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ABSTRACT

Advanced omics technologies have been generating abundant multi-ethnic multi-
omics data, including DNA sequences, methylations, gene expressions, and copious
clinical traits. Such big data pose unprecedented challenges due to the high complexity of
heterogeneous networks between biomarkers. Heteroscedasticity (aka, dispersion
heterogeneity of trait residuals) is a common phenomenon in multi-omics data mining. It
can be caused by interactions such as genexgene, genexenviroment, linkage
disequilibrium (LD) between marker loci, and pleiotropic traits as well. Especially, it
occurs in the data mining of the multi-omics data of admixed individuals subjects due to
broad admixture LD and genexancestry interactions. Meanwhile, it can be induced by
background confounders, e.g., population structure, cryptic relatedness, polygenetic
effects, and correlations between residuals of multiple traits. However, existent univariate
and multivariate methods neglect all the high-order effects of both test biomarkers and
background confounders. This dissertation contributes systematic harmonious signal
augmentation methods with applications for distilling high-order information from
multiethnic DNA sequences to microarrays. In Chapter I, we proposed a novel
harmonious signal augmentation schemes in single-based association tests. The
harmonious single-based association test (HSAT) is more powerful then existent single-
based methods in both simulations and real data application. In Chapter II we put forth

harmonious gene-based association tests (HGAT) to incorporate high-order effects.



Within a gene, the importance of a test variant is measured by the signal of marker-wise
high-order effects. Leveraging high-order effects of genetic variants has proven to
improve power for identifying susceptive genes. By extensive simulations under
published designs, the proposed method properly controlled type I error rates and
appeared strikingly more powerful than existent prominent gene-based sequence
association methods. We apply HGAT methods in homogeneous population and admixed
population. There are two parts in Chapter 11, the first part introduced integrating
informative mean and variance effects to identify differentially expressed (DE) genes.
The second part illustrated the application of harmonious integration of mean and high
order effects to identify differentially expressed (DE) genes. In summary, this dissertation
demonstrated tremendous potential of explicitly distilling informative higher-order
effects in big multiethnic multi-level data mining and offered paradigm applications for
integrating high-order information resources while effectively calibrating major
heteroscedastic confounders.

Keywords: Single-based and gene-based tests, Harmonious signal augmentation, High-

order heterogeneities, admixed population, differentially expressed (DE) genes
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CHAPTER 1

HARMONIOUS SIGNAL AUGMENTATION SCHEMES IN
SINGLE-BASED ASSOCIATION TESTS

1.1  Abstract

Current prominent single-based association metbbdemplex disease
phenotypes are based on homoscedasticity workirdgrsoi.e., linear models (LMs),
generalized linear models (GLMs) and generalizegldir mixed models (GLMMs),
which only aim to exploit the mean effects of vatgon disease traits. All these models
assume homoscedasticity that model residuals dependent of all predictors
(covariates and variants). As shown by real-woddedic data, the assumption of
homoscedastic residuals is incompetent to accaumqtfenotypic variation induced by
the complex structure of biological networks. Irsthaper, we proposed a novel
harmonious signal augmentation schemes to solvedioalled “Searching Needles in
the Haystack” problem in single-based associagstst Two advantages are highlighted
in our novel schemes: (1) Integrating mean effadtl@gh-order effect, which indicates
association signal of genotypes on the high-ordements of quantitative traits beyond
the first order moment (e.g. the mean), can effetiselect single variants that involve
in potential interactions and causal networks niatevariates. (2) The few association
methods integrating mean and variance effects dtypes sacrifice statistical power

and had poor association power for susceptibledograre frequency variants(i.e. minor
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allele frequency (MAF)<5%). By extensive simulasamd real data application to
COGA data, our harmonious augmentation method Itoalgout dramatic association
power gain for detecting low and rare frequencyards and demonstrate the superiority
of the novel method to existing mean-only and meaance association tests for
continuous trait in homogeneous populations unitieatsons of variance heterogeneity
andG X E interactions.

Key words:

Harmoniously integration, Variance heterogeneditys E and G X G interactions, High-

order effects, Single-based method

1.2  Introduction

In recent years, the development of sequencingitéagies is accelerating the
process of localize genetic determinants (i.e ¢episble variants, genes) which govern
the underlying disease risk and trait value. Curpeaminent single-based sequence
association methods of complex disease phenotypdsaaed on homoscedastic
regression models. i.e., generalized linear mo@&ls)[1], and generalized linear
mixed models (GLMMs)[2, 3],which only aim to exitine effects of variants on the
alteration of first-order moment of disease tréits. the mean). All these models assume
homoscedasticity that model residuals are indeperafeall predictors (covariates and
variants) and consistent across all individual galtAs shown by real-world genetic data,
the homoscedastic models are too simple to effegtivapture high complex disease

genetic mechanisms.

13



The violation of homoscedasticity is called thegnescedasticity problem and
was noticed as early as in 2000 in genetic field[#e emerging interests of
heteroscedasticity relied on the point that rathan a concern of impediment to
statistical modeling of genetic data, heteroscéclstould be of biological interest.
Exploring heteroscedasticity can be regarded adtamative to identify single-variant
that involves in potential interactions and caumvorks with latent covariates. Variants
that display variance heterogeneity can be caugduobogical disruption, linkage
disequilibrium (LD), gene-by-gene (G x G), or gdneenvironment (G x E) interaction.
For example, variability-controlling quantitativeit loci (vQTL)[5-11] are genetic
variants whose allelic states associate with plypnotariability, namely the variance of
phenotype values around the mean. vQTL shows seideree of potential interactions
with other genes (e.g., GenexGene, namely, e@3$tasenvironmental factors (e.g.,
GenexEnviroment), and the locus with an inflatibwariance within its genotypes due
to being a mixture of genotypes from the genuinesabloci[11]. Another example is
Expression variability QTLs (evQTLs)[12] that wesported as marker loci whose
allelic states are associated with variances oé gaqpression.

If a genetic locus is genuinely functional to theedse, it would lead to the
alteration of trait distribution instead of sole¢he trait mean. From a statistical
perspective, the distribution of a random variataie be completely determined by all its
moments. High-order moments can capture extranmition beyond mean heterogeneity
of the outcome. For single-SNP analysis, the mduaatage of few methods integrating
mean and variance effects is to detect SNPs thattated to the alteration of trait

distribution in presence @& x G, G x Eand dependence of variance of traits on
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genotype. For example, Cao et al.[11] consideregimasd variance differences
simultaneously by proposing a versatile likelihgoidt test (LRT). And Soave et al.[13]
proposed another joint location-scale (JLS) tedtiagnework that simultaneously tests
the mean and variance by aggregating associatidermse from the location-only (i.e.
the partial t-test on mean effect) and scale-oedyst (i.e. Levene’s test [14] for dispersion
heterogeneity of phenotypic residuals among thes®typic groups) using Fisher’s
combination method[15]. They demonstrated the sappower of the JLS method when
G x E interactions exist and are not explicitly model€de two integrative methods
mentioned above combine the association signafs fnean test and variance test
orthogonally. In such orthogonal integration, theam and variance test statistics are
independent to each other, for both causal SNmhanttal SNP. Their perceived
disadvantage are the essential power loss thareatiomal mean-only association test
(MT) when association signal from variance testsask relative to that from mean test.
Heteroscedasticity can be driven by the effectgemiotypes on high-order
moments of trait values beyond the first order mainfeamely, the mean). But it is a
very narrow conception to only indicate variande@s of genotypes on the variance of
guantitative traits. The independence of mean amince tests would bring about power
loss as illustrated. Therefore in contrast to thikeagonal joint tests above, our
framework incorporates high-order association dggmstead of only the variance effect
of genotypes on trait values harmoniously. Heretnprnopounded the novel ideology of
harmonious tests: A pair of (mean and high-ordesjstare harmonious if (Null
independenceahey are independently distributed at neutralkaes; (2)Alternative

dependencehey are statistically dependent at causal mar&ed their flanking markers.
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The null independence warrants us to properly cbofrtype | error rate. This is crucial
to prevent false positives. The merit of altermratieependence is the core novelty of our
method. In presence of latent factors, this mewit warrant dramatic power gains than do
famed orthogonal combination methods, i.e., themtg published JLS and LRT and can
effectively augment the association signal evenahly has mean heterogeneity; while
the famed methods lead to essential power loss.

The major challenge of genome-wide sequencing esudilike “searching
needles in the haystack”. For a complex trait ftimetional variants are usually sparsely
scattered along the genomes and the minor alletriéncy of the SNPs are usually small
or moderate. In this paper, we proposed our nouglesbased test framework of
harmoniously integrating mean and high-order e$fettest markers while easily
calibrating both the mean and dispersion effeciabal covariates. Two major
advantages are highlighted in our novel test fraorkw(1) Integrating mean effect and
high-order effect, which indicates association algrof genotypes on the high-order
moments of quantitative traits beyond the firstesnshoment (e.g. mean), can effectively
select single-variant that involves in potentidgémctions, causal networks, latent
covariates. (2) The existent association methodgpbar association power of
susceptible low and rare frequency variants in seging studies. Our harmonious
augmentation method brought about dramatic assacipbwer gain for detecting low
and rare frequency variants (eMAF < 5%) and demonstrate the superiority to existing
mean-only and mean-variance association testofgimzious trait in homogeneous
populations under situations of variance heteroigggaedG x E interactions. In

addition, our novel gene-based method are capdlletaining analytical p-values and is
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convenient to implement on genome-wide scale. Bgrestve simulations for single
variants under different scenarios, our novel mefv@sents strikingly power gains than
existing methods. Moreover, we have applied ouhotkto the COGA on the alcohol
addiction of 991 whites. The results demonstragentbteworthy superiority of our

method to existing tests in replicating and idemtig) novel susceptive variants.

1.3  Materials and methods
1.3.1 Model Notation and Construction of Harmonious Singk-Based
Association Test (HSAT)

Firstly, we demonstrate the notations and assumptd our HSAT method. To
be specific, let; be a quantitative trait residual for individuafter adjusting for
heteroscedastic effects of environmental covarjatede the copy number of minor
alleles at the test SNIE,(= 0,1,2). n is the population size in the study. In contex¢, t
symbols ‘md’, “ho” and “mh’ stands for “modeling the genetic mean effecty/gnl
“modeling genetic high-order effects only” and “netidg genetic mean and high-order
effects jointly”. The novel model framework canuwstten as:

Primary Test (mo)

Yi=u +Gpi+e, Eqg. 1-1

wherey; is the intercept anel represents the random error term. The distribution
assumption oé; can be loosed to symmetric distribution witte;) = E(e?) =

0,E(e) < o , in whichE(.) is expectation functior, is the effect size of genotyse
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on trait valueY;. The null hypothesis of testing the mean effeéijs,,: f; = 0. The test

statistic is

T = ‘/ﬁﬁy,a

1= N Eq. 1-2
Oy0g — Oyg
wheredy ; = =31, (Y; = V)(G; — G), 67 ==X, (Y; - V)% ,6¢ = Z ' (G — G)?,in
o1 = 1 Vn=2r(Y,G)
whichY = - rY,G= - 1 G;. T, is equivalent te\/;i( wherer(Y,G) is the
sample Pearson coefficient of correlation betw@emdY .
Auxiliary Test (ho)
Y2 =, + G2, + e, Eq. 1-3

wheree;’ is the random error term. The highlight of auxiliéest is to capture the
second-order moment information beyond the meaedressing the squared trait
residualY; against the square of genoty@e S, is the effect coefficient of the squared
genotypeG? onY?. The null hypothesis of testing the high-ordeeeffisH, ;,,: 5, = 0.
High-order effect is a broader concept than dispersffect. The association statistic of
testingp, is

\/561/2,62

A2 A2 A2
Jayzaaz — Oyz252

Ty = Eq. 1-4
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wheregyz =% n (v -Y2)(G? - G?),6% = Z?=1(Yiz ~Y2)", in which¥? =

Y2 andG? = - {l L GE. T, is equivalent teM wherer(Y?,G?) is the

sample pearson coefficient of correlation betwéérandY 2.

If G is associated with (8, # 0), thenG? is associated withi?> (namely,
r(Y?,G?%) # 0). Conversely, a test SNPPhas nothing to do with thé of interest
(precisely, namely, it does not harbor causal@ldeld are not in any LD block with any
causal loci of the trait), then the mean heteromgmeodel (no) is true. Under theno
model, it can be mathematically proved that= 2. Therefore both the primary and
auxiliary models would hold wit§; = £, = 0. In detail, the primary and auxiliary tests
are called to be harmonious if (1) Null independeffig andT, are asymptotically
independent if and only f#; = 0; (2) Alternative dependencé; andT, are
asymptotically dependent if and only #;, # 0. The harmonious properties Bf andT,
can be guaranteed by the following proposition.

Proposition: Under primary model, if (e}) < c andE(e;) = E(e) = 0, then

— 6, and T, — 6, converge in distribution to a bivariate with uniariance and
correlation  coefficient p = ;67165 [62(Bus — 315 + upy — uips) + BE(ug —
2Uptts + Hils — UTls + U5 — paiopis + pip3)], in which py

E(G®)for integer k and var(e;) & o?.

(1282 (O 9)

whereC; and(, are function of3; andp,, respectively.
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The detailed mathematical proof of the asymptoticahriate normal distribution
of T; andT, and expressions @f andC, are displayed i\PPENDIX A.1. The joint
null hypothesis of our HSAT method is written as:

Homn:f1=P2=0

Based on the proposition, we adopted Fisher’'s nigidd to define the HSAT

statistic as

Tysar = —2(og(pm) + log(pp)), Eqg. 1-5

wherep,, be the p value for testing, ,,,: f1 = 0 andp,, be the p value for testing

Ho.no: B2 = 0.

1.3.2 Simulation Designs for single-based analysis

Herein we consider three different scenarios far foethods: HSAT, JLS, LRT
and MT, in which MT is the traditional mean asstomtest. Both the LRT and the JLS
are orthogonal integrative methods and are not baions.
1.3.2.1 Scenario |

One main disadvantage for single-based associtgsgnms its poor performance
on detecting low and rare variants. Bmenario ] we focus on the performance of
methods on detecting low and rare variants (d4F < 5%). The additive genetic
model was applied to generate the d#ta: G;5 + e;. WhereY; be a quantitative trait
value for individuali, G; be the copy number of minor alleles at the ted? §N =
0,1,2), B is the effect size of genotype on the trait value.

We simulated the SNP with minor allele frequencyAf p equal to 0.01, 0.025,

0.05, mimicking the low and rare causal SKPfollows binomial distribution with MAF
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p. e; is standard normal distributed error term. Underddditive genetic model, the

var(G) _  B*2p(1-p)

. r. . - 2
heritability of genotypeX?) is defined a®? = Var(t) _ 1+B22p(-p)’

For one single

SNP, we lefi?ranges from 0% to 2% by a grid of 0.1%, which meams single locus

can only explain at most 2% of the total trait sage. And the effect size of genotype

can be calculated gs= /2(1_};—;(1_19) . 100,000 replicates were simulated. The sample

size is set to 1000 that is close to our real d#tas

1.3.2.2  Scenario ll

We adopted the simulation design frame by Soaa{ E?]. The MAF of
genotypei; was fixed to be 0.3. The trait value Y was simediairom the following
modelY; = 0.5 * X;; + 0.5 * X,; + 0.3 * X3; + G; 5 + G;X3;6 + e;, Where the error term
e; follows a standard normal distributiaty,; is continuous normal distributed covariate
(e.g.X1;~N(0,1)), X,; follows binomial distribution with frequency 0.bat mimics the
binary covariate such as gendine unobserved exposure variaklg was binary
variable with frequency 0.3 (e.§s;~B(2,0.3) ).

The main mean genetic effg€twas set to be 0.01, 0.05, and 0.1, and the
interaction effect of G; x X5; was varied between 0 and 1 by a grid of 0.1. This
simulation consider the potential latéhix E interactions in genetic dataset. 100,000

replicates were simulated. The sample size isEd®0 that is close to our real datasets.
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1.3.2.3 Scenario Il

The simulation design is similar as that by Caal el 1]Genotype#; affect both
mean and variance of quantitative tigitin other words, a functional loc@s in this
situation may have variance heterogeneity acrdtereint genotypes. The quantitative
traitsY; were generated using the following modél= 0.5 * X;; + 0.5 x X,; + G; + ¢;,
Wheree;~N (0, exp(G;y)), in whichy is the effect size of genotype on variance and
exp(.) is the exponential function which guarantees Wlaaiance of the normal
distribution is always positives is the effect size of genotyp@; follows binomial
distribution with MAFp. For different genotypic score, the trait validas different
variancesX; is continuous normal distributed covariate (&g~N(0,1)) and X,;
follows binomial distribution with frequency 0.5ahmimics the binary covariate such as
gender. The variance effect sizeanged from 0 to 0.5 by a grid of 0.05. To obtain
reasonable power for methods comparisons, we $pgcib be 0.5 to mimic the low
frequency causal variant8.§% <MAF< 5%) with relatively large effect size and be
0.25 to mimic common causal variants (MAKB%). The MAFp of a common variant is
randomly generated from interval (0.05, 0.5) arat tf low frequency variant is

randomly generated from interval (0.005, 0.05)antereplicate.

1.3.3 Real Data Analysis on Genetics of Alcoholism (COGA$tudy

We reanalysis an existing well-characterized sarap50 unrelated Africans
selected from COGA Study at 936,263 SNPs that #pagenome for alcohol
dependence (AD). Positions of all SNPs are genauid B6.3. The primary phenotype

is DSM-IV AD[16]. SNPs were excluded if minor akeirequency (MAF)<0.5% or call
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rates<95%, leaving 856,149 SNPs after genotypatguaintrol. Among 1050 unrelated
individuals, 59 were excluded due to missing oraxe trait values. 991 individuals
underwent final analysis. Following genotype qyatibntrol, we applied the double
generalized linear model (DGLM)[17] to adjust fathh mean and variance effects of
environmental covariates. The DGLM is implemente®ipackage dgim. The covariates
to adjust for in analysis are gender (1=Male, 2=&lejn smoking (0~7), normalized age,
squared-normalized age and estimated populatiahfgtation (e.g. PCs). Since age
ranges from 18 to 77, normalizing age can reduedliffierence of age profiles. Adding
the square of normalized age allows you to modekffect of age that may have a non-
linear relationship with the phenotype AD. The ustbn of smoking was to remove
possible spurious results caused by effects of sigatonsidering the moderate
relationship £2 = 0.58) between drinking and smoking. For background patmn
structure adjustment, we didn’t follow the routinay to solely account for the top ten
PCs. Instead we adjust for PCs with mean effecteoance effects or both on
phenotype. After adjusting for both mean and vaeaeffects, global covariates have no
significant mean and variance effects in AD. Foilogvall the procedure above, we
centralized the trait residuals in the final st€pvariates adjustment and centralization
does not remove the genotype information on bathmikan and second-order moment of

trait value. The flow chart of data-processing Weplayed inFigure 1-1
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59 individuals

991 individuals ‘g’jeri;en'::;’;f‘:
underwent final analysis ;
) or extreme trait

\ 4
values

]v Data-Pre-Processing

@ D 4 N\

a

Covariates: Normalized age, | The new Y*: centralized
squared Normalized age, . ’ 856,149 SNPs ‘
Gender, Smoking, PCs the response residuals

| I |

Appling the double 1. Deletion: SNPs were excluded

1. Normalizing age to reduce generalized linear if frequency (MAF)<0.5% or

the difference of age profiles. model (DGLM) to missing value rates<95%.

2. Adding the square of adjust for both 2. Imputation: For missing SNP

normalized age to model the mean and variance with MAF >0.5%, we

non-linear effect. effects of covariates estimated the frequency of
including PCs. binomial distribution for this

SNP and impute it.

Figure 1-1: Flow Chart of Data Processing of COGA study

1.4 Results
1.4.1 Type | error rate of Single-Based Association tests
100,000 replicates were generated under the nudeineith no associatiors(=
0,a = 0,y = 0) for HSAT, JLS, LRT and MT at different nominalkds. The sample
size is still 1000. Seen frofigure 1-2,MT, JLS and our HSAT generally controlled
Type | error rates at different given nominal sfgraince levels, while LRT is outside of

the 95% concentration band and was a little inflatelarger nominal levels.
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Figure 1-2: Comparison of false positive rates of eight methaadder null hypothesis.

1.4.2 Empirical power comparisons of single-based Assodian Tests

To demonstrate that HSAT is not only robust bub afore powerful than either
the traditional mean test or other two orthogontdgrative methods, we investigated
three simulation scenarios to evaluate the powiek$To JLS, LRT and HSATWe set
sample size as 1000 that is close to real sangaeo$iCOGA study.

Figure 1-3summarized the results fBcenario lat genome-wide nominal level
a =5 x 1078, This scenario does not favor the integration mé$hJLS, LRT and HSAT
because there are no latent interactions or LD dé&tviest and causal locus that can bring

about variance heterogeneity on trait value. @appsed HSAT is the most powerful
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among the four method€ompared with the second most powerful test, M& gbwer
gain of HSAT is more noticeable for SNP with smaN®AF. In contrast, JLS and LRT is
less powerful than MT under all situations. The powss of JLS and LRT is due to the
increase of degree of freedom in integrating mewhvariance tests and orthogonal

integration didn’t bring about enough additiondbmmation.

(a) MAF=0.01 (b) MAF=0.025 (c) MAF=0.05
N —wr N —wr N —
== JLS == JLS == JLS
== LRT == LRT == LRT
0.8 HSAT 0.8 HSAT 0.8+ HSAT
. 0.6 . 0.6 . 0.6
H H s
o [=] o
o o o
0.4 0.4 0.4-
0.2 0.2 0.2+
i -
- 5 "
e 1 ..'l‘ - r,‘
0— ms 0 e D e i
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0 0.4 ¥ . 1.6 2 0 0.4 ¥ 1.2 1.6 2 0 04 08 12 16 2
The heritability of Genotype (%) The heritability of Genotype (%) The heritability of Genotype (%)

Figure 1-3: Power comparison of MT, JLS, LRT and HBAnder Scenario | at nomit
level 5 x 1078,

We adopted simulation design Bpave et al[13}jh Scenario |l There existed
unobserved exposure variablg @nd the corresponding interaction between gemotyp
and unobserved exposure variafifex E) in generating the traiEigure 1-4displayed
the power results for the four methods, in whichAHISs the most powerful method with
different interaction effect sizéss, followed by the second most powerful test, JuS f
different genetic effect sizes.LRT is less powerful than JLS and is always Sop&o

the traditional MT method. The MT has the least podue to its failure of capturing the
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additional information front; X E interaction. The values ¢fs andds are similarly

determined as that by Soave et al.

(a) Effect Size £=0.01 (b) Effect Size 3=0.05 (c) Effect Size B=0.1
N — wr N — wr o — wur -
- = JLS - - JLS 7 - - JLS
- LRT i == LRT ﬂ‘ -- LRT
0.8 HSAT P 0.8 HSAT o 0.8 HSAT
]
L]

0.6 0.6

Power
Power
Power

0.4 0.4

0.2+ 0.2

/]
>
i

T 17T 17T T T T°1 r1
] 0.2 0.

T
0.6 0.8 1

Interaction Effect of GxE Interaction Effect of GxE Interaction Effect of GxE

Figure 1-4: Power comparison of MT, JLS, LRT and HSAT undeegr&aio Il at
nominal level 5 x 1078,

For Scenario lll,the simulation design framework mimics the situaid
variance-heterogeneity loci (vQTL), which have eliffint variances across genotypes.
Such variance heterogeneity may be induced by LB avfunctional causal variant or
G X G interactions. The main effect sigas set to be 0.25 for common causal variants
and 0.5 for low frequency causal variant in ordeobtain reasonable power
comparisons. Such setting is also consistent Wetpbpular assumption that low and
rare variants would have rarer causal loci havatgreeffects. The effect sizeis a
measure of genetic effect on the variance of ualite.Figure 1-5 (a)displayed the
power comparisons of the four methods for commaramgs with the main genetic effect
sizef = 0.25. When the effect of genotype on variance is sipa#t 0.1), the MT is

slightly more powerful than our HSAT method, follesvby JLS and LRT. When
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increasingy larger than 0.1, our HSAT outperformed MT and regved the most
powerful. In addition, JLS and LRT methods is Ipesverful than MT and later
outperformed MT, while the power of MT remained @&sing with the increase of
variance heterogeneity). Figure 1-5 (b)displayed the power comparisons of the four
methods for low frequency variants with a largeimgenetic effectg = 0.5. Our

HSAT remained the most powerful with different zente effect sizes. While when the
effect of genotype on variange< 0.3, the JLS and LRT is less powerful than MT.
When increasingy over 0.3, JLS and LRT methods is more powerfuh thi&. For these
two situations, the power gains of our HSAT metbwedr the traditional mean test (MT)
appeared especially noteworthy with the increasenance heterogeneity and it did not
display severe power losses with trivial or no &ace heterogeneity.

(a) MAF=0.05-0.5,8=0.25 (b) MAF=0.005-0.05,8=0.5
N —wr

N —ur
- - LS - - JLS
== LRT . == LRT
0.8 HSAT Wad 0.8 HSAT

0.6

Power
Power

0.4

0.2+

-
r""'"r
.

jppp————t

[ T T T T T T T T T 1 [ T T T T T T T T T
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Effect Size of Genotype on variance Effect Size of Genotype on variance

Figure 1-5: Power comparison of MT, JLS, LRT and HSAT undegr&aio Il at
nominal level 5 x 1078,
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1.4.3 Single-based association test in COGA study

Alcohol Dependence (AD) is a polygenic disordet thay be determined by
effects of multiple variants. And there existedadtgliction between AD and other drug
uses (e.g. nicotine and cocaine). For such pheaotiipre is high possibility of latent
G X E, G X G interactions and causal biological network struesuilherefore, the effects
of high-order information should not be ignored wiaamalyzing AD and AD related
diseases.

The QQ plot of mean test MT, HSAT, JLS and LRTIsogresented ikigure

1-6, in which the inflation factor of HSAT test is 121 that indicated no inflation.

1294w 1.0003

* JLS 1.0172
& LRT:  0.8768

10

Observed -log10(P)
(=]
|

Expected -log10({P)

Figure 1-6: Q-Q plots of MT, JLS, LRT and HSAT.

As demonstrated by single-based association asallsaditional mean test

(Pmin = 2.65 x 107°) did not yield a genome-wide bonferroni signifitassociation
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with nominal levelp < ~ 5.84 x 1078, whereas the HSAT dighf,;;, = 5.72 X

10719), The Manhattan plot of MT is presentedFigure A-1 and no association signal
peaks were observed. Genome-wide significance isasat achieved by the JLS test
(Pmin = 1.04 x 1077), the LRT test#,,;, = 2.50 X 107%). The Manhattan plot of
HSAT is presented iRigure 1-7. Seen fronfigure 1-7, we observed obvious signal

peaks on chromosomes 2, 6, 7 and 19.

10 7

logyalp )

Chromosome

Figure 1-7: The Manhattan plot of HSAT.

Table 1-1displayed 34 top-ranked significant SNPs selebteHHSAT with
suggestive genome-wide nominal leGex 10~°. Three novel genes PIK3CG on
chromosome 7, ZFAND3 on chromosome 6 and NFIX anrolosome 19 that contained
multiple top-ranked significant SNPs are associatgld AD. Specifically, the most

significant detected SNP (rs849436) is only locatledut 32.761 kb from the PIK3CG
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gene. Though PIK3CG has never been identified adidate gene in genome association
studies, its altered expression has been reparted aissociated with AD[18] and
cigarette smoking[19].

In addition, two previously reported genes HMGN& &HBP1 [20]were
replicated. In particular, 11 out of the 34 t@mked significant SNPs are located within
or nearby the gene HMGNS3 that is well reportedrevpus large-scale GWAS study
[21], which lead to the strong signal peak on Chweame 6 irFigure 1-7. Table A-1
listed all detected SNPs with < 5 x 10~> and their corresponding genes, among which
we reported previously replicated genes PTPRN[Z22 2N TN4[25, 26], PDLM5[27],

CDH13[23, 28-30] that were related to AD in largale GWASSs.

Table 1-1: Genome-wide Top-ranked Significant SNPs by the HSA

Chr | rs Position Gene Left Gene Right Gene HSAT JLS LRT MT*

7 rs849436 106367588 PIK3CG PRKAR2B 5.72E-10 | 1.04E-07 | 1.59E-05 6.77E-05
6 rs2842519 38042247 ZFAND3 MDGA1 BTBD9 2.70E-08 | 2.40E-04 | 1.32E-04 | 2.72E-05
6 rs1335535 79999203 HMGN3 PHIP LOC100131959 | 7.86E-08 | 1.72E-06 | 3.53E-03 2.77E-02
6 rs9350803 79999595 HMGN3 PHIP LOC100131959 | 7.86E-08 | 1.72E-06 | 3.53E-03 | 2.77E-02
7 rs849370 106307179 | PIK3CG FLI36031 PRKAR2B 7.89E-08 | 1.23E-06 | 6.21E-05 2.68E-04
6 rs11963886 | 37970017 ZFAND3 MDGA1 BTBD9 1.16E-07 | 2.98E-04 | 1.70E-04 | 3.41E-05
6 rs1537740 80035233 HMGN3 LOC100131959 | 1.41E-07 | 2.08E-06 | 4.59E-03 | 3.16E-02
19 rs10402645 | 13058752 NFIX DANDS LYL1 1.51E-07 | 8.22E-05 | 4.91E-05 9.14E-06
6 rs7738508 80048256 HMGN3 LOC100131959 | 1.58E-07 | 1.71E-06 | 4.32E-03 | 2.04E-02
19 rs306045 2992700 TLE2 AES 1.62E-07 | 1.46E-05 | 3.85E-04 5.33E-04
19 rs11881808 | 13054782 NFIX DAND5S LyL1 2.25E-07 | 1.98E-04 | 9.66E-05 | 1.77E-05
6 rs7763232 80030157 HMGN3 LOC100131959 | 2.49E-07 | 2.52E-06 | 5.85E-03 3.49E-02
7 rs849406 106320153 | PIK3CG FLI36031 PRKAR2B 2.75E-07 | 7.04E-06 | 1.45E-04 4.23E-04
6 rs4706754 79969588 HMGN3 PHIP LOC100131959 | 2.84E-07 | 1.75E-06 | 4.20E-03 | 8.01E-03
6 rs7772967 80051380 HMGN3 LOC100131959 | 4.05E-07 | 4.22E-06 | 6.73E-03 3.81E-02
6 rs10806163 | 79951373 PHIP HMGN3 4.35E-07 | 4.46E-04 | 1.57E-03 | 7.59E-03
6 rs9343886 79983800 HMGN3 PHIP LOC100131959 | 5.13E-07 | 2.14E-06 | 5.59E-03 9.96E-03
6 rs16890450 | 79949239 PHIP HMGN3 5.86E-07 | 4.32E-04 | 1.59E-03 | 6.78E-03
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19 rs1688114 2988787 TLE2 AES 7.56E-07 | 5.38E-05 | 1.08E-03 | 4.38E-03
2 rs17020307 | 37294768 CEBPZ LOC100129418 | C2orf56 8.01E-07 | 9.38E-02 | 0.1155 3.28E-02
2 rs28548299 | 37340278 PRKD3 C20rf56 QPCT 8.01E-07 | 9.38E-02 | 0.1155 3.28E-02
7 rs2453840 45920337 IGFBP3 IGFBP1 LOC100129619 | 1.08E-06 | 4.29E-05 | 1.77E-04 | 2.91E-04
19 rs1654678 2985077 TLE2 AES 1.11E-06 | 5.32E-05 | 1.22E-03 | 2.85E-03
6 rs2322219 80038110 HMGN3 LOC100131959 | 1.32E-06 | 8.68E-04 | 4.56E-03 | 3.22E-02
2 rs2421738 62877847 EHBP1 LOC100129162 | LOC100132215 | 1.86E-06 | 2.71E-04 | 5.48E-03 | 0.6804
2 rs17027558 | 63065438 EHBP1 LOC100129162 | LOC100132215 | 1.86E-06 | 271E-04 | 5.48E-03 | 0.6804
7 rs849408 106329620 | PIK3CG FU36031 PRKAR2B 1.88E-06 | 6.15E-06 | 1.25E-05 | 9.19E-04
7 rs849390 106296223 | PIK3CG FU36031 PRKAR2B 1.91E-06 | 2.51E-05 | 5.15E-04 | 1.41E-03
2 rs2871608 57499324 LOC647016 LOC100131953 | 2.73E-06 | 5.74E-05 | 9.10E-03 | 0.3063
6 rs1414283 80036646 HMGN3 LOC100131959 | 2.81E-06 | 4.63E-06 | 1.46E-02 | 2.56E-02
9 rs10982123 | 116050914 | COL27A1 | KIF12 ORM1 3.95E-06 | 8.18E-05 | 3.04E-04 | 1.10E-05
2 rs16829835 | 151831949 RBM43 NMI 4.22E-06 | 0.18820 0.1518 9.39E-02
5 rs159981 6042136 KIAAQ947 LOC651419 4.28E-06 | 1.16E-04 | 2.68E-03 | 0.1612
7 rs4236534 96311548 SHFM1 LOC402679 4.75E-06 | 1.59E-04 | 4.28E-03 | 0.3449

* MT is the traditional mean test. The suggestive nominal level is 5 X 107°.

1.5 Conclusion and Discussion

Most famed marker-wise association tests are basdidear models (LMs),
generalized linear models (GLMs) and generalizeedr mixed models (GLMMSs) with
homoscedastic residuals. In such conventional hoettastic working models, (variances
of) residuals are assumed to be independent ajehetic predictors and environmental
factors. The core idea of such association tedtsl@calize genetic determinants by
exploiting linear trend (aka, correlation, assaoi@t between genetic variants and trait
values. Very few exceptional methods (i.e., Saava.’s JLS, Cao et al.’s LRT) were
developed under heteroscedastic regression mddedhomoscedastic models are too

simple to effectively capture high complex disegseetic mechanisms. If a test genomic

marker harbors causal alleles of tigjtthe random error in the working model likely
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follows a mixed distribution and is dependent onajgpic scords due to intra-marker
LD and GxG, GXE interactions, etc.

Even for several existing methods considering vaeeeffects, they integrate the
association signals of mean test and variancetdsigonally and their test statistics of
the mean test and variance test do not track eheh at causal loci. In association
analysis, integrating information will always inase the degree of freedom in the test.
Failing to integrating the information efficientlyould yield limited power gain and even
be less powerful than traditional mean test (MTewklispersion signal is weak relative
to mean heterogeneity.

In this article, we offered novel paradigm applicas for distilling and
harmoniously integrating high-order information lwihean effects while effectively
calibrating major dispersion effects of confoundarsingle-based a studies. From
extensive simulations above, our harmonious jamdls-based method HSAT brought
about dramatic association power gain in exist@idew and rare frequency variants,

G X G andG X E interactions and well controlled type | error satd the same time.
HSAT method includes the usual appealing featuwreddta integration methods such as
JLS and LRT and is even much more powerful thastert methods. Moreover, we have
applied our method to the COGA on the alcohol adxhicof 991 whites. The results
demonstrate the noteworthy superiority of our mettwexisting tests in single-based
association analyses. There are several advarméages HSAT method.

High sensitivity: The HSAT is highly sensitive to association sighéh presence
of latentG x E interaction and heteroscedasticity, it yields daiopower gains over the

famed combination tests and conventional mean tgdeeity test. In absence of real
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dispersion heterogeneity, it overcomes the powss i the famed combination methods
compared to the conventional mean heterogeneitylteparticular, it displays power
gains than its competitors to identify individuate variants.

Broadness: The foundation of the HSAT is our large-sample tlge®he joint
asymptotic normality of its two test statistics do®t require normality of the error
terms. It only requireE(ef) < o« andE(e;) = E(e]) = 0. This family covers very broad
symmetric and asymmetric error distributions.

Robustness: The HSAT integrates two correlation tests, whidkyfinherit the
core beauty of the robustness of least-squaresatss of slopes. The LRT does not
apply when normality assumption on error term igesely violated (Data not shown
here).

High accuracy: The test statistics have very fast rate to convargee
asymptotical joint normality. The Levene statistdopted in JLS converges in
distribution so slow that accurate approximateofrue p-value requires very large
sample sizes.

Flexibility: The HSAT can be easily extended to quantitativenbiders, i.e.,
gene expressions, methylations, imputation dosa&geslt does not need any artificial
partition of subjects. The LRT and the JLS relygemotype categories to partition
subjects. Partitioning subjects usually leads twgrdoss and other problems. For
example, some categories can be too small or angtyan low-frequency and rare
variant mapping

Scalability: Our HSAT method is very efficient and stable in ganation. It is

hundreds fold faster than the LRT and JLS (datashotvn here). This advantage is
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crucial to large-sample whole-genome scan. Dubdatération search, the LRT is not
stable and may not converge to a meaningful polrgnathe normality of residual is
violated.

Lastly, we acknowledge that there existed situatiwhere HSAT is less powerful
than traditional mean test (MT) when the additian&drmation to integrate cannot
defeat the penalty induced by the increase of @egiréreedom in the test. This would
sometimes harm the power, as showed in Figure&s@genario 11l.The development of
more effective high-order effect integration methoelquires further formal efforts. In
addition, appropriate adjustment of background datactures and other hidden
confounders are important for the success of e¥egtintegrating informative high-
order effects instead of spurious effects brougtegrivironmental covariates. In real
world, the high complexity of gene networks alwaysst in the majority of genetic
datasets and the distribution of a phenotype caari®e solely determined by its mean.
Our HSAT method merely made one step further fraistent traditional mean test and
very few integrative methods. High-order effects lée hidden “gold mine” that are not

exploited in existing genetic datasets and requarticular methods to further distill it.
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CHAPTER 2

INCOPERATING HIGH-ORDER EFFECTS CAN GAIN POWER IN
GENE-BASED ASSOCIATION TESTS

2.1  Abstract

Previous studies have shown evidences that rare@nthon variants act
collectively on disease risks. The increasing nunabsequence-based association
studies started to evaluate the cumulative effebbth rare and common variants on
disease trait. Gene-wise association tests havegreposed to pool or collapse multiple
variants in a group unit, such as a gene. Curnamhment gene-based association
methods of complex disease phenotypes are basednooscedasticity working models
that only aim to exploit the mean effects of vatsaon disease traits. As shown by real-
world genetic data, the assumption of homoscedestiduals is incompetent to account
for phenotypic variation induced by the innate hegeneous nature of the complex
biological networks.

This chapter develops a harmonious novel gene-lesstiation test (HGAT)
framework of incorporating high-order effects dfttenarkers while easily calibrating
both the mean and variance effects of global catesi High-order heteroscedasticity,
which indicates genetic effects on the alteratibhigh-order moment of quantitative

traits, may implicate potential interactions, cdumdworks, latent covariates, linkage
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disequilibrium (LD) structure and admixture blo¢kst have influence on the
distribution of trait values. In HGAT frame, theghtorder effects of test markers are
embedded as harmonious weights to better sumnthezelative contribution of genes
to the alteration of the distribution of phenotyjpeshe mean-only group association
tests. By comprehensive simulation scenarios, HG&T correctly control the type |
error and outperform several existent popular deased association tests. We illustrate
its application in homogeneous population and ekteto admixed population.

Key words:

Harmoniously integration, variance heterogendity E andG X G interactions, high-

order effects, Gene-based method, admixed populatio

2.2 Introduction

The genome-wide association (GWAS) mainly focusedmmmon variants and
have been successful in identifying the associatadrmany common variants (say,
MAF>5%) with human diseases such as typel and tgifadietes, rheumatoid arthritis,
Crohn’s disease and coronary heart disease[31D&3pite these, a large portion of the
remaining heritability cannot be explained by commariants[34]. In recent years. With
the advanced improvement in next-generation sedqugtechnology and the
implementation of the 1000 Genome Project, largalmers of rare variants (SNPs) with
MAF<5% have been identified accurately, whichtiedhe consideration of rare variants
as possible causal variants of human diseaseptaiexome missing heritability of

common variants[35].
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In recent years, several studies have shown ewdahat rare and common
variants act collectively on disease risks [36-38Je increasing number of sequence-
based association studies started to evaluateuthalative effect of both rare and
common variants on disease trait. Therefore, gweige-association tests, instead of
single variant association tests, have been praiptosgool or collapse multiple variants
in a group unit, such as a gene. Current promigené-based association methods of
complex disease phenotypes are also based on hedassicity working models that
only aim to exploit the mean effects of multipleigats on disease traits. All these
models assume homoscedasticity that model residuals®dependent of all predictors
(covariates and variants). As discussed in Chdptdre assumption of homoscedastic
residuals is incompetent to account for phenotypitation induced by the innate

heterogeneous nature of the complex biological ogtsy

Various gene-based methods have been developeNIk¢39] method is one
of the earliest and best-cited benchmarks. Theqtlgpa is regressed on the collapsed
variant score by all variants within the gene ragibhe most prominent sequence
association tests are GLMMs based score testsidimg the commonly used Sequence
Kernel Association Test (SKAT)[40] and SKAT-QOptimal’ SKAT)[41, 42]. Impelled
by the assumption of rare or low frequency variamesxplaining additional variability of
the trait, these SKAT methods derived from burdsststand variance-component tests
extensively employed a weighting scheme that ughtsithe contribution of rare
variants and down-weights the contribution of commaariants by minor allele
frequency (MAF). That is to say, such weight schenestly increases relative influence

of rare or low frequency variants for any diseasated gene. Such a weighting scheme
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can lead to loss of power when common variantsregéon under investigation are also
associated with disease trait. Another newly meibddixed Effects Score Test
(MiST)[43], which conducts a hierarchical model dmmng two independent test

statistics of quantifying effect sizes of variaatsl annotation ‘heterogeneity’.

In Chapter 2, we firstly develops a novel harmogsigane-based association test
(HGAT) framework of incorporating the high-ordefesits of test markers within a gene
region while easily calibrating both the mean aadance effects of environmental
covariates in homogeneous population. High-ordieicefas discussed in Chapter 1, may
implicate potential high-order interactions, causatiorks, latent covariates, linkage
disequilibrium (LD) structure and admixture blogmong variants. Such high-order
effects of test markers are embedded as bettehtgdig summarize the relative
contribution of the gene to the alteration of tisrtbution of disease trait beyond the
change of the trait mean. By comprehensive sinmariagcenarios, our HGAT can
correctly control the type | error and outperforeveral existent popular gene-based
association tests. Then we employ HGAT to the s@GRAEA on the alcohol addiction of
991 whites in Chapter 1. The results demonstratetteworthy superiority of our
method to gene-based association tests in replgcatnd identifying novel susceptive
genes.

Compared to homogeneous populations, much fewecias®n studies
specifically focused on genetically admixed popolsd such as African Americans that
comprise a substantial portion of the total popokain United States. Genomes of
admixed individuals derive from two or more distihomogeneous ancestral

populations. Such admixed genomes are mosaicgofesgs with various ancestries
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(genetic origins)[44]. Local variation in ancesfaka, local ancestry) usually indicates
the number of alleles originating from referenceemstral population for each SNP of
each admixed individual and reflects the regioe@fbrought by ancestry mosaic
structure. Genetic data of admixed individuals roffistinctive advantages for localizing
admixture blocks that may harbor causal variant€hvlxhibits substantially different
frequencies between ancestral populations and ehtiae ethnicity-specific patterns of
disease prevalence. Therefore, local ancestrypst of the time, represents the
accumulating effects over the entire ancestralkblpavhich may include certain number
of variants to impact the distribution of diseaset$. Statistically significant differences
among high-order moment of phenotypes under diftdoeal ancestry groups may also
implicate potential interactions (e.g., Ancestryx@and AncestryxAncestry), latent
causal relationship among local ancestry, genoayigephenotype. In terms of admixed
populations, ancestry-driven high-order effects \Mtdae non-ignored and provide
additional information in traditional gene-basealdses.

Therefore, we also extended our HGAT to admixedufains. High-order
effect of local ancestry is included in our HGA&rtework as a new weight to better
summarize the relative contribution of the ancebtogk to the alteration of the
distribution of disease trait in admixed populatigve applied HGAT to reanalysis an
existing well-characterized sample of 1334 unrel&&icans selected from the Study of
Addiction: Genetics and Environment (SAGE). Basedor findings, we underscore the
importance of incorporating high order effects oftbgenotypes and local ancestry in

data analysis for admixed populations.
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2.3  Materials and methods
231 Model Notation and Construction of Harmonious GeneBased
Association Test (HGAT)

For thei™ subjecty; is the trait valueX; is thep x1 vector of environmental
covariate(s)X; is its transposds; = (gi1, giz, - gim)' 1S the vector of copy numbers of
minor alleles ofn markers at the test gene. We propose a noveklmead model
framework that harmoniously incorporate high oreliéects of test markers. Firstly we
derive the mean-only association test as followings

B1~Nm(0,TW)
wheree; is the random error term an& = diag(wy, ..., w,,) are the weights of test
markers to represent the relative contributiorest tharkers to disease trgt. =
(B11, ---» P1im) are the vector of effect sizes of genotyg®sare random effects and
assumed to follow multivariate normal distributaith mean zero vector and diagonal
covariance-variance matrpl#/, wherer is a variance component apgl =
(Y11, Y12, - Y1p) are the vector of coefficients of environmentatamates and are fixed
effects. The null hypothesis feto is Hy ,,,: T = 0(< 1 = 0). According to Wu et
al.[40], we can obtain a score test statisticéstingHg ,,,-

S=(Y-Y)Gwe' (Y —-Y) Eq. 2-2
where Y is the estimated value BfunderH, ,,,,, in whichEq. 2-1 collapsed to a general
linear model and& = (G4, G, ..., G,)' isn X m genotype matrix. The score statistic
follows a mixture of chi square distributions, gnealues can be computed analytically

by Davies’ method undéi ,,, -
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Then we adopted the following axillary high ordesttto calculate the weight of
thek,, marker at the test gene as followings:
ho:Y;? = G% By + el Eq. 2-3
wheree;’ is the random error terng,y is the effect coefficient of the squared genotype
Gh (k= 1,2,..m).Y; is the trait residual after calibrating both thean and variance
effects of environment covariates gfyg is the effect size of genotyig, on Yl-*zfor
each marker. The null hypothesis far is H, ,,: f> = 0. The association statistic of
testingH, p,, IS
_ Vn = 2r(Y*?, G*)
J1 —r2(Y*?,G?)

Eq. 2-4

wherer(Y*?, G?) is the sample pearson coefficient of correlatietweenG? andy *.
The highlight ofho is to capture the second-order moment informaipnegressing the
squared trait residu&]” on the square of genotype.

For a non-causal gene, all the markers within greegegion would have no
effect on the distribution of disease trait. Theref the null hypothesis of our HGAT
method isH, ,,,: T = 0, B, = 0. An appealing property of our HGAT method is ttie
independence between test statistimofand that ofdo statistic undeH, ,,; and the
dependence betweemo anddo under alternative hypothesis. As defined in Chapte
we call such pair of test statistics as harmonidte. proof of the null independence
between mean test and high order test is providéghpendix A.1 andAppendix A.2.
The advantage of such null independence in genedkassociation test is that we can
incorporate additional high-order effect of eaclrkeaas the new weight in mean
association tedtq. 2-1and still control the type | error rate of thettés addition, high-
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order effect as the new weight would not increagedegrees of freedom in testing

Hyma- In thisdo test, we scale each marker in the test gene byeightx; =

_ ( 10g10(}9j)
Z}nﬂ 10g10(Pj)

), wherep; is the p-value of testing, », obtained fronEq. 2-4 The
weight matrix for the test gene is definedkas- diag (x4, ..., k). The weighting
scheme is rooted from our notion on harmoniousssizs in Chapter 1. Each weight
reflects the relative contribution of theh marker to the score statistic of the gene.
Different from adopting the traditionMAF or external biological function information
from other datasets as weight scores, we adopéehligih order effect of the marker as
our weight score to measure the relative importarfichke marker to the alteration of trait
distribution.

Then we can obtain a score test statistic forngsfj ,,.;, as

Shcar = (Y* = Y*)'GKG'(Y* = Y*) Eq. 2-5

whereY ™ is the trait residual after adjusting for both thean and dispersion effects of
environmental covariates aid is the predicted value & obtained fromEq. 2-1under

Hy mn- The test statisti§, ;4 also follows a mixture of chi square distributipasd p-

values can be computed analytically by Davies’ o@f#5] undett, .

2.3.2 Extension of HGAT to Admixed Populations

Current gene-based statistical methods solely dengilobal population structure
while the effect of local ancestry on analysisarerand common variants are being
ignored, especially in admixed populations (e.dricAn Americans and Latinos). In
admixed populations, At least two ancestral popaiathave been mixing for short

generations to form a new population with the atmgesf each individual explained by
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different proportions of the original populatiomie to recombination events, within the
chromosomes of a single individual, different regi@f the genome could stem from
different ancestral populations. The genome of @adividual can be regarded as a
“mosaic” structure with segments from different estcy[46, 47]. 1000 Genome
Project[48] has shown that frequency of variant®edi dramatically among different
populations. Thus local ancestry in certain gemom@gions in admixed populations is
likely to provide additional useful information association analysigigure 2-1

indicates the relationship among local ancedtrgausal and non-causal variaGts
(GNon-causar @NAG .qusq1) @Nd trait valu&. X is added as covariates including
population structure and other environmental cates. Single-arrow line represents
possible causal direction (i.4.to G, G toY) and double-arrow line indicates correlation.

UnderH, ,,,;,, local ancestryA would also have no effect on the trait value Y.

Figure 2-1: Causal graph among trait value Y, gene data Xl@cal ancestry A.

HGAT can be easily extended to admixed populatibos recently admixed
population such as African Americans, variants imitthe extended admixture block
mostly have the same local ancestry due to spaisehspoints in ancestry across a

chromosome. Local variation in ancestry (aka, l@cadestry) usually indicates the
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number of alleles originating from reference aneggtopulation for each SNP of each
admixed individual. Specifically, for African Ameans in our study, the local ancestry
is coded as 0,1 and 2 to indicate the number eleslloriginating from CEPH Europeans
from Utah (CEU). We lefl = (a4, a,, ..., a,,)’' represenh X 1 vector of local ancestry
for them markers within the test gene. In admixed poputatibe score test statistic

StGar aam Of HGAT_Adm for testingd ,,,, iS written as

Sucar aam = (Y — 17\*),G,cmmK,cmmG,cwlm'(Y* —-Y7) Eq. 2-6
Gl aq

Gz az

whereY ™ is the same as Bq. 2-5andG44,, = (G, A) = is the newn X

GTL aTL
(m + 1) matrix with an adding columA to represent the cumulating effect of local

ancestry for the test geniEhe new weight matrix i& 44,, = diag(k4, ..., km, K4), Where

) = _( log10(pa)
A Z}Z110810(Pj)+10g10(PA)

). p4 is the p-value of testinH, ,, obtained frontq. 2-3

andEq. 2-4in which the genotyp®€ is replaced by local ancest#y The test statistic
Sucar also follows a mixture of chi square distributipaad p-values can be computed

analytically by Davies’ method undél ,,p, -

2.3.3 Simulation Configurations for Gene-Based Analysis

We considered three different experiment simulatimm gene-based studies. The
first two simulations come from the genetic additmodel framework with different
methods of determining the effect sizes of genatypethe last simulation, we used the
previously reported gene to mimic the scenario whtnt gene by environmental or

gene by gene interaction existed in the dataset.
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2.3.3.1 List of Methods for Comparisons

We conducted extensive simulations to evaluatgénrmance of HGAT and
compare it with current commonly used methods uidicig CMC, SKAT, SKAT_O and
MiST. The choice of MiST was in part based on tineutation results that MiST had
similar better power than the burden test and SKypE tests under wide range of
scenarios. Here we also consider DGAT which istdlooDispersion Gene Association

Test in comparison. In DGAT, we also scale eaclkerdn the test gene by the weight

;‘n=1 10g10(P1’-

logso(p} . . .
Y =-— <Z()L(p’))> and corresponding weight matrie = diag (i, ..., ¥,), Where

p; is the p-value obtained from dispersion test inbde generalized linear model

(DGLM) instead of high-order mod&lq. 2-4 In addition, we considered a weighted
version for DGAT and HGAT in simulation scenariokem rarer causal variants have

greater effects than common ones, and they aradeteby wDGAT and wHGAT. We

adopted the default suggested weight scheme in SK,AEI:'Z,,?e::(tZ"(’;’_Zf)ZS)
j=1 I

Jj=

and the

corresponding weight matri® = diag(wy, ..., wn,), Wheref; is theMAF for thejth

causal variant. For WDGAT and wHGAT, the score $tatistic for testindd, ,,,;, as

SwDGAT = (Y* - ?\*)’G(dj + !Z)G'(Y* — ?\*)' Eq. 2-7

SwHeAT = (Y* - W),G(K + .Q)G'(Y* - 17\*)' Eq. 2-8
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2.3.3.2 Simulation of LD structure of Genotypes

For markers € {1, ..., m} at test gene, we generate minor allele frequeléyH)
f1~unif(0.005,0.5) and compute thg-percentilecg of the standard normal distribution
N'(0,1). And the LD between SNPandk is generated based on the well-known
exponential decay modp}, = exp(—d|j — k[) [49-51].We then generate anx m
positive definite Toeplitz matrix? = (p]-k) to represent the LD structure mfmakrers
within the test gene. A vectég,, ..., z,,,)’ generated from the m-variate normal
distributionV;,, (0, P) defines a haplotypk = (6(z; < ¢1), ..., (zm < ¢n))’, Where
6(.) is the indictor of an underlying event, edfz; < c¢;) =1if z; < c¢;, and =0 if
7z, = c¢;. Two haplotyped, andh, generated in such a way compose a genotypic vector

g=h,+h,=(g4,..,9m) forthe test gene.

2.3.3.3 Homogeneous polygenic (HP) model framework

As the foundation of genetic association studiegalye disequilibrium (LD)
occurs among tightly linked genomic markers andagle@long the physical distance. LD
may extend from a few kilo-bases (kb) to greatanthOOkb[52-54]. Although
omnipresent, the LD-driven higher-order momentiinfation (beyond mean
heterogeneities) have not been well acknowledgeddeaploited. Therefore we first
demonstrate the noteworthy benefits and methoésmbiting LD-driven high order
effects in gene-based tests. We firstly conducitedlations from a homogeneous

polygenic (HP) model. The tréit of subject is generated by a homoscedastic residual
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e; that follows standard normal distribution, dichotwus covariate,; (i.e.
X1;~Binom(1,0.5)) to mimic gender, continuous covariatg (i.e.X,;~N'(0,1)) to
mimic normalized age and genotypic scai€§, ..., Gf;) atl causal SNPs, which
randomly reside in causal gene with(>l) markers. Following Kruglyak[55], Zhang and
Stram[49], we sed = 0.3 to mimic moderate correlated SNPs in genome-wNE S

data. The HP model is as followings:

l
Y; = 0.5X;; + 0.5X,; + Z Gﬁﬁ] + e;. Eqg. 2-9
j=1

Based orkq. 2-9 we setn = 50 andl = 10 for 10000 replicates of 1000 subjects. The
causal SNPs are randomly chosen frommtitest markers. At each causal Sj\khe

effect size is determined by minor allele frequemeyF; and the direction is determined
by parametet; wherePr(c; = 1) = 1 — Pr(¢; = —1) = m. “+1” indicates the positive
effects and “-1” is the negative effect of the aats. The effects are determined as such
because a complex trait is influenced by commonrarelvariants with effects of diverse

sizes and directions. The effect size is written as

Bj = —0.15¢; logs0(f})’ Eq. 2-10
wheref; is the MAF ofjth markersf; is generated by the strategy introduced in sectio
2.3.3.2above.We employ the setting ®fin Eqg. 2-10in favor of the SKAT and SKAT-

O. The 10 causal markers explain about 5% of tedtability. We adopted differemt

(,e.m = 1,0.8,0.5,0.2) to represent diverse directions of the markers.
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2.3.34 Fisher's Model Framework

In this section, we generated the simulation madebrding to Fisher’'s
theory[56] instead of the HP models that are comynosed in SKAT papers, because
adopting a different simulation set up can prowidevith a clear understanding of the

robustness of various methods under different se@naNe generated SNP-specific

effects for the same given total heritabilit§of | causal SNPs. Most causal markers were

of small marginal effects whereas only a smalliparbf causal markers were of
relatively larger marginal effects. Individual traalues were generated from the

following linear model

l
V=) GG +en Eq. 2-11
j=1

wherevar(Y) = 1,e;~N(0,1 — h?). B; is set to be/hjz/var(Gj), in whichh? = h?/I
andG; was genotypic vector of SNPandvar(G;) was estimated from the genotype
data. The genotype data is generated based omthiason of section 2.3.3.%; is the
direction parameter defined 8ection 2.3.3.3We adopted different (i.e.m =
1,0.8,0.5,0.2) to represent diverse directions of the markers.sétm = 50 andl = 10

for 10000 replicates of 1000 subjects. In additiva,leth? = 2% to represent the raw

proportion of phenotype that is explained by gepesy

2.3.35 Latent ¢ X E and G X G interaction
This set of simulation for power comparison mimitkereal data situation. We
used the genotype data from the COGA study. 99%iohaals underwent final analysis.

As reported in several previous researches, OPA3wisll replicated gene that is related
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to alcohol dependence [23, 57, 58]. Therefore, sexl 23 SNPs with MA% 0.005

within OPA3 as our reference to generate the datAssong 23 SNPs, rs811589, a well
replicated SNP in previous researches, is choseawsal SNP to generate the trait value
Y as followings:

Y; =05%X;; +0.5%X,; +03%Xs; + G, + G:X5;6 +¢;, Eq.2-12
where the error terne; follows a standard normal distributiaXy,; is continuous normal
distributed covariate (e.¢(;;~N(0,1)), X,; follows binomial distribution with frequency
0.5 that mimics the binary covariate such as geftherunobserved exposure variable
X3; was binary variable with frequency 0.3 (eXg;~B(2,0.3) ). The main mean genetic
effect§ was set to be 0.25, and the interaction effeat G; X X5;was varied between 0
and 0.5 by a grid of 0.05. This simulation mimie #ituation when the potential latent
G X E interaction exist in genetic dataset. 100,00 ocapdis were simulated using the
genotype structure of OPA3 in COGA study with sargize 991.

As illustrated in previous research, potentialiate x G interactions would lead
to variance heterogeneity[11]. Next we still uss8llr1589 as a variance-heterogeneity
guantitative trait loci (vVQTL) to generate the tnaalue as followings:

Y; =05 % Xy; +0.5% X, + Gif +e;, Eq. 2-13
wheree;~N (0, exp(G;v)), in whichy is the effect size of genotype on variance and
exp(.) is the exponential function which guarantees Waaiance of the normal
distribution is always positive. In other worgisis a parameter to measure the magnitude
of effects of latent; x G interactionsp is the effect size of genotyg and is still set to
be 0.25X,; andX,; are the same as defineddq. 2-12 100,00 replicates were

simulated using the genotype structure of OPA3@GA study with sample size 991.
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2.4 Results

24.1 Type | Error Control of Competitors

We compared six methods: CMC, SKAT_O, SKAT, MisGBT, wDGAT,
HGAT and wHGAT to evaluate the type | error contdd0,000 replicates were
generated under the null model with no geneticaaton (8 = 0). Seen fronfigure
2-2, CMC, SKAT, MiST, DGAT, wDGAT, HGAT and wHGAT metids generally
controlled type | error rates at different givenmpal significance levels, while
SKAT _O is always outside of the 95% concentratiandand was a little inflated at

larger nominal levels. The sample size is set th(§o.

Gene-based Methods
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Figure 2-2: Comparison of false positive rates of eight methaadder different
nominal levels.
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2.4.2 Empirical Power Comparisons of competitors
24.2.1 Power Comparisons under HP model framework

We considered HP model framework for variant efféatoring SKAT and
SKAT_O methods. This scenario was to assume that variants had stronger effects.
The empirical power of each method was estimatetthéyproportion of p-values
surpassed by the specified nominal significancellaader alternative hypothesis among
10000 simulated data sets of 1000 unrelated indalgd All the m=50 markers in the test
gene with given LD structure were genotyped acogydd section 2.3.3.2 and the
coefficients of 10 causal loci set according ta23Figure 2-3illustrate power

comparison among different methods.
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Figure 2-3: Comparison of empirical powers of eight methodditéerent
nominal levels under HP model.

We simulated scenarios in which the effects of d@isal SNPs are in the same or
opposite directions with positive/negative=100%/@4%/20%, 50%/50% and
20%/80%. The notable power gains of WHGAT and HG¥#&S observed in all four
scenarios compared to CMC, SKAT, SKAT_O, DGAT arld®AT. Since in this
simulation rarer causal SNP have greater effetitwiegghted tests WHGAT and wDGAT
are more powerful than their respective unweighests HGAT and DGAT. When all
causal loci SNPs are in the same position (i.es1:00%/0%), wWHGAT and MiST almost
have the similar power at different nominal levélad HGAT and wDGAT almost have
the similar powers, followed by CMC method, DGAKAT and SKAT_O. When the
majority of causal loci SNPs are in the same pasii.e. +/-=80%/20%, 20%/80%)),
WHGAT is the most powerful method at different noalilevels,followed by wDGAT
and MiST. HGAT is a little less powerful than wDGARd MiST, followed by CMC.
SKAT-type methods perform poorly compared to CMCéaaese the situation of all or
most of causal loci in same direction are in fam€MC. When 10 causal SNPs are in
opposite directions (i.e. +/-=50%/50%), the powle€MC drops to the lowest and
SKAT, SKAT_O are more powerful then CMC. wHGAT tslghe most powerful
method followed by wDGAT and HGAT. MiST is a litless powerful than HGAT. For
all simulation scenarios, WHGAT ( or HGAT) is alveayore powerful than wDGAT (or
DGAT), which indicate that incorporating high-oradfects instead of variance effects

would lead to more power gain.
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2422

Power Comparisons under Fisher's model framework

To show that HGATSs are not only robust but alsoermowerful than other

methods tests, we conducted another set of siroalatiperiments using Fisher’'s model

frame work. In this set, we again assume that reagants had stronger effects but adopt

a different setting for the effect sipe of genotypeskigure 2-4illustrates power

comparison among different methods.
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Figure 2-4: Comparison of false positive rates of eight meghaiddifferent
nominal levels under Fisher's model framework.

For this simulation set that is different from H®@adel, SKAT-type methods have

the least powers. WHGAT is still the most powerhdthod, followed by MiST, wDGAT

and HGAT. These three methods almost have theasimdwers when different

directions of causal SNPs exist. When all causd#®$afe in the same direction, MiST is
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a little more powerful than wDGAT and HGAT. the gkied tests (WHGAT and
WDGAT) are still more powerful than their unweigtiteounterparts (HGAT and DGAT)
because the rare or low frequency causal variantsszerage have small variance of
genotype an this leads to larger effect size tlwemngon variants. For all simulation
scenarios, WHGAT (or HGAT) is still always more penful than wDGAT (or DGAT),
which again indicates that incorporating high-oreléects instead of variance effects

would lead to more power gain.

24.2.3 Power Comparisons with Latent GXE and GxG Interactons

For simulation designs of GXE interactions, wézdd the real gene OPA3 in the
COGA dataset to generate the trait value. We sitadlacenarios in which well
replicated rs811589 was chosen as the causal SERoWpared the eight methods at
nominal level5 x 1073 and5 x 10~* respectively irFigure 2-5. HGAT always
outperformed other methods followed by DGAT. Simyjlaamong weighted tests,
WHGAT is more powerful than wDGAT. Since in thismgilation the effect size of causal
SNP is not related to MAF, all weighted tests wHG#Id wDGAT are less powerful
than their respective unweighted tests HGAT and DGPhe power of the MiST is
slightly higher than the wHGAT and wDGAT with sm@KkE interaction. Then it is
surpassed by wHGAT and wDGAT with the increaseffafot sizes of GXE interaction.
The SKAT test has the least power and is less dalwkian SKAT_O and CMC. The
simulation results showed that latent GXE intecactwould lead to the augmentation of
high-order effects. The power gain of HGAT comesrfrithe integration of high-order

effects.
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Figure 2-5: Comparison of empirical power of eight methodlswhen latent
GXE interaction exists at nominal level 0.005(aj &rd005(b).

For simulation designs of GxG interactions, weizeid the real gene OPA3 in the
COGA dataset to generate the trait value. The replicated rs811589 was chosen as the
causal vQTL that has both mean and variance effettait value. We compared the
eight methods at nominal levelx 1073 and5 x 10~* respectively irFigure 2-6.

HGAT still always outperformed other methods folemhboy DGAT. And among
weighted tests, WHGAT is more powerful than wDGA®Br mean-only association
methods CMC, SKAT, SKAT_O and MiST, their power Wibdecrease with the
increase ofy in Eqg. 2-13 The SKAT test still has the least power and $s lgowerful

than SKAT_O and CMC. The simulation results shotted latent GxG interaction
would also lead to the augmentation of high-ordferces. Therefore integrating high-
order effect in HGAT can gain the power for detegtivhether the gene has influence on

the alteration of distribution of disease ftrait.
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Figure 2-6: Comparison of empirical power of eight methodlswhen latent
GxG interaction exists at nominal level 0.005(aj 8r0005(b).

2.4.3 Real Data Analysis on Genetics of Alcoholism (COGA$tudy

We compared our HGAT and wHGAT with several popgkne-based method
CMC, SKAT, SKAT_O and MiST that only focus on meassociations. In addition, we
compare HGATs with DGATSs that only incorporate @ispon effect instead of high-
order effects. We conducted our analyses to SNi#snithe 16346 gene regions. The Q-
Q plots for the eight methods were showirrigure 2-7, in which the inflation factor of
HGAT and wHGAT are 1.0307 and 1.0552 respectivdi$ATs methods indicated no

inflation. Due to the relatively small sample s{pe991), none of the methods reached

0.05

= 3.06 xx 107°).Setting
16346

Bonferroni gene-wise statistical significange<
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suggestive gene-wise nominal level . 107*), we identified 17 significant genes (i.e
eitherpygar Of Pwrcar <5 X 10~%), among which PTPRN[22-24] and PDLIM5[27] are
well replicated genes related to AD in previous G8/gtudies. Among the 17 top ranked
genes, gene expression of ACTN2[59] was assocwithdalcohol-related traits and
IGFBP3[60] was related to alcohol-induced liveredise. In addition, the gene expression
of UEVLDI[61] is related to alcohol exposure. EMIL2}62] and DEFA4[63] have
association with smoking that has high correlatath alcohol dependence. The top-

ranked genes are listedTiable 2-1

5-{ ¢ CMC:  1.0227
< SKAT_O: 0.9349
O SKAT: 1.0504
< MIST: 1.0691
& DGAT: 1.0374
¥ wDGAT: 1.0524
* HGAT: 1.0307

Observed -log10{P)

Expected -log10(P)

Figure 2-7: Q-Q plots of eight gene-based methods
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Table 2-1: Top-ranked Significant Genes by HGAT or wHGAT

Chr | Gene HGAT WHGAT DGAT wDGAT MiST SKAT SKAT_O cMC
2 PTPRN 1.50e-05 1.35e-05 3.43e-04 2.69e-03 6.42e-05 0.049 0.063 4.03e-03
1 STXBP3 7.34e-05 6.10e-05 1.43e-02 6.47e-05 4.40e-04 5.95e-05 5.66e-05 | 0.603
8 DEFA4 9.69e-05 5.11e-03 3.43e-03 0.025 0.098 0.043 0.045 0.136
4 LSM6 1.19e-04 1.37e-03 0.154 0.039 0.034 0.039 0.036 0.045
21 SFRS15 1.37e-04 1.13e-04 0.117 0.052 2.11e-04 0.022 0.036 0.016
6 ZFAND3 1.64e-04 1.32e-04 0.025 9.03e-03 4.06e-03 2.09e-03 3.70e-03 | 0.491
7 IGFBP3 2.02e-04 2.08e-04 1.62e-03 1.52e-03 0.086 0.431 0.456 0.049
19 NFIX 2.26e-04 4.47e-04 0.073 0.036 6.33e-04 3.06e-03 3.63e-03 | 0.385
9 BSPRY 2.72e-04 6.24e-04 2.6e-04 1.19e-03 0.019 0.188 0.312 0.015
1 ACTN2 3.21e-04 6.77e-04 0.024 0.030 0.020 0.135 0.196 0.014
11 TSG101 3.85e-04 9.35e-04 5.75e-04 1.43e-03 0.030 0.665 0.356 0.013
11 UEVLD 4.67e-04 5.79e-04 5.91e-04 7.72e-04 0.282 0.897 1 0.119
18 EMILIN2 4.76e-04 1.78e-03 8.95e-04 9.94e-04 0.252 0.227 0.351 0.266
4 PDLIMS 4.83e-04 6.47e-04 3.32e-05 4.55e-05 0.100 0.879 1 0.024
7 GUSB 5.15e-04 1.88e-05 6.37e-05 1.63e-04 9.64e-04 2.55e-04 2.52e-04 | 0.036
2 DNAIJB2 6.68e-03 3.74e-04 0.017 5.64e-04 8.45e-04 2.50e-04 2.49e-04 | 3.00e-04
12 MBD6 0.0127 1.69e-04 1.18e-04 1.19e-04 4.10e-04 1.21e-04 1.14e-04 | 0.012

The suggestive nominal level is 5 x 107%,

We selected 24 previous reported genes that haareibeglicated as candidate
genes related to AD by more than one GWAS or sezxingipaper. The results are shown
in Table 2-2. For the majority of previous reported genes, 0GATs methods (HGAT

or WHGAT) obtained smaller p-values compared t@pthethods.

Table 2-2: P values of 24 previous replicated genes in CO@askt

Chr | Gene HGAT WHGAT DGAT WDGAT | MiST SKAT SKAT_O | CMC
1 OLFM3[64-66] 0.386 0.353 0.276 0.264 0.347 0.342 0.496 0.387
1 TNNI[64, 67] 0.387 0.702 0.444 0.750 0.972 0.961 0.846 0.772
1 NRD1[58, 64, 65] 0.497 0.245 0.629 0.303 0.177 0.048 0.063 0.848
2 THSD7B[68-70] 6.38e-03 0.010 0.033 0.015 0.211 0.269 0.425 0.186
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3 CNTN4[25, 71, 72] 7.23e-03 2.10e-03 0.088 0.031 0.079 0.072 0.129 0.125
4 ADH1C[73-75] 0.151 0.033 0.206 0.077 0.0748 0.0343 0.0318 0.414
5 DOCK2[21, 30] 0.075 0.059 0.336 0.176 0.377 0.145 0.238 0.818
5 PPP2R2B[64, 65, 76, 77] 0.567 0.476 0.811 0.667 0.529 0.307 0.271 0.785
6 SYNE1[57, 68, 78, 79] 0.336 0.491 0.344 0.499 0.703 0.673 0.666 0.527
7 CNTNAP2[30, 71] 0.594 0.374 0.632 0.375 0.262 0.100 0.160 0.800
8 CSMD1[21, 29, 77, 78, 80] 0.196 0.402 0.336 0.491 0.887 0.875 0.742 0.682
10 KCNMA1[30, 57, 81] 0.646 0.725 0.722 0.795 0.916 0.832 0.948 0.768
10 HTR7([30, 57] 0.273 0.134 0.367 0.173 0.074 0.063 0.110 0.293
11 TTC12[57, 82, 83] 0.011 0.176 0.022 0.205 0.884 0.785 0.483 0.806
11 PKNOX2[68, 84] 0.709 0.371 0.725 0.312 0.100 0.089 0.131 0.088
11 NAP1L4[57, 64] 0.686 0.611 0.818 0.711 0.593 0.506 0.308 0.502
11 GRM5(64, 85] 0.318 0.304 0.405 0.384 0.211 0.328 0.397 0.122
12 ITPR2[21, 72] 0.587 0.901 0.495 0.878 0.952 0.941 0.832 0.745
12 SOX5[23, 57] 0.304 0.706 0.451 0.812 0.905 0.961 0.982 0.621
12 ALDH2[86, 87] 0.508 0.628 0.575 0.696 0.994 0.926 0.869 0.897
12 SLC2A14[57, 88] 0.663 0.838 0.724 0.870 0.973 0.814 0.743 0.734
13 SLC10A2[21, 57, 68] 0.378 0.467 0.365 0.445 0.855 0.640 0.832 0.909
18 CCBE1[23, 57, 89] 0.088 0.102 0.141 0.182 0.628 0.428 0.453 0.619
19 OPA3[23, 57, 58, 64] 2.40e-03 0.085 4.65e-03 | 0.094 0.908 0.813 0.743 0.733
24.4 Real Data Analysis on Study of Addiction: Geneticand Environment
(SAGE)

In this section, we applied HGAT_Adm method to nadgzed a large, well-
characterized sample of 1334 unrelated individfral® the Study of Addiction:
Genetics and Environment (SAGE). It contains 9428M®s. Positions of all SNPs are

genome build 36.3. The primary phenotype is DSVAD.
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2441 Genotype Quality Control, Local Ancestry Inferenceand Estimation of
Global Ancestry

SAGE dataset contains 942048 SNPs. Positions 8Nffis are genome build
36.3. The primary phenotype is DSM-IV AD. SNPs wexeluded if minor allele
frequency (MAFX 5% or call ratesc 95%, leaving 917,681 SNPs after genotype quality
control. Among 1334 individuals, 69 were exclude@ do missing or extreme trait
values. After data cleaning, 1265 individual8.6% males;39.9 + 7.3 years)
underwent final analysis. We didn’t remove SNP$ thalates Hardy-Weinberg
Equilibrium (HWE) because the presence of admixaiten violates the assumptions of
HWE. Simply removing such SNPs would lose the amnge@sformation.

We inferred local ancestries of 1265 unrelatedaaini American genomes at non-
overlapped adjacent windows using the ELAI packa@je[Reference panels of HapMap
West African Yoruban (YRI) and CEPH Europeans fidtah (CEU) genotypes
(http://hapmap.ncbi.nim.nih.gov/) are download frimternational HapMap Project.
Processed by Plink, genotypes were coded as @ 2 eamrepresent the count number of
the minor allele. The ancestry states (dosagesadi SNP of an admixed individual
obtained by ELAI are then recorded to 0, 1 and iddecate the number of alleles
originating from CEU. After local ancestry inferen 860,427 SNPs are maintained with
both local ancestry and genotype information iaffenalysis.

One additional important component we need to clemsn admixed population
is global ancestry that represents ancestral ptiopsraveraged across the whole genome
of an admixed individual. It is usually adjustedcasariate representing population

stratification. Suggested by Price et al.[91], tibye eigenvectors are shown to be effective
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in capturing the demographic uniqueness of a ptipualalhus global ancestries are often
estimated by top principal components (PCs) of ggno matrix of a subset of all
genotyped markers. To verify our local ancestrinestion, we also estimated the global
ancestry of a subject by averaging the inferredllaacestries using ELAI across the
genome of the subject and calculated the correlddeiween estimated global ancestry
and the first principal component (PC). The accyxEdocal ancestry inference is
verified by the extremely high correlatior? (> 0.9974) between estimated global
ancestry and the first PC calculated from genotgesimixed individuals. This

indicates the high accuracy of inference of locadestry using ELAI. Estimated global
ancestry as covariate was included in our finah daialysis to capture the population

stratification.

2.4.4.2  Adjustment of Covariates

Following genotype quality control and local ancgstference above, we
applied the double generalized linear model (DGlid/xdjust for both mean and
variance effects of covariates. The DGLM is impletee in R package dgim. The
covariates to adjust for in analysis are gendeMdle, 2=Female), smoking (0~7),
normalized age, squared-normalized age and estingidbal ancestry. Since age ranges
from 18 to 64, normalizing age can reduce the difiee of age profiles. Adding the
square of normalized age allows you to model tfecebf age that may have a non-
linear relationship with the phenotype AD. The ustbn of smoking was to remove
possible spurious results caused by effects of sigatonsidering the moderate

relationship 2 = 0.4874) between drinking and smoking. Frarable 2-3 we observed
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significant (P<0.05) dispersion effects of gendenpking, normalized age (Age?*),

squared-normalized age and estimated global agdé€dbal), which implicate the

necessity of correcting for the effects of heteeolssticities for covariates.

Table 2-3: Separate analyses of drinking symptom

Mean Dispersion
Effects Estimate p-values Effects Estimate p-values
Intercept 21.1041 7.4e-28 Intercep 6.0555 5.0e-28
Smoke 3.4242 7.8e-50 Smoke 0.2968 2.1e-54
Gender -8.2967 1.6e-19 Gender -0.9339 3.1e-31
Age* -0.0829 0.8166 Age* -0.0905 0.0236
(Age*? -0.2848 0.1826 (Age™? -0.1046 3.1e-05
Global 5.0718 0.2778 Global 1.5023 8.9e-04

After adjusting for both mean and variance effectsjariates have no significant

effects on AD Table 2-4). Covariates adjustment does not remove the anycsti SNP

information on both the mean and variance of phgretAnd hence we can estimate

local ancestry effects and genotypic effects os &ldjusted trait residual after removing

the effects of covariates on both mean and variance

Table 2-4: Separate analyses of drinking symptom after aajest

Mean Dispersion
Effects Estimate p-values Effects Estimate p-values
Intercep 0.0315 0.7903 Intercep -0.0129 0.9387
Smoke 0.0017 0.8983 Smoke -0.0016 0.9317
Gender -0.0351 0.5368 Gender 0.0090 0.9112
Age* 0.0107 0.7066 Age* 0.0005 0.9906
(Age*? -0.0114 0.5210 (Age*? 0.0009 0.9713
Global 0.1648 0.6065 Global -0.0035 0.9938

2443 Replication of previous highlighted genes for alcotl dependence

We compare our methods HGAT_Adm and its weightedisa wWHGAT_Adm

with the commonly used mean-only gene based asswciaethods CMC, SKAT,
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SKAT_O and SKAT. The statisti§, ;547 4am Of WHGAT_Adm has the same setting as
defined inEq. 2-8by replacingk with K, 4,,,. In addition, we also consider CMC_adj,
SKAT _adj and SKAT_O_adj that adjust for gene-wisgal ancestry as covariate. In
SAGE data analysis, we selected 26 previous repygeaes that have been implicated as
candidate genes related to AD by more than one GW/Asgquencing paper. The results

of the 26 replicated genes are listed @ble 2-5.

Table 2-5: P values of 26 previous reported genes in SAGEseat

Chr | Gene HGAT_Adm | wHGAT_Adm | SKAT SKAT_ adj | SKAT_O | SKAT_O_adj | CMC | CMC_adj
1 OLFM3 0.047 0.024 0.131 0.232 0.203 0.311 0.569 | 0.373
1 TNN 0.118 0.273 0.899 0.959 0.936 0.968 0.394 | 0.505
1 NRD1 0.244 0.054 0.016 0.013 0.028 0.024 0.743 | 0.686
2 THSD78 5.82e-04 6.23e-03 0.715 0.672 0.218 0.064 0.759 | 0.843
2 MREG 8.47e-03 6.16e-03 0.240 0.209 0.374 0.336 0.399 | 0.386
3 BBX 0.666 0.869 0.981 0.958 0.799 0.551 0.582 | 0.422
3 CNTN4 1.60e-03 4.84¢-03 0.953 0.931 0.700 0.927 0.453 | 0.854
4 ADH1C 0.049 0.131 0.419 0.405 0.289 0.268 0.154 | 0.152
5 DOCK2 7.14e-04 3.11e-04 0.025 0.134 0.038 0.233 0.074 | 0.806
5 PPP2R2B 0.025 0.093 0.609 0.549 0.809 0.762 0.138 | 0.133
6 SYNE1 0.085 0.124 0.799 0.640 0.448 0.015 0.356 | 0.173
7 CNTNAP2 4.51e-06 1.23e-04 0.739 0.584 0.835 0.816 0.759 | 0.848
8 CSMD1 3.40e-07 6.26e-06 0.969 0.949 0.979 0.954 0.566 | 0.555
10 | KCNMA1L 2.04e-03 1.59¢-03 0.326 0.248 0.491 0.398 0.610 | 0.540
10 | HTR7 0.066 0.056 0.471 0.460 0.146 0.229 0.228 | 0.218
11 | TTC12 0.038 0.094 0.589 0.536 0.784 0.740 0.989 | 0.817
11 | PKNOX2 6.44e-03 3.78e-03 0.175 0.071 0.270 0.127 0.694 | 0.603
11 | NAP1L4 0.064 5.47e-03 1.75e-03 | 8.92e-04 | 3.34e-03 | 1.74e-03 0.287 | 0.213
11 | GRMS5 0.145 0.183 0.633 0.574 0.836 0.794 0.479 | 0.472
12 | ITPR2 3.55e-04 6.21e-04 0.239 0.141 0.359 0.235 0.111 | 0.477
12 | soxs 0.070 0.048 0.309 0.206 0.471 0.356 0.532 | 0.689
12 | ALDH2 0.032 0.028 0.256 0.205 0.105 0.114 0.048 | 0.056
12 | sLc2A14 0.028 0.071 0.723 0.777 0.839 0.957 0.239 | 0.154
13 | SLC10A2 0.034 0.051 0.115 0.083 0.194 0.142 0.104 | 0.174
18 | CCBE1 0.145 0.439 0.918 0.811 0.984 0.627 0.623 | 0.418
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19 OPA3 0.046 0.049 0.304 0.292 0.415 0.395 0.543 | 0.841

We investigated the genetic variants in these 26reqglicated genes previously
shown to be associated with AD. For the majoritpi&vious replicated genes, our
HGAT_Adm’s methods obtained smaller p-values cormgao other methods. The better
performance of our proposed method came from iategy the additional high-order
effects of local ancestry in the gene-based associtest. Utilizing local ancestry
instead of calibrating it can provide additionaéiug additional information regarding the

source of cumulative effect of admixture block megon disease trait.

2.5 Conclusions and Discussions

High-order effect, as discussed in Chapter 1, mapficate potential high-order
interactions, causal networks, latent covariatekafe disequilibrium (LD) structure and
admixture blocks among variants. The novel prireegfl harmonious tests have also been
introduced in detail in Chapter I. For Chaptemig apply such harmonious principle to
propose the novel HGAT and HGAT_Adm method foritlisty and harmoniously
integrating high-order information of genotype aochl ancestry in gene-based studies.
Such high-order effects of test markers are emhkdddetter weights to summarize the
relative contribution of the gene to the alteratodrthe distribution of disease trait
beyond the change of the trait mean.

There are several advantages to HGAT modeling.stdtestic that we developed
for HGAT has the appealing features of the scaeitelinear mixed models such as
calculating p-value analytically and saving compotatime compared to permutation.

The axillary high order test is generated to capthe high-order effects. Due to the
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independence ahoandho test under null hypothesis, our HGATs methodsazarirol
the type | error. Due to the dependencenofandho test under alternative hypothesis,
HGATSs outperformed commonly used existent popudamregbased association tests.

For admixed population, local ancestry offer addhi#il information resource in
terms of the ethnicity-specific patterns of disgasralence. In other words, local
ancestry represents the accumulating effects tneeentire ancestral block in which may
include certain number of variants to impact therhution of disease traits. Therefore,
statistically significant differences among higlter moment of phenotypes under
different local ancestry groups may also impligadgential interactions (e.g.,
AncestryxGene and AncestryxAncestry), latent caredationship among local ancestry,
genotype and phenotype. Therefore, we also extemgleHGAT to HGAT_Adm in
admixed populations by including high-order effettocal ancestry in HGAT
framework as a new weight to better summarize ¢tagive contribution of the ancestry
block to the alteration of the distribution of dase trait in admixed population.

By application to COGA and SAGE datasets, we demnatesthe noteworthy
superiority of HGAT methods to existent gene-basedn-only association tests in
replicating and identifying novel susceptive gefidse development of more effective
high-order effect integration methods requiresiertformal efforts. In addition,
appropriate adjustment of both mean and variarfeetsfof covariates are important for
the success of effectively integrating informathigh-order effects instead of spurious

effects brought by environmental covariates.
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CHAPTER 3

INTEGRATING MEAN AND HIGH-ORDER HETEROGENEITIES
TO IDENTIFY DIFFERENTIALLY EXPRESSED GENES

3.1 Abstract

Identifying differentially expressed (DE) genes twidlistinct mean expression
levels between different experimental conditionsaismain challenge in functional
genomics studies. Mean heterogeneity, namely tifiereince between condition-specific
means of gene expression levels, reflects one tepés distribution alteration. If a DE
gene is a genuine functional gene that involveeineggene co-expression and interaction
networks related to the disease, its distributibange in the expression level cannot be
solely completely determined by mean heterogenditigher-order heterogeneities,
namely the difference between condition-specifighhorder moment beyond the first
order moment (i.e. the mean), can provide extraaldé information for describing the
distribution change of expression levels. Theretaeparts in this chapter. For Part I, |
firstly introduced our published integrative meartance test (IMVT) that combined
gene-wise mean heterogeneity and variance hetegitgeror moderate samples, the
IMVT well controlled type | error rates and outpmrhed its competitors under
comprehensive simulations of normality and Laplae#ings. In presence of variance
heterogeneity, the IMVT appeared noticeably moreveytul than all the mean
heterogeneity tests. For Part Il, a novel doublécWWetest (DWT) was proposed to capture
both mean heterogeneity and second-order heteribgerstead of variance heterogeneity.
The DWT outperformed our earlier IMVT method andoalvell controlled type | error
rates. Both IMVT and DWT methods were applied e gene profiles of peripheral
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circulating B. After adjusting for background damucture, IMVT replicated previous
discoveries and identified novel experiment-widgngicant candidate functional DE
genes. And we also compared the results of IMVT BWT in replication of previous
reported genes. Our results indicate tremendouenpat gain of integrating informative
high-order heterogeneity after adjusting for globahfounders and background data
structure. Therefore, particular attention showdghid to explicitly exploit the high-order
heterogeneity induced by condition change in fuumal genomics analysis.

Key words: Functional genomics studies; DE genes; High-ohdterogeneities; Latent

confounders; Latent biomarkers

3.2 Part I: Integrating Mean and Variance Heterogeneites to Identify
Differentially Expressed Genes

3.2.1 Introduction

Typically the core challenge in comparative micragrexperiments is to identify
statistically significant genes of biologically nméagful changes in expression levels under
different conditions. Differentially expressed gemeay help identify disease biomarkers
that are important for the diagnosis of multiplsedises [92, 93]. There are several existent
mean heterogeneity tests for identifying differaliyi expressed genes. The Studeteist
(ST) has been widely applied as a standard rodtinedentifying mean differentially
expressed (MDE) genes in two-condition experimgis The null hypothesis of this test
is mean homogeneity,,: the testing gene has identical mean expressiai tender the
two conditions. It assumes variance homogenkity: the testing gene has identical

variance in expression level under the two condgid he necessity éf,, for the ST was
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formally examined under normality setting [95].tdinds to inflate type | error rate for
rejecting mean equality if the smaller sample mfrthe population with the larger
variance. In contrast, it tends to be conservatithee larger sample is from the population
with smaller variance. The WT [96] is an adaptatainthe ST to allow for potential
variance heterogeneity between two experimentaditions. This test calibrates potential
variance heterogeneity as an impediment to iderdif§erentially expressed genes.
Demissie et al. developed the MWT [97] to obtainrenstable estimates of the error
variance of a gene in a low-replicate microarrageginent. The MWT outperformed the
Welch test to allow for variance heterogeneity. #lbresaid tests either simply ignore or
take the variance heterogeneity as an impedimedt catfibrate it when identifying
differentially expressed genes.

For a gene in a complex network, its distributietenogeneity of expression levels
can include heterogeneities in mean, variance, eveh higher-order mathematical
characteristics. Thus far, researchers have beewentionally focusing on exploiting
mean heterogeneity, simply ignoring or adjusting deerall intra-condition variance
heterogeneity. Herein, we distinguish ‘informativ®mponent’ from ‘impediment
component’ of the overall variance heterogeneityecHically, we call the variance
heterogeneity due to condition change as ‘informeatiariance heterogeneity’; and call
variance heterogeneity due to environmental cotemiand latent factors (i.e., background
data structure) as impediment variance heterogendibwever, informative variance
heterogeneity has not been well recognized ando#gdl Informative variance
heterogeneity of a susceptible gene can captura exbrmation conveyed by complicated

biological networks. High gene-gene correlatiores @mmon in co-expression networks
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of differentially expressed genes [98, 99]. Geragsinteract with each other and/or interact
with environmental factors. Therefore, the altematiof expression distribution of a
susceptible gene cannot be completely determined itby mean heterogeneity.
Heterogeneities of high-order characteristics, ®ayiance and kurtosis, can provide extra
valuable information. Exploiting informative meaetérogeneity of gene expression level
alone would be incompetent to extract the infororatf the second-order moment (i.e.,
the variance).Existent methods cannot explicitly integrate théoimative variance
heterogeneity of gene expressions due to conddi@nge; and little has been done to
distill informative variance heterogeneity.

In Part I, we put forth mean-variance differentiaixpressed (MVDE) gene as a
novel concept. The family of MVDE genes is broattean that of conventional MDE
genes. It goes one step closer to our generic pbota susceptible gere a gene displays
reliable changes in any aspects of the entireibligton of its expression level with the
change in condition. A MVDE gene may display difier means and/or variances of
expression levels between two different conditidrtse proper null hypothesis of testing
MVDE is Hy; = Hy; N Hy,: the gene has equal mean and equal variance oéssipn
levels between the two conditions. We reject thal dull hypothesisK,;) and claim the
testing gene. Under normality setting, the two-damfptest is the most powerful
procedure for exploiting variance heterogeneityt Be F-test is very sensitive to the
violation of normality [100]. Beyond normality seif), the Levene test [101] and the
Brown—Forsythe test [102] are two popular altenresti for inspecting variance

heterogeneity.
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We mathematically proved and empirically illustchtbat testing statistics of mean
heterogeneity and variance heterogeneity are imkely distributed undef;. This
null independence is not well-known to many, butriscial to assure the type | error rate
control of the IMVT using Fisher’'s method [102]. tlsr comprehensive simulations, the
IMVT appeared noticeably more powerful than existeaan heterogeneity tests (i.e., WT,
MWT and STSD) as well as the LRT and the SMVT fentifying MVDE genes. In
particular, the IMVT appeared strikingly more pofuéthan the mean heterogeneity tests
to identify genes with variance heterogeneity. Tasirate the practical utility of our
IMVT, we reanalyzed the gene profiles of periphecaktulating B cells [103] after
adjusting for global confounders and background daitucture. Our IMVT replicated
previous discoveries and identified novel gened thare missed by existent mean

heterogeneity tests.

3.2.2 Methods

Let the dataset contain expression level® ajene probes of,. unrelated subjects
from conditionc (i.e.,c = 1 for control group, and = 2 for treatment group). To be
specific, letG;;. be the expression level of gene prol{e: 1,2, ..., M) on subjectj (=
1,2, ...,,n.) under conditiorr, and letn = n; + n, be the total sample size. L&t ands?
be the gene-specific mean and variance of the sgjore levels of gene prolhainder

conditionc, respectively. The standard unbiased estimators.ainds? are given by

. . . . - \2 _
fic = Gie = X35, Gije /e andéf = Y75 (Gije — Gie)” /(ne — 1), respectively.
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3.2.21 Concept of MDE genes and mean heterogeneity tests

Researchers conventionally focus on identifying MQEnes. A MDE gene
displays mean differentials between the expressemels under two experimental
conditions f; # u,). The ST has been widely used routine to ideNIYE genes. This
mean heterogeneity test rejects the null hypothégisu; = u, if the Student statistic of
the testing gene departures from zero significatlgefault assumption behind the ST is
variance equalitify,: 02 = o2 at the testing gene. Specifically, for & gene, letG; =
(Gi11, Gizay -, Ging1)' @nd Gy = (Giyz, Gizay -, Gin,2)' be the expression levels of two
independent random samples from normal populativifg;;,s3) and N (u;z, 65) ,
respectively. The ST oHéil):uil = u;, assumes variance homogeneiﬂé‘}: oh =0p)

between the two conditions, and defines the tassst as

1
1 1\v2, , "
i (n_1 + ﬁz) (Aix — Ai2)

A2
VOp
ni—1 .2 np,—1 A

G is the pooled sample variance estimator of the

whered; = 7
n1+n2—2 n1+nz—2

common variance?. If Hé? = Hé‘l) N Héiz) is true, then the testing statistiollows the
centralized Studertdistribution with(n; + n, — 2) degrees of freedoni{t, n,_,). It

is well known that violating the assumption of wate homogeneity would result in type
| error inflation or power loss of the ST [20].
The WT, as an adaptation of the ST, is more radiafthen the two-group samples

have unequal variances and unequal sample sizesVElch statistic is defined by
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WT =
A2 A2
01 n 0i3
n; N

This statistic calibrates the impact of potenti@riance heterogeneity between two
conditions. For a gene with equal means betweenctwalitions (regardless of variance
heterogeneity) WT approximately follows &distribution with the Welch—Satterthwaite

degree of freedom:

2
A2 A2
Oiq +Ui2
n; Ny

e —
nf(nl—l) n%(nz—l)

To calibrate unequal variances, another alternasitbke MWT [97], which would yield

reliable condition-specific variance estimators limw-replicate experiments. For large-
sample experiments, one can perform Student btestandardized data (STSD), where
the gene expression levels are divided by condgjmecific sample standard deviations

respectively.

3.2.2.2 Concepts of MVDE genes and variance heterogeneitgdts

A gene is called to be susceptible if the changeaindition can alter arbitrary
aspects of the entire distribution of its expressével, i.e., mean, variance, kurtosis and/or
even higher-order characteristics. The term MVDIBeges adopted to describe a gene
whose mean and/or variance in expression levetnsigve to the change in condition.
Formally, a MVDE gene has different meams ¢ u,) and/or variancessf # o?) of
expression levels between two conditions. This ephof MVDE genes goes one step

closer to our general concept of a susceptible gemkis more reasonable than the
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conventional concept of MDE genes, which confimegditferential mean expression levels
only. In gene co-expression networks, genes wagktteer and the expression levels are
correlated. Some susceptible genes may also interticother susceptible genes and/or
environmental factors. Such correlations and ictevas among biological networks are
very common and are major drivers for the varianeterogeneity of a test susceptible
gene. Variance heterogeneity, to some extent, abeichow a gene involve in complex
networks. Therefore, we argue that variance he&reity should be as equally important
as mean heterogeneity for identifying differenyialéxpressed genes. To identify
susceptible genes, one crucial step is to extiatingry statistics containing potential

information about variance heterogeneity, i.e., thevalues computed from some

appropriate test statistic on the null hypothél#% (variance homogeneity).
For a random gene, if its (transformed) expressgvels follow normal

distribution, then the classical two-samplestatistic

follows the centralized=-distribution with(n; — 1) and(n, — 1) degrees of freedom

(F~Fn1_1,nz_1) sinceHéiz) is true. Under normality setting, thetest is the most powerful

test for exploiting variance heterogeneity. Neveleks, thé--test is very sensitive to the
violation of normality. Therefore, it may claim i@om genes to be spuriously significant
if their (transformed) expression levels do noticHir follow normal distributions.
Actually, the two-sampl& test is more suitable for testing normality otttean variance

heterogeneity [100].
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As a robust alternative, the Brown—Forsythe siatisttheF-ratio that stems from
applying the ordinary one-way analysis of varianoethe absolute deviations from the

median:

BT, _ (nl + np; — 2) Zgzlnc(z_ic - Z_i)z

n = \2
g=1 Zjil(zijc - Zic

where Zijc = |Gijc - Gic|: Zic = n—CZ ‘ lec; Z; =

1ch lec; and GlC =

n1+n
median(G,). WhenHéiz) is true, the distribution oBF follows approximately ther-

distribution with degrees of freedom 1 apd + n, — 2).

Another alternative, the Levene test, uses the nmesaead of the median:

IF = (ny +n, —2) Zgzl nc(Z_ic - Z_i)z

— 2
- Z;lil(zijc —Zic

where Zijc = |Gijc - éic"lZ_iC = Z UC’ l = 12 L]C and GiC =

ni+n,
mean(G,). If Hélz) is true, thenLF follows approximately th€& distribution with degrees
of freedom 1 andn, + n, — 2).

For each gene, the optimal test for variance hgesreity depends on the
underlying gene expression distribution. Accordin@rown and Forsythe’s Monte Carlo
studies [102], the Levene test provided the bestepdor symmetric, moderate-tailed
distributions; whereas the Brown—Forsythe testqreréd best when the underlying data

followed heavily skewed distributions.

3.2.2.3 Integrating mean and variance heterogeneities
One most commonly used method to integrate two peddent pieces of
information is Fisher’s linear combination. Foreating gene, leby,r, pr, Psr, PLr dENOte
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the p-values of the Welch statistic, thestatistic, the Brown-Forsythe statistic and the
Levenestatistic, respectively. We recommend usittyT = —2(log(pwr) + log(p.r))

to integrate mean and variance heterogeneitiesth&ndwo alternatives arBWT =
—2(log(pwr) + log(pr)) and BFWT = —2(log(pyr) + log(pgr)) . Each of the three
Fisher linear combinations follows approximatelg #f- distribution with 4 degrees of
freedom, provided that thgvalues of mean heterogeneity tests are indepemdéene p-

values of variance heterogeneity tests under jaiiitH;.

3.2.2.4  Alternative tests for the joint null hypothesis ofmean and variance
equalities
To testH,3, a framework of separate mean and variance t8M¥T) can also be

conducted. This framework applies WT By, (mean equality) at nominal leve| and
Levene test oifly, (variance equality) at nominal lewe}, respectivelyH,; is rejected if
H,, Or Hy, or both are rejected. By our proposition on thk independence, type | error
rate of this framework is given by = a; + a, — a; a,. Itis intractable to choose universal
optimala,; anda, for all genes. To control the overall type | emrate at nominal levet,
one typical choice is setting, = a, = 1 —+/a. Similar as Fisher’s linear combination,
the SMVT gives equal weight to mean heterogeneiti\ariance heterogeneity.

The two-sampld.RT is another alternative to telf;, assuming the (transformed)

expression levels follow normal distributions. Speally, the LRT statistic is given by

nq ny

ni—1.2\2 (nz2—1.
(a57) (22of,)
ni nz

(nlinz (Z;lil(clfl _ﬁ')z +Z;'1=21(Gl:j2 _ﬁ)z))

ni+no
2
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1
nitn;

= (X721 Giyjr + X721 Gij2) (SeeAPPENDIX B for mathematical derivation of the
LRT statistic). Under normal setting with,;, 2 = —2In(LRT) follows y?- distribution

with 2 degrees of freedom asymptotically for lasgenple sizes.

3.2.3 Results
3.23.1 The null independence between the mean and varianbeterogeneity
tests

It's commonly believed that testing statistics adan and variance heterogeneities
are dependently distributed, even if the data fogrthem are from an identical normal
population. For example, both Studeritstatistic and thé&-statistic are defined in terms
of sample variances. In fact, all aforesaid tesstafistics of mean heterogeneity are
independent of all aforesaid testing statisticgasfance heterogeneity undi;. This null
independence lays the foundation of type | errae reontrol of the integrative
heterogeneity tests. Herein, we formally formulhte finite-sample null independence by
the following proposition:

Proposition: Student t statistic and Welch t statistic are iretegeent of the F-, Levene and
Brown-Forsythe statistics if the finite sampl&%,(G2) forming them jointly follow an
arbitrary spherically symmetric distribution.

The proposition formulates the finite-sample nalilependence under a broader
distribution family, including normality as a spakcmember (see the APPENDIX fBr
mathematical proofs). Its typical members includdtivariate Gaussian, Student, Kotz,
exponential power, Laplace distributions with spdaly symmetric variance-covariance

matrices [100]. Many researchers are familiar witld usually adopt normality assumption
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on (transformed) gene expression levels. By thapgsition, if the normality assumption
is met, the proposed integrative heterogeneitysteah properly control the type | error
rate. However, the normality assumption is ofteslated more or less by real-world gene
expression data. Rigorously speaking, no transfbomaf gene expression data can assure
exact normality. Therefore, it is necessary andulige extend the null independence to
broader distribution families, e.g., sphericallyrsyetric family.

To empirically illustrate the proposition, we gesitexd 100000 replicates of two-
group samples from the standard normal distributvith sample size; = n, = 40. As
anticipated by the proposition, the majority ofliegte-specific pairs of Welchstatistic
(WT) and Levene statisticF) randomly concentrates around (0, Big(re 3-1 (a)) and
so do the replicate-specific Welch t statistic &nstatistic pairsKigure 3-1 (b)). Under
this simulation design, Weldtand Studerttstatistics (/T , £) appeared equivalerfigure
3-1(c)). The correlation between Levene statiskiE)(andBrown-Forsythe statisticBF)
turned to be 0.9894F{gure 3-1 (d)). The scatterplots oft(LF), (£, BF), and {, F) are
qualitatively the same as those BT, LF) (Results not shown here). Under the normality
setting with smaller sample sizes, we also obtathedcorresponding figures for some
other sample sizesrigure B-1-Figure B-7), which revealed very similar patterns to
Figure 3-1 Standard multi-variate normal distribution isypital member in the family of
spherically symmetric distributions. These simwlati results illustrate the null
independence within the family of all sphericaljyranetric distributions.

As explorations outside of the spherically symneetiamily, we performed
comprehensive simulations by generating the data the standard Laplace distribution.

Univariate Laplace distribution is a typical membef the family of symmetric
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distributions. However, the joint distribution afdependent univariate Laplace variables
is outside of the spherically symmetric distribatifamily. Under the standard Laplace
setting, we obtained the corresponding scatter@ots observed similar patterns of the
joint distributions of the mean and variance testistics Figure S2.1-Figure S2.) These
empirical results illustrate the robustness of tld independence between mean and
variance tests for the data from the family of syemi distributions.

(a) Welch t and Levene statistics (b) Welch t and F statistics
g1 Cor=-00016 Pvalue = 0.6178 24 Cor=-0.001 . Pvalue=07525

Levene statistlc
F statistic
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5 5 5 4 3 2 1 0 1 2 3 4 5
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(c) Welch t and Student t statistics (d) Levene and Brown-Forsythe statistics
P o
- Corr=1 P-value =0 .
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Figure 3-1: Null joint distributions of the test statistics orean and variance
heterogeneities under normality setting.
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3.2.3.2 Type | error rates control of the competitors

Under normality setting. With extremely small saegjl none of the eight
competitors could properly control type | erroresifigure 3-2 (a)). The LRT and the
STSD severely inflated type | error rates. The IMAfId the SMVT appeared equally anti-
conservative; both were much less anti-conservdtiaa the LRT and the STSD. The
MWT performed the best to control type | error saiewas slightly conservative. The WT
and the FWT appeared equally conservative; botle wlearly more conservative than the
MWT. The BFWT appeared severely conservative. TIR& Inflated the type | error rates
because thg2 distribution could not well approximate the exdtribution of the LRT
statistic. The anti-conservative of the STSD stechrinem the variability of condition-
specific data standardization. Specifically, sangilndard deviations of small samples
could not precisely estimate the standard deviafldve conservativeness of the BFWT
stemmed from the well-known conservativeness ofBhmvn-Forsythe test [104, 105].
For larger sample sizeBigure 3-2b-d)), the LRT, the STSD, the SMVT and the IMVT
appeared less anti-conservative, and the MWT, thethé FWT and the BFWT became
less conservative. When sample sizes reached &QyiT and the SMVT as well as the
WT, the MWT and the FWT properly controlled the &yiperror ratesKigure 3-2(d)).

Under the Laplace setting, the LRT and the FWT apgk severely anti-
conservativeKigure 3-3 (a-d)). Their inflations in type | error rate appeareere severer
as the samples increased. The LRT had inflated ltypeor rates because it was derived
from normality assumption of gene expression levEte FWT had inflated type | error

rates because tlketest statistic is very sensitive to the non-nortyaf the samples [100].
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The other tests displayed similar patterns to thosker normality setting. For extremely
small sample sizes, the STSD, the IMVT and the SM¥{peared successively less anti-
conservative; whereas the MWT, the WT and the BF&ypeared successively more
conservativeKigure 3-3(a)). Their magnitudes of inflations and deflationdyipe | error

rate appeared to vanish as the sample sizes iecr¢agure 3-3 (b-d)).
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Figure 3-2: Comparison of false positive rates of eight methaa$er standard
normality setting.
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Figure 3-3: Comparison of false positive rates of eight methaa$er standard
Laplace setting.

3.2.3.3 Empirical power comparisons under normality settingand non-
normality setting

For power comparisons, we investigated three kiofdscenarios under both
normality setting and Laplace setting: (1) uneguean and equal variance, (2) equal mean
and unequal variance and, (3) unequal mean anduahggriance. For sample sizes as
large asn; = n, = 40, the proposed and existent tests well controlge ti error rates

under normality and Laplace setting. And the saraze is very close to those of the gene
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expression files of Pan et al. [103]. We thus pre=e here the power comparisons with
the sample sizes, = n, = 40.

Under normality setting, Herein, the parameteasids represent the magnitudes
of mean and variance heterogeneities, respectiVéhens +# 0, the IMVT and the FWT
displayed the highest powers, followed by the SM¥id all the three joint heterogeneity
tests outperformed the three mean heterogeneity tes, the WT, the MWT and the STSD
(Figure 3-4 (a-b)). The power gains of the joint heterogeneity testsr the mean
heterogeneity tests appeared especially noteworthgn s =0 and r = 0 (Figure
3-4(b)). The joint heterogeneity tests did not displayese power losses even for the
theoretical scenarios favoring the mean tdstgufe 3-4(c)). In addition, the FWT slightly
outperformed the IMVT because the F test statistihe optimal test statistic for variance
heterogeneity under normality setting. Here, werthtlcompare the powers of the LRT
and the BFWT since they could not control typerberates.

Under Laplace setting, we simulated independer@00 replicates af; = 40
data points from standard Laplace distributi@place (0,1) andn, = 40 data points
from Laplace (r, (1 + s)?) for each(r, s) pair. Again, the parametersands represent
the magnitudes of mean and variance heterogeneigspectively. Under the Laplace
setting, we observed qualitatively the same pattamthose under the normality setting.
Whens # 0, the IMVT outperformed the SMVT; and both the jolreterogeneity tests
outperformed the three mean heterogeneity tests,the WT, the MWT and the STSD
(Figure 3-5a-b)). The power gains of the joint heterogeneity tester the mean
heterogeneity tests appeared especially notewonthgn s =0 andr = 0 (Figure

3-5(b)). The joint heterogeneity tests did not displayese power losses even for the
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theoretical scenarios favoring the mean heterogetests Figure 3-5c)). Here, we did
not compare the powers of the LRT, the FWT andBiR&/T since they could not control
type | error rates under non-normality setting.

These results formally demonstrate the importanicéntegrating informative
variance heterogeneity. In general, the power gairtke IMVT over its competitors are
solid. For the scenarios of mean heterogeneity,dhly IMVT would have small power
losses. All in all, the IMVT displayed valuable mgrover its competitors. At least, the
IMVT is an admissible procedure. It should be uk&fuimprove the power to identify
susceptible genes involved in co-expression netsvdl its robustness to non-normality

data, we recommend the IMVT as a powerful altevestio exploit microarray profiles.

(a) Dual heterogeneity (b) Variance heterogeneity (c) Mean heterogeneity
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Figure 3-4: Power comparison of six methods under two-conditiormality setting.
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(a) Dual heterogeneity (b) Variance heterogeneity (c) Mean heterogeneity
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Figure 3-5: Power comparison of six methods under two-conditiaplace setting.

3.2.34 Re-analyzing the gene expression profiles of perignal circulating B
Lymphocytes

Panet al [103] compared the gene expressions profileseapperal circulating B
cells between 39 smoking and 40 non-smoking headltBywhite women. Using MAS5
software, they normalized the expression level§2i5 selected probes out of all the
22,283 experiment-wide probes. They applied tradai t tests to the normalized
expression levels and report 125 promising DE gehles authors justified why they did
not adjust for menopausal status and age. Howthey,neglected the latent background
data structure. Using the MASS5 software, we norpealithe raw expression levels of all
the 22283 experiment-wide gene probes. For the aliwed data, we computed the probe
specific test statistics aqdvalues of five competitors. The genomic inflatfantors [106]
of these heterogeneity tests would be close talelf could properly control type | error

rates. However, all the tests displayed huge gemarfiation factors, especially the STSD
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(Figure 3-6). All the Q-Q plots climbed quickly above the upper limit of t8&%
concentration band (the gray band). The severengenmflations indicated that some
major latent factors would confound all the comijpes. Thus, thétests performed by Pan

et al [103] would be confounded since they did not atdjar any background factors.
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Figure 3-6: Q-Q plots of the five competitors without adjustiiog latent data
structure and covariates.

To reveal latent data structure, we first condu®€xA of the MAS5 normalized
expression levels of all the 22283 experiment-vgdae probesHgure 3-7, Table Bl).
PC1 was the unique major PC, accounting for 98.24%e total variationKigure 3-7

(a)). PC2 merely accounted for 0.32% of total variatiNeither PC1 nor PC2 displayed
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mean heterogeneity or variance heterogeneity betwkee smokers and nonsmokers
(Figure 3-7 (b)). PC4 displayed strikingly significant mean hetgoeity p,,r = 1.91 X
1071®), even if it only accounted for 0.13% of the totalriation. PC6 displayed very
significant variance heterogeneity,f = 3.2 x 10™*) even if it accounted for 0.07% of
the total variation only. PC4 and PC6 distinguisliee smokers and the nonsmokers
(Figure 3-7 (c)). Table B-1listed the first 2 and all the global PCs withngigant mean
and/or variance heterogeneities. These signifioglobal PCs did not distinguish
informative heterogeneities and impediment hetareties. They were so significant in
that they would account for portions of informatimean and variance heterogeneities of
DE genes in addition to background heterogeneifdssshown inFigure 3-8, naively
adjusting for the significant global PCs of all geprobes would result in severe power

loss (genomic deflation).
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Figure 3-7: Global data structure of all the experiment-widaagexpression levels.
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Figure 3-8: Deflations due to the over adjustment of the expent-wide data
structure.

To prevent false positives and false negativessalected 13415 ‘robust’ gene
probes to capture the background data structure.spirit here is similar to the use of
control genes to account for unwanted variation/[10lone of the robust gene probes
displayed mean heterogeneity or variance heterayemefore and after calibrating the
significant background PCs, age and menopausakstate conducted PCA of the MAS5
normalized data of the ‘robust’ gene prolégire 3-9, Table B-2. PC1 alone accounted
for 98.35% of the total variation and was the ueiguajor PC. PC2 merely accounted for

0.37% of total variation Kigure 3-9 (a)). Neither PC1 nor PC2 displayed mean
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heterogeneity or variance heterogeneifyggre 3-9 (b)). PC14 displayed the most
significant mean heterogeneity(r = 0.0036), even if it only accounted for 0.03% of the
total variation. PC28 displayed the most signiftoaariance heterogeneity,( = 0.0069)
even if it only accounted for 0.01% of the totatigtion. PC14 and PC28 displayed clear
stratification of the smokers and the nonsmokEigure 3-9 (c)). In addition,Table B-2
listed the first 2 and all the background PCs wstbnificant mean and/or variance
heterogeneities. After adjusting for these sigatficbackground PCs, age and menopausal
status, theQ-Q plots of all the five tests climbed above the dizg Figure 3-10.
Especially, theQ-Q plot of the IMVT climbed above the upper limit dfie 95%
concentration band. All the five tests displayedsmnable inflation factors. The mild

inflation might be due to weak differentials oricesl correlations between DE genes.
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Figure 3-9: Background data structure of the expression leMelsbust gene probes.
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Figure 3-10: Q-Q plots of the five competitors after adjusting background data
structure and covariates.

Applied to the calibrated expressions, our IMVTritked CUL7, RBMY 1JRDH5
and SOCS3o be experiment-wide significantdble 3-1), i.e.,p;yyr < 0.05/22283 =
2.24 x 1076, The STSD only identifie@UL7 as experiment-wide significant gene; while
the WT and the MWT failed to identify any experim@ide significant genes. The
experiment-wide minimunp value of the WT and the MWT turned to &3 x 1075,
much larger tha@.24 x 107¢. The SMVT failed to identify any gene to be expeit-
wide significant. AtDDX3X the WT reached the experiment-wide minimpyp, =

3.10 x 107°. For SMVT, bothp,r andp,- must be smaller than threshold —

/1 —0.05/22283 = 1.12 x 107 to control overall experiment-wide type | erroterat

0.05. Therefore, our analysis of the real dataiplexvsolid evidence for the superiority of
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the IMVT over the SMVT. Without adjusting for thatd structure and covariates, Pan et
al. [103] did not report any of the four genes althotigeir results were severely inflated.
SOCS3vas reported to be related to tobacco smokinghtdgpendent studies [108-111].

Per the database of cancer gene networks (TCN@G://tdhg.hgc.jp/index.html)CUL7

[112-114],RBMY1J[112, 114] andRDH5[112-117] were reported to involve in function
gene networks related to smoking. All the four expent-wide significant gene probes
displayed both mean and variance heterogenefigsiie 3-11). In addition to the four
experiment-wide significant genes, our IMVT ideetif 16 genes that testified to be
involved in functional networks by Panadt [103] at nominal level 0.05T@ble 3-2. For

a test gene within a network of functional genaspiporating its informative variance
heterogeneity proved one effective way to explaita information as provided by the

other function genes in the same network.
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Figure 3-11: Boxplots of four experiment-wide significant gerelpes.
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Table 3-1: Experiment-wide significant discoveries by the IV

AffyID Gene IMVT STSD MWT WT

203558 _at CuL7 1.12E-07 | 1.55E-06| 0.0034 0.0024
208307_at RBMY1J 3.82E-07 | 0.0051 0.0422 0.0398
210106_at RDH5 1.56E-06 | 0.0059 0.0295 0.0302
206359_at SOCS3 2.22E-06 | 0.0014 0.0081 0.0078

* All the probe-specifig,,,,+ values reported here are smaller than 0.05/22282438x1@. The
STSD identified CUL7 with much weaker evidence whitie WT and MWT did not identify any
gene probe to be experiment-wide significant.

Table 3-2: The overlap of the discoveries of our IMVT and gemes which were
testified to be involved in functional networks

Adjusted MAS5* MAS5*

AffyID Gene  uvT STSD  MWT  wWT ST

201085 s_at SON | 0.0075 0.0021  0.0021  0.0023  2.15E-14
203868 s_at VCAM1 0.0030 0.0004 0.0005 0.0005  2.03E-07
204524 at PDPK1 | 0.0470 0.0328 0.0337 0.0346| 7.12E-11
204600 at EPHB3 | 0.0178 0.0165 0.0207 0.0213  2.83E-04
205008 s_at CIB2  0.0387 0.0122 00117 00123 1.25E-06
205099 s _at CCR1  0.0058 0.0104 0.0160  0.0165  6.55E-11
206788 s at CBFB | 0.0003 4.34E-05 4.28E-05 4.71E-05 <1.00E-17
207961 x_at MYH11 | 0.0001 0.0139 0.0370  0.0383| 8.11E-06
208164 s_at ILOR  0.0311 0.0074 0.0072  0.0077| 4.05E-05
200876 at GIT2  0.0024 0.0040 0.0053 0.0057| 1.20E-08
211197 s at ICOSLG | 0.0448 0.0423  0.0479  0.0487| 3.28E-05
211699 x at HBA1 | 0.0455 0.3238 0.3632 0.3667| 2.70E-03
212514 x_at DDX3X | 0.0002 3.06E-05 2.73E-05 3.10E-05 2.22E-16
213446_s_at IQGAPL1 0.0082 0.0306 0.0400  0.0413| 8.37E-10
217557 s at CPM | 0.0347 02422 0.2678 02701 1.61E-03
219599 at EIF4B | 0.0006 0.0005 0.0018  0.0019  5.80E-14

*These raw p values of the heterogeneity tests based on the ibshted expression levels after
adjusting for age, menopausal status, and the backgund structure.
**These raw p values of Studentt tests in Pan et al. [103] based on the MAS5 nornia¢éd data
before adjusting for any of age, menopausal statuand the background structure.
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The false discovery rate (FDR) would be a more aypaite error rate to control
than the familywise error rate in microarray stgdi@nd several standard FDR controlling
procedures have been widely practiced [118-121].dWladentify more promising gene
probes when applying the most widely used FDR otlivig procedure to the values
generated by our IMVT. For example, controlling FRRthe stringent levél.05, our
IMVT identified 24 out of the experiment-wide 22288ne probes. Controlling FDR at
the same level, the STSD only identifietlL7, while both the WT and the MWT missed
all promising gene probe3dble B-3). Controlling FDR at level 0.1, our IMVT claimed
55 gene probes, while all the three mean heterdtydnsts discovered no additional gene
probes. These results have well demonstrated nofteyvgains of explicitly exploiting
informative variance heterogeneity. Without adjgtior background data structure, Pant
et al. claimed 125 gene probes with local FDRs < 0.0%ifTpublished list of promising
gene probes displays huge discrepancies to ouch &screpancies stemmed from the
severe inflation in theit tests Figure 3-6). Judiciously calibrating background data

structure is thus necessary for accurately pranigy gene probes.

3.3  Part Il: Novel Double Welcht test to Identify Functional Differentially
Expressed Genes
3.3.1 Introduction
Part | presented the limitations of only exploitmgan heterogeneity and proposed
an integrative IMVT method to combine the mean &adance heterogeneities from
Welcht test and Levene test, respectively. The propdrhygothesis of testing MVDE

gene isHy; = Hy; N Hy,: the gene has equal mean and equal variance mdssipn levels
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between the two conditions. As demonstrated inudision, the main disadvantage of
integrating mean and variance heterogeneities asinddependence of mean test and
variance tests, either under null or alternativ@pdtijesis. Therefore to overcome the
disadvantage of integrating mean and variance dggeeities, we put forth a more
powerful novel method DWT to integrate mean andhfogder heterogeneities in Part Il.
It goes one step closer to detecting MVDE gengerae displays reliable changes in any
aspects of the entire distribution of its expresdevel with the change in condition than
any other existent methods. If a gene is not ationogene related to corresponding
disease, it would display mean equalitl;{) and second-order moments equaliy,( of
expression levels between two different conditidrtse proper null hypothesis of testing
functional MVDE gene i$l,s = Hy; N Hy,: the gene has equal mean and equal second
order moment of expression levels between the twalitions. This null hypothesis is
equivalent to equal mean and equal variance hyptisece the second order moment is
the summation of the square of mean and variahéglis rejected, then we claim the
testing gene as candidate MVDE gene. To capturehipe-order heterogeneity, we
constructed a welch t test statistic for testihg. UnderH,s, the testing statistics of
detecting mean heterogeneity and high-order hetety are asymptotically
independently distributed. This null independerscerucial for controlling the type | error
rate control of DWT. While under alternative hypedls, the two test statistics are
dependent. Therefore the DWT appeared more powtréul our earlier IMVT method
integrating mean and variance signals to identigneg with or without variance
heterogeneity. We also reanalyzed the gene pradil@eripheral circulating B cells [16]

after adjusting for global confounders and backgtbdata structure. Our DWT replicated
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more reported genes that involve in networks ardl Ihetter performance than IMVT
method. Our results highlighted the importance xpl@ting informative high-order
heterogeneity, which is a rich resource about thlegpy mechanism of gene expressions

beyond the mean heterogeneity.

3.3.2 Methods and Materials
3.3.2.1 The double welch t test (DWT) to integrate mean andecond-order
heterogeneities

Let the dataset contain expression level® ajene probes of, unrelated subjects

from control groups and, unrelated subjects for treatment group, respdgtior a
specific gene, leX; = (Xll,Xlz, ...,Xlnl) be the expression level of gene probes under
control group and’; = (X1, X2z, ..., X2n,) b€ the expression level of gene probes under
treatment group. The total sample size is n; + n, be. Letu, (X,) anda;%c be the gene-

specific mean and variance of the expression lesMedgene probe under conditiorfi.e.,
¢ = 1 for control group, and = 2 for treatment group). And let,(X,.) = E(X?2) be the

second-order moment df.. According to the definition of second order momen
(X0 = (1 (X))" + 02,

Without loss of generality, we assutie< X,. DefineY;; = X;; — X; andY,; =
Xpj — X1, wherei = 1,2, .., ny,j = 1,2, .., 15, X1 = X2, Xy; and Xp = X72, Xo; .
Firstly, we constructed the first welthest statistic to capture the mean heterogeneity

between two groups.

Primary Test
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t type test statistic to capture the second-ordirbgeneity between two groups as

auxiliary test below.

Auxiliary Test

SZ 2

VZ_ vy oy2 p2 g2 y2 2 __1 ymo(p2 _y2)° 2 _

1

le—l

—\2
Z}Zl(yzzj —Y#) . UnderHos: iy (X;) = py (X2) andu, (Xy) = pp(X;), we

demonstrated the asymptotical independendg, otndT,,, as

Tw1) @4 0y (1 0
()= (06 )
This conclusion can be mathematically proved whgg- n, andn,,n, — o

(SeeAppendix B.4). WhenH; is false,T,,, andT,,, are dependent. This property

guaranteed the control of Type | error rate undgirlhypothesis and the potential power
gain under alternative hypothedgased on the null independence, we adopted Fisher’s

method to define the DWT statistic as

DWT = —2(log(py, ) + log(pw,))
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Wherep,,, andp,,, are the p value for the Welch statistigs andT,,,. DWT

follows approximately theg?- distribution with 4 degrees of freedom whenandn, are
large sample sizes. In reality, andn, are usually limited sample sizes. In next result
section of Type | error rate, we would show that DWethod can also be applied to the

moderate sample sizes and can still generally abhype | error rates undéf,;.

3.3.3 Results
3.3.3.1 Type | error rate controls of competitors

Under normality setting, we generated 100000 rafe® of two-group samples
from the standard normal distribution with samj@e &, = n, = 5,10,20,40. WT, MWT,
STSD, IMVT, SMVT and DWT are the competitors hafdth extremely small samples,
none of the six competitors could properly contyple | error ratesHigure 3-12(a)). The
STSD severely inflated type | error rates. AndIi® T, SMVT and DWT appeared anti-
conservative; all the three methods were muchitdisged than the STSD. The MWT, MT
and WT performed slightly conservative equally. Beeous inflation of the STSD is due
to the variability of condition-specific data standization. InFigure 3-12(b), DWT and
STSD are still a little inflated while the otheufomethods are slightly anti-conservative.
For moderate sample sizeSiqure 3-12 (c-d)), all the six methods seemed generally

controlled the Type | error rate.
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Figure 3-12: Comparison of false positive rates of six methausen standard
normality setting.

3.3.3.2 Empirical power comparisons

Similar as that in Part I, we simulated indepenlyet®000 replicates ai; = 40
data points from normal distributioh’(0,1) andn, = 40 data points frondv'(r, (1 +
s)?) for each(r, s) pair. The parametersands represent the magnitudes of mean and
variance heterogeneities, respectively. In genexgession networks, few genes work
independently and genes can interact with eachr aind/or interact with environmental

factors. Susceptible genes can co-express as iadity gene-gene correlations. Such
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correlations and interactions among biological rmeks are very common and are major
drivers for the high-order heterogeneity of testsugceptible gene. Therefore, for power
comparisons in Part Il, we investigated three kinfisscenarios with different mean
heterogeneities levels = 0.25,0.5,0.75). For each scenario, we presented the power
comparisons of six methods with different variandeeterogeneities (s =
0,0.1,0.2,0.3,0.4,0.5). The nominal levek is set to bé& x 1073 to obtain the reasonable
powers.

When no mean heterogeneity existed= 0), the DWT displayed the highest
powers, followed by the IMVT and SMVT which presetithe similar powers; and all the
three methods outperformed the three mean hetezdgéests, i.e., the WT, the MWT and
the STSD Figure 3-13(a)). When the mean heterogeneity existed: 0), WT, MWT
and STSD arslightly more powerful than DWT method, followed VT and SMVT
with small variance heterogeneity. With the inceeavariance heterogeneity, the DWT
is always the first to surpass the three mieaterogeneity tests and remained the most
powerful compared to IMVT and SMVTF{gure 3-13(b-c)). In addition, the power of
WT, MWT and STSD remained decreasing with the iaseeof variance heterogeneity
(Figure 3-13(b-c)). For these three situations, the power gainsuoDVT method over
the three mean heterogeneity tests appeared ebpecteworthy with the increase of
variance heterogeneity and it did not display seyewer losses with trivial or no variance

heterogeneity. In addition, DWT is always more pdulghan IMVT and SMVT methods.
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Figure 3-13: Power comparison of six methods witififerent mean heterogeneities
levels at nominal level 0.05

3.3.3.3  Advantage of DWT over IMVT

As discussed in Part |, the mean heterogeneity text variance heterogeneity
tests are always independent under both null hgsighand alternative hypothesis. When
trivial or no variance heterogeneity existed, IMVifegrating variance heterogeneity
were not capable of overcoming the penalty of iasireg the degree of freedom of
integrative test. Unlike IMVT that utilized the vance heterogeneity, DWT integrates
second-order heterogeneity that is made up of imetlin and variance heterogeneity. The
auxiliary test we constructed to detect second+dndeerogeneity is independent of mean
heterogeneity test under null hypothesis to guaratiie control of type | error rates. In
contrast, it is dependent of mean heterogeneityuteder alternative hypothesis. This
alternative dependence between mean heterogeasitsirid second-order heterogeneity
test of DWT would lead to more power gain than IM&Jen without variance

heterogeneityWhen no variance heterogeneity existed= 0), the DWT is always more
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powerful than IMVT with different mean heterogeneit = 0.1,0.2,0.3, ...,1) at

different nominal levelsKigure 3-14)
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Figure 3-14:Power comparison of DWT and IMVT at nominal leveéd®and 0.005,
respectively

3.3.34 Replication of previously reported gene probes thainvolve in functional
network

The expression distribution of a gene involve inwoek cannot be solely
determined by its mean. Therefore Integrating miative high-order heterogeneity is a
more powerful method to identify genes that involaegene-gene co-expression and
interaction networks then existent mean heterogemaethods. To illustrate DWT's
performance in detecting function genes, we sg8kdithe gene expressions profiles of
peripheral circulating B cells between 39 smoking 40 non-smoking healthy US white
women by Paret al. The same data processing procedures were couldiactedjust for

background data structure.
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Pan etl. reported 33 gene probes to involve in construfttedtional network. We
applied DWT method to the calibrated expressiomsraplicated 19 out of the 33 reported
gene probes that involved in network. DWT obtaisetller p values compared to IMVT

in the majority of the 19 gene probes.

Table 3-3: The overlap of the discoveries of DWT and the geskich were testified
to be involved in functional networks

Adjusted MAS5*
AffyID Gene DWT IMVT MWT W STSD
201085_s_at SON 0.0090 | 0.0075 0.0021 0.0023 0.0021
203868 s at  VCAML 0.0005 | 0.0030 0.0005 0.0005 0.0005
204600_at EPHB3 0.0025 | 0.0178 0.0207 0.0213 0.01654
205008_s_at cIB2 00209 | 0.0387 0.0117 0.0123 0.0122
205099_s_at CCR1 00033 | 0.0058 0.0160 0.0165 0.0105
206788_s_at CBFB 4.63E-05 | 0.0003 4.28E-05 | 4.71E-05 4.34E-05
207961_x_at MYH11 0.0038 | 0.0001 0.0370 0.0383 0.0139
208164_s_at ILOR 00052 | 0.0311 0.0072 0.0077 0.0074
209876_at GIT2 0.0002 | 0.0024 0.0053 0.0057 0.0040
211197 s at ICOSLG | 0.0138 | 0.0448 0.0479 0.0487 0.0423
212514 x_at DDX3X 3.92E-05 | 0.0002 2.73E-05 | 3.10E-05 3.06E-05
213446_s_at IQGAPL | 0.0289 | 0.0082 0.0400 0.0413 0.0360
217557 s_at CPM 00357 | 0.0347 0.2678 0.2701 0.2422
219599 _at EIF4B 0.0003 | 0.0006 0.0018 0.0019 0.0005
208224 at HOXB1 0.0093 | 0.0603 0.0437 0.0446 0.0365
215530_at FANCA 00358 | 0.0829 0.0244 0.0251 0.0245
207844 _at IL13 00174 | 0.1102 0.0311 0.0318 0.0307
216647 _at TCF3 00399 | 00711 0.0144 0.0150 0.0150
210883 x_at EFNB3 00107 | 0.0707 0.0284 0.0291 0.0275

*These raw p values of the heterogeneity tests based on the ibahted expression levels after adjusting for
age, menopausal status, and the background structer
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3.4  Conclusion and Discussion
In Part I, we illustrated that integrating infornvat variance heterogeneity holds
tremendous potential to identify novel genes whiololve in gene-gene co-expression
and interaction networks. Susceptible genes caexpoess as indicated by gene-gene
correlations [98, 99]. Genes can interact with ezbler and/or interact with environmental
factors. For example, Pan at [103] reported 33 gene probes to involve in catsed
functional network. Among which, independent stadieportedMYH11, HOXB1, GIT2,
VCAM1, CCR1, IQGAP1, PDPK1, HBAl1 HBA2, S@QNJCPM to involve in networks
related to lung cancer and smoking [112-117]. Withicomplex network, the distribution
change in the expression level of a single suddepgiene cannot determined by its mean
heterogeneity completely. Higher-order heterogeitcan provide extra valuable
information for the distribution change. This isywhe IMVT led to smallep values than
did existent mean heterogeneity tests in our datyaes. In conclusion, integrating
informative variance heterogeneity proved an eiifecstep to better capture the latent
information conveyed by the co-expression and aai®on networks of susceptible genes.
It represents one efficient way to extract the rehehigher-order information as induced
by complex networks of multiple biomarkers.

The IMVT aims to identify genes whose expressiatriiutions are susceptible to
the change in condition. It does not distinguisiorimative variance heterogeneity from
mean heterogeneity. Before applying the IMVT, baokgd data structures must be
calibrated to prevent false positive discoveried power loss. Data structure can be a
major confounder for differential analyses, assiitated by our reanalysis of Panal’s

gene profiles [103]. The discrepancy between Pah’stand our discoveries showed the

103



severe confounding impact of the global data stinecton differential analyses. In a
judicious data calibration, the data structure &hdae computed from random genes to
prevent power loss due to over adjustment.

The IMVT and the SMVT as well, inherit the advarda@nd disadvantages of the
Levene test and the WT. The Levene test is a rabwustparametric method. The exact
distribution of the Levene statistic is intractgldad thus itp-value must be evaluated by
its asymptotic distribution. The condition-specifiariance estimators in the Welch
statistic could not be accurate for small samplésis, the current IMVT is suitable for
large samples other than small samples. By our latlon studies and the work of
Demissieet al [97], the MWT could outperform the WT, especidiy extremely small
sample sizes. Novel parametric methods, i.e., RIE, lare needed to mine expression files
of low-replicate experiments. However, the testigia and its exact null distribution of a
parametric test statistic depend on the exactibligions of the (transformed/calibrated)
gene expression levels. It is intractable to lehenexact distributions of gene expressions
from small samples. Model miss-specifications cagssnup differential analyses, as
showed by the severe inflations in type | erroe m@itthe normality-based LRT under the
Laplace settings. The development of effective Esahple tests requires further formal
efforts. In addition, appropriate adjustment ofkground data structures and other hidden
confounders are important for the success of efiegtintegrating informative variance
heterogeneity instead of spurious variance heteige

Lastly, we acknowledge that there is no need tsiclen variance heterogeneity in
case the distribution of the expression measui@ géne can be determined by a single

parameter, i.e., its mean. In such a case, the IM&T be less powerful than the Welch
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test. However, single-parameter distribution canvelt fit real-world expression levels in
general.

In part Il, we put forward an alternative of ourVWl method - DWT that
integrated the mean heterogeneities and high-t¢reterogeneities. Utilizing second-
order heterogeneities instead of variance hetemges would further improve the
detecting power of candidate MVDE genes that hawgla possibility of involving in
gene networkDue to the high complexity of gene networks, thpression distribution
of a gene cannot be solely determined by its mBastribution heterogeneity is a much
bigger umbrella than mean heterogeneity. The pegpddVT and DWT methods
merely made one step further from traditional mieeterogeneity tests. High-order

heterogeneities are quite common and require p@atiexploitation methods.
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APPENDIX A

SUPPLEMENTARY OF HARMONIOUS SIGNAL AUGMENTATION
SCHEMES IN ASSOCIATION TESTS OF DNA SEQUENCE

A.1  Proof of Proposition about asymptotic joint distition of T; andT,
Proposition: Under primary model, if (e}) < « andE(e;) = E(e}) = 0, thenT; — &,
andT, — &, converge in distribution to a bivariate normal wibution with unit variance
and correlation coefficientp = p;6718; [62(Bus — 35 + piu, — uips) + p7(ug —

gef

2Uals + pipts — Pils + 3 — p otz + pipd)], in which py &

E(G®)for integer k and var(e;) & 2.

R E A (HNA)

whereC; and(, are function of3; andp,, respectively.

Proof:

Without loss of generality, I¢Y; be the trait residual of individuillafter adjusting
for global covariates. Let individuilhaveG; copies of the minor allele at a single test
marker. In single-SNP association analyY; selates tcG; by linear model

Y, = Giﬁl + e;, Eq. A-1
wheref, is the regression coefficient, aadis regression residual such ti#ge;") < o«

andE(e;) = E(e?) = 0. Based orEq. A-1, we have

Y2 = (Gify + e)? = o2 + GPB, + &, Eq. A-2
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wheref, = [S’i ande; = 2p,G;e; + e? — g% has a mixed distribution with mean 0
and variancer? = 2 (1 + 2,8§E (Gz)) o2. Under HWEE(G?) = 2(1 + f)f, wheref is

the minor allele frequency at the SNPGIfs associated withf (B, # 0), then G is also
associated witr* (8, # 0). The association statistic for testiHg;: B, = 0is given by
Eq. 1-2 The association statistic for testidg,: f, = 0 is given byEq. 1-3

Substituting equationsq. A-1and Eq. A-2into the definition o6y ;, we derive

1% _ _
6o == Y [B:(6 = 6) + (e = DG - &)
1

n
12: -
+ — Giei—Ge
n.
i=1

= 1 (62 - E(G?) + E(6?))

e~

+(Ge — E(Ge) + E(Ge))

—B,((6)? - GE(G) + GE(®))
—(Ge — GE(e) + GE(e))

= 1 (62 - E(G?)) + (Ge — E(Ge))
—B.G(G—E(G))—G(e —E(e))

+B1E(G?) + E(Ge) — B1GE(G) — GE(e) Eq. A-3

It follows from Eq. 1-2andEq. A-3 that
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V(67 - E6?)
_ (ﬂlf 1, ﬂlG_; _é) \/ﬁ(@ - E(Ge))

T, —C; = , Eqg. A4
1 1 D, \/H(G B E(G)) q
Vn(e —E(e))
where
C = B1E(G?) + E(Ge) — B1GE(G) — GE(e) _ B1[E(G?) — GE(G)]
1 D, B D,
And

_ /Azf\z_ ~2
D, = |oyo¢ 0y g

Similarly, substituting equationgq. A-1 and Eq. A-2 into the definition 062 ;z, we

derive

n

1 — __

Gy == Y (V2 - V2)(6 - 6)
i=1

= p7 (GT— E(GY) + BIE(GY)
—p3G% (G2 - E(G*)) - B7G?E(G?)
+2B, (E - E(G3e)) + 28,E(G3e)
—2B,G%(Ge — E(Ge)) — 28,G2E(Ge)
+ (W - E(Gzez)) + E(G%e?)

—GZ (2 — E(e?)) — GZE(e?) Eq. A5
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Then we can obtain

T, -G

Vi (G* - E(GY)

Vi (G2 - E(6%)

(B2, —BIG%2p, 25,67 1,—G2) | Vn(GPe—E(G)) | EAAS
b Va(Ge — EGe))

\/ﬁ(w - E(Gzez))
Vn (e_z - E(ez))

where

_ BIE(G*) — BFG?E(G?) + 2B,E(G3e) — 2B,G2E(Ge) + E(G?e?) — G2E(e?)

C
2 D,

_ BIE(G*) — PEG?E(G?) + E(G%e?) — G2E(e?)
= >

And

_ a2 a2 _ A2
D; = Jayzaaz ~ Oy252

UsingEqQ. A-4 andEq. A-6, we write

T — G\ _
<T2 - Cz) = A,Z,, Eq. A-7
where
1 G G
0 ﬁ 0 — 0 ’81_ 0 -
A _ D1 Dl Dl Dl
"o\BEo_piG? 28 267 1 GF
D, D, D, D, D, D,
and
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V(67— E@GY)
V(67 - E@6D)
Vi (GFe — E(G))

zZ, = Vn(Ge — E(Ge))
\/Z(W— E(GZeZ))

V(G - E())
V(e —Ee?)
Vn(e - E(e))

According to standard asymptotic normality theorem,

d.
Z, <5 (0, A). Eq. A-8

Let u, & E(G*) andgy, & E(e*) for integerk. A = (Al-j) is the variance-covariance
matrix of random vectofG*, G2, G3e, Ge, G*e?, G,e?,e)'. We derive explicit formulae
of 4;;'s as below. Specifically,

A1 =Var(G*) = pg — 3,

A1z = Cov(G*,G?) = pig — paliz,

M3 = Cov(G*,G%e) = ¢1(7 — papts) =0,

Ma = Cov(G*,Ge) = ¢, (us — papy) = 0,

Ais = Cov(G*,G%e?) = ¢, (U — Ualtz),

Mg = Cov(G*, G) = us — pally,

A7 = Cov(G3,e?) =0,

Aig = Cov(G3,e) = 0,

Aoy = Var(G?) = py — 3,

A3 = Cov(G?,G%e) = ¢1(us — paitz) = 0,
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= Cov(G?,Ge) = ¢, (uz — pppy) = 0,

= Cov(G?, G%e?) = ¢y (py — 113),

= Cov(G%,G) = Uz — Uz2l1,

= Cov(G?e?) =0,

= Cov(G?%e) =0,

=Var(G®e) = lsS2 — M35 = U60E,

= Cov(G3e,Ge) = ¢y — Cfli1li3 = U40¢,
= Cov(G’e, G%e?) = 563 — 61623 = 0,
= Cov(G®e, G) = ¢1 (s — palt3) = 0,

= Cov(G®e,e?) = ps(s3 — 6162) =0,

= Cov(G3e,e) = pi5(s2 — 67) = pi30¢,

= Var(Ge) = uz¢; — #%Cf = Up0¢,

= Cov(Ge, G*e?) = U363 — 1126162 = O,
= Cov(Ge, G) = ¢1(uz — p7) =0,

= Cov(Ge,e?) = u; (g3 — 6162) = 0,

= Cov(Ge, e) = u1 (52 — 61) = 1104,

= Var(G®e?) = py6s — U363,

= Cov(G?e? G) = ¢ (U3 — p1lr),

= Cov(G®e? e®) = (54 — 63),

= Cov(G?e?,e) = l5(53 — 6162) = 0,

= Var(G) = pu, — 43,

= Cov(G,e?) =0,

= Cov(G,e) =0,
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Az = Var(e?) = ¢, — 3,

A7g = Cov(e?,e) = g3 — 6,6, =0,
and

Agg = Var(e) = ¢, —¢f = of.

By large-number theory, when— oo we have

pr. 2.2 2
D, — 6, = |oyo; — oy,

pr. 2 2 2
DZ - 52 = O-YzO-GZ - Uyz’Gz;

_ Pr.

G — U = E(G)r
and

— Pr.

G2 =, = E(G?).

It follows that

Pr.
A,—A
/0 & 0 i 0 Bt
_ 81 61 81
B \_12 _312#2 2p4 _ 2112 i 0
P 6, & 5, &

According to Slutsky’s theorem, we obtain fréqg. A-8 andEq. A-9 that

—_ .d.
<T1 Cl) = 4,7, %5 N,(0,4AA"), Eq. A-10

T, =G

whenn — oo, Algebraically, we verify that
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(L P
AAA _(p 1), Eq. A-11

and

_ B
5,6,

p [02 (31 — 33 + uipz — api3)

+ BE(Ue — 2ala + e s — Uity + 13

— Makals + piu3)]. Eq. A-12

By Eqg. A-12, T; andT, are asymptotically dependenpif~ 0. But if 5; = 0, we have

Pr.
p = 0 together withC; = 0 andC, —T>O, and therefore

(%) = N, <(8) ’ ((1) 2)) Eq. A-13

whenn — oo. By Eq. A-13, T; andT, are asymptotically independen{5if = 0.
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A.2  Supplemental Figures
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Figure A-1: The Manhattan plot of MT.
A.3 Candidate SNPs selected by HSAT
. . g _5
Table A-1: Top-ranked Significant SNPs by the HSATX 107°) .
Chr rs Pos MAF Gene HSAT MT JLS LRT
7 | rs849436 106367588 0.050454 NA 5.72E-10 6.77E-05 1.04E-07 1.59E-05
6 | rs2842519 38042247 0.007064 | ZFAND3 2.70E-08 2.72E-05 0.00024 0.000132
6 | rs1335535 79999203 0.040363 HMGN3 7.86E-08 0.027669 1.72E-06 0.003534
6 | rs9350803 79999595 0.040445 HMGN3 7.86E-08 0.027669 1.72E-06 0.003534
7 | rs849370 106307179 0.050556 PIK3CG 7.89E-08 0.000268 1.23E-06 6.21E-05
6 | rs1196388 37970017 0.007576 | ZFAND3 1.16E-07 3.41E-05 0.000298 0.00017
6
6 | rs1537740 80035233 0.040868 NA 1.41E-07 0.031622 2.08E-06 0.004591
19 | rs1040264 13058752 0.008138 NFIX 1.51E-07 9.14E-06 8.22E-05 4.91E-05
5
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6 | rs7738508 80048256 0.04002 | NA 1.58E-07 0.020429 1.71E-06 0.004319
19 | rs306045 2992700 0.089808 | NA 1.62E-07 0.000533 1.46E-05 0.000385
19 | rs1188180 13054782 0.007576 | NFIX 2.25E-07 1.77E-05 0.000198 9.66E-05

8
6 | rs7763232 80030157 0.04154 | NA 2.49E-07 0.034876 2.52E-06 0.005855
7 | rs849406 106320153 0.0444 | PIK3CG 2.75E-07 0.000423 7.04E-06 0.000145
6 | rs4706754 79969588 0.036327 | HMGN3 2.84E-07 0.008009 1.75E-06 0.004203
6 | rs7772967 80051380 0.043592 [ NA 4.05E-07 0.038085 4.22E-06 0.006727
6 | rs1080616 79951373 0.039354 [ NA 4.35E-07 0.007589 0.000446 0.001569
3

6 | rs9343886 79983800 0.036831 | HMGN3 5.13E-07 0.00996 2.14E-06 0.00559

6 | rs1689045 79949239 0.039434 [ NA 5.86E-07 0.006776 0.000432 0.00159
0

19 | rs1688114 2988787 0.092012 | NA 7.56E-07 0.004381 5.38E-05 0.001079

2 | rs1702030 37294768 0.007107 | CEBPZ 8.01E-07 0.032838 0.093755 0.11547
7

2 | rs2854829 37340278 0.007064 | PRKD3 8.01E-07 0.032838 0.093755 0.11547
9

7 | rs2453840 45920337 0.183519 | IGFBP3 1.08E-06 0.000291 4.29E-05 0.000177
19 | rs1654678 2985077 0.093023 | NA 1.11E-06 0.002849 5.32E-05 0.001221

6 | rs2322219 80038110 0.041877 | NA 1.32E-06 0.032227 0.000868 0.004562

2 | rs2421738 62877847 0.00555 | EHBP1 1.86E-06 0.680389 0.000271 0.005476

2 | rs1702755 63065438 0.005567 | EHBP1 1.86E-06 0.680389 0.000271 0.005476

8

7 | rs849408 106329620 0.049495 | PIK3CG 1.88E-06 0.000919 6.15E-06 1.25E-05

7 | rs849390 106296223 0.047427 | PIK3CG 1.91E-06 0.001406 2.51E-05 0.000515

2 | rs2871608 57499324 0.072149 | NA 2.73E-06 0.306335 5.74E-05 0.009102

6 | rs1414283 80036646 0.038384 [ NA 2.81E-06 0.025533 4.63E-06 0.014626

9 | rs1098212 116050914 0.1 | COL27A1 3.95E-06 1.10E-05 8.18E-05 0.000304

S
2 | rs1682983 151831949 0.009082 | NA 4.22E-06 0.093899 0.188207 0.151819
5

5 | rs159981 6042136 0.155051 [ NA 4.28E-06 0.161182 0.000116 0.002683

7 | rs4236534 96311548 0.192929 | NA 4.75E-06 0.344937 0.000159 0.004283

8 | rs6988232 121699353 0.10101 | SNTB1 5.23E-06 0.01313 0.001271 0.000508

7 | rs940823 17102971 0.006067 | NA 5.38E-06 6.36E-05 0.000466 0.000257

2 | rs1168700 76515912 0.029828 | NA 5.55E-06 0.000287 0.002581 0.003707

1

5 | rs2434738 6047196 0.153455 [ NA 5.98E-06 0.192654 0.00016 0.003367

7 | rs6463939 1581188 0.005139 | NA 6.02E-06 0.157577 0.011945 0.009269

1 | rs6687647 111326016 0.129424 | NA 6.07E-06 2.65E-06 2.10E-05 8.47E-05
20 | rs1535253 19630909 0.311806 | SLC24A3 6.11E-06 0.008563 5.97E-05 4.52E-05

4 | rs1687526 23796971 0.014632 [ NA 6.31E-06 0.00779 4.67E-05 0.001791

9
4 | rs1173426 61206591 0.290274 | NA 6.55E-06 0.005641 0.000892 0.001085
2

2 | rs2264692 57585448 0.077195 | NA 6.70E-06 0.818274 0.001112 0.015968

3 | rs6775197 38729651 0.018668 | SCN10A 6.87E-06 0.081582 0.014534 0.03464

4 | rs1193119 122194095 0.024242 | C4orf3l 7.21E-06 0.066794 0.055587 0.076014

6
2 | rs1347861 139765677 0.077778 | NA 7.49E-06 0.081001 2.92E-05 0.001484
4 | rs2349960 161459516 0.054711 | NA 8.10E-06 0.546463 0.000187 0.023878
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20 | rs6112527 19625176 0.427851 | SLC24A3 8.15E-06 0.000197 4.05E-05 0.000286
3 | rs1306022 144022179 0.035318 | PCOLCE2 8.95E-06 0.068773 2.53E-07 0.000158
7
8 | rs6986444 121695275 0.10202 | SNTB1 9.60E-06 0.015676 0.001301 0.000505
6 | rs426133 149839810 0.04596 | ZC3H12D 1.03E-05 0.228343 0.029236 0.028184
21 | rs2826498 21054936 0.119072 | NA 1.06E-05 0.009687 0.000332 0.00184
5 | rs1690119 31491067 0.0111 | RNASEN 1.07E-05 0.005038 0.004793 0.003423
2
5 | rs288837 73499743 0.279011 | NA 1.07E-05 0.002054 0.001096 0.00124
7 | rs2453839 45920098 0.196465 | IGFBP3 1.11E-05 0.000111 0.000282 0.001004
3 | rs6786387 2797150 0.06559 | CNTN4 1.12E-05 4.57E-05 9.35E-05 0.000978
5 | rs1217303 31520652 0.012626 | RNASEN 1.13E-05 0.022093 0.003145 0.003405
8
4 | rs1051652 106772696 0.052977 | FLI20184 1.22E-05 0.000735 0.000385 0.003244
1
21 | rs7283239 21062388 0.120585 | NA 1.23E-05 0.01708 0.000348 0.001853
6 | rs7738385 127819209 0.324924 | KIAA0408 1.27E-05 0.000781 1.65E-05 0.000616
22 | rs7289613 46862049 0.097376 | NA 1.28E-05 0.00115 0.001205 0.00096
2 | rs7607803 151922716 0.006098 | TNFAIP6 1.30E-05 0.001628 0.011932 0.003989
19 | rs3745180 58311203 0.314329 | ZNF415 1.39E-05 0.007603 0.000589 0.001928
2 | rs1514748 219901259 0.149849 | NA 1.42E-05 7.68E-06 4.04E-05 0.000305
2 | rs6725931 219913390 0.149849 | NA 1.42E-05 7.68E-06 4.04E-05 0.000305
17 | rs4646364 17408693 0.009586 | PEMT 1.45E-05 0.006452 0.000992 0.003869
3 | rs1760911 10104118 0.008089 | FANCD2 1.45E-05 0.315449 0.00269 0.006777
8
10 | rs2607830 87957082 0.211111 | GRID1 1.50E-05 0.355212 0.000118 0.001939
3 | rs704597 100359964 0.033367 | NA 1.51E-05 0.213852 0.038338 0.023054
11 | rs1748617 83253375 0.058527 | DLG2 1.52E-05 0.00025 0.000425 0.003559
2
7 | rs1403179 96307040 0.195455 [ NA 1.58E-05 0.402389 0.000475 0.006887
5 | rs2770952 180566460 0.011134 [ NA 1.60E-05 0.05791 0.221341 0.251756
9 | rs1234724 2896287 0.008586 | NA 1.63E-05 0.061392 0.003891 0.007652
8
2 | rs7600417 219877736 0.146317 | PTPRN 1.65E-05 9.81E-06 9.82E-05 0.000486
11 | rs7102041 12127193 0.064646 | MICAL2 1.70E-05 0.01322 0.001021 0.007743
7 | rs1636804 106379027 0.150505 | NA 1.84E-05 0.034885 0.001877 0.002478
9 | rs3847255 3065469 0.012109 | NA 1.93E-05 0.000926 0.001702 0.001844
2 | rs908194 219906491 0.150353 [ NA 1.93E-05 1.08E-05 5.67E-05 0.000418
7 | rs2232106 43883498 0.016194 | URG4 1.94E-05 0.522197 0.002729 0.003116
7 | rs1724278 106376466 0.150657 | NA 1.95E-05 0.033474 0.000869 0.003638
2 | rs2271593 219876851 0.149849 | PTPRN 1.99E-05 9.25E-06 6.39E-05 0.000401
9 | rs1011399 23221298 0.019173 | NA 2.01E-05 0.042497 0.169218 0.018756
0
1 | rs947633 111330302 0.179474 | NA 2.12E-05 0.001044 0.000292 0.001988
6 | rs9387278 97878404 0.053481 [ NA 2.16E-05 0.000769 0.00012 0.001019
16 | rs1540610 79019538 0.112969 | LOC729847 2.16E-05 0.014814 5.16E-05 0.005243
6 | rs2842518 38033650 0.015167 | ZFAND3 2.17E-05 0.006342 0.002993 0.00266
4 | rs1250042 95733632 0.435419 | PDLIM5 2.22E-05 6.30E-06 3.56E-05 5.86E-05
6
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3 rs9878578 8620666 0.416246 NA 2.26E-05 0.000563 0.000331 0.000928

4 rs1726371 106909495 0.042132 | GSTCD 2.27E-05 0.008277 0.000378 0.002156
4

4 rs1726452 106960873 0.041919 | GSTCD 2.27E-05 0.008277 0.000378 0.002156
7

10 rs6584778 108757592 0.008073 | SORCS1 2.27E-05 0.004444 0.006837 0.0049

1 rs4838884 111330093 0.180851 NA 2.33E-05 0.0012 0.00033 0.00217

19 rs2112464 13393476 0.284561 | CACNA1A 2.37E-05 0.423801 0.000755 0.005022

8 rs6469297 111217804 0.020182 NA 2.38E-05 0.000291 2.42E-05 0.001361

15 rs7169262 38462785 0.116162 | C15orf23 2.43E-05 0.016235 0.004095 0.002904

6 rs1408913 164612796 0.085267 LOC728275 2.48E-05 0.1033 0.000472 0.007985

21 rs1190943 41475912 0.008595 BACE2 2.49E-05 0.02077 0.001507 0.00651
9

8 rs4464955 125691713 0.064077 MTSS1 2.56E-05 0.144627 0.000981 0.020451

6 rs7755769 103737195 0.00555 NA 2.59E-05 0.019803 0.001123 0.010545

16 rs7198517 81712286 0.266162 | CDH13 2.63E-05 0.360489 0.000387 0.002633

3 rs1191530 111904344 0.019697 NA 2.66E-05 0.000862 0.00207 0.011318
0

3 rs9825259 111923855 0.019697 NA 2.66E-05 0.000862 0.00207 0.011318

3 rs1192502 111935960 0.019677 NA 2.66E-05 0.000862 0.00207 0.011318
6

1 rs1272507 105022488 0.082569 NA 2.70E-05 0.401595 0.001311 0.012736
1

4 rs6826001 170183269 0.114995 NA 2.77E-05 0.125259 0.006784 0.006888

9 rs3789255 115171500 0.142929 BSPRY 2.80E-05 0.000615 0.001053 0.003096

20 rs3790286 19603938 0.43441 | SLC24A3 2.85E-05 0.000369 0.000136 0.000848

1 rs1783826 209807801 0.119576 NA 2.93E-05 0.492022 8.96E-05 0.001804
8

9 rs1081969 101561702 0.207871 NA 2.94E-05 0.021543 0.000846 0.00604
2

19 rs1188133 13041863 0.01665 NFIX 2.99E-05 0.000224 0.00077 0.000814
7

22 rs4823340 43339825 0.095046 NA 3.00E-05 0.147564 0.000836 0.013243

17 rs4924892 17344692 0.149239 NA 3.06E-05 0.053651 0.001418 0.009824

4 rs6852740 84284062 0.013636 NA 3.08E-05 0.00224 0.000844 0.002602

9 rs3827661 115171694 0.136082 BSPRY 3.17E-05 0.000989 0.001531 0.00372

4 rs1737865 95609180 0.211616 PDLIMS 3.18E-05 0.006596 0.000568 0.00183
8

1 rs1181169 6239708 0.012121 | GPR153 3.23E-05 0.071074 0.001109 0.005539
0

5 rs288864 73463799 0.482846 NA 3.23E-05 6.53E-05 3.89E-05 0.000254

21 rs2255892 41960841 0.165319 NA 3.24E-05 0.055255 0.002255 0.003264

21 rs2826511 21068427 0.119697 NA 3.37E-05 0.029514 0.000877 0.003346

3 rs1192694 172577788 0.132323 | TNIK 3.43E-05 1.24E-05 1.40E-05 3.31E-05
9

8 rs1050513 111210397 0.015167 NA 3.45E-05 0.000602 0.001801 0.007424
6

10 rs7093513 91970434 0.014213 NA 3.51E-05 0.780072 0.002939 0.004354

1 rs656843 111538195 0.158746 DENND2D 3.65E-05 0.001819 0.000258 0.001369

4 rs1193829 175039558 0.230303 NA 3.65E-05 0.48093 0.036322 0.007811
7

3 rs1685169 142912773 0.025227 NA 3.76E-05 0.002931 0.000616 0.001636
1

8 rs1481800 72293980 0.264646 EYA1 3.78E-05 5.27E-05 0.000168 0.000597
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10 [ rs1101633 | 130253792 0.005045 | NA 3.87E-05 0.89803 0.000973 0.014244
2
13 | rs7331710 84469501 0.072811 | NA 3.90E-05 6.47E-05 0.000415 0.001826
8 | rs4448295 6909100 0.039899 | NA 3.90E-05 0.005693 0.002043 0.017091
8 | rs1369453 | 143845212 0.317125 | LYNX1 3.93E-05 0.000911 0.00108 0.001465
8 | rs1691704 53069017 0.021695 | NA 4.01E-05 0.021298 0.047268 0.064028
9
8 | rs3758081 | 143821375 0.324045 | NA 4.09E-05 0.001378 0.002874 0.000779
2 | rs4664931 | 151655431 0.329798 | NA 4.10E-05 0.092537 0.000246 0.005188
1 | rs1274348 36479573 0.006579 | THRAP3 4.10E-05 0.27519 0.01572 0.012261
0
2 | rs4386359 69107531 0.062121 | ANTXR1 4.13E-05 0.238141 0.00547 0.012061
8 | rs4736323 | 143827361 0.332659 | LYPD2 4.19E-05 0.001726 0.002154 0.00101
15 | rs1259224 22470643 0.071719 | Ci5orf2 4.21E-05 0.003804 0.005316 0.006048
5
8 | rs2738100 6780991 0.374369 | DEFA4 4.23E-05 0.000153 0.000161 0.000627
15 | rs8041151 92427459 0.300202 | NA 4.24E-05 2.04E-05 7.16E-05 0.000365
4 | rs2866117 69913518 0.006054 | NA 4.25E-05 0.034357 0.001216 0.012085
9
22 | rs1042777 43344028 0.095046 | RP3- 4.48E-05 0.191036 0.001267 0.016731
2 474112.5
1 | rs7530862 | 209803093 0.119072 | NA 4.51E-05 0.566176 0.000151 0.002535
1 | rs6682769 36098783 0.051515 | NA 4.52E-05 0.065073 0.033751 0.011428
5 | rs1379855 | 162337912 0.243814 | NA 4.55E-05 0.001147 0.001442 0.003039
5 | rs152439 141904579 0.077778 | NA 4.62E-05 0.003998 0.005161 0.011858
2 | rs1246743 | 166205057 0.371342 | FAM130A2 4.64E-05 0.001099 1.79E-05 0.000163
17 f51245322 10995988 0.091919 | NA 4.64E-05 0.020513 0.007116 0.015387
4
17 | rs1245030 11002172 0.092331 | NA 4.64E-05 0.020513 0.007116 0.015387
1
13 | rs9584155 86460262 0.005051 | NA 4.69E-05 0.762073 0.000263 0.0156
9 | rs1076069 | 101426527 0.20376 | NA 4.73E-05 0.040601 0.001782 0.008499
3
12 | rs1709434 42931797 0.006054 | TMEM117 4.79E-05 0.125246 0.00641 0.013973
8 ?53529215 7141446 0.030287 | FAM90A20 4.85E-05 0.317925 0.000694 0.002449
13 ?sl734837 84641135 0.108476 | NA 4.87E-05 0.000538 0.000173 0.002494
3
8 | rs1688047 | 111237809 0.018668 | NA 4.87E-05 0.0003 0.000613 0.003227
4
1 | rs1366990 | 234948326 0.12109 | ACTN2 4.95E-05 9.90E-05 0.000567 0.001519
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APPENDIX B

SUPPLEMENTARY OF INTEGRATING MEAN AND HIGH-ORDER
HETEROGENEITIES TO IDENTIFY DIFFERENTIALLY
EXPRESSED GENES

B.1  Proof of Proposition about the null independendg/ben the mean and variance
heterogeneity tests under normality setting
At genei, let the two samples of siz€s;, n,) follow an identical normal distribution,

N(u,0?). Namely,Hy; (64 = 05 = 02 andu;; = w;; = w) is true. Then,

dof (ny — 1)67
Ql é Tllfv 7211_1, Eq. B'l
dof (ny — 1)6%
2 é TLZ~X7212—1) Eq. B'2
Aix — fiz
Z ¥ —"=~N(0,1
B (0,1), Eq. B-3
o /—+—
n, n

andQ,, Q, andZ are independently distributed. The classical tamysleF statistic can

be rewritten as

F.=5_i21_Q1/(n1—1)

— = ———~F 11 Eq. B-4
5% Qo= 1) Tt )

The classical two-sample Studéstatistic can be rewritten as
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1
(+3,) G-

ng+n,—2"% ny+n,—2"%12

t=

Z
= Eq. B-5
V(@1 +Q2)/(ny +ny —2) a
and the two-sample Weldtstatistic can be rewritten as
. (R — fiz)
T 1
n_16i21 + n_zaiZZ
Z

Eq. B-6

205/ (ny 1) (s — 1) + 1205/ (ns + 1) (13 — D)

let'(-) andBeta(-,-) denotel’ and Beta functions, respectively. By their mutual

independencd),, @, andZ have joint probability density function

p(Ql,Qz,Z) (qll QZr Z)

n1—1_1 7'12—1_1
_ . q,?
Beta (n12— l'nzz— 1) Beta (%,nl ;—nz — 1)
+ 7?2
exp (_ a1 . CIz) exp (_ 7)
e N .
P (L =) Eq. B-7

By the density formula of a multivariate transfotmon, the joint probability density

function of (¢, F, Z) is given by
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where

and

P(E,ﬁ,z)(t: f,z) = p(Ql,QZ,Z)(QL q2,2) X |]1,

(  (i+ny;— 2)z° (ny —Df
|91 = t? (i —1Df+n, -1
{ (ny +n, — 2)z2 n, — 1
lqz: 2 - Df +ny—1’
zZ =7z,
Ha(ql, q2,2)' ‘
a(t, f,z)

2(n; — D, — 1)  (ng +n, —2)2%z*

" ((u = Df + (1, — 1))? BB

Eq. B-8

Eqg. B-9

Eqg. B-10

is the absolute Jacobian determinant of the muiatatransformationgq. B-9).

The support of the joint density fF andZ are defined into two sets

{(t,f,2)|t>0,f >0,z>0}and{(t, f,2)|t <0, f >0,z < 0}. Substitutingeq. B-9

into Eq. B-10, we obtain the joint density cﬁf, F") by integrating variabl&

[oe)

pep(t f) = f Pirz(tf,2)dz

g

—00

P(0,,0,2) (41,92, 2) X |J| dz

1

<«m—1vf“1) —1er7
f ((n1 —1f +n, — 1)2

:Bet (1 ny +ny 1)Beta(n12_ l'nz—l)

0 (Tll + nz - Z)Z

27 2

ni+n,

2
-1

ZT Tl1+n2—2
E20) T eol-F (e )

ni+n,—3 —
2—1 52 F(%Zl)m

= pe(f) X pe(t),

dz

Eq. B-11
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where

1

l(((nl - 1)f)(n1_1)(n2 _ 1)(n2—1)>i
f

((ny — Df +n, —1)° Eq. B-12
pr(f) = 1 =1 ,
Beta (*15—, ")
is the probability density function of thiestatistic, and
_n1+nz—1
(+asm=)
N n+n, —2 Eq. B-13
pe(t) = 1n+n ’
w/n1+n2—2Beta(i, 1 5 2—1)

is the probability density function of the Studerstatistic. In summary, ifl,; holds, then
F andt are independently distributed. Under the normaéiting, the null independence

of Welcht statistic to F statistics can be similarly prov&gecifically, we only need to

consider transformation system

( _ (ny +nz)z% (ny — 1)f
4' 1 t2, n,f +ny
_ (nl + le)Zz le - 1
{QZ = t2 of + 1y Eq. B-14
zZ = Z.

Substitutingeq. B-14into Eq. B-8 and repeating the other steps can prove the null

independence between F statistic and Welch t statis

B.2  Proof of Proposition about the null independende/ben mean and variance

heterogeneity tests under generic spherically syimersetting
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Mean heterogeneity tests in two-sample comparisande equivalent to a simple linear

regression model:

Gij = Boi + BiK; + i), Eq. B-15
whereG;; is the expression level of thi& gene of thg‘" subjectk; = 1 if the j**
subject belongs to Group 1, akig= 0 if otherwise f,; is intercept ang; is the effect of
group on gene expression levels, apds random error. According to ordinary least
squares (OLS) method, we obt#in= fi;; — fi;; andBy; = fi;,. The standard error gf;

is

( 1 ) j2 "Gy - Gy)°

SEp, = L+, =2 n1+n2(K K)

14

( 1 ) Z;-lil(Gih — ﬁi1)2 + Z?ll(Gin — ﬁi1)2
n1 + nz —_ 2 n1+n2(K K)

Eq. B-16

( 1 ) (ny — 163 + (n, — 1)63

ny+n, —2 _mny
n, +n,

whereG;; = Bo; + f:K;. The statistic to tegt; = 0 in Eq. B-15can be written as

a~

lregression = E
Bi

1
1 1yz2, ., .
(n_+ﬁ ) (i1 — Aiz)
1 Mo
= Eq. B-17
ng+n,—2"% ny+n, —27%

Thus, it is mathematically the Studerstatistic in two-sample group comparisons. Under

spherically symmetric distribution conditions, thensity of gene expression levels is
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o2 Eq. B-18

whereg(.) is a given monotone function called the generditimgtion with respect to the
Lebesgue measure IR, E(Gi]-) = Bo; + BiK; is the conditional expectation givéf.
Similar to the theorem for exponential family irHmann’s book [44], the complete
sufficient statistic for gene expression distribati s T=
(72,6 + 272, GEy 202 Gy + 272, Gyja, 172, Gija)- Note that the statistic of mean
heterogeneity test is a function Bf In addition, theLF statistic of Levene’s test
approximately follows distribution with 1 andn; + n, — 2) degree of freedoms. And
this F distribution does not depend on parametgi®;, o2 in (B1). Therefore, according
to Basu's theorem [122], tHe= and the Student t statistics are independentlyiloiged
(LF L £). Within the family of spherically symmetric ditutions, mean and mode is the
same and thus the BF statistic is also indeperafedtudent t statisticBF 1L £). LF L £,
andBF 1 £, can be similarly proved. Since spherically syminatistribution family is a
very broad distribution family that include sphaticexponential family, Student
distribution, Laplace distribution, exponential pawdistribution and many other
distributions, the Student and Welch t-statistiesiadependent of the Levene and Brown-
Forsythe statistics under normality settings byirlgt random erroe follow normal

distribution inEg. B-15.
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B.3  Two-sample likelihood ratio test
Herein, we derive the formula of the two-samplelitkood ratio test under the joint null
hypothesis. For the i® gene, let Gi = (Gi11,Gizg, ) Gin1) and Gy =
(Gi12’Gi22’ ...,Ginzz)’ be expression levels of two independent randompkeamfrom

normal populationsV' (u;1, 67) andV (5, 05), respectively. The full likelihood function

is given by
L(ui1, piz) Uizp 0122)
ny ny ny
_ 1 2 1 ex _l Z( ij1 .ull)
2nof 2o}, Pl ™3 4
]:

n,
ij2 — Hi2
Z ( ) : Eq. B-19

Under the joint null hypothesig;; = u;; = u; ands? = o5 = o7, the reduced likelihood

(joint function) can be rewritten as

L(.uili Uiz, O-Lzli 0-122) = L(ﬂi: Wi, O-iz; 0-2)

7'11 +n,

1 2
:<27T0'i> exp _2 z Z( i1 'ul

+ Z(Guz - )| | Eq. B-20

. . olnL(u;, -,0-2,0-2 oInL( u;, ',O'-Z,J-Z .
Solving the system of equations ef‘(”;’;# =0 and% = 0, we derive
i i

the maximum likelihood estimators

1 nq ny
Ui n +n, Z ij1 : ij2
j=1 j=1

and
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1 ny n,
6 = Z(Gijl - ﬁi)z + Z(Gijz - ﬁi)z
j=1 j=1

n, +n,

The maximum of the reduced likelihodqu;,, u;», 6, 05) under the joint null hypothesis
is

2 2N A A A2 A2
ma>2<L(lii; Ui, O-l' ) O-l' ) - L(Mir Ui, Gi ) O-l' )
Hi,0;

(nq1+ny) 2
1 N (Gij - E(Gij))
= 0-n1+nz g Z 0-2
j=1
n1+nz
_ 1 2 ( ny + n2> Eq. B-21
BT exp > , g.

using the full likelihood of w3, i, 044, 03), we obtain the following system of equations:

(OInL (s, iz, 073, 05) =0
Opkix ,
oL (is, iz 04, 98) _
< U, ,
alnL(Hl‘p Wiz, aizl' aizz) =0
aaizl ,
OInL (s, iz 04, 98) _
\ daf .
Solving the system, we derive
ny
A 1 G
Ui = 1, 4 1
j=1
nz
. 1
flip =— ) Gijz,

n
244
ng
1 2
~2 ~
Oj1 = _Z(Giﬂ - Iiil) )
n, <4
Jj=1

and
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1<
a2 _ ~ 2
Oi2 = _Z(Gijz - Iiiz) .
n; <
j=1
Then maximum of.(u;q, 4, 04, 05%) over the full parameter space can be derived as

below:

2 2
max  L(ui, iz, 071, 03)
Hi1,Hi2,0;1,0},

_ ~ A A2 A2
= L(fij1, fliz, 613, 6f3)

LS na [ n4

1 \2/ 1 )2 1 Z Gijr — fin\”
= — — e —_—— —
2naz) \zmey) TP\ 72|14\ Ga

| /=
ny n 2
n Z (GijzA_ sz)
= Oi2
ni+n, n nz

2 >
_ <L) > exp (_"1 +"2> 2V (2).  EaB22
2n 2 01 G/

FromEq. B-21andEqg. B-22 we derive the likelihood ratio

max L(u;, y;, 02, 07 JETNCURN.C ]
_ K0} e b 7, 57 _65)2(65)7
LR = max L(.U'l;li'zx 0.2’0.2) - A2 SRl
ﬂi1,ﬂi2"7i21'ai22 l ' e (U ) 2
1 ny 1 na
n \2\2 n N2\ 2
(n—lzjil(Giﬂ — fiir) ) (n—zzjil(Gijz — fiiz) )

nitny*

1 2 N2 2
<m (Z?il(Gm — )" +X72,(Gija — ) ))

For large samples, the statisti2In(LR) of likelihood ratio test follows asymptotically
chi-square distribution witdf = 2 underH,5. The finite-sample performance of the LRT

depends on the sample size, addlistribution may not well approximate the exact
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distribution of —2In(LR) for a small sample, which is intractable even umiemality

setting.

B.4  Proof about the asymptotical null independence eet¥,,, andT,,,

Let the dataset contain expression level® ajene probes of, unrelated subjects
from control groups and, unrelated subjects for treatment group, respdgtior a
specific gene, leX; = (Xll,Xlz, ...,Xlnl) be the expression level of gene probes under
control group and, = (X34, X33, ..., X2,) b€ the expression level of gene probes under
treatment group. The total sample size is n, + n, be. Lety, (X,) anda)%c be the gene-
specific mean and variance of the expression lesedgene probe under conditiorfi.e.,
¢ = 1 for control group, and = 2 for treatment group). And let,(X,.) = E(X?2) be the

second-order moment df.. According to the definition of second order momen
1 (X0) = (1 (X))" + 02,

Without loss of generality, we assutie< X,. DefineY;; = X;; — X; andY,; =
Xpj — X1, wherei = 1,2, .., ny,j = 1,2, .., 15, X1 = X2, Xy; and X; = X72, Xp; .
Firstly, we constructed the first welthest statistic to capture the mean heterogeneity
between two groups.

Now we have

-1

TWl _—
5_}%1 N i Eqg. B-23
n; n
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and

ﬁ _ W
T, = 1 2
Sy, Sy
T, Eq. B-24

The null hypothesis ig; (X;) = 1 (X3) andu,(X;) = u,(X;). Next we prove the
following conclusion: Whem, = n, andn,,n, — o, T,,, andT,,, would converge in

distribution to a bivariate normal distribution titinit variance and zero correlation

coefficient below

(1) = ((8) (o 2)) Eq. B-25

Proof:

Undern,, n, — oo, to simplify the proof, we redefine

’n +1 — —
Y = ﬁ(xu —X1) = (X1 — X1), Eq. B-26

Eq. B-23can be written as

n
_\/n_1(ll1(X1)_ll1(X2)):[1 0 - n_; O]

/ 2 .2 2 .2
SX1+nZSX2 SX1+nZSX2

\/n_l(X_l_ ty(X1))
| \/n_l(X_f_Hz(Xﬂ) |
k\/n_z(xz — 11 (X)) ,
\/n_z(X_zz — u(X3))

Ty,

Eq. B-27
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Similar asT,,, T,,, can be written as

Viulog, — af, = (i — 1)?]
Ty, —

SZ nl SZ
nz

_ \/n_l(Y_lz - Y_zz) - (0)?1 - U)%Z — (U — .Uz)z)

SZ nl 52
nz

R Ml(XZ)
SZ, "15

p(X1) + X1 n;+1
X
+ n—1 n1 —1" #1( 1)

/\/_(X1 .U1(X1))

— (X))
\/_z(Xz - .U1(X2))
\/n_Z(X_zz - ﬂz(Xz))

X

N 1 2 ox
S2 4 ny s2, ny — 1yng
2 n YZ

- 2\/n_1(X_1 - Hl(X1))(X_2 - Hl(Xz)) .

Letting% =7
2

Eqg. B-28
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(e Z )
{ [1 0 —/r o]

/S)%l +r5§2
|

_UZ(ul(XZH‘“(ffl){)“) MEL 2 (X))

n,—1

/ 2 2
SY12 + rSYZz

\/n_l()Tl - .U1(X1)) \

\/n_l (X_lz - ﬂz(X1))
k\/n_z()Tz - #1(X2)) )

\/n_z (X_zz - ﬂz(Xz))

B-29

( : \
+ 1 2 0)?1 2 ()T— X ))(X_— x )) EqQ.
2 Moz \M1—1yng B ‘/n_l 17 H1dy 2 — M1Xo :

where
C = Vg (U (X1) — i (X2)) c = \/n_l[o-)?l - U)%z = (u1(X1) — #1(X2))2]
e ny e 2 Ny 2
S)%l + n_ZS)%Z Sylz + n_ZSYZZ

Asny,n, — ©
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/ [1 0 —r o \

2 2
Oy +710
a.d. X1 X

x N,(0,9Q)
[-2(1i(X2)) 1 —2vru (X)) 7] 4
/0312 + ralfzz
— N4(0,AQA,), Eq B'30

where
O'le - nl,gzrrimo SY12'
2 2
UYZZ T lenlmo SYZZ
[1 0 —r o
og, + 1oy
A= |
[<2(1 (X)) 1 —2vrm (X)) V7 |
aflz + rafzz /
; Cov(Xy, X2
/ 0x, Ov( 1» 1) 0 0 \
COU(Xl,Xlz) o’)?lz 0 0
Q=
00 0%, Cov(Xy, X2)
0 0 Cov(X,, X2) 0%
and

0

2
Y2

/ 1 2 0')%1 _ 2\/71_(7— X ))(X_— (x )) a._d). o(1)
\ s2, 4 ga \™—1vm 1 T i)z = i )
Y12 n

2
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Then we obtain
TW1 - Cwl) a.d. 1 p
o) )
(TWZ - CWZ 4 p 1
where
p

_ (#3 (X1) — p1 (XDuy (Xl)) - zﬂl(XZ)o-;lZ -r (H3(X2) — u (X)up(X5) — 2#1(X1)U;22)

2 2 2 2
J Ox, T 1oy, J Oy2 + T0y2

Under the null hypothesis,
(1 =) (us(X7) — p (XDu (Xq) — 2#1(X1)Ux%1)

2 2 |42 2
\/ ox, t 10y, \/ Oy2 + T0y2

Whenn; =n,,r =1,thenp =0
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B.5 Supplemental Figures

{a) Welch t and Levene statistics

(b) Welch t and F statistics
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Figure B-1: Null joint distributions of mean and variance tsitistics under 5
vs. 5 normality setting.

(a) Welch t and Levene statistics

(b) Welch t and F statistics
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Figure B-2: Null joint distributions of mean and variance tsttistics under 10 vs.10
normality setting.

134



(a) Weich t and Levene statistics (b) Welch t and F statistics
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Figure B-3: Null joint distributions of mean and variance tsttistics under 20 vs.
20 normality setting.

(a) Welch t and Levene statistics (b) Welch t and F statistics
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Figure B-4: Null joint distributions of mean and variance tstgtistics under 5 vs. 5
Laplace setting
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(a) Welch t and Levene statistics (b) Welch t and F statistics
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Figure B-5: Null joint distributions of mean and variance tsigtistics under 10 vs. 10
Laplace setting.

(a) Welch t and Levene statistics (b) Welch t and F statistics
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Figure B-6: Null joint distributions of mean and variance tsigttistics under 20 vs. 20
Laplace setting.
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Figure B-7: Null joint distributions of mean and variance tsigttistics under 40 vs. 40
Laplace setting.
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B.6 Supplemental Tables

Table B-1: The first 2 and significant PCs of all the expesntiwide gene probes

PC Eigen Variation P values of

Index Value Proportion ST WT MWT Levene
1 1.48E+13 0.9824 0.5343 0.5355 0.8459 0.2359
2 4.89E+10 0.0032 0.5786 0.5782 0.5752 0.9243
4 2.01E+10 0.0013  1.84E-15 1.91E-15 4.49E-15 0.0935
6 1.08E+10 0.0007 0.1148 0.1134 0.1102 0.0003
9 7.15E+09 0.0005 0.9725 0.9723 0.972 0.0015
14 4.32E+09 0.0003 0.5616 0.5598 0.557 0.0114
28 1.88E+09 0.0001 0.5533 0.5519 0.549 0.0185
38 1.33E+09 0.0001 0.9091 0.9095 0.9084 0.0419
49 9.81E+08 0.0001 0.3012 0.2993 0.2958 0.0142
78 4.47E+08 2.97E-05 0.8199 0.8217 0.8189 0.0129

Table B-2: The first 2 and significant PCs of 13415 experitagite robust gene probes

PC Eigen variation P values of
Index Value Proportion ST WT MWT Levene
1 9.06E+12 0.9835 0.6702 0.6712 0.8922 0.1865
2 3.40E+10 0.0037 0.6448 0.6442 0.6419 0.6613
12 2.89E+09 0.0003 0.0064 0.0063 0.006  0.0557
14 2.36E+09 0.0003 0.0035 0.0036 0.0033  0.538
16 2.03E+09 0.0002 0.0135 0.0134 0.0129 0.3799
18 1.67E+09 0.0002 0.0151 0.0149 0.0144 0.1453
25 1.17E+09 0.0001 0.0059 0.0058 0.0056 0.9441
28 1.01E+09 0.0001 0.2272 0.2253 0.222 0.0069
29 9.91E+08 0.0001 0.6090 0.6074 0.605 0.0119
30 9.78E+08 0.0001 0.9674 0.9675 0.9672 0.0208
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Table B-3: Discoveries of the IMVT by controlling FDR belowl0

Local FDR
AffylD Gene
IMVT STSD MWT WT

203558 _at CUL7 0.0025 0.0344 0.4676 0.4701
208307_at RBMY1J 0.0043 0.3490 0.6452 0.6345
204384 at GOLGA2 0.0116 0.2158 0.4607 0.4701
206359 at SOCS3 0.0116 0.3158 0.4766 0.4915
208294 x_at CSHL1 0.0116 0.2155 0.4445 0.4701
210106_at RDH5 0.0116 0.3568 0.6046 0.6039
214436_at FBXL2 0.0116 0.7192 0.8635 0.8527
218922 s at CERS4 0.0116 0.3158 0.4761 0.4915
214886_s_at N4BP2L1 0.0137 0.3231 0.7155 0.6722
210492_at MFAP3L 0.0160 0.3306 0.6466 0.6267
206162_x_at SYT5 0.0162 0.4133 0.6414 0.6317
215840 _at DNAH2 0.0176 0.2158 0.5222 0.5227
214257 s at SEC22B 0.0240 0.2158 0.4445 0.4701
219829 at ITGB1BP2 0.0249 0.3953 0.6717 0.6557
211789 s at MLXIP 0.0305 0.3158 0.6595 0.6430
209461 x_at WDR18 0.0359 0.6251 0.7799 0.7725
210974 s at AP3D1 0.0373 0.2457 0.4445 0.4701
214145 s at SPTB 0.0373 0.3231 0.4761 0.4915
210922 _at BC000772 0.0397 0.5364 0.7180 0.7128
220625 _s_at ELF5 0.0404 0.3134 0.4676 0.4788
222260 _at AK026947 0.0404 0.3306 0.5112 0.5224
203532_x_at CUL5 0.0441 0.3810 0.6342 0.6281
214138 at ZNF79 0.0460 0.5952 0.7812 0.7772
221208_s_at MSANTD2 0.0460 0.1610 0.2808 0.3123
203609_s_at ALDH5A1 0.0514 0.3271 0.4766 0.4915
222256 s _at JMJD7 0.0517 0.3402 0.5112 0.5179
204947 _at E2F1 0.0544 0.2158 0.4766 0.4915
214803 at CDH®6 0.0643 0.3450 0.6213 0.6184
221528 s at ELMO2 0.0643 0.4408 0.7337 0.7364
218659 at ASXL2 0.0710 0.3134 0.4761 0.4915
209666_s_at CHUK 0.0783 0.3158 0.4676 0.4788
203918 at PCDH1 0.0808 0.3262 0.5112 0.5224
208524 _at GPR15 0.0808 0.1610 0.2748 0.3123
209850_s_at CDC42EP2 0.0816 0.3297 0.5033 0.5175
204854 at LEPREL2 0.0848 0.3946 0.6046 0.6031
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206604 _at OVOL1 0.0848 0.3490 0.5143 0.5227
207961 x_at  MYH11 0.0848 0.4337 0.6289 0.6317
216975 x_at  NPAS1 0.0848 0.3231 0.5947 0.5859
222015 at CSNK1E 0.0848 0.2005 0.4445 0.4566
200080 s at  H3F3AP4 0.0886 0.1912 0.2808 0.3123
205391 x at  ANK1 0.0886 0.3953 0.5947 0.5921
209156 s at  COLBA2 0.0886 0.3810 0.6897 0.6713
210565 _at GCGR 0.0886 0.3231 0.5161 0.5227
216006_at AF070620 0.0886 0.3231 0.4761 0.4915
216584 _at 216584 _at 0.0886 0.3134 0.4873 0.4915
219733 s at  SLC27A5 0.0886 0.3158 0.4761 0.4915
205387 s at CGB7 0.0905 0.3490 0.5267 0.5314
222084 s at  SBF1 0.0924 0.3158 0.4676 0.4788
206298 _at ARHGAP22 0.0955 0.3564 0.5847 0.5854
207150 _at SLC18A3 0.0969 0.3262 0.4761 0.4915
215786 _at AK022170 0.0969 0.2158 0.4094 0.4535
219729 at PRRX2 0.0969 0.3490 0.5847 0.5793
220735 s at  SENP7 0.0969 0.3231 0.4761 0.4915
216313 at PCDHB17 0.0972 0.2242 0.4980 0.4933
212514 x_at  DDX3X 0.0990 0.1610 0.2595 0.2962

APPENDIX C DETAILED DISCRIPTIONS OF FIGURES

Figure 1-2: Comparison of false positive rates ofight methods under null
hypothesis.The result was computed from 100000 replicates thighspecified samples
size 1000. At each significance level, the falssifpee rate of each method was estimated
by the empirical proportion that the method rejédtee dual null hypothesid, ,,,,. The
gray belt is the 95% concentration band of theefalssitive rates of a typical test that can

properly control false positive rates at given noahsignificance levels.
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Figure 1-3: Power comparison of MT, JLS, LRT and HRT under Scenario | at
nominal level 5 x 1078, Setting MAF to be 0.01, 0.025 and 0.05, powerheffour
methods were computed from 100000 replicates vaithpdes size 1000. X-axis is the
heritability of genotypeh?) that ranges from 0% to 2% for single locus andxis is the
empirical powers estimated by the empirical praparthat the method rejected the dual

null hypothesidi, ., at significance leved x 1078

Figure 1-4: Power comparison of MT, JLS, LRT and H&T under Scenario Il at
nominal level 5 x 1078, Setting the main genetic effegtto be 0.01, 0.05 and 0.1,
powers of the four methods were computed from 1006flicates with samples size
1000. The x-axis is the effect size®ix E interaction term that ranges from 0 to 1 by
grid of 0.1 and y-axis is the empirical powersrastied by the empirical proportion that

the method rejected the dual null hypothéjs,, at significance leves x 1078,

Figure 1-5: Power comparison of MT, JLS, LRT and H&T under Scenario Il at
nominal level 5 x 1078, (a) MAF of the common causal variant ranges from 0d5 t
0.5. Setting the main genetic eff¢tto be 0.25, the x-axis is the effect of genotype (
on variance that ranges from 0 to 0.5 by grid 66(b) MAF of the common causal
variant ranges from 0.005 to 0.05. Setting the ngaimetic effect sizg to be 0.5, the x-
axis is the effect size of genotypg on variance that ranges from 0 to 0.5 by grid of
0.05.The y-axis is the empirical powers estimatgthle empirical proportion that the
method rejected the dual null hypothdsjs,,;,. Powers of the four methods were

computed from 100000 replicates with samples s 1
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Figure 1-6: Q-Q plots of MT, JLS, LRT and HSAT. The inflation factors of MT, JLS
and HSAT appeared reasonable and indicate no abinflation. While the curve of
LRT clearly appeared under the gray band (95% audratton band), which indicates the

conservativeness of LRT method.

Figure 1-7: The Manhattan plot of HSAT.856149 SNPs with MAFE> 0.005 was
plotted. Obvious association signal peaks werergbdeon chromosomes 2, 6, 7 and 19.

The gray line is the suggestive nominal leved 107°.

Figure 2-2: Comparison of false positive rates ofight methods under different
nominal levels.The result was computed from 100000 replicateb thi¢ specified
samples size 1000. At each significance levelfdlse positive rate of each method was
estimated by the empirical proportion that the radtrejected the dual null hypothesis
H,..»- The gray belt is the 95% concentration band efféifise positive rates of a typical

test that can properly control false positive rategiven nominal significance levels.

Figure 2-3: Comparison of empirical powers of eightnethods at different nominal
levels under HP model Settingm = 50 andl = 10, the empirical powers of the eight
methods were computed from 10000 replicates withpses size 1000. The percentage
of positive causal variants (+) are set to be 1080%p, 50% and 20% respectively. The

X-axis is the nominal levet that ranges from 0O to 0.05 and Y-axis is the eicgdir
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powers estimated by the empirical proportion thatrhethod rejected the dual null

hypothesid, ,,; at the nominal levet.

Figure 2-4: Comparison of false positive rates ofight methods at different nominal
levels under Fisher's model framework Settingm = 50 andl = 10, the empirical
powers of the eight methods were computed from Q@6plicates with samples size
1000. The percentage of positive causal variantang-set to be 100%, 80%, 50% and
20% respectively. The X-axis is the nominal lewehat ranges from 0 to 0.05 and Y-
axis is the empirical powers estimated by the eiggdiproportion that the method

rejected the dual null hypothedis,,,, at the nominal levet.

Figure 2-5: Comparison of empirical power of eighimethods levels when latent GXE
interaction exists at nominal level 0.005(a) and 0005(b).Settingrs811589 in OPA3
as the causal loci aride main genetic effe¢t is 0.25,powers of the eight methods were
computed from 10000 replicates with samples siZe YBere are 23 test SNPs with
MAF>0.005 in OPA3. The x-axis is the effect sizef G x E interaction term that
ranges from 0 to 0.5 by grid of 0.05 and y-axigh&sempirical powers estimated by the
empirical proportion that the method rejected thal shull hypothesigi, ) at

significance level 0.005 and 0.0005 respectively.

Figure 2-6: Comparison of empirical power of eighimethods levels when latent

GxG interaction exists at nominal level 0.005(a) ah0.0005(b).Settingrs811589 in
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OPA3 as the causal loci atite main genetic effegt is 0.25,powers of the eight
methods were computed from 10000 replicates withpdas size 991. There are 23 test
SNPs with MAF>0.005 in OPA3Setting the main genetic effegtto be 0.25, the x-axis
is the effect of genotype’( on variance that ranges from 0 to 0.25 by gri0.66. The y-
axis is the empirical powers estimated by the eiggdiproportion that the method
rejected the dual null hypothesis ,,,;, at significance level 0.005 and 0.0005

respectively.

Figure 2-7: Q-Q plots of eight gene-based methodghe inflation factors of HGAT and
WHGAT appeared reasonable and indicate no obvidiation. The curve of other
methods appeared within the gray band (95% coratgmrband), which indicates no

obvious inflations.

Figure 3-1: Null joint distributions of the test statistics on mean and variance
heterogeneities under normality settingEach panels displays 100000 pairs of the
specified test statistics, which were computed fad@@000 replicates of two-group
samples of sizes{ = n, = 40) from the standard normal distribution. Par&@lghows
the null independence between Weldatistic and Levene statistic. Part®l §hows the
null independence between Welestatistic and--statistic. Paneld) shows the
equivalence between Weltitatistic and Student t statistic. PartBlghows the high

correlation between Levene test statistic and Br&orsythe statistic.
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Figure 3-2: Comparison of false positive rates ofight methods under standard
normality setting. Each panel was computed from 100000 replicatés@igroup
samples with the specified samples sizes simufabed V' (0,1). At each significance
level, the false positive rate of each method v&tisnated by the empirical proportion
that the method rejected the dual null hypothesis Fhe gray belt is the 95%
concentration band of the false positive ratestgpecal test that can properly control

false positive rates at given nominal significalesels.

Figure 3-3: Comparison of false positive rates ofight methods under standard
Laplace setting Each panel was computed from 100000 replicatés@igroup samples
with the specified samples sizes simulated fiplace(0,1). At each significance
level, the false positive rate of each method vetisnated by the empirical proportion
that the method rejected the dual null hypothesis Fhe gray belt is the 95%
concentration band of the false positive ratestgpecal test that can properly control

false positive rates at given nominal significalesels.

Figure 3-4: Power comparison of six methods undemto-condition normality

setting. In each panel, for each specific (r, s) pair, p@drthe six methods were
computed from 100000 replicates of two-group sampligh samples sizes (40 vs. 40)
simulated fron?v'(0,1) andN (7, (1 + s)?), respectively. At each (r, s) pair, the power
of each method was estimated by the empirical ptapothat the method rejected the

dual null hypothesis 4 at significance level 0.05. For the SMVT, both #ignificance

145



level of Welch test and that of the Levene testensst to bd —+/1 — 0.05 to control

overall type | error rate at 0.05.

Figure 3-5: Power comparison of six methods undemto-condition Laplace setting

In each panel, for each specific (r, s) pair, p@awdrthe six methods were computed from
100000 replicates of two-group samples with samgitess (40 vs. 40) simulated

from Laplace(0,1) andLaplace(r, (1 + s5)?), respectively. At each (r, s) pair, the power
of each method was estimated by the empirical ptmpothat the method rejected the

dual null hypothesis & at significance level 0.05. For the SMVT, both #ignificance

level of Welch test and that of the Levene testensst to bd — +/1 — 0.05 to control

overall type | error rate at 0.05.

Figure 3-6: Q-Q plots of the five competitors withat adjusting for latent data
structure and covariates.Using the MAS5, we normalized the raw expressida d&

the 22283 gene probes on the 39 smokers and 4noéess. We then compute gene
probe specific statistics apdvalues of the tests statistics based on the MASBBalized
data. The inflation factors of all the tests appdarmreasonably huge, especially that of
the STSD. All the curves clearly appeared abovethg band (95% concentration
band). The striking inflations implied that somtef# factors severely confounded the

competitors.

Figure 3-7: Global data structure of all the expenment-wide gene expression levels.

Using MAS5, we normalized the raw expression leeélhe 22283 experiment-wide

146



gene probes and computed the PCs of all the naresbéxpression levels. PC1 alone
accounted for 98.24% of the total variation and tis@sunique major PC. PC2 merely
accounted for 0.32% of total variation. Neither R®©t PC2 displayed mean
heterogeneity or variance heterogeneity. PC4 displatrikingly significant mean
heterogeneity,r = 1.91 x 10~1°), even if it only accounted for 0.13% of the total
variation. PC6 displayed very significant variaheterogeneity;, = 3.18 x 107%)
even if it accounted for 0.07% of the total vanatonly. PC4 and PC6 clearly

distinguished the smokers and the nonsmokers.

Figure 3-8: Deflations due to the over adjustmentfathe experiment-wide data
structure. Among all the 79 global PCs, only PC4 displayephdicant mean
heterogeneityn,+=4.49E-15). PC6, 9, 14, 28, 38, 49 and 78 displayeihnce
heterogeneityy; » ranged from 3.18E-4 to 0.0419). After adjustingtfee significant
global PCs, age and menopausal statuQteplots of all the five competitors
displayed severe deflations. All the genomic indlatfactors turned out to be much
smaller than 1. Th@®-Q plots of the four mean heterogeneity tests fdlbwehe

diagonal, where those of the WT and the MWT felbbethe lower limit of the 95%
concentration band. Global PCs did not distinginétrmative heterogeneities and
impediment heterogeneities. The significant gldd@k would account for big portions of
informative mean and variance heterogeneities di genes. Therefore, adjusting for
the significant PCs of all the experiment-wide gprebes would reduce statistical

powers
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Figure 3-9: Background data structure of the expresion levels of robust gene
probes.From the MAS5 normalized data, we selected 134h&sbgene probes and
conducted background PCA. PC1 alone accountedf@5% of the total variation and
was the unique major PC. PC2 merely accounted. 83190 of total variation. Neither

PC1 nor PC2 displayed mean heterogeneity or vagiaeterogeneity. PC14 displayed
significant mean heterogeneity (- = 0.0036), even if it only accounted for 0.03% of
the total variation. PC28 displayed significanti@ace heterogeneitp(r = 0.0069)

even if it accounted for 0.01% of the total vaoatonly. PC14 and PC28 displayed clear

stratification of the smokers and the nonsmokers.

Figure 3-10: Q-Q plots of the five competitors afteadjusting for background data
structure and covariates.Among all the 79 background PCs, PC14, PC25, PEC26,
and PC18 displayed significant mean heterogengijy fanged from 0.0036 to 0.0149).
PC28, PC29 and PC30 displayed variance heterogdpgit ranged from 0.0069 to
0.0208). After adjusting for these significant bgadund PCs, age and menopausal
status, th&-Q plots of all the five tests climbed above the dizg. Especially, the Q-Q
plot of the IMVT climbed above the upper limit dfet 95% concentration band. All the
tests displayed reasonable inflation factors. Thid mflation could be due to weak
differentials or residual correlations between Cdaes. Adjusting for significant

background PCs was necessary to prevent falseyassénd false negatives.
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Figure 3-11: Boxplots of four experiment-wide sigriicant gene probesAfter
calibrating the background data structure, no geobes appeared experiment-wide
significant mean heterogeneity. All of these foangs displayed certain significance of
mean heterogeneity and displayed nearly experimvetg-significant variance
heterogeneity. Integrating variance heterogeneityraean heterogeneity led us to

identify these four gene probes to be experimedewignificant.

Figure 3-12: Comparison of false positive rates afix methods under standard
normality setting. WT, MWT, STSD, IMVT, SMVT and DWT are the competidere.
Each panel was computed from 100000 replicates@fgroup samples with the
specified samples sizes simulated frdfd0,1). At each significance level, the false
positive rate of each method was estimated byrh@recal proportion that the method
rejected the dual null hypothesis. The gray betés95% concentration band of the false
positive rates of a typical test that can propedutrol false positive rates at given

nominal significance levels.

Figure 3-13: Power comparison of six methods withitferent mean heterogeneities
levels at nominal level 0.05WT, MWT, STSD, IMVT, SMVT and DWT are the
competitors hereWe consider = 0,0.25,0.5 in (a)-(c). In each panel, for each specific
s, powers of the six methods were computed fron®Q00eplicates of two-group
samples with samples sizes (40 vs. 40) simulatad i (0,1) andN (r, (1 + s)?),
respectively. The power of each method was estoinayehe empirical proportion that

the method rejected the dual null hypothesis atisognce level 0.05. For the SMVT,
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both the significance level of Welch test and thfahe Levene test were set to be-

V1 — 0.05 to control overall type | error rate at 0.05.

Figure 3-14: Power comparison of DWT and IMVT at naninal level 0.05 and 0.005,
respectively.IMVT and DWT are the competitors her&/hen no variance heterogeneity
exist ¢ = 0), for each specifie, powers of the six methods were computed from 2000
replicates of two-group samples with samples gi#@s/s. 40) simulated frodv'(0,1)
andV (r, (1 + s)?), respectively. The power of each method was estigniay the
empirical proportion that the method rejected thal chull hypothesis at s at nominal

level 0.05 and 0.005, respectively

Figure A-1: The Manhattan plot of MT. 856149 SNPs with MAFE> 0.005 was
plotted. No obvious association signal peaks weserved using MT. The gray line is

the suggestive nominal levelx 1076,

Figure B-1: Null joint distributions of mean and variance test statistics under 5 vs. 5
normality setting. Each panels displays 100000 pairs of the spediististatistics,

which were computed from 100000 replicates of twaug samples of sizea(=n, =

5) from the standard normal distribution. Pargglghows the null independence between
Welcht statistic and Levene statistic. Par®l ghows the null independence between
Welcht-statistic and--statistic. Paneld) shows the equivalence between Weilch
statistic and Student t statistic. Pamglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.
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Figure B-2: Null joint distributions of mean and variance test statistics under 10

vs.10 normality setting.Each panels displays 100000 pairs of the spedifisstatistics,
which were computed from 100000 replicates of twaug samples of sizea(=n, =

10) from the standard normal distribution. PamIghows the null independence
between Welch statistic and Levene statistic. Part®l $hows the null independence
between Welclt-statistic and--statistic. Paneld) shows the equivalence between Welch
t statistic and Student t statistic. Parglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.

Figure B-3: Null joint distributions of mean and variance test statistics under 20 vs.

20 normality setting. Each panels displays 100000 pairs of the spedifiststatistics,
which were computed from 100000 replicates of twadg samples of sizeg(=n, =

20) from the standard normal distribution. Para@lghows the null independence
between Welch statistic and Levene statistic. Par®l $hows the null independence
between Welclt-statistic and=-statistic. Paneld) shows the equivalence between Welch
t statistic and Student t statistic. Parglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.

Figure B-4: Null joint distributions of mean and variance test statistics under 5 vs. 5
Laplace setting.Each panels displays 100000 pairs of the spediéisstatistics, which
were computed from 100000 replicates of two-graupes of sizey = n, = 5)

from the standard Laplace distribution. Pamglshows the null independence between
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Welcht statistic and Levene statistic. Part®l $hows the null independence between
Welcht-statistic and--statistic. Paneld) shows the equivalence between Weilch
statistic and Student t statistic. Pamglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.

Figure B-5: Null joint distributions of mean and variance test statistics under 10 vs.

10 Laplace settingEach panels displays 100000 pairs of the spediisidstatistics,

which were computed from 100000 replicates of twaug samples of sizea(=n, =

10) from the standard Laplace distribution. Paaglshows the null independence
between Welch statistic and Levene statistic. Part®l $hows the null independence
between Welclt-statistic and--statistic. Paneld) shows the equivalence between Welch
t statistic and Student t statistic. Parglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.

Figure B-6: Null joint distributions of mean and variance test statistics under 20 vs.

20 Laplace settingEach panels displays 100000 pairs of the spedifisidstatistics,

which were computed from 100000 replicates of twadg samples of sizeg(=n, =

20) from the standard Laplace distribution. Pamaglshows the null independence
between Welch statistic and Levene statistic. Par®l $hows the null independence
between Welclt-statistic and=-statistic. Paneld) shows the equivalence between Welch
t statistic and Student t statistic. Parmglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.
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Figure B-7: Null joint distributions of mean and variance test statistics under 40 vs.

40 Laplace settingEach panels displays 100000 pairs of the spedifististatistics,

which were computed from 100000 replicates of twaug samples of sizea(=n, =

40) from the standard Laplace distribution. Pa@aglshows the null independence
between Welch statistic and Levene statistic. Part®l $hows the null independence
between Welclt-statistic and--statistic. Paneld) shows the equivalence between Welch
t statistic and Student t statistic. Parglghows the high correlation between Levene test

statistic and Brown-Forsythe statistic.

APPENDIX D R CODES

All the codes of Methods and Simulation, figures aritten in R. Please click the

link of my github account to access théitips://github.com/oyww710
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