


Abstract

In the present study a few approaches are developed for theoretical investiga-

tion of vibrational energy propagation in highly ordered polymers and linear atomic

chains. Density matrix formalism applied to explain the transition between ballis-

tic and diffusive regimes in polymers, the diffusive and ballistic regimes of energy

transport are described in terms of asymptotic limits of exact solution of Liouville-

Bloch equation. Energy bands theory is developed for oligomeric structures such

as perfluoroalkane and alkane compounds, as an example, practical application for

understanding experimental data for alkane is discussed. Also, purely electronic tor-

sional mode in linear atomic chains, such as cumulene, is considered. The speed of

up to 1000 km/s for electronic sound is predicted, the spectrum of quanta (torsitons)

of torsional electronic mode in cumulene is obtained.
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Introduction

The development of new materials with unique energy transport landscapes

has attracted broad interest. Nanomaterials, such as nanowires [1, 2], layered semicon-

ductor structures [3], nanocomposites, and self-assembled monolayer junctions [4–7]

featuring controlled thermal conductivity, have been designed. The thermal conduc-

tivity of ordered polyethylene fibers exceeds that of many pure metals [8, 9] whereas

disordered polyethylene is a poor thermal conductor. Because of their low density,

oligomeric materials are attractive candidates for energy dissipation in molecular elec-

tronics devices [10]. Nanostructured materials often consist of several components,

and the energy transport within each component and between them has to be under-

stood. Detailed knowledge of the energy transport properties can lead to optimization

of reaction rates and to finding ways of controlling such reactions [11–13].

Two mechanisms, ballistic and diffusive, describe the limiting regimes of the

vibrational energy transport. Diffusive energy transport involves Brownian-like en-

ergy exchange steps and was observed in numerous molecular compounds including

peptides, helices, and small molecules [14–17]. Ballistic energy transport involves free

propagation of the vibrational wave packet and can be very fast and efficient [10, 18–

21]. It requires vibrational states delocalized over the region of transport; thus, it

benefits from having an ordered oligomeric molecular structure.

In the present work we develop some theoretical methods and approaches to

investigation of vibrational energy transport in ordered oligomeric structures and

linear atomic chains.
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In Chapter 1 we consider ballistic and diffusive vibrational energy transport

and crossover between those two regimes using density matrix quantum formalism.

We introduce a model, solve Liouville – Bloch equation, and show how its solution

and asymptotic limits correspond to different energy propagation regimes. Most of

the results of Chapter 1 have been published in Ref. [22]: “Arkady A. Kurnosov, Igor

V. Rubtsov, Alexander L. Burin, Communication: Fast transport and relaxation of

vibrational energy in polymer chains, J. Chem. Phys, 142, 011101 (2015)”.

In Chapter 2 we consider purely electronic torsional sound in cumulene chains.

The results of Chapter 2 have been recently published in Ref. [23]: “Arkady A.

Kurnosov, Igor V. Rubtsov, Andrii O. Maksymov, Alexander L. Burin, Electronic

torsional sound in linear atomic chains: chemical energy transport at 1000 km/s, J

Chem Phys, 145, 034903 (2016)”.

In Chapter 3 we apply semi-classical approach based on oligomer structure

and DFT-calculations, develop energy bands theory and determine speed of energy

transport as group velocity of different modes. Application for alkane chain [20] is

also discussed.

Some detailed derivations for Chapters 1, 2 can be found in Appendices A and

B respectively.
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Chapter 1

Quantum mechanical description of

vibrational energy transport

through highly ordered polymer

chains. Liouville-Bloch equation.

1.1 Overview

The transport on a molecular scale is usually associated with coherent and

incoherent mechanisms. The coherent transport is characterized by energy and phase

conservation and absence of environment disturbance. In the event of semi-classical

motion with no under-barrier tunneling such transport also can be called a ballistic

transport. Both coherent and incoherent transport and transition between them have

been a long term focus for the scientific community. Such transitions were studied for

electronic, [2, 24, 25] exciton [26, 27] and, more recently, vibrational energy transport

[16, 19, 28–32].

In the ballistic regime, the energy is transferred via a free-propagating vibra-

tional wavepacket, formed by vibrational states delocalized over the whole transport
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region; such transport can be very efficient and fast [8, 9]. The ballistic transport can

be expected in polymeric molecules composed of nearly identical units, where the nor-

mal modes are formed by superposition of many excited monomer states; otherwise

the diffusive mechanism is mostly prevalent.

The diffusive energy transport is a result of intramolecular vibrational energy

redistribution (IVR), which involves energy hopping between vibrational states. Dif-

fusive transport is expected to occur in molecules lacking periodic structure [33] with

the normal modes localized at the length comparable to inter-atomic distances. A

single IVR event, serving as a driving force of diffusive energy transport, is char-

acterized by a change of three or more quantum numbers of the involved spatially

overlapping vibrational modes, and requires anharmonic coupling of these modes.

In oligomers normal vibrational modes can be substantially delocalized be-

cause of the translational symmetry. Therefore one can expect observing ballistic

transport in such systems. Indeed, this transport has been observed in bridged

azulene-anthracene compounds,[29] polyethylene glycol oligomers,[32] alkanes [31] and

perfluoroalkanes [16] and the theory describing it has been suggested [18, 34, 35].

In Ref. [36] energy transport via highly ordered perfluoroalkane chains was

studied by a relaxation-assisted two-dimensional infrared spectroscopy method [37,

38]. Ballistic transport with a speed of 385 m/s was found and the transport time

showed strong temperature dependence.[36] To interpret the observations, the authors

developed a simple model describing the ballistic transport and its decoherence caused

by dynamic fluctuations of the environment. The strong temperature dependence

has been interpreted by assuming that the transition from the ballistic regime to the

diffusive regime takes place with the temperature increase.

In this study we describe the model for the ballistic transport and decoherence

in greater detail and derive its analytical solution in the space-time representation
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extending the earlier results of Haken and Strobl [26] and Schwartzer [27] to the

practical regime of interest [8, 9, 16, 18, 33–36]. To the best of our knowledge the

solution of the problem within the space-time representation has never been reported.

Then we consider asymptotic limits that describe different transport mech-

anisms, including ballistic, diffusive and directed diffusive regimes, as well as the

crossovers between them.

Most of the results of this chapter were published in Ref. [22]. For reader’s

convenience most of the corresponding mathematical derivations are placed in Ap-

pendix A.

1.2 The model and solution

Consider a polymer chain composed of N identical monomers with the only

one relevant vibrational mode (for example C-F stretching or F-F bending modes in

perfluoroalkanes) on each site forming an optical phonon band. The Hamiltonian can

be expressed as

Ĥ =
N∑

m=1

~ωmb̂†mb̂m +
~∆

2

N−1∑

m=1

(
b̂†mb̂m+1 + b̂mb̂

†
m+1

)
(1.1)

where ωm is the average vibration frequency on the m-th site and ∆ is the coupling

of the neighboring sites. We assume that the average site frequencies are the same

for each site,

< ωm >= ω0 (1.2)

and their fluctuations are delta-correlated:

< δωm(t1)δωn(t2) >=
W

2
δmnδ(t1 − t2) (1.3)
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where δmn is the Kronecker delta. The assumption of Eq. (1.2) is justified by the

high ordering of perfluoroalkane chains. The assumption of Eq. (1.3) is the standard

approximation, which treats the site frequencies as uncorrelated, while introducing

the decoherence rate of W/2 for each site [26, 39, 40].

We consider the low temperature case, kBT � ~ω, so that the thermal exci-

tations of vibrational states can be neglected and the only excitation in the chain is

caused by an external laser pulse. The time evolution of this excitation can be de-

scribed in terms of the density matrix ρmn. The density matrix satisfies the quantum

Liouville - Bloch equation [26, 27, 40]

∂ρρρ

∂t
= − i

~

[
Ĥ, ρρρ

]
− Ŵρρρ− γρρρ (1.4)

(
Ŵρρρ

)
mn

= W (1− δmn)ρmn (1.5)

where W is the decoherence for all off-diagonal elements and γ stands for the pure

dissipation rate, e. g. relaxation to the solvent.1 We assume that the decoherence

rate is much larger than the dissipation rate. This agrees with the experimental data

analysis [36] and common sense expectation, because the decoherence comes from the

energy fluctuations while the dissipation requires a real transition.

The probability to observe excitation on the n-th site, which is referred to as a

signal intensity, is given by the diagonal density matrix element ρnn. To characterize

the excitation transport we consider the simplest model of infinite chain, N = ∞,

and assume that initially only a single site with n = 0 is populated, so the initial

1The relaxation term can be determined also by interaction with the thermal bath of low-

frequency modes even without solvent.
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condition is ρmn(0) = δ0mδ0n and we are to solve the system of equations:

∂ρmn
∂t

= −i∆ {ρm−1n + ρm+1n − ρmn−1 − ρmn+1} − (W + γ)ρmn +Wδmnρmn (1.6)

In general the white noise in off diagonal elements can also be considered. With

delta correlated fluctuations of the coupling 〈δ∆nn+1(t1)δ∆n+1n(t2)〉 = (W̃/2)δ(t1−t2)

Eq. (1.6) gains two additional terms −2W̃ (1−δmn)ρmn and W̃ δmn{ρm+1m+1−2ρmm+

ρm−1m−1}. The first term can be included into decoherence rate as W −→ W + 2W̃ .

The second term creates an additional diffusion channel. Since we are interested in

the situation where ballistic transport is significant, this suggests W � ∆, so that

the channel with W̃ is not important compared to the weakly scattered coherent

transport contribution and we can neglect it. The detailed derivation of how white

noise in energy fluctuations leads to Eq. (1.6) can be found in Appendix A.1.

The solution of Eq. (1.6) for the diagonal elements of the density matrix can be

obtained in the exact form in the continuous limit, N � 1. This limit is equivalent

to evaluation of the inverse Fourier transform of the solution in the momentum

representation obtained in Ref. [26]. Importantly this solution can be evaluated in

the analytical form in the space-time representation.

Applying the Fourier transform and Laplace transform to Eq. (1.6) we can

represent the density matrix in terms of its diagonal part as

ρ̃(p, k; z) =
1 +WP̃ (p− k; z)

z + i2∆ [cos (pa)− cos (ka)] +W + γ
(1.7)

where P̃ (q) is the Fourier transform of the site-diagonal density matrix characterizing

transport of the excitation density and a is the average distance between two adjacent

monomers, and 2∆ cos(pa) describes the spectrum of optical phonons within the

band. The group velocity for the specific wave vector p is given by 2a∆ sin(pa). The
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maximum velocity corresponds to p = π/(2a) and is given by vmax = 2a∆. We will

show below that this is the actual velocity of the ballistic transport.

From Eq. (1.7) one can derive an expression for P̃ (q; z) as

P̃ (q; z) =
1√

[z +W + γ]2 + [4∆ sin(qa/2)]2 −W
(1.8)

To obtain the probability of finding excitation on the n-th site, Pn(t) = ρnn(t), we need

to apply the inverse Fourier transform and the inverse Laplace transform to Eq. (1.8).

Before doing that we will split Eq. (1.8) into two components, P̃ = P̃B + P̃D, defined

below in Eqs. (1.9) and (1.10) and discuss their physical meaning.

The first component

P̃B(q; z) =
1√

[z +W + γ]2 + [4∆ sin(qa/2)]2
(1.9)

is responsible for the ballistic transport. Indeed, if we consider transport to large

distances so that q is small and sin(qa/2) ' qa/2, then Eq. (1.9) corresponds to the

running wavepacket with the group velocity v = 2a∆ and dumping rate W + γ. The

diffusive part takes the form

P̃D(q; z) =
WP̃B(q; z)√

[z +W + γ]2 + [4∆ sin(qa/2)]2 −W
(1.10)

In the case of energy conservation and long distance - long time limit, it can be

expressed in the form of a diffusion pole P̃D(q; z) ∼ 1/(z+Dq2), where D = 4a2∆2/W

is a diffusion coefficient.

The probability of finding the excitation on the n-th site is given by the exact
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expression

Pn(t) = e−(W+γ)t

{
J2
n(2∆t) +

W

4∆

[
I0

(
W

√
t2 − n2

4∆2

)

+ L0

(
W

√
t2 − n2

4∆2

)]
θ

(
t2 − n2

4∆2

)}
(1.11)

where Jn (corresponds to the ballistic component) is the n-th order Bessel function,

I0 and L0 (correspond to the diffusive component) are the zero-order modified Bessel

and Struve functions respectively [41]. The detailed derivation of Eq. (1.11) can be

found in the Appendix A.2.

1.3 Discussion

To reveal how Eq. (1.11) describes ballistic and diffusive regimes we need to

consider the asymptotic limits and discuss transitions between them. Experimentally

and computationally, the energy transport time can be characterized by the depen-

dence Tmax(n), which is the time required for the intensity on the n-th monomer to

reach its maximum [16]. Another interesting characteristic of the energy propagation

is Pmax, which is the maximal intensity at site n taken at the time Tmax. Though

our model is discreet, it is convenient to introduce a spatial coordinate x = na so

that Pn(t) −→ P (x, t) in the asymptotic limit. We also introduce the characteris-

tic velocity v = 2a∆, which represents the maximum group velocity of the optical

phonon. The summary of the results is given in Table 1.1. The detailed mathematical

evaluation of asymptotic limits can be found in Appendix A.3.

The ballistic transport dominates at short times, t < 1/(W + γ), where the

decoherence can be neglected. For n � 1 it can be shown [41–44] that the Bessel

function, Jn(a), has its first maximum at n ≈ a and the function amplitude Jn(n) ∝

n−1/3. Then the energy transport time and the maximal intensity can be estimated
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as a function of distance, x,

Tmax(x) =
x

v
; Pmax(x) ∝ x−2/3e−

W+γ
v

x (1.12)

indicating that the wavepacket in the ballistic regime moves with the maximum group

velocity (see dashed green lines in FIGs. 1.1, 1.2 and Table 1.1).

The second limit, W−1 < t < γ−1, corresponds to the diffusive behavior (the

ballistic component is suppressed exponentially in this regime, while the dissipation

is still not significant). Using the expansion for the Bessel and Struve functions [41]

the standard diffusive behavior can be reproduced as

Tmax(x) = x2/D; Pmax(x) ∝ x−1e−
γ
D
x2

(1.13)

where D = v2/W . One can describe the transport in this regime using the time

varying instantaneous velocity ẋ(t) =
√
D/(4t). (red dotted lines in FIGs. 1.1, 1.2

and Table 1.1).

In the case of strong dissipation, γ−1 < t, the asymptotics changes result-

ing in a new regime of “directed diffusion” affected by dissipation, where the linear

dependence of the energy transport time on distance is restored

Tmax(x) =
x√
2γD

; Pmax(x) ∝ x−1/2e−
ṽ
D
x (1.14)

and ṽ =
√

2γD is a new speed of the energy propagation. In this regime the straight

transport is more efficient than the random walk because of the high chance of ab-

sorption for longer paths.

All three regimes are illustrated in FIGs. 1.1, 1.2 in a logarithmic scale. The

blue solid line corresponds to the exact expression Eq. (1.11), where we set a = 1,
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Figure 1.1: Log – Log representation of the energy transport time, Tmax, as a
function of distance expressed in site numbers with the key asymptotics
from Eqs. (1.12), (1.13), (1.14), also shown in Table 1.1, associated with
the ballistic (green dashed line), diffusive (red dotted line) and directed
diffusion (black dash-dotted line) regimes, respectively. ∆ = 10 cm−1,
W = 0.8 ps−1, γ = 0.001 ps−1.

α = [γ/(4π2D)]
1/4

, β = ṽ/(2D), λ = (2/9)1/3/Γ(2/3). The selection of the coupling,

∆ = 10 cm−1, while somewhat arbitrary, provides qualitative agreement with the

experimental data of Ref. [36]. Different W and γ parameters were selected for

convenience of illustrating clearly the transitions between the regimes (1 cm−1 ∼

0.19 ps−1). It is interesting to analyze how the energy transport time depends on

the decoherence rate, W (Fig. 1.3). The dissipation rate does not affect the transition

between the ballistic and diffusive regimes, as long as γ � W , while at γ ∼ W the

transition becomes smooth. For the sake of simplicity the results computed with γ = 0

are shown. The reported site number, n = 25, is chosen to satisfy the condition n� 1.
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Figure 1.2: Log - Log representation of the maximal intensity, Pmax, as a
function of distance expressed in site numbers with the key asymptotics
from Eqs. (1.12), (1.13), (1.14), also shown in Table 1.1, associated with
the ballistic(green dashed line), diffusive (red dotted line) and directed
diffusion (black dash-dotted line) regimes respectively. ∆ = 10 cm−1,
W = 0.2 ps−1, γ = 0.0003 ps−1.
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Figure 1.3: Energy transport time at the 25-th site as a function of the
decoherence rate W ; ∆ = 10 cm−1, γ = 0 ps. The sharp transition
between the ballistic (green dashed line) and diffusive (red dash-dotted
line) regimes occurs at the decoherence rate W = 0.38 ps−1.

One can see that the sharp transition occurs on the 25-th site at the decoherence rate

W = 0.38 ps−1. This transition is also illustrated in Fig. 1.4, where the intensity

at the 25-th site is shown as a function of time. The signal intensity reaches its

maximum twice: at 7 ps when the maximum of the ballistic wave-packet is arriving

and at 15 ps when the diffusive component at this particular site reaches its highest

value. While the ballistic energy transport is associated with propagation of spatially

localized wave-packet, the diffusive transport reflects energy “spilling” from the origin

so the definition of the diffusive wave front has to be clarified. In accord with the

experimental definition [36] we define that the diffusive front reaches the certain point

x when the amplitude of the diffusive energy transport reaches maximum.
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Table 1.1: Characteristics of three vibrational energy transport regimes:
ballistic, diffusive and directed diffusive. (Note that D = 4a2∆2/W ,

λ = (2/9)1/3/Γ(2/3), α = [γ/(2π2D)]
1/4

)
Transport mechanism Time range Velocity Tmax Pmax

Ballistic 0 < t < W−1 v = 2a∆ x
2a∆

λx−2/3e−
W+γ
v

x

Diffusive W−1 < t < γ−1 ẋ(t) =
√

D
4t

x2

D
(2πe)−1/2x−1e−

γ
D
x2

Directed diffusion t > γ−1 ṽ =
√

2γD x√
2γD

αx−1/2e−
ṽ
D
x

At shorter distances the ballistic transport dominates, while at longer dis-

tances the diffusion becomes more important (FIGs. 1.1, 1.2). The crossover occurs

therefore in discontinuous manner when the two mechanisms provide similar inten-

sity contributions. The signature of such crossover was observed in the temperature

dependence of the energy transport time in perfluoroalkanes [36]. The oscillations of

energy excess at site 25, seen in Fig. 1.4 near the crossover, are in contrast to the

experimental data and numerical analysis of Ref. [36]. The small dissipation rate,

taken for illustrative purposes for these calculations, is the reason of the discrepancy.

Decay of the ballistic amplitude can also smear out the coherent oscillations, while

the qualitative picture of transport does not change very much.

In conclusion, in this study we obtained the exact solution for the space-time

represented vibrational energy ballistic transport affected by decoherence in the quasi-

continuous limit. We described various asymptotic analytical regimes of interest, all

subject to experimental verification. We predict a sharp transition between the ballis-

tic and diffusive transport regimes in a qualitative agreement with the recent exper-

imental data [36]. Many questions need to be addressed, including identification of a

specific vibrational mode responsible for the energy transport in a particular oligomer

and accurate analysis of decoherence and dissipation for various chain structures.
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Chapter 2

Electronic torsional mode in linear

polymers.

2.1 Overview

Highly efficient and fast vibrational energy transport on a molecular scale

has been a subject of theoretical and experimental investigations in recent decades.

The possible applications in biochemistry, organic chemistry and nanotechnology in-

clude development of efficient cooling in microscopic and nanoscopic molecular sys-

tems, such as nanowires [18] and optical limiters, designing efficient energy transport

schematics for energy signaling, [32] as well as optimizing and even promoting chem-

ical reactions by concentrating the excess energy at the reaction center [12, 45]. It is

suggested that quantum vibrational excitations can be manipulated similarly to elec-

trons and photons, thus enabling controlled heat transport. Moreover, delocalized

excitations (phonons) can be used to carry and process quantum information [46–48].

The highest transport speed was found in alkanes (1.44 km/s) [20].

Possible candidates capable to maintain fast and efficient energy transport

are oligomers because of their periodic structure [21]. In such systems vibrational

states can be substantially delocalized because of the strong interaction of equiva-
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lent site states, so that ballistic energy transport takes place as a free-propagating

wavepacket. The ballistic constant-speed transport has been observed in bridged

azulene-anthracene compounds [29], polyethylene glycol oligomers [32], alkanes [20,

21, 31], and perfluoroalkanes [16, 36] and the theory describing this transport and its

possible breakdown due to decoherence has been suggested [18, 22, 34, 35].

Phonon wavepackets in carbon based polymer chains can propagate with the

group velocity as high as 10 km/s because of a high strength of covalent bonds [8, 9].

Yet the maximum energy of singly excited vibrations does not exceed ca. 3000 cm−1,

as the motion is associated with displacements of rather heavy nuclei. Thus, the

ballistically transferred energy is much smaller than a typical bond energy exceeding

1 eV (∼ 104 cm−1). Involvement of multi-phonon transport to increase the amount

of transferred energy is expected to enhance the energy relaxation/dissipation. Much

larger energy can be carried by excitons, delocalized electronic states [49]. How-

ever molecular excitons are usually strongly coupled to the environment resulting in

incoherent energy transport (see e. g. exciton transport in DNA [50, 51]).

Here we propose to exploit the special vibrational modes of entirely electronic

nature capable of efficient delivery of energies in the eV (∼ 104 cm−1) range. Such

modes can exist in molecules having all atoms aligned along the single axis (see

Fig. 2.1) and they are formed by propagating torsional oscillations of electronic nature.

Nuclei do not participate in these oscillations because their rotation about the axis

they located on is degenerate.

Considering a linear molecule as an elastic rod, four gapless phonon branches

are expected based on symmetry, including longitudinal, two transverse, and one

torsional modes [52, 53]. The longitudinal and torsional oscillations of frequency

ω and wavevector q are characterized by an acoustic spectrum ω = cq, with the

relatively high speed of sound, c. As opposed to an elastic rod, a molecular chain
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(a) cumelene

(b) polyyne

Figure 2.1: Carbyne modifications: (a) cumulene molecule with orthogonal
double bonds; (b) polyyne molecule with alternating single and triple
bonds

with all atoms located on the same axis has no nuclear contribution to the torsional

vibrations, since the chain is completely linear. Nevertheless, the system can possess a

remarkable torsional stiffness due to anisotropic arrangement of its electronic clouds.

Such situation is found in cumulenes, featuring a chain of carbon atoms coupled

to each other by double bonds [54], where the anisotropy results from the π-bond

anisotropy between carbon atoms (see Fig.s 2.1(a), 2.2). Similar conditions can be

realized in transition metals where atoms can form chain bridges between junctions

[55–57].

The torsional sound should exist in such systems and we expect it to be of

a purely electronic nature because nuclei are positioned along the primary axis and

cannot participate in the torsional motion. Since electrons are much lighter than

atoms it is natural to expect the speed and a single quantum energy to be much

higher than those for nuclei vibrations.
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Figure 2.2: Cumulene molecule torsionally strained along primary axis

In the present study we performed a first principle investigation of the elec-

tronic torsional waves in cumulene chains. We found that the speed of sound in

cumulenes to be as high as 1000 km/s and a maximum energy of the quantum as

high as 10 eV.

Because this type of motion is not related to the vibrations of nuclei the

corresponding quantum quasi-particle is not a usual phonon. As a collective motion

of electrons it can be associated with a plasmon with a specific symmetry and a

gapless spectrum, though its symmetry properties differ drastically from Langmuir

waves in plasma and typical translational plasmons in conjugated systems. To avoid

confusion and emphasize the symmetry properties we call a quantum of torsional

electronic oscillations a torsiton.

The axial symmetry is exact in case of classical treatment of nuclei, while the

quantum vibrations of the nuclei violate this symmetry. These vibrations result in

a small torsiton spectral gap of the order of 0.02 eV. The possible ways to observe

torsitons experimentally are discussed.

We consider the torsional oscillations of a cumulene in a dielectric environment,

so the electronic excitations can be neglected. Although the metallic behavior of

cumulene was predicted theoretically [54, 58] it has not been confirmed experimentally
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[59, 60], so the nature of electronic excitations remains unclear. Here we ignore

electronic excitations assuming that there is significant spectral gap (cf. Ref. [59]).

Most of the results of this chapter were published in Ref. [23]. For reader’s convenience

most of the corresponding mathematical derivations are placed in Appendix B.

2.2 The system

A linear cumulene chain is a compound containing a sequence of n carbon

atoms with (n − 1) double bonds between them R=C=(C=)n−2C=R [61]. Quan-

tum chemistry calculations were performed for the simplest termination of cumu-

lene chain by two hydrogen atoms on each side; an example of cumulene molecule

H2C=(C=)3CH2 is shown schematically in Fig. 2.1(a). One can see that orthogonal

π-bonds between carbon atoms can provide rigidity with respect to twisting with

remarkable torsional stiffness, while much smaller stiffness is expected in another

carbyne modification, polyyne, which is a chain of carbon atoms with alternating

single and triple bonds between them (see Fig. 2.1(b)). For cumulene molecules the

shortened notation H2CnH2 (without bond type specification) will be used.

2.3 Electronic torsional mode

To estimate the speed of sound for electronic torsional wave we consider a

model of elastic rod (torsion spring) which can be described by the Lagrangian

Le =
1

2

zr∫

zl

dz

{
je

(
dθ

dt

)2

− κ
(
∂θ

∂z

)2
}

(2.1)

where dynamical variable θ(z, t) is a twisting angle of the rod along z-axis as a function

of coordinate along prime axis and time (Fig. 2.2); two neighboring cross-sections at

points z and z + dz will rotate with respect to each other with a relative angle
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dθ = (∂θ/∂z) dz [62]. Here zl,r = ∓L/2, L - molecule length, κ stands for torsional

stiffness and je is an average linear density of electronic moment of inertia with respect

to z-axis.

We estimate parameters of interest as je = 1.73 me · Å (0.95 · 10−3 u·Å) and

torsional stiffness κ = 10.6 eV·Å as described in the next two sections. Our estimate

for the torsional stiffness is consistent with the previous estimate of 10.3 eV·Å reported

in Ref. [54].

With the angle θ(z, t) and the related angular velocity dθ/dt considered as

dynamical variables Eq. (2.1) leads to the Euler equation

je
∂2θ

∂t2
= κ

∂2θ

∂z2
(2.2)

which is a wave equation with the dispersion relation ω(q) = q
√
κ/je and the speed

of the torsiton wave

c =
dω

dq
=

√
κ

je
' 1.0 · 106 m/s (2.3)

using je evaluated below. This velocity exceeds the typical phonon propagation ve-

locity in polymers by two or three orders of magnitude. Next we also estimate the

maximum energy transfered by the electronic torsional mode.

The dispersion relation for longitudinal vibration in a uniform chain with

nearest neighbor coupling and the lattice period a has the standard form ω(q) =

ω∗ sin(aq/2) [63].

It should be a good approximation for the torsional mode under consideration

because the interaction responsible for the torsional stiffness is due to short range

covalent bonding. In the long wavelength limit q −→ 0 we estimate maximum energy

of the torsiton as

~ω∗ = 2
~c
a
' 10.5 eV (2.4)
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(the lattice period in cumulenes is given by a = 1.28 Å) [64]. This value corresponds

to the typical electronic excitations energy range.

Though torsiton spectrum is gapless in the infinite chain limit if atomic vibra-

tions are neglected, ω(0) = 0, the energy of the first excited torsiton mode in the cu-

mulene of finite chain length, L, corresponds to the minimum wavevector qmin = π/L.

For sufficiently long molecules the torsiton spectrum acquires the gap due to zero-

point atomic vibrations ∆ε ∼ 0.1 eV, which is smaller than typical electronic excita-

tion energies (see also Sec. 2.7).

We can also roughly estimate the torsiton mean free path. While a precise

analysis of dephasing in cumulene is beyond the scope of the present study, for an

estimate we use the reported data for electronic dephasing in several organic systems.

The coherence time of electronic excitations in FMO complexes ranges from 300

to 660 fs,[65, 66] the electron-phonon scattering rate in bilayer graphene,[67] another

carbon allotrope, is saturated at 5 ps−1, which corresponds to coherence time of 200 fs.

Assuming coherence time for the torsiton as T & 100 fs, one can estimate its mean

free path as l0 = cT & 100 nm, which exceeds a length of any realistic cumulene chain.

This estimate is valid for torsiton energies not matching other electronic excitations

in cumulene. Otherwise the strong scattering will be expected.

Thus we found the electronic torsional sound wave velocity and energy un-

precedentedly high compared to typical phonon parameters which makes this system

very attractive for energy transport applications. The energy transferred by a single

quantum is sufficiently large for chemical applications: bond making-bond breaking,

energy release, and energy transfer to reaction center.

Below we derive our estimates for electronic moment of inertia and for torsional

stiffness, discuss the limitations of our result due to zero point atomic vibrations and

propose the way to observe the ultrafast energy transport due to electronic torsional



23

sound.

2.4 Electronic moment of inertia

The linear density of electronic moment of inertia is defined as

je(z) =

∫∫
ρ(x, y, z)

(
x2 + y2

)
dxdy (2.5)

where ρ is the electronic density. We calculated the linear density of electronic mo-

ment of inertia for cumulene molecule using density functional theory (DFT) with

B3LYP hybrid functional and 6-31(d, p) basis sets, as implemented in a Gaussian 09

software package [68]. The electron density as a function of coordinates is extracted

with the uniform grid of 0.1 Bohr radius (0.0529 Å), the symmetric limits in X-Y plane

(the plane perpendicular to the prime axis) were chosen ±6.5 Bohr radius (±3.44 Å).

Either doubling of the limits or decrease of the grid by the same factor change the

result by less than 1%.

To estimate the accuracy of the numerical result we tested the same approach

on the hydrogen atom. The theoretical value of the moment of inertia of hydrogen

electron cloud in the ground state can be calculated using the electron wave-function

[69] as J0 = 2mea
2
0, where me is electron mass and a0 is the Bohr radius. The

result of numerical calculations obtained using the same method as for cumulene is

Jnum = 1.90mea
2
0, which is within 5% accuracy.

In Fig. 2.3 we show dependence je(z) obtained from DFT-calculations for

H2C11H2. One can see that je(z) is a smooth function weakly deviating from its av-

erage Je/L (∼ 5%), so for simplicity coordinate dependent moment of inertia density

je(z) can be replaced with the constant je ' Je/L ' 1.73 me · Å (0.95 · 10−3 u·Å). As

shown in Fig. 2.3, we define molecular length L as a distance between the second left

and second right carbon atoms, where je(z) is still not affected by boundaries.



24

−8 −6 −4 −2 0 2 4 6 8 
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z, Å
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smooth function with low deviations from the average (magenta dash-
line), except of the boundaries. The effective length L is defined as a
distance between second left and second right carbon atoms.
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2.5 Torsional stiffness calculation

Combining the proposed model with the first principles calculations of the

hydrogen atom torsional vibrational mode associated with the relative torsional oscil-

lations of pair of hydrogen atoms (“whiskers”, see Fig. 2.2), we introduce Lagrangian

L =
Jl
2

(
dΦl

dt

)2

+
Jr
2

(
dΦr

dt

)2

−
+L/2∫

−L/2

dz
κ

2

(
∂θ

∂z

)2

(2.6)

where Φl(t), Φr(t) are the angles of the “whiskers” deviation from equilibrium on the

left and right side, Jl = Jr = J/2 are moments of inertia of the whiskers, J is the

entire atomic moment of inertia along primary axis, defined by 4 hydrogen atoms.

θ(z, t) is the same as in Eq. (2.1) with boundary conditions θ(∓L/2) = Φl,r.

In this model the potential energy is originated from the torsional strain of

the electronic spring and kinetic energy is entirely defined by the motion of hydrogen

atoms, so long as the kinetic energy of electrons is neglected. The latter assumption

is justified as long as Je � J (0.028 vs 3.43 u·Å for n = 25).

The torsional energy has a minimum at constant torsional angle gradient

(∂θ/∂z) = (Φr − Φl)/L suggesting that electrons adiabatically follow atomic mo-

tion. For the only hydrogen torsional oscillator mode one can assume antisymmetric

condition −Φl = Φ = Φr. Then the Euler equation for Lagrangian (2.6) is

d2Φ

dt2
= − 4κ

JL
Φ (2.7)
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This equation describes the harmonic oscillator with the frequency defined as1

ω2
τ =

4κ

J

1

L
(2.8)

Using the same DFT calculation, from harmonic vibrational analysis one can find ωτ

of H2CnH2 for different n. In Fig. 2.4 we presented the related frequency ωτ for n =

5, 6, 8, 10, 12, 16, 24, 25. Since the choice of length L includes some arbitrariness (our

choice is illustrated in Fig. 2.3), the correct fit should include some length parameter

B ∼ a, so that ω2
τ = A/(B+L). Using optimum fitting analysis we found B = 4.22 Å

and the torsional stiffness is given by κ = AJ/4 ' 2.89 · 106 cm−2·u·Å3 ' 10.6 eV·Å

(u stands for the atomic mass unit), while atomic moment of inertia J is defined by

end groups only and does not depend on n. These estimates were used to evaluate

the speed of torsitons. Below we discuss the quantum approach to the problem and

analyze the effect of zero-point atomic vibrations on the torsiton spectrum.

2.6 Quantum mechanical approach

In Sec. 2.3 we treated cumulene electronic torsional oscillations classically.

Here we consider the quantum mechanical aspects of the problem.

Using periodicity of the system one can arrange all the electrons into “blocks”

or unit cells. In cylindrical coordinates position of each electron in the n-th block is

described by sets {θi, ri, zi}, i = 1..N , where N is number of electrons in the block.

One can introduce new coordinates using the average angles φn for description of the

torsional angle of the whole block (double bond). Then we suggest to represent the

1More accurate detailed derivation of Eq. (2.8) for the hydrogen torsional mode can be found in

Appendix B.1.
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kinetic energy related to these collective variables φn as

K̂ =
∑

n

ξ̂2
n

2Jn
(2.9)

where ξ̂n = −i~ ∂
∂φn

is the operator of the z-axis projection of the electron angular

momentum in the n-th block, and Jn is a corresponding electronic moment of inertia

of the block. Such expression leads to the right behavior for the overall rotation

corresponding to the q = 0 mode. Indeed, one can rewrite Eq. (2.9) as

K̂ = − 1

2JnN

∑

q

M̂2
q (2.10)

where M̂q =
∑

p e
iqpξ̂p is defined in the manner that M̂0 corresponds to the total

angular momentum and JnN is the total moment of inertia of the molecule with

respect to the z-axis. For the long wavelength modes qa� 1 we expect that one can

use the limit of q −→ 0.

The potential energy can be derived solving the corresponding Born – Oppen-

heimer problem. The expected form would be a sum like

Û =
∑

nk

Unk

(
φ̂n − φ̂k

)
(2.11)

satisfying the axial symmetry requirements, where {Unk} are functions of the previ-

ously introduced angles {φn}; more complicated constructions than binary interac-

tions can also be included, but they will not affect our further consideration. It is

assumed that all high energy (“fast”) degrees of freedom are excluded, while the low

energy (“slow”) degrees of freedom left, which are related to the long wavelength tor-

sitons possessing a small energy compared to the other electronic excitations. Leaving

only the nearest neighbor interactions and making expansion near the minimum we
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come up with the quadratic Hamiltonian (cf. Eq. (2.1)):

Ĥ = − ~2

2jea

∑

n

[
∂2

∂φ2
n

+
κ

2a
(φn − φn+1)2

]
(2.12)

where the moment of inertia on the n-th block can be taken as Jn ' je · a, where a is

a distance between two adjacent atoms and κ/a is a torsional stiffness per unit cell

(see also Sec. 2.4). This Hamiltonian has a spectrum [70]

εq = ~ωq =
2~
a

√
κ

je
sin
(aq

2

)
(2.13)

This prediction is consistent with the results of time-dependent density functional

theory (TD DFT) calculations of the first excited electronic state (see Fig 2.5). In-

deed, the energy of this state scales as the inverse molecular length, in agreement with

Eq. (2.13) for q = π/L. The obtained energy is also consistent with the estimate

based on the electronic stiffness. We do not expect that this mode is associated with

the electron delocalization since in that case a 1/L2 dependence for the minimum

energy is expected, similarly to the particle in the box problem.[69]

In Fig 2.5 we present the results of TD DFT calculations with B3LYP hybrid

functional and 6-31(d, p) basis sets, as implemented in a Gaussian 09 software pack-

age [68] (see also Sec. 2.4) for the first excited singlet electronic state in cumulene

(red diamonds) and polyyne (green squares) with their fit based on the theoreti-

cal predictions (Eq. 2.13, Ref.[70]). The determined speed of sound is very close to

that obtained with Eq. (2.3). The result deviates from the nearest neighbor model

Eq. (2.12) at small molecular length, which is probably a consequence of the next

neighbor interactions. We also did the calculations for polyyne and found the satura-

tion of minimum energy at about 1.27 eV, which estimates the gap in the electronic

spectrum there.
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√
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p +B sin2(k̃q) with the gap
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To explain the qualitative difference in the cumulene and polyyne spectra we

matched our model to the well investigated model of the Josephson junction array:[71]

Ê = −EC
2

∑

n

∂2

∂φ2
n

− EJ
∑

n

cos(φn+1 − φn) (2.14)

The kinetics energy in this model is associated with the Coulomb repulsion of super-

conducting granules, while the cosine term describes the Josephson coupling between

granules. The parameters of the matching model consistent with our model for cu-

mulene are EC = ~2/(jea) = 3.45 eV, EJ = κ/a = 8.28 eV. This model shows a

quantum phase transition between superconducting state with a weakly oscillating

phase difference between granules and the insulating state with weakly correlated

phases of granules at Gc = EJ/EC = 1.23. In our case this is the phase transition

between an ordered ground state (cumulene) having gapless torsional mode (torsiton)

and an uncorrelated state with the gap in the spectrum realized in polyyne. Indeed,

in the first case corresponding to cumulene (EJ/EC = 2.40 > Gc) the system has a

continuous spectrum of gapless excitations (torsitons in our case) while in the sec-

ond case there is the gap εp = 1.27 eV in the spectrum as we found in polyyne (see

Fig 2.5). In polyyne the interaction between bond orientations is much weaker than

that in cumulene because the triple and single bonds are almost axially symmetric.

Therefore this system is likely on the “insulating” gapped side of the quantum phase

transition. Quantum phase transition in one dimensional systems takes place at zero

temperature only. Since our system is finite and and the thermal energy kBT is small

compared to electronic interaction energies the zero temperature consideration should

be still applicable.

In spite of our quantum mechanical derivation is not rigorous we believe that

being considered together with TD DFT simulation results and classical arguments of

Sec. 2.3 it supports our expectations of the existence of the electronic sound spectral



32

branch, i. e. torsitons.

2.7 Effect of zero-point atomic vibrations

In our description of the electronic torsional mode we implicitly used Born-

Oppenheimer approximation, considering electronic motion in an axially symmetric

field of motionless nuclei, positioned along the z-axis. This axial symmetry is reflected

by the symmetry of the Lagrangian in Eq. (2.1) with respect to the change of the

function θ(z) by arbitrarily constant.

In reality, the nuclei participate in zero-point vibrations in the ground state,

which does not possess an axial symmetry because this ground state is adjusted to the

electronic ground state where this symmetry is broken (see Fig. 2.2). Indeed, to find

this ground state, one needs to consider interacting nuclei in the field of electronic

cloud with already calculated anisotropic electronic density.

Thus, the potential energy depends on the angle θ even in the absence of torsion

and the energy minimum is realized at some angle θ0 which we can set to zero. The

potential energy can be expanded over the small displacement from this minimum as

αθ2/2. This term incorporated to the Lagrangian in Eq. (2.1) as −αθ2/(2L) leads to

the gap in the spectrum of torsional waves. Correcting Eq. (2.2) by −αθ/(jeL) term

in the right hand side, we obtain a new dispersion relation

ω2(q) =
κ

je
q2 +

α

jeL
(2.15)

Since ω(0) 6= 0 the mode is not exactly acoustic due to the gap ∆ω =
√
α/jeL.

To estimate the parameter α consider the change of classical energy δE(θ) =
〈
Ĥ(θ)− Ĥ(0)

〉
g
, where Ĥ is the atomic chain quantum Hamiltonian and 〈. . . 〉g is an
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average over the ground state of carbon atoms considering their zero-point vibrations.2

All the normal modes of carbon atoms in the molecule, which don’t include

motion of hydrogen atoms with respect to the adjacent carbon atoms, can be either

longitudinal or transverse. For D2d symmetry point group with coordinate system

defined above there are only two possible second order invariants: z2 and x2 + y2 , so

the transverse modes of the harmonic Hamiltonian of the atomic chain are expected

to be double-degenerate and the corresponding eigenfunctions possess axial symmetry

[72]. Practically, this degeneracy is observed in DFT-calculated IR spectra of H2CnH2

for odd n, while for even n all energy levels are split, because such molecules belong

to D2h symmetry group. Indeed, the splitting is entirely an effect of sides, because

in even n molecules the side CH2 groups lie in the same plane (while in odd n they

are orthogonal), so X-Z and Y-Z plane become distinguishable, while for an infinite

chain this effect would disappear.

The break of axial symmetry takes place in the third order anharmonic interac-

tion. To express potential energy in normal modes representation introduce notations

uxi and uyi for transverse modes with energy ~ωxi = ~ωyi = ~ωi and uzk for k − th

longitudinal mode. Thus the third order anharmonic energy is expressed by

V̂3 =
∑

k

{
1

2

∑

i

Viizk

(
u2
xi
− u2

yi

)
+
∑

i<j

Vijk

(
uxiuxj − uyiuyj

)}
uzk (2.16)

where it is assumed that Vxixjzk = −Vyiyjzk = Vijzk for any i, j.

With V̂3 as a perturbation, a meaningful correction to the ground state in the

2The detailed derivations of energy correction due to zero-point vibrations and description of

the spectrum gap numerical calculations can be found in Sec. B.2
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first order of perturbation theory is given by

|ψ0〉 = |0〉 − 1

4~
∑

k

∑

i

Viizk
2ωi + ωzk

(
|2xi 1zk〉 − |2yi 1zk〉

)
−

1

~
√

2

∑

k

∑

i<j

Vijzk
ωi + ωj + ωzk

(∣∣1xi 1xj 1zk
〉
−
∣∣1yi 1yj1zk

〉)
(2.17)

The rotation of electronic cloud about the z-axis by an angle θ changes the energy in

diabatic approximation by

δĤ(θ) = −
∑

k

{∑

i

Viizk
(
u2
xi
− u2

yi

)
+ 2

∑

i<j

Vijzk
(
uxiuxj − uyiuyj

)
}
uzk sin2 θ (2.18)

Assuming for the small displacement from the minimum sin θ ' θ, one can find

δE(θ) = 〈ψ0| δĤ(θ) |ψ0〉 = αθ2/2, with α given by

α =
∑

k

{∑

i

|Viizk |2
~(2ωi + ωzk)

+
∑

i<j

4|Vijzk |2
~(ωi + ωj + ωzk)

}
(2.19)

Using anharmonic frequency analysis of H2C5H2 we calculated third-order an-

harmonicity constants [68, 73]. To exclude effect of hydrogen atoms we considered the

only transverse and longitudinal normal modes with the nearest integer of reduced

mass greater or equal 2 atomic units. Applying Eq. (2.19) we found α = 119 cm−1,

so that the energy gap can be estimated using Eq. (2.15) as ∆ε ' 890 cm−1 (see also

Sec. B.2.2).

To answer a question how crucial is the described effect for the acoustic mode,

one can find the length L of a cumulene chain where this energy becomes comparable

to the minimum torsiton energy, which can be estimated as

~ωmin ' ~cqmin = ~c
π

L
(2.20)
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Thus the length required to make the gap value of the same order as ~ωmin is L∗ '

~πc/∆ε ' 20 nm, that is sufficiently larger than the real molecule length [74].

Axial symmetry can be violated also by the forth-order anharmonic interac-

tion, however its contribution into the energy gap does not change qualitatively the

presented estimate.

2.8 Experiment suggestions

As shown above, the electronic torsional mode features an unprecedented speed

of 1000 km/s = 1 nm/fs and can transfer energy up to 10 eV, which is comparable to

the energies of the strongest chemical bonds (C=C, N≡N, etc.). Such high transferred

energy brings an opportunity of performing chemistry at distances, including chemical

bond breaking reactions. Fig. 2.6 shows a schematic of the compound suitable for the

proof of principle experiment on remote chemistry initiation. The compound features

two surface-anchored end-groups connected by a cumulene chain. Laser initiated bond

breaking at the initiation (left) end-group can result in generation of a strong torque

at the chain which will propagate as a wave-packet along the chain and can result in

bond breaking at another end group, the target. The energy released by the initiation

end-group can be tuned by selecting convenient functional groups. Spectroscopic

observation of the transported energy can aim at detecting the formation of the

products at the target or detection of the excess energy at the target. In the latter

case a longer cumulene chain is required as for the chain length of 50 carbon atoms

the transport time is only ca. 5 fs. Compounds with such long chains have been

synthesized for polyynes [75] and we hope that this should be possible for cumulenes

as well.
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Figure 2.6: A schematic experiment set up on remote chemistry initiation.
The compound features two surface-anchored end-groups connected by
a cumulene chain. Laser initiated bond breaking at the initiation (left)
end-group can result in generation of a strong torque at the chain which
will propagate as a wave-packet along the chain and can result in bond
breaking at another end group, the target.

2.9 Conclusion

In this chapter we considered electronic torsional waves in cumulene chains

(torsitons) which are torsional sound waves of entirely electronic nature. We evaluated

the speed of torsiton propagation as high as 1000 km/s. Single torsiton can carry

energy from almost 0 to 10 eV. Similar waves should exist in other atomic chain with

anisotropic bonds including recently discovered transition metal linear chains. While

the largest band energy computed for cumulenes at 10 eV, the computations neglected

electronic excitation, which will likely be contributing at such high energies. It will be

interesting to see how the ground electronic state torsitons are perturbed by electronic

excitations at higher torsiton band energies and how the quasi-particles of two types,

torsitons and excitons, interact. Nevertheless, the presented band calculations are

expected to be free of electronic excitation effects at smaller energies. Importantly,

the transport speed supported by the lower half of the torsiton band is similar to that

of the full band (with small corrections due to the torsiton-vibron coupling).
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Chapter 3

Vibrational energy bands in

oligomers

3.1 Overview

In this chapter we will discuss another semi-classical approach to investiga-

tion of ballistic transport in oligomers. The idea of the method to perform DFT-

calculations for geometry optimization and harmonic analysis of well-ordered poly-

mer compound with periodic structure and to use the results quantum mechanical

calculations in classical equations of atomic motion. This approach allows to consider

the speed of ballistic energy transport as group velocities corresponding to acoustic

and optical energy bands and modes of different geometry. The application of this

method was recently discussed in Refs. [20, 21].

In Sec. 3.2 – 3.6 we will develop energy bands theory assuming ideal polymer

chains possessing special set of symmetries using perfluoroalkane compound as an

example. In a section 3.7 we will briefly deduce some practical application for alkane

chains.
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3.2 Dispersion equation

Consider an ideal pefluoroalkane (alkane) chain with C2F4 (C2H4) as a mo-

nomer (Figs. 3.1, 3.2). The main idea of such consideration is that any of those six

atoms can be “replicated” by to consequent operations: translation along primary

axis z by distance a and rotation along this axis by angle θ. Actually, the periodicity

of the alkane chain does not include rotation (pure translational symmetry), however

we will just assume a trivial case of rotation by angle θ = 0 for alkane chain and

develope general approach. Using of word ideal implies consideration of infinite chain

(no boundary effects) built of described unit cells and that the Hessian (matrix of the

force constants - second derivatives of the potential) possesses the same symmetry.

Later we will discuss the effect of deviation from the ideal geometry (Sec. 3.3) and

how the parameters a and θ can be obtained numerically from the results of DFT

calculation.

Introduce rrrk - 18-dimensional displacement vector for atoms into k-th unit

cell (6 atoms × 3 Cartesian coordinates = 18 degrees of freedom). The next unit cell

displacement vector rrrk+1 is obtained form rrrk by symmetry operation

rrrk+1 = Ûrrrk + aeeez (3.1)
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(a) projection on X-Z plane

(b) projection on X-Y plane

Figure 3.1: Perluoroalkane compound C16 with CO2H and CF2H complexes
on the ends: (a) projection on X-Z plane, (b) projection on X-Y plane.
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where Û is 6× 3 unitary1 matrix - generator of rotation along z-axis2 by angle θ:

Û =




ûuu · · · 0

0
. . . 0

0 · · · ûuu



, ûuu =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




(3.2)

and eeez is a 18× 1 unit vector directed along z-axis:

eeez =
1√
6




0

0

1

...

0

0

1




(3.3)

The Hessian of the system can be split into blocks Ĥkn, 18-by-18 matrices correspond-

ing to harmonic interaction between k-th and n-th unit cells. As long as Hessian is a

hermitian matrix,

Ĥkn = Ĥ
†
nk (3.4)

and from translation-rotational symmetry

Ĥk+1,n+1 = ÛĤknÛ
†

(3.5)

1Û
−1

= Û
†

2it is also called Kronecker (or tensor) product of of 6 × 6 identity matrix Ê by matrix ûuu:

Û = Ê ⊗ ûuu.
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In the nearest-neighbor approximation the harmonic Hamiltonian can be represented

as

Ĥ =
1

2

∑

k

{
ppp†kM̂

−1
pppk + rrr†kĤkkrrrk + rrr†kĤkk−1rrrk−1 + rrr†kĤk+1krrrk+1

}
(3.6)

where M̂ is 18× 18 diagonal matrix of atomic masses

M̂ =




m1 0 0 · · · 0 0 0

0 m1 0 · · · 0 0 0

0 0 m1 · · · 0 0 0

. . . . . . . . . . . .
. . . . . . . . . . . . . . .

0 0 0 · · · m6 0 0

0 0 0 · · · 0 m6 0

0 0 0 · · · 0 0 m6




and pppk is 18× 1 momentum vector, following the same symmetry operation as rrrk in

Eq. (3.1). By the nearest-neighbor approximation here we assume non-zero interac-

tion between atoms inside one unit cell and between atoms into the neighbor unit

cells, i. e. Ĥk,k+m ≡ 0 for any |m| > 1. Practically, this assumption is not necessarily

justified, we use it for the sake of derivation simplicity, though terms of the long-order

interaction can be added into Eq. (3.6) (see Sec. 3.5).

Introduce the following notations for the Hessian blocks:

Â = Ĥkk

B̂ = Ĥkk+1

(3.7)
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From Eqs. (3.4), (3.5):

Ĥkk−1 = Ĥ
†
k−1k =

(
Û †Ĥkk+1Û

)†
= Û †Ĥ†

kk+1Û = Û †B̂†Û (3.8)

so that Hessian matrix can be visualized as




. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0
. . . . . . . . . 0 0 0 0 0 · · · 0

0 · · · 0 0 Û †2B̂†Û2 Û †ÂÛ Û †B̂Û 0 0 0 0 · · · 0

0 · · · 0 0 0 Û †B̂†Û Â B̂ 0 0 0 · · · 0

0 · · · 0 0 0 0 B̂† ÛÂÛ † ÛB̂Û † 0 0 · · · 0

0 · · · 0 0 0 0 0
. . . . . . . . . 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Eq. (3.6) can be rewritten as

Ĥ =
1

2

∑

k

{
ppp†kM̂

−1
pppk + rrr†kÂrrrk + rrr†kÛ

†B̂†Ûrrrk−1 + rrr†kB̂rrrk+1

}
(3.9)

Introducing “weighted” vectors and matrices

r̃̃r̃rk = M̂
1/2
rrrk

p̃̃p̃pk = M̂
−1/2

pppk

ÂW = M̂
−1/2ÂM̂

−1/2

B̂W = M̂
−1/2B̂M̂

−1/2

ÛW = M̂
1/2ÛM̂

−1/2

(3.10)
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we obtain the equation of motion for k-th unit cell as

d2r̃̃r̃rk
dt2

= −ÂW r̃̃r̃rk − B̂†W r̃̃r̃rk−1 − B̂W r̃̃r̃rk+1 (3.11)

To solve this equation one can switch over to frequency domain by Fourier Transform

r̃̃r̃rk(t) =
∑

q

ξξξk(q) exp{−iω(q)t} (3.12)

where q is one-dimensional wave-vector, and to apply the Bloch theorem ansatz3

ξξξk(q) = exp{iaqk}Ûk

Wξξξ(q) (3.13)

Applying Eqs. (3.12), (3.13) to Eq. (3.11) we obtain equation

ω2(q)ξξξ = Ĝ(q)ξξξ (3.14)

where

Ĝ(aq) = ÂW +
(
B̂W ÛW + Û †W B̂†W

)
cos(aq) + i

(
B̂W ÛW − Û †W B̂†W

)
sin(aq) (3.15)

and a is the previously defined lattice period. From Eq. (3.14) dispersion relations

ωi = ωi(q), i = 1..18, can be obtained as square roots of eigenvalues of hermitian

matrix Ĝ(q).

The dispersion equation Eq. (3.14) is to be solved numerically, the solutions

split into two groups: acoustic bands with4 ω(0) = 0 and optical bands with ωi(0) 6= 0,

3As we have mentioned above, the effect of boundaries is neglected, so for the sake of simplicity

we can choose periodic boundary condition.

4As it shown in Sec. 3.3 it can be also a band with ω(θ) = 0.
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(dωi/dq)|q=0 = 0. The speed of energy propagation by acoustic band is characterized

by group velocity v = (dωi/dq)|q=0, while for optical bands one can estimate it by the

mean group velocity corresponding to whole i-th[20]

1

π

π/a∫

0

|vi(q)|dq (3.16)

In the next section we will discuss how exactly the existence of the acoustic bands

follows from the symmetry properties of the Hessian and matrix Ĝ.

3.3 Special solutions of the dispersion equation.

Acoustic bands

Defined in Eq. (3.15) matrix Ĝ(φ) = ÂW + B̂W ÛW e
iφ + Û †W B̂†W e−iφ has two

zero eigenvalues for φ = 0 and one for φ = θ on 0 < φ < π. This fact follows from

the two properties the Hessian:

• Translational symmetry

[
Â + B̂ + Û †B̂†Û

]
ηηη = 000 (3.17)

where ηηη is any 18× 1 vector. Indeed, the translational symmetry of Hessian Ĥ

requires EEE†αĤEEEβ = 0, for any α, β = {x, y, z}, and by introducing vector IIIN ,

vector of length equal to number of atoms N , consisting of ones, we define EEEα
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in 3×N Cartesian space as5

EEEx =
1√
N
IIIN ⊗




1

0

0




; EEEy =
1√
N
IIIN ⊗




0

1

0




; EEEz =
1√
N
IIIN ⊗




0

0

1




(3.18)

By our assumption only Ĥkk = Â, Ĥkk+1 = B̂, Ĥkk−1 = Û †B̂†Û are non-zeros,

so Eq. (3.17) takes place.

• Rotational symmetry

Â
[
eeez × rrr

]
+ B̂

[
eeez ×

(
Ûrrr
)]

+ Û †B̂†Û
[
eeez ×

(
Û †rrr

)]
= 000 (3.19)

where cross-product is defined as

eeez × rrr =




−y1

x1

0

...

−y6

x6

0




(3.20)

5compare to Eq. (3.3)
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Indeed, Eq. (3.19) just reflects ĤRRR = 000 for

RRR =




...

eeez ×
(
Û †rrr

)

eeez × rrr

eeez ×
(
Ûrrr
)

...




(3.21)

Using Eq. (3.10) one can rewrite Eqs. (3.17), (3.19) in “weighted” values:





[
ÂW + B̂W + Û †W B̂†W ÛW

]
ηηη = 000

ÂW

[
eeez × r̃̃r̃r

]
+ B̂W

[
eeez ×

(
ÛW r̃̃r̃r

)]
+ Û †W B̂†W ÛW

[
eeez ×

(
Û †W r̃̃r̃r

)]
= 000

(3.22)

1. Special solution Ĝ(0)ẽ̃ẽez = 000,

where ẽ̃ẽez = M̂
1/2
eeez. Vector eeez is an eigenvector of Û so that Ûeeez = eeez. Thus

ÛW ẽ̃ẽez = M̂
1/2ÛM̂

−1/2
M̂

1/2
eeez = M̂

1/2
eeez = ẽ̃ẽez

Therefore

Ĝ(0)ẽ̃ẽez =
[
ÂW + B̂W ÛW + Û †W B̂†W

]
ẽ̃ẽez =

[
ÂW + B̂W + Û †W B̂†W ÛW

]
ẽ̃ẽez = 000 (3.23)

2. Special solution for φ = θ.

Vector ξξξ = eeex − ieeey is also eigenvector of Û so that Ûξξξ = e−iθξξξ and therefore
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ÛWξξξ = e−iθξξξ, ξξξ = ẽ̃ẽex − iẽ̃ẽey. Indeed,

Û
(
eeex − ieeey

)
=
(
eeex cos θ − eeey sin θ

)
− i
(
eeex sin θ + eeey cos θ

)
= e−iθ

(
eeex − ieeey

)

Thus

Ĝ(θ)ξξξ =
[
ÂW + B̂W ÛW e

iθ + Û †W B̂†W e−iθ
]
ξξξ =

[
ÂW + B̂W + Û †W B̂†W ÛW

]
ξξξ = 000 (3.24)

3. Special solution Ĝ(0)τττ z = 000, τττ z = eeez × r̃̃r̃r.

First, eeez ×
(
Ûrrr
)

= Û
(
eeez × rrr

)
. Indeed,

Ûτττ z =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1







−y

x

0




=




x sin θ − y cos θ

x cos θ + y sin θ

0




eeez ×




x cos θ + y sin θ

−x sin θ + y cos θ

0




=




x sin θ − y cos θ

x cos θ + y sin θ

0




The same can be proved for Û †. Thus

000 = Â
[
eeez × rrr

]
+ B̂

[
eeez ×

(
Ûrrr
)]

+ Û †B̂†Û
[
eeez ×

(
Û †rrr

)]
=

[
Â + B̂Û + Û †B̂†ÛÛ †

](
eeez × rrr

)
=

M̂
1/2Ĝ(0)M̂

1/2
[
eeez ×

(
M̂
−1/2

r̃̃r̃r
)]

= M̂
1/2Ĝ(0)

(
eeez × r̃̃r̃r

)
= 0 (3.25)

As long as eeez ×
(
M̂
−1/2

r̃̃r̃r
)

= M̂
−1/2(

eeez × r̃̃r̃r
)
.
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Those special solutions correspond to so-called acoustic bands. In perfluo-

roalkane stranded structure one can expect four acoustic bands: one band ω1(0) = 0

corresponding to the rotational symmetry (special solution 3); two bands corre-

sponding to translational symmetry (special solution 1), such that ω2(0) = 0 and

ω2(φ) = ω3(2π − φ); and one peculiar band ω4(θ) = 0 (special solution 2).

In alkane chain with pure translational symmetry the matrix Û is an identity

matrix and Ĝ0(φ) = ÂW + B̂W e
iφ + B̂†W e−iφ. There are three special solutions

corresponding to translational symmetry of the Hessian, such that

Ĝ(0)ẽ̃ẽex = Ĝ(0)ẽ̃ẽey = Ĝ(0)ẽ̃ẽez = 000

and one band ω1(0) = 0 corresponding to the rotational symmetry (special solution 3):

four acoustic bands as well.

Practically, the Hessian obtained from DFT-calculations does not reveal ideal

translational and rotational symmetry, also the non-zero elements we neglect in-

crease6 the effect of violation Ĝ(q) matrix symmetry properties. It may affect the

low-frequency modes, though at the same time mentioned slight symmetry violation

has no impact on high-frequency optical modes [20], so the acoustic modes can barely

be calculated straightforward from the realistic Hessian, especially in vicinity of q = 0.

Thus we cannot determine speed of sound for acoustic modes using numerical deriva-

tive dω(q)/dq at q = 0. However some estimate can be done using equation we are to

derive below.

6Even with the next-neighbor interaction and beyond.
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3.4 Acoustic velocity

Two solutions with ω(0) = 0 correspond to acoustic modes with acoustic veloc-

ities v = dω/dq, q = φ/a = 0. To find these values we don’t need to solve Eq. (3.14)

for arbitrary φ and take the derivative, the only required numerical calculation is

solving eigenvector problem for matrix Ĝ(0). To show it we need to consider equa-

tion Ĝ(φ)ηηη = λ(φ)ηηη in vicinity of φ = 0, treating φ as a perturbation parameter. For

the sake of simplicity, below we omit subscript W for the “weighted” matrices and

vectors.

Ĝ(φ) ' Ĝ0 + φĜ1 + φ2Ĝ2

λi(φ) ' λ
(0)
i + φλ

(1)
i + φ2λ

(2)
i

ηηηi ' |i〉+ φηηη
(1)
i + φ2ηηη

(2)
i

(3.26)

where we use the following notations:

Ĝ0 = Â + B̂Û + Û †B̂†

Ĝ1 = i
[
B̂Û − Û †B̂†

]

Ĝ2 = −1

2

[
B̂Û + Û †B̂†

]
(3.27)

for matrices and |i〉 for eigenvectors of Ĝ(0). The eigenvectors of acoustic modes of

interest are

|1〉 =
eeez
|eeez|

|2〉 =
τττ z
|τττ z|

(3.28)

with the rest of eigenvectors of Ĝ0 |i〉, i = 5..n, corresponding to the optical bands,

for certainty ordered as λ
(0)
5 < λ

(0)
6 < .. < λ

(0)
18 . As long as ωi(φ) =

√
λi(φ), to

derive acoustic velocities we are particularly interested in the corrections to λ1 and
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λ2. As it already shown, λ
(0)
1 = λ

(0)
2 = 0, so we are to deal with two-fold degenerated

eigenvectors.

To proceed further we need to supplement the symmetry relations Eqs. (3.17),

(3.19) with one more condition. If the considered unit cell is in the middle (for

simplicity we can consider a unit cell with number k = 0 of an infinite chain), any

deformation on the left will cause identical energy changes as the same deformation

one the right. Considering translational and rotational deformations we obtain the

condition:

B̂eeez = Û †B̂†Ûeeez

B̂τττ z = Û †B̂†Ûτττ z
(3.29)

Now we can calculate the important matrix elements of Ĝ1. By definition of Ĝ1 all

its diagonal elements are equal to zero,
(
Ĝ1

)
12

= 0 by property Eq. (3.29).

〈
i
∣∣Ĝ1

∣∣i
〉

=
〈
1
∣∣Ĝ1

∣∣2
〉

= 0 (3.30)

From perturbation theory it can be shown [69] that

λ
(1)
1 = λ

(1)
2 =

∣∣〈1
∣∣Ĝ1

∣∣2
〉∣∣ = 0

λ
(2)
i =

〈
i
∣∣Ĝ2

∣∣i
〉
−

n∑

j=5

∣∣〈i
∣∣Ĝ1

∣∣j
〉∣∣2

λ
(0)
j

, i = 1, 2
(3.31)

Thus in vicinity of of φ = 0 acoustic mode frequency ω = φ
√
λ(2) so that the group

velocity is

vi = a

√√√√1

2

〈
i
∣∣Â
∣∣i
〉
−

n∑

j=5

∣∣〈i
∣∣Ĝ1

∣∣j
〉∣∣2

〈
j
∣∣Ĝ0

∣∣j
〉 , i = 1, 2 (3.32)

where we replaced Ĝ2 with Â using Eqs. (3.23), (3.25).
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The estimates for C16 perfluoroalkane compound (see Fig. 3.1 and Sec. 3.6)

are v1 ' 9.1 km/s and v2 ' 1.8 km/s.

3.5 Long-order interaction

Eq. (3.14) obtained for the case of interaction between adjacent unit cells can

be generalized as long as the same symmetry assumptions are preserved. Consider a

chain with 2N + 1 (N −→∞) unit cells. Introduce the following notations:

1. Ĥmn - part of the Hessian, related to the interaction between unit cells m and

n, so that Ĥmm describes interaction between atoms in the unit cell m;

2. for the central unit cell Â = Ĥ00;

3. B̂n = Ĥ0n, n = ±1..±N

4. the dispersion equation Ĝ(aq)ηηηq = ω2
qηηηq with new definition7

Ĝ(φ) = Â +
∑

n

[
B̂nÛ

n
einφ +

(
Û †
)n

B̂†ne−inφ
]

(3.33)

Eq. (3.32) will be preserved with

Ĝ0 = Ĝ(0)

Ĝ1 = i
∑

n

n
[
B̂nÛ

n −
(
Û †
)n

B̂†n
]

Ĝ2 = −1

2

∑

n

n2
[
B̂nÛ

n
+
(
Û †
)n

B̂†n
]

(3.34)

in form

vi = a

√√√√〈i
∣∣Ĝ2

∣∣i
〉
−

n∑

j=5

∣∣〈i
∣∣Ĝ1

∣∣j
〉∣∣2

〈
j
∣∣Ĝ0

∣∣j
〉 , i = 1, 2 (3.35)

7As in Sec. 3.4 we omit subscript W
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3.6 Numerical calculation of symmetry parame-

ters

We assume the following symmetry in the long enough perfluoroalkane chain:

every elementary cell might be obtained from the previous one by translation along

z-axis (lattice period a) and rotation by constant angle θ. The optimized geometry

and the Hessian matrix were obtained from DFT-calculation for perfluoroalkane com-

pound C16 with CO2H and CF2H complexes on the ends [16], B3LYP hybrid functional

and 6-31(d, p) basis sets were used, as implemented in a Gaussian 09 software pack-

age [68]. To reduce boundary effects, seven elementary cells were picked, starting with

the third carbon atom from carbolic acid side (Fig. 3.1). To determine parameters a

and θ from this geometry one can use mean least square method.

Introduce matrix Û - generator of rotations by angle θ around z-axis:

Û =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




(3.36)

To estimate the parameters one needs minimize function

S(a, θ) =
n−1∑

k=1

6∑

i=1

[
rrrik+1 − Ûrrrik − aeeez

]† [
rrrik+1 − Ûrrrik − aeeez

]
(3.37)

where k is number of the unit cell and i is number of the atom into the unit cell. To

simplify the calculations one can consider α = cos θ, β = sin θ as two independent
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parameters with constrain α2 + β2 − 1 = 0. The matrix (3.36) becomes




α β 0

−β α 0

0 0 1




So introducing Lagrange multiplier λ one can obtain the solution from

S̃λ = S(a, α, β) + λ
[
det
(
Û †Û

)
− 1
]
−→ min (3.38)

Introduce coefficients

A =
n−1∑

k=1

6∑

i=1

(
xik+1x

i
k + yik+1y

i
k

)
(3.39)

B = −
n−1∑

k=1

6∑

i=1

(
(xik)

2 + (yik)
2
)

(3.40)

C =
n−1∑

k=1

6∑

i=1

(
xik+1y

i
k − yik+1x

i
k

)
(3.41)

and obtain parameters:

a =
1

6(n− 1)

n−1∑

k=1

6∑

i=1

(
zik+1 − zik

)
(3.42)

α = ± A√
A2 + C2

(3.43)

β = ± C√
A2 + C2

(3.44)

The sign ± corresponds to the right or left twist.

The numerical values obtained for perfluoroalkane chain are a = 2.6 Å and

θ = 29◦. This approach obviously can be applied for any helix-structured periodic

polymer.
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3.7 Energy bands theory application for ballistic

energy transport in alkane oligomers

As it was mentioned above, even minor deviations from ideal structure in

Hessian matrix lead to difficulties in numerical study of acoustic modes. At the same

time slight symmetry violation has no impact on high-frequency optical modes. In

this section we present an example of practical energy bands theory application for

study of ballistic transport in alkane chains.

In the recent paper [20] there were reported results of study by relaxation-

assisted two-dimensional infrared spectroscopy of the intramolecular transport of vi-

brational energy in oligomers featuring alkane chains of various length. The trans-

port was initiated by exciting various end-group modes (tags) such as different modes

of the azido ν(N≡N) and ν(N=N), carboxylic acid ν(C=O), and succinimide ester

νas(C≡O) with short mid-IR laser pulses. It was shown that the transport via alkane

chains is ballistic and the transport speed is dependent on the type of the tag mode

that initiates the transport. The transport speed of 8.0 Å/ps was observed when ini-

tiated by either ν(C=O) or νas(C≡O). When initiated by ν(N≡N) and ν(N=N), the

transport speed of 14.4±2 and 11±4 Å/ps was observed. Analysis of the vibrational

relaxation channels of different tags, combined with the results for the group velocity

evaluation, permitted identification of the chain bands predominantly contributing to

the transport for different cases of the transport initiation. In the present discussion

we will concentrate on group velocity evaluation.

Some refinement for the involvement of different chain bands can be obtained

from the comparison of the group velocities supported by each chain band with the ex-

perimental transport speeds. Previously the band structure was evaluated for alkane

chains using semi-empirical force field methods [76] and these results are consistent
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(a) projection on X-Z plane

(b) unit cell with the nearest and the next neighbor
interaction

Figure 3.2: Alkane compound C15 with CO2H and N3 complexes on the ends:
(a) projection on X-Z plane, the unit cells are shown; (b) unit cell with
the nearest and the next neighbor interaction.

with our DFT analysis. The Hessian matrix of force constants for the alkane chain

was obtained from the DFT normal-mode analysis for CH15-a: the optimized geom-

etry and the Hessian matrix were obtained from DFT calculations for alkane chain

consisting of 15 carbon atoms with carboxylic acid and N3 azido group on the sides

(Fig. 3.2(a)). The Gaussian09 software was used, B3LYP calculation method with

6-311+G(d.p) basis sets. To reduce boundary effects we picked out 6 unit cells start-

ing with the 3rd carbon atom (from carbolic acid side) and applied Eq. (3.14) to the

3rd and 4-th unit cells in the middle of the chain (with identical results, as expected)

with some corrections for matrix Ĝ:

Ĝ(aq) = ÂW + (B̂W + B̂†W ) cos(aq) + i(B̂W − B̂†W ) sin(aq)+

(ĈW + Ĉ†W ) cos(2aq) + i(ĈW − Ĉ†W ) sin(2aq) (3.45)

The difference with Eq. (3.15) is that Û is identity matrix as long as θ = 0 and we

use the next-neighbor approximation with Ĉ = Ĥkk+2 (see Fig. 3.2(b) and Sec. 3.5).

This short range approximation is justified by relation |Ĥkk±3|/|Ĥkk±1| . 6 · 10−3.
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The lattice period was estimated as a = 2.56 Å (see Sec. 3.6).

The optical bands, shown in Fig. 3.3, appear in pairs and are represented by

the lines of the same color. For example, the two rocking modes are shown with

black lines, where the first band spans from 733 to 804 cm−1 and the second band

spans from 804 to 1082 cm−1. It is sufficient to plot the band in the wave-vector (q)

region from 0 to π/a; for the finite chain length, this portion of the band contains

the number of states equal to the number of unit cells. Due to central symmetry

of the unit cell, the two bands of the same motion nature have the same energy at

q = π/a and continuous derivative. Thick lines are used in Fig. 3.3 to identify the

bands of the same motion type. Each thick line comprises two optical bands, one in

the wave-vector region from 0 to π/a, another from π/a to 2π/a (Fig. 3.3).

The group velocity for a narrow range of frequencies centered at ω(q0) is de-

termined as v(q0) = (dω/dq)q=q0 . Because the velocity is different for different ranges

of wave-vectors (frequencies), the mean group velocity over selected range of wave-

vectors from q1 to q2 is computed as

〈vb〉 =
1

q2 − q1

q2∫

q1

|v(q)|dq (3.46)

The mean group velocity corresponding to the whole i-th band is defined by Eq. (3.16):

〈vi〉 =
1

π

π/a∫

0

|vi(q)|dq

According to Eq. (3.46) the frequency width of the wave packet affects its

group velocity. Therefore, the group velocities were computed for each chain band

for the frequency range corresponding to the 1/e peak width of the two stretching

transitions initiating the wave packet, ν(N=N) and ν(N−C), and the results are given



57

0 . 0 0 . 5 1 . 0
7 0 0
8 0 0
9 0 0

1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
1 5 0 0 ( Å / p s )

< V > ,

1 . 54 . 3
6 . 0

2 4 . 6
4 . 0

2 1 . 5

8 . 8
3 3 . 5
4 2 . 7

1 0 . 5

Fre
qu

en
cy 

(cm
-1 )

N o r m a l i z e d  w a v e v e c t o r ,  q a  /  ( 2 π)  

s c i s s o r i n g

t w i s t i n g
w a g g i n g

C C  s t r e t c h i n g

r o c k i n g

ν ( N = N )

ν ( N O C )

ν ( N - C ) 6 2  Å / p s
7 . 6  Å / p s

1 1 . 2  Å / p s  

1 5 . 4  Å / p s

6 5 . 7  Å / p s

Figure 3.3: Structure of 10 lowest-energy optical bands obtained as eigenvalues
of matrix from Eq. (3.45) for the alkane chain (labeled) as a function of a
normalized wave-vector. The boxes match the width of the azido-group
stretching modes, ν(N=N) and ν(C−N) and the ν(NOC) (orange) of
the succinimide ester (violet). Mean group velocities computed with
Eq. (3.16) are shown on the right. Velocities in the boxes are computed
with Eq. (3.46).
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in Fig. 3.3. The experimentally measured transport speed of 14.4 Å/ps is close to

those calculated for the CH2 wagging (15.4 Å/ps) and twisting (11.2 Å/ps) bands.

The group velocity supported by the CH2 rocking band is significantly larger than

the experimental value. Small density of states in this band results in a low quality

of the formed wave packet and reduces its throughput. Thus, it was concluded that

the CH2 twisting and wagging bands contribute most to the transport initiated by

the ν(N≡N) mode.

3.8 Conclusion

In this chapter we developed semi-classical method for investigation of energy

ballistic transport in oligomers, based on solution of dispersion equations with param-

eters obtained from quantum mechanical calculations. This method is applicable for

long polymer chains of different structure (perfluoroalkane, alkane, PEG etc.), if their

optimized geometry and interatomic interaction possess translational-rotational sym-

metry. Practically, it is difficult to investigate acoustic bands in the molecules, because

of sensitivity of low-frequency modes to deviations from ideal geometry, though it can

be possible with development of Hessian modeling based on exact DFT-calculations.

We also considered a practical example of the recently reported energy bands study

in alkane chain.
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Appendix A

Derivations for the Liouville-Bloch

equation

A.1 White noise in the quantum Liouville - Bloch

equation

In this section derive quantum Bloch-Liouville equation with decoherence as a

result of dynamical energy fluctuations. The Hamiltonian used in Section 1.2 is

Ĥ =
∑

m

ωmb̂
†
mb̂m +

1

2

∑

mn

∆mn

(
b̂†mb̂n + b̂mb̂

†
n

)
(A.1)

with non-diagonal matrix elements ∆mn:

∆mn = ∆mn (δmn+1 + δmn−1) (A.2)

for the nearest-neighbor interaction. The diagonal matrix elements are delta - cor-

related:

〈δωm(t1)δωn(t2)〉 =
W

2
δmnδ(t1 − t2) (A.3)
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Off-diagonal matrix elements are also delta-correlated. We split the elements ∆mn

into real and imaginary parts:

∆mn = αmn + iβmn

αnm = αmn

βnm = −βmn

(A.4)

and introduce the fluctuations separately:

〈δαmn(t1)δαkl(t2)〉 =
W̃

4
(δmkδnl + δmlδnk) (δmn+1 + δmn−1) δ(t1 − t2) (A.5)

preserving the Hamiltonian and its fluctuation as hermitian operators.

〈δβmn(t1)δβkl(t2)〉 =
W̃

4
(δmkδnl − δmlδnk) (δmn+1 + δmn−1) δ(t1 − t2) (A.6)

Thus the correlation of the off-diagonal elements is given by

〈δ∆mn(t1)δ∆kl(t2)〉 = 〈δαmn(t1)δαkl(t2)〉 − 〈δβmn(t1)δβkl(t2)〉 =

W̃

4

[
(δmkδnl + δmlδnk)− (δmkδnl − δmlδnk)

]
(δmn+1 + δmn−1) δ(t1 − t2) =

W̃

2
δmlδnk (δmn+1 + δmn−1) δ(t1 − t2) (A.7)

Also, the average values of diagonal and off-diagonal elements are:

〈ωm(t)〉 = ω

〈∆mn(t)〉 = ∆

(A.8)

Hence it is natural to introduce following notations splitting the Hamiltonian into
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regular and irregular parts:

ωm(t) = ω + δωm(t)

∆mn(t) = ∆ + δ∆mn(t)

Ĥ =
〈
Ĥ
〉

+ δĤ

(A.9)

The quantum Liouville equation (also called von Neumann equation) is

∂ρ

∂t
= − i

~

[
Ĥ, ρ

]
(A.10)

We are to derive equation for 〈∂ρ/∂t〉, for the sake of simplicity we will omit

< .. > in the left part, assuming below that the notation ρ stands for the average

value of the density matrix with respect to the fluctuations. The regular part of

Eq. (A.10) has a form of

− i
~

[ 〈
Ĥ
〉
, ρ
]
mn

= i∆
{
ρmn+1 + ρmn−1 − ρm+1n − ρm−1n

}
(A.11)

and the irregular part

− i
~

〈[
δĤ, ρ

]〉
mn

= i
〈{

δωn − δωm
}
ρmn

〉
+i
∑

k

{
〈ρmkδ∆kn〉−〈δ∆mkρkn〉

}
(A.12)

First, consider the diagonal part.

〈δωmρmn〉 =

t∫

t−δt

dτ

〈
δωm(t)

∂ρmn
∂τ

〉

' i

t∫

t−δt

dτ
〈
δωm(t)

{
δωm(τ)− δωn(τ)

}〉
ρmn = i

W

2
(1− δmn) ρmn



63

Thus the first order correction due to the energy fluctuations is

− i
~

〈[
δĤ, ρ

]〉diag
mn

= −W (1− δmn)ρmn (A.13)

In the same way consider off-diagonal part:

∑

k

〈ρmkδ∆kn〉 =
∑

k

t∫

t−δt

dτ

〈
∂ρmk
∂τ

δ∆kn(t)

〉
'

' i
∑

k

∑

p

t∫

t−δt

dτ
{
ρmp 〈δ∆kn(t)δ∆pk(τ)〉 − 〈δ∆kn(t)δ∆mp(τ)〉 ρpk

}
=

= i
W̃

2

∑

k

∑

p

{
ρmpδkkδnp − δkpδnmρpk

}(
δkn+1 + δkn−1

)
=

i
W̃

2

∑

k

{
ρmnδkk − δmnρkk

}(
δkn+1 + δkn−1

)
= i

W̃

2

{
2ρmn − δmn

(
ρmm−1 + ρmm+1

)}

∑

k

〈δ∆mkρkn〉 =
∑

k

t∫

t−δt

dτ

〈
δ∆mk(t)

∂ρkn
∂τ

〉
'

' i
∑

k

∑

p

t∫

t−δt

dτ
{
ρkp 〈δ∆mk(t)δ∆pn(τ)〉 − 〈δ∆mk(t)δ∆kp(τ)〉 ρpn

}
=

= i
W̃

2

∑

k

∑

p

{
ρkpδmnδkp − δmpδkkρpn

}(
δkm+1 + δkm−1

)
=

i
W̃

2

∑

k

{
ρkkδmn−δkkρmn

}(
δkm+1+δkm−1

)
= −iW̃

2

{
2ρmn−δmn

(
ρmm−1+ρmm+1

)}

Thus the first order correction due to the off-diagonal energy fluctuations is

− i
~

〈[
δĤ, ρ

]〉offdiag
mn

= −2W̃ (1− δmn)ρmn + W̃ δmn(ρm−1m−1 − 2ρmm + ρm+1m+1)

(A.14)
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Combining Eqs. (A.10), (A.13), (A.14) we obtain quantum Liouville-Bloch equation:

∂ρmn
∂t

= i∆
{
ρmn+1 + ρmn−1 − ρm+1n − ρm−1n

}
−

− (W + 2W̃ )(1− δmn)ρmn + W̃ δmn

{
ρm−1m−1 − 2ρmm + ρm+1m+1

}
(A.15)

As one can see above the physical source of the decoherence is the fluctuation

of energy; mathematically it appears in the equation (causing the irreversibility)

as a result of transition to a “rough” time scale with some typical time step δt

(so-called coarse-graining [63]), within which many “collisions” occur so that the

noise can be considered as delta-correlated. By replacing two constants W , W̃ with

one decoherence rate W : W + 2W̃ −→ W and by neglecting additional channel

W̃ δmn

{
ρm−1m−1 − 2ρmm + ρm+1m+1

}
due to its week contribution to the coherent

transport for assumption W � ∆, we represent Eq. (A.15) in a form of

∂ρmn
∂t

= −i∆ {ρm−1n + ρm+1n − ρmn−1 − ρmn+1} −W (1− δmn) ρmn (A.16)

which corresponds to Eq. (1.6) with γ = 0 (see Section 1.2).
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A.2 Derivation of the exact solution

We are to solve quantum Liouville-Bloch equation

∂ρmn
∂t

= −i∆ {ρm−1n + ρm+1n − ρmn−1 − ρmn+1} − (W + γ)ρmn +Wδmnρmn (A.17)

ρmn(0) = δ0mδ0n (A.18)

The solution of Eq. (1.6) for the diagonal elements of the density matrix can be ob-

tained in the exact form in the continuous limit, N � 1. This limit is equivalent

to evaluating the inverse Fourier transform of the solution in the momentum repre-

sentation obtained in Ref. [26]. Importantly this solution can be evaluated in the

analytical form in space-time representation. The probability of finding the excitation

on the n-th site is given by the expression

Pn(t) = e−(W+γ)t

{
J2
n(2∆t) +

W

4∆

[
I0

(
W

√
t2 − n2

4∆2

)

+ L0

(
W

√
t2 − n2

4∆2

)]
θ

(
t2 − n2

4∆2

)}
(A.19)

where Jn and I0 are the n-th order and zero-order Bessel functions, respectively, and

L0 is the zero-order Struve function. [41] The derivation of Eq. (A.19) is given below.

A.2.1 General approach

Applying the Fourier transform, ρ̃(p, k; t) =
∑
ρmn exp{ia(pn− km)}, to Eq.

(A.17) with respect to both indices, m and n, we obtain

˙̃ρ(p, k; t) = −i2∆ {cos (pa)− cos (ka)} ρ̃(p, k; t)− (W + γ)ρ̃(k, p; t) +WP̃ (p− k; t)

(A.20)
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where

P̃ (q) =
∑

n

eiaqnρnn (A.21)

is the Fourier transform of the site-diagonal density matrix characterizing transport of

the excitation density and a is the average distance between two adjacent monomers.

If one can manage to find P̃ (q), then the diagonal components of the density

matrix can be found as the inverse Fourier transform:

ρnn(t) =
( a

2π

)2
+π/a∫

−π/a

dp

+π/a∫

−π/a

dke−i(p−k)anP̃ (p− k; t) (A.22)

After applying a Laplace transform to Eq. (A.20) with respect to time

ρ̃(z) = Lz [ρ̃(z)] =

+∞∫

0

dte−ztρ̃(t) (A.23)

one can represent the density matrix in terms of its diagonal part as

ρ̃(p, k; z) =
1 +WP̃ (p− k; z)

z + i2∆ [cos (pa)− cos (ka)] +W + γ
(A.24)

where 2∆ cos(pa) describes the spectrum of optical phonons within the band. The

group velocity for the specific wave vector p is given by 2a∆ sin(pa). The maximum

velocity corresponds to p = π/(2a) and is given by vmax = 2a∆. We will show below

that this is the actual velocity of the ballistic transport. Using the relation between

P̃ and ρ̃

P̃ (q) =
a

2π

+π/a∫

−π/a

dp

+π/a∫

−π/a

dkδ(p− k − q)ρ̃(p, k) (A.25)
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and the identity

a

2π

+π/a∫

−π/a

dp

+π/a∫

−π/a

dk
δ(p− k − q)

z +W + γ + i2∆ [cos(pa)− cos(ka)]
=

1√
[z +W + γ]2 + [4∆ sin(qa/2)]2

(A.26)

one can solve Eq. (A.24) for P̃ in z-representation:

P̃ (q; z) =
1√

[z +W + γ]2 + [4∆ sin(qa/2)]2 −W
(A.27)

To obtain the probability of finding excitation on the n-th site, Pn(t) = ρnn(t), we

need to apply the inverse Fourier transform and the inverse Laplace transform to Eq.

(A.27). Before doing that we will split Eq. (A.27) in two components, P̃ = P̃B + P̃D,

defined below in Eqs. (A.28) and (A.29) and discuss their physical meaning. The

first component

P̃B(q) =
1√

[z +W + γ]2 + [4∆ sin(qa/2)]2
(A.28)

is responsible for the ballistic transport. Indeed, if we consider transport to large

distance so that q is small and sin(qa/2) ' qa/2, then Eq. (A.28) corresponds to the

running wave-packet with the group velocity v = 2a∆ and dumping rate W + γ. The

diffusive part takes the form

P̃D(q; z) =
WP̃B(q; z)√

[z +W + γ]2 + [4∆ sin(qa/2)]2 −W
(A.29)

In the case of energy conservation and long distance - long time limit it can be

expressed in the form of a diffusion pole P̃D(q; z) ∼ 1/(z+2Dq2), where D = a2∆/W

is a diffusion coefficient. Next we will consider ballistic and diffusive components of
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the solution separately.

A.2.2 Purely ballistic transport

Based on the property of the inverse Laplace transform one can see that the

ballistic component is given by exp{−(W + γ)t}ρ0
nn(t), where ρ0

mn(t) is a solution of

Eq. (A.17) in a purely coherent case, W = γ = 0. ρ0
mn(t) can be found as a tensor

product of wave-functions, ρρρ0 = ψ ⊗ ψ, which can be obtained as a solution of the

Schrödinger equation

i~
∂ψ

∂t
= Ĥψ (A.30)

Introducing as a basis set the states |n〉, corresponding to the excitation on the n-th

site, such that ψ(t) =
∑
Cn(t) |n〉 and ρ0

mn = C∗mCn, we can rewrite the Eq. (A.30)

as

iĊn = ωCn + ∆ (Cn−1 + Cn+1) (A.31)

with initial condition Cn(0) = δn0. Respectively introducing a function Fn(t) =

Cn(t)e−iωt and a new variable y = −i2∆t we can reduce the Eq. (A.31) to

dFn
dy

=
1

2
(Fn−1(y) + Fn+1(y)) (A.32)

which is an identity for the modified Bessel function [41] In(y). Using definition [41]

of the modified Bessel function

In(y) = e−i
πn
2 Jn(iy) (A.33)

we obtain the solution of the Schrödinger equation as

Cn(t) = e−iωte−i
nπ
2 Jn(2∆t) (A.34)
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which also satisfies the initial condition. Thus the ballistic component of the prob-

ability to find the excitation on the n-th site (in agreement with Ref. [27]) is given

by

PB
n (t) = e−(W+γ)tJ2

n(2∆t) (A.35)

A.2.3 Purely Diffusive transport (approximate solution)1

Another approximate solution of Eq. A.17 can be found for W � ∆ for suffi-

ciently large time scale (t > W−1). This condition allows to assume

ρ̇mn ' 0, m 6= n

ρmn ' 0, |m− n| > 1

(A.36)

so that

0 ' ρ̇m−1m ' −i∆ (ρmm − ρm−1m−1)−Wρm−1m

0 ' ρ̇m+1m ' −i∆ (ρmm − ρm+1m+1)−Wρm+1m

0 ' ρ̇mm−1 ' i∆ (ρmm − ρm−1m−1)−Wρmm−1

0 ' ρ̇mm+1 ' i∆ (ρmm − ρm+1m+1)−Wρmm+1

(A.37)

Here we omit −γρmn term for the sake of simplicity, final expression is to be corrected

by ρρρ(t) −→ e−γtρρρ(t), as we did it in Section A.2.2. Thus, plugging Eq. (A.37) into

expression for time derivative of diagonal components of the density matrix, one

obtain for probability to find excitation on the m-th site Pm = ρmm a discreet diffusion

1This section is useful for the analysis and better understanding of the equation, yet the exact

solution for diffusive component of Eq. (A.17) will be obtained in the Section A.2.4 so the current

section can be skipped.
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equation:

∂Pm
∂t

=
2∆2

W
(Pm+1 − 2Pm + Pm−1) (A.38)

This equation with substitution Pm(t) = exp{−4∆2t/W}Fm(4∆2t/W ) can be re-

duced to the modified Bessel function identity Eq. (A.32). Thus, the approximate

solution for purely diffusive regime is given by expression

P approx
m (t) = Im

(
4∆2

W
t

)
exp

{
−
(

4∆2

W
+ γ

)
t

}
(A.39)

Eq. (A.38) with −γPm term can be also rewritten in continuous limit x = na

as

∂P (x, t)

∂t
= D

∂2P

∂x2
− γP (A.40)

which is a diffusion equation with dissipation, where diffusion coefficient D = 4∆2a2

W
,

and a is the lattice constant. Its solution [33] for P (x, t), a probability to find exci-

tation on the interval x, x+ dx,

P (x, t) =
1√

2πDt
e−

x2

2Dt
−γt (A.41)

describes both diffusion and directed diffusion regimes (see Section 1.3. The latter

expression can also be obtained from Eq. (A.39) using asymptotic properties of Bessel

function (see Section A.3.2).

A.2.4 Diffusive transport (exact solution)

For the diffusive component the double integral in Eq. (A.22) can be reduced

to

PD
n (t) = L−1

t


 a

4π

+2π/a∫

−2π/a

dqP̃D(q; z)e−iqan


 (A.42)



71

where L−1
t denotes the z −→ t inverse Laplace transform. We will expand Eq. (1.10)

into a series with respect to the number of scattering events on the stochastic random

potential δω(t) associated with the decoherence and express the solution as

PD
n (t) =

∞∑

k=1

ρknn(t) (A.43)

where

ρknn(t) =
a

4π

W k

2πi

+i∞∫

−i∞

dz

+2π/a∫

−2π/a

dq
e−iqane(z+δ)t

[
(z + δ +W + γ)2 + (4∆ sin(qa/2))2] k−1

2
+1

(A.44)

with δ → 0. For long distances, n � 1, which are the target of our consideration,

one can expand sin(qa/2) ' qa/2 and set all integration limits to infinity, which

corresponds to the exact limit of the continuous model.

Applying those assumptions and introducing new variables,

z± = z ± i2∆q +W + γ

we obtain

ρknn(t) =
W k

4∆
U
(
t− n

2∆

)
U
(
t+

n

2∆

)
e−(W+γ)t (A.45)

where

U(τ) =
1

2πi
lim
δ→0

+i∞∫

−i∞

dz
e

1
2

(z+δ)τ

(z + δ)
k−1

2
+1

= L−1
τ/2

[
1

z
k−1

2
+1

]
=

(
τ
2

) k−1
2

Γ(k−1
2

+ 1)
θ(τ) (A.46)

and θ(τ) is a Heaviside step function.
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Introducing x = W
√
t2 − n2/(2∆)2 we rewrite Eq. (A.43) as

PD
n (t) = e−(W+γ)tθ

(
t2 − n2

4∆2

)
W

4∆

∞∑

k=0

(
x
2

)k

Γ2
(
k
2

+ 1
) (A.47)

To evaluate the series we need to split it in two sub-series k = 2m and k = 2m + 1.

Using the definitions [41]

I0(x) =
∞∑

m=0

(
x
2

)2m

Γ2 (m+ 1)
; L0(x) =

∞∑

m=0

(
x
2

)2m+1

Γ2
(
m+ 3

2

) (A.48)

we obtain the expression for the diffusive component as

PD
n (t) =

e−(W+γ)tW

4∆

[
I0

(
W

√
t2 − n2

4∆2

)
+ L0

(
W

√
t2 − n2

4∆2

)]
θ

(
t2 − n2

4∆2

)
(A.49)

Composing Eqs. (A.35), (A.49) we obtain the final analytical solution of Eq. (A.19).
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A.3 Asymptotic limits of the solution

Here we derive asymptotic limits based on asymptotic behavior of Bessel func-

tions.

A.3.1 Ballistic component

To find ballistic regime approximation one needs to consider asymptotics of

Bessel function Jn(z) for large z. We will use integral representation:

Jn(z) =
1

π

π∫

0

dθ cos (z sin θ − nθ) =
1

2π

π∫

0

dθeiz sin θ−inθ + c. c. =

e−inπ/2

2π

+π/2∫

−π/2

dθeiz cos θ−inθ + c. c. (A.50)

Assuming the integral is defined by vicinity of maximum of function z cos θ − nθ for

z � 1 (saddle point method), we can estimate

e−inπ/2

2π

+π/2∫

−π/2

dθeiz cos θ−inθ ' e−inπ/2

2π

+∞∫

−∞

dεeiz cos θ0−inθ0− iz2 ε
2

=

1

2π
e−inπ/2+iz cos θ0−inθ0

√
2π

iz cos θ0

(A.51)

where θ0 is defined by z sin θ0 + n = 0, so that

cos θ0 =

√
1−

(n
z

)2

, θ0 = arcsin
(n
z

)
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Figure A.1: Bessel function J2
n(x) (blue solid line) and its approximation by

Eq. (A.52) (red dashed-dotted line) for n = 20. As one can see, the ap-
proximation works very well everywhere except of the most interesting
vicinity of the first maximum.

Finally, the main asymptotics of Bessel function for |z| � 1 is given by expression:2

Jn(z) '
√

2

π(z2 − n2)1/2
cos
[√

z2 − n2 − nπ

2
− π

4
+ n arcsin

(n
z

)]
(A.52)

The approximation for J2
n(z) with n = 20 is shown on Fig. A.1. As one can see it is

not good approximation for the most important vicinity of the first maximum while

the first maximum of J2
n(z) defines Tmax in the ballistic regime.

There is an interesting observation. The first maximum of Jn(z) lies in vicinity

of z ∼ n. The asymptotic expression for large n can be found similarly to Eq. (A.51).

2This expression is slightly more accurate than the one presented in Ref. [41].



75

Expanding n sin θ ± nθ in vicinity of its maximum

n sin(θ0 + ε)± n(θ0 + ε) ' −inε
3

3!
, θ0 = 0 (A.53)

we can approximate

Jn(n) =
1

π

π∫

0

dθ cos (n sin θ − nθ) =
1

2π

π∫

0

dθein sin θ−inθ + c. c. '

1

2π

+∞∫

0

dε exp
{
−inε

3

3!

}
+ c. c. =

1

3 · 2π

+∞∫

0

dξξ
1
3
−1 exp

{
−in

3!
ξ
}

+ c. c. =

1

6π

(
in

6

)− 1
3

Γ (1/3) + c. c. =
n−1/3

3π
61/3Γ (1/3)

e−iπ/6 + eiπ/6

2
=

n−1/3

3

61/3

Γ (2/3) sin (π/3)
cos (π/6) = λn−1/3, λ =

(
2

9

)1/3
1

Γ (2/3)
(A.54)

Above we used definition and properties of Gamma-function Γ(z) [41]:

Γ(z)
def
=

∞∫

0

dξξ1−ze−ξ

k−zΓ(z) =

∞∫

0

dξξ1−ze−kξ

Γ(z)Γ(1− z) =
π

sin(πz)

(A.55)

We may assume (though not prove, unfortunately) the same n−1/3 rule is valid

for the Bessel function in its first maximum. So in ballistic regime W < 2∆/n the

amplitude of the signal might be estimated as

Pmax(n) ∼ n−2/3e−
W+γ
2∆

n (A.56)
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λn−1/3

Figure A.2: Log-Log representation of maximum of Bessel function Jn (solid
blue line) and n−1/3 (red dashed-dotted line) vs n. Dotted black line
represents

√
λn−1/3, λ = (2/9)1/3/Γ(2/3).

The latter assumption is confirmed by numerical calculations. Moreover, if we sub-

stitute pre-factor λ by its square root we very good approximation even for the am-

plitude, not for its slop only (black dashed line on Fig. (A.2)).

Now we can estimate Tmax for entirely ballistic regime. Introduce X∗ such

that Jn(X∗) −→ max. In fact X∗ ' n + C0, C0 � n . Now we wish to estimate the

correction to X∗ corresponding to low decoherence and relaxation.

e−(γ+W )tJ2
n(2∆t) −→ max, so that − γ +W

2∆
Jn(2∆t) + 2J′n(2∆t) = 0
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with assumption (γ +W )� ∆ we may expand the function in vicinity of X∗:

−γ +W

2∆

(
Jn(X∗) + J′n(X∗)ε+

1

2
J′′n(X∗)ε

2

)
+ 2J′n(X∗) + 2J′′n(X∗)ε ' 0 (A.57)

Jn(X∗) = An−1/3

J′n(X∗) = 0

J′′n(X∗) = −B/2, B > 0

(A.58)

A is a square root of pre-factor in Eq. (A.54), coefficient B corresponds to width of

the first peak and almost doesn’t depend on n as well as A. Neglecting ε2 term in

Eq. (A.57) we obtain

Tmax '
X∗
2∆
− A

B

γ +W

4∆2
n−1/3 =

n

2∆
+ C0 −

C

n1/3

γ +W

4∆2
, C0 ' ∆−1 (A.59)

Finally, the main asymptotics for ballistic regime:

TBmax(W ) ' T0 − αW, α ∼ n−1/3

4∆2

TBmax(n) ' n

2∆

x=na−−−→ x

2a∆

(A.60)

From the first expression one can see that for large n Tmax does not depend on

decoherence rate (see also Fig. 1.3 in Section 1.3). The second expression suggest

propagation of energy with constant speed

v = 2a∆ (A.61)

where a is a lattice constant.
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A.3.2 Diffusive component

To consider asymptotic limit of diffusive component Eq. (A.49) one needs to

consider asymptotic behavior of modified Bessel functions for large large values of the

argument. The main asymptotics can be obtained applying saddle point method to

the integral representation of In:

In(z) =
1

π

π∫

0

dθez cos θ cos(nθ) =
1

2π

+π∫

−π

dθez cos θ cos(nθ) =
1

2π

+π∫

−π

dθez cos θ+inθ '

ez

2π

+∞∫

−∞

dθe−
zθ2

2
+inθ =

eze−
n2

2z

2π

√
2π

z
=

ez√
2πz

e−
n2

2z (A.62)

Asymptotic behavior of Struve function L0(α) to that of In(α):

L0(z)− I0(z) = − 2

π
z−1 −→ 0, |z| � 1 (A.63)

so that Eq. (A.49) can be approximated by

PD
n (t)

t�W−1

−−−−→

W

2∆
e−(W+γ)tI0

(
W

√
t2 − n2

4∆2

)
−→ W

2∆

1√
2πWt

e−γt−Wt+W
√
t2− n2

4∆2 '
√

W

8π∆2t
exp

{
−Wn2

8∆2t
− γt

}
x=na−−−→

a√
2πDt

e−
x2

2Dt
−γt (A.64)

where a is a lattice constant, and D = 4∆2a2/W . Function

P (x, t) =
1√

2πDt
e−

x2

2Dt
−γt
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is a probability to find excitation in continuous limit on the interval x, x+dx, identical

to Eq. (A.41). Applying Eq. (A.62) to the approximate solution Eq. (A.39) one gains

the same result. Constant D has a physical meaning of diffusion coefficient. To

estimate Tmax(n) - time required to reach maximum intensity on n-th site we need to

apply to PD
n (t) condition:

e−(W+γ)t

exp

{
W
√
t2 − n2

4∆2

}

(
t2 − n2

4∆2

)1/4
−→ max (A.65)

We will consider the case of γ � ∆/n. In such a situation the maximum will be

reached at t� n/∆ so we can simplify the exponent and deal with equation

d

dt

{(
t2 − n2

4∆2

)−1/4

e−γt−
Wn2

8∆2t

}
= 0 (A.66)

which leads to

2γt2 + t− (W + 2γ)
n2

4∆2
+
Wn4

16∆4
t−2 = 0 (A.67)

where the last term is to be neglected. Indeed, with dividing Eq. (A.67) by t

one can see ∼ (n4/∆4)t−3 is the term we have already neglected in asymtotics of
√
t2 − n2/(2∆)2. Therefore we get a simple quadratic equation:

2γt2 + t− (W + 2γ)
n2

4∆2
= 0 (A.68)

and finally:

Tmax =

√
1 + 2 n2

∆2 (W + 2γ)γ − 1

4γ
, γ � ∆/n (A.69)

For purely diffusive regime

Tmax
γ−→0−−−→ TDmax =

n2

4∆2
W

x=na−−−→ x2

D
(A.70)
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and corresponding amplitude PD
max can be obtained by plugging TDmax into Eq. (A.64):

PD
max(x) = (2πe)−1/2x−1e−

γ
D
x2

(A.71)

Another interesting asymptotic regime can be obtained from Eq. (A.69) when

n becomes sufficiently large and the term 2(n2/∆2)(W + 2γ)γ � 1 so the main

asymptotics of Tmax becomes

TDDmax(n) =
n

2∆

√
1 +

W

2γ
− 1

4γ
∼ n

2∆

√
W

2γ

x=na−−−→ x√
2γD

(A.72)

This is so-called directed diffusive regime (see also Section 1.3), characterized, unlike

purely diffusive regime, by constant speed

ṽ =

√
8∆2γ

a2W
=
√

2γD (A.73)

Corresponding amplitude PDD
max can be obtained by plugging TDDmax into Eq. (A.64):

PDD
max(x) =

( γ

2π2D

)1/4

x−1/2e−
ṽ
D
x (A.74)
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Appendix B

Derivations for electronic sound

through cumulene chain

B.1 Derivation of the hydrogen torsional mode fre-

quency as a function of molecule length

Consider the following model for carbyne molecule: a long spring with two

‘whiskers” on the sides. The potential energy depends on the spring torsion (gradient

of angle θ(z)) and the torsion of the ‘whiskers” (angles φl, φr) with respect to the

spring.

L =
1

2
Jlφ̇

2
l +

1

2
Jrφ̇

2
r +

1

2

zr∫

zl

dzjeθ̇
2−

1

2

zr∫

zl

dz

{
κ

(
∂θ

∂z

)2

+ ε(z − zl)
[
φl − θ(z)

]2

+ ε(z − zr)
[
φr − θ(z)

]2
}

(B.1)

with Jl = Jr = J2H = J/2, where J - moment of inertia along main axis, deter-

mined entirely by hydrogen atoms on the sides, where je - linear density of electronic

moment of inertia, assumed je = Je/L, L - length of the molecule (see Fig. 2.3
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and Sec. 2.4). The integration limits zl,r = ∓L/2. The dynamical equations from

Lagrangian Eq. (B.1) are





J

2
φ̈l = −

zr∫

zl

dzε(z − zl)
[
φl − θ(z)

]

J

2
φ̈r = −

zr∫

zl

dzε(z − zr)
[
φr − θ(z)

]

jeθ̈ = κ
∂2θ

∂z2
+ ε(z − zl)

[
φl − θ

]
+ ε(z − zr)

[
φr − θ

]

(B.2)

For antisymmetric solution the boundary conditions are




φr = φ = −φl

θ(zr) = θ0 = −θ(zl)
(B.3)

The simplest model for function ε(z) is

ε(z) = ε0δ(z) (B.4)

The time-depended solution is to be sought as θ(t, z) = exp{iωτ t}θ(z), φ(t) =

exp{iωτ t}φ

With those conditions the equations into Eq. (B.2) are reduced to

Jω2
τ

2
= ε0 (φ− θ0) (B.5)

and

−jeω2
τθ = κ

∂2θ

∂z2
, −L

2
< z <

L

2
, −θ

(
−L

2

)
= θ

(
L

2

)
= θ0 (B.6)

There is one more boundary condition which can be obtained from the third equation

in Eq. (B.2). Apply integration in vicinity the right boundary:
∫ zr+ε
zr−ε dz. While the
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function θ is continuous on the boundary as well as everywhere, its derivative has a

jump. Indeed
zr+ε∫

zr−ε

dzθ(z)
ε−→0−→ 0

zr+ε∫

zr−ε

dz
∂2θ

∂z2
=
∂θ

∂z

∣∣∣∣∣

zr−ε

zr+ε

= 0− ∂θ

∂z

∣∣∣
z=zr+ε

ε−→0−→ −∂θ
∂z

∣∣∣
z=zr

so finally

κ
∂θ

∂z

∣∣∣
z=L/2

= ε0 (φ− θ0) (B.7)

The solution of Eq. (B.6) is

θ(z) = θ0
sin (q∗z)

sin (q∗L/2)
, q∗ = ωτ

√
je
κ

(B.8)

Combining Eqs. (B.5), (B.7), (B.8) we obtain a system determining the connection

between torsion mode frequency ωτ and force constants ε0 and κ:





Jω2
τφ = ε0(φ− θ0)

θ0ωτ
√
jeκ = ε0(φ− θ0) tan

(
ωτL

2

√
je
κ

)
(B.9)

The transcendent equation can be simplified by the long-wave approximation

q∗L

2
=
ωτL

2

√
je
κ
� 1 (B.10)

One can get the same approximation simply neglecting electronic kinetic energy, which

is reasonable while Je � J , and setting the Laplacian in Eq. (B.6) to zero.

Finally,

ω2
τ =

4κ

J

1

L+ 2κ
ε0

(B.11)
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With approximation ε0 � κ/L Eq. (B.11) is simplified so that ωτ ∼ 1/
√
L

and

ω2
τ =

4κ

J

1

L
(B.12)
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B.2 Zero-point atomic vibrations

In this section we deduce detailed derivations of the correction −αθ2/(2L) to

the potential energy in Eq. (2.1) due to the zero-point atomic vibrations:

Le =
1

2

zr∫

zl

dz

{
je

(
dθ

dt

)2

− κ
(
∂θ

∂z

)2

− αθ
2

L

}
(B.13)

and describe numerical calculations of torsiton spectrum ∆ω =
√
α/jeL (see Sec. 2.7).

B.2.1 Analytical derivation of energy correction

All the normal modes in the molecule, which don’t include motion of hydro-

gen atoms with respect to the adjacent carbon atoms, can be either longitudinal or

transverse. We assume the coordinate system with the origin at the central carbon

atom, z-axis is the principal axis of the chain and (X-Z) and (Y-Z)-plains coincide

with the plains of two orthogonal CH2 groups. Thus, any normal mode of interest

has only one Cartesian component (x, y for transverse and z for longitudinal modes)

and one can apply Cartesian symmetry operations to the Hamiltonian recorded in

the normal modes representation. Anharmonic constant Aabc in normal mode repre-

sentation, where a, b, c are normal modes numbers, can be rewritten as Vαiβjγk , where

indexes {α, β, γ} correspond to Cartesian coordinates {x, y, z} and subscripts {i, j, k}

enumerate the harmonics in the corresponding directions.

The symmetry point group we consider is D2d, which consist of C2, S4 and

σd symmetry operations. It described above explicit Cartesian coordinates those
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operations take form of

(x, y, z)
σyz−→ (−x, y, z), (x, y, z)

σxz−→ (x,−y, z)

(x, y, z)
C2−→ (−x,−y, z)

(x, y, z)
S4−→ (y,−x,−z), (x, y, z)

S3
4−→ (−y, x,−z)

(B.14)

To posses such symmetries Hamiltonian should be constructed from combinations

u2
xi

+ u2
yi
, u2

zi
(B.15)

in harmonic approximation and

(uxiuxj − uyiuyj)uzk (B.16)

for the 3-d order anharmonicity, where uxi , uyi , uzi stand for displacements in normal

modes representation.

From Eq. (B.15) one can see that the harmonic Hamiltonian should be double-

generate,1 so that

~ωxi =
∂2H

∂u2
xi

=
∂2H

∂u2
yi

= ~ωyi = ~ωi (B.17)

Also, the rotation along z-axis by angle θ transforms the coordinates

x
θ−→ x′ = x cos θ + y sin θ

y
θ−→ y′ = −x sin θ + y cos θ

z
θ−→ z′ = z

(B.18)

1Actually, cumulene molecules H2 =Cn =H2 with even number of carbon atoms are planar and

belong to a symmetry point group D2h, so that ωxi 6= ωyi , however this is entirely effect of the sides

while in our consideration pi-bond symmetry is of the interest.
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so that the combination of displacements transforms accordingly:

uxiuxj + uyiuyj
θ−→
(
uxi cos θ + uyi sin θ

)(
uxj cos θ + uyj sin θ

)
+

(
− uxi sin θ + uyi cos θ

)(
− uxj sin θ + uyj cos θ

)
= uxiuxj + uyiuyj (B.19)

and the harmonic Hamiltonian

Ĥ2 =
1

2

∑

i

ωxi
(
p2
xi

+ u2
xi

)
+

1

2

∑

i

ωyi
(
p2
yi

+ u2
yi

)
+

1

2

∑

k

ωzk
(
p2
zk

+ u2
zk

)
(B.20)

is axially symmetric, so that axial symmetry violation is entirely anharmonic effect.

From Eq. (B.16) one can see that the only non-zero 3rd-order anharmonic

constants are

Vxixjzk = −Vyiyjzk = Vijzk (B.21)

and the corredtion to Hamiltonian Eq. (B.20) can be represented as

V̂3 =
∑

k

{
1

2

∑

i

Viizk

(
u2
xi
− u2

yi

)
+
∑

i<j

Vijk

(
uxiuxj − uyiuyj

)}
uzk (B.22)

where subscripts i, j enumerate transverse modes while subscript k is related to

longitudinal modes only. Ground state of Hamiltonian Ĥ = Ĥ2 + V̂3 can be found

using perturbation theory:

|ψ0〉 = |0〉+
∑

k

∑

i

(
Axik |2xi 1zk〉+ Ayik |2yi 1zk〉

)
+

2
∑

k

∑

i<j

(
Bx
ijk

∣∣1xi 1xj 1zk
〉

+By
ijk

∣∣1yi 1yj1zk
〉)

(B.23)
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where

Axik = − 〈0| V̂3 |2xi 1zk〉
~(2ωxi + ωzk)

= − 1

4~
Viizk

2ωi + ωzk

Ayik = − 〈0| V̂3 |2yi 1zk〉
~(2ωyi + ωzk)

= +
1

4~
Viizk

2ωi + ωzk

Bx
ijk = − 〈0| V̂3

∣∣1xi 1xj 1zk
〉

~(ωxi + ωxj + ωzk)
= − 1

~
√

8

Vijzk
ωi + ωj + ωzk

By
ijk = −

〈0| V̂3

∣∣1yi 1yj1zk
〉

~(ωyi + ωyj + ωzk)
= +

1

~
√

8

Vijzk
ωi + ωj + ωzk

(B.24)

Here we calculate matrix elements applying secondary quantization formalism:

uαi =
b̂αi + b̂†αi√

2
, 〈0αi |uαi |1αi 〉 =

1√
2
, 〈0αi |u2

αi
|2αi 〉 =

1√
2

(B.25)

where α = x, y, z. Finally,

|ψ0〉 = |0〉 − 1

4~
∑

k

∑

i

Viizk
2ωi + ωzk

(
|2xi 1zk〉 − |2yi 1zk〉

)
−

1

~
√

2

∑

k

∑

i<j

Vijzk
ωi + ωj + ωzk

(∣∣1xi 1xj 1zk
〉
−
∣∣1yi 1yj1zk

〉)
(B.26)

The rotation along z-axis by angle θ transforms displacements combination

uxiuxj − uyiuyj
θ−→ u′xiu

′
xj
− u′yiu′yj =

(
uxi cos θ + uyi sin θ

)(
uxj cos θ + uyj sin θ

)
−

(
− uxi sin θ + uyi cos θ

)(
− uxj sin θ + uyj cos θ

)
=

(
uxiuxj − uyiuyj

)
− 2
(
uxiuxj − uyiuyj

)
sin2 θ+

2
(
uxiuyj + uyiuxj

)
sin θ cos θ (B.27)
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so that the Hamiltonian changes in diabatic approximation by

δĤ(θ) = Ĥ(θ)− Ĥ(0) =

−
∑

k

{∑

i

Viizk
(
u2
xi
− u2

yi

)
+ 2

∑

i<j

Vijzk
(
uxiuxj − uyiuyj

)
}
uzk sin2 θ+

2
∑

k

{∑

i

Viizkuxiuyi +
∑

i<j

Vijzk
(
uxiuyj + uyiuxj

)
}
uzk sin θ cos θ (B.28)

The correction to classical energy is defined by

δE(θ) = 〈ψ0| δĤ |ψ0〉 (B.29)

Applying Eqs. (B.26), (B.28) and

〈ψ0|
(
u2
xi
− u2

yi

)
uzk |ψ0〉 = − 1

2~
Viizk

2ωi + ωzk

〈ψ0|
(
uxiuyiuzk |ψ0〉 = 0

〈ψ0|
(
uxiuxj − uyiuyj

)
uzk |ψ0〉 = −1

~
Vijzk

ωi + ωj + ωzk

〈ψ0|
(
uxiuyj + uyiuxj

)
uzk |ψ0〉 = 0

finally we get for classical energy correction δE(θ) = αθ2/2,

α =
∑

k

{∑

i

|Viizk |2
~(2ωi + ωzk)

+
∑

i<j

4|Vijzk |2
~(ωi + ωj + ωzk)

}
(B.30)

assuming sin θ ' θ.

B.2.2 Numerical estimate of the gap

To apply Eq. (B.30) for spectrum gap estimate ∆ω =
√
α/jeL we performed

DFT-calculations with anharmonic analysis, using B3LYP hybrid functional and 6-31
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basis set [68, 73] for cumulene molecule H2C5H2. The symmetry requirement was

loosen to secure D2d point group in the optimized geometry.

For linear chain of 5 atoms one expects 4 longitudinal and 3 × 2 double-

degenerate transverse vibrational modes. In the Gaussian output normal modes with

numbers 14, 9, 6, 5 were identified as longitudinal modes uzk , and pairs {21, 20},

{19, 18}, {17, 16} as transverse modes {uxi , uyi}. The corresponding frequencies and

3rd order non-zero anharmonic constants are presented in Table B.1. Plugging those

data into Eq. (B.30) we obtain α ' 119 cm−1. If [α] = cm−1 and [jeL] = u·Å2
, then

to keep ∆ω in cm−1 one has to multiply ∆ω =
√
α/jeL by factor

√
~/(2πcβ), where

1u = 1.66 · 10−27 kg

~ = 1.05 · 10−34 J · s

c = 3 · 1010 cm/s

β = 1.66 · 10−27 kg · u−1 · 10−20 m · Å−2

and √
~

2πcβ
= 5.77 ·

√
u · Å2

cm

The electronic moment of inertia is jeL ' 5 · 10−3 u·Å2
. Finally

∆ω = 5.77 ·
√

119

5 · 10−3
' 890 cm−1 (B.31)
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Table B.1: The list of frequencies and the third-order anharmonic constants
for H2=C5=H2 related to purely longitudinal and transverse vibrations.
The numbers in the first three columns enumerate the corresponding
normal modes in the Gaussian output.
XiXiXi XjXjXj ZkZkZk ωxiωxiωxi , cm−1 ωxjωxjωxj , cm−1 ωzkωzkωzk , cm−1 VxixjzkVxixjzkVxixjzk , cm−1

21 21 9 151.9 151.9 1354 -24.84
21 21 6 151.9 151.9 1973 -128.9
19 19 9 351.7 351.7 1354 52.98
19 19 6 351.7 351.7 1973 -177.3
17 17 9 590.1 590.1 1354 -42.66
17 17 6 590.1 590.1 1973 -3.77
21 19 9 151.9 351.7 1354 105.9
21 19 6 151.9 351.7 1973 -196.3
21 17 9 151.9 590.1 1354 -36.14
21 17 6 151.9 590.1 1973 -7.79
19 17 9 351.7 590.1 1354 56.28
19 17 6 351.7 590.1 1973 -46.14
YiYiYi YjYjYj ZkZkZk ωyiωyiωyi , cm−1 ωyjωyjωyj , cm−1 ωzkωzkωzk , cm−1 VyiyjzkVyiyjzkVyiyjzk , cm−1

20 20 9 151.9 151.9 1354 24.84
20 20 6 151.9 151.9 1973 128.9
18 18 9 351.7 351.7 1354 177.3
18 18 6 351.7 351.7 1973 177.3
16 16 9 590.1 590.1 1354 42.66
16 16 6 590.1 590.1 1973 3.77
20 18 9 151.9 351.7 1354 -105.9
20 18 6 151.9 351.7 1973 196.3
20 16 9 151.9 590.1 1354 36.14
20 16 6 151.9 590.1 1973 7.79
18 16 9 351.7 590.1 1354 -56.28
18 16 6 351.7 590.1 1973 46.14
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