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  ABSTRACT 

Advanced omics technologies have been generating abundant multi-ethnic multi-

omics data, including DNA sequences, methylations, gene expressions, and copious 

clinical traits. Such big data pose unprecedented challenges due to the high complexity of 

heterogeneous networks between biomarkers. Heteroscedasticity (aka, dispersion 

heterogeneity of trait residuals) is a common phenomenon in multi-omics data mining. It 

can be caused by interactions such as gene×gene, gene×enviroment, linkage 

disequilibrium (LD) between marker loci, and pleiotropic traits as well. Especially, it 

occurs in the data mining of the multi-omics data of admixed individuals subjects due to 

broad admixture LD and gene×ancestry interactions. Meanwhile, it can be induced by 

background confounders, e.g., population structure, cryptic relatedness, polygenetic 

effects, and correlations between residuals of multiple traits. However, existent univariate 

and multivariate methods neglect all the high-order effects of both test biomarkers and 

background confounders. This dissertation contributes systematic harmonious signal 

augmentation methods with applications for distilling high-order information from 

multiethnic DNA sequences to microarrays. In Chapter I, we proposed a novel 

harmonious signal augmentation schemes in single-based association tests. The 

harmonious single-based association test (HSAT) is more powerful then existent single-

based methods in both simulations and real data application. In Chapter II we put forth 

harmonious gene-based association tests (HGAT) to incorporate high-order effects. 
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Within a gene, the importance of a test variant is measured by the signal of marker-wise 

high-order effects. Leveraging high-order effects of genetic variants has proven to 

improve power for identifying susceptive genes. By extensive simulations under 

published designs, the proposed method properly controlled type I error rates and 

appeared strikingly more powerful than existent prominent gene-based sequence 

association methods. We apply HGAT methods in homogeneous population and admixed 

population. There are two parts in Chapter III, the first part introduced integrating 

informative mean and variance effects to identify differentially expressed (DE) genes. 

The second part illustrated the application of harmonious integration of mean and high 

order effects to identify differentially expressed (DE) genes. In summary, this dissertation 

demonstrated tremendous potential of explicitly distilling informative higher-order 

effects in big multiethnic multi-level data mining and offered paradigm applications for 

integrating high-order information resources while effectively calibrating major 

heteroscedastic confounders.  

Keywords: Single-based and gene-based tests, Harmonious signal augmentation, High-

order heterogeneities, admixed population, differentially expressed (DE) genes 
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CHAPTER 1 
 

 HARMONIOUS SIGNAL AUGMENTATION SCHEMES IN 
SINGLE-BASED ASSOCIATION TESTS 

 

1.1 Abstract 

Current prominent single-based association methods of complex disease 

phenotypes are based on homoscedasticity working models, i.e., linear models (LMs), 

generalized linear models (GLMs) and generalized linear mixed models (GLMMs), 

which only aim to exploit the mean effects of variants on disease traits. All these models 

assume homoscedasticity that model residuals are independent of all predictors 

(covariates and variants). As shown by real-world genetic data, the assumption of 

homoscedastic residuals is incompetent to account for phenotypic variation induced by 

the complex structure of biological networks. In this paper, we proposed a novel 

harmonious signal augmentation schemes to solve the so-called “Searching Needles in 

the Haystack” problem in single-based association tests. Two advantages are highlighted 

in our novel schemes: (1) Integrating mean effect and high-order effect, which indicates 

association signal of genotypes on the high-order moments of quantitative traits beyond 

the first order moment (e.g. the mean), can effectively select single variants that involve 

in potential interactions and causal networks, latent covariates. (2) The few association 

methods integrating mean and variance effects of genotypes sacrifice statistical power 

and had poor association power for susceptible low and rare frequency variants(i.e. minor 
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allele frequency (MAF)<5%). By extensive simulations and real data application to 

COGA data, our harmonious augmentation method brought about dramatic association 

power gain for detecting low and rare frequency variants and demonstrate the superiority 

of the novel method to existing mean-only and mean-variance association tests for 

continuous trait in homogeneous populations under situations of variance heterogeneity 

and � × � interactions. 

Key words: 

Harmoniously integration, Variance heterogeneity, � × � and  � × � interactions, High-

order effects, Single-based method 

 

1.2 Introduction 

In recent years, the development of sequencing technologies is accelerating the 

process of localize genetic determinants (i.e., susceptible variants, genes) which govern 

the underlying disease risk and trait value. Current prominent single-based sequence 

association methods of complex disease phenotypes are based on homoscedastic 

regression models. i.e., generalized linear models (GLMs)[1], and generalized linear 

mixed models (GLMMs)[2, 3],which only aim to exploit the effects of variants on the 

alteration of first-order moment of disease traits (i.e. the mean). All these models assume 

homoscedasticity that model residuals are independent of all predictors (covariates and 

variants) and consistent across all individual values. As shown by real-world genetic data, 

the homoscedastic models are too simple to effectively capture high complex disease 

genetic mechanisms. 
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The violation of homoscedasticity is called the heteroscedasticity problem and 

was noticed as early as in 2000 in genetic field[4]. The emerging interests of 

heteroscedasticity relied on the point that rather than a concern of impediment to 

statistical modeling of genetic data, heteroscedasticity could be of biological interest. 

Exploring heteroscedasticity can be regarded as an alternative to identify single-variant 

that involves in potential interactions and causal networks with latent covariates. Variants 

that display variance heterogeneity can be caused by biological disruption, linkage 

disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment (G × E) interaction. 

For example, variability-controlling quantitative trait loci (vQTL)[5-11] are genetic 

variants whose allelic states associate with phenotypic variability, namely the variance of 

phenotype values around the mean. vQTL shows some evidence of potential interactions 

with other genes (e.g., Gene×Gene, namely, epistasis) or environmental factors (e.g., 

Gene×Enviroment), and the locus with an inflation of variance within its genotypes due 

to being a mixture of genotypes from the genuine causal loci[11]. Another example is 

Expression variability QTLs (evQTLs)[12] that were reported as marker loci whose 

allelic states are associated with variances of gene expression. 

If a genetic locus is genuinely functional to the disease, it would lead to the 

alteration of trait distribution instead of solely the trait mean. From a statistical 

perspective, the distribution of a random variable can be completely determined by all its 

moments. High-order moments can capture extra information beyond mean heterogeneity 

of the outcome. For single-SNP analysis, the main advantage of few methods integrating 

mean and variance effects is to detect SNPs that are related to the alteration of trait 

distribution in presence of G × G, G × E and dependence of variance of traits on 
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genotype. For example, Cao et al.[11] considered mean and variance differences 

simultaneously by proposing a versatile likelihood joint test (LRT). And Soave et al.[13] 

proposed another joint location-scale (JLS) testing framework that simultaneously tests 

the mean and variance by aggregating association evidence from the location-only (i.e. 

the partial t-test on mean effect) and scale-only tests (i.e. Levene’s test [14] for dispersion 

heterogeneity of phenotypic residuals among three genotypic groups) using Fisher’s 

combination method[15]. They demonstrated the superior power of the JLS method when 

G × E interactions exist and are not explicitly modeled. The two integrative methods 

mentioned above combine the association signals from mean test and variance test 

orthogonally. In such orthogonal integration, the mean and variance test statistics are 

independent to each other, for both causal SNP and neutral SNP. Their perceived 

disadvantage are the essential power loss than conventional mean-only association test 

(MT) when association signal from variance tests is weak relative to that from mean test. 

Heteroscedasticity can be driven by the effects of genotypes on high-order 

moments of trait values beyond the first order moment (namely, the mean). But it is a 

very narrow conception to only indicate variance effects of genotypes on the variance of 

quantitative traits. The independence of mean and variance tests would bring about power 

loss as illustrated. Therefore in contrast to the orthogonal joint tests above, our 

framework incorporates high-order association signals instead of only the variance effect 

of genotypes on trait values harmoniously. Herein we propounded the novel ideology of 

harmonious tests: A pair of (mean and high-order) tests are harmonious if (1) Null 

independence: they are independently distributed at neutral markers; (2) Alternative 

dependence: they are statistically dependent at causal markers and their flanking markers. 
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The null independence warrants us to properly control of type I error rate. This is crucial 

to prevent false positives. The merit of alternative dependence is the core novelty of our 

method. In presence of latent factors, this merit can warrant dramatic power gains than do 

famed orthogonal combination methods, i.e., the recently published JLS and LRT and can 

effectively augment the association signal even if it only has mean heterogeneity; while 

the famed methods lead to essential power loss. 

The major challenge of genome-wide sequencing studies is like “searching 

needles in the haystack”. For a complex trait, the functional variants are usually sparsely 

scattered along the genomes and the minor allele frequency of the SNPs are usually small 

or moderate. In this paper, we proposed our novel single-based test framework of 

harmoniously integrating mean and high-order effects of test markers while easily 

calibrating both the mean and dispersion effects of global covariates. Two major 

advantages are highlighted in our novel test framework: (1) Integrating mean effect and 

high-order effect, which indicates association signals of genotypes on the high-order 

moments of quantitative traits beyond the first order moment (e.g. mean), can effectively 

select single-variant that involves in potential interactions, causal networks, latent 

covariates. (2) The existent association methods had poor association power of 

susceptible low and rare frequency variants in sequencing studies. Our harmonious 

augmentation method brought about dramatic association power gain for detecting low 

and rare frequency variants (e.g. ��� < 5%) and demonstrate the superiority to existing 

mean-only and mean-variance association tests for continuous trait in homogeneous 

populations under situations of variance heterogeneity and � × � interactions. In 

addition, our novel gene-based method are capable of obtaining analytical p-values and is 
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convenient to implement on genome-wide scale. By extensive simulations for single 

variants under different scenarios, our novel method presents strikingly power gains than 

existing methods. Moreover, we have applied our method to the COGA on the alcohol 

addiction of 991 whites. The results demonstrate the noteworthy superiority of our 

method to existing tests in replicating and identifying novel susceptive variants. 

 

1.3 Materials and methods 

1.3.1 Model Notation and Construction of Harmonious Single-Based 

Association Test (HSAT) 

Firstly, we demonstrate the notations and assumptions of our HSAT method. To 

be specific, let �� be a quantitative trait residual for individual � after adjusting for 

heteroscedastic effects of environmental covariates,  �� be the copy number of minor 

alleles at the test SNP (�� = 0,1,2). � is the population size in the study. In context, the 

symbols “mo”, “ ho” and “mh” stands for “modeling the genetic mean effects only”, 

“modeling genetic high-order effects only” and “modeling genetic mean and high-order 

effects jointly”. The novel model framework can be written as: 

Primary Test (mo) 

 �� = �� + ���� + ��, Eq. 1-1 

 

where �� is the intercept and �� represents the random error term. The distribution 

assumption of �� can be loosed to symmetric distribution with ���� = ����! =
0, ����" < ∞ , in which ��.   is expectation function.	�� is the effect size of genotype �� 
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on trait value ��. The null hypothesis of testing the mean effect is &'.():	�� = 0. The test 

statistic is  

 

 +� = √�-./,01-./2-.02 − -./,02 , Eq. 1-2 

 

where -./,0 = �3 ∑ ��� − �5 ��� − �̅ 3�7� , -./2 = �3 ∑ ��� − �5 23�7� , -.02 = �3 ∑ ��� − �̅ 23�7� , in 

which �5 = �3 ∑ �3�7� , �̅ = �3 ∑ ��3�7� . +� is equivalent to √3829�/,0 :�89;�/,0 , where <��, �  is the 

sample Pearson coefficient of correlation between � and �. 

Auxiliary Test (ho)  

 ��2 = �2 + ��2�2 + ��=, Eq. 1-3 

 

where ��′ is the random error term. The highlight of auxiliary test is to capture the 

second-order moment information beyond the mean by regressing the squared trait 

residual �� against the square of genotype ��. �2 is the effect coefficient of the squared 

genotype ��2 on ��2. The null hypothesis of testing the high-order effect is &'.?):	�2 = 0. 

High-order effect is a broader concept than dispersion effect. The association statistic of 

testing �2 is  

 +2 = √�-./;,0;
1-./;2 -.0;2 − -./;,0;2 , Eq. 1-4 
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where -./;,0; = �3 ∑ @��2 − �2555A@��2 − �25555A3�7� , -./;2 = �3 ∑ @��2 − �2555A23�7� , in which �2555 =
�3 ∑ ��23�7�  and �25555 = �3∑ ��23�7� .	+2 is equivalent to √3829�/;,0; :�89;�/;,0; , where <��2, �2  is the 

sample pearson coefficient of correlation between �2 and �2. 

If � is associated with � (�� ≠ 0), then �2 is associated with �2 (namely, 

<��2, �2 ≠ 0). Conversely, a test SNP � has nothing to do with the � of interest 

(precisely, namely, it does not harbor causal allele and are not in any LD block with any 

causal loci of the trait), then the mean heterogeneity model (mo) is true. Under the mo 

model, it can be mathematically proved that �2 = ��2. Therefore both the primary and 

auxiliary models would hold with �� = �2 = 0. In detail, the primary and auxiliary tests 

are called to be harmonious if (1) Null independence: +� and +2 are asymptotically 

independent if and only if �� = 0; (2) Alternative dependence: +� and +2 are 

asymptotically dependent if and only if  �� ≠ 0. The harmonious properties of +� and +2 

can be guaranteed by the following proposition.  

Proposition: Under primary model, if ����" < ∞ and ���� = ����! = 0, then 

+� − C�  and +2 − C2  converge in distribution to a bivariate with unit variance and 

correlation coefficient D = ��C�8�C28�E-F2�3�" − 3�22 + ��2�2 − ���! + ��2��H −
2�2�" + ���I − ��2�" + �2! − ���2�! + ��2�22 J, ��	Kℎ�Mℎ	�N ≝
���N PQ<	��R�S�<	T	U�V	WU<��� ≝ -F2.  

X+� − Y�+2 − Y2Z [.\.]̂ _2 `a00b , X1 DD 1Zc 

where Y� and Y2 are function of �� and �2, respectively.   
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The detailed mathematical proof of the asymptotical bivariate normal distribution 

of  +� and +2 and expressions of Y� and Y2 are displayed in APPENDIX A.1. The joint 

null hypothesis of our HSAT method is written as: 

&'.(?: �� = �2 = 0 

Based on the proposition, we adopted Fisher’s method[15] to define the HSAT 

statistic as 

 +defg = −2�log�k( + log�k?  , Eq. 1-5 

where k( be the p value for testing &'.():	�� = 0 and k? be the p value for testing 

&'.?):	�2 = 0. 

 

1.3.2 Simulation Designs for single-based analysis 

Herein we consider three different scenarios for four methods: HSAT, JLS, LRT 

and MT, in which MT is the traditional mean association test. Both the LRT and the JLS 

are orthogonal integrative methods and are not harmonious.  

1.3.2.1 Scenario I 

One main disadvantage for single-based association test is its poor performance 

on detecting low and rare variants. For Scenario I, we focus on the performance of 

methods on detecting low and rare variants (e.g. ��� ≤ 5%).  The additive genetic 

model was applied to generate the data: �� = ��� + ��. Where �� be a quantitative trait 

value for individual �,  �� be the copy number of minor alleles at the test SNP (�� =0,1,2), � is the effect size of genotype on the trait value.  

We simulated the SNP with minor allele frequency (MAF) p equal to 0.01, 0.025, 

0.05, mimicking the low and rare causal SNP. �� follows binomial distribution with MAF 
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k. �� is standard normal distributed error term. Under the additive genetic model, the 

heritability of genotype (ℎ2) is defined as ℎ2 = m[9�0 m[9�/ = n;2o��8o �pn;2o��8o . For one single 

SNP, we let ℎ2ranges from 0% to 2% by a grid of 0.1%, which means one single locus 

can only explain at most 2% of the total trait variance. And the effect size of genotype 

can be calculated as � = 1 ?;2��8?; o��8o  . 100,000 replicates were simulated. The sample 

size is set to 1000 that is close to our real datasets. 

 

1.3.2.2 Scenario II 

We adopted the simulation design frame by Soave et al[13]. The MAF of 

genotype �� was fixed to be 0.3. The trait value Y was simulated from the following 

model �� = 0.5 ∗ r�� + 0.5 ∗ r2� + 0.3 ∗ r!� + ��� + ��r!�C + ��, Where the error term  

�� follows a standard normal distribution. r�� is continuous normal distributed covariate 

(e.g. r��~t�0,1 ), r2� follows binomial distribution with frequency 0.5 that mimics the 

binary covariate such as gender. The unobserved exposure variable r!� was binary 

variable with frequency 0.3 (e.g. r!�~u�2,0.3  ).  
The main mean genetic effect � was set to be 0.01, 0.05, and 0.1, and the 

interaction effect C of  �� × r!� was varied between 0 and 1 by a grid of 0.1. This 

simulation consider the potential latent � × � interactions in genetic dataset. 100,000 

replicates were simulated. The sample size is set to 1000 that is close to our real datasets. 
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1.3.2.3 Scenario III  

The simulation design is similar as that by Cao et al. [11]Genotypes �� affect both 

mean and variance of quantitative trait ��. In other words, a functional locus �� in this 

situation may have variance heterogeneity across different genotypes. The quantitative 

traits �� were generated using the following model: �� = 0.5 ∗ r�� + 0.5 ∗ r2� + ��� + ��, 
Where ��~t�0, exp	���y  , in which y is the effect size of genotype on variance and 

�zk	�.   is the exponential function which guarantees that variance of the normal 

distribution is always positive. � is the effect size of genotype. �� follows binomial 

distribution with MAF k. For different genotypic score, the trait value �� has different 

variances.	r� is continuous normal distributed covariate (e.g. r��~t�0,1 ) and  r2� 
follows binomial distribution with frequency 0.5 that mimics the binary covariate such as 

gender. The variance effect size y ranged from 0 to 0.5 by a grid of 0.05. To obtain 

reasonable power for methods comparisons, we specific � to be 0.5 to mimic the low 

frequency causal variants (0.5% <MAF< 5%) with relatively large effect size and be 

0.25 to mimic common causal variants (MAF> 5%). The MAF k of a common variant is 

randomly generated from interval (0.05, 0.5) and that of low frequency variant is 

randomly generated from interval (0.005, 0.05) in each replicate. 

 

1.3.3 Real Data Analysis on Genetics of Alcoholism (COGA) Study 

We reanalysis an existing well-characterized sample of 1050 unrelated Africans 

selected from COGA Study at 936,263 SNPs that span the genome for alcohol 

dependence (AD). Positions of all SNPs are genome build 36.3. The primary phenotype 

is DSM-IV AD[16]. SNPs were excluded if minor allele frequency (MAF)<0.5% or call 
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rates<95%, leaving 856,149 SNPs after genotype quality control. Among 1050 unrelated 

individuals, 59 were excluded due to missing or extreme trait values. 991 individuals 

underwent final analysis. Following genotype quality control, we applied the double 

generalized linear model (DGLM)[17] to adjust for both mean and variance effects of 

environmental covariates. The DGLM is implemented in R package dglm. The covariates 

to adjust for in analysis are gender (1=Male, 2=Female), smoking (0~7), normalized age, 

squared-normalized age and estimated population stratification (e.g. PCs). Since age 

ranges from 18 to 77, normalizing age can reduce the difference of age profiles. Adding 

the square of normalized age allows you to model the effect of age that may have a non-

linear relationship with the phenotype AD. The inclusion of smoking was to remove 

possible spurious results caused by effects of smoking considering the moderate 

relationship (<2 = 0.58) between drinking and smoking. For background population 

structure adjustment, we didn’t follow the routine way to solely account for the top ten 

PCs. Instead we adjust for PCs with mean effects or variance effects or both on 

phenotype. After adjusting for both mean and variance effects, global covariates have no 

significant mean and variance effects in AD. Following all the procedure above, we 

centralized the trait residuals in the final step. Covariates adjustment and centralization 

does not remove the genotype information on both the mean and second-order moment of 

trait value. The flow chart of data-processing was displayed in Figure 1-1. 
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Figure 1-1: Flow Chart of Data Processing of COGA study 

1.4 Results 

1.4.1 Type I error rate of Single-Based Association tests 

100,000 replicates were generated under the null model with no association (� =
0, | = 0, y = 0) for HSAT, JLS, LRT and MT at different nominal levels. The sample 

size is still 1000. Seen from Figure 1-2, MT, JLS and our HSAT generally controlled 

Type I error rates at different given nominal significance levels, while LRT is outside of 

the 95% concentration band and was a little inflated at larger nominal levels. 
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Figure 1-2: Comparison of false positive rates of eight methods under null hypothesis. 

 

1.4.2 Empirical power comparisons of single-based Association Tests 

To demonstrate that HSAT is not only robust but also more powerful than either 

the traditional mean test or other two orthogonal integrative methods, we investigated 

three simulation scenarios to evaluate the powers of MT, JLS, LRT and HSAT. We set 

sample size as 1000 that is close to real sample size of COGA study.  

Figure 1-3 summarized the results for Scenario I at genome-wide nominal level 

| = 5 × 108}. This scenario does not favor the integration methods JLS, LRT and HSAT 

because there are no latent interactions or LD between test and causal locus that can bring 

about variance heterogeneity on trait value.  Our proposed HSAT is the most powerful 
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among the four methods. Compared with the second most powerful test, MT, the power 

gain of HSAT is more noticeable for SNP with smaller MAF. In contrast, JLS and LRT is 

less powerful than MT under all situations. The power loss of JLS and LRT is due to the 

increase of degree of freedom in integrating mean and variance tests and orthogonal 

integration didn’t bring about enough additional information. 

 

Figure 1-3: Power comparison of MT, JLS, LRT and HSAT under Scenario I at nominal 
level  5 × 108}. 

We adopted simulation design by Soave et al[13] in Scenario II. There existed 

unobserved exposure variable (E) and the corresponding interaction between genotype 

and unobserved exposure variable �� × �  in generating the trait. Figure 1-4 displayed 

the power results for the four methods, in which HSAT is the most powerful method with 

different interaction effect sizes Cs, followed by the second most powerful test, JLS for 

different genetic effect size �s.LRT is less powerful than JLS and is always superior to 

the traditional MT method. The MT has the least power due to its failure of capturing the 
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additional information from � × � interaction. The values of �s and Cs are similarly 

determined as that by Soave et al. 

Figure 1-4: Power comparison of MT, JLS, LRT and HSAT under Scenario II at 
nominal level  5 × 108}. 

For Scenario III, the simulation design framework mimics the situation of 

variance-heterogeneity loci (vQTL), which have different variances across genotypes. 

Such variance heterogeneity may be induced by LD with a functional causal variant or 

� × � interactions. The main effect size � is set to be 0.25 for common causal variants 

and 0.5 for low frequency causal variant in order to obtain reasonable power 

comparisons. Such setting is also consistent with the popular assumption that low and 

rare variants would have rarer causal loci have greater effects. The effect size y is a 

measure of genetic effect on the variance of trait value. Figure 1-5 (a) displayed the 

power comparisons of the four methods for common variants with the main genetic effect 

size � = 0.25. When the effect of genotype on variance is small (y < 0.1), the MT is 

slightly more powerful than our HSAT method, followed by JLS and LRT. When 
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increasing  y larger than 0.1, our HSAT outperformed MT and remained the most 

powerful. In addition, JLS and LRT methods is less powerful than MT and later 

outperformed MT, while the power of MT remained decreasing with the increase of 

variance heterogeneity (y). Figure 1-5 (b) displayed the power comparisons of the four 

methods for low frequency variants with a larger main genetic effect  � = 0.5. Our 

HSAT remained the most powerful with different variance effect sizes. While when the 

effect of genotype on variance y < 0.3, the JLS and LRT is less powerful than MT. 

When increasing  y over 0.3, JLS and LRT methods is more powerful than MT. For these 

two situations, the power gains of our HSAT method over the traditional mean test (MT) 

appeared especially noteworthy with the increase of variance heterogeneity and it did not 

display severe power losses with trivial or no variance heterogeneity. 

 

Figure 1-5: Power comparison of MT, JLS, LRT and HSAT under Scenario III at 
nominal level  5 × 108}. 
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1.4.3 Single-based association test in COGA study 

Alcohol Dependence (AD) is a polygenic disorder that may be determined by 

effects of multiple variants. And there existed co-addiction between AD and other drug 

uses (e.g. nicotine and cocaine). For such phenotype, there is high possibility of latent 

� × �, � × �	interactions and causal biological network structures. Therefore, the effects 

of high-order information should not be ignored when analyzing AD and AD related 

diseases.  

The QQ plot of mean test MT, HSAT, JLS and LRT is also presented in Figure 

1-6, in which the inflation factor of HSAT test is 1.0121 that indicated no inflation.  

 

Figure 1-6: Q-Q plots of MT, JLS, LRT and HSAT. 

As demonstrated by single-based association analysis, Traditional mean test 

(k(�3 	= 2.65 × 108H) did not yield a genome-wide bonferroni significant association 
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with nominal level k < '.'I}IH�"� ≈ 5.84 × 108}, whereas the HSAT did (k(�3 	= 5.72 ×
108�'). The Manhattan plot of MT is presented in Figure A-1 and no association signal 

peaks were observed. Genome-wide significance was also not achieved by the JLS test 

(k(�3 = 1.04 × 108�), the LRT test (k(�3 = 2.50 × 108H). The Manhattan plot of 

HSAT is presented in Figure 1-7. Seen from Figure 1-7, we observed obvious signal 

peaks on chromosomes 2, 6, 7 and 19. 

Figure 1-7: The Manhattan plot of HSAT. 

Table 1-1 displayed 34 top-ranked significant SNPs selected by HSAT with 

suggestive genome-wide nominal level 5 × 108H. Three novel genes PIK3CG on 

chromosome 7, ZFAND3 on chromosome 6 and NFIX on chromosome 19 that contained 

multiple top-ranked significant SNPs are associated with AD. Specifically, the most 

significant detected SNP (rs849436) is only located about 32.761 kb from the PIK3CG 



31 
 

gene. Though PIK3CG has never been identified as candidate gene in genome association 

studies, its altered expression has been reported to be associated with AD[18] and 

cigarette smoking[19].  

In addition, two previously reported genes HMGN3 and EHBP1 [20]were 

replicated.  In particular, 11 out of  the 34 top-ranked significant SNPs are located within 

or nearby the gene HMGN3 that is well reported in previous large-scale GWAS study 

[21], which lead to the strong signal peak on Chromosome 6 in Figure 1-7. Table A-1 

listed all detected SNPs with k	 < 5 × 108I and their corresponding genes, among which 

we reported previously replicated genes PTPRN[22-24], CNTN4[25, 26], PDLM5[27], 

CDH13[23, 28-30] that were related to AD in large-scale GWASs. 

Table 1-1: Genome-wide Top-ranked Significant SNPs by the HSAT 

Chr rs Position Gene Left Gene Right Gene HSAT JLS LRT MT* 

7 rs849436 106367588  PIK3CG PRKAR2B 5.72E-10 1.04E-07 1.59E-05 6.77E-05 

6 rs2842519 38042247 ZFAND3 MDGA1 BTBD9 2.70E-08 2.40E-04 1.32E-04 2.72E-05 

6 rs1335535 79999203 HMGN3 PHIP LOC100131959 7.86E-08 1.72E-06 3.53E-03 2.77E-02 

6 rs9350803 79999595 HMGN3 PHIP LOC100131959 7.86E-08 1.72E-06 3.53E-03 2.77E-02 

7 rs849370 106307179 PIK3CG FLJ36031 PRKAR2B 7.89E-08 1.23E-06 6.21E-05 2.68E-04 

6 rs11963886 37970017 ZFAND3 MDGA1 BTBD9 1.16E-07 2.98E-04 1.70E-04 3.41E-05 

6 rs1537740 80035233  HMGN3 LOC100131959 1.41E-07 2.08E-06 4.59E-03 3.16E-02 

19 rs10402645 13058752 NFIX DAND5 LYL1 1.51E-07 8.22E-05 4.91E-05 9.14E-06 

6 rs7738508 80048256  HMGN3 LOC100131959 1.58E-07 1.71E-06 4.32E-03 2.04E-02 

19 rs306045 2992700  TLE2 AES 1.62E-07 1.46E-05 3.85E-04 5.33E-04 

19 rs11881808 13054782 NFIX DAND5 LYL1 2.25E-07 1.98E-04 9.66E-05 1.77E-05 

6 rs7763232 80030157  HMGN3 LOC100131959 2.49E-07 2.52E-06 5.85E-03 3.49E-02 

7 rs849406 106320153 PIK3CG FLJ36031 PRKAR2B 2.75E-07 7.04E-06 1.45E-04 4.23E-04 

6 rs4706754 79969588 HMGN3 PHIP LOC100131959 2.84E-07 1.75E-06 4.20E-03 8.01E-03 

6 rs7772967 80051380  HMGN3 LOC100131959 4.05E-07 4.22E-06 6.73E-03 3.81E-02 

6 rs10806163 79951373  PHIP HMGN3 4.35E-07 4.46E-04 1.57E-03 7.59E-03 

6 rs9343886 79983800 HMGN3 PHIP LOC100131959 5.13E-07 2.14E-06 5.59E-03 9.96E-03 

6 rs16890450 79949239  PHIP HMGN3 5.86E-07 4.32E-04 1.59E-03 6.78E-03 
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19 rs1688114 2988787  TLE2 AES 7.56E-07 5.38E-05 1.08E-03 4.38E-03 

2 rs17020307 37294768 CEBPZ LOC100129418 C2orf56 8.01E-07 9.38E-02 0.1155 3.28E-02 

2 rs28548299 37340278 PRKD3 C2orf56 QPCT 8.01E-07 9.38E-02 0.1155 3.28E-02 

7 rs2453840 45920337 IGFBP3 IGFBP1 LOC100129619 1.08E-06 4.29E-05 1.77E-04 2.91E-04 

19 rs1654678 2985077  TLE2 AES 1.11E-06 5.32E-05 1.22E-03 2.85E-03 

6 rs2322219 80038110  HMGN3 LOC100131959 1.32E-06 8.68E-04 4.56E-03 3.22E-02 

2 rs2421738 62877847 EHBP1 LOC100129162 LOC100132215 1.86E-06 2.71E-04 5.48E-03 0.6804 

2 rs17027558 63065438 EHBP1 LOC100129162 LOC100132215 1.86E-06 271E-04 5.48E-03 0.6804 

7 rs849408 106329620 PIK3CG FLJ36031 PRKAR2B 1.88E-06 6.15E-06 1.25E-05 9.19E-04 

7 rs849390 106296223 PIK3CG FLJ36031 PRKAR2B 1.91E-06 2.51E-05 5.15E-04 1.41E-03 

2 rs2871608 57499324  LOC647016 LOC100131953 2.73E-06 5.74E-05 9.10E-03 0.3063 

6 rs1414283 80036646  HMGN3 LOC100131959 2.81E-06 4.63E-06 1.46E-02 2.56E-02 

9 rs10982123 116050914 COL27A1 KIF12 ORM1 3.95E-06 8.18E-05 3.04E-04 1.10E-05 

2 rs16829835 151831949  RBM43 NMI 4.22E-06 0.18820 0.1518 9.39E-02 

5 rs159981 6042136  KIAA0947 LOC651419 4.28E-06 1.16E-04 2.68E-03 0.1612 

7 rs4236534 96311548  SHFM1 LOC402679 4.75E-06 1.59E-04 4.28E-03 0.3449 

* MT is the traditional mean test. The suggestive nominal level is 5 × 108H.   

 

 

1.5 Conclusion and Discussion 

Most famed marker-wise association tests are based on linear models (LMs), 

generalized linear models (GLMs) and generalized linear mixed models (GLMMs) with 

homoscedastic residuals. In such conventional homoscedastic working models, (variances 

of) residuals are assumed to be independent of the genetic predictors and environmental 

factors. The core idea of such association tests is to localize genetic determinants by 

exploiting linear trend (aka, correlation, association) between genetic variants and trait 

values.  Very few exceptional methods (i.e., Soave et al.’s JLS, Cao et al.’s LRT) were 

developed under heteroscedastic regression models. The homoscedastic models are too 

simple to effectively capture high complex disease genetic mechanisms. If a test genomic 

marker harbors causal alleles of trait �, the random error in the working model likely 
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follows a mixed distribution and is dependent on genotypic score � due to intra-marker 

LD and G×G, G×E interactions, etc. 

Even for several existing methods considering variance effects, they integrate the 

association signals of mean test and variance test orthogonally and their test statistics of 

the mean test and variance test do not track each other at causal loci. In association 

analysis, integrating information will always increase the degree of freedom in the test. 

Failing to integrating the information efficiently would yield limited power gain and even 

be less powerful than traditional mean test (MT) when dispersion signal is weak relative 

to mean heterogeneity.  

In this article, we offered novel paradigm applications for distilling and 

harmoniously integrating high-order information with mean effects while effectively 

calibrating major dispersion effects of confounders in single-based a studies. From 

extensive simulations above, our harmonious joint single-based method HSAT brought 

about dramatic association power gain in existence of low and rare frequency variants, 

� × � and � × � interactions and well controlled type I error rates at the same time. 

HSAT method includes the usual appealing features for data integration methods such as 

JLS and LRT and is even much more powerful than existent methods. Moreover, we have 

applied our method to the COGA on the alcohol addiction of 991 whites. The results 

demonstrate the noteworthy superiority of our method to existing tests in single-based 

association analyses. There are several advantages of our HSAT method. 

High sensitivity: The HSAT is highly sensitive to association signals. In presence 

of latent � × � interaction and heteroscedasticity, it yields dramatic power gains over the 

famed combination tests and conventional mean heterogeneity test. In absence of real 
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dispersion heterogeneity, it overcomes the power loss of the famed combination methods 

compared to the conventional mean heterogeneity test. In particular, it displays power 

gains than its competitors to identify individual rare variants. 

Broadness: The foundation of the HSAT is our large-sample theory. The joint 

asymptotic normality of its two test statistics does not require normality of the error 

terms. It only requires E�e�" < ∞ and E�e� = E�e�! = 0.  This family covers very broad 

symmetric and asymmetric error distributions. 

Robustness: The HSAT integrates two correlation tests, which fully inherit the 

core beauty of the robustness of least-squares estimates of slopes. The LRT does not 

apply when normality assumption on error term is severely violated (Data not shown 

here). 

High accuracy: The test statistics have very fast rate to converge to the 

asymptotical joint normality. The Levene statistic adopted in JLS converges in 

distribution so slow that accurate approximate of its true p-value requires very large 

sample sizes. 

Flexibility: The HSAT can be easily extended to quantitative biomarkers, i.e., 

gene expressions, methylations, imputation dosages, etc. It does not need any artificial 

partition of subjects. The LRT and the JLS rely on genotype categories to partition 

subjects. Partitioning subjects usually leads to power loss and other problems. For 

example, some categories can be too small or even empty in low-frequency and rare 

variant mapping. 

Scalability: Our HSAT method is very efficient and stable in computation. It is 

hundreds fold faster than the LRT and JLS (data not shown here). This advantage is 
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crucial to large-sample whole-genome scan. Due to the iteration search, the LRT is not 

stable and may not converge to a meaningful point when the normality of residual is 

violated.  

Lastly, we acknowledge that there existed situations where HSAT is less powerful 

than traditional mean test (MT) when the additional information to integrate cannot 

defeat the penalty induced by the increase of degree of freedom in the test. This would 

sometimes harm the power, as showed in Figure5 (a) as Scenario III. The development of 

more effective high-order effect integration methods requires further formal efforts. In 

addition, appropriate adjustment of background data structures and other hidden 

confounders are important for the success of effectively integrating informative high-

order effects instead of spurious effects brought by environmental covariates. In real 

world, the high complexity of gene networks always exist in the majority of genetic 

datasets and the distribution of a phenotype can never be solely determined by its mean. 

Our HSAT method merely made one step further from existent traditional mean test and 

very few integrative methods. High-order effects are like hidden “gold mine” that are not 

exploited in existing genetic datasets and require particular methods to further distill it. 
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CHAPTER 2 
 

INCOPERATING HIGH-ORDER EFFECTS CAN GAIN POWER IN 
GENE-BASED ASSOCIATION TESTS 

 

2.1 Abstract 

Previous studies have shown evidences that rare and common variants act 

collectively on disease risks. The increasing number of sequence-based association 

studies started to evaluate the cumulative effect of both rare and common variants on 

disease trait. Gene-wise association tests have been proposed to pool or collapse multiple 

variants in a group unit, such as a gene. Current prominent gene-based association 

methods of complex disease phenotypes are based on homoscedasticity working models 

that only aim to exploit the mean effects of variants on disease traits. As shown by real-

world genetic data, the assumption of homoscedastic residuals is incompetent to account 

for phenotypic variation induced by the innate heterogeneous nature of the complex 

biological networks.  

This chapter develops a harmonious novel gene-based association test (HGAT) 

framework of incorporating high-order effects of test markers while easily calibrating 

both the mean and variance effects of global covariates. High-order heteroscedasticity, 

which indicates genetic effects on the alteration of high-order moment of quantitative 

traits, may implicate potential interactions, causal networks, latent covariates, linkage 
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disequilibrium (LD) structure and admixture blocks that have influence on the 

distribution of trait values. In HGAT frame, the high-order effects of test markers are 

embedded as harmonious weights to better summarize the relative contribution of genes 

to the alteration of the distribution of phenotypes in the mean-only group association 

tests. By comprehensive simulation scenarios, HGAT can correctly control the type I 

error and outperform several existent popular gene-based association tests. We illustrate 

its application in homogeneous population and extend it to admixed population.  

Key words: 

Harmoniously integration, variance heterogeneity, � × � and � × � interactions, high-

order effects, Gene-based method, admixed population 

 

2.2 Introduction 

The genome-wide association (GWAS) mainly focused on common variants and 

have been successful in identifying the associations of many common variants (say, 

MAF>5%) with human diseases such as type1 and type2 diabetes, rheumatoid arthritis, 

Crohn’s disease and coronary heart disease[31-33]. Despite these, a large portion of the 

remaining heritability cannot be explained by common variants[34]. In recent years. With 

the advanced improvement in next-generation sequencing technology and the 

implementation of the 1000 Genome Project, large numbers of rare variants (SNPs) with 

MAF<5%  have been identified accurately, which led to the consideration of rare variants 

as possible causal variants of human diseases to explain some missing heritability of 

common variants[35].  



38 
 

In recent years, several studies have shown evidences that rare and common 

variants act collectively on disease risks [36-38]. The increasing number of sequence-

based association studies started to evaluate the cumulative effect of both rare and 

common variants on disease trait. Therefore, group-wise association tests, instead of 

single variant association tests, have been proposed to pool or collapse multiple variants 

in a group unit, such as a gene. Current prominent gene-based association methods of 

complex disease phenotypes are also based on homoscedasticity working models that 

only aim to exploit the mean effects of multiple variants on disease traits. All these 

models assume homoscedasticity that model residuals are independent of all predictors 

(covariates and variants). As discussed in Chapter 1, the assumption of homoscedastic 

residuals is incompetent to account for phenotypic variation induced by the innate 

heterogeneous nature of the complex biological networks.  

Various gene-based methods have been developed. The CMC[39] method is one 

of the earliest and best-cited benchmarks. The phenotype is regressed on the collapsed 

variant score by all variants within the gene region. The most prominent sequence 

association tests are GLMMs based score tests, including the commonly used Sequence 

Kernel Association Test (SKAT)[40] and SKAT-O  (‘Optimal’ SKAT)[41, 42]. Impelled 

by the assumption of rare or low frequency variants in explaining additional variability of 

the trait, these SKAT methods derived from burden tests and variance-component tests 

extensively employed a weighting scheme that up-weights the contribution of rare 

variants and down-weights the contribution of common variants by minor allele 

frequency (MAF). That is to say, such weight scheme mostly increases relative influence 

of rare or low frequency variants for any disease-related gene. Such a weighting scheme 
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can lead to loss of power when common variants in a region under investigation are also 

associated with disease trait. Another newly method is Mixed Effects Score Test 

(MiST)[43], which conducts a hierarchical model combining two independent test 

statistics of quantifying effect sizes of variants and annotation ‘heterogeneity’.  

In Chapter 2, we firstly develops a novel harmonious gene-based association test 

(HGAT) framework of incorporating the high-order effects of test markers within a gene 

region while easily calibrating both the mean and variance effects of environmental 

covariates in homogeneous population. High-order effect, as discussed in Chapter 1, may 

implicate potential high-order interactions, causal networks, latent covariates, linkage 

disequilibrium (LD) structure and admixture blocks among variants. Such high-order 

effects of test markers are embedded as better weights to summarize the relative 

contribution of the gene to the alteration of the distribution of disease trait beyond the 

change of the trait mean. By comprehensive simulation scenarios, our HGAT can 

correctly control the type I error and outperform several existent popular gene-based 

association tests. Then we employ HGAT to the same COGA on the alcohol addiction of 

991 whites in Chapter 1. The results demonstrate the noteworthy superiority of our 

method to gene-based association tests in replicating and identifying novel susceptive 

genes. 

Compared to homogeneous populations, much fewer association studies 

specifically focused on genetically admixed populations such as African Americans that 

comprise a substantial portion of the total population in United States. Genomes of 

admixed individuals derive from two or more distinct homogeneous ancestral 

populations. Such admixed genomes are mosaics of segments with various ancestries 
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(genetic origins)[44]. Local variation in ancestry (aka, local ancestry) usually indicates 

the number of alleles originating from reference ancestral population for each SNP of 

each admixed individual and reflects the region effect brought by ancestry mosaic 

structure. Genetic data of admixed individuals offer distinctive advantages for localizing 

admixture blocks that may harbor causal variants which exhibits substantially different 

frequencies between ancestral populations and unravel the ethnicity-specific patterns of 

disease prevalence. Therefore, local ancestry, in most of the time, represents the 

accumulating effects over the entire ancestral block in which may include certain number 

of variants to impact the distribution of disease traits. Statistically significant differences 

among high-order moment of phenotypes under different local ancestry groups may also 

implicate potential interactions (e.g., Ancestry×Gene and Ancestry×Ancestry), latent 

causal relationship among local ancestry, genotype and phenotype. In terms of admixed 

populations, ancestry-driven high-order effects would be non-ignored and provide 

additional information in traditional gene-based studies.  

Therefore, we also extended our HGAT to admixed populations. High-order 

effect of local ancestry is included in our HGAT framework as a new weight to better 

summarize the relative contribution of the ancestry block to the alteration of the 

distribution of disease trait in admixed population. We applied HGAT to reanalysis an 

existing well-characterized sample of 1334 unrelated Africans selected from the Study of 

Addiction: Genetics and Environment (SAGE). Based on our findings, we underscore the 

importance of incorporating high order effects of both genotypes and local ancestry in 

data analysis for admixed populations.  
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2.3 Materials and methods 

2.3.1 Model Notation and Construction of Harmonious Gene-Based 

Association Test (HGAT) 

For the ��� subject, �� is the trait value, �� is the k ×1 vector of environmental 

covariate(s), ��= is its transpose, �� = �S��, S�2, … , S�( ′ is the vector of copy numbers of 

minor alleles of � markers at the test gene. We propose a novel linear mixed model 

framework that harmoniously incorporate high order effects of test markers. Firstly we 

derive the mean-only association test as followings: 

 �Q: ��� = ��=�� + ��=�� + ��,��~�(�0, ��  Eq. 2-1 

where �� is the random error term and  � = V�US�K�, … , K(  are the weights of test 

markers to represent the relative contribution of test markers to disease trait. �� =
����, … , ��(  are the vector of effect sizes of genotypes. �� are random effects and 

assumed to follow multivariate normal distribution with mean zero vector and diagonal 

covariance-variance matrix ��, where τ is a variance component and �� =
�y��, y�2, … y�o  are the vector of coefficients of environmental covariates and are fixed 

effects. The null hypothesis for �Q is &'.(): � = 0�⇔ �� = � . According to Wu et 

al.[40], we can obtain a score test statistic for testing &'.(). 

 � = @� − ��A′���′@� − ��A, Eq. 2-2 

where  ��  is the estimated value of � under &'.(), in which Eq. 2-1 collapsed to a general 

linear model and � = ���, ��, … , �� ′ is � × � genotype matrix. The score statistic S 

follows a mixture of chi square distributions, and p-values can be computed analytically 

by Davies’ method under &'.() .  
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Then we adopted the following axillary high order test to calculate the weight of 

the T�?  marker at the test gene as followings: 

 ℎQ: ��∗2 = ��N2 �2N + ��=, Eq. 2-3 

where ��′ is the random error term, �2� is the effect coefficient of the squared genotype 

��N2  (T = 1,2, …�). ��∗  is the trait residual after calibrating both the mean and variance 

effects of environment covariates and �2N is the effect size of genotype ��N on ��∗2for 

each marker. The null hypothesis for ℎQ is &'.?): �2 = 0. The association statistic of 

testing &'.?) is  

 + = √� − 2<��∗2, �2 11 − <2��∗2, �2 , Eq. 2-4 

where <��∗2, �2  is the sample pearson coefficient of correlation between �2 and �∗2. 

The highlight of ℎQ is to capture the second-order moment information by regressing the 

squared trait residual ��∗ on the square of genotype ��. 
For a non-causal gene, all the markers within the gene region would have no 

effect on the distribution of disease trait. Therefore, the null hypothesis of our HGAT 

method is &'.(?: � = 0, �2 = 0. An appealing property of our HGAT method is that the 

independence between test statistic of �Q and that of  VQ statistic under &'.(\ and the 

dependence between �Q and VQ under alternative hypothesis. As defined in Chapter 1, 

we call such pair of test statistics as harmonious. The proof of the null independence 

between mean test and high order test is provided in Appendix A.1 and Appendix A.2. 

The advantage of such null independence in gene-based association test is that we can 

incorporate additional high-order effect of each marker as the new weight in mean 

association test Eq. 2-1 and still control the type I error rate of the test. In addition, high-
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order effect as the new weight would not increase the degrees of freedom in testing 

&'.(\. In this do test, we scale each marker in the test gene by the weight �� =
−X �����@o A∑ �����@o A¡ ¢� Z, where k� is the p-value of testing &'.?) obtained from Eq. 2-4. The 

weight matrix for the test gene is defined as £ = V�US���, … , �( . The weighting 

scheme is rooted from our notion on harmonious statistics in Chapter 1. Each weight �� 
reflects the relative contribution of the j-th marker to the score statistic of the gene. 

Different from adopting the traditional MAF or external biological function information 

from other datasets as weight scores, we adopted the high order effect of the marker as 

our weight score to measure the relative importance of the marker to the alteration of trait 

distribution.  

Then we can obtain a score test statistic for testing &'.(? as 

 �d0fg = @�∗ − �∗¤A′�£�′@�∗ − �∗¤A, Eq. 2-5 

where �∗ is the trait residual after adjusting for both the mean and dispersion effects of 

environmental covariates and �∗¤ is the predicted value of �∗ obtained from Eq. 2-1 under 

&'.(?. The test statistic �d0fg also follows a mixture of chi square distributions, and p-

values can be computed analytically by Davies’ method[45] under &'.(?.   

 

2.3.2 Extension of HGAT to Admixed Populations 

Current gene-based statistical methods solely consider global population structure 

while the effect of local ancestry on analysis of rare and common variants are being 

ignored, especially in admixed populations (e.g., African Americans and Latinos). In 

admixed populations, At least two ancestral populations have been mixing for short 

generations to form a new population with the ancestry of each individual explained by 
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different proportions of the original populations. Due to recombination events, within the 

chromosomes of a single individual, different regions of the genome could stem from 

different ancestral populations. The genome of each individual can be regarded as a 

“mosaic” structure with segments from different ancestry[46, 47]. 1000 Genome 

Project[48] has shown that frequency of variants differs dramatically among different 

populations.  Thus local ancestry in certain genomic regions in admixed populations is 

likely to provide additional useful information in association analysis. Figure 2-1 

indicates the relationship among local ancestry ¥, causal and non-causal variants � 

(�¦§�8¨©ª«©¬ and	�¨©ª«©¬) and trait value ­. � is added as covariates including 

population structure and other environmental covariates. Single-arrow line represents 

possible causal direction (i.e. ¥ to �, � to ­) and double-arrow line indicates correlation. 

Under &'.(?, local ancestry A would also have no effect on the trait value Y. 

Figure 2-1: Causal graph among trait value Y, gene data X and local ancestry A. 

HGAT can be easily extended to admixed populations. For recently admixed 

population such as African Americans, variants within one extended admixture block 

mostly have the same local ancestry due to sparse switch points in ancestry across a 

chromosome. Local variation in ancestry (aka, local ancestry) usually indicates the 
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number of alleles originating from reference ancestral population for each SNP of each 

admixed individual. Specifically, for African Americans in our study, the local ancestry 

is coded as 0,1 and 2 to indicate the number of alleles originating from CEPH Europeans 

from Utah (CEU). We let ¥ = �U�, U2, … , U3 ′ represent n × 1 vector of local ancestry 

for the m markers within the test gene. In admixed population, the score test statistic 

�d0fg_f\( of HGAT_Adm for testing &'.(? is written as 

 �d0fg_f\( = @�∗ − �∗¤A=�¥°±£¥°±�¥°±′@�∗ − �∗¤A, Eq. 2-6 

where �∗ is the same as in Eq. 2-5 and �¥°± = ��, ¥ = ²���� U�U2⋮�� ⋮U3
´ is the new � ×

�� + 1  matrix with an adding column A to represent the cumulating effect of local 

ancestry for the test gene. The new weight matrix is £¥°± = V�US���, … , �(, �f , where 

�f = −X ������oµ ∑ �����@o A¡ ¢� p������oµ Z. kf is the p-value of testing &'.?) obtained from Eq. 2-3 

and Eq. 2-4 in which the genotype G is replaced by local ancestry A. The test statistic 

�d0fg also follows a mixture of chi square distributions, and p-values can be computed 

analytically by Davies’ method under &'.(?.   

 

2.3.3 Simulation Configurations for Gene-Based Analysis 

We considered three different experiment simulations for gene-based studies. The 

first two simulations come from the genetic additive model framework with different 

methods of determining the effect sizes of genotypes. In the last simulation, we used the 

previously reported gene to mimic the scenario when latent gene by environmental or 

gene by gene interaction existed in the dataset.  
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2.3.3.1 List of Methods for Comparisons 

We conducted extensive simulations to evaluate the performance of HGAT and 

compare it with current commonly used methods, including CMC, SKAT, SKAT_O and 

MiST. The choice of MiST was in part based on the simulation results that MiST had 

similar better power than the burden test and SKAT-type tests under wide range of 

scenarios. Here we also consider DGAT which is short for Dispersion Gene Association 

Test in comparison. In DGAT, we also scale each marker in the test gene by the weight 

¶� = −` �����ao ·b∑ �����ao ·b¡ ¢� c and corresponding weight matrix  ¸ = V�US�¶�, … , ¶( , where 

k�=  is the p-value obtained from dispersion test in double generalized linear model 

(DGLM) instead of high-order model Eq. 2-4. In addition, we considered a weighted 

version for DGAT and HGAT in simulation scenarios when rarer causal variants have 

greater effects than common ones, and they are denoted by wDGAT and wHGAT. We 

adopted the default suggested weight scheme in SKAT ¹� = ºF�[@» ,�,2IA∑ ºF�[@» ,�,2IA¡ ¢�  and the 

corresponding weight matrix ¼ = V�US�¹�, … , ¹( , where P� is the MAF for the ½Rℎ 

causal variant. For wDGAT and wHGAT, the score test statistic for testing &'.(? as 

   

 �¾¿0fg = @�∗ − �∗¤A=��¸ + ¼ �′@�∗ − �∗¤A, Eq. 2-7 

 

 �¾d0fg = @�∗ − �∗¤A=��£ + ¼ �′@�∗ − �∗¤A, Eq. 2-8 
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2.3.3.2 Simulation of LD structure of Genotypes 

For marker  À ∈ {1,… ,�} at test gene, we generate minor allele frequency (MAF) 

PÄ~unif�0.005,0.5  and compute the PÈ-percentile MÈ of the standard normal distribution 

��0,1 . And the LD between SNP j and k is generated based on the well-known 

exponential decay model D�N = exp	�−V|½ − T|  [49-51].We then generate an � × � 

positive definite Toeplitz matrix  Ê = @DË�A to represent the LD structure of m makrers 

within the test gene. A vector �Ì�, … , Ì( ′ generated from the m-variate normal 

distribution	�(��,Ê  defines a haplotype Í = �C�Ì� < M� ,… , C�Ì( < M(  ′, where 

C�.   is the indictor of an underlying event, e.g., C�Ì� < M� = 1 if Ì� < M�, and = 0 if 

Ì� ≥ M�. Two haplotypes Í� and Í2 generated in such a way compose a genotypic vector 

Ï = Í� + Í2 = �Ï�, … , Ï± ′ for the test gene. 

 

2.3.3.3 Homogeneous polygenic (HP) model framework 

As the foundation of genetic association studies, linkage disequilibrium (LD) 

occurs among tightly linked genomic markers and decays along the physical distance. LD 

may extend from a few kilo-bases (kb) to greater than 100kb[52-54]. Although 

omnipresent, the LD-driven higher-order moment information (beyond mean 

heterogeneities) have not been well acknowledged and exploited. Therefore we first 

demonstrate the noteworthy benefits and methods of exploiting LD-driven high order 

effects in gene-based tests. We firstly conducted simulations from a homogeneous 

polygenic (HP) model. The trait �� of subject i is generated by a homoscedastic residual 
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�� that follows standard normal distribution, dichotomous covariate r�� (i.e. 

r��~u��Q��1,0.5 ) to mimic gender, continuous covariate r2� (i.e. r2�~��0,1 ) to 

mimic normalized age and genotypic scores ����Ð , … , �Ä�Ð  at l causal SNPs, which 

randomly reside in causal gene with m (>l) markers. Following Kruglyak[55], Zhang and 

Stram[49], we set V = 0.3 to mimic moderate correlated SNPs in genome-wide SNP 

data. The HP model is as followings: 

 �� = 0.5r�� + 0.5r2� + Ñ ���Ð��Ä
�7� + ��. Eq. 2-9 

Based on Eq. 2-9, we set � = 50 and Ò = 10 for 10000 replicates of 1000 subjects. The l 

causal SNPs are randomly chosen from the m test markers. At each causal SNP j, the 

effect size is determined by minor allele frequency ���� and the direction is determined 

by parameter M� where Pr@M� = 1A = 1 − Pr@M� = −1A = Õ. “+1” indicates the positive 

effects and “-1” is the negative effect of the variants. The effects are determined as such 

because a complex trait is influenced by common and rare variants with effects of diverse 

sizes and directions. The effect size is written as  

 �� = −0.15M� log�'�P� , Eq. 2-10 

where P� is the MAF of ½Rℎ markers. P�  is generated by the strategy introduced in section 

2.3.3.2 above.We employ the setting of �� in Eq. 2-10 in favor of the SKAT and SKAT-

O. The 10 causal markers explain about 5% of total heritability. We adopted different Õ 

(i.e. Õ = 1, 0.8, 0.5, 0.2) to represent diverse directions of the markers. 
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2.3.3.4 Fisher’s Model Framework 

In this section, we generated the simulation model according to Fisher’s 

theory[56] instead of the HP models that are commonly used in SKAT papers, because 

adopting a different simulation set up can provide us with a clear understanding of the 

robustness of various methods under different scenarios. We generated SNP-specific 

effects for the same given total heritability ℎ2of l causal SNPs. Most causal markers were 

of small marginal effects whereas only a small portion of causal markers were of 

relatively larger marginal effects. Individual trait values were generated from the 

following linear model 

 �� = Ñ M����Ð��Ä
�7� + ��, Eq. 2-11 

where WU<�� = 1, ��~t�0,1 − ℎ2 . �� is set to be 1ℎ�2/WU<��× , in which ℎ�2 = ℎ2/Ò 
and �× was genotypic vector of SNP j, and WU<��×  was estimated from the genotype 

data. The genotype data is generated based on the simulation of section 2.3.3.1. M� is the 

direction parameter defined in Section 2.3.3.3. We adopted different Õ (i.e. Õ =
1,0.8,0.5,0.2) to represent diverse directions of the markers. We set � = 50 and Ò = 10 

for 10000 replicates of 1000 subjects. In addition, we let ℎ2 = 2% to represent the raw 

proportion of phenotype that is explained by genotypes.  

 

2.3.3.5 Latent � × Ø and � × � interaction  

This set of simulation for power comparison mimicked a real data situation. We 

used the genotype data from the COGA study. 991 individuals underwent final analysis. 

As reported in several previous researches, OPA3 is a well replicated gene that is related 
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to alcohol dependence [23, 57, 58]. Therefore, we used 23 SNPs with MAF> 0.005 

within OPA3 as our reference to generate the dataset. Among 23 SNPs, rs811589, a well 

replicated SNP in previous researches, is chosen as causal SNP to generate the trait value 

Y as followings: 

 �� = 0.5 ∗ r�� + 0.5 ∗ r2� + 0.3 ∗ r!� + ��� + ��r!�C + ��, Eq. 2-12 

where the error term  �� follows a standard normal distribution. r�� is continuous normal 

distributed covariate (e.g. r��~t�0,1 ), r2� follows binomial distribution with frequency 

0.5 that mimics the binary covariate such as gender. The unobserved exposure variable 

r!� was binary variable with frequency 0.3 (e.g. r!�~u�2,0.3  ). The main mean genetic 

effect � was set to be 0.25, and the interaction effect C of  �� × r!�was varied between 0 

and 0.5 by a grid of 0.05. This simulation mimic the situation when the potential latent 

� × � interaction exist in genetic dataset. 100,00 replicates were simulated using the 

genotype structure of OPA3 in COGA study with sample size 991.  

As illustrated in previous research, potential latent � × � interactions would lead 

to variance heterogeneity[11]. Next we still used rs811589 as a variance-heterogeneity 

quantitative trait loci (vQTL) to generate the trait value as followings: 

 �� = 0.5 ∗ r�� + 0.5 ∗ r2� + ��� + ��, Eq. 2-13 

where ��~t�0, exp	���y  , in which y is the effect size of genotype on variance and 

�zk	�.   is the exponential function which guarantees that variance of the normal 

distribution is always positive. In other words, y is a parameter to measure the magnitude 

of effects of latent � × � interactions. � is the effect size of genotype �� and is still set to 

be 0.25. r�� and r2� are the same as defined in Eq. 2-12. 100,00 replicates were 

simulated using the genotype structure of OPA3 in COGA study with sample size 991.  
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2.4 Results 

2.4.1 Type I Error Control of Competitors 

We compared six methods: CMC, SKAT_O, SKAT, Mist, DGAT, wDGAT, 

HGAT and wHGAT to evaluate the type I error control. 100,000 replicates were 

generated under the null model with no genetic association (� = 0). Seen from Figure 

2-2, CMC, SKAT, MiST, DGAT, wDGAT, HGAT and wHGAT methods generally 

controlled type I error rates at different given nominal significance levels, while 

SKAT_O is always outside of the 95% concentration band and was a little inflated at 

larger nominal levels. The sample size is set to be 1000.  

 

Figure 2-2: Comparison of false positive rates of eight methods under different 
nominal levels. 
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2.4.2 Empirical Power Comparisons of competitors 

2.4.2.1 Power Comparisons under HP model framework 

We considered HP model framework for variant effects favoring SKAT and 

SKAT_O methods. This scenario was to assume that rarer variants had stronger effects. 

The empirical power of each method was estimated by the proportion of p-values 

surpassed by the specified nominal significance level under alternative hypothesis among 

10000 simulated data sets of 1000 unrelated individuals. All the m=50 markers in the test 

gene with given LD structure were genotyped according to section 2.3.3.2 and the 

coefficients of 10 causal loci set according to 2.3.3.3. Figure 2-3 illustrate power 

comparison among different methods. 
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Figure 2-3: Comparison of empirical powers of eight methods at different 
nominal levels under HP model. 

We simulated scenarios in which the effects of 10 causal SNPs are in the same or 

opposite directions with positive/negative=100%/0%, 80%/20%, 50%/50% and 

20%/80%. The notable power gains of wHGAT and HGAT was observed in all four 

scenarios compared to CMC, SKAT, SKAT_O, DGAT and wDGAT. Since in this 

simulation rarer causal SNP have greater effects, all weighted tests wHGAT and wDGAT 

are more powerful than their respective unweighted tests HGAT and DGAT. When all 

causal loci SNPs are in the same position (i.e. +/-=100%/0%), wHGAT and MiST almost 

have the similar power at different nominal levels. And HGAT and wDGAT almost have 

the similar powers, followed by CMC method, DGAT, SKAT and SKAT_O. When the 

majority of causal loci SNPs are in the same position (i.e. +/-=80%/20%, 20%/80%), 

wHGAT is the most powerful method at different nominal levels,followed by wDGAT 

and MiST. HGAT is a little less powerful than wDGAT and MiST, followed by CMC. 

SKAT-type methods perform poorly compared to CMC because the situation of all or 

most of causal loci in same direction are in favor of CMC. When 10 causal SNPs are in 

opposite directions (i.e. +/-=50%/50%), the power of CMC drops to the lowest and 

SKAT, SKAT_O are more powerful then CMC. wHGAT is still the most powerful 

method followed by wDGAT and HGAT. MiST is a little less powerful than HGAT. For 

all simulation scenarios, wHGAT ( or HGAT) is always more powerful than wDGAT (or 

DGAT), which indicate that incorporating high-order effects instead of variance effects 

would lead to more power gain. 
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2.4.2.2 Power Comparisons under Fisher’s model framework 

To show that HGATs are not only robust but also more powerful than other 

methods tests, we conducted another set of simulation experiments using Fisher’s model 

frame work. In this set, we again assume that rarer variants had stronger effects but adopt 

a different setting for the effect size �À of genotypes. Figure 2-4 illustrates power 

comparison among different methods.  

 

Figure 2-4: Comparison of false positive rates of eight methods at different 
nominal levels under Fisher’s model framework. 

For this simulation set that is different from HP model, SKAT-type methods have 

the least powers. wHGAT is still the most powerful method, followed by MiST, wDGAT 

and HGAT. These three methods almost have the similar powers when different 

directions of causal SNPs exist. When all causal SNPs are in the same direction, MiST is 
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a little more powerful than wDGAT and HGAT. the weighted tests (wHGAT and 

wDGAT) are still more powerful than their unweighted counterparts (HGAT and DGAT) 

because the rare or low frequency causal variants on average have small variance of 

genotype an this leads to larger effect size than common variants. For all simulation 

scenarios, wHGAT (or HGAT) is still always more powerful than wDGAT (or DGAT), 

which again indicates that incorporating high-order effects instead of variance effects 

would lead to more power gain. 

 

2.4.2.3 Power Comparisons with Latent G×E and G×G Interactions 

 For simulation designs of G×E interactions, we utilized the real gene OPA3 in the 

COGA dataset to generate the trait value. We simulated scenarios in which well 

replicated rs811589 was chosen as the causal SNP. We compared the eight methods at 

nominal level 5 × 108! and 5 × 108" respectively in Figure 2-5. HGAT always 

outperformed other methods followed by DGAT. Similarly, among weighted tests, 

wHGAT is more powerful than wDGAT. Since in this simulation the effect size of causal 

SNP is not related to MAF, all weighted tests wHGAT and wDGAT are less powerful 

than their respective unweighted tests HGAT and DGAT. The power of the MiST is 

slightly higher than the wHGAT and wDGAT with small G×E interaction. Then it is 

surpassed by wHGAT and wDGAT with the increase of effect size C of G×E  interaction. 

The SKAT test has the least power and is less powerful than SKAT_O and CMC. The 

simulation results showed that latent G×E interaction would lead to the augmentation of 

high-order effects. The power gain of HGAT comes from the integration of high-order 

effects. 



56 
 

 

Figure 2-5: Comparison of empirical power of eight methods levels when latent 
G×E interaction exists at nominal level 0.005(a) and 0.0005(b). 

For simulation designs of G×G interactions, we utilized the real gene OPA3 in the 

COGA dataset to generate the trait value. The well replicated rs811589 was chosen as the 

causal vQTL that has both mean and variance effect on trait value. We compared the 

eight methods at nominal level 5 × 108! and 5 × 108" respectively in Figure 2-6. 

HGAT still always outperformed other methods followed by DGAT. And among 

weighted tests, wHGAT is more powerful than wDGAT. For mean-only association 

methods CMC, SKAT, SKAT_O and MiST, their power would decrease with the 

increase of  y in Eq. 2-13. The SKAT test still has the least power and is less powerful 

than SKAT_O and CMC. The simulation results showed that latent G×G interaction 

would also lead to the augmentation of high-order effects. Therefore integrating high-

order effect in HGAT can gain the power for detecting whether the gene has influence on 

the alteration of distribution of disease trait.  
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Figure 2-6: Comparison of empirical power of eight methods levels when latent 
G×G interaction exists at nominal level 0.005(a) and 0.0005(b). 

 

2.4.3 Real Data Analysis on Genetics of Alcoholism (COGA) Study 

We compared our HGAT and wHGAT with several popular gene-based method 

CMC, SKAT, SKAT_O and MiST that only focus on mean associations. In addition, we 

compare HGATs with DGATs that only incorporate dispersion effect instead of high-

order effects. We conducted our analyses to SNPs within the 16346 gene regions. The Q-

Q plots for the eight methods were shown in Figure 2-7, in which the inflation factor of 

HGAT and wHGAT are 1.0307 and 1.0552 respectively. HGATs methods indicated no 

inflation. Due to the relatively small sample size (n=991), none of the methods reached 

Bonferroni gene-wise statistical significance (p < '.'I�H!"H = 3.06 ×× 108H).Setting 
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suggestive gene-wise nominal level (i.e.5 × 108"), we identified 17 significant genes (i.e 

either kÙÚÛÜ or kÝÙÚÛÜ <5 × 108"), among which PTPRN[22-24] and PDLIM5[27] are 

well replicated genes related to AD in previous GWAS studies. Among the 17 top ranked 

genes, gene expression of ACTN2[59] was associated with alcohol-related traits and 

IGFBP3[60] was related to alcohol-induced liver disease. In addition, the gene expression 

of UEVLD[61] is related to alcohol exposure. EMILIN2[62] and DEFA4[63] have 

association with smoking that has high correlation with alcohol dependence. The top-

ranked genes are listed in Table 2-1.  

 

Figure 2-7: Q-Q plots of eight gene-based methods 
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Table 2-1: Top-ranked Significant Genes by HGAT or wHGAT 

Chr Gene HGAT wHGAT DGAT wDGAT MiST SKAT SKAT_O CMC 

2 PTPRN 1.50e-05 1.35e-05 3.43e-04 2.69e-03 6.42e-05 0.049 0.063 4.03e-03 

1 STXBP3 7.34e-05 6.10e-05 1.43e-02 6.47e-05 4.40e-04 5.95e-05 5.66e-05 0.603 

8 DEFA4 9.69e-05 5.11e-03 3.43e-03 0.025 0.098 0.043 0.045 0.136 

4 LSM6 1.19e-04 1.37e-03 0.154 0.039 0.034 0.039 0.036 0.045 

21 SFRS15 1.37e-04 1.13e-04 0.117 0.052 2.11e-04 0.022 0.036 0.016 

6 ZFAND3 1.64e-04 1.32e-04 0.025 9.03e-03 4.06e-03 2.09e-03 3.70e-03 0.491 

7 IGFBP3 2.02e-04 2.08e-04 1.62e-03 1.52e-03 0.086 0.431 0.456 0.049 

19 NFIX 2.26e-04 4.47e-04 0.073 0.036 6.33e-04 3.06e-03 3.63e-03 0.385 

9 BSPRY 2.72e-04 6.24e-04 2.6e-04 1.19e-03 0.019 0.188 0.312 0.015 

1 ACTN2 3.21e-04 6.77e-04 0.024 0.030 0.020 0.135 0.196 0.014 

11 TSG101 3.85e-04 9.35e-04 5.75e-04 1.43e-03 0.030 0.665 0.356 0.013 

11 UEVLD 4.67e-04 5.79e-04 5.91e-04 7.72e-04 0.282 0.897 1 0.119 

18 EMILIN2 4.76e-04 1.78e-03 8.95e-04 9.94e-04 0.252 0.227 0.351 0.266 

4 PDLIM5 4.83e-04 6.47e-04 3.32e-05 4.55e-05 0.100 0.879 1 0.024 

7 GUSB 5.15e-04 1.88e-05 6.37e-05 1.63e-04 9.64e-04 2.55e-04 2.52e-04 0.036 

2 DNAJB2 6.68e-03 3.74e-04 0.017 5.64e-04 8.45e-04 2.50e-04 2.49e-04 3.00e-04 

12 MBD6 0.0127 1.69e-04 1.18e-04 1.19e-04 4.10e-04 1.21e-04 1.14e-04 0.012 

The suggestive nominal level is Þ × ��8ß.   

 

 

We selected 24 previous reported genes that have been implicated as candidate 

genes related to AD by more than one GWAS or sequencing paper. The results are shown 

in Table 2-2. For the majority of previous reported genes, our HGATs methods (HGAT 

or wHGAT) obtained smaller p-values compared to other methods. 

Table 2-2: P values of 24 previous replicated genes in COGA dataset 

Chr Gene HGAT wHGAT DGAT wDGAT MiST SKAT SKAT_O CMC 

1 OLFM3[64-66] 0.386 0.353 0.276 0.264 0.347 0.342 0.496 0.387 

1 TNN[64, 67] 0.387 0.702 0.444 0.750 0.972 0.961 0.846 0.772 

1 NRD1[58, 64, 65] 0.497 0.245 0.629 0.303 0.177 0.048 0.063 0.848 

2 THSD7B[68-70] 6.38e-03 0.010 0.033 0.015 0.211 0.269 0.425 0.186 
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3 CNTN4[25, 71, 72] 7.23e-03 2.10e-03 0.088 0.031 0.079 0.072 0.129 0.125 

4 ADH1C[73-75] 0.151 0.033 0.206 0.077 0.0748 0.0343 0.0318 0.414 

5 DOCK2[21, 30] 0.075 0.059 0.336 0.176 0.377 0.145 0.238 0.818 

5 PPP2R2B[64, 65, 76, 77] 0.567 0.476 0.811 0.667 0.529 0.307 0.271 0.785 

6 SYNE1[57, 68, 78, 79] 0.336 0.491 0.344 0.499 0.703 0.673 0.666 0.527 

7 CNTNAP2[30, 71] 0.594 0.374 0.632 0.375 0.262 0.100 0.160 0.800 

8 CSMD1[21, 29, 77, 78, 80] 0.196 0.402 0.336 0.491 0.887 0.875 0.742 0.682 

10 KCNMA1[30, 57, 81] 0.646 0.725 0.722 0.795 0.916 0.832 0.948 0.768 

10 HTR7[30, 57] 0.273 0.134 0.367 0.173 0.074 0.063 0.110 0.293 

11 TTC12[57, 82, 83] 0.011 0.176 0.022 0.205 0.884 0.785 0.483 0.806 

11 PKNOX2[68, 84] 0.709 0.371 0.725 0.312 0.100 0.089 0.131 0.088 

11 NAP1L4[57, 64] 0.686 0.611 0.818 0.711 0.593 0.506 0.308 0.502 

11 GRM5[64, 85] 0.318 0.304 0.405 0.384 0.211 0.328 0.397 0.122 

12 ITPR2[21, 72] 0.587 0.901 0.495 0.878 0.952 0.941 0.832 0.745 

12 SOX5[23, 57] 0.304 0.706 0.451 0.812 0.905 0.961 0.982 0.621 

12 ALDH2[86, 87] 0.508 0.628 0.575 0.696 0.994 0.926 0.869 0.897 

12 SLC2A14[57, 88] 0.663 0.838 0.724 0.870 0.973 0.814 0.743 0.734 

13 SLC10A2[21, 57, 68] 0.378 0.467 0.365 0.445 0.855 0.640 0.832 0.909 

18 CCBE1[23, 57, 89] 0.088 0.102 0.141 0.182 0.628 0.428 0.453 0.619 

19 OPA3[23, 57, 58, 64] 2.40e-03 0.085 4.65e-03 0.094 0.908 0.813 0.743 0.733 

   

 

 

 

2.4.4 Real Data Analysis on Study of Addiction: Genetics and Environment 

(SAGE) 

In this section, we applied HGAT_Adm method to re-analyzed a large, well-

characterized sample of 1334 unrelated individuals from the Study of Addiction: 

Genetics and Environment (SAGE). It contains 942048 SNPs. Positions of all SNPs are 

genome build 36.3. The primary phenotype is DSM-IV AD. 
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2.4.4.1 Genotype Quality Control, Local Ancestry Inference and Estimation of 

Global Ancestry 

SAGE dataset contains 942048 SNPs. Positions of all SNPs are genome build 

36.3. The primary phenotype is DSM-IV AD. SNPs were excluded if minor allele 

frequency (MAF)< 5% or call rates< 95%, leaving 917,681 SNPs after genotype quality 

control. Among 1334 individuals, 69 were excluded due to missing or extreme trait 

values.  After data cleaning, 1265 individuals (48.6% males; 39.9 ± 7.3 years) 

underwent final analysis. We didn’t remove SNPs that violates Hardy-Weinberg 

Equilibrium (HWE) because the presence of admixture often violates the assumptions of 

HWE. Simply removing such SNPs would lose the ancestry information.  

We inferred local ancestries of 1265 unrelated African American genomes at non-

overlapped adjacent windows using the ELAI package[90]. Reference panels of HapMap 

West African Yoruban (YRI) and CEPH Europeans from Utah (CEU) genotypes 

(http://hapmap.ncbi.nlm.nih.gov/) are download from International HapMap Project. 

Processed by Plink, genotypes were coded as 0, 1 and 2 to represent the count number of 

the minor allele. The ancestry states (dosages) of each SNP of an admixed individual 

obtained by ELAI are then recorded to 0, 1 and 2 to indicate the number of alleles 

originating from CEU.  After local ancestry inference, 860,427 SNPs are maintained with 

both local ancestry and genotype information in final analysis. 

One additional important component we need to consider in admixed population 

is global ancestry that represents ancestral proportions averaged across the whole genome 

of an admixed individual. It is usually adjusted as covariate representing population 

stratification. Suggested by Price et al.[91], the top eigenvectors are shown to be effective 
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in capturing the demographic uniqueness of a population. Thus global ancestries are often 

estimated by top principal components (PCs) of genotypic matrix of a subset of all 

genotyped markers. To verify our local ancestry estimation, we also estimated the global 

ancestry of a subject by averaging the inferred local ancestries using ELAI across the 

genome of the subject and calculated the correlation between estimated global ancestry 

and the first principal component (PC). The accuracy of local ancestry inference is 

verified by the extremely high correlation (r2 > 0.9974) between estimated global 

ancestry and the first PC calculated from genotypes of admixed individuals. This 

indicates the high accuracy of inference of local ancestry using ELAI. Estimated global 

ancestry as covariate was included in our final data analysis to capture the population 

stratification.  

 

2.4.4.2 Adjustment of Covariates 

Following genotype quality control and local ancestry inference above, we 

applied the double generalized linear model (DGLM) to adjust for both mean and 

variance effects of covariates. The DGLM is implemented in R package dglm. The 

covariates to adjust for in analysis are gender (1=Male, 2=Female), smoking (0~7), 

normalized age, squared-normalized age and estimated global ancestry. Since age ranges 

from 18 to 64, normalizing age can reduce the difference of age profiles. Adding the 

square of normalized age allows you to model the effect of age that may have a non-

linear relationship with the phenotype AD. The inclusion of smoking was to remove 

possible spurious results caused by effects of smoking considering the moderate 

relationship (r2 = 0.4874) between drinking and smoking. From Table 2-3, we observed 
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significant (P<0.05) dispersion effects of gender, smoking, normalized age (Age*), 

squared-normalized age and estimated global ancestry (Global), which implicate the 

necessity of correcting for the effects of heteroscedasticities for covariates.   

Table 2-3: Separate analyses of drinking symptom 

Mean Dispersion 

Effects Estimate p-values Effects Estimate p-values 

Intercept 21.1041 7.4e-28 Intercep 6.0555 5.0e-28 

Smoke 3.4242 7.8e-50 Smoke 0.2968 2.1e-54 

Gender -8.2967 1.6e-19 Gender -0.9339 3.1e-31 

Age* -0.0829 0.8166 Age* -0.0905 0.0236 

(Age*)2 -0.2848 0.1826 (Age*)2 -0.1046 3.1e-05 

Global 5.0718 0.2778 Global 1.5023 8.9e-04 
 

 

After adjusting for both mean and variance effects, covariates have no significant 

effects on AD (Table 2-4). Covariates adjustment does not remove the ancestry and SNP 

information on both the mean and variance of phenotype. And hence we can estimate 

local ancestry effects and genotypic effects on this adjusted trait residual after removing 

the effects of covariates on both mean and variance. 

Table 2-4: Separate analyses of drinking symptom after adjustment 

Mean Dispersion 

Effects Estimate p-values Effects Estimate p-values 

Intercep 0.0315 0.7903 Intercep -0.0129 0.9387 

Smoke 0.0017 0.8983 Smoke -0.0016 0.9317 

Gender -0.0351 0.5368 Gender 0.0090 0.9112 

Age* 0.0107 0.7066 Age* 0.0005 0.9906 

(Age*)2 -0.0114 0.5210 (Age*)2 0.0009 0.9713 

Global 0.1648 0.6065 Global -0.0035 0.9938 
 

 

2.4.4.3 Replication of previous highlighted genes for alcohol dependence 

We compare our methods HGAT_Adm and its weighted version wHGAT_Adm 

with the commonly used mean-only gene based association methods CMC, SKAT, 
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SKAT_O and SKAT. The statistic �¾d0fg_f\( of wHGAT_Adm has the same setting as 

defined in Eq. 2-8 by replacing â with âf\(. In addition, we also consider CMC_adj, 

SKAT_adj and SKAT_O_adj that adjust for gene-wise local ancestry as covariate. In 

SAGE data analysis, we selected 26 previous reported genes that have been implicated as 

candidate genes related to AD by more than one GWAS or sequencing paper. The results 

of  the 26 replicated genes are listed in Table 2-5. 

Table 2-5: P values of 26 previous reported genes in SAGE dataset 

Chr Gene HGAT_Adm wHGAT_Adm SKAT SKAT_adj SKAT_O SKAT_O_adj CMC CMC_adj 

1 OLFM3 0.047 0.024 0.131 0.232 0.203 0.311 0.569 0.373 

1 TNN 0.118 0.273 0.899 0.959 0.936 0.968 0.394 0.505 

1 NRD1 0.244 0.054 0.016 0.013 0.028 0.024 0.743 0.686 

2 THSD7B 5.82e-04 6.23e-03 0.715 0.672 0.218 0.064 0.759 0.843 

2 MREG 8.47e-03 6.16e-03 0.240 0.209 0.374 0.336 0.399 0.386 

3 BBX 0.666 0.869 0.981 0.958 0.799 0.551 0.582 0.422 

3 CNTN4 1.60e-03 4.84e-03 0.953 0.931 0.700 0.927 0.453 0.854 

4 ADH1C 0.049 0.131 0.419 0.405 0.289 0.268 0.154 0.152 

5 DOCK2 7.14e-04 3.11e-04 0.025 0.134 0.038 0.233 0.074 0.806 

5 PPP2R2B 0.025 0.093 0.609 0.549 0.809 0.762 0.138 0.133 

6 SYNE1 0.085 0.124 0.799 0.640 0.448 0.015 0.356 0.173 

7 CNTNAP2 4.51e-06 1.23e-04 0.739 0.584 0.835 0.816 0.759 0.848 

8 CSMD1 3.40e-07 6.26e-06 0.969 0.949 0.979 0.954 0.566 0.555 

10 KCNMA1 2.04e-03 1.59e-03 0.326 0.248 0.491 0.398 0.610 0.540 

10 HTR7 0.066 0.056 0.471 0.460 0.146 0.229 0.228 0.218 

11 TTC12 0.038 0.094 0.589 0.536 0.784 0.740 0.989 0.817 

11 PKNOX2 6.44e-03 3.78e-03 0.175 0.071 0.270 0.127 0.694 0.603 

11 NAP1L4 0.064 5.47e-03 1.75e-03 8.92e-04 3.34e-03 1.74e-03 0.287 0.213 

11 GRM5 0.145 0.183 0.633 0.574 0.836 0.794 0.479 0.472 

12 ITPR2 3.55e-04 6.21e-04 0.239 0.141 0.359 0.235 0.111 0.477 

12 SOX5 0.070 0.048 0.309 0.206 0.471 0.356 0.532 0.689 

12 ALDH2 0.032 0.028 0.256 0.205 0.105 0.114 0.048 0.056 

12 SLC2A14 0.028 0.071 0.723 0.777 0.839 0.957 0.239 0.154 

13 SLC10A2 0.034 0.051 0.115 0.083 0.194 0.142 0.104 0.174 

18 CCBE1 0.145 0.439 0.918 0.811 0.984 0.627 0.623 0.418 
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19 OPA3 0.046 0.049 0.304 0.292 0.415 0.395 0.543 0.841 

   

 

We investigated the genetic variants in these 26 well replicated genes previously 

shown to be associated with AD. For the majority of previous replicated genes, our 

HGAT_Adm’s methods obtained smaller p-values compared to other methods. The better 

performance of our proposed method came from integrating the additional high-order 

effects of local ancestry in the gene-based association test. Utilizing local ancestry 

instead of calibrating it can provide additional useful additional information regarding the 

source of cumulative effect of admixture block region on disease trait. 

 

2.5 Conclusions and Discussions 

High-order effect, as discussed in Chapter 1, may implicate potential high-order 

interactions, causal networks, latent covariates, linkage disequilibrium (LD) structure and 

admixture blocks among variants. The novel principle of harmonious tests have also been 

introduced in detail in Chapter I. For Chapter II, we apply such harmonious principle to 

propose the novel HGAT and HGAT_Adm method for distilling and harmoniously 

integrating high-order information of genotype and local ancestry in gene-based studies. 

Such high-order effects of test markers are embedded as better weights to summarize the 

relative contribution of the gene to the alteration of the distribution of disease trait 

beyond the change of the trait mean. 

There are several advantages to HGAT modeling. The statistic that we developed 

for HGAT has the appealing features of the score test in linear mixed models such as 

calculating p-value analytically and saving computation time compared to permutation. 

The axillary high order test is generated to capture the high-order effects. Due to the 
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independence of mo and ho test under null hypothesis, our HGATs methods can control 

the type I error. Due to the dependence of mo and ho test under alternative hypothesis, 

HGATs outperformed commonly used existent popular gene-based association tests.  

For admixed population, local ancestry offer additional information resource in 

terms of the ethnicity-specific patterns of disease prevalence. In other words, local 

ancestry represents the accumulating effects over the entire ancestral block in which may 

include certain number of variants to impact the distribution of disease traits. Therefore, 

statistically significant differences among high-order moment of phenotypes under 

different local ancestry groups may also implicate potential interactions (e.g., 

Ancestry×Gene and Ancestry×Ancestry), latent causal relationship among local ancestry, 

genotype and phenotype. Therefore, we also extended our HGAT to HGAT_Adm in 

admixed populations by including high-order effect of local ancestry in HGAT 

framework as a new weight to better summarize the relative contribution of the ancestry 

block to the alteration of the distribution of disease trait in admixed population.  

By application to COGA and SAGE datasets, we demonstrate the noteworthy 

superiority of HGAT methods to existent gene-based mean-only association tests in 

replicating and identifying novel susceptive genes. The development of more effective 

high-order effect integration methods requires further formal efforts. In addition, 

appropriate adjustment of both mean and variance effects of covariates are important for 

the success of effectively integrating informative high-order effects instead of spurious 

effects brought by environmental covariates.  
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CHAPTER 3 
 

INTEGRATING MEAN AND HIGH-ORDER HETEROGENEITIES 
TO IDENTIFY DIFFERENTIALLY EXPRESSED GENES 
 

3.1 Abstract 

Identifying differentially expressed (DE) genes with distinct mean expression 

levels between different experimental conditions is a main challenge in functional 

genomics studies. Mean heterogeneity, namely the difference between condition-specific 

means of gene expression levels, reflects one aspect of its distribution alteration. If a DE 

gene is a genuine functional gene that involve in gene-gene co-expression and interaction 

networks related to the disease, its distribution change in the expression level cannot be 

solely completely determined by mean heterogeneity. Higher-order heterogeneities, 

namely the difference between condition-specific high-order moment beyond the first 

order moment (i.e. the mean), can provide extra valuable information for describing the 

distribution change of expression levels. There are two parts in this chapter. For Part I, I 

firstly introduced our published integrative mean-variance test (IMVT) that combined 

gene-wise mean heterogeneity and variance heterogeneity. For moderate samples, the 

IMVT well controlled type I error rates and outperformed its competitors under 

comprehensive simulations of normality and Laplace settings.  In presence of variance 

heterogeneity, the IMVT appeared noticeably more powerful than all the mean 

heterogeneity tests. For Part II, a novel double Welch t test (DWT) was proposed to capture 

both mean heterogeneity and second-order heterogeneity instead of variance heterogeneity. 

The DWT outperformed our earlier IMVT method and also well controlled type I error 

rates.  Both IMVT and DWT methods were applied to the gene profiles of peripheral 
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circulating B. After adjusting for background data structure, IMVT replicated previous 

discoveries and identified novel experiment-wide significant candidate functional DE 

genes. And we also compared the results of IMVT and DWT in replication of previous 

reported genes. Our results indicate tremendous potential gain of integrating informative 

high-order heterogeneity after adjusting for global confounders and background data 

structure. Therefore, particular attention should be paid to explicitly exploit the high-order 

heterogeneity induced by condition change in functional genomics analysis.  

Key words: Functional genomics studies; DE genes; High-order heterogeneities; Latent 

confounders; Latent biomarkers  

 

3.2 Part I: Integrating Mean and Variance Heterogeneities to Identify 

Differentially Expressed Genes 

3.2.1 Introduction 

Typically the core challenge in comparative microarray experiments is to identify 

statistically significant genes of biologically meaningful changes in expression levels under 

different conditions. Differentially expressed genes may help identify disease biomarkers 

that are important for the diagnosis of multiple diseases [92, 93]. There are several existent 

mean heterogeneity tests for identifying differentially expressed genes. The Student t test 

(ST) has been widely applied as a standard routine for identifying mean differentially 

expressed (MDE) genes in two-condition experiments [94]. The null hypothesis of this test 

is mean homogeneity	&'�: the testing gene has identical mean expression level under the 

two conditions. It assumes variance homogeneity	&'2 : the testing gene has identical 

variance in expression level under the two conditions. The necessity of &'2 for the ST was 
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formally examined under normality setting [95]. It tends to inflate type I error rate for 

rejecting mean equality if the smaller sample is from the population with the larger 

variance. In contrast, it tends to be conservative if the larger sample is from the population 

with smaller variance. The WT [96] is an adaptation of the ST to allow for potential 

variance heterogeneity between two experimental conditions. This test calibrates potential 

variance heterogeneity as an impediment to identify differentially expressed genes. 

Demissie et al. developed the MWT [97] to obtain more stable estimates of the error 

variance of a gene in a low-replicate microarray experiment. The MWT outperformed the 

Welch test to allow for variance heterogeneity. All aforesaid tests either simply ignore or 

take the variance heterogeneity as an impediment and calibrate it when identifying 

differentially expressed genes.  

For a gene in a complex network, its distribution heterogeneity of expression levels 

can include heterogeneities in mean, variance, and even higher-order mathematical 

characteristics. Thus far, researchers have been conventionally focusing on exploiting 

mean heterogeneity, simply ignoring or adjusting for overall intra-condition variance 

heterogeneity. Herein, we distinguish ‘informative component’ from ‘impediment 

component’ of the overall variance heterogeneity. Specifically, we call the variance 

heterogeneity due to condition change as ‘informative variance heterogeneity’; and call 

variance heterogeneity due to environmental covariates and latent factors (i.e., background 

data structure) as impediment variance heterogeneity. However, informative variance 

heterogeneity has not been well recognized and exploited. Informative variance 

heterogeneity of a susceptible gene can capture extra information conveyed by complicated 

biological networks. High gene-gene correlations are common in co-expression networks 
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of differentially expressed genes [98, 99]. Genes can interact with each other and/or interact 

with environmental factors. Therefore, the alteration of expression distribution of a 

susceptible gene cannot be completely determined by its mean heterogeneity. 

Heterogeneities of high-order characteristics, e.g., variance and kurtosis, can provide extra 

valuable information. Exploiting informative mean heterogeneity of gene expression level 

alone would be incompetent to extract the information of the second-order moment (i.e., 

the variance). Existent methods cannot explicitly integrate the informative variance 

heterogeneity of gene expressions due to condition change; and little has been done to 

distill informative variance heterogeneity.  

In Part I, we put forth mean-variance differentially expressed (MVDE) gene as a 

novel concept. The family of MVDE genes is broader than that of conventional MDE 

genes. It goes one step closer to our generic concept of a susceptible gene − a gene displays 

reliable changes in any aspects of the entire distribution of its expression level with the 

change in condition. A MVDE gene may display different means and/or variances of 

expression levels between two different conditions. The proper null hypothesis of testing 

MVDE is &'! = &'� ∩ &'2: the gene has equal mean and equal variance of expression 

levels between the two conditions. We reject the dual null hypothesis (&'!) and claim the 

testing gene. Under normality setting, the two-sample F-test is the most powerful 

procedure for exploiting variance heterogeneity. But the F-test is very sensitive to the 

violation of normality [100]. Beyond normality setting, the Levene test [101] and the 

Brown–Forsythe test [102] are two popular alternatives for inspecting variance 

heterogeneity.  
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We mathematically proved and empirically illustrated that testing statistics of mean 

heterogeneity and variance heterogeneity are independently distributed under	&'!. This 

null independence is not well-known to many, but is crucial to assure the type I error rate 

control of the IMVT using Fisher’s method [102]. Under comprehensive simulations, the 

IMVT appeared noticeably more powerful than existent mean heterogeneity tests (i.e., WT, 

MWT and STSD) as well as the LRT and the SMVT for identifying MVDE genes. In 

particular, the IMVT appeared strikingly more powerful than the mean heterogeneity tests 

to identify genes with variance heterogeneity. To illustrate the practical utility of our 

IMVT, we reanalyzed the gene profiles of peripheral circulating B cells [103] after 

adjusting for global confounders and background data structure. Our IMVT replicated 

previous discoveries and identified novel genes that were missed by existent mean 

heterogeneity tests.  

 

3.2.2 Methods 

Let the dataset contain expression levels of � gene probes of �Ð unrelated subjects 

from condition M  (i.e., M = 1 for control group, and	M = 2 for treatment group). To be 

specific, let ���Ð	be the expression level of gene probe � (= 1,2, … ,�) on subject  ½ (=
1,2, … , �Ð) under condition M, and let � = �� + �2 be the total sample size. Let ��Ð and -�Ð2  

be the gene-specific mean and variance of the expression levels of gene probe � under 

condition	M, respectively. The standard unbiased estimators of ��Ð  and -�Ð2  are given by 

�̂�Ð = �̅�Ð = ∑ ���Ð3å�7� /�Ð and -.�Ð2 = ∑ @���Ð − �̅�ÐA23å�7� /��Ð − 1 , respectively. 
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3.2.2.1 Concept of MDE genes and mean heterogeneity tests 

Researchers conventionally focus on identifying MDE genes. A MDE gene 

displays mean differentials between the expression levels under two experimental 

conditions (�� ≠ �2). The ST has been widely used routine to identify MDE genes. This 

mean heterogeneity test rejects the null hypothesis &'�:	�� = �2 if the Student statistic of 

the testing gene departures from zero significantly. A default assumption behind the ST is 

variance equality&'2: -�2 = -22 at the testing gene. Specifically, for the ��? gene, let �� =
@����, ��2�, … , ��3��A′  and �� = @���2, ��22, … , ��3;2A′  be the expression levels of two 

independent random samples from normal populations �����, -��2   and ����2, -�22  , 

respectively. The ST on &'��� : ��� = ��2 assumes variance homogeneity (&'2�� : -��2 = -�22 ) 

between the two conditions, and defines the test statistic as 

								R̂ = a 1�� + 1�2b8�2 ��̂�� − �̂�2 :-.o2 , 
where -.o2 = 3�8�3�p3;82-.��2 + 3;8�3�p3;82-.�22  is the pooled sample variance estimator of the 

common variance σ2. If &'!�� = &'��� ∩ &'2��  is true, then the testing statistic R̂ follows the 

centralized Student t distribution with ��� + �2 − 2  degrees of freedom (R̂~R3�p3;82). It 

is well known that violating the assumption of variance homogeneity would result in type 

I error inflation or power loss of the ST [20].  

The WT, as an adaptation of the ST, is more reliable when the two-group samples 

have unequal variances and unequal sample sizes. The Welch statistic is defined by 
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ç+¤ = �̂�� − �̂�2
è-.��2�� + -.�22�2

. 
This statistic calibrates the impact of potential variance heterogeneity between two 

conditions. For a gene with equal means between two conditions (regardless of variance 

heterogeneity),  ç+¤  approximately follows a t-distribution with the Welch–Satterthwaite 

degree of freedom:  

é = X-.��2�� + -.�22�2 Z2
X -.��"��2��� − 1 + -.�2"�22��2 − 1 Z. 

To calibrate unequal variances, another alternative is the MWT [97], which would yield 

reliable condition-specific variance estimators for low-replicate experiments. For large-

sample experiments, one can perform Student t test on standardized data (STSD), where 

the gene expression levels are divided by condition-specific sample standard deviations 

respectively.  

 

3.2.2.2 Concepts of MVDE genes and variance heterogeneity tests 

A gene is called to be susceptible if the change in condition can alter arbitrary 

aspects of the entire distribution of its expression level, i.e., mean, variance, kurtosis and/or 

even higher-order characteristics. The term MVDE gene is adopted to describe a gene 

whose mean and/or variance in expression level is sensitive to the change in condition. 

Formally, a MVDE gene has different means (�� ≠ �2) and/or variances (-�2 ≠ -22) of 

expression levels between two conditions. This concept of MVDE genes goes one step 

closer to our general concept of a susceptible gene and is more reasonable than the 
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conventional concept of MDE genes, which confines to differential mean expression levels 

only. In gene co-expression networks, genes work together and the expression levels are 

correlated. Some susceptible genes may also interact with other susceptible genes and/or 

environmental factors. Such correlations and interactions among biological networks are 

very common and are major drivers for the variance heterogeneity of a test susceptible 

gene. Variance heterogeneity, to some extent, indicates how a gene involve in complex 

networks. Therefore, we argue that variance heterogeneity should be as equally important 

as mean heterogeneity for identifying differentially expressed genes. To identify 

susceptible genes, one crucial step is to extract summary statistics containing potential 

information about variance heterogeneity, i.e., the p values computed from some 

appropriate test statistic on the null hypothesis &'2�� 	(variance homogeneity). 

  For a random gene, if its (transformed) expression levels follow normal 

distribution, then the classical two-sample �-statistic 

�� = -.��2-.�22  

follows the centralized F-distribution with ��� − 1  and ��2 − 1  degrees of freedom 

(��~�3�8�,3;8�) since &'2��  is true. Under normality setting, the F-test is the most powerful 

test for exploiting variance heterogeneity. Nevertheless, the F-test is very sensitive to the 

violation of normality. Therefore, it may claim random genes to be spuriously significant 

if their (transformed) expression levels do not strictly follow normal distributions. 

Actually, the two-sample F test is more suitable for testing normality other than variance 

heterogeneity [100]. 
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As a robust alternative, the Brown–Forsythe statistic is the F-ratio that stems from 

applying the ordinary one-way analysis of variance on the absolute deviations from the 

median: 

u�¤ = ��� + �2 − 2 ∑ �Ð�ê̅�Ð − ê̅� 22Ð7�∑ ∑ @ê��Ð − ê̅�ÐA23å�7�2Ð7� , 
where ê��Ð = ë���Ð − �ì�Ðë,  ê̅�Ð = �3å ∑ ê��Ð3å�7� ,  ê̅� = �3�p3; ∑ ∑ ê��Ð3å�7�2Ð7� ,  and �ì�Ð =
��V�U���¨ . When &'2��  is true, the distribution of u�¤  follows approximately the F-

distribution with degrees of freedom 1 and ��� + �2 − 2 . 
Another alternative, the Levene test, uses the mean instead of the median: 

í�¤ = ��� + �2 − 2 ∑ �Ð�ê̅�Ð − ê̅� 22Ð7�∑ ∑ @ê��Ð − ê̅�ÐA23å�7�2Ð7� , 
where ê��Ð = ë���Ð − �̅�Ðë, ê̅�Ð = �3å ∑ ê��Ð3å�7� , ê̅� = �3�p3; ∑ ∑ ê��Ð3å�7�2Ð7� 	 and �̅�Ð =
��U���¨ . If &'2��  is true, then  í�¤  follows approximately the F distribution with degrees 

of freedom 1 and ��� + �2 − 2 .  
For each gene, the optimal test for variance heterogeneity depends on the 

underlying gene expression distribution. According to Brown and Forsythe’s Monte Carlo 

studies [102], the Levene test provided the best power for symmetric, moderate-tailed 

distributions; whereas the Brown–Forsythe test performed best when the underlying data 

followed heavily skewed distributions.  

 

3.2.2.3 Integrating mean and variance heterogeneities 

One most commonly used method to integrate two independent pieces of 

information is Fisher’s linear combination. For a testing gene, let kîg , kï , kðï, kñï denote 
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the p-values of the Welch statistic, the F statistic, the Brown-Forsythe statistic and the 

Levene statistic, respectively. We recommend using ò�ó+ô = −2�log�kîg + log�kñï   
to integrate mean and variance heterogeneities. Another two alternatives are �ç+ô =
−2�log�kîg + log�kï   and u�ç+ô = −2�log�kîg + log�kðï  . Each of the three 

Fisher linear combinations follows approximately the õ2- distribution with 4 degrees of 

freedom, provided that the p-values of mean heterogeneity tests are independent of the p-

values of variance heterogeneity tests under joint null	&'!. 

 

3.2.2.4 Alternative tests for the joint null hypothesis of mean and variance 

equalities 

To test &'!, a framework of separate mean and variance tests (SMVT) can also be 

conducted. This framework applies WT on &'� (mean equality) at nominal level |� and 

Levene test on &'2 (variance equality) at nominal level |2, respectively. &'! is rejected if 

&'� or &'2 or both are rejected. By our proposition on the null independence, type I error 

rate of this framework is given by | = |� + |2 − |�|2. It is intractable to choose universal 

optimal |� and |2 for all genes. To control the overall type I error rate at nominal level |, 

one typical choice is setting |� = |2 = 1 − √|. Similar as Fisher’s linear combination, 

the SMVT gives equal weight to mean heterogeneity and variance heterogeneity. 

The two-sample íö+ is another alternative to test &'!, assuming the (transformed) 

expression levels follow normal distributions. Specifically, the LRT statistic is given by 

íö+¤ = a÷�ø�÷� ùú̂û�; b÷�; a÷;ø�÷; ùúû;; b÷;;
` �÷�ü÷;a∑ @0û �8ýúA;÷� ¢� p∑ @0û ;8ýúA;÷; ¢� bc÷�ü÷;; , 
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�̂ = �3�p3; @∑ ����3��7� + ∑ ���23;�7� A (See APPENDIX  B for mathematical derivation of the 

LRT statistic). Under normal setting with &'!, õ̂22 = −2ln	�íö+¤   follows õ2- distribution 

with 2 degrees of freedom asymptotically for large sample sizes.  

 

3.2.3 Results 

3.2.3.1 The null independence between the mean and variance heterogeneity 

tests 

It’s commonly believed that testing statistics of mean and variance heterogeneities 

are dependently distributed, even if the data forming them are from an identical normal 

population. For example, both Student’s t-statistic and the F-statistic are defined in terms 

of sample variances. In fact, all aforesaid testing statistics of mean heterogeneity are 

independent of all aforesaid testing statistics of variance heterogeneity under &'!. This null 

independence lays the foundation of type I error rate control of the integrative 

heterogeneity tests. Herein, we formally formulate the finite-sample null independence by 

the following proposition: 

Proposition: Student t statistic and Welch t statistic are independent of the F-, Levene and 

Brown-Forsythe statistics if the finite samples (G1, G2) forming them jointly follow an 

arbitrary spherically symmetric distribution. 

The proposition formulates the finite-sample null independence under a broader 

distribution family, including normality as a special member (see the APPENDIX B for 

mathematical proofs). Its typical members include multivariate Gaussian, Student, Kotz, 

exponential power, Laplace distributions with spherically symmetric variance-covariance 

matrices [100]. Many researchers are familiar with and usually adopt normality assumption 
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on (transformed) gene expression levels. By this proposition, if the normality assumption 

is met, the proposed integrative heterogeneity tests can properly control the type I error 

rate. However, the normality assumption is often violated more or less by real-world gene 

expression data. Rigorously speaking, no transformation of gene expression data can assure 

exact normality. Therefore, it is necessary and useful to extend the null independence to 

broader distribution families, e.g., spherically symmetric family.  

To empirically illustrate the proposition, we generated 100000 replicates of two-

group samples from the standard normal distribution with sample size �� = �2 = 40. As 

anticipated by the proposition, the majority of replicate-specific pairs of Welch t statistic 

�ç+¤   and Levene statistic (í�¤ ) randomly concentrates around (0, 1) (Figure 3-1 (a)) and 

so do the replicate-specific Welch t statistic and F statistic pairs (Figure 3-1 (b)). Under 

this simulation design, Welch t and Student t statistics (ç+¤ , R̂) appeared equivalent (Figure 

3-1 (c)). The correlation between Levene statistic (í�¤ ) and Brown-Forsythe statistic (u�¤ ) 

turned to be 0.9894 (Figure 3-1 (d)). The scatterplots of (R̂, í�¤ ), (R̂, u�¤ ), and (R̂, ��) are 

qualitatively the same as those of (ç+¤ , í�¤ ) (Results not shown here). Under the normality 

setting with smaller sample sizes, we also obtained the corresponding figures for some 

other sample sizes (Figure B-1-Figure B-7), which revealed very similar patterns to 

Figure 3-1. Standard multi-variate normal distribution is a typical member in the family of 

spherically symmetric distributions. These simulation results illustrate the null 

independence within the family of all spherically symmetric distributions. 

As explorations outside of the spherically symmetric family, we performed 

comprehensive simulations by generating the data from the standard Laplace distribution. 

Univariate Laplace distribution is a typical member of the family of symmetric 
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distributions. However, the joint distribution of independent univariate Laplace variables 

is outside of the spherically symmetric distribution family. Under the standard Laplace 

setting, we obtained the corresponding scatterplots and observed similar patterns of the 

joint distributions of the mean and variance test statistics (Figure S2.1-Figure S2.4). These 

empirical results illustrate the robustness of the null independence between mean and 

variance tests for the data from the family of symmetric distributions. 

 

Figure 3-1: Null joint distributions of the test statistics on mean and variance 
heterogeneities under normality setting. 
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3.2.3.2 Type I error rates control of the competitors 

Under normality setting. With extremely small samples, none of the eight 

competitors could properly control type I error rates (Figure 3-2 (a)). The LRT and the 

STSD severely inflated type I error rates. The IMVT and the SMVT appeared equally anti-

conservative; both were much less anti-conservative than the LRT and the STSD. The 

MWT performed the best to control type I error rates; it was slightly conservative. The WT 

and the FWT appeared equally conservative; both were clearly more conservative than the 

MWT. The BFWT appeared severely conservative. The LRT inflated the type I error rates 

because the õ22 distribution could not well approximate the exact distribution of the LRT 

statistic. The anti-conservative of the STSD stemmed from the variability of condition-

specific data standardization. Specifically, sample standard deviations of small samples 

could not precisely estimate the standard deviation. The conservativeness of the BFWT 

stemmed from the well-known conservativeness of the Brown-Forsythe test [104, 105]. 

For larger sample sizes (Figure 3-2(b-d)), the LRT, the STSD, the SMVT and the IMVT 

appeared less anti-conservative, and the MWT, the WT, the FWT and the BFWT became 

less conservative. When sample sizes reached 40, the IMVT and the SMVT as well as the 

WT, the MWT and the FWT properly controlled the Type I error rates (Figure 3-2(d)). 

Under the Laplace setting, the LRT and the FWT appeared severely anti-

conservative (Figure 3-3 (a-d)). Their inflations in type I error rate appeared even severer 

as the samples increased. The LRT had inflated type I error rates because it was derived 

from normality assumption of gene expression levels. The FWT had inflated type I error 

rates because the F test statistic is very sensitive to the non-normality of the samples  [100]. 
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The other tests displayed similar patterns to those under normality setting. For extremely 

small sample sizes, the STSD, the IMVT and the SMVT appeared successively less anti-

conservative; whereas the MWT, the WT and the BFWT appeared successively more 

conservative (Figure 3-3 (a)). Their magnitudes of inflations and deflations in type I error 

rate appeared to vanish as the sample sizes increased (Figure 3-3 (b-d)).  

 

 

Figure 3-2: Comparison of false positive rates of eight methods under standard 
normality setting. 
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Figure 3-3: Comparison of false positive rates of eight methods under standard 
Laplace setting. 

 

3.2.3.3 Empirical power comparisons under normality setting and non-

normality setting 

For power comparisons, we investigated three kinds of scenarios under both 

normality setting and Laplace setting: (1) unequal mean and equal variance, (2) equal mean 

and unequal variance and, (3) unequal mean and unequal variance. For sample sizes as 

large as �� = �2 = 40, the proposed and existent tests well controlled type I error rates 

under normality and Laplace setting. And the sample size is very close to those of the gene 
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expression files of Pan et al. [103]. We thus presented here the power comparisons with 

the sample sizes �� = �2 = 40. 

Under normality setting, Herein, the parameters < and À represent the magnitudes 

of mean and variance heterogeneities, respectively. When À ≠ 0, the IMVT and the FWT 

displayed the highest powers, followed by the SMVT; and all the three joint heterogeneity 

tests outperformed the three mean heterogeneity tests, i.e., the WT, the MWT and the STSD 

(Figure 3-4 (a-b)). The power gains of the joint heterogeneity tests over the mean 

heterogeneity tests appeared especially noteworthy when À ≠ 0  and < = 0  (Figure 

3-4(b)). The joint heterogeneity tests did not display severe power losses even for the 

theoretical scenarios favoring the mean tests (Figure 3-4(c)). In addition, the FWT slightly 

outperformed the IMVT because the F test statistic is the optimal test statistic for variance 

heterogeneity under normality setting. Here, we did not compare the powers of the LRT 

and the BFWT since they could not control type I error rates.  

Under Laplace setting, we simulated independently 10000 replicates of �� = 40 

data points from standard Laplace distribution íUkÒUM�	�0,1  and �2 = 40  data points 

from íUkÒUM�	�<, �1 + À 2  for each �<, À  pair. Again, the parameters < and À represent 

the magnitudes of mean and variance heterogeneities, respectively. Under the Laplace 

setting, we observed qualitatively the same patterns as those under the normality setting. 

When À ≠ 0, the IMVT outperformed the SMVT; and both the joint heterogeneity tests 

outperformed the three mean heterogeneity tests, i.e., the WT, the MWT and the STSD 

(Figure 3-5(a-b)). The power gains of the joint heterogeneity tests over the mean 

heterogeneity tests appeared especially noteworthy when À ≠ 0  and < = 0  (Figure 

3-5(b)). The joint heterogeneity tests did not display severe power losses even for the 
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theoretical scenarios favoring the mean heterogeneity tests (Figure 3-5(c)). Here, we did 

not compare the powers of the LRT, the FWT and the BFWT since they could not control 

type I error rates under non-normality setting. 

These results formally demonstrate the importance of integrating informative 

variance heterogeneity. In general, the power gains of the IMVT over its competitors are 

solid. For the scenarios of mean heterogeneity only, the IMVT would have small power 

losses. All in all, the IMVT displayed valuable merits over its competitors. At least, the 

IMVT is an admissible procedure. It should be useful to improve the power to identify 

susceptible genes involved in co-expression networks. By its robustness to non-normality 

data, we recommend the IMVT as a powerful alternative to exploit microarray profiles. 

Figure 3-4: Power comparison of six methods under two-condition normality setting. 
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Figure 3-5: Power comparison of six methods under two-condition Laplace setting. 

 

3.2.3.4 Re-analyzing the gene expression profiles of peripheral circulating B 

Lymphocytes 

Pan et al. [103] compared the gene expressions profiles of peripheral circulating B 

cells between 39 smoking and 40 non-smoking healthy US white women. Using MAS5 

software, they normalized the expression levels of 7215 selected probes out of all the 

22,283 experiment-wide probes. They applied traditional t tests to the normalized 

expression levels and report 125 promising DE genes. The authors justified why they did 

not adjust for menopausal status and age. However, they neglected the latent background 

data structure. Using the MAS5 software, we normalized the raw expression levels of all 

the 22283 experiment-wide gene probes. For the normalized data, we computed the probe 

specific test statistics and p values of five competitors. The genomic inflation factors [106] 

of these heterogeneity tests would be close to 1 if they could properly control type I error 

rates. However, all the tests displayed huge genomic inflation factors, especially the STSD 
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(Figure 3-6). All the Q-Q plots climbed quickly above the upper limit of the 95% 

concentration band (the gray band). The severe genomic inflations indicated that some 

major latent factors would confound all the competitors. Thus, the t tests performed by Pan 

et al. [103] would be confounded since they did not adjust for any background factors. 

 

Figure 3-6: Q-Q plots of the five competitors without adjusting for latent data 
structure and covariates. 

 

To reveal latent data structure, we first conducted PCA of the MAS5 normalized 

expression levels of all the 22283 experiment-wide gene probes (Figure 3-7, Table B1). 

PC1 was the unique major PC, accounting for 98.24% of the total variation (Figure 3-7 

(a)). PC2 merely accounted for 0.32% of total variation. Neither PC1 nor PC2 displayed 
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mean heterogeneity or variance heterogeneity between the smokers and nonsmokers 

(Figure 3-7 (b)). PC4 displayed strikingly significant mean heterogeneity (kîg = 1.91 ×
108�I), even if it only accounted for 0.13% of the total variation. PC6 displayed very 

significant variance heterogeneity (kñï = 3.2 × 108") even if it accounted for 0.07% of 

the total variation only. PC4 and PC6 distinguished the smokers and the nonsmokers 

(Figure 3-7 (c)). Table B-1 listed the first 2 and all the global PCs with significant mean 

and/or variance heterogeneities. These significant global PCs did not distinguish 

informative heterogeneities and impediment heterogeneities. They were so significant in 

that they would account for portions of informative mean and variance heterogeneities of 

DE genes in addition to background heterogeneities. As shown in Figure 3-8, naively 

adjusting for the significant global PCs of all gene probes would result in severe power 

loss (genomic deflation). 

Figure 3-7: Global data structure of all the experiment-wide gene expression levels. 
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Figure 3-8: Deflations due to the over adjustment of the experiment-wide data 
structure. 

 

To prevent false positives and false negatives, we selected 13415 ‘robust’ gene 

probes to capture the background data structure. The spirit here is similar to the use of 

control genes to account for unwanted variation [107]. None of the robust gene probes 

displayed mean heterogeneity or variance heterogeneity, before and after calibrating the 

significant background PCs, age and menopausal status. We conducted PCA of the MAS5 

normalized data of the ‘robust’ gene probes (Figure 3-9, Table B-2). PC1 alone accounted 

for 98.35% of the total variation and was the unique major PC. PC2 merely accounted for 

0.37% of total variation (Figure 3-9 (a)). Neither PC1 nor PC2 displayed mean 
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heterogeneity or variance heterogeneity (Figure 3-9 (b)). PC14 displayed the most 

significant mean heterogeneity (kîg = 0.0036 , even if it only accounted for 0.03% of the 

total variation. PC28 displayed the most significant variance heterogeneity (kñï = 0.0069  
even if it only accounted for 0.01% of the total variation. PC14 and PC28 displayed clear 

stratification of the smokers and the nonsmokers (Figure 3-9 (c)).  In addition, Table B-2 

listed the first 2 and all the background PCs with significant mean and/or variance 

heterogeneities. After adjusting for these significant background PCs, age and menopausal 

status, the Q-Q plots of all the five tests climbed above the diagonal (Figure 3-10). 

Especially, the Q-Q plot of the IMVT climbed above the upper limit of the 95% 

concentration band. All the five tests displayed reasonable inflation factors. The mild 

inflation might be due to weak differentials or residual correlations between DE genes.  

Figure 3-9: Background data structure of the expression levels of robust gene probes. 
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Figure 3-10: Q-Q plots of the five competitors after adjusting for background data 
structure and covariates. 

Applied to the calibrated expressions, our IMVT identified CUL7, RBMY1J, RDH5 

and SOCS3 to be experiment-wide significant (Table 3-1), i.e., kþ�mg < 0.05/22283	 =
2.24 × 108H. The STSD only identified CUL7 as experiment-wide significant gene; while 

the WT and the MWT failed to identify any experiment-wide significant genes. The 

experiment-wide minimum p value of the WT and the MWT turned to be 2.73 × 108I, 

much larger than 2.24 × 108H. The SMVT failed to identify any gene to be experiment-

wide significant. At DDX3X, the WT reached the experiment-wide minimum	kîg =
	3.10 × 108I . For SMVT, both kîg  and kñï  must be smaller than threshold  1 −
:1 − 0.05/22283 = 1.12 × 108H to control overall experiment-wide type I error rate at 

0.05. Therefore, our analysis of the real data provided solid evidence for the superiority of 
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the IMVT over the SMVT. Without adjusting for the data structure and covariates, Pan et 

al. [103] did not report any of the four genes although their results were severely inflated. 

SOCS3 was reported to be related to tobacco smoking by independent studies [108-111]. 

Per the database of cancer gene networks (TCNG; http://tcng.hgc.jp/index.html), CUL7 

[112-114], RBMY1J [112, 114] and RDH5 [112-117] were reported to involve in function 

gene networks related to smoking. All the four experiment-wide significant gene probes 

displayed both mean and variance heterogeneities (Figure 3-11).  In addition to the four 

experiment-wide significant genes, our IMVT identified 16 genes that testified to be 

involved in functional networks by Pan et al. [103] at nominal level 0.05 (Table 3-2). For 

a test gene within a network of functional genes, incorporating its informative variance 

heterogeneity proved one effective way to exploit extra information as provided by the 

other function genes in the same network. 

 

Figure 3-11: Boxplots of four experiment-wide significant gene probes. 
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Table 3-2: The overlap of the discoveries of our IMVT and the genes which were 
testified to be involved in functional networks 

AffyID Gene 
Adjusted MAS5* MAS5** 

IMVT STSD MWT WT ST 
201085_s_at SON 0.0075 0.0021 0.0021 0.0023 2.15E-14 

203868_s_at VCAM1 0.0030 0.0004 0.0005 0.0005 2.03E-07 
204524_at PDPK1 0.0470 0.0328 0.0337 0.0346 7.12E-11 

204600_at EPHB3 0.0178 0.0165 0.0207 0.0213 2.83E-04 
205008_s_at CIB2 0.0387 0.0122 0.0117 0.0123 1.25E-06 

205099_s_at CCR1 0.0058 0.0104 0.0160 0.0165 6.55E-11 
206788_s_at CBFB 0.0003 4.34E-05 4.28E-05 4.71E-05 <1.00E-17 

207961_x_at MYH11 0.0001 0.0139 0.0370 0.0383 8.11E-06 
208164_s_at IL9R 0.0311 0.0074 0.0072 0.0077 4.05E-05 

209876_at GIT2 0.0024 0.0040 0.0053 0.0057 1.20E-08 
211197_s_at ICOSLG 0.0448 0.0423 0.0479 0.0487 3.28E-05 

211699_x_at HBA1 0.0455 0.3238 0.3632 0.3667 2.70E-03 
212514_x_at DDX3X 0.0002 3.06E-05 2.73E-05 3.10E-05 2.22E-16 

213446_s_at IQGAP1 0.0082 0.0306 0.0400 0.0413 8.37E-10 
217557_s_at CPM 0.0347 0.2422 0.2678 0.2701 1.61E-03 

219599_at EIF4B 0.0006 0.0005 0.0018 0.0019 5.80E-14 
*These raw p values of the heterogeneity tests based on the calibrated expression levels after 
adjusting for age, menopausal status, and the background structure. 
 **These raw p values of Student t tests in Pan et al. [103] based on the MAS5 normalized data 
before adjusting for any of age, menopausal status, and the background structure. 

 

 

Table 3-1: Experiment-wide significant discoveries by the IMVT* 

AffyID Gene IMVT STSD MWT  WT  

203558_at CUL7 1.12E-07 1.55E-06 0.0034 0.0024 

208307_at RBMY1J 3.82E-07 0.0051 0.0422 0.0398 

210106_at RDH5 1.56E-06 0.0059 0.0295 0.0302 

206359_at SOCS3 2.22E-06 0.0014 0.0081 0.0078 

* All the probe-specific kþ�mg values reported here are smaller than 0.05/22283 = 2.2438×10-6. The 
STSD identified CUL7 with much weaker evidence while the WT and MWT did not identify any 
gene probe to be experiment-wide significant. 
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The false discovery rate (FDR) would be a more appropriate error rate to control 

than the familywise error rate in microarray studies; and several standard FDR controlling 

procedures have been widely practiced [118-121]. We did identify more promising gene 

probes when applying the most widely used FDR controlling procedure to the p values 

generated by our IMVT. For example, controlling FDR at the stringent level 0.05, our 

IMVT identified 24 out of the experiment-wide 22283 gene probes. Controlling FDR at 

the same level, the STSD only identified CUL7, while both the WT and the MWT missed 

all promising gene probes (Table B-3). Controlling FDR at level 0.1, our IMVT claimed 

55 gene probes, while all the three mean heterogeneity tests discovered no additional gene 

probes. These results have well demonstrated noteworthy gains of explicitly exploiting 

informative variance heterogeneity. Without adjusting for background data structure, Pant 

et al. claimed 125 gene probes with local FDRs < 0.05. Their published list of promising 

gene probes displays huge discrepancies to ours. Such discrepancies stemmed from the 

severe inflation in their t tests (Figure 3-6). Judiciously calibrating background data 

structure is thus necessary for accurately prioritizing gene probes. 

 

3.3 Part II: Novel Double Welch t test to Identify Functional Differentially 

Expressed Genes 

3.3.1 Introduction 

Part I presented the limitations of only exploiting mean heterogeneity and proposed 

an integrative IMVT method to combine the mean and variance heterogeneities from 

Welch t test and Levene test, respectively. The proper null hypothesis of testing MVDE 

gene  is &'! = &'� ∩ &'2: the gene has equal mean and equal variance of expression levels 
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between the two conditions. As demonstrated in discussion, the main disadvantage of 

integrating mean and variance heterogeneities is the independence of mean test and 

variance tests, either under null or alternative hypothesis. Therefore to overcome the 

disadvantage of integrating mean and variance heterogeneities, we put forth a more 

powerful novel method DWT to integrate mean and high-order heterogeneities in Part II. 

It goes one step closer to detecting MVDE gene - a gene displays reliable changes in any 

aspects of the entire distribution of its expression level with the change in condition than 

any other existent methods. If a gene is not a function gene related to corresponding 

disease, it would display mean equality (&'�) and second-order moments equality (&'") of 

expression levels between two different conditions. The proper null hypothesis of testing 

functional MVDE gene is &'I = &'� ∩ &'": the gene has equal mean and equal second 

order moment of expression levels between the two conditions. This null hypothesis is 

equivalent to equal mean and equal variance hypothesis since the second order moment is 

the summation of the square of mean and variance. If &'I is rejected, then we claim the 

testing gene as candidate MVDE gene. To capture the high-order heterogeneity, we 

constructed a welch t test statistic for testing &'" . Under &'I , the testing statistics of 

detecting mean heterogeneity and high-order heterogeneity are asymptotically 

independently distributed. This null independence is crucial for controlling the type I error 

rate control of DWT. While under alternative hypothesis, the two test statistics are 

dependent. Therefore the DWT appeared more powerful than our earlier IMVT method 

integrating mean and variance signals to identify genes with or without variance 

heterogeneity. We also reanalyzed the gene profiles of peripheral circulating B cells [16] 

after adjusting for global confounders and background data structure. Our DWT replicated 
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more reported genes that involve in networks and had better performance than IMVT 

method. Our results highlighted the importance of exploiting informative high-order 

heterogeneity, which is a rich resource about the biology mechanism of gene expressions 

beyond the mean heterogeneity. 

 

3.3.2 Methods and Materials 

3.3.2.1 The double welch t test (DWT) to integrate mean and second-order 

heterogeneities 

Let the dataset contain expression levels of � gene probes of �� unrelated subjects 

from control groups and �2  unrelated subjects for treatment group, respectively. For a 

specific gene, let r� = @r��, r�2, … , r�3�A	be the expression level of gene probes under 

control group and r2 = �r2�, r22, … , r23;  be the expression level of gene probes under 

treatment group. The total sample size is � = �� + �2 be. Let ���rÐ  and -�å2  be the gene-

specific mean and variance of the expression levels of gene probe under condition M (i.e., 

M = 1 for control group, and	M = 2 for treatment group). And let �2�rÐ = ��rÐ2  be the 

second-order moment of rÐ . According to the definition of second order moment, 

�2�rÐ = @���rÐ A2 + -�å2 . 

Without loss of generality, we assume r�555 < r2555. Define ��� = r�� − r�555 and �2� =
r2� − r�555, where � = 1,2, … , ��, ½ = 1,2, … , �2, r�555 = ∑ r��3��7� 	and	r2555 = ∑ r2�3;�7�  . 

Firstly, we constructed the first welch t test statistic to capture the mean heterogeneity 

between two groups. 

Primary Test  
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+¾� = ��� − �2�
è�/�2�� + �/;2�2

 

where ��� = ∑ ���3��7� , �2� = ∑ �2�3;�7�  and �/�2 = �3�8�∑ ���� − ���  23��7� , �/;2 =
�3;8�∑ @�2� − �2� A23;�7� . +¾� is equivalent to 

��55558�;5555
è���;÷� p��;;÷;

. Next, we constructed another welch 

t type test statistic to capture the second-order heterogeneity between two groups as 

auxiliary test below.  

Auxiliary Test  

+¾; = ��2555 − �22555
è�/�2�� + �/;2�2

 

where ��2555 = ∑ ���23��7� , �22555 = ∑ �2�23;�7�  and �/�;2 = �3�8�∑ @���2 − ��2555A23��7� , �/;;2 =
�3;8�∑ @�2�2 − �22555A23;�7� . Under &'I:	���r� = ���r2  and �2�r� = �2�r2 , we 

demonstrated the asymptotical independence of +¾� and +¾; as  

X+¾�+¾2Z [.\.]̂ t2 `a00b , a1 00 1bc 

This conclusion can be mathematically proved when �� = �2 and ��, �2 ⟶ ∞ 

(See Appendix B.4). When &'I is false, +¾� and +¾; are dependent. This property 

guaranteed the control of Type I error rate under null hypothesis and the potential power 

gain under alternative hypothesis. Based on the null independence, we adopted Fisher’s 

method to define the DWT statistic as 

	ç+ = −2@log@k¾�A + log@k¾;AA 
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Where k¾� and k¾; are the p value for the Welch statistics +¾� and +¾;. DWT 

follows approximately the õ2- distribution with 4 degrees of freedom when �� and �2 are 

large sample sizes. In reality, �� and �2 are usually limited sample sizes. In next result 

section of Type I error rate, we would show that DWT method can also be applied to the 

moderate sample sizes and can still generally control Type I error rates under &'I.  

 

3.3.3 Results 

3.3.3.1 Type I error rate controls of competitors 

Under normality setting, we generated 100000 replicates of two-group samples 

from the standard normal distribution with sample size �� = �2 = 5,10,20,40. WT, MWT, 

STSD, IMVT, SMVT and DWT are the competitors here. With extremely small samples, 

none of the six competitors could properly control type I error rates (Figure 3-12 (a)). The 

STSD severely inflated type I error rates. And the IMVT, SMVT and DWT appeared anti-

conservative; all the three methods were much less inflated than the STSD. The MWT, MT 

and WT performed slightly conservative equally. The serious inflation of the STSD is due 

to the variability of condition-specific data standardization. In Figure 3-12 (b), DWT and 

STSD are still a little inflated while the other four methods are slightly anti-conservative. 

For moderate sample sizes (Figure 3-12 (c-d)), all the six methods seemed generally 

controlled the Type I error rate. 
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Figure 3-12: Comparison of false positive rates of six methods under standard 
normality setting. 

 

3.3.3.2 Empirical power comparisons 

Similar as that in Part I, we simulated independently 10000 replicates of �� = 40 

data points from normal distribution ��0,1  and �2 = 40 data points from ��<, �1 +
À 2  for each �<, À  pair. The parameters < and À represent the magnitudes of mean and 

variance heterogeneities, respectively. In gene co-expression networks, few genes work 

independently and genes can interact with each other and/or interact with environmental 

factors. Susceptible genes can co-express as indicated by gene-gene correlations. Such 
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correlations and interactions among biological networks are very common and are major 

drivers for the high-order heterogeneity of testing susceptible gene. Therefore, for power 

comparisons in Part II, we investigated three kinds of scenarios with different mean 

heterogeneities levels �< = 0.25, 0.5,0.75 . For each scenario, we presented the power 

comparisons of six methods with different variance heterogeneities �À =
0, 0.1, 0.2, 0.3, 0.4, 0.5 . The nominal level α is set to be 5 × 108! to obtain the reasonable 

powers.  

When no mean heterogeneity existed �< = 0 , the DWT displayed the highest 

powers, followed by the IMVT and SMVT which presented the similar powers; and all the 

three methods outperformed the three mean heterogeneity tests, i.e., the WT, the MWT and 

the STSD (Figure 3-13 (a)). When the mean heterogeneity existed �< ≠ 0 , WT, MWT 

and STSD are slightly more powerful than DWT method, followed by IMVT and SMVT 

with small variance heterogeneity. With the increase of variance heterogeneity, the DWT 

is always the first to surpass the three mean heterogeneity tests and remained the most 

powerful compared to IMVT and SMVT (Figure 3-13 (b-c)). In addition, the power of 

WT, MWT and STSD remained decreasing with the increase of variance heterogeneity 

(Figure 3-13 (b-c)). For these three situations, the power gains of our DWT method over 

the three mean heterogeneity tests appeared especially noteworthy with the increase of 

variance heterogeneity and it did not display severe power losses with trivial or no variance 

heterogeneity. In addition, DWT is always more powerful than IMVT and SMVT methods. 
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Figure 3-13: Power comparison of six methods with different mean heterogeneities 
levels at nominal level 0.05  

 

3.3.3.3 Advantage of DWT over IMVT 

As discussed in Part I, the mean heterogeneity tests and variance heterogeneity 

tests are always independent under both null hypothesis and alternative hypothesis. When 

trivial or no variance heterogeneity existed, IMVT integrating variance heterogeneity 

were not capable of overcoming the penalty of increasing the degree of freedom of 

integrative test. Unlike IMVT that utilized the variance heterogeneity, DWT integrates 

second-order heterogeneity that is made up of both mean and variance heterogeneity. The 

auxiliary test we constructed to detect second-order heterogeneity is independent of mean 

heterogeneity test under null hypothesis to guarantee the control of type I error rates. In 

contrast, it is dependent of mean heterogeneity test under alternative hypothesis. This 

alternative dependence between mean heterogeneity test and second-order heterogeneity 

test of DWT would lead to more power gain than IMVT even without variance 

heterogeneity. When no variance heterogeneity existed �À = 0 , the DWT is always more 
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powerful than IMVT with different mean heterogeneity �< = 0.1, 0.2,0.3, … ,1  at 

different nominal levels (Figure 3-14) 

 

Figure 3-14: Power comparison of DWT and IMVT at nominal level 0.05 and 0.005, 
respectively 

 

3.3.3.4 Replication of previously reported gene probes that involve in functional 

network 

The expression distribution of a gene involve in network cannot be solely 

determined by its mean. Therefore Integrating informative high-order heterogeneity is a 

more powerful method to identify genes that involve in gene-gene co-expression and 

interaction networks then existent mean heterogeneity methods. To illustrate DWT’s 

performance in detecting function genes, we still used the gene expressions profiles of 

peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white 

women by Pan et al. The same data processing procedures were conducted to adjust for 

background data structure.  
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Pan et al. reported 33 gene probes to involve in constructed functional network. We 

applied DWT method to the calibrated expressions and replicated 19 out of the 33 reported 

gene probes that involved in network. DWT obtained smaller p values compared to IMVT 

in the majority of the 19 gene probes. 

Table 3-3: The overlap of the discoveries of DWT and the genes which were testified 
to be involved in functional networks 

AffyID Gene 
Adjusted MAS5* 

DWT IMVT MWT WT STSD 

201085_s_at SON 0.0090 0.0075 0.0021 0.0023 0.0021 

203868_s_at VCAM1 0.0005 0.0030 0.0005 0.0005 0.0005 

204600_at EPHB3 0.0025 0.0178 0.0207 0.0213 0.01654 

205008_s_at CIB2 0.0209 0.0387 0.0117 0.0123 0.0122 

205099_s_at CCR1 0.0033 0.0058 0.0160 0.0165 0.0105 

206788_s_at CBFB 4.63E-05 0.0003 4.28E-05 4.71E-05 4.34E-05 

207961_x_at MYH11 0.0038 0.0001 0.0370 0.0383 0.0139 

208164_s_at IL9R 0.0052 0.0311 0.0072 0.0077 0.0074 

209876_at GIT2 0.0002 0.0024 0.0053 0.0057 0.0040 

211197_s_at ICOSLG 0.0138 0.0448 0.0479 0.0487 0.0423 

212514_x_at DDX3X 3.92E-05 0.0002 2.73E-05 3.10E-05 3.06E-05 

213446_s_at IQGAP1 0.0289 0.0082 0.0400 0.0413 0.0360 

217557_s_at CPM 0.0357 0.0347 0.2678 0.2701 0.2422 

219599_at EIF4B 0.0003 0.0006 0.0018 0.0019 0.0005 

208224_at  HOXB1 0.0093 0.0603 0.0437 0.0446 0.0365 

215530_at FANCA 0.0358 0.0829 0.0244 0.0251 0.0245 

207844_at IL13 0.0174 0.1102 0.0311 0.0318 0.0307 

216647_at TCF3 0.0399 0.0711 0.0144 0.0150 0.0150 

210883_x_at EFNB3 0.0107 0.0707 0.0284 0.0291 0.0275 

*These raw p values of the heterogeneity tests based on the calibrated expression levels after adjusting for 
age, menopausal status, and the background structure. 
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3.4 Conclusion and Discussion 

In Part I, we illustrated that integrating informative variance heterogeneity holds 

tremendous potential to identify novel genes which involve in gene-gene co-expression 

and interaction networks. Susceptible genes can co-express as indicated by gene-gene 

correlations [98, 99]. Genes can interact with each other and/or interact with environmental 

factors. For example, Pan et al. [103] reported 33 gene probes to involve in constructed 

functional network. Among which, independent studies reported MYH11, HOXB1, GIT2, 

VCAM1, CCR1, IQGAP1, PDPK1, HBA1 HBA2, SON, and CPM  to involve in networks 

related to lung cancer and smoking [112-117]. Within a complex network, the distribution 

change in the expression level of a single susceptible gene cannot determined by its mean 

heterogeneity completely. Higher-order heterogeneities can provide extra valuable 

information for the distribution change. This is why the IMVT led to smaller p values than 

did existent mean heterogeneity tests in our data analyses. In conclusion, integrating 

informative variance heterogeneity proved an effective step to better capture the latent 

information conveyed by the co-expression and interaction networks of susceptible genes. 

It represents one efficient way to extract the inherent higher-order information as induced 

by complex networks of multiple biomarkers.  

The IMVT aims to identify genes whose expression distributions are susceptible to 

the change in condition. It does not distinguish informative variance heterogeneity from 

mean heterogeneity. Before applying the IMVT, background data structures must be 

calibrated to prevent false positive discoveries and power loss. Data structure can be a 

major confounder for differential analyses, as illustrated by our reanalysis of Pan et al.’s 

gene profiles [103]. The discrepancy between Pan et al.’s and our discoveries showed the 
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severe confounding impact of the global data structure on differential analyses. In a 

judicious data calibration, the data structure should be computed from random genes to 

prevent power loss due to over adjustment.  

The IMVT and the SMVT as well, inherit the advantages and disadvantages of the 

Levene test and the WT. The Levene test is a robust non-parametric method. The exact 

distribution of the Levene statistic is intractable, and thus its p-value must be evaluated by 

its asymptotic distribution. The condition-specific variance estimators in the Welch 

statistic could not be accurate for small samples. Thus, the current IMVT is suitable for 

large samples other than small samples. By our simulation studies and the work of 

Demissie et al. [97], the MWT could outperform the WT, especially for extremely small 

sample sizes. Novel parametric methods, i.e., the LRT, are needed to mine expression files 

of low-replicate experiments. However, the test statistic and its exact null distribution of a 

parametric test statistic depend on the exact distributions of the (transformed/calibrated) 

gene expression levels. It is intractable to learn the exact distributions of gene expressions 

from small samples. Model miss-specifications can mess up differential analyses, as 

showed by the severe inflations in type I error rate of the normality-based LRT under the 

Laplace settings. The development of effective small-sample tests requires further formal 

efforts. In addition, appropriate adjustment of background data structures and other hidden 

confounders are important for the success of effectively integrating informative variance 

heterogeneity instead of spurious variance heterogeneity. 

Lastly, we acknowledge that there is no need to consider variance heterogeneity in 

case the distribution of the expression measure of a gene can be determined by a single 

parameter, i.e., its mean. In such a case, the IMVT can be less powerful than the Welch 
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test. However, single-parameter distribution cannot well fit real-world expression levels in 

general.  

In part II, we put forward an alternative of our IMVT method - DWT that 

integrated the mean heterogeneities and high-order heterogeneities. Utilizing second-

order heterogeneities instead of variance heterogeneities would further improve the 

detecting power of candidate MVDE genes that have a high possibility of involving in 

gene networks. Due to the high complexity of gene networks, the expression distribution 

of a gene cannot be solely determined by its mean. Distribution heterogeneity is a much 

bigger umbrella than mean heterogeneity. The proposed IMVT and DWT methods 

merely made one step further from traditional mean heterogeneity tests. High-order 

heterogeneities are quite common and require particular exploitation methods. 
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APPENDIX A   
 

SUPPLEMENTARY OF HARMONIOUS SIGNAL AUGMENTATION 
SCHEMES IN ASSOCIATION TESTS OF DNA SEQUENCE 

 

A.1 Proof of Proposition about asymptotic joint distribution of �� and �� 

Proposition: Under primary model, if ����" < ∞ and ���� = ����! = 0, then +� − C� 

and +2 − C2 converge in distribution to a bivariate normal distribution with unit variance 

and correlation coefficient D = ��C�8�C28�E-F2�3�" − 3�22 + ��2�2 − ���! + ��2��H −
2�2�" + ���I − ��2�" + �2! − ���2�! + ��2�22 J, ��	Kℎ�Mℎ	�N ≝
���N PQ<	��R�S�<	T	U�V	WU<��� ≝ -F2.  

X+� − Y�+2 − Y2Z [.\.]̂ _2 `a00b , X1 DD 1Zc 

where Y� and Y2 are function of �� and �2, respectively.   

Proof: 

Without loss of generality, let �� be the trait residual of individual � after adjusting 

for global covariates. Let individual � have �� copies of the minor allele at a single test 

marker. In single-SNP association analysis, �� relates to �� by linear model  

 �� = ���� + ��, Eq. A-1 

   

where �� is the regression coefficient, and �� is regression residual such that ����" < ∞ 

and ���� = ����! = 0. Based on Eq. A-1, we have 

 ��2 = ����� + �� 2 = -F2 + ��2�2 + ��, Eq. A-2 
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where �2 = �12 and �� = 2�1���� + ��2 − -�2	has a mixed distribution with mean 0 

and variance -�2 = 2 X1 + 2�12� a�2bZ-�2. Under HWE, ���2 = 2�1 + P P, where P is 

the minor allele frequency at the SNP. If � is associated with � (β� ≠ 0), then  �2 is also 

associated with �2 (β2 ≠ 0). The association statistic for testing &01: �1 = 0 is given by 

Eq. 1-2. The association statistic for testing &'2: �2 = 0 is given by Eq. 1-3. 

Substituting equations Eq. A-1	and	Eq. A-2	into the definition of -./,0, we derive 

 

-./,0 = 1�ÑE����� − �̅ + ��� − �̅ J��� − �̅ 3
�7�  

= �� 
1�Ñ��2
3

�7� − ��̅ 2� + 1�Ñ����3
�7� − �̅�̅ 

= �� a�25555 − ���2 + ���2 b 

+@��5555 − ���� + ���� A 
−��@��̅ 2 − �̅��� + �̅��� A 
−@�̅�̅ − �̅��� + �̅��� A 
= �� a�25555 − ���2 b + @��5555 − ���� A 
−���̅@�̅ − ��� A − �̅@�̅ − ��� A 
+�����2 + ���� − ���̅��� − �̅���  

 

 

 

 

 

 

 

 

 

 

 

Eq. A-3 

It follows from Eq. 1-2 and Eq. A-3 that 
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 +� − Y� = ���, 1, ���̅, −�̅ 	� ��
��
√� a�25555 − ���2 b√�@��5555 − ���� A√�@�̅ − ��� A√�@�̅ − ��� A ��

��, Eq. A-4 

   

where  

Y� = �����2 + ���� − ���̅��� − �̅��� 	� = ��E���2 − �̅��� J	�  

And  

	� = 1-./2-.02 − -./,02 . 
Similarly, substituting equations Eq. A-1	and	Eq. A-2	 into the definition of -./;,0;, we 

derive 

 

-./;,0; = 1�Ñ@��2 − �2555A@��2 − �25555A3
�7�  

= ��2 a�"5555 − ���" b + ��2���"  
−��2�25555 a�25555 − ���2 b − ��2�25555���2  
+2�� a�!�55555 − ���!� b + 2�����!�  
−2���25555@��5555 − ���� A − 2���25555����  
+a�2�25555555 − ���2�2 b + ���2�2  
−�25555 a�2555 − ���2 b − �25555���2  

 

 

 

 

 

 

 

 

 

Eq. A-5 
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Then we can obtain 

 

+2 − Y2

= @��2, −��2�25555, 2��, −2���25555, 1, −�25555A	2

��
���
���

√� a�"5555 − ���" b√� a�25555 − ���2 b√� a�!�55555 − ���!� b√�@��5555 − ���� A√� a�2�25555555 − ���2�2 b√� a�2555 − ���2 b ��
���
���, Eq. A-6 

   

where 

Y2 = ��2���" − ��2�25555���2 + 2�����!� − 2���25555���� + ���2�2 − �25555���2 	2  

	= ��2���" − ��2�25555���2 + ���2�2 − �25555���2 	2  

And 

	2 = 1-./;2 -.0;2 − -./;,0;2  

Using Eq. A-4 and Eq. A-6, we write 

 X+� − Y�+2 − Y2Z = ¥��3, Eq. A-7 

   

where  

¥� =
��
� 0 ��	� 0��2	2 −��2�25555	2

2��	2
					 1	� 0 ���̅	�−2���25555	2

1	2 0 				 0 − �̅	�−�25555	2 0 ��
�

 

and  
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�3 =

��
���
���
���

√� a�"5555 − ���" b√� a�25555 − ���2 b√� a�!�55555 − ���!� b√�@��5555 − ���� A√� a�2�25555555 − ���2�2 b√�@�̅ − ��� A√� a�2555 − ���2 b√�@�̅ − ��� A ��
���
���
���

 

According to standard asymptotic normality theorem, 

 �3 [.\.]̂ �}��,� . Eq. A-8 

   

Let �N ≝ ���N  and �N ≝ ���N  for integer T. � = @���A is the variance-covariance 

matrix of random vector ��", �2, �!�, ��, �2�2, �, �2, � ′.  We derive explicit formulae 

of ���’s as below. Specifically, 

					��� = óU<��" = �} − �"2, 

��2 = YQW��", �2 = �H − �"�2, ��! = YQW��", �!� = ����� − �!�" = 0, 
��" = YQW��", �� = ����I − �"�� = 0, 
��I = YQW��", �2�2 = �2��H − �"�2 , ��H = YQW��", � = �I − �"��, ��� = YQW��!, �2 = 0, 
��} = YQW��!, � = 0, 
�22 = óU<��2 = �" − �22, �2! = YQW��2, �!� = ����I − �2�! = 0, 
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�2" = YQW��2, �� = ����! − �2�� = 0, 
�2I = YQW��2, �2�2 = �2��" − �22 , �2H = YQW��2, � = �! − �2��, �2� = YQW��2, �2 = 0, 
�2} = YQW��2, � = 0, 
�!! = óU<��!� = �H�2 − �!2��2 = �H-F2, �!" = YQW��!�, �� = �2�" − ��2���! = �"-F2, �!I = YQW��!�, �2�2 = �I�! − ���2�2�! = 0, 
�!H = YQW��!�, � = ����" − ���! = 0, 
�!� = YQW��!�, �2 = �!��! − ���2 = 0, 
�!} = YQW��!�, � = �!��2 − ��2 = �!-F2, �"" = óU<��� = �2�2 − ��2��2 = �2-F2, �"I = YQW���, �2�2 = �!�! − ���2���2 = 0, 
�"H = YQW���, � = ����2 − ��2 = 0, 
�"� = YQW���, �2 = ����! − ���2 = 0, 
�"} = YQW���, � = ����2 − ��2 = ��-F2, �II = óU<��2�2 = �"�" − �22�22, �IH = YQW��2�2, � = �2��! − ���2 , �I� = YQW��2�2, �2 = �2��" − �22 , �I} = YQW��2�2, � = �2��! − ���2 = 0, 
�HH = óU<�� = �2 − ��2, �H� = YQW��, �2 = 0, 
�H} = YQW��, � = 0,	 
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��� = óU<��2 = �" − �22, ��} = YQW��2, � = �! − �2�� = 0, 
and 

				�}} = óU<�� = �2 − ��2 = -F2. 

By large-number theory, when � → ∞ we have 

	� �9.]̂ C� = 1-/2-02 − -/,02 , 
	2 �9.]̂ C2 = 1-/;2 -0;2 − -/;,0;2 , 
�̅ �9.]̂ �� = ��� , 

and 

�25555 �9.]̂ �2 = ���2 . 
It follows that 

 

¥� �9.]̂ ¥
=

��
� 0 ��C� 0��2C2 −��2�2C2

2��C2
					 1C� 0 ����C�−2���2C2

1C2 0 				 0 −��C�−�2C2 0 ��
�. Eq. A-9 

   

According to Slutsky’s theorem, we obtain from Eq. A-8 and Eq. A-9 that 

 X+� − Y�+2 − Y2Z = ¥3�3 [.\.]̂ �2��, ¥��= , Eq. A-10 

   

when � → ∞. Algebraically, we verify that 
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 ¥��= = X1 DD 1Z, Eq. A-11 

   

and 

 

D = ��C�C2 E-F2�3�" − 3�22 + ��2�2 − ���! 
+ ��2��H − 2�2�" + ���I − ��2�" + �2!− ���2�! + ��2�22 J. 

 

 

 

Eq. A-12 

   

By Eq. A-12, +� and +2 are asymptotically dependent if D ≠ 0. But if �� = 0, we have 

D = 0 together with Y� = 0 and Y2 �9.]̂ 0, and therefore 

 X+�+2Z [.\.]̂ t2 `a00b , a1 00 1bc, Eq. A-13 

   

when � → ∞. By Eq. A-13, +� and +2 are asymptotically independent if �� = 0.  
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A.2 Supplemental Figures 

 

Figure A-1: The Manhattan plot of MT. 

 

A.3 Candidate SNPs selected by HSAT 

Table A-1: Top-ranked Significant SNPs by the HSAT (5 × 108I) . 

Chr rs Pos MAF Gene HSAT MT JLS LRT 

7 rs849436 106367588 0.050454 NA 5.72E-10 6.77E-05 1.04E-07 1.59E-05 

6 rs2842519 38042247 0.007064 ZFAND3 2.70E-08 2.72E-05 0.00024 0.000132 

6 rs1335535 79999203 0.040363 HMGN3 7.86E-08 0.027669 1.72E-06 0.003534 

6 rs9350803 79999595 0.040445 HMGN3 7.86E-08 0.027669 1.72E-06 0.003534 

7 rs849370 106307179 0.050556 PIK3CG 7.89E-08 0.000268 1.23E-06 6.21E-05 

6 rs1196388

6 

37970017 0.007576 ZFAND3 1.16E-07 3.41E-05 0.000298 0.00017 

6 rs1537740 80035233 0.040868 NA 1.41E-07 0.031622 2.08E-06 0.004591 

19 rs1040264

5 

13058752 0.008138 NFIX 1.51E-07 9.14E-06 8.22E-05 4.91E-05 
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6 rs7738508 80048256 0.04002 NA 1.58E-07 0.020429 1.71E-06 0.004319 

19 rs306045 2992700 0.089808 NA 1.62E-07 0.000533 1.46E-05 0.000385 

19 rs1188180

8 

13054782 0.007576 NFIX 2.25E-07 1.77E-05 0.000198 9.66E-05 

6 rs7763232 80030157 0.04154 NA 2.49E-07 0.034876 2.52E-06 0.005855 

7 rs849406 106320153 0.0444 PIK3CG 2.75E-07 0.000423 7.04E-06 0.000145 

6 rs4706754 79969588 0.036327 HMGN3 2.84E-07 0.008009 1.75E-06 0.004203 

6 rs7772967 80051380 0.043592 NA 4.05E-07 0.038085 4.22E-06 0.006727 

6 rs1080616

3 

79951373 0.039354 NA 4.35E-07 0.007589 0.000446 0.001569 

6 rs9343886 79983800 0.036831 HMGN3 5.13E-07 0.00996 2.14E-06 0.00559 

6 rs1689045

0 

79949239 0.039434 NA 5.86E-07 0.006776 0.000432 0.00159 

19 rs1688114 2988787 0.092012 NA 7.56E-07 0.004381 5.38E-05 0.001079 

2 rs1702030

7 

37294768 0.007107 CEBPZ 8.01E-07 0.032838 0.093755 0.11547 

2 rs2854829

9 

37340278 0.007064 PRKD3 8.01E-07 0.032838 0.093755 0.11547 

7 rs2453840 45920337 0.183519 IGFBP3 1.08E-06 0.000291 4.29E-05 0.000177 

19 rs1654678 2985077 0.093023 NA 1.11E-06 0.002849 5.32E-05 0.001221 

6 rs2322219 80038110 0.041877 NA 1.32E-06 0.032227 0.000868 0.004562 

2 rs2421738 62877847 0.00555 EHBP1 1.86E-06 0.680389 0.000271 0.005476 

2 rs1702755

8 

63065438 0.005567 EHBP1 1.86E-06 0.680389 0.000271 0.005476 

7 rs849408 106329620 0.049495 PIK3CG 1.88E-06 0.000919 6.15E-06 1.25E-05 

7 rs849390 106296223 0.047427 PIK3CG 1.91E-06 0.001406 2.51E-05 0.000515 

2 rs2871608 57499324 0.072149 NA 2.73E-06 0.306335 5.74E-05 0.009102 

6 rs1414283 80036646 0.038384 NA 2.81E-06 0.025533 4.63E-06 0.014626 

9 rs1098212

3 

116050914 0.1 COL27A1 3.95E-06 1.10E-05 8.18E-05 0.000304 

2 rs1682983

5 

151831949 0.009082 NA 4.22E-06 0.093899 0.188207 0.151819 

5 rs159981 6042136 0.155051 NA 4.28E-06 0.161182 0.000116 0.002683 

7 rs4236534 96311548 0.192929 NA 4.75E-06 0.344937 0.000159 0.004283 

8 rs6988232 121699353 0.10101 SNTB1 5.23E-06 0.01313 0.001271 0.000508 

7 rs940823 17102971 0.006067 NA 5.38E-06 6.36E-05 0.000466 0.000257 

2 rs1168700

1 

76515912 0.029828 NA 5.55E-06 0.000287 0.002581 0.003707 

5 rs2434738 6047196 0.153455 NA 5.98E-06 0.192654 0.00016 0.003367 

7 rs6463939 1581188 0.005139 NA 6.02E-06 0.157577 0.011945 0.009269 

1 rs6687647 111326016 0.129424 NA 6.07E-06 2.65E-06 2.10E-05 8.47E-05 

20 rs1535253 19630909 0.311806 SLC24A3 6.11E-06 0.008563 5.97E-05 4.52E-05 

4 rs1687526

9 

23796971 0.014632 NA 6.31E-06 0.00779 4.67E-05 0.001791 

4 rs1173426

2 

61206591 0.290274 NA 6.55E-06 0.005641 0.000892 0.001085 

2 rs2264692 57585448 0.077195 NA 6.70E-06 0.818274 0.001112 0.015968 

3 rs6775197 38729651 0.018668 SCN10A 6.87E-06 0.081582 0.014534 0.03464 

4 rs1193119

6 

122194095 0.024242 C4orf31 7.21E-06 0.066794 0.055587 0.076014 

2 rs1347861 139765677 0.077778 NA 7.49E-06 0.081001 2.92E-05 0.001484 

4 rs2349960 161459516 0.054711 NA 8.10E-06 0.546463 0.000187 0.023878 
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20 rs6112527 19625176 0.427851 SLC24A3 8.15E-06 0.000197 4.05E-05 0.000286 

3 rs1306022

7 

144022179 0.035318 PCOLCE2 8.95E-06 0.068773 2.53E-07 0.000158 

8 rs6986444 121695275 0.10202 SNTB1 9.60E-06 0.015676 0.001301 0.000505 

6 rs426133 149839810 0.04596 ZC3H12D 1.03E-05 0.228343 0.029236 0.028184 

21 rs2826498 21054936 0.119072 NA 1.06E-05 0.009687 0.000332 0.00184 

5 rs1690119

2 

31491067 0.0111 RNASEN 1.07E-05 0.005038 0.004793 0.003423 

5 rs288837 73499743 0.279011 NA 1.07E-05 0.002054 0.001096 0.00124 

7 rs2453839 45920098 0.196465 IGFBP3 1.11E-05 0.000111 0.000282 0.001004 

3 rs6786387 2797150 0.06559 CNTN4 1.12E-05 4.57E-05 9.35E-05 0.000978 

5 rs1217303

8 

31520652 0.012626 RNASEN 1.13E-05 0.022093 0.003145 0.003405 

4 rs1051652

1 

106772696 0.052977 FLJ20184 1.22E-05 0.000735 0.000385 0.003244 

21 rs7283239 21062388 0.120585 NA 1.23E-05 0.01708 0.000348 0.001853 

6 rs7738385 127819209 0.324924 KIAA0408 1.27E-05 0.000781 1.65E-05 0.000616 

22 rs7289613 46862049 0.097376 NA 1.28E-05 0.00115 0.001205 0.00096 

2 rs7607803 151922716 0.006098 TNFAIP6 1.30E-05 0.001628 0.011932 0.003989 

19 rs3745180 58311203 0.314329 ZNF415 1.39E-05 0.007603 0.000589 0.001928 

2 rs1514748 219901259 0.149849 NA 1.42E-05 7.68E-06 4.04E-05 0.000305 

2 rs6725931 219913390 0.149849 NA 1.42E-05 7.68E-06 4.04E-05 0.000305 

17 rs4646364 17408693 0.009586 PEMT 1.45E-05 0.006452 0.000992 0.003869 

3 rs1760911

8 

10104118 0.008089 FANCD2  1.45E-05 0.315449 0.00269 0.006777 

10 rs2607830 87957082 0.211111 GRID1 1.50E-05 0.355212 0.000118 0.001939 

3 rs704597 100359964 0.033367 NA 1.51E-05 0.213852 0.038338 0.023054 

11 rs1748617

2 

83253375 0.058527 DLG2 1.52E-05 0.00025 0.000425 0.003559 

7 rs1403179 96307040 0.195455 NA 1.58E-05 0.402389 0.000475 0.006887 

5 rs2770952 180566460 0.011134 NA 1.60E-05 0.05791 0.221341 0.251756 

9 rs1234724

8 

2896287 0.008586 NA 1.63E-05 0.061392 0.003891 0.007652 

2 rs7600417 219877736 0.146317 PTPRN 1.65E-05 9.81E-06 9.82E-05 0.000486 

11 rs7102041 12127193 0.064646 MICAL2 1.70E-05 0.01322 0.001021 0.007743 

7 rs1636804 106379027 0.150505 NA 1.84E-05 0.034885 0.001877 0.002478 

9 rs3847255 3065469 0.012109 NA 1.93E-05 0.000926 0.001702 0.001844 

2 rs908194 219906491 0.150353 NA 1.93E-05 1.08E-05 5.67E-05 0.000418 

7 rs2232106 43883498 0.016194 URG4 1.94E-05 0.522197 0.002729 0.003116 

7 rs1724278 106376466 0.150657 NA 1.95E-05 0.033474 0.000869 0.003638 

2 rs2271593 219876851 0.149849 PTPRN 1.99E-05 9.25E-06 6.39E-05 0.000401 

9 rs1011399

0 

23221298 0.019173 NA 2.01E-05 0.042497 0.169218 0.018756 

1 rs947633 111330302 0.179474 NA 2.12E-05 0.001044 0.000292 0.001988 

6 rs9387278 97878404 0.053481 NA 2.16E-05 0.000769 0.00012 0.001019 

16 rs1540610 79019538 0.112969 LOC729847 2.16E-05 0.014814 5.16E-05 0.005243 

6 rs2842518 38033650 0.015167 ZFAND3 2.17E-05 0.006342 0.002993 0.00266 

4 rs1250042

6 

95733632 0.435419 PDLIM5 2.22E-05 6.30E-06 3.56E-05 5.86E-05 
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3 rs9878578 8620666 0.416246 NA 2.26E-05 0.000563 0.000331 0.000928 

4 rs1726371

4 

106909495 0.042132 GSTCD 2.27E-05 0.008277 0.000378 0.002156 

4 rs1726452

7 

106960873 0.041919 GSTCD 2.27E-05 0.008277 0.000378 0.002156 

10 rs6584778 108757592 0.008073 SORCS1 2.27E-05 0.004444 0.006837 0.0049 

1 rs4838884 111330093 0.180851 NA 2.33E-05 0.0012 0.00033 0.00217 

19 rs2112464 13393476 0.284561 CACNA1A 2.37E-05 0.423801 0.000755 0.005022 

8 rs6469297 111217804 0.020182 NA 2.38E-05 0.000291 2.42E-05 0.001361 

15 rs7169262 38462785 0.116162 C15orf23 2.43E-05 0.016235 0.004095 0.002904 

6 rs1408913 164612796 0.085267 LOC728275 2.48E-05 0.1033 0.000472 0.007985 

21 rs1190943

9 

41475912 0.008595 BACE2 2.49E-05 0.02077 0.001507 0.00651 

8 rs4464955 125691713 0.064077 MTSS1 2.56E-05 0.144627 0.000981 0.020451 

6 rs7755769 103737195 0.00555 NA 2.59E-05 0.019803 0.001123 0.010545 

16 rs7198517 81712286 0.266162 CDH13 2.63E-05 0.360489 0.000387 0.002633 

3 rs1191530

0 

111904344 0.019697 NA 2.66E-05 0.000862 0.00207 0.011318 

3 rs9825259 111923855 0.019697 NA 2.66E-05 0.000862 0.00207 0.011318 

3 rs1192502

6 

111935960 0.019677 NA 2.66E-05 0.000862 0.00207 0.011318 

1 rs1272507

1 

105022488 0.082569 NA 2.70E-05 0.401595 0.001311 0.012736 

4 rs6826001 170183269 0.114995 NA 2.77E-05 0.125259 0.006784 0.006888 

9 rs3789255 115171500 0.142929 BSPRY 2.80E-05 0.000615 0.001053 0.003096 

20 rs3790286 19603938 0.43441 SLC24A3 2.85E-05 0.000369 0.000136 0.000848 

1 rs1783826

8 

209807801 0.119576 NA 2.93E-05 0.492022 8.96E-05 0.001804 

9 rs1081969

2 

101561702 0.207871 NA 2.94E-05 0.021543 0.000846 0.00604 

19 rs1188133

7 

13041863 0.01665 NFIX 2.99E-05 0.000224 0.00077 0.000814 

22 rs4823340 43339825 0.095046 NA 3.00E-05 0.147564 0.000836 0.013243 

17 rs4924892 17344692 0.149239 NA 3.06E-05 0.053651 0.001418 0.009824 

4 rs6852740 84284062 0.013636 NA 3.08E-05 0.00224 0.000844 0.002602 

9 rs3827661 115171694 0.136082 BSPRY 3.17E-05 0.000989 0.001531 0.00372 

4 rs1737865

8 

95609180 0.211616 PDLIM5 3.18E-05 0.006596 0.000568 0.00183 

1 rs1181169

0 

6239708 0.012121 GPR153 3.23E-05 0.071074 0.001109 0.005539 

5 rs288864 73463799 0.482846 NA 3.23E-05 6.53E-05 3.89E-05 0.000254 

21 rs2255892 41960841 0.165319 NA 3.24E-05 0.055255 0.002255 0.003264 

21 rs2826511 21068427 0.119697 NA 3.37E-05 0.029514 0.000877 0.003346 

3 rs1192694

9 

172577788 0.132323 TNIK 3.43E-05 1.24E-05 1.40E-05 3.31E-05 

8 rs1050513

6 

111210397 0.015167 NA 3.45E-05 0.000602 0.001801 0.007424 

10 rs7093513 91970434 0.014213 NA 3.51E-05 0.780072 0.002939 0.004354 

1 rs656843 111538195 0.158746 DENND2D 3.65E-05 0.001819 0.000258 0.001369 

4 rs1193829

7 

175039558 0.230303 NA 3.65E-05 0.48093 0.036322 0.007811 

3 rs1685169

1 

142912773 0.025227 NA 3.76E-05 0.002931 0.000616 0.001636 

8 rs1481800 72293980 0.264646 EYA1 3.78E-05 5.27E-05 0.000168 0.000597 
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10 rs1101633

2 

130253792 0.005045 NA 3.87E-05 0.89803 0.000973 0.014244 

13 rs7331710 84469501 0.072811 NA 3.90E-05 6.47E-05 0.000415 0.001826 

8 rs4448295 6909100 0.039899 NA 3.90E-05 0.005693 0.002043 0.017091 

8 rs1369453 143845212 0.317125 LYNX1 3.93E-05 0.000911 0.00108 0.001465 

8 rs1691704

9 

53069017 0.021695 NA 4.01E-05 0.021298 0.047268 0.064028 

8 rs3758081 143821375 0.324045 NA 4.09E-05 0.001378 0.002874 0.000779 

2 rs4664931 151655431 0.329798 NA 4.10E-05 0.092537 0.000246 0.005188 

1 rs1274348

0 

36479573 0.006579 THRAP3 4.10E-05 0.27519 0.01572 0.012261 

2 rs4386359 69107531 0.062121 ANTXR1 4.13E-05 0.238141 0.00547 0.012061 

8 rs4736323 143827361 0.332659 LYPD2 4.19E-05 0.001726 0.002154 0.00101 

15 rs1259224

5 

22470643 0.071719 C15orf2 4.21E-05 0.003804 0.005316 0.006048 

8 rs2738100 6780991 0.374369 DEFA4 4.23E-05 0.000153 0.000161 0.000627 

15 rs8041151 92427459 0.300202 NA 4.24E-05 2.04E-05 7.16E-05 0.000365 

4 rs2866117

9 

69913518 0.006054 NA 4.25E-05 0.034357 0.001216 0.012085 

22 rs1042777

2 

43344028 0.095046 RP3-

474I12.5 

4.48E-05 0.191036 0.001267 0.016731 

1 rs7530862 209803093 0.119072 NA 4.51E-05 0.566176 0.000151 0.002535 

1 rs6682769 36098783 0.051515 NA 4.52E-05 0.065073 0.033751 0.011428 

5 rs1379855 162337912 0.243814 NA 4.55E-05 0.001147 0.001442 0.003039 

5 rs152439 141904579 0.077778 NA 4.62E-05 0.003998 0.005161 0.011858 

2 rs1246743

6 

166205057 0.371342 FAM130A2 4.64E-05 0.001099 1.79E-05 0.000163 

17 rs1245322

4 

10995988 0.091919 NA 4.64E-05 0.020513 0.007116 0.015387 

17 rs1245030

1 

11002172 0.092331 NA 4.64E-05 0.020513 0.007116 0.015387 

13 rs9584155 86460262 0.005051 NA 4.69E-05 0.762073 0.000263 0.0156 

9 rs1076069

3 

101426527 0.20376 NA 4.73E-05 0.040601 0.001782 0.008499 

12 rs1709434

8 

42931797 0.006054 TMEM117 4.79E-05 0.125246 0.00641 0.013973 

8 rs3529215

0 

7141446 0.030287 FAM90A20 4.85E-05 0.317925 0.000694 0.002449 

13 rs1734837

3 

84641135 0.108476 NA 4.87E-05 0.000538 0.000173 0.002494 

8 rs1688047

4 

111237809 0.018668 NA 4.87E-05 0.0003 0.000613 0.003227 

1 rs1366990 234948326 0.12109 ACTN2 4.95E-05 9.90E-05 0.000567 0.001519 
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APPENDIX B   
 

SUPPLEMENTARY OF INTEGRATING MEAN AND HIGH-ORDER 
HETEROGENEITIES TO IDENTIFY DIFFERENTIALLY 

EXPRESSED GENES 
 

B.1 Proof of Proposition about the null independence between the mean and variance 

heterogeneity tests under normality setting 

At gene �, let the two samples of sizes ���, �2  follow an identical normal distribution, 

t��, -2 . Namely, &'! (-��2 = -�22 = -2 and ��� = ��2 = �) is true. Then,   

 �� ≝ ��� − 1 -.��2-2 ~õ3�8�2 ,	 Eq. B-1 

 

 �2 ≝ ��� − 1 -.�22-2 ~õ3;8�2 , Eq. B-2 

 

 
ê ≝ �̂�� − �̂�2-1 1�� + 1�2

~t�0,1 , 
Eq. B-3 

and ��,�2 and ê are independently distributed. The classical two-sample F statistic can 

be rewritten as 

 �� = -.��2-.�22 = ��/��� − 1 �2/��2 − 1 ~�3�8�,3;8�. Eq. B-4 

The classical two-sample Student t statistic can be rewritten as 
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R̂ = a 1�� + 1�2b8�2 ��̂�� − �̂�2 
1 �� − 1�� + �2 − 2-.��2 + �2 − 1�� + �2 − 2-.�22  

= ê:��� + �2 /��� + �2 − 2  
 

 

 

Eq. B-5 

and the two-sample Welch t statistic can be rewritten as 

 

R̂¾ = ��̂�� − �̂�2 1 1�� -.��2 + 1�2 -.�22  

= ê:�2��/��� + �2 ��� − 1 + ���2/��� + �2 ��2 − 1 ,	 
 

 

Eq. B-6 

let Γ�⋅  and Beta�⋅,⋅  denote Γ and Beta functions, respectively. By their mutual 

independence, ��, �2 and ê have joint probability density function 

 

k�!�,!;," �#�, #2, Ì  
= #�3�8�2 8�#23;8�2 8�

Beta a�� − 12 , �2 − 12 bBeta a12 , �� + �22 − 1b 

× exp a− #� + #22 b exp X−Ì22 Z
23�p3;8�2 Γ a�� + �2 − 12 b . 

 

 

 

 

Eq. B-7 

By the density formula of a multivariate transformation, the joint probability density 

function of @R̂, ��, êA is given by 
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 k��$,ï�," �R, P, Ì = k�!�,!;," �#�,#2, Ì × |%|, Eq. B-8 

where 

 

&'(
')#� = ��� + �2 − 2 Ì2R2 ��� − 1 P��� − 1 P + �2 − 1 ,

#2 = ��� + �2 − 2 Ì2R2 �2 − 1��� − 1 P + �2 − 1 ,Ì = Ì,			
 

 

 

Eq. B-9 

and 

 

|%| = *+�#�,#2, Ì =+�R, P, Ì * 

= 2��� − 1 ��2 − 1 ���� − 1 P + ��2 − 1  2 ��� + �2 − 2 2Ì"|R|I  

 

 

  Eq. B-10 

is the absolute Jacobian determinant of the multivariate transformation (Eq. B-9).  

The support of the joint density of R̂, �� and ê are defined into two sets 

{�R, P, Ì |R > 0, P > 0, Ì > 0} and {�R, P, Ì |R < 0, P > 0, Ì < 0}. Substituting Eq. B-9 

into Eq. B-10, we obtain the joint density of @R̂, ��A by integrating variable ê 

 

k��$,ï� �R, P = , k��$,ï�," �R, P, Ì -
8- dz 

= , k�!�,!;," �#�,#2, Ì × |%|-
8- dz 

=
1P /@��� − 1 PA�3�8� ��2 − 1 3;8�@��� − 1 P + �2 − 1A2 0�2

Beta a12 , �� + �22 − 1bBeta a�� − 12 , �2 − 12 b 

× , X��� + �2 − 2 Ì2R2 Z3�p3;2 8� exp �− Ì22 a1 + �� + �2 − 2R2 b1
23�p3;8!2 Γ a�� + �2 − 12 b |R|

-
' dÌ 

= kï��P × k�$�R , 

 

 

 

 

 

 

 

 

Eq. B-11 
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where 

 kï��P =
1P /���� − 1 P �3�8� ��2 − 1 �3;8� @��� − 1 P + �2 − 1A2 0�2

Beta a�� − 12 , �2 − 12 b , Eq. B-12 

is the probability density function of the � statistic, and 
 

 k�$�R = X1 + R2�� + �2 − 2Z83�p3;8�2
:�� + �2 − 2Beta a12 , �� + �22 − 1b, Eq. B-13 

is the probability density function of the Student R statistic. In summary, if H'! holds, then 

�� and R̂ are independently distributed. Under the normality setting, the null independence 

of Welch t statistic to F statistics can be similarly proved. Specifically, we only need to 

consider transformation system 

 &'(
')#� = ��� + �2 Ì2R¾2 ��� − 1 P�2P + ��#2 = ��� + �2 Ì2R¾2 �2 − 1�2P + ��Ì = Ì.

. 
 

Eq. B-14 

Substituting Eq. B-14 into Eq. B-8 and repeating the other steps can prove the null 

independence between F statistic and Welch t statistic. 

 

B.2 Proof of Proposition about the null independence between mean and variance 

heterogeneity tests under generic spherically symmetric setting 
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Mean heterogeneity tests in two-sample comparisons can be equivalent to a simple linear 

regression model: 

 ��� = �'� + ��â� + ��� , Eq. B-15 

where ��� is the expression level of the ��? gene of the ½�? subject, â� = 1 if the ½�? 

subject belongs to Group 1, and â� = 0 if otherwise,	�'� is intercept and �� is the effect of 

group on gene expression levels, and ��� is random error. According to ordinary least 

squares (OLS) method, we obtain �$� = �̂�� − �̂�2 and �$'� = �̂�2. The standard error of  �$� 
is 

 

SEn4û = 5X 1�� + �2 − 2Z6∑ @��� − ����A23�p3;�7�∑ @â� − â��A23�p3;�7� 7 

= 5X 1�� + �2 − 2Z6∑ @���� − �̂��A23��7� + ∑ @���� − �̂��A23��7�∑ @â� − â��A23�p3;�7� 7 

= 5X 1�� + �2 − 2Z6��� − 1 -.��2 + ��2 − 1 -.�22���2�� + �2
7, 

 

 

 

 

 

Eq. B-16 

where ���� = �$'� + �$�â�.  The statistic to test �� = 0 in Eq. B-15 can be written as 

 

R9F89FÈÈ�)3 = �$�SEn4û 

= a 1�� + 1�2b8�2 ��̂�� − �̂�2 
1 �� − 1�� + �2 − 2-.��2 + �2 − 1�� + �2 − 2-.�22  

 

 

Eq. B-17 

Thus, it is mathematically the Student t statistic in two-sample group comparisons. Under 

spherically symmetric distribution conditions, the density of gene expression levels is  
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í0 = 9 1- S6a��� − �@���Ab2
-2 7�3�p3; 

�7�  

= 1-3�p3; S 6 Ñ a��� − �@���Ab2
-2

�3�p3; 
�7� 7, 

 

 

 

Eq. B-18 

 

where S�.   is a given monotone function called the generating function with respect to the 

Lebesgue measure in ℝ , �@���A = �'� + ��â�  is the conditional expectation given â� . 

Similar to  the theorem for exponential family in Lehmann’s book [44], the complete 

sufficient statistic for gene expression distribution is ; =
@∑ ����2 +3��7� ∑ ���223;�7� , ∑ ����3��7� + ∑ ���23;�7� , ∑ ����3��7� A. Note that the t statistic of mean 

heterogeneity test is a function of ; . In addition, the LF statistic of Levene’s test 

approximately follows F distribution with 1 and �n� + �2 − 2  degree of freedoms. And 

this F distribution does not depend on parameters �'�, ��, -2 in (B1). Therefore, according 

to Basu’s theorem [122], the LF and the Student t statistics are independently distributed 

(í�¤ ⫫ R̂). Within the family of spherically symmetric distributions, mean and mode is the 

same and thus the BF statistic is also independent of Student t statistic ( u�¤ ⫫ R̂). í�¤ ⫫ R̂¾ 

and u�¤ ⫫ R̂¾ can be similarly proved. Since spherically symmetric distribution family is a 

very broad distribution family that include spherical exponential family, Student 

distribution, Laplace distribution, exponential power distribution and many other 

distributions, the Student and Welch t-statistics are independent of the Levene and Brown-

Forsythe statistics under normality settings by letting random error �  follow normal 

distribution in Eq. B-15. 
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B.3 Two-sample likelihood ratio test 

Herein, we derive the formula of the two-sample likelihood ratio test under the joint null 

hypothesis. For the ��?  gene, let �=� = @����, ��2�, … , ��3��A′  and �=� =
@���2, ��22, … , ��3;2A′  be expression levels of two independent random samples from 

normal populations �����, -��2   and ����2, -�22  , respectively. The full likelihood function 

is given by 

 

í����, ��2, -��2 , -�22   
= ` 12Õ-��2c

3�2 ` 12Õ-�22c
3;2 exp6−12 >ÑX���� − ���-�� Z23�

�7�
+ ÑX���2 − ��2-�2 Z23;

�7� ?7. 

 

 

 

Eq. B-19 

 

Under the joint null hypothesis,	��� = ��2 = �� and -��2 = -�22 = -�2, the reduced likelihood 

(joint function) can be rewritten as  

 

í����, ��2, -��2 , -�22  = í���, ��, -�2, -�2  
= ` 12Õ-�2c

3�p3;2 exp6− 12-�2 >Ñ@���� − ��A23�
�7�

+ Ñ@���2 − ��A23;
�7� ?7. 

 

 

 

Eq. B-20 

Solving the system of equations of  
@�Añ@ýû,ýû,ùû;,ùû;A@ýû = 0 and 

@�Añ@ýû,ýû,ùû;,ùû;A@ùû; = 0, we derive 

the maximum likelihood estimators 

�̂� = 1�� + �2 6Ñ����
3�
�7� + Ñ���2

3;
�7� 7 

and  
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-.�2 = 1�� + �2 6Ñ@���� − �̂�A23�
�7� + Ñ@���2 − �̂�A23;

�7� 7. 
 

The maximum of the reduced likelihood í����, ��2, -��2 , -�22   under the joint null hypothesis 

is 

 

maxýû,ùû; í���, ��, -�2, -�2 = í��̂�, �̂�, -.�2, -.�2  
= 1-3�p3; S 6 Ñ a��� − �@���Ab2

-2
�3�p3; 

�7� 7 

= ` 12Õ-.�2c
3�p3;2 exp X−�� + �22 Z, 

 

 

 

 

Eq. B-21 

 

using the full likelihood of ����, ��2, -��2 , -�22  , we obtain the following system of equations:  

&''
'(
'''
)∂lní����, ��2, -��2 , -�22  ∂��� = 0,∂lní����, ��2, -��2 , -�22  ∂��2 = 0,∂lní����, ��2, -��2 , -�22  ∂-��2 = 0,∂lní����, ��2, -��2 , -�22  ∂-�22 = 0.

 

Solving the system, we derive 

�̂�� = 1�� Ñ����,3�
�7�  

�̂�2 = 1�2 Ñ���2
3;
�7� , 

-.��2 = 1�� Ñ@���� − �̂��A23�
�7� , 

 
and 
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-.�22 = 1�2 Ñ@���2 − �̂�2A23;
�7� . 

Then maximum of í����, ��2, -��2 , -�22   over the full parameter space can be derived as 

below: 

 

maxýû�,ýû;,ùû�; ,ùû;; í����, ��2, -��2 , -�22  
= í��̂��, �̂�2, -.��2 , -.�22   

= ` 12Õ-.��2c
3�2 ` 12Õ-.�22c

3;2 exp6−12 >Ñ`���� − �̂��-.�� c23�
�7�

+ Ñ`���2 − �̂�2-.�2 c23;
�7� ?7 

= X 12ÕZ
3�p3;2 exp X−�� + �22 Z ` 1-.��2c

3�2 ` 1-.�22c
3;2 . 

 

 

 

 

 

 

 

Eq. B-22 

From Eq. B-21 and Eq. B-22, we derive the likelihood ratio 
 

íö = maxýû,ùû; í���, ��, -�2, -�2 maxýû�,ýû;,ùû�; ,ùû;; í����, ��2, -��2 , -�22  = �-.��2  3�2 �-.�22  3;2�-.2 3�p3;2  

= a 1n� ∑ @���� − �̂��A23��7� b3�2 a 1n2 ∑ @���2 − �̂�2A23;�7� b3;2

` 1�� + �2 a∑ @���� − �̂A23��7� + ∑ @���2 − �̂A23;�7� bc3�p3;2 . 
 

For large samples, the statistic −2ln	�íö  of likelihood ratio test follows asymptotically 

chi-square distribution with df = 2 under &'!. The finite-sample performance of the LRT 

depends on the sample size, and õ22 distribution may not well approximate the exact 
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distribution of  −2ln	�íö  for a small sample, which is intractable even under normality 

setting. 

 

B.4 Proof about the asymptotical null independence between �D� and �D� 

Let the dataset contain expression levels of � gene probes of �� unrelated subjects 

from control groups and �2  unrelated subjects for treatment group, respectively. For a 

specific gene, let r� = @r��, r�2, … , r�3�A	be the expression level of gene probes under 

control group and r2 = �r2�, r22, … , r23;  be the expression level of gene probes under 

treatment group. The total sample size is � = �� + �2 be. Let ���rÐ  and -�å2  be the gene-

specific mean and variance of the expression levels of gene probe under condition M (i.e., 

M = 1 for control group, and	M = 2 for treatment group). And let �2�rÐ = ��rÐ2  be the 

second-order moment of rÐ . According to the definition of second order moment, 

�2�rÐ = @���rÐ A2 + -�å2 . 

Without loss of generality, we assume r�555 < r2555. Define ��� = r�� − r�555 and �2� =
r2� − r�555, where � = 1,2, … , ��, ½ = 1,2, … , �2, r�555 = ∑ r��3��7� 	and	r2555 = ∑ r2�3;�7�  . 

Firstly, we constructed the first welch t test statistic to capture the mean heterogeneity 

between two groups.  

Now we have  

 
+¾� = ��� − �2�

è�/�2�� + �/;2�2
,	 

Eq. B-23 

 



129 
 

and 

 

+¾; = ��2555 − �22555
è�/�2�� + �/;2�2

. 
,	 

Eq. B-24 

The null hypothesis is ���r� = ���r2  and �2�r� = �2�r2 . Next we prove the 

following conclusion: When �� = �2 and ��, �2 ⟶ ∞, +¾� and +¾; would converge in 

distribution to a bivariate normal distribution with unit variance and zero correlation 

coefficient below 

 X+¾�+¾2Z [.\.]̂ t2 `a00b , a1 00 1bc,	 Eq. B-25 

 

Proof: 

Under ��, �2 ⟶ ∞, to simplify the proof, we redefine 

 ��� = è�� + 1�� − 1 �r�� − r�555 ≈ �r�� − r�555 ,	 Eq. B-26 

Eq. B-23 can be written as  

 

+¾� − √������r� − ���r2  1���2 + ���2 ��;2
= E1 0 −1���2 0F

1���2 + ���2 ��;2
 

×
��
��

:���r�555 − ���r�  :���r�25555 − �2�r�  :�2�r2555 − ���r2  :�2�r225555 − �2�r2  �
���,	 

 

 

 

 

Eq. B-27 
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Similar as +¾�, +¾� can be written as 

 

+¾; − √��G-��2 − -�;2 − ��� − �2 2H1�/�;2 + ���2 �/;;2
 

= √��@��2555 − �22555A − @-��2 − -�;2 − ��� − �2 2A1�/�;2 + ���2 �/;;2
 

= 11�/�;2 + ���2 �/;;2
>−2`���r2 

+ ���r� + r�555� − 1 c , �� + 1�� − 1 ,−2è���2 ���r� ,è���2?	 

×
��
��

:��@r�555 − ���r� A:�� ar�25555 − �2�r� b:�2@r2555 − ���r2 A:�2 ar225555 − �2�r2 b��
�� 

+ 11�/�;2 + ���2 �/;;2
6 2�� − 1 -��2√��

− 2:��@r�555 − ���r� A@r2555 − ���r2 A7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. B-28 

 

Letting 
3�3; = < 
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X+¾� − Y¾�+¾; − Y¾;Z 

=
��
���
� E1 0 −√< 0J1���2 + <��;2E−2X���r2 + ���r� + r�555� − 1 Z �� + 1�� − 1 −2√<���r� √<F

1�/�;2 + <�/;;2 ��
���
�

 

��
��

:��@r�555 − ���r� A:�� ar�25555 − �2�r� b:�2@r2555 − ���r2 A:�2 ar225555 − �2�r2 b��
�� 

+
��
� 011�/�;2 + ���2 �/;;2

6 2�� − 1 -��2√�� − 2:��@r�555 − ���r� A@r2555 − ���r2 A7��
�,

 

 

 

 

 

 

 

 

 

 

Eq. 

B-29 

 

where 	
Y¾� = √������r� − ���r2  1���2 + ���2 ��;2

, Y¾; = √��G-��2 − -�;2 − ����r� − ���r2  2H1�/�;2 + ���2 �/;;2
 

As ��, �2 ⟶ ∞ 
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X+¾� − Y¾�+¾; − Y¾;Z 

[.\.]̂ 	
��
���

E1 0 −√< 0J1-��2 + <-�;2G−2@���r2 A 1 −2√<���r� √<H1-/�;2 + <-/;;2 ��
��� × t"��,Ω  

= t"��, �ΩA′ , 

 

 

 

 

 

Eq. B-30 

 

where 

-/�;2 = lim3�,3;⟶-�/�;2 , 
-/;;2 = lim3�,3;⟶-�/;;2  

� =
��
���

E1 0 −√< 0J1-��2 + <-�;2G−2@���r2 A 1 −2√<���r� √<H1-/�;2 + <-/;;2 ��
��� 

 

Ω =
��
��

-��2 YQW�r�, r�2 YQW�r�, r�2 -��;2
0 00 00 00 0 -�;2 YQW�r2, r22 YQW�r2, r22 -�;;2 ��

�� 

and 

��
� 011�/�;2 + ���2 �/;;2

6 2�� − 1 -��2√�� − 2:��@r�555 − ���r� A@r2555 − ���r2 A7��
� [.\.]̂ Q�1  
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Then we obtain 

X+¾� − Y¾�+¾; − Y¾;Z [.\.]̂ t" `�, X1 DD 1Zc, 
where 

D
= @�!�r� − ���r� �2�r� A − 2���r2 -��;2 − < a�!�r2 − ���r2 �2�r2 − 2���r� -�;;2 b

1-��2 + <-�;2 1-/�;2 + <-/;;2
 

Under the null hypothesis,  

D = �1 − < ��!�r� − ���r� �2�r� − 2���r� -��2  
1-��2 + <-�;2 1-/�;2 + <-/;;2

 

When �� = �2, < = 1, then D = 0 
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B.5 Supplemental Figures 

 

Figure B-1: Null joint distributions of mean and variance test statistics under 5 
vs. 5 normality setting. 

 

 

 

Figure B-2: Null joint distributions of mean and variance test statistics under 10 vs.10 
normality setting. 
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Figure B-3: Null joint distributions of mean and variance test statistics under 20 vs. 
20 normality setting. 

 

 

Figure B-4: Null joint distributions of mean and variance test statistics under 5 vs. 5 
Laplace setting 
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Figure B-5: Null joint distributions of mean and variance test statistics under 10 vs. 10 
Laplace setting. 

 

 

Figure B-6: Null joint distributions of mean and variance test statistics under 20 vs. 20 
Laplace setting. 
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Figure B-7: Null joint distributions of mean and variance test statistics under 40 vs. 40 
Laplace setting. 
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B.6 Supplemental Tables 

 

 

 

 

 

Table B-1: The first 2 and significant PCs of all the experiment-wide gene probes 

PC 
Index 

Eigen  
Value 

Variation 
Proportion 

P values of 
ST WT MWT Levene 

1 1.48E+13 0.9824 0.5343 0.5355 0.8459 0.2359 
2 4.89E+10 0.0032 0.5786 0.5782 0.5752 0.9243 
4 2.01E+10 0.0013 1.84E-15 1.91E-15 4.49E-15 0.0935 
6 1.08E+10 0.0007 0.1148 0.1134 0.1102 0.0003 
9 7.15E+09 0.0005 0.9725 0.9723 0.972 0.0015 
14 4.32E+09 0.0003 0.5616 0.5598 0.557 0.0114 
28 1.88E+09 0.0001 0.5533 0.5519 0.549 0.0185 
38 1.33E+09 0.0001 0.9091 0.9095 0.9084 0.0419 
49 9.81E+08 0.0001 0.3012 0.2993 0.2958 0.0142 
78 4.47E+08 2.97E-05 0.8199 0.8217 0.8189 0.0129 

 

Table B-2: The first 2 and significant PCs of 13415 experiment-wide robust gene probes 

PC 
Index 

Eigen 
Value 

variation 
Proportion 

P values of 
ST WT MWT Levene 

1 9.06E+12 0.9835 0.6702 0.6712 0.8922 0.1865 
2 3.40E+10 0.0037 0.6448 0.6442 0.6419 0.6613 
12 2.89E+09 0.0003 0.0064 0.0063 0.006 0.0557 
14 2.36E+09 0.0003 0.0035 0.0036 0.0033 0.538 
16 2.03E+09 0.0002 0.0135 0.0134 0.0129 0.3799 
18 1.67E+09 0.0002 0.0151 0.0149 0.0144 0.1453 
25 1.17E+09 0.0001 0.0059 0.0058 0.0056 0.9441 
28 1.01E+09 0.0001 0.2272 0.2253 0.222 0.0069 
29 9.91E+08 0.0001 0.6090 0.6074 0.605 0.0119 
30 9.78E+08 0.0001 0.9674 0.9675 0.9672 0.0208 
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Table B-3: Discoveries of the IMVT by controlling FDR below 0.1 

AffyID Gene 
Local FDR 

IMVT STSD MWT WT 
203558_at CUL7 0.0025  0.0344  0.4676  0.4701  
208307_at RBMY1J 0.0043  0.3490  0.6452  0.6345  
204384_at GOLGA2 0.0116  0.2158  0.4607  0.4701  
206359_at SOCS3 0.0116  0.3158  0.4766  0.4915  
208294_x_at CSHL1 0.0116  0.2155  0.4445  0.4701  
210106_at RDH5 0.0116  0.3568  0.6046  0.6039  
214436_at FBXL2 0.0116  0.7192  0.8635  0.8527  
218922_s_at CERS4 0.0116  0.3158  0.4761  0.4915  
214886_s_at N4BP2L1 0.0137  0.3231  0.7155  0.6722  
210492_at MFAP3L 0.0160  0.3306  0.6466  0.6267  
206162_x_at SYT5 0.0162  0.4133  0.6414  0.6317  
215840_at DNAH2 0.0176  0.2158  0.5222  0.5227  
214257_s_at SEC22B 0.0240  0.2158  0.4445  0.4701  
219829_at ITGB1BP2 0.0249  0.3953  0.6717  0.6557  
211789_s_at MLXIP 0.0305  0.3158  0.6595  0.6430  
209461_x_at WDR18 0.0359  0.6251  0.7799  0.7725  
210974_s_at AP3D1 0.0373  0.2457  0.4445  0.4701  
214145_s_at SPTB 0.0373  0.3231  0.4761  0.4915  
210922_at BC000772 0.0397  0.5364  0.7180  0.7128  
220625_s_at ELF5 0.0404  0.3134  0.4676  0.4788  
222260_at AK026947 0.0404  0.3306  0.5112  0.5224  
203532_x_at CUL5 0.0441  0.3810  0.6342  0.6281  
214138_at ZNF79 0.0460  0.5952  0.7812  0.7772  
221208_s_at MSANTD2 0.0460  0.1610  0.2808  0.3123  
203609_s_at ALDH5A1 0.0514  0.3271  0.4766  0.4915  
222256_s_at JMJD7 0.0517  0.3402  0.5112  0.5179  
204947_at E2F1 0.0544  0.2158  0.4766  0.4915  
214803_at CDH6 0.0643  0.3450  0.6213  0.6184  
221528_s_at ELMO2 0.0643  0.4408  0.7337  0.7364  
218659_at ASXL2 0.0710  0.3134  0.4761  0.4915  
209666_s_at CHUK 0.0783  0.3158  0.4676  0.4788  
203918_at PCDH1 0.0808  0.3262  0.5112  0.5224  
208524_at GPR15 0.0808  0.1610  0.2748  0.3123  
209850_s_at CDC42EP2 0.0816  0.3297  0.5033  0.5175  
204854_at LEPREL2 0.0848  0.3946  0.6046  0.6031  
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APPENDIX C  DETAILED DISCRIPTIONS OF FIGURES 
 

Figure 1-2: Comparison of false positive rates of eight methods under null 

hypothesis. The result was computed from 100000 replicates with the specified samples 

size 1000. At each significance level, the false positive rate of each method was estimated 

by the empirical proportion that the method rejected the dual null hypothesis &'.(?. The 

gray belt is the 95% concentration band of the false positive rates of a typical test that can 

properly control false positive rates at given nominal significance levels. 

 

206604_at OVOL1 0.0848  0.3490  0.5143  0.5227  
207961_x_at MYH11 0.0848  0.4337  0.6289  0.6317  
216975_x_at NPAS1 0.0848  0.3231  0.5947  0.5859  
222015_at CSNK1E 0.0848  0.2005  0.4445  0.4566  
200080_s_at H3F3AP4 0.0886  0.1912  0.2808  0.3123  
205391_x_at ANK1 0.0886  0.3953  0.5947  0.5921  
209156_s_at COL6A2 0.0886  0.3810  0.6897  0.6713  
210565_at GCGR 0.0886  0.3231  0.5161  0.5227  
216006_at AF070620 0.0886  0.3231  0.4761  0.4915  
216584_at 216584_at 0.0886  0.3134  0.4873  0.4915  
219733_s_at SLC27A5 0.0886  0.3158  0.4761  0.4915  
205387_s_at CGB7 0.0905  0.3490  0.5267  0.5314  
222084_s_at SBF1 0.0924  0.3158  0.4676  0.4788  
206298_at ARHGAP22 0.0955  0.3564  0.5847  0.5854  
207150_at SLC18A3 0.0969  0.3262  0.4761  0.4915  
215786_at AK022170 0.0969  0.2158  0.4094  0.4535  
219729_at PRRX2 0.0969  0.3490  0.5847  0.5793  
220735_s_at SENP7 0.0969  0.3231  0.4761  0.4915  
216313_at PCDHB17 0.0972  0.2242  0.4980  0.4933  
212514_x_at DDX3X 0.0990  0.1610  0.2595  0.2962  
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Figure 1-3: Power comparison of MT, JLS, LRT and HSAT under Scenario I at 

nominal level  Þ × ��8K. Setting MAF to be 0.01, 0.025 and 0.05, powers of the four 

methods were computed from 100000 replicates with samples size 1000. X-axis is the 

heritability of genotype (ℎ2) that ranges from 0% to 2% for single locus and Y-axis is the 

empirical powers estimated by the empirical proportion that the method rejected the dual 

null hypothesis &'.(? at significance level 5 × 108} 

 

Figure 1-4: Power comparison of MT, JLS, LRT and HSAT under Scenario II at 

nominal level  Þ × ��8K. Setting the main genetic effect � to be 0.01, 0.05 and 0.1, 

powers of the four methods were computed from 100000 replicates with samples size 

1000. The x-axis is the effect size of � × � interaction term that ranges from 0 to 1 by 

grid of 0.1 and y-axis is the empirical powers estimated by the empirical proportion that 

the method rejected the dual null hypothesis &'.(? at significance level 5 × 108}.  

 

Figure 1-5: Power comparison of MT, JLS, LRT and HSAT under Scenario III at 

nominal level  Þ × ��8K. (a)  MAF of the common causal variant ranges from 0.05 to 

0.5. Setting the main genetic effect � to be 0.25, the x-axis is the effect of genotype (y) 

on variance that ranges from 0 to 0.5 by grid of 0.05;(b) MAF of the common causal 

variant ranges from 0.005 to 0.05. Setting the main genetic effect size � to be 0.5, the x-

axis is the effect size of genotype (y) on variance that ranges from 0 to 0.5 by grid of 

0.05.The y-axis is the empirical powers estimated by the empirical proportion that the 

method rejected the dual null hypothesis &'.(?. Powers of the four methods were 

computed from 100000 replicates with samples size 1000. 
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Figure 1-6: Q-Q plots of MT, JLS, LRT and HSAT. The inflation factors of MT, JLS 

and HSAT appeared reasonable and indicate no obvious inflation. While the curve of 

LRT clearly appeared under the gray band (95% concentration band), which indicates the 

conservativeness of LRT method. 

 

Figure 1-7: The Manhattan plot of HSAT. 856149 SNPs with MAF> 0.005 was 

plotted. Obvious association signal peaks were observed on chromosomes 2, 6, 7 and 19. 

The gray line is the suggestive nominal level 5 × 108H. 

 

Figure 2-2: Comparison of false positive rates of eight methods under different 

nominal levels. The result was computed from 100000 replicates with the specified 

samples size 1000. At each significance level, the false positive rate of each method was 

estimated by the empirical proportion that the method rejected the dual null hypothesis 

&'.(?. The gray belt is the 95% concentration band of the false positive rates of a typical 

test that can properly control false positive rates at given nominal significance levels. 

 

Figure 2-3: Comparison of empirical powers of eight methods at different nominal 

levels under HP model. Setting � = 50 and Ò = 10, the empirical powers of the eight 

methods were computed from 10000 replicates with samples size 1000. The percentage 

of positive causal variants (+) are set to be 100%, 80%, 50% and 20% respectively. The 

X-axis is the nominal level | that ranges from 0 to 0.05 and Y-axis is the empirical 
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powers estimated by the empirical proportion that the method rejected the dual null 

hypothesis &'.(? at the nominal level |. 

 

Figure 2-4: Comparison of false positive rates of eight methods at different nominal 

levels under Fisher’s model framework. Setting � = 50 and Ò = 10, the empirical 

powers of the eight methods were computed from 10000 replicates with samples size 

1000. The percentage of positive causal variants (+) are set to be 100%, 80%, 50% and 

20% respectively. The X-axis is the nominal level | that ranges from 0 to 0.05 and Y-

axis is the empirical powers estimated by the empirical proportion that the method 

rejected the dual null hypothesis &'.(? at the nominal level |. 

 

Figure 2-5: Comparison of empirical power of eight methods levels when latent G×E 

interaction exists at nominal level 0.005(a) and 0.0005(b). Setting rs811589 in OPA3 

as the causal loci and the main genetic effect � is 0.25,	powers of the eight methods were 

computed from 10000 replicates with samples size 991. There are 23 test SNPs with 

MAF>0.005 in OPA3. The x-axis is the effect size C of � × � interaction term that 

ranges from 0 to 0.5 by grid of 0.05 and y-axis is the empirical powers estimated by the 

empirical proportion that the method rejected the dual null hypothesis &'.(? at 

significance level 0.005 and 0.0005 respectively.  

 

 

Figure 2-6: Comparison of empirical power of eight methods levels when latent 

G×G interaction exists at nominal level 0.005(a) and 0.0005(b). Setting rs811589 in 
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OPA3 as the causal loci and the main genetic effect � is 0.25,	powers of the eight 

methods were computed from 10000 replicates with samples size 991. There are 23 test 

SNPs with MAF>0.005 in OPA3.  Setting the main genetic effect � to be 0.25, the x-axis 

is the effect of genotype (y) on variance that ranges from 0 to 0.25 by grid of 0.05. The y-

axis is the empirical powers estimated by the empirical proportion that the method 

rejected the dual null hypothesis &'.(? at significance level 0.005 and 0.0005 

respectively.  

 

Figure 2-7: Q-Q plots of eight gene-based methods. The inflation factors of HGAT and 

wHGAT appeared reasonable and indicate no obvious inflation. The curve of other 

methods appeared within the gray band (95% concentration band), which indicates no 

obvious inflations. 

 

Figure 3-1: Null joint distributions of the test statistics on mean and variance 

heterogeneities under normality setting. Each panels displays 100000 pairs of the 

specified test statistics, which were computed from 100000 replicates of two-group 

samples of sizes (�� = �2 = 40) from the standard normal distribution. Panel (a) shows 

the null independence between Welch t statistic and Levene statistic. Panel (b) shows the 

null independence between Welch t-statistic and F-statistic. Panel (c) shows the 

equivalence between Welch t statistic and Student t statistic. Panel (d) shows the high 

correlation between Levene test statistic and Brown-Forsythe statistic. 
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Figure 3-2: Comparison of false positive rates of eight methods under standard 

normality setting. Each panel was computed from 100000 replicates of two-group 

samples with the specified samples sizes simulated from	��0,1 . At each significance 

level, the false positive rate of each method was estimated by the empirical proportion 

that the method rejected the dual null hypothesis H03. The gray belt is the 95% 

concentration band of the false positive rates of a typical test that can properly control 

false positive rates at given nominal significance levels. 

 

Figure 3-3: Comparison of false positive rates of eight methods under standard 

Laplace setting. Each panel was computed from 100000 replicates of two-group samples 

with the specified samples sizes simulated from	ℒUkÒUM��0,1 . At each significance 

level, the false positive rate of each method was estimated by the empirical proportion 

that the method rejected the dual null hypothesis H03. The gray belt is the 95% 

concentration band of the false positive rates of a typical test that can properly control 

false positive rates at given nominal significance levels. 

 

Figure 3-4: Power comparison of six methods under two-condition normality 

setting. In each panel, for each specific (r, s) pair, powers of the six methods were 

computed from 100000 replicates of two-group samples with samples sizes (40 vs. 40) 

simulated from	��0,1  and ��<, �1 + À 2 , respectively. At each (r, s) pair, the power 

of each method was estimated by the empirical proportion that the method rejected the 

dual null hypothesis H03 at significance level 0.05. For the SMVT, both the significance 
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level of Welch test and that of the Levene test were set to be 1 − √1 − 0.05 to control 

overall type I error rate at 0.05. 

  

Figure 3-5: Power comparison of six methods under two-condition Laplace setting. 

In each panel, for each specific (r, s) pair, powers of the six methods were computed from 

100000 replicates of two-group samples with samples sizes (40 vs. 40) simulated 

from	ℒUkÒUM��0,1  and ℒUkÒUM��<, �1 + À 2 , respectively. At each (r, s) pair, the power 

of each method was estimated by the empirical proportion that the method rejected the 

dual null hypothesis H03 at significance level 0.05. For the SMVT, both the significance 

level of Welch test and that of the Levene test were set to be 1 − √1 − 0.05 to control 

overall type I error rate at 0.05. 

 

Figure 3-6: Q-Q plots of the five competitors without adjusting for latent data 

structure and covariates. Using the MAS5, we normalized the raw expression data of 

the 22283 gene probes on the 39 smokers and 40 nonsmokers. We then compute gene 

probe specific statistics and p values of the tests statistics based on the MAS5 normalized 

data. The inflation factors of all the tests appeared unreasonably huge, especially that of 

the STSD. All the curves clearly appeared above the gray band (95% concentration 

band). The striking inflations implied that some latent factors severely confounded the 

competitors. 

 

Figure 3-7: Global data structure of all the experiment-wide gene expression levels. 

Using MAS5, we normalized the raw expression levels of the 22283 experiment-wide 
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gene probes and computed the PCs of all the normalized expression levels. PC1 alone 

accounted for 98.24% of the total variation and was the unique major PC. PC2 merely 

accounted for 0.32% of total variation. Neither PC1 nor PC2 displayed mean 

heterogeneity or variance heterogeneity. PC4 displayed strikingly significant mean 

heterogeneity (kîg = 1.91 × 108�I), even if it only accounted for 0.13% of the total 

variation. PC6 displayed very significant variance heterogeneity (kñï = 3.18 × 108") 

even if it accounted for 0.07% of the total variation only. PC4 and PC6 clearly 

distinguished the smokers and the nonsmokers. 

 

Figure 3-8: Deflations due to the over adjustment of the experiment-wide data 

structure. Among all the 79 global PCs, only PC4 displayed significant mean 

heterogeneity (kîg=4.49E-15). PC6, 9, 14, 28, 38, 49 and 78 displayed variance 

heterogeneity (kñï ranged from 3.18E-4 to 0.0419). After adjusting for the significant 

global PCs, age and menopausal status, the Q-Q plots of all the five competitors 

displayed severe deflations. All the genomic inflation factors turned out to be much 

smaller than 1. The Q-Q plots of the four mean heterogeneity tests fell below the 

diagonal, where those of the WT and the MWT fell below the lower limit of the 95% 

concentration band. Global PCs did not distinguish informative heterogeneities and 

impediment heterogeneities. The significant global PCs would account for big portions of 

informative mean and variance heterogeneities due to DE genes. Therefore, adjusting for 

the significant PCs of all the experiment-wide gene probes would reduce statistical 

powers 
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Figure 3-9: Background data structure of the expression levels of robust gene 

probes. From the MAS5 normalized data, we selected 13415 robust gene probes and 

conducted background PCA. PC1 alone accounted for 98.35% of the total variation and 

was the unique major PC. PC2 merely accounted for 0.37% of total variation. Neither 

PC1 nor PC2 displayed mean heterogeneity or variance heterogeneity. PC14 displayed 

significant mean heterogeneity (kîg = 0.0036 , even if it only accounted for 0.03% of 

the total variation. PC28 displayed significant variance heterogeneity (kñï = 0.0069  
even if it accounted for 0.01% of the total variation only. PC14 and PC28 displayed clear 

stratification of the smokers and the nonsmokers. 

 

Figure 3-10: Q-Q plots of the five competitors after adjusting for background data 

structure and covariates. Among all the 79 background PCs, PC14, PC25, PC12, PC16, 

and PC18 displayed significant mean heterogeneity (kîg ranged from 0.0036 to 0.0149). 

PC28, PC29 and PC30 displayed variance heterogeneity (kñï ranged from 0.0069 to 

0.0208). After adjusting for these significant background PCs, age and menopausal 

status, the Q-Q plots of all the five tests climbed above the diagonal. Especially, the Q-Q 

plot of the IMVT climbed above the upper limit of the 95% concentration band. All the 

tests displayed reasonable inflation factors. The mild inflation could be due to weak 

differentials or residual correlations between DE genes. Adjusting for significant 

background PCs was necessary to prevent false positives and false negatives. 

 

 



149 
 

Figure 3-11: Boxplots of four experiment-wide significant gene probes. After 

calibrating the background data structure, no gene probes appeared experiment-wide 

significant mean heterogeneity. All of these four genes displayed certain significance of 

mean heterogeneity and displayed nearly experiment-wide significant variance 

heterogeneity. Integrating variance heterogeneity and mean heterogeneity led us to 

identify these four gene probes to be experiment-wide significant. 

 

Figure 3-12: Comparison of false positive rates of six methods under standard 

normality setting. WT, MWT, STSD, IMVT, SMVT and DWT are the competitors here. 

Each panel was computed from 100000 replicates of two-group samples with the 

specified samples sizes simulated from	��0,1 . At each significance level, the false 

positive rate of each method was estimated by the empirical proportion that the method 

rejected the dual null hypothesis. The gray belt is the 95% concentration band of the false 

positive rates of a typical test that can properly control false positive rates at given 

nominal significance levels. 

 

Figure 3-13: Power comparison of six methods with different mean heterogeneities 

levels at nominal level 0.05. WT, MWT, STSD, IMVT, SMVT and DWT are the 

competitors here.  We consider < = 0,0.25,0.5 in (a)-(c). In each panel, for each specific 

s, powers of the six methods were computed from 100000 replicates of two-group 

samples with samples sizes (40 vs. 40) simulated from	��0,1  and ��<, �1 + À 2 , 
respectively. The power of each method was estimated by the empirical proportion that 

the method rejected the dual null hypothesis at significance level 0.05. For the SMVT, 
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both the significance level of Welch test and that of the Levene test were set to be 1 −
√1 − 0.05 to control overall type I error rate at 0.05. 

 

Figure 3-14: Power comparison of DWT and IMVT at nominal level 0.05 and 0.005, 

respectively. IMVT and DWT are the competitors here.  When no variance heterogeneity 

exist (À = 0), for each specific <, powers of the six methods were computed from 100000 

replicates of two-group samples with samples sizes (40 vs. 40) simulated from	��0,1  
and ��<, �1 + À 2 , respectively. The power of each method was estimated by the 

empirical proportion that the method rejected the dual null hypothesis at s at nominal 

level 0.05 and 0.005, respectively 

 

Figure A-1: The Manhattan plot of MT.	856149 SNPs with MAF> 0.005 was 

plotted. No obvious association signal peaks were observed using MT. The gray line is 

the suggestive nominal level 5 × 108H. 

 

Figure B-1: Null joint distributions of mean and variance test statistics under 5 vs. 5 

normality setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
5) from the standard normal distribution. Panel (a) shows the null independence between 

Welch t statistic and Levene statistic. Panel (b) shows the null independence between 

Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch t 

statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 
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Figure B-2: Null joint distributions of mean and variance test statistics under 10 

vs.10 normality setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
10) from the standard normal distribution. Panel (a) shows the null independence 

between Welch t statistic and Levene statistic. Panel (b) shows the null independence 

between Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch 

t statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 

 

Figure B-3: Null joint distributions of mean and variance test statistics under 20 vs. 

20 normality setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
20) from the standard normal distribution. Panel (a) shows the null independence 

between Welch t statistic and Levene statistic. Panel (b) shows the null independence 

between Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch 

t statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic.  

 

Figure B-4: Null joint distributions of mean and variance test statistics under 5 vs. 5 

Laplace setting. Each panels displays 100000 pairs of the specified test statistics, which 

were computed from 100000 replicates of two-group samples of sizes (�� = �2 = 5) 

from the standard Laplace distribution. Panel (a) shows the null independence between 
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Welch t statistic and Levene statistic. Panel (b) shows the null independence between 

Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch t 

statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 

 

Figure B-5: Null joint distributions of mean and variance test statistics under 10 vs. 

10 Laplace setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
10) from the standard Laplace distribution. Panel (a) shows the null independence 

between Welch t statistic and Levene statistic. Panel (b) shows the null independence 

between Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch 

t statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 

 

Figure B-6: Null joint distributions of mean and variance test statistics under 20 vs. 

20 Laplace setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
20) from the standard Laplace distribution. Panel (a) shows the null independence 

between Welch t statistic and Levene statistic. Panel (b) shows the null independence 

between Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch 

t statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 
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Figure B-7: Null joint distributions of mean and variance test statistics under 40 vs. 

40 Laplace setting. Each panels displays 100000 pairs of the specified test statistics, 

which were computed from 100000 replicates of two-group samples of sizes (�� = �2 =
40) from the standard Laplace distribution. Panel (a) shows the null independence 

between Welch t statistic and Levene statistic. Panel (b) shows the null independence 

between Welch t-statistic and F-statistic. Panel (c) shows the equivalence between Welch 

t statistic and Student t statistic. Panel (d) shows the high correlation between Levene test 

statistic and Brown-Forsythe statistic. 

 

APPENDIX D  R CODES 
 

All the codes of Methods and Simulation, figures are written in R. Please click the 

link of my github account to access them  https://github.com/oyww710.  
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