From Theorem 3.3.1,
√
ν(vecS(Ĉ0 − C0), vecS(Ĉ1 − C1))

T d→

N (0, F ), where F ∈ S+(n(n + 1),R). Consider the spectral decompositions C0 =
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O0Λ0O
T
0 and Ĉ0 = Ô0Λ̂0Ô

T
0 . Then, by (3.33) at j = J1 and the Delta method,

√
ν(vecD(Λ̂0 − Λ0), vec(Ô0 −O0), vecS(Ĉ1 − C1))

T d→ N (0, JFJ∗). (A.44)

In (A.44), J is the block-diagonal matrix

J = diag
(
JJ1 , In(n+1)

2

)
∈M

(
n+ n2 +

n(n+ 1)

2
, n(n+ 1),R

)
,

and JJ1 is given by (3.31) with S = C0. Starting from (A.44), again the Delta method

yields

√
ν(vecD(Λ̂

− 1
2

0 − Λ
− 1

2
0 ), vec(Ô0 −O0), vecS(Ĉ1 − C1))

T d→ N (0,Σ),

where

Σ =

 −1
2
Λ

−3/2
0

I
n2+

n(n+1)
2

 JFJT

 −1
2
Λ

−3/2
0

I
n2+

n(n+1)
2

 ∈M

(
n+n2+

n(n+ 1)

2
,R

)
.

Thus, we arrive at the matrix system of equations

Λ̂
− 1

2
0 = Λ

− 1
2

0 +
1√
ν
Z1,ν , Ô0 = O0 +

1√
ν
Z2,ν , Ĉ1 = C1 +

1√
ν
Z3,ν , (A.45)

where

(vecD(Z1,ν), vec(Z2,ν), vecS(Z3,ν))
T d→ N (0,Σ). (A.46)

Since C−1
0 = O0Λ

−1
0 O∗

0, Ĉ
−1
0 = Ô0Λ

−1
0 Ô∗

0, consider the EJD algorithm with W =

O0Λ
− 1

2
0 O∗

0 in Step 1, and also with its estimated counterpart Ŵ = Ô0Λ̂
− 1

2
0 Ô∗

0. By

(A.45),

√
ν(Ŵ −W ) = O0Λ

− 1
2

0 Z∗
2,ν +O0Z1,νO

∗
0 + Z2,νΛ

− 1
2

0 O∗
0 +OP

( 1√
ν

)
, (A.47)
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and

√
ν(Ŵ Ĉ1Ŵ

∗ −WC1W
∗) = O0Λ

− 1
2

0 O∗
0C1O0Λ

− 1
2

0 Z∗
2,ν +O0Λ

− 1
2

0 O∗
0C1O0Z1,νO

∗
0

+O0Λ
− 1

2
0 O∗

0C1Z2,νΛ
− 1

2
0 O∗

0 +O0Λ
− 1

2
0 O∗

0Z3,νO0Λ
− 1

2
0 O∗

0 +O0Λ
− 1

2
0 Z∗

2,νC1O0Λ
− 1

2
0 O∗

0

+O0Z1,νO
∗
0C1O0Λ

− 1
2

0 O∗
0 + Z2νΛ

− 1
2

0 O∗
0C1O0Λ

− 1
2

0 O∗
0 +OP

( 1√
ν

)
. (A.48)

As a consequence, there are matrices

A1 = A1(O0,Λ0) ∈M
(
n2, n+ n2 +

n(n+ 1)

2
,R

)

and

A2 = A2(O0,Λ0, C1) ∈M
(n(n+ 1)

2
, n+ n2 +

n(n+ 1)

2
,R

)
such that

(vec(O0Λ
− 1

2
0 Z∗

2,ν +O0Z1,νO
∗
0 + Z2,νΛ

− 1
2

0 O∗
0))

T

= A1(vecD(Z1,ν), vec(Z2,ν), vecS(Z3,ν))
T , (A.49)

(vecS(O0Λ
− 1

2O∗
0C1O0Λ

− 1
2Z∗

2,ν +O0Λ
− 1

2O∗
0C1O0Z1,νO

∗
0 +O0Λ

− 1
2O∗

0C1Z2,νΛ
− 1

2O∗
0

+O0Λ
− 1

2O∗
0Z3,νO0Λ

− 1
2O∗

0 +O0Λ
− 1

2Z∗
2,νC1O0Λ

− 1
2O∗

0

+O0Z1,νO
∗
0C1O0Λ

− 1
2O∗

0 + Z2νΛ
− 1

2O∗
0C1O0Λ

− 1
2O∗

0))
T

= A2(vecD(Z1,ν), vec(Z2,ν), vecS(Z3,ν))
T . (A.50)

By (A.46)–(A.50),

√
ν(vec(Ŵ −W ), vecS(Ŵ Ĉ1Ŵ

∗ −WC1W
∗))T

d→ N(0,Σ2), (A.51)
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where

Σ2 =

 A1

A2

Σ

 A1

A2


∗

∈M(n2 + n(n+ 1)/2,R). (A.52)

In Step 2 of the EJD algorithm, write out the spectral decomposition WC1W
∗ =

Q∗D1Q and also its estimated counterpart Ŵ Ĉ1Ŵ
∗ = Q̂∗D̂1Q̂. From the ordering of

eigenvalues in (A.42) and expression (3.38),WC1W
∗ has pairwise distinct eigenvalues

22(J2−J1)h1 < . . . < 22(J2−J1)hn . So, by the Delta method,

√
ν(vec(Ŵ −W ), vec(Q̂∗ −Q∗))T

d→ N (0, JQΣ2J
∗
Q),

where

JQ = diag(In2 ,Jq) ∈M(2n2, n2 + n(n+ 1)/2), (A.53)

and Jq is given by

Jq =


(
q1· ⊗ (22h1 (J2−J1)In −WC1W

∗)+
)
D

...(
qn· ⊗ (22hn (J2−J1)In −WC1W

∗)+
)
D

 ∈M(n2, n(n+ 1)/2,R)

(cf. expression (3.31)), where the vector qi· denotes the i-th row of Q ∈ O(n). Let

T = (ti1i2)i1,i2=1,...,n2 be the permutation operator defined by the transformation

T (vec(R∗))T = (vec(R))T , R ∈M(n,R), i.e.,

ti1i2 =

 1, i1 = (k − 1)n+ p, i2 = (p− 1)n+ k, k, p = 1, . . . , n;

0, otherwise.

Thus,
√
ν(vec(Ŵ −W ), vec(Q̂−Q))T

d→ N (0,Σ3),
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where

Σ3 = diag(In2 , T )JQΣ2J
∗
Qdiag(In2 , T )∗. (A.54)

Then, we arrive at

Ŵ = W +
1√
ν
Z4,ν , Q̂ = Q+

1√
ν
Z5,ν ,

where (vec(Z4,ν), vec(Z5,ν))
T d→ N(0,Σ3). Therefore,

√
ν(Q̂Ŵ −QW ) = QZ4,ν + Z5,νW +OP

(
1√
ν

)
.

Therefore, for some matrix

A3 = A3(O0,Λ0, C1) ∈M(n2, 2n2),

we can write

(vec(QZ4,ν + Z5,νW ))T = A3(vec(Z4,ν), vec(Z5,ν))
T . (A.55)

Hence,
√
ν(vec(Q̂Ŵ )− vec(QW ))T

d→ N (0, A3Σ3A
∗
3),

as claimed. �

Proof of Proposition 3.6.1: Since X̂ = ÎνDX, then,

WX̂(a(ν)2
j) = (Îν)DWX(a(ν)2

j)D(Îν)
∗.

Thus,

WX̂(a(ν)2
j)−DEWX(a(ν)2

j)D = (Îν)DWX(a(ν)2
j)D(Îν)

∗ −DEWX(a(ν)2
j))D
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= (Îν)

{
DWX(a(ν)2

j)D− (Îν)
−1DEWX(a(ν)2

j)D((Îν)
−1)∗

}
(Îν)

∗

= (Îν)

{[
D(WX(a(ν)2

j)− EWX(a(ν)2
j))D

]
−
[
((Îν)

−1 − I)DEWX(a(ν)2
j)D

]

−
[
DEWX(a(ν)2

j)D

(
((Îν)

−1)∗ − I

)]

−
[
((Îν)

−1 − I)DEWX(a(ν)2
j)D

(
((Îν)

−1)∗ − I

)]}
(Îν)

∗. (A.56)

Recall that the operator vecD(WX(a(ν)2
j)) picks out the diagonal entries of the matrix

WX(a(ν)2
j), which are independent. Therefore, by Theorem A.2.1 for univariate

processes,

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(D(WX(a(ν)2

j)−EWX(a(ν)2
j))D))T

)
j=j1,··· ,jm

= K
(√

ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(WX(a(ν)2
j)−EWX(a(ν)2

j)))T
)
j=j1,··· ,jm

d→ N (0,KWK∗), ν → ∞. (A.57)

In (A.57),

K = diag(D2, · · · ,D2︸ ︷︷ ︸
m

), (A.58)

and

W(k1, k2) =

 wl,v,i, k1 = ln+ i, k2 = vn+ i;

0, otherwise.
(A.59)

where

wl,v,i = 4πb4hi+1
lv g4i (0)

∫
R
x−(4hi+2)|ψ̂(2lx/blv)|2|ψ̂(2vx/blv))|2dx,

and blv = gcd(2l, 2v), for l, v = 0, · · · ,m − 1, i = 1, · · · , n. By (3.45) and the Delta

method,

(
√
νvec((Îν)

−1 − I))T
d→ N (0,Σ(J1, J2)).
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Since EWX(a(ν)2
j) = diag(EWX1(a(ν)2

j), · · · ,EWXn(a(ν)2
j)), then

(vecD(((Îν)
−1 − I)DEWX(a(ν)2

j))D)T =

D2diag(EWX1(a(ν)2
j), · · · ,EWXn(a(ν)2

j))(vecD((Îν)
−1 − I))T .

Therefore,

√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(((Îν)

−1 − I)DEWX(a(ν)2
j)D))T

= D2

(
diag(a(ν)−2h1 , · · · , a(ν)−2hn)diag(EWX1(a(ν)2

j), · · · ,EWXn(a(ν)2
j))

)

·
(
(
√
νvecD((Îν)

−1 − I))T
)
· 1√

a(ν)
= OP

(
1√
a(ν)

)
. (A.60)

Similarly,

√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(DEWX(a(ν)2

j)D((Îν)
−1 − I)))T

= OP

(
1√
a(ν)

)
, (A.61)

and √
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)

· (vecD((Îν)−1 − I)DEWX(a(ν)2
j)D(((Îν)

−1)∗ − I))T = OP

(
1√
ν

)
. (A.62)

Consequently, by (A.78)-(A.62) and Slutsky’s Theorem, the limiting distribution of

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(WX̂(a(ν)2

j)−DEWX(a(ν)2
j)D))T

)
j=j1,··· ,jm

is equal to the limiting distribution of

K
(√

ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(WX(a(ν)2
j)−EWX(a(ν)2

j)))T
)
j=j1,··· ,jm

,
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as claimed. �

Proof of Proposition 3.6.2: In fact, for k = 1, · · · .n,

|σ2
k(2

j)− 2j2hkg2k(0)K(h)| =
∣∣∣∣ ∫

R
|ψ̂(2jx)|2(|gk(x)|2 − |gk(0)|2)|x|−(2hk+1)dx

∣∣∣∣
≤

∫
|x|≤π

|ψ̂(2jx)|2||gk(x)|2−|gk(0)|2||x|−(2hk+1)dx+

∫
|x|>π

|ψ̂(2jx)|2||gk(x)|2−|gk(0)|2||x|−(2hk+1)dx.

By (3.7), we have

∫
|x|≤π

|ψ̂(2jx)|2||gk(x)|2 − |gk(0)|2||x|−(2hk+1)dx ≤ C

∫
|x|≤π

|ψ̂(2jx)|2|x|β|x|−(2hk+1)dx

= C2j(2hk−β)
∫
|x|≤2jπ

|ψ̂(x)|2|x|−(2hk+1)+βdx

≤ C2j(2hk−β)
∫
R
|ψ̂(x)|2|x|−(2hk+1)+βdx. (A.63)

By (3.13), the integrand in (A.63) behaves like |x|2Nψ−(2hk+1)+β around the origin. By

(3.12), the integrand is bounded by |x|β−2α−2hk−1 as |x| → ∞, where β−2α−2hk−1 <

−1 as a consequence of (3.8). Thus,
∫
R |ψ̂(x)|

2|x|−(2hk+1)+βdx <∞ and

∫
|x|≤π

|ψ̂(2jx)|2||gk(x)|2 − |gk(0)|2||x|−(2hk+1)dx ≤ C2j(2hk−β).

Moreover, since gk(x) is bounded and by (3.12),

∫
|x|>π

|ψ̂(2jx)|2||gk(x)|2 − |gk(0)|2||x|−(2hk+1)dx ≤ C2−2jα

∫
|x|>π

|x|−(2hk+1+2α)dx

≤ C2j(2hk−β).

The last inequality holds because
∫
|x|>π |x|

−(2hk+1+2α)dx < ∞ and −2α < 2hk − β.

Consequently,

|σ2
k(2

j)− 2j2hk |gk(0)|2K(h)| < C2j(2hk−β),
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as claimed. �

Proof of Theorem 3.6.2: (This proof is follow the same arguments in the proof

of Proposition 3 in [46]). By rewriting (3.48), we have

√
ν

a(ν)

(



a(ν)−2h1σ̂2
X̂1
(a(ν)2j1)

...

a(ν)−2h1σ̂2
X̂1
(a(ν)2jm)

...

a(ν)−2hn σ̂2
X̂n

(a(ν)2j1)

...

a(ν)−2hnσ̂2
X̂n

(a(ν)2jm)



−



a(ν)−2h1σ2
X1
(a(ν)2j1)D(1, 1)2

...

a(ν)−2h1σ2
X1
(a(ν)2jm)D(1, 1)2

...

a(ν)−2hnσ2
Xn

(a(ν)2j1)D(n, n)2

...

a(ν)−2hnσ2
Xn

(a(ν)2jm)D(n, n)2



)
d→ N (0,G),

(A.64)

where σ̂2
X̂i

and σ2
Xi

are defined by (3.49) and (3.50), respectively. The limiting co-

variance matrix is block diagonal and can be written as G = diag(G1, · · · ,Gn). For

i = 1, · · · , n, Gi is a m×m matrix whose (k1, k2)-th entry is given by

Gi(k1, k2) = 4πb4hi+1
jk1 ,jk2

|gi(0)|2D(i, i)2
∫
R
x−(4hi+2)|ψ̂(2jk1x/bjk1 ,jk2 )|

2|ψ̂(2jk2x/bjk1 ,jk2 ))|
2dx,

where bjk1 ,jk2 = gcd(2jk1 , 2jk2 ) for i = 1 · · · , n, k1, k2 = 1 · · · ,m. However, under

condition (3.46), relation (3.54) implies that

√
ν/a(ν)a−2hi|σ2

Xk
(a(ν)2j)− |gi(0)|2K(hi)(a(ν)2

j)2hi|

≤ C
√
ν/a(ν)a−2hia2hi−β22jhi−β ≤ C

√
ν/a(ν)a−β → 0, ν → ∞, (A.65)
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for i = 1, · · · , n. As a consequence of (A.64) and (A.65),

√
ν

a(ν)

(



a(ν)−2h1σ̂2
X̂1
(a(ν)2j1)

...

a(ν)−2h1σ̂2
X̂1
(a(ν)2jm)

...

a(ν)−2hn σ̂2
X̂n

(a(ν)2j1)

...

a(ν)−2hnσ̂2
X̂n

(a(ν)2jm)



−



|g1(0)|2K(h1)2
2j1h1D(1, 1)2

...

|g1(0)|2K(h1)2
2jmh1D(1, 1)2

...

|gn(0)|2K(hn)2
2j1hnD(n, n)2

...

|gn(0)|2K(hn)2
2jmhnD(n, n)2



)
d→ N (0,G).

(A.66)

Define

f(x) =

( m∑
k=1

w1
k log(x1k), · · · ,

m∑
k=1

wnk log(xnk)

)T

,

for x = (x11, · · · , x1m; · · · ;xn1, · · · , xnm)T ∈ Rnm
+ and wi as in (3.52), i = 1, · · · , n.

Let yν and y0 be the left and right vectors in the difference between parentheses on

the left-hand side of (A.66). Then, f(yν) = (ĥ1, · · · , ĥn) and f(y0) = (h1, · · · , hn).

By (A.66) and the Delta method,

√
ν/a(ν)

[
ĥ1
...

ĥn

−


h1
...

hn


]

d→ N (0,∇f(y0)G∇f(y0)
T ),

where

∇f(y0) = diag(A1, · · · ,An),

and

Ai =

(
wi1

|gi(0)|2K(hi)22j1hiD(i, i)2
, · · · , wim

|gi(0)|2K(hi)22jmhiD(i, i)2

)
, i = 1, · · · , n.

�
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A.4 Proofs for Chapter 4

Proof of Proposition 4.1.1: Let Ỹt =
∑∞

l=−∞ Ylφ(t − l). Then, D̃(2j, k) =

2−j/2
∫
R Ỹtψ(2

−jt− k)dt. Therefore,

Cov(D̃(2j, k), D̃(2j
′
, k′))

= 2−jE
∫
R

∫
R

∞∑
l=−∞

∞∑
l′=−∞

ψ(2−jt− k)ψ(2−j
′
t′ − k′)φ(t− l)φ(t′ − l′)YlY

∗
l′ dtdt

′

= 2−jE
∫
R

∫
R

∞∑
l=−∞

∞∑
l′=−∞

ψ(2−jt)ψ(2−j
′
t′)φ(t+ l)φ(t′ + l′)Y2jk−lY

∗
2j

′
k′−l′dtdt

′.

By (4.2)

Cov(D̃(j, k), D̃(j′, k′))

= 2−j
∫
R

∫
R

∫
R

∞∑
l=−∞

∞∑
l′=−∞

ψ(2−jt)ψ(2−j
′
t′)φ(t+ l)φ(t′ + l′)

ei(2
jk−l)xe−i(2

j′k′−l′)|x|−(H+I/2)G(x)|x|−(H+I/2)∗dtdt′dx,

=

∫
R
Hj(x)Hj′(x)e

ix(2jk−2j
′
k′)|x|−(H+I/2)G(x)|x|−(H+I/2)∗dx, (A.67)

where G(x) and Hj(x) are defined in (3.19) and (4.3), respectively. Note that, by

Proposition 3 in [22],

|Hj(x)| = O(|x|Nψ), x→ 0, (A.68)

|Hj(x)| = O(|x|α), x→ ∞, (A.69)

so the integral on the right-hand side of (A.67) is finite. �

Proof of Proposition 4.1.2: Following the same argument in the proof of Propo-
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sition 3.3.1, we only need to show ∥Φ̃z∥2 is summable, where

Φ̃z :=

∫
R
Hj(x)Hj′(x)e

ixz|x|−(H−I/2)G(x)|x|−(H−I/2)∗dx.

Since

∥Φ̃z∥ =

∥∥∥∥P ∫
R
eizxHj′(x)Hj(x)diag(x

−(2h1+1)g21(x), · · · , x−(2hn+1)g2n(x))dxP
∗
∥∥∥∥2

≤ C∥P∥4 max
1≤k≤n

∣∣∣∣ ∫
R
eizxHj′(x)Hj(x)(2

j′x)x−(2hk+1)dx

∣∣∣∣2.
Moreover, for any 1 ≤ k ≤ n, by (A.68) and (A.69), Hj′(x)Hj(x)x

−(2hk+1)g2k(x) ∈

L2(R). Thus, by Parseval’s Theorem,

∞∑
z=−∞

∣∣∣∣ ∫
R
eizxHj′(x)Hj(x)x

−(2hk+1)g2k(x)dx

∣∣∣∣2

=

∫
R

∣∣∣∣Hj′(x)Hj(x)x
−(2hk+1)g2k(x)

∣∣∣∣2dx <∞,

so ∥Φ̃z∥2 is summable. Therefore, (4.5) and (4.7) hold. �

Proof of Proposition 4.1.3: Adapting the argument for the proof of Proposition

3.6.1 by replacing X̂ by X̃, the limiting distribution of

(√
ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)(vecD(W̃X̃(a(ν)2

j)−D̃EW̃X(a(ν)2
j)D̃))T

)
j=j1,··· ,jm

is equal to the limiting distribution of

K̃
(√

ν/a(ν)diag(a(ν)−2h1 , · · · , a(ν)−2hn)vecD(W̃X(a(ν)2
j)−EW̃X(a(ν)2

j))

)
j=j1,··· ,jm

.
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By (2.10), the spectral density of the l-th component of X is

fl(x) =
∞∑

k=−∞

|x+ 2kπ|−2dlg2l (x+ 2kπ), x ∈ (−π, π),

where dl = hl + 1/2, l = 1, · · · , n. Reexpress fl as

fl(x) = |1− e−ix|−2dlf ∗
l (x),

where

f ∗
l (x) =

∣∣∣∣2 sin(x/2)λ

∣∣∣∣2dlg2l (x) + |2 sin(x/2)|2dl
∑
k ̸=0

|x+ 2kπ|−2dlg2l (x+ 2kπ). (A.70)

Then, f ∗
l (0) = g2l (0), and

|f ∗
l (x)− f ∗

l (0)|

≤ |g2l (x)|
∣∣∣∣∣∣∣∣2 sin(x/2)x

∣∣∣∣2dl−1

∣∣∣∣+|g2l (x)−g2l (0)|+
∣∣∣∣2 sin(x/2)2dl ∑

k ̸=0

|x+2kπ|−2dlg2l (x+2kπ)

∣∣∣∣
= O(|x|2) +O(|x|β) +O(|x|2dl), x→ 0.

So, |f ∗
l (x)− f ∗

l (0)| < C|x|β∗ , where

β∗ = min{2, β, 2h1 + 1}. (A.71)

Thus, by Theorem 2 in [46],

(√
ν/a(ν)a(ν)2hl(W̃Xl(a(ν)2

j)− EW̃Xl(a(ν)2
j))

)
j=j1,··· ,jm

d→ N (0,W (dl)).

The (i, k)-th entry of the limiting covariance matrix is given by

Wi,k(dl) = 4π(f ∗
l (0))

224dlmax(ji,jk)+min(ji,jk)

∫ π

−π
|D|ji−jk|(λ; dl)|

2dλ, i, k = 1, · · · ,m,
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where D|ji−jk|(λ; dl) is defined in (4.14). Moreover, the entries of X are independent,

thus (4.13) holds. �

Proof of Theorem 4.1.3: The proof can be written as a direct adaption of

Theorem 3.6.2 by using Theorem 1 in [22] as the counterpart of Proposition 3.6.2. �

A.5 Proof for Chapter 5

Proof of Theorem 5.2.1: Let dl(2
j, k) be the wavelet coefficient of each Rhl in

(5.3), l = 1, · · · , n. Then, the sample wavelet variance of Y can be written as

W (2j) = P

(
1

Kj

Kj∑
k=1

di(2
j, k)dl(2

j, k)

)
i,l=1,··· ,n

P ∗, Kj =
ν

2j
.

By Theorem 3 in [39],

Var

(
1

Kj

Kj∑
k=1

d2l (2
j, k)

)
= O(ν2hl−2), l = 1, · · · , n.

Then, by the Cauchy-Schwarz inequality,

Var

(
1

Kj

Kj∑
k=1

di(2
j, k)dl(2

j, k)

)

≤

√√√√Var

(
1

Kj

Kj∑
k=1

d2l (2
j, k)

)
Var

(
1

Kj

Kj∑
k=1

d2i (2
j, k)

)

= O(ν(hi+hl)−2).

Thus,

ν1−hn
(
(W (2j)− EW (2j))

)
j=j1,··· ,jm
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=

(
P


Op(ν

h1−hn) · · · Op(ν
(h1−hn)/2)

...
. . .

...

Op(ν
(h1−hn)/2) · · · ν1−hn((1/Kj)

∑Kj
k=1 d

2
n(2

j, k)− σ2
Rn

(2j))

P ∗
)
j=j1,··· ,jm

,

(A.72)

where σ2
Rn

(2j) is the n-th diagonal term of EW (2j), i.e., the univariate wavelet vari-

ance of the process Rn. By (A.72) and Theorem 4 in [39], (5.10) holds. �

Proof of Proposition 5.3.1: Since R̂ = ÎνDR, then,

WR̂(a(ν)2
j) = ÎνDWR(a(ν)2

j)DÎ∗ν .

Thus,

WR̂(a(ν)2
j)−DEWR(a(ν)2

j)D = ÎνDWR(a(ν)2
j)DÎ∗ν −DEWR(a(ν)2

j))D

= Îν

{[
D(WR(a(ν)2

j)− EWR(a(ν)2
j))D

]
−
[
(Î−1
ν − I)DEWR(a(ν)2

j)D

]

−
[
DEWR(a(ν)2

j)D

(
(Î−1
ν )∗ − I

)]

−
[
(Î−1
ν − I)DEWR(a(ν)2

j)D

(
(Î−1
ν )∗ − I

)]}
Î∗ν . (A.73)

Recall that the operator vecDWR(a(ν)2
j) picks out the diagonal entries of the matrix

WR(a(ν)2
j), which are independent. Therefore, by Theorem 4 in [39] for univariate

processes, (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD(D(WR(a(ν)2
j)− EWR(a(ν)2

j))D)T
)
j=j1,··· ,jm

= K
(
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)



98

· (vecD(WR(a(ν)2
j)− EWR(a(ν)2

j))T
)
j=j1,··· ,jm

d→ KG, (A.74)

as ν → ∞. In (A.79), K and G are defined in (5.22) and (5.23), respectively. Since

Var(Î−1
ν − I) = O(ν2hn−2), then

(
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD((Î−1
ν − I)DEWR(a(ν)2

j)D)

)T

= D2

(
diag(a(ν)−2h1 , · · · , a(ν)−2hn)diag(EWRh1

(a(ν)2j), · · · ,EWRhn
(a(ν)2j))

)

·diag
(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)
·
(
ν1−hnvecD(Î

−1
ν − I))T

)

= OP

(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)
. (A.75)

Similarly, (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD(DEWR(a(ν)2
j)D((Î−1

ν − I)∗))

)T

= OP

((
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)T)
, (A.76)

and (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD((I−1
ν − I)DEWR(a(ν)2

j)D(Î−1
ν − I)∗)

)T

= Op

(
a(ν)hn−1

(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)T)
. (A.77)

Consequently, by condition (5.20), (A.79)-(A.82), and Slutsky’s Theorem, (5.21) hold-

s. �
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Proof of Proposition 5.3.1: Proof of Proposition 5.3.1: Since R̂ = ÎνDR,

then,

WR̂(a(ν)2
j) = ÎνDWR(a(ν)2

j)DÎ∗ν .

Thus,

WR̂(a(ν)2
j)−DEWR(a(ν)2

j)D = ÎνDWR(a(ν)2
j)DÎ∗ν −DEWR(a(ν)2

j))D

= Îν

{[
D(WR(a(ν)2

j)− EWR(a(ν)2
j))D

]
−
[
(Î−1
ν − I)DEWR(a(ν)2

j)D

]

−
[
DEWR(a(ν)2

j)D

(
(Î−1
ν )∗ − I

)]

−
[
(Î−1
ν − I)DEWR(a(ν)2

j)D

(
(Î−1
ν )∗ − I

)]}
Î∗ν . (A.78)

Recall that the operator vecDWR(a(ν)2
j) picks out the diagonal entries of the matrix

WR(a(ν)2
j), which are independent. Therefore, by Theorem 4 in [39] for univariate

processes, (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD(D(WR(a(ν)2
j)− EWR(a(ν)2

j))D)T
)
j=j1,··· ,jm

= K
(
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

· (vecD(WR(a(ν)2
j)− EWR(a(ν)2

j))T
)
j=j1,··· ,jm

d→ KG, (A.79)

as ν → ∞. In (A.79), K and G are defined in (5.22) and (5.23), respectively. Since

Var(Î−1
ν − I) = O(ν2hn−2), then

(
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)
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·(vecD((Î−1
ν − I)DEWR(a(ν)2

j)D)

)T

= D2

(
diag(a(ν)−2h1 , · · · , a(ν)−2hn)diag(EWRh1

(a(ν)2j), · · · ,EWRhn
(a(ν)2j))

)

·diag
(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)
·
(
ν1−hnvecD(Î

−1
ν − I))T

)

= OP

(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)
. (A.80)

Similarly, (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD(DEWR(a(ν)2
j)D((Î−1

ν − I)∗))

)T

= OP

((
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)T)
, (A.81)

and (
diag((ν/a(ν))1−h1a(ν)−2h1 , · · · , (ν/a(ν))1−hna(ν)−2hn)

·(vecD((I−1
ν − I)DEWR(a(ν)2

j)D(Î−1
ν − I)∗)

)T

= Op

(
a(ν)hn−1

(
νhn−h1

a(ν)1−h1
, · · · , ν

hn−hn

a(ν)1−hn

)T)
. (A.82)

Consequently, by condition (5.20), (A.79)-(A.82), and Slutsky’s Theorem, (5.21) hold-

s. �

Proof of Theorem 5.3.3: By rewriting (5.21), we have

(
ν

a(ν)

)1−hi(


a(ν)−2hiσ̂2
R̂i
(a(ν)2j1)

...

a(ν)−2hiσ̂2
R̂i
(a(ν)2jm)

−


D(i, i)2Cψ(hi)2

2j1h1

...

D(i, i)2Cψ(hi)2
2j1h1


)
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d→


D(i, i)2Cψ(hi)2

2j1h1S(hi)R
hi
j1

...

D(i, i)2Cψ(hi)2
2jmh1S(hi)R

hi
jm

 , (A.83)

for i = 1, · · · , n. Define

fi(x) =
m∑
k=1

wik log(xk),

for x = (x1, · · · , xm)T ∈ Rm
+ and wi as in (5.27), i = 1, · · · , n. Let yiν and yi0 be the

left and right vectors in the difference between parentheses on the left-hand side of

(A.83). Then, by (5.28), fi(y
i
ν) = ĥi and fi(y

i
0) = hi, i = 1 · · · , n. By (A.83) and the

Delta method,

(
ν

a(ν)

)1−hi
(ĥi − hi)

d→ ∇fi(yi0) ·


D(i, i)2Cψ(hi)2

2j1h1S(hi)R
hi
j1

...

D(i, i)2Cψ(hi)2
2jmh1S(hi)R

hi
jm


d
= S(hi)

m∑
k=1

wikR
hi
jk
,

for i = 1, · · · , n. This establishes (5.29). �

A.6 Useful lemmas and theorems

Lemma A.6.1. ([23]) Let {ξn, n ≥ 1} be a sequence of centered Gaussian vectors

and let Γn be the covariance matrix of ξn. Let (An)n≥1 be a sequence of deterministic

matrices with adapted dimensions such that

lim
n→∞

Var(ξTnAnξn) = σ2 ∈ [0,∞].

Assume that

lim
n→∞

ρ(An)ρ(Γn) = 0,
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where ρ(·) denotes the spectral radius. Then

ξTnAnξn − E(ξTnAnξn)
L→ N (0, σ2).

Lemma A.6.2. ([46]) Let m ≥ 2 be an integer and Γ be a m×m covariance matrix.

Let p be an integer between 1 and m − 1. let Γ1 be the top left submatrix with size

p× p and Γ2 the bottom right submatrix with size (m− p)× (m− p). Then

ρ(Γ) ≤ ρ(Γ1) + ρ(Γ2).

Lemma A.6.3. ([46]) Let {ξk, k ∈ Z} be a stationary process with spectral density

function f and let Γn be the covariance matrix of (ξ1, · · · , ξn). Then, ρ(Γn) ≤ 2π ∥

f ∥∞ .

The following theorem provides the partial derivatives of the eigenvalues and eigen-

vectors of a symmetric matrix with respect to the latter.

Theorem A.6.1. ([47], Theorem 1) Let S0 ∈ S(n,R), and let u0 be a normalized

eigenvector associated with a simple eigenvalue λ0 of S0. Then, we can define a real-

valued and a vector function λ and u, respectively, for all symmetric matrix S in some

neighborhood N(S0) ∈ S(n,R) of S0, where

λ(S0) = λ0, u(S0) = u0,

and

Su = λu, uTu = 1, S ∈ S(n,R).

Moreover, the functions λ and u are infinitely differentiable on N(S0), and their
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differentials at S0 are given by

∂λ

∂[vecS(S)]
= (uT0 ⊗ uT0 )D,

∂u

∂[vecS(S)]
= [uT0 ⊗ (λ0In − S0)

+]D. (A.84)

In (A.84), the symbol ⊗ and the superscript + denote the Kronecker product and

the Moore-Penrose inverse, respectively, and D is the duplication matrix defined by

(3.30).

Lemma A.6.4. ([43], Lemma B.3) Let {ϕ.} ∈ R be a sequence such that
∑∞

z=−∞ |ϕzgcd(aj ,aj′ )| <

∞. Then,

1

ν

aj′ν∑
k=1

ajν∑
k′=1

ϕajk−aj′k′ → gcd(aj, aj′)
∞∑

z=−∞

ϕzgcd(aj ,aj′ ), ν → ∞.

A.7 Empirical study of diffusion data

This section consists a study of bivariate diffusion data provided by the David B.

Hill Lab (UNC-Chapel Hill). The main goal is to verify whether the diffusion data

have different diffusion exponents along different directions. To achieve this goal, the

tools we use are the two-step wavelet-based method and the wavelet eigen-structure

method developed in Chapter 3 and [43], respectively. The statistical analysis covers

COS2-NO data set. The data set alternates between the abscissa and ordinate coor-

dinates that make up the two-dimensional sample path of each microparticle under

the microscope.

There are mainly two kinds of data paths: diffusive and quasi-stationary (Figure

A.1). The range of quasi-stationary paths are much narrower than the diffusive ones,

which suggests that the former particles are trapped by some physical barrier. In this

section, we focus on the diffusive sample paths, which can be models as stationary

increment processes. 50 sample paths were randomly selected for each of the 4 con-

centration levels: 2,4,8,16 mg ml−1, Table A.1 and Table A.2 show the estimates of
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h1, h2 and h2 − h1 by means of the two-step wavelet-based method and the wavelet

eigen structure method, respectively. Based on the Monte Carlo simulation studies

shown in Table A.3-A.4, we cannot reject that h1 = h2 = h for each concentration

level of COS2-NO diffusion data.

COS2-NO (mg ml−1) ĥ1 ĥ2 ĥ2 − ĥ1
2 0.27988 0.33198 0.052097
4 0.17661 0.22743 0.050821
8 0.22266 0.31085 0.088192
16 0.4513 0.51841 0.067112

Table A.1: Two-step wavelet-based estimation for Hurst parameters of bivariate diffusion data. 50
independent paths of length 1800 are randomly selected from each group.

COS2-NO (mg ml−1) ĥ1 ĥ2 ĥ2 − ĥ1
2 0.22493 0.33439 0.10946
4 0.1066 0.17659 0.069991
8 0.20289 0.28833 0.085443
16 0.40256 0.51271 0.11014

Table A.2: Wavelet eigen structure estimation for Hurst parameters of bivariate diffusion data. 50
independent paths of length 1800 are randomly selected from each group.

true h ĥ1 ĥ2 ĥ2 − ĥ1 sd(ĥ2 − ĥ1)
0.2 0.12818 0.23181 0.10364 0.081683
0.5 0.4458 0.5532 0.1075 0.0837

Table A.3: Two-step wavelet-based estimation for the Hurst parameters of simulated bivariate op-
erator fractional Brownian motion with h1 = h2 = h. Sample size=1800, number of MC runs=1000.

true h ĥ1 ĥ2 ĥ2 − ĥ1 sd(̂̂h2 − ĥ1)
0.2 0.067089 0.19416 0.12707 0.093029
0.5 0.37157 0.5060 0.13443 0.11003

Table A.4: Wavelet eigen structure estimation for the Hurst parameters of simulated bivariate oper-
ator fractional Brownian motion with h1 = h2 = h. Sample size=1800, number of MC runs=1000.
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Figure A.1: Two kinds of diffusion sample paths.
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