


Abstract

Recent advances in light microscopy have spawned new research frontiers in nanobio-

physics by working around the diffraction barrier and allowing for the observation

of nanometric biological structures. Microrheology is the study of the properties of

complex fluids, such as those found in biology, through the dynamics of small embed-

ded particles, typically latex beads. Statistics based on the recorded sample paths

are used by biophysicists to infer rheological properties of the fluid.

In this dissertation, we provide new probabilistic results and statistical methods

for the analysis of single particle tracking experiments in nanobiophysics. In Chap-

ter 2, assuming that the stochastic behavior of tracer particles falls within a broad

class of fractional, stationary increment Gaussian processes, we establish the asymp-

totic distribution of the mean squared displacement (M̂SD) of particles. This had

remained an open problem for years in the nanobiophysical literature. In Chapter

3, by drawing upon the framework laid out in Chapter 2, we construct a general

protocol for the statistical testing of fluid heterogeneity and apply it to real data on

biofilm eradication. In Chapter 4, assuming that the observed stochastic process is

a fractional Gaussian noise, we establish the asymptotic distribution of the statistic

proposed in [50] for verifying the mixing property of an underlying dynamical system

starting from a single particle path.
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Chapter 1

Introduction

Recent advances in light microscopy have spawned new research frontiers in nanobio-

physics by working around the diffraction barrier and allowing for the observation of

nanometric biological structures. Microrheology is the study of the properties of com-

plex, non-Newtonian fluids, such as those found in biology, by means of the anomalous

dynamics of small embedded particles, typically latex beads. Statistics based on the

recorded sample paths are used by biophysicists to infer rheological (material) proper-

ties of the viscoelastic fluid under scrutiny. The goal of this dissertation is to provide

new probabilistic results and statistical methods for the analysis of single particle

tracking experiments in nanobiophysics. It comprises three chapters, each pertaining

to a different problem.

Chapter 2 is dedicated to the probabilistic behavior of the so-named mean squared

displacement (M̂SD) of tracer particles. The latter is the main statistic used in a very

large proportion of biophysical papers on the analysis of anomalous diffusion. Estab-

lishing one key property of the M̂SD, namely, its asymptotic distribution, remained

an open problem for years in the biophysical literature. In this thesis, we solve this

problem for a broad class of fractional, stationary increment Gaussian processes that

includes fractional Brownian motion and the integrated fractional Ornstein-Uhlenbeck

process. The content of the chapter was accepted for the publication in Journal of
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Time Series Analysis [23].

In Chapter 3, we tackle the problem of fluid heterogeneity. Due to the presence of

organic compounds, samples of complex fluids such as those studied in microrheology

may be physically heterogeneous both over one fluid sample and across multiple sam-

ples. This implies that accurately estimating anomalous diffusion parameters from

single particle trajectories is of special interest. In Chapter 3, we draw upon the main

result in Chapter 2 to propose a general protocol for the statistical testing of fluid

heterogeneity in both senses, and apply it to real data on biofilm eradication. This

is part of a collaborative project with David B. Hill (UNC-Chapel Hill).

Whether or not a given dynamical system has the properties of ergodicity and

mixing is a central concern in the field of thermodynamics. In [50], a statistic was

proposed for verifying the mixing property starting from a single observed particle

path. Nevertheless, the asymptotic distribution of this statistic has been an open

problem since the paper’s publication. In Chapter 4, we solve this problem assuming

that the underlying process is a fractional Gaussian noise. In particular, we show

that the limiting distribution is Gaussian or non-Gaussian depending on the value of

diffusion exponent.



3

Chapter 2

The asymptotic distribution of the

pathwise mean squared

displacement in single particle

tracking experiments

2.1 Introduction

Abbe’s diffraction limit stood for more than a hundred years as a barrier for light

microscopy. The resolution limit of roughly 250nm (1nm = 10−9m) is large compared

to organelles in biological cells and most nanostructures. However, in the last twenty

years advances in light microscopy technology have spawned new research frontiers

by allowing for the observation of nanobiological phenomena in vitro and in vivo

up to resolutions of 10–20nm (e.g., Hell [29, 30], Betzing et al [7], Rust et al [76],

Hess et al [31], Westphal et al [88], Berning et al [6], Jones et al [38], Huang et al

[33]). Microrheology is a rapidly expanding subfield of nanobiophysics. It consists

of the study of the properties of complex fluids, such as those found in biology,

through the dynamics of small embedded particles, typically latex beads, tracked and
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recorded by means of new light microscopy technology. Microrheology is currently

the dominant technique in the study of the physical properties of complex biofluids,

of the rheological properties of membranes or the cytoplasm of cells, or of the entire

cell (Mason and Weitz [53], Wirtz [89]; see Didier et al. [22] for a broad description

of the statistical challenges involved).

The characterization of the diffusive behavior of nanometric particles embedded

in viscous, Newtonian fluids is now well-understood both physically and probabilis-

tically. However, in complex fluids particles are expected to display non–classical, or

anomalous, behavior due to the viscoelasticity of the fluid. As in the early analysis of

diffusion, biophysicists dedicate a great deal of attention to the average distance trav-

eled by a particle, namely, the mean-square displacement µ2(t) := EX2(t) (MSD),

where X(t) denotes the position of the particle at instant t. For a given time window

I, we can express the “local” MSD in the form

EX2(t) ≈ θtα, α, θ > 0, t ∈ I, (2.1)

where the parameters θ and α are called the diffusivity coefficient and diffusion ex-

ponent, respectively. The microparticle is said to be sub-, super- or simply diffusive

if the α is less than, greater than, or equal to 1, respectively. When α 6= 1, the diffu-

sion is commonly named anomalous (see O’Malley and Cushman [67] for a different

perspective). The interval I in (2.1) can be of finite length or open-ended, according

to the demands of physical analysis. In the former case, (2.1) expresses transient

MSD behavior, as observed in polymer physics (Rubinstein and Colby [75], Kremer

and Grest [43]). Alternatively, (2.1) describes the asymptotic MSD behavior (see the

relation (2.19) for the accurate mathematical depiction of (2.1) in the context of this

chapter).

Statistical evidence of anomalous diffusion has turned up in several contexts, in-

cluding biodiffusion (Valentine et al. [83]), blinking quantum dots (Brokmann et al.
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[10], Margolin and Barkai [52]) and fluorescence studies in single-protein molecules

(Kou and Xie [42], Kou [41]). The dominant statistical technique in the biophysical

literature for estimating the diffusion exponent α is what we will call the sample

mean-square displacement (M̂SD). Suppose that a microrheological experiment gen-

erates a tracer bead sample path with observations X(∆j), j = 0, 1, . . . , n, where

∆ ∈ N stands for the sampling rate. The pathwise statistic

µ2(∆h) :=
1

n− h

n−h∑
j=1

(X(∆(j + h))−X(∆j))2 (2.2)

is the M̂SD at h, i.e., the statistical counterpart of µ2(·) (for notational simplicity,

we do not display the dependency of µ2 on n). Under (2.1), and assuming stationary

increments, for m lag values h1 < ... < hm and m � n one hopes for ergodicity,

namely,

µ2(∆hk) ≈ EX2(∆hk), k = 1, . . . ,m. (2.3)

One then generates (̂log θ, α̂) by means of the linear regression

log µ2(∆hk) = log θ + α log(∆hk) + εk, k = 1, ...,m, (2.4)

possibly over several independent particle paths, where {εk}k=1,...,m is a random vector

with an unspecified distribution. Plots of M̂SD curves as a function of the lag h,

sometimes on a log-log scale (see Figure 2.1), are widely reported as part of diffusion

analysis (e.g., Valentine et al. [83], Suh et al. [79], Matsui et al [54], Lai et al [44],

Lieleg et al. [46]). The choice of lags h1, . . . , hm reflects the analyst’s visual perception

of the range where the slope of the MSD curves stabilize and thus indicate the true

diffusive regime and power law (2.1).

The stochastic properties of the M̂SD depend on the underlying class of stochastic

processes. In the review paper Meroz and Sokolov [57], the authors classify physi-
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Figure 2.1: M̂SD plots, each with 50 paths of size 212 from an ifOU process with parameters λ = 1
and H (see Definition 2.2.1). Left: H = 1/4 (subdiffusive: α = 1/2). Right: H = 1/2 (diffusive:
α = 1).
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cal models for subdiffusive behavior according to whether one assumes the presence

of binding-unbinding events, of geometrical constraints on the particle’s movement,

or the medium is viscoelastic. This leads to three popular families of stochastic

processes, respectively, those of continuous time random walks (Metzler and Klafter

[58], Meerschaert and Scheffler [55]), of random walks on fractals (Havlin and Ben-

Avraham [28]), and of the celebrated fractional Brownian motion (fBm; see Example

2.2.1). In this chapter, we focus on the latter family, more precisely, that of fractional,

stationary increment processes (Barkai et al. [4], Lysy et al. [48]).

The ergodicity of the M̂SD moments was established in Deng and Barkai [20] for

various families of fractional processes (see also Sokolov [78], Metzler et al. [59], Jeon

and Metzler [37], Burov et al. [15], Jeon et al. [36], Sandev et al. [77]). Finite sample

approximations to the distribution of the M̂SD under Gaussianity are provided in

Grebenkov [25] (see also Qian et al. [71], Grebenkov [26], Boyer et al. [8], Andreanov

and Grebenkov [1], Nandi et al. [65], Boyer et al. [9]). Nevertheless, so far M̂SD-

based analysis of tracking data has missed one essential feature of statistical methods,

namely, the limiting distribution of the random vector

(
µ2(∆h1), . . . , µ2(∆hm)

)
. (2.5)

The purpose of this chapter is to fill this gap. We work under the assumption that

the particle undergoes a Gaussian process whose stationary increments display a

covariance function γ satisfying a decay condition of the type

γh(z)1,2 ∼ Czα−2h1h2, z →∞, (2.6)

for some real constant C, where h1, h2 represent lag sizes (see the expressions (2.16)

and (2.20) for precise definitions, notation and statements). As in the particular case

of fBm, such a particle is not constrained by boundaries (such as those found in a
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cell) or a potential.

We assume the availability of just one sample path. This models the situation

in which the biophysical samples are physically heterogeneous (Valentine et al. [83],

Dawson et al. [19], Monnier et al. [61]). Complex biomaterials such as mucus, or sim-

ulants such as agarose and hyaluronic acid, are expected to be heterogeneous due to

the unequal distribution of chains of polymers. Since the multiple M̂SD averages are

formed from the same particle path, then even when |h2 − h1| is large the associated

coefficients (2.2) still display strong correlation (Monnier et al. [61]). Our main result

(Theorem 2.3.1) shows that this yields limiting distributions and convergence rates

that depend on the diffusion exponent range according to a familiar trichotomy in the

literature on fractional processes. When 0 < α ≤ 3/2, the asymptotic distribution is

Gaussian, though the case α = 3/2 demands a non–standard convergence rate. When

3/2 < α < 2 the convergence rate depends on the diffusion exponent and the asymp-

totic distribution is non–Gaussian; this reflects the classical results by M. Rosenblatt

[74] and M. Taqqu [80]. This type of result is well-known for fixed sequences of

Gaussian, stationary random variables, or for p-variations of shrinking interval size

of Gaussian processes (Guyon and León [27], Peltier and Véhel [68], Hosking [32],

Bardet [3], Buchmann and Chan [11]). By contrast, we consider the M̂SD statistics

in the same format found in the biophysical literature, namely, we take the lag limit

h→∞. Moreover, whereas the related literature on Hermitian processes and random

fields often makes use of Wiener-Itô chaos expansions and Malliavin calculus (e.g.,

Nourdin et al. [66], Réveillac et al. [73]), in this work we develop our results in the

style of Rosenblatt’s classical arguments as to make the statements and techniques

more readily available to the interested reader with a biophysical background. The

asymptotic distributions provided allow for a new statistical perspective on the many

numerical-experimental results reported by the biophysical community, and make it

possible to mathematically compare M̂SD-based analysis with that based on other
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candidate statistical techniques, e.g., in the Fourier and wavelet domains.

It should be stressed that we do not assume exact self-similarity (see relation

(2.9)). Dispensing with the latter property is important because it is often of interest

to start from a Newtonian instance, such as the generalized Langevin equation (GLE;

e.g., Lysy et al. [48], p.6), to arrive at an anomalous diffusion model that displays non-

fractional short range behavior. In particular, we show that our results encompass

the stationary-increment process induced by a fractional Ornstein-Uhlenbeck (fOU)

velocity process (see Definition 2.2.1). The latter can be regarded as a spectrally

simplified model for fractional instances of the GLE (see (2.27)).

The chapter is divided as follows. Section 2.2 contains most definitions and the

assumptions used throughout the chapter. We also shed light on the proposed as-

sumptions by showing that they imply the properties (2.1) and (2.6). In Section 2.3,

we state and discuss weak limits for the M̂SD. Furthermore, Monte Carlo experiments

are used to illustrate the Gaussian or non-Gaussian nature of the M̂SD distribution,

and to study the quality of the asymptotic approximation. All proofs can be found

in the Appendix A.

2.2 Preliminaries and assumptions

All through the chapter, C is used in bounds to denote a constant that does not

depend on the sample size n, and which may change from one line to another. For

two sequences of real numbers {an}n∈N, {bn}n∈N, the expression an ∼ bn means that

an
bn
→ 1 as n→∞.

Recall that a stochastic process X is said to have stationary increments when

{X(t+h)−X(h)}t∈R has the same finite-dimensional distributions for any time shift

h ∈ R. The stochastic process in (2.1) is assumed to satisfy the following condition.
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Assumption (A1): X = {X(t)}t∈R is a Gaussian, stationary-increment process with

harmonizable representation

X(t) = Cα

∫
R

eitx − 1

ix

s(x)

|x|α/2−1/2
B̃(dx), (2.7)

where α ∈ (0, 2), Cα 6= 0, B̃(dx) is a C-valued Brownian measure such that B̃(−dx) =

B̃(dx), EB̃(dx)B̃(dx′) = 0 (x 6= x′), and E|B̃(dx)|2 = dx. The function s(x) is a

bounded and complex-valued function with |s(0)|2 = 1, and

| |s(x)|2 − 1| ≤ C0x
δ0 , x ∈ (−ε0, ε0), (2.8)

for constants C0, δ0, ε0 > 0.

In particular, the representation (2.7) implies that EX(t) = 0, t ∈ R. However, this

is inconsequential for modeling, since one can always assume that a single diffusing

particle starts at zero. In turn, the condition (2.8) is mild (c.f. Moulines et al. [62],

p.302, relation (4)) and plays a technical role in the proof of Proposition 2.2.1 below.

Example 2.2.1. FBm is the only Gaussian, self-similar, stationary-increment process

(Taqqu [81], Proposition 2.3). The self-similarity of the fBm BH = {BH(t)}t∈R means

that, for a Hurst parameter 0 < H ≤ 1, the scaling relation

{BH(ct)}t∈R
L
= {cHBH(t)}t∈R, c > 0, (2.9)

is satisfied. FBm has mean zero, and by Gaussianity, it is characterized by its closed-

form covariance function

EBH(s)BH(t) =
σ2

2
{|t|2H + |s|2H − |t− s|2H}, s, t ∈ R. (2.10)

In particular, when σ2 = 1, we call BH a standard fBm. Moreover, by taking s = t
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in (2.10), the expression (2.1) holds at all t as an equality with

α = 2H. (2.11)

When H is less than, greater than or equal to 1/2, fBm is sub-, super- or simply diffu-

sive (Brownian motion), respectively. The harmonizable representation of a standard

fBm is given by

X(t) = CH

∫
R

eitx − 1

ix

1

|x|H−1/2
B̃(dx), (2.12)

where

CH =
√
π−1HΓ(2H) sin(Hπ) (2.13)

(see Taqqu [81], p.31, expression (9.8)). Thus, fBm satisfies (A1) with Cα = CH and

s(x) = 1.

Let ∆ = 1 in (2.2). We assume that an experiment produced one sequential

sample X1, . . . , Xn, n ∈ N, of observations from the stochastic process X. For h ∈ N,

let

{hk := wkh}k=1,...,m (2.14)

be distinct integer-valued increment sizes, where hm ≤ n − 1, w1 < w2 < . . . < wm

and m ≤ n− 1. We can define an associated vector of increments

Y = (Y1(h1), . . . , Yn−h1(h1);Y1(h2), . . . , Yn−h2(h2); . . . ;Y1(hm), . . . , Yn−hm(hm))T ,

(2.15)

where

Yi(hk) := X(i+ hk)−X(i), hk ∈ N ∪ {0}, k = 1, . . . ,m.

Since X is a stationary-increment process, then the cross product

EYj+z(hk1)Yj(hk2) = E(X(j + z + hk1)−X(j + z))(X(j + hk2)−X(j))
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= E(X(z + hk1)−X(z))(X(hk2)−X(0)) = EYz(hk1)Y0(hk2)

is not a function of j. Denote the covariance matrix of the increments by ΣY(h1, . . . , hm),

where an entry has the form

γh(z)k1,k2 = EYj+z(hk1)Yj(hk2), (2.16)

for k1, k2 = 1, . . . ,m. Note that (2.16) satisfies the symmetry relation

γh(−z + hk2 − hk1)k1,k2 = γh(z)k1,k2 , z ∈ Z.

The self-similarity of fBm (see (2.9)) makes the asymptotic distribution of the M̂SD

much simpler to establish (see Peltier and Véhel [68], Proposition 4.2). Since we do

not assume self-similarity, as in the biophysical literature we need to make the size

of the lags themselves go to infinity, though slower than the sample size n. This

mathematically expresses what biophysicists do in practice: h has to be large enough

for the M̂SD regime to become linear, but at the same time cannot be too large

because of the increased variance of the M̂SD. This is illustrated in Figure 2.1 and

accurately described in assumption (A2), stated next.

Assumption (A2): for h = h(n) ∈ N ∪ {0}, n ∈ N,

h(n) log2(n)

n
+

n

h(n)1+δ/2
→ 0, n→∞, (2.17)

where

δ = min(α/2, δ0/2) (2.18)

(see (2.7) and (2.8) for the definitions of α and δ0).

As anticipated in the Introduction, the expressions (2.19) and (2.20) in the fol-

lowing proposition give exact mathematical meaning to the heuristic properties (2.1)
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and (2.6).

Proposition 2.2.1. Suppose the assumptions (A1) and (A2) hold.

(i) Then, there is a constant θ > 0 such that

∣∣∣∣EX2(h)

θhα
− 1

∣∣∣∣ ≤ Ch−δ, n→∞, (2.19)

where δ > 0 is given by (2.18);

(ii) moreover, for any k1, k2 = 1, ...,m and γh(z)k1,k2 as in (2.16),

γh(z)k1,k2 = |z|α−2h2wk1wk2{τ + g(z, h)k1,k2}, n→∞, (2.20)

hm + 1 ≤ |z| ≤ n, (2.21)

where

τ = τ(α) =
(Cα
CH

)2α(α− 1)

2
, (2.22)

CH is given by (2.13), and the residual function g(·, ·)k1,k2 satisfies

|g(z, h)k1,k2| ≤ C
( h
|z|

)δ
, 0 < h ≤ |z|. (2.23)

Besides fBm, another model for anomalous diffusion used in this work is what we

call the integrated fractional Ornstein-Uhlenbeck (ifOU) process. One major differ-

ence between fBm and the ifOU process is that the latter is not exactly self-similar.

The ifOU is an example of a fractional process whose M̂SD asymptotics are naturally

studied under the assumption (A2).

To define the ifOU process, recall that the fractional Ornstein-Uhlenbeck process

(fOU) is the a.s. continuous solution to the fBm-driven Langevin equation

dV (t) = −λV (t)dt+ σdBH(t), t ≥ 0, λ > 0, 0 < H < 1 (2.24)
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(Rao [70], p.78). The a.s. continuous process

V (t) = σ

∫ t

−∞
e−λ(t−u)dBH(u), t > 0,

solves (2.24) with initial condition V (0) defined by the same integral. When H = 1/2,

the solution is the classical Ornstein-Uhlenbeck process. We are interested in the

stationary-increment counterpart of the fOU process, as put forward in the next

definition.

Definition 2.2.1. Given a fOU process {V (t)}t≥0, the associated ifOU process is

given by

X(t) =

∫ t

0

V (s)ds, t > 0. (2.25)

The integrand in (2.25) is a version of V with continuous paths (see Didier and Fricks

[21], p.719, Lemma A.4).

The ifOU is a simple parametric model for anomalous diffusion. This can be seen

in the Fourier domain, based on the harmonizable representation

X(t) = σ
√

Γ(2H + 1) sin(πH)

∫
R

eitx − 1

ix

1

λ+ ix

1

|x|H−1/2
B̃(dx). (2.26)

The spectral density

fX(x) = σ2Γ(2H + 1) sin(πH)
1

λ2 + x2
1

|x|2H−1
, x ∈ R\{0}, (2.27)

exhibits the short range dependence term (λ2 + x2)−1 besides the fractional term

|x|1−2H , with a tuning parameter λ.

Let H ∈ (0, 1)\{1/2}. By (2.27) and dominated convergence, the covariance

function γ(s) = Cov(V (t), V (t+ s)) of V is continuous. Furthermore, in Cheridito et
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al. [16], p.8, it is shown that

γ(s) =
σ2

2

N∑
n=1

λ−2n
( 2n−1∏

k=0

(2H − k)
)
s2H−2n +O(s2H−2N−2), (2.28)

for an arbitrary N ∈ N, where the remainder is taken with respect to s → ∞.

Therefore,

|EX(t1)X(t2)| ≤
∫ t1

0

∫ t2

0

|γ(s1 − s2)|ds1ds2 <∞, (2.29)

whence the integral (2.25) is also well-defined in the mean-square sense (see Cramér

and Leadbetter [18], p.86). By (2.26), like fBm the ifOU also satisfies (A1) and the

conclusions of Proposition 2.2.1 apply, where the relation between α and H is again

given by (2.11). Note that when the ifOU is simply diffusive (H = 1/2, or α = 1),

the expression (2.20) holds with τ = 0.

2.3 The asymptotic distribution of MSD–based anoma-

lous diffusion parameter estimators

The following theorem is the main result of this paper. It gives the asymptotic

distribution of a random vector of M̂SD entries at different lag values, according to

subranges of the diffusion exponent α. For the theorem, recall that in the notation

(2.15), the M̂SD at a given lag value is given by

µ2(hk) =
1

Nk

Nk∑
i=1

Y 2
i (hk), (2.30)

where

Nk := n− hk, k = 1, . . . ,m. (2.31)

Theorem 2.3.1. Suppose the assumptions (A1) and (A2) hold. Let m ∈ N be the
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chosen number of M̂SD lag values, and let Nk be as in (2.31), k = 1, . . . ,m. Then,

(
Nk

η(Nk)ζ(hk)
(µ2(hk)− EX2(hk))

)
k=1,...,m

d→ Z, n→∞, (2.32)

where 
0 < α < 3/2 : η(n) =

√
n, ζ(h) = hα+1/2;

α = 3/2 : η(n) =
√
n log(n), ζ(h) = h2;

3/2 < α < 2 : η(n) = nα−1, ζ(h) = h2.

(2.33)

In (2.32),

(i) if 0 < α < 3/2, then Z ∼ N(0,Σ), where the entry k1, k2 of the matrix Σ = Σ(α)

is given by

Σk1,k2 = 2w
−α−1/2
k1

w
−α−1/2
k2

(Cα
CH

)4
‖Ĝ(y;wk1 , wk2)‖2L2(R), k1, k2 = 1, . . . ,m,

(2.34)

Ĝ(y;wk1 , wk2) = C2
H

(eiwk1y − 1)(e−iwk2y − 1)

|y|α+1 , (2.35)

and CH is given in (2.13);

(ii) if α = 3/2, then Z ∼ N(0,Σ), where the entry k1, k2 of the matrix Σ = Σ(α) is

given by

Σk1,k2 = 4τ 2, k1, k2 = 1, . . . ,m. (2.36)

(iii) if 3/2 < α < 2, Z follows a multivariate Rosenblatt-type distribution whose

characteristic function is

φZ(t) = exp

{
1

2

∞∑
s=2

[2iτ
∑m

k=1 tk]
s

s
cs

}
, (2.37)
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where, for s ≥ 2,

cs = cs(α) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

|x1−x2|α−2|x2−x3|α−2 · · · |xs−x1|α−2dx1dx2 · · · dxs.

(2.38)

Remark 2.3.1. It is worthwhile recalling the fact that the constant cs in (2.38) is,

indeed, finite. Indeed, by an application of the Cauchy-Schwarz inequality,

cs ≤
(∫ 1

0

∫ 1

0

|x1 − x2|2α−4 dx1dx2
)s/2

=

(
1

(2α− 3)(α− 2)

)s/2
. (2.39)

Theorem 2.3.1 allows us to develop the asymptotic distribution of the M̂SD-based

least square estimator of the diffusivity coefficient and diffusion exponent. Recast the

(pathwise) system (2.4) as the regression model

Qn = Mnβ + εn, (2.40)

where

Qn =


log µ2(h1)

...

log µ2(hm)

 , β =

 log θ

α

 , Mn =


1 log(h1)

...
...

1 log(hm)

 , (2.41)

and ε has a distribution to be determined. We will denote by

β̂n := (MT
nMn)−1MT

nQn = ((̂log θ)n, α̂n )T (2.42)

the estimator generated by the ordinary least squares solution to the system (2.40).

The next corollary describes the asymptotic distribution of the least squares estimator

(2.42).
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Corollary 2.3.1. Suppose the assumptions (A1) and (A2) hold. Then, as n→∞,

nhα

η(n)ζ(h)

 1
log h

((̂log θ)n − log θ)

α̂n − α

 d→

 UT

−UT

AZ, (2.43)

where A and Z, respectively, are as in (A.15) and Theorem 2.3.1, and

UT =
1

cw

( m∑
k=1

log(wk/w1), ...,
m∑
k=1

log(wk/wm)
)

(2.44)

with constant

cw = m
m∑
k=1

log2(wk)−
( m∑
k=1

log(wk)
)2
. (2.45)

Corollary 2.3.1 states that the limiting distributions for β̂n are qualitatively dis-

tinct as a function of the underlying diffusion exponent α. In particular, a non-

Gaussian limit appears in the superdiffusive range 3/2 < α < 2. Though probably of

little interest in the modeling of viscoelastic diffusion, superdiffusion appears in many

other applications (e.g., Brokmann et al. [10], Margolin and Barkai [52]; note that in

these papers the processes are viewed as following Lévy walk-type dynamics).

Remark 2.3.2. Corollary 2.3.1 can be directly used in the construction of confidence

intervals, at least starting from knowledge that α lies in one of the subregions (0, 3/2)

or (3/2, 2) of the parameter space. To fix ideas, consider the parameter α; the ensuing

argument can be easily adapted for θ. By Corollary 2.3.1, α̂n − α is asymptotically

equivalent to

−η(n)ζ(h)

nhα
UTAZ =:

η(n)ζ(h)

nhα
σ(θ, α)Z(α),

where σ(θ, α) is a smooth function of (θ, α) defined as to make Z(α) a standardized

random variable. When 0 < α < 3/2, this is clearly possible, since the limiting

distribution is Gaussian and −UTA and Σ are smooth functions of θ and α (see

(2.34), (A.14) and (2.44)). When 3/2 < α < 2, first note that Z in Theorem 2.3.1 is a
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rank 1 random vector. Indeed, recall that the characteristic function of a standardized

(mean zero, variance one) Rosenblatt random variable is given by

φα(t) = exp
{1

2

∞∑
s=2

(2itψ(α))s
cs
s

}
, ψ(α) :=

((2α− 3)(α− 1)

2

)1/2
, (2.46)

(see Veillette and Taqqu [84], expression (4)). Let Z1 be a Rosenblatt random variable

with normalizing constant τ (i.e., with the latter in place of ψ(α) in (2.46)), and let

Z2 = . . . = Zm := Z1. Then, Eei
∑m
k=1 tkZk = EeiZ1

∑m
k=1 tk = exp{1

2

∑∞
s=2[2iτ

∑m
k=1 tk]

s cs
s
}.

So, denote by Z̃ the limiting Rosenblatt random variable obtained in (2.22). Then,

Zα := (ψ(α)/τ)Z̃ is standardized and, by (2.22) and (2.46), the coefficient ψ(α)/τ

also depends smoothly on α.

So, the consistency of θ̂n and α̂n for θ and α, respectively, implies that of σ(θ̂n, α̂n)

for σ(θ, α). When 0 < α < 3/2, Z(α) ∼ N(0, 1), which is independent of α. Then,

an approximate 100(1− ξ)% confidence interval for α is simply

(
α̂n +

(h
n

)1/2
σ(θ̂n, α̂n)zξ/2, α̂n +

(h
n

)1/2
σ(θ̂n, α̂n)z1−ξ/2

)
.

When 3/2 < α < 2, by (2.39) and the dominated convergence theorem, the charac-

teristic function φα(t) =: φ(t, α) of Zα is continuous with respect to α for t around

the origin. Now consider the function φ(z, α) with domain in z extended to a vicinity

of the origin of C. By applying Theorem 7.1.1 in Lukacs [47] and the uniqueness of

analytic continuation, we obtain that φ(t, α) is continuous with respect to α for all

t ∈ R. Consequently, the cumulative distribution function and the quantile function

zς(α) are also continuous with respect to α, whence zς(α̂n)
P→ zς(α) for ς ∈ (0, 1). So,

an approximate 100(1− ξ)% confidence interval for α is

(
α̂n +

(h
n

)2−α̂n
σ(θ̂n, α̂n)zξ/2(α̂n), α̂n +

(h
n

)2−α̂n
σ(θ̂n, α̂n)z1−ξ/2(α̂n)

)
(2.47)
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(see Veillette and Taqqu [84] for numerical results on the quantiles of the Rosenblatt

distribution). In (2.47), we are using the fact (h
n
)2−α/(h

n
)2−α̂ → 1, which can be

verified by taking logs.
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Figure 2.2: Monte Carlo distribution of µ2(1) over 5,000 paths of size 210. Top plots, fBm (left:
α = 0.5; right: α = 1.8. Bottom plots, ifOU (left: α = 0.5; right: α = 1.8. In both cases, λ = 1).

To study the finite-sample properties of M̂SD–based estimation and the quality

of the asymptotic approximations described in Theorem 2.3.1 and Corollary 2.3.1,

Monte Carlo experiments were conducted based on sub- and superdiffusive instances

of fBm and ifOU processes. Figure 2.2 displays the Monte Carlo distributions of the

M̂SD, i.e., histograms and best Gaussian fit. The plots reflect the results described in

Theorem 2.3.1: for the subdiffusive Hurst parameter value of H = 0.25 (α = 0.5), the

distribution is distinctively Gaussian; by contrast, for the strongly superdiffusive value

H = 0.9 (α = 1.8), the Rosenblatt-like attractor skews the finite-sample distribution.

Moreover, Table 2.1 displays results for Ĥ = α̂
M̂SD

/2 under a fBm. The simulations
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encompass two distinct situations. In the first one, we follow the common practice in

microrheology of taking a large number of consecutive lag values such as hmin, hmin +

1, . . . , hmax − 1, hmax, where hmin = 2 and hmax = 128. In the second one, we pick

only two lag values, namely h1 = 2 and h2 = 128. The results show that dropping

most of the M̂SDs has little impact on the performance of β̂n. Moreover, simulation

studies not shown provide evidence that in both subdiffusive and superdiffusive ranges

(H = 0.25, 0.5, 0.75, 0.9 or α = 0.5, 1, 1.5, 1.8, respectively), a pairwise combination

of two low lag values (such as h1 = 1 and h2 = 2) leads to the best statistical

performance, as measured by the Monte Carlo mean-squared error.

As expected, though, the results for the ifOU are quite distinct. Since the latter

is not exactly self-similar, the MSD curves display the asymptotic flattening effect

revealed in Figure 2.1 for H = 0.25 (α = 0.50). This is what drives biophysicists to

use larger lags when modeling anomalous diffusion data in the first place. Table 2.2

illustrates this effect in the estimation of β̂n based on triples of consecutive lag values:

the estimation bias decreases as the chosen lags increase. However, since the variance

also increases with the lag, due to the smaller number of terms in µ2(h), the choice

of regression lags with the lowest mean-squared error turns out to be [25, 26, 27]. A

different phenomenon emerges in the superdiffusive range. Table 2.2 shows that for

very high values of H or α, it may be optimal to use lower regression lag values. This

is so because the bias for large values of H or α is very large. Though not displayed,

the same issue appears under different parameter values in the superdiffusive range,

and its cause is a matter for future investigation.

2.4 Conclusion

In this chapter, we establish the asymptotic distribution of the M̂SD–based estimator

widely used in the biophysical literature on anomalous diffusion. We assume that

the particle undergoes a Gaussian, stationary-increment process, and take a path-
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wise approach, i.e., only one particle path is available. Depending on the diffusion

exponent of the underlying process, the M̂SD–based estimator has Gaussian or non-

Gaussian limiting distribution, as well as different convergence rates. The asymptotic

distributions provided allow for a new statistical perspective on the many numerical-

experimental results reported by the biophysical community. We illustrate our results

analytically and computationally based on fractional Brownian motion and the inte-

grated fractional Ornstein-Uhlenbeck process.

Table 2.1: Mean and s.d. of Ĥ for fBm: consecutive lags (2, . . . , 28) vs two lags (h1 = 2, h2 = 27)

H = 0.25 H = 0.90
(α = 0.5) (α = 1.8)

n Êcons(H) ŝdcons(H) Ê2(H) ŝd2(H) Êcons(H) ŝdcons(H) Ê2(H) ŝd2(H)
29 0.2363 0.0723 0.2376 0.0527 0.8380 0.1067 0.8459 0.0890
210 0.2437 0.0508 0.2446 0.0359 0.8583 0.0772 0.8644 0.0648
211 0.2468 0.0361 0.2476 0.0253 0.8715 0.0574 0.8751 0.0507
212 0.2482 0.0252 0.2486 0.0177 0.8792 0.0462 0.8814 0.0415

Table 2.2: Mean and s.d. of Ĥ for ifOU: small lags vs large lags, path length=212

H = 0.25 (α = 0.5) H = 0.90 (α = 1.8)

lags Ê(H) ŝd(H) Ê(H) ŝd(H)
[23, 24, 25] 0.3218 0.0272 0.8817 0.0266
[24, 25, 26] 0.2964 0.0354 0.8441 0.0392
[25, 26, 27] 0.2756 0.0488 0.8315 0.0506
[26, 27, 28] 0.2591 0.0742 0.8239 0.0704



23

Chapter 3

MSD-based fluid heterogeneity

testing

3.1 Introduction

The experimental and statistical difficulties involved in estimating the parameters

ξ = (log θ, α) based on the regression system (2.4) have been pointed out by many

authors. A non-exhaustive list of issues includes limited fluorophore lifetimes, proteins

diffusing out of the field of view, finite-resolution imaging and motion blurring due to

camera integration times, measurement errors, the presence of drifts and intra-path

correlation [5, 13, 39,56,60,71,86].

Notwithstanding the difficulties involved, the potential heterogeneity of fluid sam-

ples in fields such as microrheology implies that estimating ξ from single trajectories

is of great interest [12, 14, 49, 86]. This calls for accurate results on the stochastic

behavior of the M̂SD, and accordingly, a wealth of literature on the subject has de-

veloped. Starting from an underlying fractional stochastic process, several properties

of the M̂SD such as ergodicity and approximations to its finite sample distribution

were established by many authors [1, 8, 9, 15,20,25,25,26,36,37,59,65,71,77].

Nevertheless, until recently, the limiting distribution of the M̂SD was unknown.
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This means that it was impossible, for example, to construct asymptotically valid

confidence intervals for the anomalous diffusion parameters starting from a single

observed particle path. This difficulty was overcome in Chapter 2 of this thesis under

mild assumptions for the case where the particle motion is a fractional Gaussian,

stationary increment process [23]. In this chapter, we propose a particle path-based

general protocol for the testing of fluid heterogeneity that builds upon the M̂SD’s

asymptotic distribution. The latter already accounts for intra-path correlation and

thus can be used to estimate the parameter vector ξ from a single observed path. The

protocol tests heterogeneity in two different experimental situations, namely, when

there are (i) multiple paths from the same fluid sample; (ii) ensembles of paths from

different fluids. To illustrate the use of the protocols, we make inferences on fluid

viscoelasticity with data from the David B. Hill Lab (UNC-Chapel Hill) on biofilm

eradication, as first reported and described in [72].

The chapter is organized as follows. In Section 3.2, assuming a single observed

path of realistic length, we propose an M̂SD-based estimation protocol that displays

improved performance in terms of bias and variance by comparison to common M̂SD-

based protocols. In Section 3.3, assuming multiple observed paths, we draw upon

the protocol proposed in Section 3.2 to develop intra- and interfluid heterogeneity

hypotheses tests. In Section 3.4, we investigate the performance of the ensemble M̂SD-

based estimator in under two sampling methods: measure more paths, or measure

longer paths. In Section 3.5, we test the procedures put forward in Section 3.3 by

applying them to experimental data. All proofs can be found in Appendix B.

3.2 Improved pathwise MSD-based estimation

In the analysis of fluid heterogeneity, it is especially important to make efficient use

of the information contained in each particle path data set. For this reason, in this
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section we assume a single observed path

X1, X2, . . . , Xn, n ∈ N, (3.1)

is available, and that the underling stochastic process {X(t)}t∈R satisfies assumption

(A1) and (A2) in Chapter 2.

Fitting (2.4) by means of ordinary least squares (OLS) regression is the most intu-

itive way of constructing an estimator of the diffusion parameter vector ξ (see (2.1)).

This roughly corresponds to the common practice in the biophysical literature, both

in experimental and methodological work [14, 46, 49, 83]. Throughout this chapter,

ξ̂OLS = (̂log θOLS, α̂OLS) denotes this standard estimator. However, ξ̂OLS has at least

two significant shortcomings: finite sample bias and suboptimal performance in the

presence of correlation among the regression disturbance terms.

We propose an improved estimation protocol that addresses these issues. It in-

volves

(i) a finite sample bias correction in the regression system of equations. In statis-

tical problems involving scaling, it is well known that estimation bias is present

even if the scaling relation in (2.1) holds as an equality. This is a consequence

of the elementary fact that the logarithm of the ensemble average and the en-

semble average of the logarithm are generally distinct (e.g., [62–64,85]). In the

context of (2.4),this means that

Elog µ2(h) 6= logEµ2(h) = α log h+ log θ, h ∈ N.

Let hk = wkh, w1 < w2 < ... < wm be the regression lag values chosen by

the analyst, where h ∈ N. By reinterpreting log µ2(h) itself as an estimator of

α log h+ log θ, we can reexpress its bias as a function of the diffusion exponent

α, the path length n and the lag parameter h. This is done in the following
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theorem.

Theorem 3.2.1. For 0 < α < 2 and a finite n,

Elog µ2(h)− α log h− log θ = − 1

4n

n−1∑
i=−n+1

(
1− |i|

n

)
×

×
( ∣∣∣∣ ih + 1

∣∣∣∣α − 2

∣∣∣∣ ih
∣∣∣∣α +

∣∣∣∣ ih − 1

∣∣∣∣α)2

+O(h−δ) + o(%2(h, n, α)), (3.2)

for some δ > 0 (see (2.17)) and

%(h, n, α) =


(h
n
)1/2, 0 < α < 3/2;

(h logn
n

)1/2, α = 3/2;

(h
n
)2−α, 3/2 < α < 1.

(3.3)

The term of O(h−δ) on the right hand side of (3.2) is determined by the short

memory (high-frequency) component of the spectral density of the diffusion

process, where the short memory effect can be observed in the log2-log2 plots

of MSD curves vs lag values. FIG. 3.1(a) is a plot of simulated ifOU (α = 0.6)

processes and FIG. 3.1(b) is a plot of experimental data (CSO2-NO at 8 mg

ml−1). In FIG. 3.1(b), when we choose small lag values to regress the slope

of the log2 of MSD curve, α̂ is 1.42 where the true α is 0.6. If we use larger

lag values, the estimate is 0.76, i.e., much closer to 0.6. FIG. 3.1(b) shows a

similar trend, that is, the use of large lag values reduces the bias of α̂. On the

other hand, the lag values cannot be chosen too large by comparison to the path

length n. Otherwise, this leads to the inclusion of M̂SD terms µ2(h) with large

variance due to the small number of terms in the average.

(ii) an optimal regression procedure in the presence of correlated errors. In any

regression problem with correlated errors, a GLS (generalized least squares)

procedure is expected to outperform OLS in terms of mean squared error (MSE)
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Figure 3.1: log2− log2 plots of MSD curves as a function of the lags. (a) 20 ifOU paths with length
211, the diffusion exponent is α = 0.6; (b) 20 particle paths with length 1800 were randomly selected
from the P. aeruginosa biofilm after treatment with COS2-NO at concentration level 8 mg ml−1.
The first red line in each plot indicates the fitted slope over small lag values h = 1, 2. The estimated
diffusion exponent α̂ is 1.42 in (a) and 1.10 in (b). The second red line in each plot indicates the
fitted slope over large lag values h = 8, 32. The estimated diffusion exponent α̂ is 0.74 in (a) and
0.69 in (b).
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[17]. Therefore, let

ξ̂GLS = (̂log θGLS, α̂GLS)T = (XT Σ̃−1X)−1XT Σ̃−1y, (3.4)

where

X =



1 log h1

1 log h2
...

...

1 log hm


is the so-called design matrix and

Σ̃(α) = (σ̃k1,k2)k1,k2=1,...,m (3.5)

is the unknown finite sample covariance matrix of y =
(

log(µ2(hk))
)T
k=1,...,m

.

In addition, ξ̂GLS is the best linear unbiased estimator with covariance matrix

Σξ̂GLS
(α) = (XT Σ̃−1(α)X)−1. (3.6)

An estimator of each entry σ̃k1,k2 , k1, k2 = 1, . . . ,m of the matrix Σ̃ is given by

the following theorem.

Theorem 3.2.2. For 0 < α < 2 and a finite n,

σ̃k1,k2 =
1

2n

n−1∑
i=−n+1

(
1− |i|

n

){ ∣∣∣∣∣ i√
hk1hk2

+

√
hk1
hk2

∣∣∣∣∣
α

−

−

∣∣∣∣∣ i√
hk1hk2

+

√
hk1
hk2
−

√
hk2
hk1

∣∣∣∣∣
α

−

∣∣∣∣∣ i√
hk1hk2

∣∣∣∣∣
α

+

+

∣∣∣∣∣ i√
hk1hk2

−

√
hk2
hk1

∣∣∣∣∣
α}2

+O(h−δ) + o(%2(h, n, α)). (3.7)
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However, the presupposes knowledge of the covariance matrix Σ̃(α) in (3.5), is a

condition not met in our framework. An approximation to Σ̃(α), which in turn can

be estimated by Σ̃(α̂OLS). Hence, an improved estimator can be constructed by GLS

based on Σ̃(α̂OLS) and the bias-corrected regression equation system. Hereinafter, the

resulting estimator will be denoted by

ξ̂ = (̂log θ, α̂). (3.8)

Its construction is schematically displayed below in the form of pseudo-code.

Generating the improved pathwise estimator ξ̂

Input:

• one observed particle path (see (3.1)) of length n;

• regression lag values hk, k = 1, . . . ,m (typically, hk = hwk, w1 ≤ . . . ≤ wm, h =
√
n);

• the expression for the asymptotic covariance matrix Σ̃(α) as a function of α;

Step 1: obtain the estimator α̂OLS by means of OLS over the chosen lag values;

Step 2: use α̂OLS to correct the bias of logµ2(·) (see (3.2));

Step 3: estimate the asymptotic covariance matrix Σ̃(α) by means of Σ̃(α̂OLS);

Step 4: obtain the estimator ξ̂ by means of Σ̃(α̂OLS)-based GLS on the bias-corrected

regression equation.

To compare the performance of ξ̂ and ξ̂OLS, we generate 1000 independent paths

of length 210 and estimate the diffusion exponent based on the two methods. FIG.

3.2 displays the results in terms of Monte Carlo bias, standard deviation and MSE.

The improved estimator ξ̂ outperforms the usual estimator ξ̂OLS by any of the three



30

criteria.
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Figure 3.2: x-axis: α. Bias, standard deviation, and MSE of the estimators ξ̂ and ξ̂OLS as a function

of diffusion exponents. For comparison, solid and dashed lines represent ξ̂ and ξ̂OLS, respectively.

The estimator ξ̂ has smaller bias, standard deviation, and MSE than ξ̂OLS.

To study the effect of bias correction on the performance of the estimator ξ̂ =

(̂log θ, α̂), we generated 1000 independent paths of length 210 and estimated the diffu-

sion exponent α in the presence or absence of bias correction. The results are shown

in FIG. 3.3. As expected, the bias of α̂ is smaller after bias correction. In addition,

it is near zero for all values of the parameter α, with the exception of the range of

extreme superdiffusivity (α = 1.8).
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Figure 3.3: x-axis: α. The effect of the bias correction procedure in the performance of the estimator
ξ̂ as a function of the diffusion exponent α. For comparison, the latter is also considered without
bias correction. The version of the estimator with bias correction has a significantly smaller bias
than that without bias correction.



32

3.3 Testing heterogeneity

Single particle tracking experiment often generates multiple particle paths. Given

data from the latter, fluid heterogeneity can be tested in at least two senses. First,

assuming local physical homogeneity, whether different regions of the fluid are hetero-

geneous; second, assuming global physical homogeneity of each fluid sample, whether

two samples from each fluid are heterogeneous. Hereinafter, we will call these two

senses intra- and interfluid heterogeneity, respectively.

Tables 3.1, 3.2 and 3.3 display the proposed framework: namely, for each type

of fluid heterogeneity, they show the appropriate hypotheses and the proposed test

statistics and test rejection regions.
Table 3.1: Hypotheses

heterogeneity H0 Ha

intrafluid ξ1 = · · · = ξν ξi 6= ξj

for some 1 ≤ i, j ≤ ν

interfluid ξI = ξII ξI 6= ξII

Table 3.2: Test statistics

heterogeneity test statistic

intrafluid S2
1 , S

2
2 (see (3.10))

interfluid T1, T2 (see (3.16))
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Table 3.3: Tests

heterogeneity rejection parameter sample

region range size

intrafluid Rintra (see (3.11)) 0 < α ≤ 3/2 all ν

intrafluid Rintra (see (3.15)) 3/2 < α < 2 large ν

interfluid Rinter (see (3.17)) 0 < α < 2 large νI, νII

Consider first the setting of intrafluid homogeneity testing, i.e., suppose ν ∈ N

bead diffusion paths of length n from a single fluid sample are available. If the fluid is

physically homogeneous, then it is expected to generate particle paths with (nearly)

identical parameter values ξ. The alternative is that for some pair i, j, ξi 6= ξj. These

two possibilities, labeled H0 and Ha, respectively, are described in the row “intrafluid”

in Table 3.1.

Starting from the ν particle paths, let ξ̂i, i = 1, . . . , ν, be the vector-valued esti-

mators put forward in Section 3.2. Also, let

ζ̂i =

 ζ̂i,1

ζ̂i,2

 = Σ
−1/2
ξ̂GLS

(α)ξ̂i, i = 1, ..., ν, (3.9)

where Σ
−1/2
ξ̂GLS

(α) is given by (3.6). Then, for every i, the two components ζ̂i,1 and ζ̂i,2

are standardized and uncorrelated. Let

S2
j =

1

ν − 1

ν∑
i=1

(ζ̂i,j − ζ̂ ·,j)2, j = 1, 2 (3.10)

be the sample variances of {ζ̂i,1}i=1,...,ν and {ζ̂i,2}i=1,...,ν , which converge to ν in-

dependent and identically distributed normal random variables at rate
√

n
h

when

0 < α ≤ 3/2, or at rate
√

n
log(n)h

when α = 3/2 (see Corollary 2.3.1). Then, under

H0, as n→∞, the random vector
(

(ν − 1)S2
1 , (ν − 1)S2

2

)
approaches, in law, a vec-
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tor of independent chi-squared distributions with ν − 1 degrees of freedom. To test

heterogeneity at significance level ε, we can use Bonferroni-type correction and reject

the null hypothesis H0 if

Rintra : (ν − 1)S2
1 > χ2

ν−1,ε/2 or (ν − 1)S2
2 > χ2

ν−1,ε/2 (3.11)

(see Tables 3.2 and 3.3, “intrafluid” rows). Since, in (3.9), Σξ̂(α) is also a function of

the unknown parameter value α, we can replace the latter with its ensemble estimator

α̂ÊM, where we define the ensemble mean squared displacement (EMSD) by

µ2(h)ÊM =
1

ν

ν∑
l=1

µ2(h)l, (3.12)

and one can then produce M̂SD-based ensemble estimators

ξ̂ÊM = (̂log θÊM, α̂ÊM) (3.13)

by performing the pseudo-code of generating improved estimator ξ̂. To investigate

the accuracy of Σξ̂(α̂ÊM) as an estimator of Σξ̂(α), we generated 1000 independent

paths of length 210. FIG. 3.4 shows Monte Carlo variances as well as their estimates

Σξ̂(α̂ÊM) for several values of the parameter α. The estimates nearly perfectly match

the Monte Carlo results in the subdiffusive range. A slight deviation appears in the

superdiffusive range, but still within an acceptable margin.

When α > 3/2, under H0 the estimators ξ̂i, i = 1, . . . , ν, converge in distribu-

tion to ν independent and identically distributed non-Gaussian (Rosenblatt-type, see

Corollary 2.3.1 and [74, 80, 82, 84]) random vectors at rate (n
h
)2−α, and so do the

estimators ζ̂i, i = 1, . . . , ν. In this case, the marginal distributions of the uncorre-

lated vector (S2
1 , S

2
2) do not approach chi-squared distributions. However, if ν is large
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enough (heuristically, ν ≥ 30),

S2
1

asymp∼ N

(
1,
κ1 − 1

ν

)
, S2

2

asymp∼ N

(
1,
κ2 − 1

ν

)
, (3.14)

where the parameter κ1 := E[ζ̂·,1 − Eζ̂·,1]4, κ2 := E[ζ̂·,2 − Eζ̂·,2]4 can be numerically

approximated (see Table 3.2 and Appendix B.3). Thus, at significance level ε, we

reject the null hypothesis H0 if

Rintra :
S2
1 − 1√

(κ1 − 1)/ν
> zε/2 or

S2
2 − 1√

(κ2 − 1)/ν
> zε/2 (3.15)

(see Table 3.3).

To check the finite sample size (significance level) of the test, we conducted a

Monte Carlo study with 50 simulated paths of length 212 and recorded whether or

not the null hypothesis H0 is rejected at 0.05 significance level. This procedure

was repeated 500 times, where the rejection rate was expected to be around 0.05.

Since each outcome is a Bernoulli trial (reject or not H0), the simulation rejection

rate follows a binomial distribution with n = 500 and p = 0.05. Thus, a normal

approximation to the 95% confidence interval of the rejection rate gives (0.031, 0.069).

As shown in FIG. 3.5(a), the observed simulation rejection rate was around 0.05 and

within a 95% confidence interval, as expected.

Now consider the setting of interfluid homogeneity testing, namely, suppose νI and

νII paths, νI, νII ∈ N, are obtained from two physically homogeneous fluid samples

I and II, respectively. We are interested in testing whether the samples I and II

are homogeneous, namely, whether or not particle diffusion in the samples displays

the same underlying parameter value ξ. These two possibilities, labeled H0 and Ha,

respectively, are described in the row “interfluid” in Table 3.1.

Since multiple particle paths are available for each fluid sample, we can produce

M̂SD-based ensemble estimators ξ̂ÊM,I and ξ̂ÊM,II (see (3.12) and (3.13)).Their finite
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Figure 3.4: Monte Carlo standard error of the estimator α̂ (dashed line) and the estimator Σξ̂(α̂
ÊM

)

(solid line) as a function of the diffusion exponent α. The latter closely matches the former, especially
in the subdiffusive range α < 1.
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Figure 3.5: x-axis: H = α/2. Rejection rate of (a) chi-square heterogeneity test of multiple particle
paths from a fluid (b) z-test of multiple particle paths from two fluid samples, as a function of the
diffusion exponent. For every value of α, each of 500 Monte Carlo runs consisted of generating 50
independent paths and conducting a test at 95% confidence level. The Monte Carlo rejection rate
is very close to the theoretical value of 0.05.
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sample covariance matrices are 1
νI

Σξ̂GLS
(αI) and 1

νII
Σξ̂GLS

(αII), respectively. Define the

standardized estimators

ζ̂j =

 ζ̂j,1

ζ̂j,2

 =
1

νj
Σ
−1/2
ξ̂GLS

(α̂ÊM,j)ξ̂ÊM,j, j = I, II.

Let

T1 =
ζ̂I,1 − ζ̂II,1√

2
, T2 =

ζ̂I,2 − ζ̂II,2√
2

(3.16)

be the test statistics (see Table 3.2). This leads to the rejection region

Rinter : |T1| > zε/4 or |T2| > zε/4 (3.17)

(see Table 3.3). To check the test’s accuracy, we produced a 500-run Monte Carlo

study based on two sets of 50 paths with the same diffusion exponent, where tests

were conducted at significance level 0.05. As shown in FIG. 3.5(b), the rejection rate

was close to 0.05 and within a 95% confidence interval, as expected.

In FIG. 3.6, we investigate the interfluid test power as a function of the path

lengths and number of paths. The x-axis represents the difference between the dif-

fusion parameters from two fluids, namely, δα = |αI − αII|, whereas the y-axis is the

test power at 0.05 significance level. In FIG. 3.6(a) and (b), the values of α are 0.2

and 1.0, respectively. It turns out that there is no visible difference between doubling

the path lengths or the number of paths. On the other hand, in FIG. 3.6(c), α is 1.8,

i.e., the underlying particles are strongly super-diffusive. In this case, doubling the

number of paths increases the test power more than doubling the path lengths. This

reflects the fact that, in this parameter range, the convergence rate of the M̂SD-based

estimators is slower than 1√
n
.
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Figure 3.6: Interfluid test power v.s. δα = |αI − αII|. Top: α = 0.2. Middle: α = 1.0. Bottom:
α = 1.8
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3.4 Ensemble estimation: more or longer paths?

The framework put forward in Sections 3.2 and 3.3 allows addressing the following

issue. Suppose the fluid is locally homogeneous, and that data storage or cost restric-

tions are in place. Should experimentalists record the diffusion of a larger number of

particles (ν) over a fixed period of time (hence, keeping constant the average sample

path data length n), or should they record the same number of particles ν over a

longer period of time (hence, yielding a larger average n)? We tackle this problem

by investigating the performance of the ensemble estimator in (3.13) in terms of bias

and variance. Recall that

Eµ2(h)ÊM = Eµ2(h) = EX(h)2,

Varµ2(h)ÊM =
1

ν
Varµ2(h).

By a similar reasoning to the one leading to (3.2), the bias of log2 µ2(h)ÊM as an

estimator of α log h+ log θ is given by

O(h−δ)− E
[

(µ2(h)ÊM − EX2(h))2

2EX2(h)2

]
= O(h−δ)− 1

ν
E
[

(µ2(h)− EX2(h))2

2EX2(h)2

]
,

and the variance of log µ2(h)ÊM is, approximately,

1

ν
Var(log µ2(h)).

Then, the question asked above boils down to: in order to improve the performance

of the ensemble estimator in terms of bias, standard deviation and square root MSE,

should we use larger ν (hereinafter Method I), or, larger n (hereinafter Method II)?

To answer this question, we will compare these two methods under same total number

of observations (i.e., the total number of data points ν × n recorded). Therefore, we
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use the following rule:

1. start at the same initial status: 16 paths of length 256 for each method, run 500

Monte Carlo simulations to get the bias, standard deviation and square root

MSE of α̂ for Method I and II;

2. for Method I, fix the paths length, generate 4 times number of paths and redo

the Monte Carlos experiments;

3. for Method II, fix the number of paths, get paths of 4 times length, meanwhile,

multiply all lags by 2 and redo the Monte Carlos experiments;

For example, in step 1, both methods make use of a total of 16×256 = 4096 observa-

tions. In step 2, we generate 4× 16 = 64 paths for Method I, which yields a total of

64× 256 = 16384 observations. To keep the balance, we generate 16 paths of length

4×256 = 1024 for Method II. Therefore, Method II also draws upon 16×1024 = 16384

observations.

We compare the results in FIG. 3.7. In FIG. 3.7(a) and (b), the diffusion exponent

is set to α = 0.6 and 1.0, respectively. Method II has smaller bias and square root

MSE. The reason is that, when ν is large enough, O(h−δ) dominates the bias. Thus,

increasing the number of paths ν does not reduce the bias. However, increasing the

path length n means that the M̂SD terms µ2(h) with larger lag values h can be

used in the regression procedure. This implies a reduction in the magnitude of the

term O(h−δ), and hence, smaller bias. Method I displays smaller standard deviation

because a 4-fold increase in ν reduces the standard error by a factor of 1/2. Meanwhile,

for Method II, the standard deviation is proportional to
√
h/n. By multiplying n by

4 and h by 2, the standard error is reduced by a factor of 1/
√

2.

For FIG. 3.7(c), the diffusion exponent is set to α = 1.8. Method II still shows

a smaller bias by comparison to Method I, as expected. However, since δ increases

as a function of α, then O(h−δ) shrinks with α. Therefore, the component O(h−δ)
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carries less weight in the estimator’s bias for the superdiffusive case than for the

subdiffusive case. Since α > 3/2, by (2.33), the standard deviation for Method II is

proportional to (h/n)2−α = (n/h)0.2. Thus, again assuming a 4-fold increase in n and

a 2-fold increase in h, the standard error is reduced by a factor of 1/20.2, which is

much slower than the standard error reduction factor of 1/2 for Method I. These two

reasons explain why Method I displays smaller square root MSE than Method II.

3.5 Application in experimental data: heterogene-

ity of treated P. aeruginosa biofilms

The David B. Hill Lab (UNC-Chapel Hill) produced data from experiments on dis-

ruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan

oligosaccharides [72].

We now provide a brief description of the experiments. Cystic fibrosis (CF) lung

disease is caused by defective chloride transport, resulting in thickened, dehydrated

mucus. The latter restricts bacterial motility and promotes P. aeruginosa biofilm

formation. Inhaled tobramycin is currently the only antibiotic recommended for the

treatment of both initial and chronic P. aeruginosa infections in patients with CF.

While inhaled tobramycin is effective at eradicating bacteria within biofilms, it fails

to physically remove the structural remnants of the biofilm from the airways. This

may cause biofilm regrowth and the development of antibiotic-resistant infections.

Therefore, an ideal anti-biofilm therapeutic for CF would both eradicate bacteria and

physically degrade the biofilm, facilitating clearance from the airway.

On the other hand, nitric oxide (NO) is an endogenously produced diatomic free

radical with significant antibacterial activity against P. aeruginosa biofilms. Fur-

thermore, atomic force microscopy has revealed that NO exposure causes structural

damage to the membranes of planktonic Gram-negative bacteria, including P. aerugi-
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Figure 3.7: Bias, standard deviation, and MSE of two sampling strategies: more paths v.s. longer
paths. x-axis: total number of data points. Top: α = 0.6. Middle: α = 1.0. Bottom: α = 1.8.
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nosa. The interest lies in the utility of NO-releasing chitosan oligosaccharides to both

eradicate and physically alter P. aeruginosa biofilms and in comparing its effect with

tobramycin.

Sample heterogeneity has been correlated with increased viscoelasticity for com-

plex biological materials such as sputum [19]. In the experiments, the effect of an-

tibacterial treatment on biofilm heterogeneity was thus evaluated at different con-

centrations. In Table 3.4, we use the data to test the intrafluid heterogeneity of P.

aeruginosa biofilms after the tobramycin treatments at concentrations levels 25, 50,

100, 200, and 400 µg ml−1. From each of these fluid samples, we randomly select

100 paths, where all paths have length n = 1800. An application of the intrafluid

test (3.11) produces strong evidence (negligible p-values) of intrafluid heterogeneity

in every sample. This conclusion matches those reported in [72]. Since no homoge-

neous fluid samples are detected from any of these five samples, we do not perform

the interfluid heterogeneity test (3.17).

In Table 3.5, we apply (3.11) in the testing of intrafluid heterogeneity of P. aerug-

inosa biofilms after COS2-NO treatment at concentration levels 1, 2, 4, 8, and 16 mg

ml−1. As before, 100 paths of length 1800 were randomly selected for each concentra-

tion level. At concentrations 1 or 2 mg ml−1, the p-values are still less than machine

error, which indicates a strongly significant heterogeneity. As the concentration levels

increases to 4 and 8 mg ml−1, the p-values also increase. When the concentration is

16 mg ml−1, the p-value is 0.18 and we fail to reject the null hypothesis of intrafluid

homogeneity. This provides evidence that the COS2-NO treatment is effective in the

eradication of P. aeruginosa biofilms. Once again, this confirms the conclusions re-

ported in [72]. In Table 3.6, by applying (3.17), we test the interfluid heterogeneity of

P. aeruginosa biofilms after COS2-NO treatment at concentration 16 mg ml−1. From

each fluid sample (A, B and C), we select 100 paths of length 1800 and conduct the

test. As we can see, there is no evidence whatsoever that the fluid samples A, B and
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Tobramycin (µg ml−1) p-value
25 <e-16 ***
50 <e-16 ***
100 <e-16 ***
200 <e-16 ***
400 <e-16 ***

Table 3.4: Intrafluid biofilm heterogeneity testing after treatment with tobramycin at concentration
levels 25, 50, 100, 200, 400 µg ml−1. 100 independent paths of length 1800 are randomly selected
for each concentration level.

CSO2-NO (mg ml−1) p-value
1 <e-16 ***
2 <e-16 ***
4 2e-13 ***
8 3e-09 ***
16 0.18

Table 3.5: Intrafluid biofilm heterogeneity testing after treatment with COS2-NO at concentration
levels 1, 2, 4, 8, 16 mg ml−1. 100 independent paths of length 1800 are randomly selected for each
concentration level.

C are heterogeneous.

3.6 Conclusion

In this chapter, we draw upon results from Chapter 2 on the asymptotic distribution

of the mean squared displacement in single particle experiments to propose a frame-

work for fluid heterogeneity testing. It is assumed that the observed anomalously

diffusive particle follows a fractional Gaussian, stationary increment process. The

assumptions on particle behavior cover a broad family of processes which includes

fractional Brownian motion as well as processes with non-fractional high-frequency

CSO2-NO 8 mg ml−1 p-value
Group A v.s. Group B 0.9996
Group A v.s. Group C 0.9998
Group B v.s. Group C 0.9999

Table 3.6: Interfluid biofilm heterogeneity testing after treatment with COS2-NO at concentration
level 16 mg ml−1. 100 independent paths of length 1800 are randomly selected for each group.
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behavior, such as the (integrated) fractional Ornstein-Uhlenbeck.

By building upon an MSD-based improved estimation in terms of bias and variance

comparing to the common OLS estimation, we propose an encompassing methodol-

ogy for the testing of intra- and inter-sample heterogeneity, namely, whether different

regions of the fluid are heterogeneous, or samples from two fluids are heterogeneous.

The proposed methodology covers the situations where just one or multiple observed

paths are available, and its focus is on the estimation of the diffusivity coefficient

and the diffusion exponent of the underlying anomalous diffusion. The testing meth-

ods allowed us to investigate and provide more accurate quantitative analysis of the

experimental data from the David B. Hill Lab (UNC-Chapel Hill) and the results

reported in [72] were generally confirmed.
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Chapter 4

The asymptotic distribution of a

mixing estimator

4.1 Introduction

The foundation of statistical physics is the ergodic hypothesis, i.e., the idea that

the phase average of an physical quantity (the theoretical value) may be compared

with its infinite time average (the experimental values of an long trajectory). Under

this hypothesis, physicists can observe a long trajectory instead of an ensemble of

independent realizations. It was L. Boltzmann who introduced the ergodic hypothesis

and called the Boltzmann ergodic hypothesis (see [2]). In 1949, Khinchin proposed

a new approach (see [40]) that related the ergodicity of a physical system to the

irreversibility of its correlation function.

To test the ergodicity of a stochastic process, one can calculate the ensemble

averages and compare them with the temporal average given multiple realizations.

However, it maybe impossible to measure multiple trajectories of a stochastic process

due to some unrepeatable characteristic of the experiment. Therefore, one needs to

develop a testing method based on a single trajectory. Another way to test ergod-

icity is to test the stronger mixing properties [51]. So, consider a stochastic process



48

Y = {Y (n)}n∈N. Y can be represented as a probability measure P on the space (Ω,B).

Here, Ω is the phase space of all the functions f : N → R and B is the σ-algebra of

events [35]. The probability space (Ω,B,P), together with the usual shift transfor-

mation S : Ω → Ω, S[f(n)] = f(n + 1), is a standard dynamical system that fully

describes the evolution in time of the process Y . We say that the dynamical system

(Ω,B,P, S) is mixing, or equivalently, the process Y is mixing if

lim
n→∞

P[A ∩ Sn(B)] = P (A)P (B) (4.1)

for all A,B ∈ B. Here, Sn denotes n-fold composition of S. Thus, mixing can be inter-

preted as the asymptotic independence of the sets A and B under the transformation

S.

In [50], an estimator for testing the mixing property of single trajectory is pro-

posed. It is based on the statistic

Ê(n) =
1

N − n+ 1

N−n∑
k=0

exp{i[Y (n+ k)− Y (k)]} −

∣∣∣∣∣ 1

N + 1

N∑
k=0

exp{iY (k)}

∣∣∣∣∣
2

, (4.2)

where n ∈ Z and n < N . Furthermore, if Y (k) is a mixing stochastic process, the

author argue that, when n is large enough,

Ê(n) ≈ 0. (4.3)

It should be emphasized that (4.3) is only a necessary and not a sufficient condition

for mixing. This means that we can only disprove mixing if we have one trajectory

of a random process. Note that Ê(n) can be written as Ê1(n) + Ê2(n), where

Ê1(n) =
1

N − n+ 1

N−n∑
k=0

cos(Y (n+k)−Y (k))+ i
1

N − n+ 1

N−n∑
k=0

sin(Y (n+k)−Y (k)),

(4.4)



49

Ê2(n) =

∣∣∣∣∣ 1

N + 1

N∑
k=0

cos(Y (k))

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N + 1

N∑
k=0

sin(Y (k))

∣∣∣∣∣
2

. (4.5)

In this chapter, our goal is to establish the asymptotic distribution of Ê(n), which

has remained an open problem in the biophysical literature. We assume that the un-

derlying stochastic process is a stationary Gaussian process whose covariance function

γY satisfying a decay condition of the type

γY (k) ∼ Ckα−2, k →∞,

for some constant C. This is a key step in the construction of an asymptotically valid

test for the hypothesis of the mixing property. Our investigation is based on setting

G(x) to cos(x) or sin(x) and developing the limiting distribution of the partial sum

1

n

n∑
m=1

G(Y (m))− EG(Y (m)).

The difficulty of this problem, i.e., in establishing the asymptotic distribution of the

partial sum, lies in the presence of fractional memory. The latter may give rise to

unconventional convergence rates and non-Gaussian distributions.

The chapter is organized as follows. Section 4.2 contains a review of non-central

and central limit theorems. In Section 4.3, we establish the limiting distributions of

Ê1(n), Ê2(n) and Ê(n). All proofs can be found in Appendix C.

4.2 Non-central and central limit theorems

In this section, we quote some results from [69] that will be used throughout the

chapter.

Definition 4.2.1. The Hermite polynomial of order 0 is H0(x) = 1. The Hermite
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polynomial of order n, n ∈ N, is defined by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2, x ∈ R.

In particular,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1.

Let

φ(dx) =
e−x

2/2

√
2π

dx

be the probability measure on R associated with a standard normal variable X and let

L2(φ) be the space of measurable, square-integrable function with respect to φ(dx).

Then, G ∈ L2(R, φ) if and only if EG2(X) < ∞. Furthermore, G has a series

expansion in Hermite polynomials

G(x) =
∞∑
m=0

gnHn(x),

where

gk =
1

n!
(G,Hk)L2(R,φ) (4.6)

(see [69]).

Definition 4.2.2. Let G ∈ L2(R, φ) and let gk, k ≥ 0, be the coefficients in its

Hermite expansion. The Hermite rank r of G is defined as the smallest index k ≥ 1

for which gk 6= 0, that is,

r = min{k ≥ 1 : gk 6= 0}.

Example 4.2.1. Note that

∫
R

sin(x)H1(x)
e−x

2/2

√
2π

dx =
1√
e
,
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∫
R

cos(x)H1(x)
e−x

2/2

√
2π

dx = 0,
1

2!

∫
R

cos(x)H2(x)
e−x

2/2

√
2π

dx = − 1

2
√
e
, (4.7)

where the first equality in e : mixingcosh1h2 follows from the fact that cos(x) is an

even function. Consequently, the Hermite ranks of the functions sin(x) and cos(x)

are 1 and 2 respectively. Hereinafter,

gcos,n =
1

n!

∫
R

cos(x)Hn(x)
e−x

2/2

√
2π

dx, gsin,n =
1

n!

∫
R

sin(x)Hn(x)
e−x

2/2

√
2π

dx, (4.8)

will denote the coefficients of the series expansions of cos(x) and sin(x), respectively,

in Hermite polynomials.

Let (X, Y )T be a Gaussian vector. The following proposition allows us to calculate

the covariance between G1(X) and G2(Y ), where G1 and G2 are suitable transforma-

tions.

Proposition 4.2.1. Let (X, Y )T be a Gaussian vector with EX = EY = 0 and

EX2 = EY 2 = 1. Suppose G1, G2 ∈ L2(R, φ) and let g1,n and g2,n, n ≥ 0, be the

coefficients in the Hermite expansions of G1 and G2, respectively, as in (4.6). Then,

EG1(X)G2(Y ) =
∞∑
n=0

g1,ng2,nn!(EXY )n

and

Cov(G1(X), G2(Y )) =
∞∑
n=1

g1,ng2,nn!(EXY )n.

From now on, in this section, we will assume that {Xn}n∈Z is stationary a Gaussian

sequence with covariance function

γX(k) = L2(k)k2d−1, k ∈ {0} ∪ N, (4.9)

and satisfying EXn = 0, VarXn = 1, n ∈ N. In (4.9), L2 is a slowly varying function
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at infinity, namely, it is positive on [c,∞) with c ≥ 0 and, for any a > 0,

lim
u→∞

L2(au)

L2(u)
= 1. (4.10)

Definition 4.2.3. Let m be a symmetric measure on (R,B(R)) in the sense that

m(A) = m(−A), forA ∈ B(R),

where −A = {x ∈ R, (−x) ∈ A}, and let

B(R)0 = {A ∈ B(R) : m(A) <∞}.

An Hermitian Gaussian random measure Z on (R,B(R)) is a complex-valued Gaussian

measure on (R,B(R)) with the symmetric control measure m such that

Z(A) = Z(−A), A ∈ B(R)0.

Definition 4.2.4. Let k ≥ 1 be an integer and

H ∈
(

1

2
, 1

)
.

Set

H0 = 1− 1−H
k
∈
(

1− 1

2k
, 1

)
,

so that H = 1− k(1−H0). The Hermite process {Z(k)
H (t)}t∈R of order k is defined as

{Z(k)
H (t)}t∈R

fdd
=

{
ak,H0

∫ ′

Rk

{∫ t

0

k∏
j=1

(s− uj)
H0− 3

2
+ ds

}
B(du1) · · ·B(duk)

}
t∈R
,

where
fdd
= denotes equality of finite dimensional distributions, B(du) is a Gaussian
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random measure on R with the Lebesgue control measure du, u+ = max{u, 0} and

ak,H0 is a normalizing constant. The integral
∫ t
0

is interpreted as −
∫ 0

t
when t < 0.

The Hermite process {Z(k)
H (t)}t∈R is called standard if E(Z

(k)
H (1))2 = 1.

In particular, the Hermite process of order k = 1 is a fractional Brownian motion

BH(n) (see Example 2.2.1) with covariance function

EBH(s)BH(t) =
1

2
{|s|2H + |t|2H − |s− t|2H}. (4.11)

The Hermite process of order k = 2 is called the Rosenblatt process [80]. The following

proposition provides the spectral representation of Hermite processes. We write the

latter using the parametrization H0.

Proposition 4.2.2. The Hermite process of order k can be represented as

{Z(k)
H (t)}t∈R

d
=

{
bk,H0

∫ ′′

Rk

eit(x1+...+xk) − 1

i(x1 + ...+ xk)

k∏
j=1

|xj|
1
2
−H0 B̂(dx1) · · · B̂(dxk)

}
t∈R
,

(4.12)

where B̂(dx) is an Hermitian Gaussian random measure on R with control measure

dx.

Let G : R → R be a deterministic function such that EG(Xn)2 < ∞. The

motivation behind the following results is to investigate the limit of the partial sum

process
[Nt]∑
n=1

G(Xn), t ≥ 0, (4.13)

as N →∞. The following theorem establishes that this limit is an Hermite process,

which is only Gaussian when the Hermite rank of G is k = 1.

Theorem 4.2.1. Let G be a function of Hermite rank k ≥ 1 and suppose that d as

in (4.9) satisfies

d ∈
(

1

2

(
1− 1

k

)
,
1

2

)
.
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Then,

1

(L2(N))k/2Nk(d−1/2)+1

[Nt]∑
n=1

(G(Xn)− EG(Xn))
fdd→ gkβk,HZ

(k)
H (t), t ≥ 0, (4.14)

where
fdd→ denotes the convergence of finite-dimensional distributions, gk is the first

non-zero coefficient in (4.6) and

βk,H =

(
k!

H(2H − 1)

)1/2

. (4.15)

In (4.14), the self-similarity parameter is given by

H = k

(
d− 1

2

)
+ 1 ∈

(
1

2
, 1

)

and {Z(k)
H (t)}t∈R is the Hermite process defined by (4.12).

The following result shows that, in some cases, the limit of partial sum processes

in (4.13) is the usual Brownian motion.

Theorem 4.2.2. Let γX be the autocovariance function of {Xn}n∈Z. Let G be a

function with Hermite rank k ≥ 1 in the sense of Definition 4.2.2. If

∞∑
l=1

|γX(l)|k <∞, (4.16)

then

1

N1/2

[Nt]∑
n=1

(G(Xn)− EG(Xn))
fdd→ σB(t), t ≥ 0, (4.17)

where {B(t)}t≥0 is a standard Brownian motion and

σ2 =
∞∑
m=k

g2mm!
∞∑

l=−∞

(γX(l))m.
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Corollary 4.2.1. If

d ∈
(

0,
1

2

(
1− 1

k

))
in expression (4.9) for the covariance function γX(·) of X, then the convergence (4.17)

to a Brownian motion holds.

Example 4.2.2. If k = 1 in (4.16), then the absolute summability of the autocovari-

ance function leads to an ordinary Brownian limit. If k = 2, on the other hand, this

limit only emerges when d < 1
4
.

We now turn to multivariate limit theorems. Consider the vector-valued random

process

VN(t) =

(
1

Ar(N)

[Nt]∑
n=1

(Gr(Xn)− EGr(Xn))

)
r=1,...,R

, t ≥ 0, (4.18)

where Gr, r = 1, ..., R, are deterministic functions and Ar(N), r = 1, ..., R, are appro-

priate normalization functions. The following theorem provides sufficient conditions

for the process (4.18) to converge, as N → +∞, to a multivariate Gaussian process

with dependent Brownian motion marginals.

Theorem 4.2.3. Let {Xn}n∈Z be a Gaussian stationary sequences with autocovari-

ance function γX , where that EXn = 0, EX2
n = 1. Let Gr, r = 1, ..., R, be deterministic

functions with respective Hermite ranks kr ≥ 1, r = 1, ..., R. If

∞∑
n=1

|γX(n)|kr <∞, r = 1, ..., R,

then

VN(t)
fdd→ V (t), t ≥ 0,

where VN(t) is given in (4.18) with Ar(N) = N1/2, r = 1, ..., R. The limit process can

be expressed as

V (t) = (σ1B1(t), ..., σRBR(t))T , (4.19)
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where

σ2
r =

∞∑
m=kr

g2r,mm!
∞∑

l=−∞

(γX(l))m, r = 1, ..., R,

and gr,m, r = 1, ..., R, are the coefficients in the Hermite expansion (4.6) of Gr. In

(4.19), {Br(t)}t∈R, r = 1, ..., R, are standard Brownian motions with cross-covariance

EBr1(t1)Br2(t2) = (t1 ∧ t2)
σr1,r2
σr1σr2

, t1, t2 ≥ 0,

and

σr1,r2 =
∞∑

m=kr1∨kr2

gr1,mgr2,mm!
∞∑

n=−∞

γX(n)m

(a ∧ b = min{a, b} and a ∨ b = max{a, b}).

The next result concerns the general case where the resulting limit law for (4.18)

is a multivariate process with dependent Hermite processes as marginals. The multi-

variate Hermite processes can be established as follows. Let

fH,k,t(x1, ..., xk) = Bk,H
eit(x1+...+xk) − 1

i(x1 + ...+ xk)

k∏
j=1

|xj|
1−H
k
− 1

2 , (4.20)

where

Bk,H =

(
H(2H − 1)

k![2Γ(2(1−H)
k

) sin((1
2
− 1−H

k
)π)]k

)1/2

, j = 1, ..., k.

Define

Îk(f) =

∫ ′′

Rk
f(x1, ..., xk)Z(dx1) · · ·Z(dxk). (4.21)

Theorem 4.2.4. Let {Xn}n∈Z be a Gaussian stationary sequence with d as in (4.9).

Suppose that EXn = 0, EX2
n = 1. Let Gr, r = 1, ..., R, be deterministic functions with

respective Hermite ranks kr ≥ 1, r = 1, ..., R. Suppose

d ∈
(

1

2

(
1− 1

kr

)
,
1

2

)
, r = 1, ..., R.
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Consider the process VN(t) given by (4.18) with

Ar(N) = (L2(N))kr/2N(kr(d− 1/2) + 1), r = 1, ..., R.

Then

VN(t)
d→ V (d)(t), t ≥ 0,

where the limit process can be represented as

V (d)(t)
d
=
(
gr,krβkr,Hr Îkr(fHr,kr,t)

)
,

Hr = kr

(
d− 1

2

)
+ 1 ∈

(
1

2
, 1

)
, r = 1, ..., R,

gr,kr is the first non-zero coefficient in the Hermite expansion of Gr in (4.6), βk,H is

the constant given in (4.15), and fH,k,t is the kernel function defined in (4.20).

4.3 The asymptotic distribution of Ê(n)

In this section, we assume throughout that Y is a standard fractional Gaussian noise

(fGn) with diffusion exponent α = 2H, 0 < α < 2. In other words, we can write

Y (n) = BH(n+ 1)−BH(n), EY 2(n) = 1.

As a consequence of (4.11), the covariance function of Y is given by

γY (k) =
1

2
{|k + 1|α − 2 |k|α + |k − 1|α}, k ∈ Z.

Furthermore, we can rewrite the autocovariance function as γY (k) = L2(k)kα−2, where

L2(k) =
k2

2

{ ∣∣∣∣1 +
1

k

∣∣∣∣α − 2 +

∣∣∣∣1− 1

k

∣∣∣∣α}. (4.22)
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In fact, by a Taylor expansion of order 2 for |1± x|α−2, it can be shown that L2(k)

is a slowly varying function (see (4.10)). Therefore, Y satisfies condition (4.9) with

d = α
2
− 1

2
, which will allow us to apply results from Section 4.2.

Fix n ∈ N. Note that Ê(n) is a complex-valued random variable, where

RÊ(n) = RÊ1(n)− Ê2(n), IÊ(n) = IÊ1(n),

and R[z] and I[z] denote the real and imaginary parts of the complex number z,

respectively. We will investigate the limiting distributions of the real and imaginary

parts of Ê(n) separately, as N →∞. We first consider the limit law of Ê1(n). Define

Z̃n(k) = σ(n)[Y (n+ k)− Y (k)], (4.23)

where

σ(n) =
1√

2− |n− 1|α + 2 |n|α − |n+ 1|α
.

In other words, the process {Z̃n(k)}k∈{0}∪Z consists of the normalized increments of

the fGn Y . Then, Ê1(n) in (4.4) can be rewritten as

Ê1(n) =
1

N − n+ 1

N−n∑
k=0

cos

(
Z̃n(k)

σ(n)

)
+ i

1

N − n+ 1

N−n∑
k=0

sin

(
Z̃n(k)

σ(n)

)
. (4.24)

Let

G1,n(x) = cos(x/σ(n)), G2,n(x) = sin(x/σ(n))T . (4.25)

We can use Theorem 4.2.2 to establish the limit law of the random vector (RÊ1(n), IÊ1(n)).

Proposition 4.3.1. Let {Z̃n(k)}k∈Z be the random sequence defined by (4.23) and let

γZ̃n be its autocovariance function. Also, let Ê1(n) be its associated statistic (4.24).

Then, as N →∞,
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(i) the real part of Ê1(n) satisfies

√
N − n+ 1

(
RÊ1(n)− E cos

(
Z̃n(0)

σ(n)

))
d→ σ1,nB1(1); (4.26)

(ii) the imaginary part of Ê1(n) satisfies

√
N − n+ 1 IÊ1(n)

d→ σ2,nB2(1). (4.27)

In (4.26) and (4.27),

σ2
r,n =

∞∑
m=1

g2r,n,mm!
∞∑

l=−∞

(γZ̃n(l))m, r = 1, 2, (4.28)

g1,n,m and g2,n,m are the coefficients in the Hermite expansion (4.6) of the functions

G1,n and G2,n in (4.25), respectively, and B1(1) and B2(1) are standard normal ran-

dom variables.

Remark 4.3.1. Note that cos(x) is a even function while sin(x) is a odd function.

Thus, g1,n,2m+1 = g2,n,2m = 0, m ∈ {0} ∪ N. Then, by Proposition 4.2.1, B1(1) and

B2(1) in Proposition 4.3.1 are two independent standard normal variables,

We now turn to Ê2(n) in (4.5). Recall that Ê2(n) is the sum of the squares of

the sample averages of cos(Y (n)) and sin(Y (n)). Therefore, in order to describe the

asymptotic distribution of Ê2(n), we should obtain the limiting joint distribution of

1
N+1

∑N
k=0 cos(Y (k)) and 1

N+1

∑N
k=0 sin(Y (k)). Recall that, as discussed in Section

4.2, the convergence rate of (4.13) is a function that depends on both the Hermite

rank of G and d = α/2−1/2. Thus, the convergence rates of 1
N+1

∑N
k=0 cos(Y (k)) and

1
N+1

∑N
k=0 sin(Y (k)) may be distinct, in which case one dominates the other. Based

on Theorems 4.2.3 and 4.2.4, we can establish the following proposition.

Proposition 4.3.2. Let Y be a fGn with EY 2(0) = 1 and 0 < α < 2, and let γY
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be its autocovariance function. Let Ê2(n) be its associated statistic (4.5). Then, as

N →∞,

(i) when 0 < α < 3/2,

√
N + 1[Ê2(n)− |E cos(Y (0))|2] d→ 2E cos(Y (0))σ3B3(1), (4.29)

where

σ2
3 =

∞∑
m=2

g2cos,mm!
∞∑

k=−∞

(γY (k))m, (4.30)

and gcos,m is given by (4.8);

(ii) when 3/2 < α < 2,

(N + 1)2−α

L2(N + 1)
[Ê2(n)−|E cos(Y (0))|2] d→ gcos,2β2,α−1Î2(fα−1,2,1)+g

2
sin,1β

2
1,α/2Î

2
1 (fα/2,1,1).

(4.31)

where gcos,2 and gsin,1 are given by (4.8), β2,α−1 and β1,α/2 are defined in (4.15),

fH,k,t is the kernel function defined in (4.20), Îk(f) is defined in (4.21), L2(N +

1) defined in (4.22).

Now we address the issue of the limiting distribution of Ê(n) as N → ∞. Since

Ê2(n) is a real-valued, the asymptotic distribution of the imaginary part of Ê(n) is

same as that in (4.27). On the other hand, keeping in mind that RÊ(n) = RÊ1(n)−

Ê2(n) and the stochastic processes involved in the expressions for RÊ1(n) and Ê2(n)

are distinct, i.e., Y and Z̃n. Therefore, we cannot directly apply Theorem 4.2.3 or

Theorem 4.2.4 to obtain the joint distribution of RÊ1(n) and Ê2(n).

However, as shown in Proposition 4.3.2, when 3/2 < α < 2, the convergence rate

of Ê2(n) is approximately N2−α, which is much slower than that of RÊ1(n). Thus, by

Slutsky’s theorem, the limiting distribution of RÊ(n) is still given by (4.31). When

0 < α < 3/2, RÊ1(n) and Ê2(n) are both normally distributed. In this case, their
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joint distribution is determined by their covariance matrix. By Proposition 4.2.1,

this problem boils down to establishing the cross-covariance function of Z̃n(k+j) and

Y (j), which will be denote by {γZ̃n,Y (k)}k∈Z. The following theorem encapsulates the

above discussions.

Theorem 4.3.1. Let {Y (k)}k∈Z be a fGn with EY 2(0) = 1, and let {Z̃n(k)}k∈{0}∪Z

be the process defined by (4.23). Then, as N →∞,

(i) when 0 < α < 3/2,

√
N + 1

(
RÊ(n)− E cos

(
Z̃n(0)

σ(n)

)
+ |E cos(Y (0))|2

)
d→ σ1,nB1(1) + 2E cos(Y (0))σ3B3(1),

where σ1,n is defined in (4.28), σ3 is defined in (4.30), B1(1) and B3(1) are two

standard normal distributions with correlation

Corr(B1(1), B3(1)) =

∑∞
m=2 g1,n,mgcos,mm!

∑
k=−∞(γZ̃n,Y (k))m

σ1,nσ3
. (4.32)

In (4.32), g1,n,m and gcos,m are the coefficients in the Hermite expansion (4.6) of

cos(x/σ(n)) and cos(x), respectively, and γZ̃n,Y is the cross-covariance function

of Z̃n(k + j) and Y (j);

(ii) when 3/2 < α < 2,

(N + 1)2−α

L2(N + 1)

(
RÊ(n)− E cos(Y (n)− Y (0)) + |E cos(Y (0))|2

)
d→ gcos,2β2,α−1Î2(fα−1,2,1) + g2sin,1β

2
1,α/2Î

2
1 (fα/2,1,1),

where gcos,2 and gsin,1 are given in (4.8), β2,α−1 and β1,α/2 are defined in (4.15),

fH,k,t is the kernel function defined in (4.20), Îk(f) is defined in (4.21), L2(N +

1) is defined in (4.22);
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(iii) for 0 < α < 2,
√
N + 1 IÊ(n)

d→ σ2,nB2(1),

where σ2,n is defined in (4.28), and B2(1) is a standard normal distribution.

In summary, Theorem 4.3.1 states that:

• irrespective of the value of α, the asymptotic distribution of IÊ(n) is Gaussian

and the convergence rate is standard;

• the asymptotic distribution of RÊ(n) depends on the value of α. When 0 < α <

3/2, the convergence rate is
√
N + 1 and the limiting distribution is Gaussian.

When 3/2 < α < 2, the convergence rate is approximately (N + 1)2−α and the

limiting distribution is non-Gaussian.

To illustrate Theorem 4.3.1, we conduct a Monte Carlo study. Figure 4.1 shows

histograms of the finite sample distribution of Ê(n), where the red normal curve

uses the sample mean and sample variance. The three plots on the left-hand side

display histograms of the real part of Ê(n), while the plots on the right-hand side

are of the imaginary part. In the simulation, the value of α for the plots on the top,

middle and bottom are 0.6, 1, 1.8 respectively. The parameter n is set to 30, and the

path length is 210 = 1024. As expected, all the plots show that they are normally

distributed except the plot of the real part when α = 1.8 > 3/2. The latter is right

skewed as a consequence of the fact that the distribution is a linear combination of a

Rosenblatt-type and a chi-squared distribution, both of which are right skewed.

Figure 4.2 depicts a Monte Carlo study of the convergence rate of Ê(n). In the

simulations, n = 30, α = 0.6, 1, 1.8, N = 29, 210, 211, 212, 213, 214. As expected, in the

right plot, the convergence rate of IÊ(n) for different values of α is the same. In the

left plot, the slope of α = 1.8 is greater than that of α = 1 and α = 0.6 (these two are

the same). This illustrates the fact that RÊ(n) has an unconventional convergence

rate when α = 1.8.
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Figure 4.1: Histogram of Ê(n) with fitted normal curve. Left: real part. Right: imaginary part.
Top: α = 0.6. Middle: α = 1.0. Bottom: α = 1.8.
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Figure 4.2: x-axis: log(N +1). y-axis: log of the sample standard deviation. Left: real part of Ê(n).

Right: imaginary part of Ê(n)

4.4 Conclusion

In this chapter, we establish the asymptotic distribution of the mixing estimator pro-

posed in [50]. We assume the stochastic process Y is a fractional Gaussian noise

and only one trajectory is available. Depending on the diffusion exponent of the

underlying process, namely, α, the real part of the mixing estimator has Gaussian

or non-Gaussian limiting distribution, as well as different convergence rates. On

the other hand, the imaginary part of the mixing estimator is always Gaussian and

its convergence rate does not change with respect to α. Further work includes the

construction of a hypothesis test for the mixing property starting from an observed

trajectory X1, ..., XN . Open problems include establishing the asymptotics distribu-

tion of the related ergodicity estimator defined in [50] as well as that of the mixing

and ergodicity estimators starting from different classes of fractional processes such

as continuous time random walks.
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Appendix A

Proofs for Chapter 2

A.1 Proofs for Section 2.2

We first show a lemma that will be used in the proof of Proposition 2.2.1.

Lemma A.1.1. Suppose assumptions (A1) and (A2) hold. Then, for k1, k2 = 1, ...,m

and hk as in (2.14),

∣∣∣∣γh(z)k1,k2
hα

− C2
α

hα

∫
R
eixz

(eihk1x − 1)(e−ihk2x − 1)

|x|α+1 dx

∣∣∣∣ ≤ Ch−δ, (A.1)

where h, z ∈ Z, h ≥ ε−20 , and δ = min(α/2, δ0/2) > 0 (see (2.7) and (2.8)).

Proof. By (2.7), we obtain a harmonizable representation for the size h increment

process Yz(h), namely,

Yz(h) = X(z + h)−X(z) = Cα

∫
R
eizx

eihx − 1

ix

s(x)

|x|α/2−1/2
B̃(dx), z ∈ Z. (A.2)

Fix k1 and k2. For notational simplicity, we will use the indices k1 = 1, k2 = 2. From

(A.2), after the change of variables xh = y, we can write the covariance between the
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increments Yz(hk1) and Yz(hk2) as

γh(z)1,2 = hαC2
α

∫
R
eiyz/h

(eiw1y − 1)(e−iw2y − 1)

|y|α+1 |s(y/h)|2 dy.

Now break up the left-hand side of the expression (A.1) into the sum

∣∣∣∣C2
α

{∫
|y|≤
√
h

+

∫
|y|>
√
h

}
eiyz/h

(eiw1y − 1)(e−iw2y − 1)

|y|α+1 (|s(y/h)|2 − 1)dy

∣∣∣∣ = |I1 + I2| ,

where I1 and I2 denote the integrals over the domains (−
√
h,
√
h) and R\(−

√
h,
√
h),

respectively. Then, for h ≥ ε−20 ,

|I1| ≤ C

∫
|y|≤
√
h

|eiw1y − 1| |e−iw2y − 1|
|y|α+1 | |s(y/h)|2 − 1|dy

≤ C

∫
|y|≤
√
h

|eiw1y − 1| |e−iw2y − 1|
|y|α+1 |y/h|δ0 dy

≤ Ch−δ0/2
∫
R

|eiw1y − 1| |e−iw2y − 1|
|y|α+1 dy = Ch−δ0/2. (A.3)

Moreover, since s(x) is bounded,

|I2| ≤ C

∫
|y|>
√
h

4M

|y|α+1dy ≤ Ch−α/2. (A.4)

The expressions (A.3) and (A.4) yield (A.1). �

Proof of Proposition 2.2.1: Fix k1 and k2. For notational simplicity, we will

use the indices k1 = 1 and k2 = 2. To show (i), set z = 0 and hk1 = hk2 = h in (A.1).

Then, ∣∣∣∣EX2(h)

θhα
− 1

∣∣∣∣ =

∣∣∣∣γh(0)1,1
θhα

− 1

∣∣∣∣ ≤ Ch−δ, h→∞,

where θ = C2
α

∫
R |e

iy − 1|2|y|−(α+1)dy.
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We now show (ii). The proof draws upon conveniently rewriting the integral term

in (A.1) based on the closed form expression for the covariance of a (standard) fBm.

In fact, recall that τ = ( Cα
CH

)2 α(α−1)
2

, by (2.22). Then,

∣∣∣γh(z)1,2
hα

− w1w2τ
(z
h

)α−2∣∣∣
≤
∣∣∣γh(z)1,2

hα
− C2

α

hα

∫
R
eixz

(eih1x − 1)(e−ih2x − 1)

|x|α+1 dx
∣∣∣

+
∣∣∣(Cα
CH

)2{C2
H

hα

∫
R
eixz

(eih1x − 1)(e−ih2x − 1)

|x|α+1 dx
}
− w1w2τ

(z
h

)α−2∣∣∣. (A.5)

Note that

C2
H

hα

∫
R
eixz

(eih1x − 1)(e−ih2x − 1)

|x|α+1 dx (A.6)

is the expression for the covariance γh(z)1,2 of a size h increment process Yz(h) (see

(A.2)) formed from a standard fBm BH . Pick |z| ≥ hm+1. If α = 1, the integral (A.6)

is identically zero, by the independence of non-overlapping increments. Alternatively,

when α 6= 1, the closed form (2.10) with σ2 = 1 allows us to rewrite (A.6) as

1

hα
[EBH(z+h1)BH(h2)−EBH(z)BH(h2)] =

1

2hα
{|z+h1|α−|z+h1−h2|α−|z|α+|z−h2|α}

=
|z|α

2hα

{(∣∣∣1 + w1
h

z

∣∣∣α − 1
)
−
(∣∣∣1 + (w1 − w2)

h

z

∣∣∣α − 1
)

+
(∣∣∣1− w2

h

z

∣∣∣α − 1
)}
. (A.7)

Let f(x) = xα. Based on second order Taylor expansions of f around 1, we can recast

the expression (A.7) as

|z|α

2hα

{α(α− 1)

2

(h
z

)2
[w2

1 − (w1 − w2)
2 + w2

2] +O
[(h
z

)3]}

=
( |z|
h

)α−2α(α− 1)w1w2

2

(
1 +O

(h
z

))
. (A.8)

Therefore, based on (A.8) (which also encompasses the case α = 1) and (A.1), the
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expression (A.5) can be further bounded by C[( |z|
h

)α−3 + h−δ]. As a consequence, we

arrive at

∣∣∣∣ γh(z)1,2
|z|α−2h1h2

− τ
∣∣∣∣ ≤ C

(
h

|z|
+

(
h

|z|

)α
z2

h2+δ

)
≤ C

(
h

|z|

)min(1,α)

≤ C

(
h

|z|

)δ
,

where the last two inequalities result from (2.17) and (2.21). Setting g(z, h) =

γh(z)1,2
|z|α−2h1h2

− τ yields (2.20). �

A.2 Proofs for Section 2.3

Proof of Theorem 2.3.1: In view of (2.17), the claim is equivalent to

(
η−1(n)ζ−1(hk)

n∑
ik=1

{Y 2
ik

(hk)− EX2(hk)}
)
k=1,...,m

d→ Z.

Consider the vector of increments

Y = (Y1(h1), . . . , Yn(h1);Y1(h2), . . . , Yn(h2); . . . ;Y1(hm), . . . , Yn(hm))T ,

The covariance matrix of Y can be written as Rm(n) = (Rk1,k2(n))k1,k2=1,...,m, where

Rk1,k2(n) :=


γh(0)k1,k2 · · · γh(1− n)k1,k2

...
. . .

...

γh(n− 1)k1,k2 · · · γh(0)k1,k2

 ∈ Rn2

.

Let

Zn = (Zn(h1), . . . , Zn(hm))T (A.9)
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be the centered statistic defined by

Zn(hk) = η−1(n)ζ−1(hk)
n∑

ik=1

{Y 2
ik

(hk)− EX2(hk)}, k = 1, . . . ,m.

Also, let

Dm(n) := diag
(
D1,1(n), D2,2(n), ..., Dm,m(n)

)
, Di,i(n) :=

ti
ζ(hi)

In, i = 1, ...,m,

where In denotes an n× n identity matrix. The weak limit (2.32) can be established

via characteristic functions. The initial manipulation of the characteristic function is

very similar to that in Rosenblatt [74]. First note that

∫
Rn

exp
{
−1

2
yT (R−1m (n)−icDm(n))y

}
dy = (2π)n/2 det(R−1m (n)−icDm(n))−1/2, c ∈ R.

By a similar computation to that in Taqqu [82], pp.42–43,

φZn(t) = E(eit
TZn) = Eeit

T (Zn(h1),Zn(h2),...,Zn(hm))T

=

∫
Rmn

exp
{
i
m∑
k=1

tkzn(hk)
} 1√

det(2πRm(n))
exp

{
− 1

2
yTR−1m (n)y

}
dy

= exp
{1

2

[
−2iη−1(n)

m∑
k=1

ntkζ
−1(hk)γh(0)k,k−

mn∑
l=1

log(1−2iη−1(n)λl,mn)
]}
. (A.10)

The scalars λl,mn, l = 1, . . . ,mn, denote the eigenvalues (characteristic roots) of

Rm(n)Dm(n) = PJP−1, where P ∈ GL(mn,C), and J is in Jordan form. By the

analytic expansion of log(1− 2iη−1(n)λl,mn),

−
mn∑
l=1

log(1−2iη−1(n)λl,mn) = 2iη−1(n)
mn∑
l=1

λl,mn+
∞∑
s=2

(2i)s

s
η−s(n)

mn∑
l=1

λsl,mn. (A.11)

However,
∑mn

l=1 λl,mn = tr(Rm(n)Dm(n)) =
∑m

k=1 ntkζ
−1(hk)γh(0)k,k. Thus, by (A.11)
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we can rewrite (A.10) as

Eeit
TZn = exp

{1

2

∞∑
s=2

(2i)s

s
η−s(n)

mn∑
l=1

λsl,mn

}
. (A.12)

Moreover,

η−s(n)
mn∑
l=1

λsl,mn = η−s(n)tr[(Rm(n)Dm(n))s]

= η−s(n)
m∑

k1,...,ks=1

{
tr
[
Rk1,k2(n)Dk2,k2(n)Rk2,k3(n)Dk3,k3(n) . . . Rks,k1(n)Dk1,k1(n)

]}

=
m∑

k1,...,ks=1

{
tk1tk2 · · · tksζ−1(hk1)ζ−1(hk2) · · · ζ−1(hks)

× η−s(n)
n∑

i1,...,is=1

γh(i1 − i2)k1,k2γh(i2 − i3)k2,k3 · · · γh(is − i1)ks,k1
}
.

(A.13)

The weak limits (2.34), (2.36) and (2.37) are a consequence of Propositions A.3.1 and

A.3.2. �

Proof of Corollary 2.3.1 We first show that

nhα

η(n)ζ(h)

(
µ2(hk)

θhαk
− 1

)
k=1,...,m

d→ AZ, (A.14)

where

A = A(θ, α) = diag(ζ(w1)/(θw
α
1 ), ..., ζ(wm)/(θwαm)) (A.15)

and Z is as in Theorem 2.3.1. Based on (2.30), rewrite the left-hand side of the

expression (2.32) as

(
Nkθh

α
k

η(Nk)ζ(hk)

(µ2(hk)

θhαk
− EX2(hk)

θhαk

))
k=1,...,m

.
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This random vector has the same asymptotic distribution as

nhα

η(n)ζ(h)

(
θwαk
ζ(wk)

(µ2(hk)

θhαk
− 1
))

k=1,...,m

− nhα

η(n)ζ(h)

(
θwαk
ζ(wk)

(EX2(hk)

θhαk
− 1
))

k=1,...,m

.

(A.16)

However, the bound (2.19) yields

nhα

η(n)ζ(h)

θwαk
ζ(wk)

∣∣∣EX2(hk)

θhαk
− 1
∣∣∣ ≤ nhα

η(n)ζ(h)
h−δ → 0, k = 1, . . . ,m, (A.17)

where the zero limit is a consequence of (2.17) and (2.33). The expression (A.14) is

now a consequence of (A.16), (A.17) and (2.32).

To show (2.43), rewrite

β̂n − β = (MT
nMn)−1MT

n (Qn −Mnβ). (A.18)

By entrywise first order Taylor expansions,

Qn−Mnβ =

(
log
(µ2(hk)

θhαk

))
k=1,...,m

=

(
µ2(hk)

θhαk
−1

)
k=1,...,m

+O

(
µ2(hk)

θhαk
−1

)2

k=1,...,m

(A.19)

On the other hand, note that det(MT
nMn) = cw (see (2.45)) is a constant with respect

to n. Thus,

(MT
nMn)−1MT

n =
1

cw

 ∑m
k=1 log2 hk −

∑m
k=1 log hk

−
∑m

k=1 log hk m


 1 . . . 1

log h1 . . . log hm



=
1

cw

 ∑m
k=1 log2 hk − log h1

∑m
k=1 log hk . . .

∑m
k=1 log2 hk − log hm

∑m
k=1 log hk

m log h1 −
∑m

k=1 log hk . . . m log hm −
∑m

k=1 log hk

 .
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Moreover, for j = 1, ...,m,

m∑
k=1

log2 hk − log hj

m∑
k=1

log hk = log h
m∑
k=1

log(wk/wj) +
m∑
k=1

logwk log(wk/wj)

and m log hj −
∑m

k=1 log hk =
∑m

k=1 log(wj/wk). Therefore, by (2.17), we obtain the

entrywise asymptotic equivalence

(MT
nMn)−1MT

n ∼
1

cw

 log h 0

0 1


 ∑m

k=1 log(wk/w1) ...
∑m

k=1 log(wk/wm)∑m
k=1 log(w1/wk) ...

∑m
k=1 log(wm/wk)

 .

(A.20)

By (A.18), (A.19), (A.20), (A.14), and (2.44), we arrive at (2.43). �

A.3 Auxiliary results

Lemmas A.3.1-A.3.4, stated below, are used in the proofs in Propositions A.3.1 and

A.3.2. The proofs of the lemmas can be found in the supporting information paper

Didier and Zhang [24].

Lemma A.3.1. Consider 3/2 < α < 2 and s ≥ 2, and suppose the assumptions (A1)

and (A2) hold. Then, as n→∞,

ζ−1(hk1) · · · ζ−1(hks)η−s(n)
n∑

i1,...,is=1
|i1−i2|≤h∪...∪|is−i1|≤h

γh(i1 − i2)k1,k2 · · · γh(is − i1)ks,k1 → 0.

(A.21)

Lemma A.3.2. Consider 3/2 < α < 2 and s ≥ 2, and suppose the assumptions (A1)

and (A2) hold. Then, as n→∞,

ζ−1(hk1) · · · ζ−1(hks)η−s(n)
n∑

i1,...,is=1
|i1−i2|≥h+1,...,|is−i1|≥h+1

γh(i1 − i2)k1,k2 · · · γh(is − i1)ks,k1
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→ τ s
∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2 . . . |xs − x1|α−2dx1 . . . dxs. (A.22)

Lemma A.3.3. Consider 0 < α ≤ 3/2 and s ≥ 3, and suppose the assumptions (A1)

and (A2) hold. Then, as n→∞,

ζ−1(hk1) · · · ζ−1(hks)η−s(n)
n∑

i1,...,is=1

γh(i1 − i2)k1,k2 · · · γh(is − i1)ks,k1 → 0. (A.23)

Lemma A.3.4. Suppose the assumptions (A1) and (A2) hold. Then, as n→∞,

(i) in the parameter range 0 < α < 3/2,

η−2(n)ζ−1(hk1)ζ
−1(hk2)

n∑
i1,i2=1

γ2h(i1 − i2)k1,k2

→ w
−(α+1/2)
k1

w
−(α+1/2)
k2

(Cα
CH

)4
‖Ĝ(y;wk1 , wk2)‖2L2(R), (A.24)

where Ĝ(y;wk1 , wk2), Cα and CH are defined by (2.35), (2.7) and (2.13), respec-

tively;

(ii) when α = 3/2,

η−2(n)ζ−1(hk1)ζ
−1(hk2)

n∑
i1,i2=1

γ2h(i1 − i2)k1,k2 → 2τ 2, (A.25)

where τ is given by (2.22).

Proposition A.3.1. Consider the parameter range 3/2 < α < 2 and suppose the as-

sumptions (A1)–(A2) hold. Then, as n→∞, the vector Zn = (Zn(h1), Zn(h2), ...Zn(hm))T

in (A.9) converges in law to a Rosenblatt-like distribution whose characteristic func-

tion is given by

φZ(t) = exp
{1

2

∞∑
s=2

(2iτ
∑m

k=1 tk)
s

s

∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2 . . . |xs − x1|α−2dx1 . . . dxs
}
.

(A.26)
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Proof. Let s ≥ 2 and consider the expression (A.13). By Lemmas A.3.1 and A.3.2,

as n→∞ the right-hand side of the latter converges to

m∑
k1,...,ks=1

tk1tk2 · · · tksτ s
∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2 . . . |xs − x1|α−2dx1 . . . dxs

=
( m∑
k=1

tk

)s
τ s
∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2 . . . |xs − x1|α−2dx1 . . . dxs.

Therefore, the characteristic function (A.12) converges to (A.26), as claimed. �

Proposition A.3.2. For 0 < α ≤ 3/2, suppose the assumptions (A1)–(A2) hold. Let

Zn = (Zn(h1), Zn(h2), ...Zn(hm))T be the random vector in (A.9). Then, as n → ∞,

Zn
d→ N(0,Σ), where Σ is a m×m matrix with components

Σk1,k2 =

 2w
−α−1/2
k1

w
−α−1/2
k2

( Cα
CH

)4‖Ĝ(y;wk1 , wk2)‖2L2(R), 0 < α < 3/2;

4τ 2, α = 3/2,
(A.27)

and Ĝ(y;wk1 , wk2) is defined by (2.35).

Proof. When 0 < α ≤ 3/2, by Lemma A.3.3 it suffices to consider the term (A.13)

of order s = 2. Therefore, by Lemma A.3.4, as n → ∞ the characteristic function

(A.12) converges to that of a multivariate normal distribution with covariance matrix

Σ = (Σk1,k2)k1,k2=1,...,m as in (A.27). �

A.4 Additional proofs

This section contains the proofs of Lemmas A.3.1–A.3.4 in Didier and Zhang [23].
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For hm + 1 ≤ |z| ≤ n, recall that conditions (2.20) and (2.23) can be jointly

expressed as

γh(z)k1,k2 = wk1wk2 |z|
α−2 h2{τ + g(z, h)k1,k2}, |g(z, h)k1,k2| ≤ C

(
h

|z|

)δ
, (A.28)

for a general pair of indices k1, k2 = 1, . . . ,m representing shifting lag values. More-

over, by the Cauchy-Schwarz inequality and (2.19),

|γh(z)k1,k2| ≤ Chα, h, z ∈ Z, (A.29)

where C > 0 does not depend on k1, k2. In particular, for a single shifting lag value

hk1 = hk2 = h(n) =: h, (A.30)

the expressions (A.28) and (2.19) imply that

γh(z) := γh(z)1,1 = |z|α−2 h2{τ + g(z, h)}, |g(z, h)| ≤ C
( h
|z|

)δ
. (A.31)

Thus, in the proofs of Lemmas A.3.1–A.3.4 below, we will first establish the state-

ments for a single index (shifting lag value) m = 1 and (A.30), and then adjust the

constants to obtain the general statements for m > 1. In particular, it will be implicit

that when a multiple summation is taken over index ranges of the form |i1−i2| ≥ h+1

under m = 1, in the general case one should substitute hm for h under m > 1.

Proof of Lemma A.3.1 First assume m = 1. We only look at the subcase where

the summation is taken over the index set

{|i1 − i2| ≤ h} ∩ {|i2 − i3| ≥ h+ 1} ∩ . . . ∩ {|is − i1| ≥ h+ 1}, (A.32)
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since the remaining 2s − 2 subcases can be tackled in a similar fashion. By (A.31),

we can rewrite the expression of interest as

h2(s−1)

ηs(n)ζs(h)

n∑
i1,i2,...,is=1

|i1−i2|≤h, |i2−i3|≥h+1, ... ,|is−i1|≥h+1

γh(i1 − i2)

|i2 − i3|α−2 . . . |is − i1|α−2 {τ + g(i2 − i3, h)} . . . {τ + g(is − i1, h)}, (A.33)

where, under the summation sign, the terms of the form τ + g(·, ·) can be uniformly

bounded by a constant, and γh(i1 − i2) is bounded by Chα (see (A.29)). Thus, the

absolute value of (A.33) is bounded by

Cns(1−α)h−2 n(s−1)(α−1)
n∑

i1,...,is=1,i1 6=i2
|i1−i2|≤h,|i2−i3|≥h+1,...,|is−i1|≥h+1

hα
∣∣∣∣i2 − i3n

∣∣∣∣α−2 . . . ∣∣∣∣is − i1n

∣∣∣∣α−2 1

ns−1

= C
hα−2

nα−1

h∑
z=−h

n∑
i2,...,is=1

|i2−i3|≥h+1,...,|is−i2+z|≥h+1

∣∣∣∣i2 − i3n

∣∣∣∣α−2 . . . ∣∣∣∣is − i2 + z

n

∣∣∣∣α−2 1

ns−1

≤ C
(h
n

)α−1 n∑
i2,...,is=1

|i2−i3|≥h+1,...,|is−i2+z|≥h+1

∣∣∣∣i2 − i3n

∣∣∣∣α−2 . . . ∣∣∣∣is − i2 − sign(is − i2)h
n

∣∣∣∣α−2 1

ns−1

∼ C
(h
n

)α−1 ∫ 1

0

. . .

∫ 1

0

|x2 − x3|α−2 . . . |xs − x2|α−2dx2 . . . dxs,

which goes to zero as n → ∞, since α > 3/2 and by (2.17). This shows (A.21) for

m = 1. In addition, adjusting for the constants wk1 , wk2 from (A.28) does not alter

the zero limit. Hence, (A.21) also holds for m > 1. �

Proof of Lemma A.3.2 First assume m = 1. We start out by establishing that

n∑
i1,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

∣∣∣i1 − i2
n

∣∣∣α−2∣∣∣i2 − i3
n

∣∣∣α−2 . . . ∣∣∣is − i1
n

∣∣∣α−2 1

ns
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→
∫ 1

0

∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2|x2 − x3|α−2 . . . |xs − x1|α−2dx1dx2 . . . dxs, n→∞.

(A.34)

Indeed, since

n∑
i1,...,is=1

i1 6=i2,i2 6=i3,...,is 6=i1

∣∣∣i1 − i2
n

∣∣∣α−2∣∣∣i2 − i3
n

∣∣∣α−2 . . . ∣∣∣is − i1
n

∣∣∣α−2 1

ns

→
∫ 1

0

∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2|x2 − x3|α−2 . . . |xs − x1|α−2dx1dx2 . . . dxs, n→∞,

(A.35)

and the sum on the left-hand side of (A.35) can be broken up into

{ n∑
i1,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

+
n∑

i1,...,is=1

{|i1−i2|≥h+1,...,|is−i1|≥h+1}c

}∣∣∣i1 − i2
n

∣∣∣α−2∣∣∣i2 − i3
n

∣∣∣α−2

. . .
∣∣∣is − i1

n

∣∣∣α−2 1

ns
, (A.36)

then it suffices to show that the second summation term in (A.36) goes to zero.

However, the latter can be established by a similar argument to that in the proof of

Lemma A.3.1. Thus, (A.34) holds.

Based on (A.31), recast the left-hand side of (A.22) as

h2s

ηs(n)ζs(h)

n∑
i1,i2,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

|i1−i2|α−2{τ+g(i1−i2, h)} . . . |is−i1|α−2{τ+g(is−i1, h)}.

(A.37)

In view of (A.34), we only need to show that the remaining terms involving at least one

residual function g in (A.37) go to zero. Pick a number ρ in the interval (0,min(δ, α−

3/2)). By (A.31), |g(h/z)| ≤ C(h/z)δ ≤ C(h/z)ρ, z ≥ h+ 1. Therefore,

1

ns(α−1)

n∑
i1,i2,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

|i1 − i2|α−2 . . . |is − i1|α−2g(is − i1, h)
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≤ C

ns(α−1)

n∑
i1,i2,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

|i1 − i2|α−2 . . . |is − i1|α−2
∣∣∣∣ h

is − i1

∣∣∣∣ρ

= C
(h
n

)ρ n∑
i1,i2,...,is=1

|i1−i2|≥h+1,...,|is−i1|≥h+1

∣∣∣∣i1 − i2n

∣∣∣∣α−2 . . . ∣∣∣∣is−1 − isn

∣∣∣∣α−2∣∣∣∣is − i1n

∣∣∣∣α−2−ρ 1

ns

∼ C
(h
n

)ρ ∫ 1

0

. . .

∫ 1

0

|x1 − x2|α−2 . . . |xs−1 − xs|α−2 |xs − x1|α−2−ρ dx1 . . . dxs → 0,

(A.38)

as n → ∞. The limit in (A.38) is a consequence of (2.17) and of the fact that the

multiple integral is finite by the same argument as in Remark 2.3.1. This establishes

(A.22) under (A.31).

For m > 1, by (2.20) and (2.33) the constants wk, k = 1, . . . ,m, in (A.37) cancel

out. Moreover, by (A.28) and (A.29), the zero limit in (A.38) still holds; consequently,

so does the limit (A.22). �

Proof of Lemma A.3.3 For m = 1, rewrite the sum in (A.23) as

η−s(n)ζ−s(h)
{ n∑

i1,...,is=1
|i1−i2|≤h∪...∪|is−i1|≤h

+
n∑

i1,...,is=1
|i1−i2|≥h+1,...,|is−i1|≥h+1

}
γh(i1 − i2) · · · γh(is − i1).

(A.39)

We will show that both multiple summation terms go to zero. We first show this over

the index range |i1 − i2| ≤ h ∪ ... ∪ |is − i1| ≤ h; moreover, as in the proof of Lemma

A.3.1, we will only consider the index set (A.32).

Fix the parameter range 0 < α < 3/2. By (A.31), (A.29) and the Cauchy-Schwarz

inequality, the expression (A.33) is bounded in absolute value by

C
h2(s−1)

ns/2hs(α+1/2)

n∑
i1,...,is=1,i1 6=i2

|i1−i2|≤h,|i2−i3|≥h+1,...,|is−i1|≥h+1

hα |i2 − i3|α−2 . . . |is − i1|α−2
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≤ C
h(2−α)(s−1)−s/2

ns/2

n∑
i1,...,is−1=1,i1 6=i2

|i1−i2|≤h,|i2−i3|≥h+1,...,|is−2−is−1|≥h+1

|i2 − i3|α−2 . . . |is−2 − is−1|α−2

( n∑
is=1

|is−1−is|≥h+1

|is−1 − is|2(α−2)
)1/2( n∑

is=1

|is−i1|≥h+1

|is − i1|2(α−2)
)1/2

≤ C
h(2−α)(s−1)−s/2

ns/2

( n∑
z=h

z2α−4
) n∑

i1,...,is−1=1,i1 6=i2
|i1−i2|≤h,|i2−i3|≥h+1,...,|is−2−is−1|≥h+1

|i2 − i3|α−2 . . . |is−2 − is−1|α−2

≤ C
h(2−α)(s−1)−s/2

ns/2
h2α−3

( n∑
z=h

zα−2
)s−3

(nh) ≤ C
h(s−2)(3/2−α)+(α−1)

ns/2−1

( n∑
z=h

zα−2
)s−3

.

(A.40)

In the subranges 0 < α < 1, α = 1, 1 < α < 3/2, (A.40) is bounded, respectively, by

the expressions C(h
n
)s/2−1,

C
(h
n

)s/2−1
logs−3(n) =

(h log2(n)

n

)s/2−1 1

log(n)
,

and C(h
n
)(s−2)(3/2−α)+(α−1), all of which converge to zero as n → ∞ under (2.17) for

s ≥ 3.

Next consider the case α = 3/2. By a simple adaptation of the procedure leading

to (A.40), we arrive at the bound

C
h1/2

ns/2−1 logs/2(n)

( n∑
z=h

z−1
)( n∑

z=h

z−1/2
)s−3

≤ C
(h
n

)1/2 1

logs/2−1(n)
→ 0, n→∞.

Therefore, in the parameter range 0 < α ≤ 3/2, by extending the conclusion to the

whole summation range of interest,

η−s(n)ζ−s(h)
n∑

i1,...,is=1
|i1−i2|≤h∪...∪|is−i1|≤h

γh(i1 − i2) · · · γh(is − i1)→ 0, n→∞. (A.41)

We now show that the multiple summation over the index range |i1 − i2| ≥
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h, ..., |is − i1| ≥ h in (A.39) also goes to zero. Starting from the expression (A.37),

by the same argument with the residual function g in the proof of Lemma A.3.2, it

suffices to consider

( h2

η(n)ζ(h)

)s n∑
i1,i2,...,is=1

|i1−i2|≥h+1,|i2−i3|≥h+1,...,|is−i1|≥h+1

|i1 − i2|α−2|i2 − i3|α−2 . . . |is − i1|α−2.

By Cauchy-Schwarz, this expression is bounded from above by

h2s

ηs(n)ζs(h)

n∑
i1,i2,...,is−1=1

|i1−i2|≥h+1,...,|is−2−is−1|≥h+1

|i1 − i2|α−2|i2 − i3|α−2 . . . |is−2 − is−1|α−2

( n∑
is=1

|is−1−is|≥h+1

|is−1 − is|2α−4
)1/2( n∑

is=1

|is−i1|≥h+1

|is − i1|2α−4
)1/2

≤ Ch2s

ηs(n)ζs(h)

( n∑
z=h+1

z2α−4
) n∑

i1,i2,...,is−1=1

|i1−i2|≥h+1,...,|is−2−is−1|≥h+1

|i1−i2|α−2|i2−i3|α−2 . . . |is−2−is−1|α−2.

(A.42)

However, the multiple summation term in (A.42) is bounded by

C
{ n∑
z=h+1

zα−2
}s−3 n∑

i1,i2=1

|i1−i2|≥h+1

|i1 − i2|α−2

≤ C ′
{ n∑
z=h+1

zα−2
}s−3

n

n∑
z=h+1

(
1− z

n

)
zα−2 ≤ Cn

{ n∑
z=h+1

zα−2
}s−2

. (A.43)

Therefore, when α = 3/2, by (A.43) the expression (A.42) can be bounded by

C
log(n)nn(s−2)/2

ns/2 logs/2(n)
= C

1

logs/2−1(n)
→ 0, n→∞,

as n→∞, since s ≥ 3 and by (2.17).

On the other hand, when 0 < α < 1, α = 1 and 1 < α < 3/2, the bound for
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(A.42) becomes, respectively,

C
h2s

hs(α+1/2)

n

ns/2
h(α−1)(s−2)h2α−3 = C

(h
n

)s/2−1
→ 0, (A.44)

C
h2s

h3s/2
n

ns/2
logs−2(n)h−1 = C

(h log2(n)

n

)s/2−1
→ 0, (A.45)

and

C
h2s

hs(α+1/2)

n

ns/2
n(α−1)(s−2)h2α−3 = C

(h
n

)(s−2)(3/2−α)
→ 0, (A.46)

as n→∞. These three limits hold because s ≥ 3 and by (2.17). Thus, the expressions

(A.41), (A.44), (A.45), and (A.46) yield (A.23) for m = 1.

For m > 1, by (A.28) and (A.29) the zero limits in (A.41), (A.44), (A.45), and

(A.46) still hold; consequently, so does (A.23). �

Proof of Lemma A.3.4 We begin by showing (i) for m = 1. Rewrite

η−2(n)ζ−2(h)
n∑

i1,i2=1

γ2h(i1 − i2) =
n−1∑

z=−n+1

(
1− |z|

n

)
(h−αγh(z))2

1

h
. (A.47)

As n → ∞, the summand in (A.47) goes to, and is also bounded by, (h−αγh(z))2 1
h
.

Therefore, if we can show that

n−1∑
z=−n+1

(h−αγh(z))2
1

h
→
(Cα
CH

)4
‖Ĝ(x)‖2L2(R), n→∞, (A.48)

then (A.24) is obtained as a consequence of the dominated convergence theorem.

Indeed, by setting wk = wl = 1 and making the change of variables hx = y in the

relation (A.1),

∣∣∣∣∣γh(z)

hα
−
(Cα
CH

)2
C2
H

∫
R
eiyz/h

|eiy − 1|2

|y|α+1 dy

∣∣∣∣∣ ≤ Ch−δ, h, z ∈ Z, h ≥ ε−20 . (A.49)
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Therefore,

h−αγh(z) =
(Cα
CH

)2
GH

(z
h

)
+O(h−δ), (A.50)

where GH denotes the covariance function of a standard fractional Gaussian noise

(fGn) Y (t) = BH(t)−BH(t− 1), t ∈ R, i.e.,

GH(z) := EY (t)Y (t+ z) =
|1 + z|2H − 2 |z|2H + |1− z|2H

2
, z ∈ R.

So, recast the expression on the left-hand side of (A.48) as

(Cα
CH

)4 n−1∑
z=−n+1

G2
H

(
z

h

)
1

h
+ CO

(
1

h1+δ

) n−1∑
z=−n+1

GH

(
z

h

)
+ o(1), (A.51)

where the vanishing term o(1) is a consequence of (2.17). Since GH(z) ∈ L2(R) for

0 < H < 3/4 (0 < α < 3/2; see (2.11)), the first summation on the right-hand side

of (A.51) converges to

(Cα
CH

)4 ∫
R
G2
H(z)dz =

(Cα
CH

)4 ∫
R
|Ĝ(x)|2dx. (A.52)

The equality in (A.52) is a consequence of Parseval’s theorem based on the inverse

Fourier transform f(z) = (2π)−1/2
∫
R e

izxf̂(x)dx, f ∈ L2(R). Moreover,

O
( 1

h1+δ

) n−1∑
z=−n+1

GH

(z
h

)
→ 0, n→∞, (A.53)

since the function GH(·) is bounded and by (2.17). So, by the expressions (A.51),

(A.52) and (A.53), we obtain (A.48), and hence (A.24), for m = 1.

For m > 1, essentially the same argument can be used, and we simply indicate

the minor changes. The expression (A.47) must be replaced by

η−2(n)ζ−1(hk1)ζ
−1(hk2)

n∑
i1,i2=1

γ2h(i1−i2)k1,k2 =
1

(wk1wk2)
α+1/2

n−1∑
z=−n+1

(
1−|z|

n

)
(h−αγh(z)k1,k2)

2 1

h
.
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In addition, in expression (A.49) one should substitute C2
H

∫
R e

iyz/h(eiwk1y−1)(eiwk2y−

1)|y|−(α+1)dy for the integral C2
H

∫
R e

iyz/h|eiy − 1|2|y|−(α+1)dy, where the former can

be reinterpreted as the covariance between the increments BH(t)− BH(t− wk1) and

BH(t′) − BH(t′ − wk2), t − t′ = z
h
, of a standard fBm BH . The rest of the argu-

ment can be applied in the same way to eventually arrive at the limit (A.48) with

‖Ĝ(y;wk1 , wk2)‖2L2(R) in place of ‖Ĝ(x)‖2L2(R). Thus, (A.24) holds also for m > 1.

To show (ii) for m = 1, note that we can apply (A.29) with α = 3/2 in the

summation range |i1 − i2| ≤ h to obtain

n−1 log−1(n)h−4
n∑

i1,i2=1

|i1−i2|≤h

γ2h(i1 − i2) ≤
C

log(n)
→ 0, (A.54)

by (2.17). Alternatively, in the summation range |i1 − i2| ≥ h+ 1, by (2.20) we have

ζ−2(h)η−2(n)
n∑

i1,i2=1
|i1−i2|≥h+1

γ2h(i1 − i2) = 2n−1 log−1(n)h−4
n−1∑
z=h+1

n
(

1− z
n

)
z−1h4{τ+g(z, h)}2

∼ 2 log−1(n)
n−1∑
z=h+1

z−1{τ + g(z, h)}2

= 2 log−1(n)
{ n−1∑
z=h+1

z−1τ 2 +
n−1∑
z=h+1

z−1g2(z, h) + 2
n−1∑
z=h+1

z−1τg(z, h)
}
. (A.55)

Note that for β > 0 and large enough n,
∫ n
h+1

z−βdz ≤
∑n−1

z=h+1 z
−β ≤

∫ n
h+1

(z−1)−βdz.

Consequently, if β = 1,

log(n)− log(h+ 1)

log(n)
≤
∑n−1

z=h+1 z
−1

log(n)
≤ log(n− 1)− log(h)

log(n)
.

Thus, the left summation term in (A.55) goes to 2τ 2 as n→∞. We now show that

the remaining two terms in (A.55) go to zero with n. It also suffices to look at the



84

third term in (A.55), because a similar approach can be used with the second term.

Indeed, the former can be bounded by

∣∣∣∣∣ C

log(n)

n−1∑
z=h+1

z−1τg(z, h)

∣∣∣∣∣ ≤ C ′

log(n)

n−1∑
z=h+1

(z
h

)−(1+δ) 1

h
≤ C ′

log(n)

∫ ∞
1

x−(1+δ)dx→ 0,

as n→∞. Together with (A.54), this establishes (A.25) for m = 1.

For m > 1, by (2.20) and (2.33) the constants wk, k = 1, . . . ,m, in (A.55) cancel

out. Moreover, by (A.28) and (A.29), the zero limits in (A.54) and in (A.55) (for the

second and third terms) still hold; consequently, so does the limit (A.25). �
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Appendix B

Proofs for Chapter 3

This appendix section comprises three parts. In Section B.1, we present some lemmas

that will be used in Section B.2 for the proofs of Theorem 3.2.1 and Theorem 3.2.2.

In Section B.3, we develop a technique to approximate the fourth moment of ζ̂ − ζ

numerically.

As a consequence of Theorem 2.3.1, we standardize µ2(h) as

$(h) =
µ2(h)

EX2(h)

p→ 1, (B.1)

so that a Taylor expansion can be applied to log$(h) around 1. Meanwhile, we define

the standardized increment

Wj(h) =
X(j + h)−X(j)√

EX2(h)
. (B.2)

We will use the following results in our proofs. The first one is the classical Isserlis

theorem, which reduces the higher moments of a multivariate normal vector to its

second moments. The second one is a concentration inequality that will allow us to

establish sharp bounds on the tails of centered quadratic forms.

Theorem B.0.1 (Isserlis, [34]). If (Z1, Z2, ..., Z2n) is a zero mean multivariate normal
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random vector, then

EZ1Z2 · · ·Z2n =
∑∏

EZiZj,

where the notation
∑∏

means summing over all distinct ways of partitioning Z1, ..., Z2n

into pairs Zi, Zj and each summand is the product of the n pairs.

Theorem B.0.2 ([45]). Let Z1, ...Zn
i.i.d.∼ N(0, 1). and η1, ..., ηn ≥ 0, not all zero. Let

‖η‖2 and ‖η‖∞ be the Euclidean square and sup norms of the vector η = (η1, ..., ηn)T .

Also, define the random variable X =
∑n

i=1 ηi,n(Z2
i − 1). Then, for every x > 0,

P (X ≥ 2‖η‖2
√
x+ 2‖η‖∞x) ≤ exp(−x),

P (X ≤ −2‖η‖2
√
x) ≤ exp(−x).

Throughout this section, we will make use of the function %(h, n, α), which was

defined in (3.3).

B.1 Some lemmas

Lemma B.1.1. Let κ ∈ N ∪ {0}, κ ≥ 2, and fix 0 < r < 1/2. Then, as n→∞,

E[($(h1)− 1)κ] = O(%κ(h, n, α)). (B.3)

Proof. We will only establish (B.3) for κ = 2, since the remaining cases can be tackled

by a similar argument. The left-hand side of (B.3) can be rewritten as

1

n2
E
[ n∑
k1=1

n∑
k2=1

(
(X(h+ k1)−X(k1))

2

EX2(h)
− 1

)(
(X(h+ k1)−X(k2))

2

EX2(h)
− 1

)]
.

1

n2
E

n∑
k1=1

n∑
k2=1

(W 2
k1

(h)− 1)(W 2
k2

(h)− 1). (B.4)
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By applying the Isserlis theorem,

E[(W 2
k1

(h)− 1)(W 2
k2

(h)− 1)] = EW 2
k1

(h)W 2
k2

(h)− EW 2
k1

(h)− EW 2
k2

(h) + 1

= 2(EWk1(h)Wk2(h))2 =
2

(EX2(h))2
γ2h(k1 − k2),

where γh(k1 − k2) is defined by (2.16). Thus, (B.4) can be recast as

2

n2(EX2(h))2

n∑
k1,k2=1

γ2h(k1 − k2), (B.5)

Note that

2

n2(EX2(h))2
= O

[
1

n2h2α

]
= O[%2(h, n, α)ζ−2(h)η−2(n)],

where ζ(h), η(n) are defined by (2.33). Then, by (B.5), Lemmas A.3.1-A.3.4, expres-

sion (B.4) is of the order O(%2(h, n, α)) as claimed.

Lemma B.1.2. Fix −∞ < r < 1/2. Then, there is C > 0, such that

P ($(h) ≤ r) ≤ exp{−C%−2(h, n, α)}. (B.6)

Proof. Let Wj(h), j = 1, ..., n be as in (B.2). Then for $(h) as in (B.1), we can write

$(h) =
1

n

n∑
j=1

W 2
j (h) =

1

n
WT

nWn,

where Wn = (W1(h), ...,Wn(h))T is a multivariate normal vector with covariance

matrix Γ. Let Q be an n × n orthogonal matrix, and let Λ = diag{λ1, ..., λn} be

an n × n diagonal matrix such that QΛQT = Γ. Then, Wn
d
= QΛ1/2Zn, where

Zn = (Z1, ..., Zn)T∼N(0, In), In is the n× n identity matrix, and
d
= denotes equality
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in distribution. Therefore,

$(h)
d
=

1

n
(QΛ1/2Zn)TQΛ1/2Zn =

1

n
ZT
nΛZn =

n∑
j=1

ηj,nZ
2
j , (B.7)

where ηj,n =
λj
n

. Denote ηn = (ηi,n)i=1,...,n. By Theorem B.0.2 and the same argument

as in the proof of Lemma C.3 in [87],

P ($(h) ≤ r) ≤ exp

{
− C

‖ηn‖22

}

for some C > 0. By Lemma B.1.1,

‖ηn‖22 = Var$(h) = E[($(h)− 1)2] = O(%2(h, n, α)).

Thus, (B.6) follows.

Corollary B.1.1. Fix −∞ < r < 1/2. For large enough n ∈ N,

P ($(h) ≤ r) = o(%2(h, n, α)).

Lemma B.1.3. Let p ≥ 1, there is a constant Kp only depending on p such that

E |log$(h)|p ≤ Kp

Proof. By (B.7), $(h) is a non-negative weighted sum of independent central chi-

squares and all the weights do not vanish. By a similar argument in [63] (see page

184, expression (96)), one can easily prove Lemma B.1.3.

Lemma B.1.4. Let κ ∈ N ∪ {0}, κ ≥ 2, and fix 0 < r < 1/2. Then, as n→∞,

E[($(h)− 1)κ1{$(h)>r}] = O(%κ(h, n, α)). (B.8)
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Proof. By Lemma B.1.1 and Lemma B.1.2, the following expression

E[($(h)− 1)2]− E[($(h)− 1)21{$(h)>r}] = E[($(h)− 1)21{$(h)≤r}]

≤
√

E[($(h)− 1)4]
√

E1{$(h)≤r} ≤ O(%2(h, n, α))
√
P ($(h) ≤ r)

≤ O(%2(h, n, α)) exp

{
− C%−2(h, n, α)

}
= o(%(h, n, α)2).

Therefore, (B.8) holds.

Corollary B.1.2. Let κ1, κ2 ∈ N ∪ {0}, κ1 + κ2 ≥ 2, and fix 0 < r < 1/2. Then, as

n→∞,

E[($(h1)− 1)κ1($(h2)− 1)κ2 ] = O(%κ1+κ2(h, n, α)).

E[($(h1)− 1)κ1($(h2)− 1)κ21{min{$(h1),$(h2)}>r}] = O(%κ1+κ2(h, n, α)). (B.9)

Proof. By Lemma B.1.1, B.1.4 and an application of the Cauchy-Schwarz inequality,

(B.9) holds.

Lemma B.1.5.

E($(hk1)− 1)($(hk2)− 1) =
1

2n

n−1∑
i=−n+1

(
1− |i|

n

)
×

×
{ ∣∣∣∣∣ i√

hk1hk2
+

√
hk1
hk2

∣∣∣∣∣
α

−

∣∣∣∣∣ i√
hk1hk2

+

√
hk1
hk2
−

√
hk2
hk1

∣∣∣∣∣
α

−

−

∣∣∣∣∣ i√
hk1hk2

∣∣∣∣∣
α

+

∣∣∣∣∣ i√
hk1hk2

−

√
hk2
hk1

∣∣∣∣∣
α}2

(1 +O(h−δ)). (B.10)

Proof. For notational simplicity, assume k1 = 1 and k2 = 2. By (B.2), the left-hand

side of (B.10) can be rewritten as

1

n2

n∑
j1,j2=1

E(W 2
j1

(h1)− 1)(W 2
j2

(h2)− 1) =
1

n2

n∑
j1,j2=1

EW 2
j1

(h1)W
2
j2

(h2)− 1. (B.11)
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By the Isserlis theorem,

EW 2
j1

(h1)W
2
j2

(h2) = EW 2
j1

(h1)EW 2
j2

(h2) + 2
(
EWj1(h1)Wj2(h2)

)2
= 1 + 2

(
EWj1(h1)Wj2(h2)

)2
. (B.12)

By (A.1),

E
[

(X(j1 + h1)−X(j1))(X(j2 + h2)−X(j2))√
EX2(h1)

√
EX2(h2)

]

= E
[

(BH(j1 + h1)−BH(j1))(BH(j2 + h2)−BH(j2))√
EB2

H(h1)
√
EB2

H(h2)

]
(1 +O(h−δ)), (B.13)

where BH is a standard fBm with Hurst parameter H = α/2. By (B.2), (B.13) and

the explicit expression (2.10),

EWj1(h1)Wj2(h2) =
1

2

( ∣∣∣∣∣j1 − j2√
h1h2

+

√
h1
h2

∣∣∣∣∣
α

−

∣∣∣∣∣j1 − j2√
h1h2

+

√
h1
h2
−
√
h2
h1

∣∣∣∣∣
α

−

−
∣∣∣∣j1 − j2√

h1h2

∣∣∣∣α +

∣∣∣∣∣j1 − j2√
h1h2

−
√
h2
h1

∣∣∣∣∣
α)

(1 +O(h−δ)). (B.14)

Note that EWj1(h1)Wj2(h2) = EWj1+k(h1)Wj2+k(h2) and (B.12), we thus can rewrite

(B.11) as

1

2n

n−1∑
i=−n+1

1

n

n∑
j1−j2=i,j1,j2=1

(2EWj1(h1)Wj2(h2))
2. (B.15)

Relation (B.10) is now a consequence of (B.15), (B.12) and (B.14).

Lemma B.1.6.

E log($(hk1)) log($(hk2)) = E($(hk1)− 1)($(hk2)− 1) + o(%2(h, n, α)). (B.16)

Proof. For notational simplicity, assume k1 = 1 and k2 = 2. Let

S1 = E log($(h1)) log($(h2))− E log($(h1)) log($(h2))1{min{$(h1),$(h2)}>r},
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S2 = E log($(h1)) log($(h2))1{min{$(h1),$(h2)}>r}−

−E($(h1)− 1)($(h2)− 1)1{min{$(h1),$(h2)}>r},

S3 = E($(h1)− 1)($(h2)− 1)1{min{$(h1),$(h2)}>r} − E($(h1)− 1)($(h2)− 1).

Note that

E log($(h1)) log($(h2)) = S1 + S2 + S3.

Therefore, establishing (B.16) is equivalent to showing that S1+S2+S3 = o(%2(h, n, α)).

It suffices to show that

S1 = o(%2(h, n, α)), S2 = o(%2(h, n, α)), S3 = o(%2(h, n, α)).

Let 0 < r < 1/2. We start with S2 by writing out the almost sure Taylor expansion

log$(h)1{$(h)>r} =

{
($(h)− 1)− 1

2

(
$(h)− 1

θ+($(h))

)2}
1{$(h)>r}, (B.17)

where θ+($(h)) ∈ [min{$(h), 1},max{$(h), 1}]. Then,

E[log$(h1) log$(h2)1{min{$(h1),$(h2)}>r}]

= E[($(h1)− 1)($(h2)− 1)1{min{$(h1),$(h2)}>r}]

−1

2
E
[
($(h1)− 1)

(
$(h2)− 1

θ+($(h2))

)2

1{min{$(h1),$(h2)}>r}

]

−1

2
E
[(

$(h1)− 1

θ+($(h1))

)2

($(h2)− 1)1{min{$(h1),$(h2)}>r}

]

+
1

4
E
[(

$(h1)− 1

θ+($(h1))

)2(
$(h2)− 1

θ+($(h2))

)2

1{min{$(h1),$(h2)}>r}

]
. (B.18)

The second, third and fourth terms can be bounded by a similar argument, so we



92

only develop the latter. Recast

(
$(h)− 1

θ+($(h))

)2

1{$(h)>r} =

(
$(h)− 1

θ+($(h))

)2(
1{1/2>$(h)>r} + 1{$(h)≥1/2}

)

≤
(
$(h)− 1

r

)2

1{1/2>$(h)>r} +

(
$(h)− 1

1/2

)2

1{$(h)≥1/2}. (B.19)

Therefore, we can rewrite the fourth term in (B.18) as

E
[(

$(h1)− 1

θ+($(h1))

)2(
$(h2)− 1

θ+($(h2))

)2

1{min{$(h1),$(h2)}>r}

]

≤ 1

r4
E[($(h1)− 1)21{1/2>$(h1)>r}($(h2)− 1)21{1/2>$(h2)>r}]

+
1

(r/2)2
E[($(h1)− 1)21{$(h1)≥1/2}($(h2)− 1)21{1/2>$(h2)>r}]

+
1

(r/2)2
E[($(h1)− 1)21{1/2>$(h2)>r}($(h2)− 1)21{$(h2)≥1/2}]

+
1

(1/2)4
E[($(h1)− 1)21{$(h2)≥1/2}($(h2)− 1)21{$(h2)≥1/2}] (B.20)

By (B.9), the fourth term in (B.20) is bounded by

O(%4(h, n, α)). (B.21)

By the Cauchy-Schwarz inequality, (B.6) and (B.9), the first term in the sum (B.20)

is bounded by

1

r4

√
E[($(h1)− 1)4($(h1)− 1)4]

√
E[1{1/2>$(h1)>r}1{1/2>$(h2)>r}]

≤ 1

r4
O(%4(h, n, α))

√
P (1/2 > $(h1) > r)P (1/2 > $(h2) > r)

≤ 1

r4
O(%4(h, n, α)) exp{−C%−2(h, n, α)} = o(%2(h, n, α)). (B.22)

By the Cauchy-Schwarz inequality, (B.6) and (B.9), the second term in the sum (B.20)
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is bounded by

4

r2

√
E[($(h1)− 1)4($(h1)− 1)4]

√
E[1{$(h1)≥1/2}1{1/2>$(h2)>r}]

≤ 4

r2
O(%4(h, n, α))

√
P ($(h1) ≥ 1/2)P (1/2 > $(h2) > r)

≤ 4

r2
O(%4(h, n, α)) exp{−C%−2(h, n, α)} = o(%2(h, n, α)). (B.23)

An analogous bound holds for the third term in the sum (B.20). Therefore,

S2 = o(%2(h, n, α)).

Now we tackle S3, which can be rewritten as

−E[($(h1)− 1)($(h2)− 1)(1{$(h1)>r}1{$(h2)≤r}

+ 1{$(h1)≤r}1{$(h2)>r} + 1{$(h1)≤r}1{$(h2)≤r})]. (B.24)

By the Cauchy-Schwarz inequality, (B.6) and (B.9), the first term on the right-hand

side of (B.24) is bounded by

√
E[($(h1)− 1)2($(h2)− 1)2]

√
P ($(h2) ≤ r)

≤ O(%2(h, n, α)) exp{−C%−2(h, n, α)} = o(%2(h, n, α)).

Similar bounds hold for the remaining terms on the right-hand side of (B.24). There-

fore,

S3 = o(%2(h, n, α)).
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Now we deal with S1, which can be rewritten as

E[log$(h1) log$(h2)(1{$(h1)>r}1{$(h2)≤r}+1{$(h1)≤r}1{$(h2)>r}+1{$(h1)≤r}1{$(h2)≤r})].

(B.25)

Note that, by Lemma B.1.3, E[log4$(h)] is bounded. Then, by applying the Cauchy-

Schwarz inequality twice, the first term on the right-hand side of (B.25) is bounded

by √
E[log2$(h1) log2$(h2)]

√
P ($(h2) ≤ r)

≤
(
E[log4$(h1)]E[log4$(h2)]

)1/4
exp{−C%−2(h, n, α)} = o(%2(h, n, α)).

Similar bounds hold for the remaining terms on the right-hand side of (B.25). There-

fore,

S1 = o(%2(h, n, α)).

Thus, (B.16) follows.

Lemma B.1.7.

E log($(h)) +
1

2
E($(h)− 1)2 = o(%2(h, n, α)). (B.26)

Proof. Fix 0 < r < 1/2. Let

T1 = E log($(h))− E log($(h))1{$(h)>r},

T2 = E log($(h))1{$(h)>r} +
1

2
E($(h)− 1)21{$(h)>r},

T3 =
1

2
E($(h)− 1)2 − 1

2
E($(h)− 1)21{$(h)>r}.

Note that, by Lemma B.1.3, E log2($(h)) is bounded, by the Cauchy-Schwarz in-
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equality and Lemma B.1.2,

T1 = E log($(h))1{$(h)≤r} ≤
√

E log2($(h))
√
P ($(h) ≤ r)

≤
√

E log2($(h)) exp{−C%−2(h, n, α)} = o(%2(h, n, α)). (B.27)

By a similar reasoning, we can further prove that

T3 = o(%2(h, n, α)). (B.28)

Now, we turn to T2. By an almost sure Taylor expansion,

log$(h)1{$(h)>r} =

{
($(h)− 1)− 1

2
($(h)− 1)2 +

1

3

(
$ − 1

θ+($)

)3}
1{$(h)>r},

where θ+($(h)) ∈ [min{$(h), 1},max{$(h), 1}]. Then, T2 is bounded by

∣∣E($(h)− 1)1{$(h)>r}
∣∣+

∣∣∣∣∣E1

3

(
$ − 1

θ+($)

)3

1{$(h)>r}

∣∣∣∣∣ . (B.29)

Since E($(h)− 1) = 0, by the Cauchy-Schwarz inequality, (B.9) and Corollary B.1.1,

the first term in (B.29) can be rewritten as

∣∣E($(h)− 1)1{$(h)>r}
∣∣ =

∣∣E($(h)− 1)1{$(h)>r} − E($(h)− 1)
∣∣

=
∣∣E($(h)− 1)1{$(h)≤r}

∣∣ ≤√E($(h)− 1)2
√
P ($(h) ≤ r)

= O(%(h, n, α)) o(%(h, n, α)) = o(%2(h, n, α)).

Meanwhile, by Lemma B.1.1 and the Cauchy-Schwarz inequality, the second term in

(B.29) is bounded by

1

3r3
∣∣E($ − 1)31{1/2>$(h)>r}

∣∣+
1

3(1/2)3
∣∣E($ − 1)31{$(h)≥1/2}

∣∣
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≤ 1

3r3

√
E($ − 1)6P (1/2 > $(h) > r) +

1

3(1/2)3

√
E($ − 1)6P ($(h) ≥ 1/2)

≤ 1

3r3
O(%3(h, n, α)) exp{−C%−2(h, n, α)}+

1

3(1/2)3
O(%3(h, n, α)) = o(%2(h, n, α)).

(B.30)

Thus,

T2 = o(%2(h, n, α)). (B.31)

Relations (B.27), (B.28) and (B.31) imply (B.26).

B.2 Proofs of Theorem 3.2.1 and Theorem 3.2.2

Proof of Theorem 3.2.2: For k1, k2 = 1, ...,m, rewrite

σ̃k1,k2 = Cov(log µ2(hk1), log µ2(hk2))

= E[log µ2(hk1)− E log µ2(hk1)][log µ2(hk1)− E log µ2(hk1)]

= E[log$(hk1)− E log$(hk1)][log$(hk2)− E log$(hk2)]

= E[log$(hk1) log$(hk2)]− E log$(hk1)E log$(hk2). (B.32)

By Lemmas B.1.1 and B.1.7,

E log$(hk1) = O(%2(h, n, α)).

Therefore, (B.32) can be reexpressed as

E[log$(hk1) log$(hk2)] + o(%2(h, n, α)). (B.33)

By Lemmas B.1.5 and Lemma B.1.6, expression (3.7) holds. �
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Proof of Theorem 3.2.1: The left-hand side of (3.2) can be rewritten as

E log
µ2(hk)

EX2(hk)
+ log

EX2(hk)

θhαk
= E log$(hk) + log

EX2(hk)

θhαk
. (B.34)

As shown in [23], as n→ +∞, the second sum term on the right-hand side of (B.34)

behaves like

log(1 +O(h−δ)) = O(h−δ).

By Lemmas B.1.7 and B.1.5, we can recast the first sum term on the right-hand side

of (B.34) as

−1

2
E($(h)− 1)2 + o(%2(h, n, α))

− 1

4n

n−1∑
i=−n+1

(
1− |i|

n

){ ∣∣∣∣ ihk + 1

∣∣∣∣α − 2

∣∣∣∣ ihk
∣∣∣∣α +

∣∣∣∣ ihk − 1

∣∣∣∣α}2

+O(h−δ) + o(%2(h, n, α)).

Thus, (3.2) follows. �

B.3 A numerical approximation of κ1 and κ2

We only develop the numerical approximation of κ1, since that of κ2 can be ob-

tained by a similar argument. Recall that κ1 = E[ζ̂·,1 − Eζ̂·,1]4, where ζ̂·,1 is a linear

combination of α̂ and ̂log θ, which can be further written as a linear combination of

log µ2(hk), k = 1, ...,m. In fact, let

(c1, ..., ck)
T = (1, 0)(XT Σ̃−1X)−1/2XT Σ̃−1.

Then, by (3.4), (3.5) and (3.9),

ζ̂·,1 = (c1, ..., cm)(log µ2(h1), ..., log µ2(hm))T .
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Thus,

κ1 = E
( m∑

k=1

ck(log µ2(hk)− E log µ2(hk))

)4

(B.35)

By Theorem 3.2.1, we can approximate (B.35) by

E
( m∑

k=1

ck

(
log$(hk)+log

EX2(hk)

θhαk

))4

= E
( m∑

k=1

ck(log$(hk)+O(h−δ))

)4

. (B.36)

By Lemma B.1.3, E log$r(hk), r = 1, 2, 3, 4 is bounded in absolute value. Thus,

(B.36) can be rewritten as

O(h−δ) +
m∑

k1,k2,k3,k4=1

ck1ck2ck3ck4E log$(hk1) log$(hk2) log$(hk3) log$(hk4). (B.37)

By a similar argument to the proof of Lemma B.1.6, it can be shown that

E log$(hk1) log$(hk2) log$(hk3) log$(hk4)

= E($(hk1)− 1)($(hk2)− 1)($(hk3)− 1)($(hk4)− 1) + o(%4(h, n, α)). (B.38)

For notational simplicity, assume ki = i, i = 1, 2, 3, 4. The first term in (B.38) is

1

n4

n∑
j1,j2,j3,j4=1

E(W 2
j1

(h1)− 1)(W 2
j2

(h2)− 1)(W 2
j3

(h3)− 1)(W 2
j4

(h4)− 1)

=
1

n4

n∑
j1,j2,j3,j4=1

EW 2
j1

(h1)W
2
j2

(h2)W
2
j3

(h3)W
2
j4

(h4)

− 1

n3

∑
(i1,i2,i3,i4)∈S(4,1)

n∑
ji1 ,ji2 ,ji3=1

EW 2
ji1

(hi1)W
2
ji2

(hi2)W
2
ji3

(hi3)

+
1

n2

∑
(i1,i2,i3,i4)∈S(4,2)

n∑
ji1 ,ji2=1

EW 2
ji1

(hi1)W
2
ji2

(hi2)− 3, (B.39)
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where

S(4, 1) = {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)},

S(4, 2) = {(1, 2, 3, 4), (1, 3, 2, 4), (2, 3, 1, 4), (1, 4, 2, 3), (2, 4, 1, 3), (3, 4, 1, 2)}.

Since Wji(hi), i = 1, 2, 3, 4 are mean zero normal random variables, by the Isserlis

theorem, we can expand each moment

E[W 2
j1

(h1)W
2
j2

(h2)W
2
j3

(h3)W
2
j4

(h4)], E[W 2
ji1

(hi1)W
2
ji2

(hi2)W
2
ji3

(hi3)], E[W 2
ji1

(hi1)W
2
ji2

(hi2)],

into summation of products of terms of the form EWji1
(hi1)Wji2

(hi2). Therefore,

the numerical approximation of κ1 boils down to the numerical approximation of

EWji1
(hi1)Wji2

(hi2), where, by (B.14), the latter can be approximated as

1

2

( ∣∣∣∣∣j1 − j2√
h1h2

+

√
h1
h2

∣∣∣∣∣
α

−

∣∣∣∣∣j1 − j2√
h1h2

+

√
h1
h2
−
√
h2
h1

∣∣∣∣∣
α

−

−
∣∣∣∣j1 − j2√

h1h2

∣∣∣∣α +

∣∣∣∣∣j1 − j2√
h1h2

−
√
h2
h1

∣∣∣∣∣
α)

.
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Appendix C

Proofs for Chapter 4

Lemma C.0.1. Let {γZ̃n(k)}k∈Z be the autocovariance function of the sequence {Z̃n(k)}k∈{0}∪Z

(see (4.23)). Then,

∞∑
k=1

∣∣γZ̃n(k)
∣∣ <∞, ∞∑

k=1

∣∣γZ̃n(k)
∣∣2 <∞. (C.1)

Proof. We start with the autocovariance function of {Y (k)}k∈{0}∪Z. By a Taylor

expansion of order 2,

γY (k) =
1

2
|k|α

( ∣∣∣∣1− 1

k

∣∣∣∣α − 2 +

∣∣∣∣1 +
1

k

∣∣∣∣α)

=
1

2
|k|α

(
1−αk−1 +

α(α− 1)

2
k−2 +O(k−3)−2 + 1 +αk−1 +

α(α− 1)

2
k−2 +O(k−3)

)

=
α(α− 1)

2
kα−2 +O(kα−3), (C.2)

as k →∞. Consider the standardized increments of fGn, Z̃n(k) = σ2(n)[Y (n+ k)−

Y (k)]. By a Taylor expansion of order 1, for k ∈ Z,

γZ̃n(k) = σ2(n)E(Y (n+ k + j)− Y (k + j))(Y (n+ j)− Y (j))
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= −σ2(n)[γY (k + n)− 2γY (k) + γY (k − n)]

= −σ
2(n)α(α− 1)

2
(|k + n|α−2 − 2 |k|α−2 + |k − n|α−2) +O(kα−3)

=
σ2(n)α(α− 1)

2
|k|α−2

(
2−

∣∣∣1− n

k

∣∣∣α−2 − ∣∣∣1 +
n

k

∣∣∣α−2)+O(kα−3)

=
σ2(n)α(α− 1)

2
|k|α−2O(k−1) +O(kα−3) = O(kα−3),

as k →∞. Therefore, (C.1) holds.

Proof of Proposition 4.3.1:

Proof. Note that, for N > n− 1,

√
N − n+ 1(RÊ1(n)− E cos(Y (n)− Y (0)))

=
1√

N − n+ 1

N−n∑
k=0

cos(Y (n+ k)− Y (k))− E cos(Y (n)− Y (0))

=
1√

N − n+ 1

N−n∑
k=0

[
cos

(
Z̃n(k)

σ(n)

)
− E cos

(
Z̃n(k)

σ(n)

)]
.

Then, by Lemma C.0.1 and Theorem 4.2.2, expression (4.26) holds. An analogous

reasoning further establishes (4.27).

Proof of Proposition 4.3.2:

Proof. We prove (i) first. By expanding Ê2(n), we can rewrite the left-hand side of

(4.29) as

√
N + 1

{ ∣∣∣∣∣E cos(Y (0)) +
1

N + 1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N + 1

N∑
k=0

sin(Y (k))

∣∣∣∣∣
2

− |E cos(Y (0))|2
}
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= 2E cos(Y (0))
1√
N + 1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

)

+
1√
N + 1

(
1√
N + 1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

))2

+

(
1

(N + 1)3/4

N∑
k=0

sin(Y (k))

)2

. (C.3)

We will show that, as N → ∞, the first term in the sum (C.3) converges to a non-

degenerate random variable in distribution, and that the second and third terms in

(C.3) converges to zero in probability. Note that, when 0 < α < 3/2,

∞∑
k=1

|γY (k)|2 <∞.

By Theorem 4.2.2,

1√
N + 1

N∑
k=0

(
cos(Y (k))− E cos(Y (0))

)
d→ σ3B3(1), (C.4)

where

σ2
3 =

∞∑
m=2

g2cos,mm!
∞∑

k=−∞

(γY (k))m.

Since 1√
N+1
→ 0, by (C.4) and Slutsky’s theorem, the second term in the sum (C.3)

convergence to zero in probability. As for the third term in the sum (C.3), when

0 < α ≤ 1,
∞∑
k=1

|γY (k)| <∞.

Thus, by Theorem 4.2.2,

1√
N + 1

N∑
k=0

sin(Y (k))
d→ σ4B4(1). (C.5)
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where

σ2
4 =

∞∑
m=1

g2sin,mm!
∞∑

k=−∞

(γY (k))m.

Then, the third term in the sum (C.3) can be written as

1√
N + 1

(
1√
N + 1

N∑
k=0

sin(Y (k))

)2
P→ 0, N →∞,

which is a consequence of (C.5) and Slutsky’s theorem. On the other hand, when

1 < α < 3/2, d ∈ (0, 1
2
). Thus, by Theorem 4.2.1,

1√
L2(N + 1)(N + 1)α/2

N∑
k=0

sin(Y (k))
d→ g1β1,HZ

(1)
H (1). (C.6)

Then, the third term in the sum (C.3) can be written as

L2(N + 1)

(N + 1)3/2−α

(
1√

L2(N + 1)(N + 1)α/2

N∑
k=0

sin(Y (k))

)
P→ 0, N →∞,

which results from (C.6) and Slutsky’s theorem. Thus, the expression (4.29) follows.

We now prove (ii). Rewrite the left hand side of (4.31) as

(N + 1)2−α

L2(N + 1)

{ ∣∣∣∣∣E cos(Y (0)) +
1

N + 1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N + 1

N∑
k=0

sin(Y (k))

∣∣∣∣∣
2

− |E cos(Y (0))|2
}

= 2E cos(Y (0))
1

L2(N + 1)(N + 1)α−1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

)

+
L2(N + 1)

(N + 1)2−α

(
1

L2(N + 1)(N + 1)α−1

N∑
k=0

(
cos(Y (k))− E cos(Y (k))

))2
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+

(
1√

L2(N + 1)(N + 1)α/2

N∑
k=0

sin(Y (k))

)2

. (C.7)

When 3/2 < α < 2, by Theorem 4.2.4,

(
1

L2(N + 1)(N + 1)α−1

N∑
k=0

cos(Y (k))−E cos(Y (k)),
1√

L2(N + 1)(N + 1)α/2

N∑
k=0

sinY (k)

)T

d→
(
g1,2β2,α−1Î2(fα−1,2,1), g2,1β1,α/2Î1(fα/2,1,1)

)T
. (C.8)

By Slutsky’s theorem and (C.8), the second term in the sum (C.7) converges to zero

in probability. Then, by (C.8), relation (4.31) holds.

Proof of Theorem 4.3.1:

Proof. We prove (i) firstly. Note that, when 0 < α < 3/2, by Propositions 4.3.1 and

4.3.2 and Slutsky theorem,

√
N + 1[RÊ(n)− E cos(Y (n)− Y (0)) + |E cos(Y (0))|2]

=

√
N + 1√

N − n+ 1

√
N − n+ 1[RÊ1(n)− E cos(Y (n)− Y (0))]

−
√
N + 1[Ê2(n)− |E cos(Y (0))|2]

d→ σ1B1(1) + 2E cos(Y (0))σ3B3(1),

where (B1(1), B3(1))T is a Gaussian vector since (Y, Z̃n) is a Gaussian vector. Let

G1(x) = cos(x/σ(n)), G2(x) = cos(x). By Proposition 4.2.1,

Cov
(

cos(Z̃n(k + j)), cos(Y (j))
)

=
∞∑
m=2

g1,n,mgcos,mm!(γZ̃n,Y (k))m,

since g1,n,1 = gcos,1 = 0. Therefore, expression (4.32) holds. This establishes (i).

Now we show (ii). When 3/2 < α < 2, by Propositions 4.3.1 and 4.3.2, and
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Slutsky’s theorem,

(N + 1)2−α

L2(N + 1)
[RÊ(n)− E cos(Y (n)− Y (0)) + |E cos(Y (0))|2]

=
(N + 1)2−α

L2(N + 1)
√
N − n+ 1

√
N − n+ 1[RÊ1(n)− E cos(Y (n)− Y (0))]

−(N + 1)2−α

L2(N + 1)
[Ê2(n)− |E cos(Y (0))|2]

d→ g1,2β2,α−1Î2(fα−1,2,1) + g22,1β
2
1,α/2Î

2
1 (fα/2,1,1).

Thus, (ii) holds.

Statement (iii) is a consequence of the fact that IÊ(n) = IÊ1(n), and of Propo-

sition 4.3.1 and Slutsky’s theorem.
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