


Abstract

We examine the hydrodynamic interaction of two oscillators in a 2D fluid driven by

a geometric switch. Motivated by the work of Kotar et al (PNAS, 107:17, 2010), the

colloidal oscillators are modeled by circular membranes that support tensile forces on

their boundary and forces due to an external trap that switches between two spatial

positions, depending upon the position of the oscillator. Numerical experiments are

performed using an immersed boundary framework where the viscous, incompressible

fluid is governed by either the inertia-free Stokes equations or the full Navier-Stokes

equations. In the Stokes case, the anti-phase state is stable and the in-phase state

is not. However, when a slight amount of inertia is added, we find that both states

are stable to small perturbations. For higher, but still moderate Reynolds numbers

we find that the anti-phase state is unstable and all perturbations tend to in-phase

oscillations a dramatic change from zero Reynolds number.
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1

Chapter 1

Introduction

The goal of this thesis is to study the hydrodynamic interaction of oscillators that are

driven by a geometric switch. We focus on how inertia changes the synchronization

state of the coupling of oscillators.

The motion and trajectory of small objects swimming in fluid is a classical problem

in biological fluid dynamics. In 1971, Berg [5] set up an apparatus to observe the

locomotion of bacteria. Bacteria swim by rotating their flagella [6]. If there are several

flagella per cell, the rotation synchronizes. Such synchronization is commonly seen at

the microscale. Examples of interacting organisms in a fluid at the microscale include

flagellar swimming [2, 7, 8] and ciliary beating [9, 10]. Woolley et al. in [1] showed

the synchronization of flagella of two bull sperm (about 55 µm) as they approach

close to each other. The paired sperm exhibit rises in conjoint beat frequency and

swimming velocity. As seen in Figure 1.1(a), two sperm, initially not synchronized

(A), begin to synchronize to an in-phase oscillation (B). Goldstein et al. [2] observed

that two flagella (about 12 µm) of Chlamydomonas beat in an anti-phase pattern,

as seen in Fig 1.2. Coordinated oscillations also occur in arrays of respiratory cilia

in the lung (about 4-7 µm) as shown in Figure 1.1(b). Mammalian sperm cells have

a single flagellum attached to a cell body, while the Chlamydomonas algal cell has
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two flagella. Respiratory cilia in human airways form dense arrays. The internal

structure of both cilia and flagella in eukaryotic cells is conserved, and the action of

dynein molecular motors on microtubules gives rise to filament oscillation.

(a) Sperm swimming. [1] D Woolley et al., A study of
synchronization between the flagella of bull spermatozoa,
with related observations. J. of Experimental Biology,
212(14):2215-2223, 2009.

(b) Cilla beating in lung.
Courtesy of Charles Daghlian,
Dartmouth College.

Figure 1.1: Examples of synchronization of oscillators at the microscale.

Several simple models have been proposed to study the interaction of flagellar

motion. Here we use a simple oscillator model [11]. A ciliary beat, characterized by a

power and recovery stroke, as seen in Fig 1.3, is modeled by the oscillation of a bead

in the oscillator model.

The coupling of multiple oscillators is well-studied. Hough and Ou-Yang studied

the coupling of two particles coupled through fluid with each trapped in a quadratic

potential well, both experimentally and analytically [12]. By setting one of the

trapped particle into forced oscillation using oscillating optical tweezers, they showed

that the in-phase and anti-phase motion of both particles in the traps is a function

of driven oscillating frequency. Extended work has been done by Herrera-Velarde

et al. in [13] by adding a third body in the colloidal array. They showed that by

adding a third-body, the auto-correlation functions show a slower decay, while the

cross-correlation ones exhibit a temporal shift and a weaker amplitude.

In 2008, Kotar et al. [14] conducted experiments and a simple model with three
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Figure 1.2: High-speed imaging probe of the beating pattern of the flagella. [2]Goldstein, Raymond
E. et al., Noise and Synchronization in Pairs of Beating Eukaryotic Flagella, Phys. Rev. Lett., doi
= 10.1103/PhysRevLett.103.168103

Figure 1.3: Diagram of normal cilia beating cycle. The beating cycle is characterized by an active
beating stroke (black) and a recovery stroke (grey) [3]
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elastic particles placed in a line. The two lateral elastic particles oscillate due to

the switching of an optical trap between two positions respectively, and the central

particle stays at rest. They showed that the system is able to generate flow. In 2010,

Kotar et al. [4] studied two oscillators placed next to each other with hydrodynamic

interaction.Their analysis shows that in a Stokes fluid, the two oscillators can syn-

chronize in-phase or anti-phase, and the anti-phase state is stable. Lhermerout et

al. studied the coupling of two oscillators with different orientation in [15]. They

have shown the analysis of the mean configurations (position and angles) of driven

oscillators to predict the main properties of the steady state of the collective system

undergoing geometric switch oscillations. Particles oscillating on the vertices of pla-

nar regular polygons have also been studied in [16–18]. Damet et al. have shown

in [17] that two particles or polygonal arrays of four or more colloids synchronize

with the nearest neighbors that are in anti-phase, while three equally spaced colloids

synchronize in-phase. Bruot et al. in [19] show that the type of trap driven potential

affects the synchronization of oscillators coupled through fluid. Positive curvature

of the potential well drives the system to anti-phase synchronization, while negative

curvature drives it to in-phase synchronization. When zero curvature occurs, the two

oscillators do not synchronize.

Most studies of hydrodynamic coupling have been done in a Stokes fluid, where

inertial effects are neglected. Theers and Winkler studied the time dependent version

in[20]. They used the coupled rotor model to study the hydrodynamic interaction,

and showed the linear unsteady acceleration term in the Navier-Stokes equation leads

to synchronization of the rotational motion.

We extend the hydrodynamic interaction to a Navier-Stokes fluid and study how

inertia affects the coupling of oscillators. We also compare our simulations with the

previous result.

In Chapter 2, we discuss the setup of the model system in detail. In Chapter 3, we
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study the coupling of oscillators in a Stokes fluid. Our analysis shows that in the case

of two oscillators placed next to each other, when we assume the deformation of the

oscillators is negligible, both the in-phase state and anti-phase state are equilibria.

The in-phase state is unstable and anti-phase state is stable. This result is consistent

with the work in [4]. In Chapter 4, we numerically computed the coupling of oscillators

in Stokes flow, using both free-space and singly periodic boundary conditions. We

validate the model by computing temporal oscillation period as functions of model

parameters. Furthermore, we study the coupling of multiple oscillators placed in

different positions. In Chapter 5, we study the coupling of oscillators in a Navier-

Stokes fluid. Using an immersed boundary method to simulate the oscillators, we

have demonstrated that both in-phase and anti-phase states are equilibria, and both

are stable to small perturbations. As the Reynolds number gets larger, the attraction

region of anti-phase gets smaller, while the attraction region of in-phase gets larger.
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Chapter 2

Model Setting

2.1 Oscillator Model

Experimentally, a colloidal particle has been used to model a cilium, and optical

traps [21] are used to generate driving potential wells. In this thesis, the colloidal

particle is modeled in 2D by a circular membrane that supports tensile and bending

forces on its boundary. The particle experiences force due to an external trap that

switches between two spatial positions. The particle is driven by a trap generating

a harmonic potential well. The particle experiences a force towards the trapping

position until the distance between the center of the immersed body and the trap

reaches a threshold. When the threshold distance is reached, the trap position is

switched and the oscillator moves towards the other trap position. Snapshots of such

an oscillation is shown in Figure 2.1. The red circle is the immersed body, and the

blue circle is the active trap. Starting from time t = 0, the immersed body is attracted

by the trap on the right, and kept moving right. Note that at t = 0.6, the immersed

body is very close to the active trap. When it reaches the threshold distance to the

right activating trap at t = 0.73, the trap switches position to the left immediately,

and we observe in the next figure, at t = 0.8, the immersed body moves left. The
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moving direction of the oscillator remains fixed unti the body reaches the threshold

distance of the left trap at t = 1.64, the trap switches to right again as seen in t = 1.8.

time =0

time =0.2

time =0.4

time =0.6

time =0.8

time =1

time =1.2

time =1.4

time =1.6

time =1.8

Figure 2.1: Snapshots of single oscillator. The red circle is the immersed body, and the blue circle
is the active trap.

Figure 2.2(b), taken from [4], shows the structure of a single oscillator. The

distance between two possible positions of the trap for a single oscillator is λ, and

the threshold distance for trap switching is ξ. In the study of the coupling of two

oscillators, we consider first the case when two oscillators are placed next to each

other. The distance between their centers is d (shown in Fig 2.2 (A) ). Snapshots of

experimental data are shown in Fig 2.2 (C). Here we note that as time increases, the

colloidal particles show an anti-phase oscillation.

2.2 Mathematical Model

The mathematical model of an oscillator coupled to an incompressible fluid is formu-

lated below.
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The physical system.  

Jurij Kotar et al. PNAS 2010;107:7669-7673 

©2010 by National Academy of Sciences 

Figure 2.2: The physical system of two oscillators. (A) illustrates the setting of two oscillators. (B)
illustrates a single oscillator movement. (C) is a sequence of snapshots of two oscillators. The long
term behavior is an anti-phase state. Taken from [4].

1. Fluid Motion.

The motion of fluid is described by the Navier-Stokes equation (2.1) with in-

compressibility condition (2.2).

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∆u +

M∑
k=1

fk (2.1)

∇ · u = 0 (2.2)

Here t is time, ρ is the density of the fluid, µ is the dynamic viscosity of the

fluid, u is the velocity, p is pressure and fk is the external force per unit area

exerted on the fluid by the kth oscillator. These equations hold in a domain D.

We will consider both singly periodic and doubly periodic boundary condition

in D. In addition, in the Stokes case we will take D = R2.
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2. Body-fluid Interaction.

The interaction between the immersed body and the fluid is described by (2.3)

and (2.4). Here we assume the fluid and the immersed body share the same

density and also the no-slip condition at the interface between the immersed

body and the fluid is satisfied.

fk(x, t) =

∫
Γk

Fk (s, t) δ (x−Xk(s, t)) ds (2.3)

Uk (s, t) = u(Xk(s, t), t) =

∫
D

u (x, t) δ (x−Xk(s, t)) dx (2.4)

Here Xk(s, t), Uk(s, t), Fk(s, t) represent the position of the kth immersed body,

velocity of the immersed body and force exerted by the immersed body respec-

tively, where s is an arclength parameter. The two-dimensional Dirac-delta

function is denoted by δ.

3. Force.

The forces exerted on the immersed body are derived from an energy function

(2.5). For a single oscillator, the energy function consists of two parts (2.6):

trap energy generated from the harmonic well and the membrane energy from

the immersed body itself. The membrane energy consists of tensile energy and

bending energy (2.7).

For a single oscillator, we suppress the subscript k and write:
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F = −∂E
∂X

(2.5)

E = Emembrane + Etrap (2.6)

Emembrane =

∫
Γ

(
Sm1

(∥∥∥∥∂X(s, t)

∂s

∥∥∥∥− 1

)2

+ Sm2

(∥∥∥∥∂2X(s, t)

∂s2

∥∥∥∥− c̃)2
)
ds

(2.7)

Etrap =

∫
Γ

St||X(s, t)−Tactive||2ds (2.8)

Here c̃ is chosen so that the curvature of membrane is that of a circle of radius

a. Sm1, Sm2, St are the tensile stiffness, bending stiffness, and trap stiffness

respectively, and Tacctive = Tα represents the position of the active trap, where

T1, T−1 are the possible positions of the trap and α ∈ {−1, 1} is a configuration-

coupled variable that switches at the trigger position. Formally, the switch

condition can be written as

α̇ = ±2δ(t− t±)

where t± is such that X(s, t±)−Tactive = ±ξ and δ is the one-dimensional Dirac

delta function. As a function of time, α appears as a step function, which is set

by the dynamics of X(s, t).

2.3 In/anti-phase indicator

When more than one oscillator is moving in the fluid, we would like to study the

coupling of them quantitatively.
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We define xi by

xi = Xi −
1

2
(Ti,1 + Ti,−1)

xi = xiei

which is the relative position of oscillator i to the center of two possible trap

positions related to it, ei = xi/‖xi‖. We quantify the phase correlation between

oscillator i and j by (2.9)

Qi,j(t0, t1) =
< xi, xj >

‖xi‖ ‖xj‖
(2.9)

Where

< xi, xj >=

∫ t0+t1

t0

xi(t)xj(t)dt.

t0 is where the viewing window to quantify coupling state starts, and t1 is the

length of the viewing window. If Qi,j = 1, the two oscillators are exactly in-phase.

When they are exactly anti-phase, Qi,j = −1.
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Chapter 3

Analytical Study of Stokes Case

In this section, we study the behavior of oscillators in Stokes flow. When the Reynolds

number is very small (in the order of 10−4), we approximate the Navier-Stokes equa-

tions by the linearized version, the Stokes equations.

−∇p+ µ∆u + f = 0

∇ · u = 0

3.1 Free Space Stokes Case

Since the Stokes equations are linear, the velocity field generated by a group of point

forces can be computed by adding the velocity field generated by each individual point

force. The point force f0 centered at point x0 can be written as f0δ(x − x0) where

δ is the Dirac-delta function. Given a point force acting on the fluid, the velocity

anywhere in the unbounded fluid domain can be computed analytically.

In the point force case, we have

0 = −∇p+ µ∆u + f0δ(x− x0) (3.1)
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Take the divergence of equation (3.1), and combine with the impressibility condition

of the fluid

∇ · u = 0.

We have

0 = −∆p+∇ · (f0δ(x− x0)),

which is

∆p = f0 · ∇δ(x− x0).

Let G be the Green’s function that satisfies

∆G(x) = δ(x)

Then

p(x) = f0 · ∇G(x− x0).

Plug p back into (3.1), we have

µ∆u(x) = ∇(f0 · ∇G(x− x0))− f0∆G(x− x0)

Let B solve

∆B(x) = G(x),

Then

µu(x) = ((f0 · ∇)∇− f0∆)B(x− x0)

This is the explicit solution of the Stokes equations.
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In the 2D case, we have

B(r) =
r2

8π

(
log(r)− 3

2

)

and

G(r) =
1

2π

(
log(r)− 1

2

)
,

and the velocity is given by

4πµu1(x) = f1

(
x̂1

2

r2
− log(r)

)
+ f2

(
x̂1x̂2

r2

)
(3.2)

4πµu2(x) = f2

(
x̂2

2

r2
− log(r)

)
+ f1

(
x̂1x̂2

r2

)
(3.3)

Here f0 = (f1, f2) is the external force acting on the point x0, (x̂1, x̂2) = x − x0,

r = |x− x0|, x is the point where the velocity is evaluated.

Equation (3.2) and (3.3) are defined everywhere except at the point where the

force is exerted, in which case the singularity occurs. As r → 0, the velocity goes to

infinity.

An example is illustrated in Fig 3.1. A point force f0 = (4πµ, 0) is exerted at

x0 = (10−5, 0). Fig 3.1 (a) shows the velocity in the x−direction on x−axis. When

we plot the velocity field in Fig 3.1(b), we change the velocity evaluated at (0, 0) to

be (0,0) to see the detailed velocity field.

In order to remove the singularity of the velocity field, we use the method of

regularized Stokeslets derived by Cortez [22]. Instead of the point force assumption

using δ−function, we choose a δε−function to represent a concentrated force applied

over a small non-zero area. The corresponding Gε and Bε satisfy

∆Gε(r) = G′′ε (r) +
1

r
G′ε(r) = δε(r)
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Figure 3.1: Point force f0 = (4πµ, 0) exerted at x0 = (10−5, 0). Singularity of velocity field hap-
pens when we use analytic solution. (a) shows the relationship between r and u1 (the velocity in
x−direction). As r → 0, u1 → ∞. (b) shows the velocity field of the domain [−1, 1] × [−1, 1]. We
replace the velocity at (0, 0) by (0,0) to see the velocity field everywhere.

∆Bε(r) = B′′ε (r) +
1

r
B′ε(r) = Gε(r).

For example, in 2D, we can use

δε(r, ε) =
2ε4

π(r2 + ε2)3
,

Gε =
1

4π

(
log(r2 + ε2)− 1− ε2

r2 + ε2

)
,

Bε =
1

8π
(r2 + ε2)

(
1

2
log(r2 + ε2)− 3

2

)
.

The velocity field is:

4πµu1 =
f1x̂1

2 + f2x̂1x̂2

r2 + ε2
− f1

(
1

2
log(r2 + ε2)− ε2

r2 + ε2

)
, (3.4)

4πµu2 =
f2x̂2

2 + f1x̂1x̂2

r2 + ε2
− f2

(
1

2
log(r2 + ε2)− ε2

r2 + ε2

)
. (3.5)

The velocity field given by equation (3.4) and (3.5) satisfies the divergence free

condition and has no singularity anywhere.
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The blob size does affect the numerical result. Fig 3.2 is showing two δε functions

with ε = 0.2 and ε = 0.5. Fig 3.3 shows the corresponding Gε and Bε function. Fig

3.4 shows the velocity fields generated by the force f0δε(x0) where f0 = (4πµ, 0) and

x0 = (0, 0) with different blob size (ε = 0.2, ε = 0.5).

r

-2 -1 0 1 2
0

2

4

6

8

10

12

14

16

ǫ=0.2

ǫ = 0.5

Figure 3.2: Blob function δε with ε = 0.2 and ε = 0.5.

When the velocity is evaluated too far away from where the force is exerted, the

Stokes paradox [23] occurs. As seen in (3.2) and (3.3) and their regularized version

(3.4) and (3.5), we know that the velocity increases indefinitely with r, which is

unphysical. Thus the velocity formula cannot be regarded as valid at points too far

away from the forcing point in 2D.

r
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(a) Gε

r
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-0.04
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0

ǫ=0.2

ǫ = 0.5

(b) Bε

Figure 3.3: Bε and Gε corresponding to ε = 0.2 and ε = 0.5.
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(b) ε = 0.5

Figure 3.4: Velocity field generated using equation 3.4 and 3.5 by force f0δε(x0) where f0 = (4πµ, 0)
and x0 = (0, 0), with different ε (ε = 0.2 and ε = 0.5). The red arrow shows the direction and
magnitude of the force, the the blue arrows are the plotted velocity field.

3.2 Singly Periodic Stokes Case

As shown in Mannan, Cortez [24], we can rewrite the equation for velocity in the free

space Stokes case due to a regularized force (f1, f2) at (x1, x2), and get

4πµu1(x) = f1

(
x̂1

2 + ε2

r2 + ε2

)
+ f2

x̂1x̂2

r2 + ε2
− 1

2
f1 log(r2 + ε2)

= f1 − f1
x̂2

2

r2 + ε2
+ f2

x̂1x̂2

r2 + ε2
− 1

2
f1 log(r2 + ε2)

(3.6)

4πµu2(x) = f2

(
x̂2

2 + ε2

r2 + ε2

)
+ f1

x̂1x̂2

r2 + ε2
− 1

2
f2 log(r2 + ε2)

=
x̂2

r2 + ε2
(f1x̂1 + f2x̂2) + f2

ε2

r2 + ε2
− 1

2
f2 log(r2 + ε2)

(3.7)

Note that

x̂ix̂j
r2 + ε2

= x̂i
∂

∂x̂j

(
1

2
log(r2 + ε2)

)
(3.8)

and

ε2

r2 + ε2
= ε

∂

∂ε

(
1

2
log(r2 + ε2)

)
. (3.9)
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If we write G(r, ε) = 1
2

log(r2 + ε2), then the velocity can be written as

4πµu1 = f1 − f1G(r, ε) + x̂2

(
−f1

∂G
∂x̂2

+ f2
∂G
∂x̂1

)

4πµu2 = x̂2

(
f1
∂G
∂x̂1

+ f2
∂G
∂x̂2

)
+ f2ε

∂G
∂ε
− f2G

Now assume periodicity is in x−direction with spatial period of L. The Stokes

equations are:

0 = −∇p+ µ∆u +
∞∑

k=−∞

f0δ(x− x0 + kLe1).

Here e1 = (1, 0). The regularized singly-periodic Green’s function GP is

GP(x̂1, x̂2, L, ε) =
∞∑

k=−∞

1

2
log
(
ε2 + x̂2

2 + (x̂1 + kL)2)
)
. (3.10)

Here (x̂1, x̂2) = x− x0.

Using the identity

∞∑
j=−∞

log
(
(x+ 2πj)2 + ξ2

)
= log (cosh(ξ)− cos(x)) , (3.11)

and the property

lim
L→∞

GP(x1, x2, L, ε) = G(x1, x2, ε),

we get

GP(x1, x2, L, ε) =
1

2
log

(
cosh

(
2π

L

√
x2

2 + ε2
)
− cos

(
2πx1

L

))
− 1

2
log

(
2π2

L2

)
.

The velocity equations in the periodic Stokes case are given by equation (3.12)

and (3.13)



19

4πµu1 = f1 − f1GP(x̂1, x̂2, L, ε) + x̂2(−f1
∂GP
∂x̂2

+ f2
∂GP
∂x̂1

) (3.12)

4πµu2 = x̂2

(
f1
∂GP
∂x̂1

+ f2
∂GP
∂x̂2

)
+ f2ε

∂GP
∂ε
− f2GP (3.13)

Fig 3.5 shows the velocity field in [−1, 1]× [−1, 1] given a regularized point force

f = (3πµ, πµ) acts on x0 = (0, 0) with spatial periodicity of L = 0.5 in x−direction.

That means the same regularized point force acts on (−0.5, 0), (0.5, 0), (−1, 0), (1, 0),

etc.

Figure 3.5: Velocity field generated by a point force (3πµ, πµ) acting on the point (0, 0) with spatial
periodicity L = 0.5 in x−direction.

Fig 3.6 is showing with the choosing of different spatial periodicity, the velocity

on y−axis is different. The velocity decays faster as L getting larger.
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Figure 3.6: Velocity on y−axis generated by a point force (4πµ, 0) acting on (0, 0). Here ε = 0.01.

3.3 Oseen Tensor Approximation

3.3.1 Single Oscillator

Here we consider the motion of a spherical object in Stokes fluid using the Oseen ten-

sor. Since our model oscillator moves along the straight line connecting the two trap

positions, we only consider the velocity in this direction and study the 1D problem.

We assume the moving body in the fluid is a ball with radius a, and the velocity on

the surface of the ball is constant. We have the equation of motion:

˙̂x =
1

8πµ
(1− 2 log(a))F

in 2D and

˙̂x =
1

6πµa
F

in 3D respectively where the force F exerted on the centroid of the ball. The harmonic

potential gives the driven force of oscillation:

F = κ(x̃− x̂).
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Here κ is the trapping stiffness and x̂, x̃ are the centroid position of moving body and

active trap respectively.

By considering the relative position of the oscillator from the active trap, we define

x = x̂− x̃

and get

ẋ = Ax

where A = −κ(1− 2 log(a))

8πµ
in 2D and A = − κ

6πµa
in 3D.

That is

x(t) = exp(At)x(0)

To compute the temporal period, we compute the time required for the oscillator

to move from initial position x(0) = λ− ξ, where the oscillator is farthest away from

the active trap, to the position at which trap switches at x(T ) = ξ. The full temporal

period is P = 2T . A figure to illustrate the start and end position of the oscillator

and trap for the computed time is shown in Fig 3.7.

Plug in x(0) = λ− ξ and x(T ) = ξ to the equation above, we get

ξ = exp(AT )(λ− ξ)

AT = log(
ξ

λ− ξ
)

T = − 1

A
log(

λ

ξ
− 1)

Thus, the temporal period for a single oscillator is

P =
16πµ

κ(1− 2 log(a))
log(

λ

ξ
− 1)
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Figure 3.7: The initial and end figure for the computed period. Blue circle is the active trap, the light
blue one is the inactive trap, and the red one is the oscillator. At t = 0, the oscillator is farthest
away from the trap and moving left, it switches moving direction at t = T , when the threshold
distance ξ is reached.

in 2D and

P =
12πµa

κ
log(

λ

ξ
− 1)

in 3D.

3.3.2 Two Oscillators

For the coupling of two oscillators placed next to each other, we could also use Oseen

tensor to study the coupling state. We assume two oscillators are placed on x−axis

with the centroid position (x̂1(t), 0) and (x̂2(t), 0), and the corresponding acting traps

are at the position (x̃1, 0) and (x̃2, 0). The external forces acting on two oscillators

are expressed as

f1 = κ(x̃1 − x̂1)

and

f2 = κ(x̃2 − x̂2)
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in x−direction respectively, and 0 in y−direction. Here κ is the trapping spring

stiffness between the trap and the immersed body.

1. 2D case

For the 2D case, the velocity in y−direction for both oscillators are zero, and

the velocity of two forces acting on two oscillators in x−direction are:

(a) The effect of f1 on x̂1:

8πµu(x̂1) = κ(x̃1 − x̂1)(1− 2 log a)

(b) The effect of f1 on x̂2:

4πµu(x̂2) = κ(x̃1 − x̂1) (1− log (|x̂1 − x̂2|))

(c) The effect of f2 on x̂1:

4πµu(x̂1) = κ(x̃2 − x̂2) (1− log |x̂1 − x̂2|)

(d) The effect of f2 on x̂2:

8πµu(x̂2) = κ(x̃2 − x̂2)(1− 2 log a)

Based on the linearity of the Stokes equations, we have

8πµ ˙̂x1 = κ ((x̃1 − x̂1)(1− 2 log a) + 2(x̃2 − x̂2) (1− log (|x̂1 − x̂2|)))

8πµ ˙̂x2 = κ ((x̃2 − x̂2)(1− 2 log a) + (x̃1 − x̂1) (1− log (|x̂1 − x̂2|)))
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By using xi = x̃i− x̂i which is the relative position of the oscillator to the active

trap, and approximate |x̂1 − x̂2| by the distance between two oscillators d, we

have

8πµẋ1 = −κ(x1(1− 2 log a) + 2x2(1− log d))

8πµẋ2 = −κ(x2(1− 2 log a) + 2x1(1− log d))

Here ẋi = u(xi) = dxi
dt

for i = 1, 2.

We can use change of variable x1 = x̃1 − x̂1 and x2 = x̃2 − x̂2, which is the

relative position of the immersed body to the corresponding acting trap. Let

x± = x1 ± x2 ,we get

ẋ+ = − κ

8πµ
x+(3− 2 log a− 2 log d)

ẋ− = − κ

8πµ
x−(2 log d− 2 log a− 1)

x+ = 0 (anti-phase) and x− = 0 (in-phase) are equilibrium solutions.

2. 3D Case

For the 3D case discussed in [4], we use the same notation, and get

ẋ1 = −κ
γ

(
x1 +

3a

2d
x2

)
ẋ2 = −κ

γ

(
x2 +

3a

2d
x1

)

here γ = 6πµa.
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Similar to the 2D case,

ẋ± = −κ
γ
x±

(
1± 3a

2d

)
(3.14)

x±(t) = x±(0) exp

(
−κ
γ
t

(
1± 3a

2d

))
(3.15)

This shows that exact in-phase and exact anti-phase are equilibrium states.

Also, both are stable if the switching of trap positions does not occur.

From (3.15), we have

2x1(t) = (x1(0) + x2(0))A(t) + (x1(0)− x2(0))B(t)

= x1(0)(A(t) +B(t)) + x2(0)(A(t)−B(t))

(3.16)

2x2(t) = (x1(0) + x2(0))A(t)− (x1(0)− x2(0))B(t)

= x1(0)(A(t)−B(t)) + x2(0)(A(t) +B(t))

(3.17)

Here A(t) and B(t) are defined as

A(t) = exp

(
−k
γ

(1 + σ)t

)
B(t) = exp

(
−k
γ

(1− σ)t

)

σ = 3a
2d

is a small constant.

We have two equilibrium state: in-phase and anti-phase. Now we take trap

switching into consideration and analytically study the stability of two states.

(a) Anti-phase State

For the anti-phase case, we assume two oscillators start at x1(0) = −η =

−(λ−ξ), x2(0) = η(1−h). Here h is a perturbation parameter of O(σ). We

indicate the time when the second immersed body (IB2) switches direction
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as t1. If h 6= 0, the first immersed body (IB1) will be close to the switching

point, but not there yet. At t2 > t1, IB1 reaches the switching point and

IB2 moved to a new position x2(t2). We can get the new perturbation as

x2(t2) = −η(1− hnew) (3.18)

If hnew < h, we know the perturbation is decreasing so the anti-phase

configuration stable.

We summarize the relative position of the two oscillators in Table 3.1. An

illustration graph showing the positions of the oscillators and traps at the

critical time is shown in Fig 3.8.

time x1(t) x2(t)

0 −η η(1− h)
t1 (before IB2 switches trap) x1(t1) ξ
t1 (after IB2 switches trap) x1(t1) −η

t2 −ξ x2(t2)

Table 3.1: Relative position of two immersed bodies in critical times for anti-phase state.

From (3.16) and (3.17), we have

2x1(t1) = −ηhA(t1)− η(2− h)B(t1) (3.19)

2ξ = −ηhA(t1) + η(2− h)B(t1) (3.20)

−2ξ = x1(t1)(A(t2 − t1) +B(t2 − t1))− η(A(t2 − t1)−B(t2 − t1))

(3.21)

2x2(t2) = x1(t1)(A(t2 − t1)−B(t2 − t1))− η(A(t2 − t1) +B(t2 − t1))

(3.22)

If IB1 and IB2 are in exact anti-phase state, then h = 0. In that case, by
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Figure 3.8: Relative position of the oscillators at the critical times, perturbed anti-phase case.
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(3.20), we have

2ξ = 2ηB(t1)

ξ

η
= B(t1)

t1 =
γ

κ

1

1− σ
C

=
γ

κ
(1 + σ + σ2)C +O(σ3)

Here C = log
(
η
ξ

)
is a positive constant.

If IB1 and IB2 are not exactly anti-phase, we would have h 6= 0 and we

can assume

t1 = a0 + a1h+ a2h
2 +O(ε3)

Here a0 = γ
κ
(1 + σ + σ2)C, and h = O(σ).

Then we can write

A(t1) = exp

(
−κ
γ

(1 + σ)
(γ
κ
C(1 + σ + σ2) + a1h+ a2h

2 +O(σ3)
))

= exp

(
−C − 2σC(1 + σ)− κ

γ
h(a1 + a1σ + a2h) +O(σ3)

)
=
ξ

η

(
1− 2Cσ − κ

γ
a1h+ 2C(−1 + C)σ2 +

κ

γ
a1(−1 + 2C)hσ

+

(
−κ
γ
a2 +

1

2

κ2

γ2
a2

1

)
h2

)
+O(σ3)

−ηhA(t1) =− ηh ξ

η

(
1− 2Cσ − κ

γ
a1h+ 2C(−1 + C)σ2+

κ

γ
a1(−1 + 2C)hσ +

(
−κ
γ
a2 +

1

2

κ2

γ2
a2

1

)
h2

)
+O(σ3)

=ξ

(
−h+ 2Chσ +

κ

γ
a1h

2

)
+O(σ3)

(3.23)
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B(t1) = exp

(
−κ
γ

(1− σ)
(γ
κ
C(1 + σ + σ2) + a1h+ a2h

2 +O(σ3)
))

= exp

(
−C − κ

γ
h(a1 − a1σ + a2h) +O(σ3)

)
=
ξ

η

(
1− κ

γ
a1h+

κ

γ
a1hσ +

(
−κ
γ
a2 +

1

2

κ2

γ2
a2

1

)
h2

)
+O(σ3)

η(2− h)B(t1) =η(2− h)
ξ

η

(
1− κ

γ
a1h+

κ

γ
a1hσ +

(
−κ
γ
a2 +

1

2

κ2

γ2
a2

1

)
h2

)
+O(σ3)

=ξ

(
2−

(
1 + 2

κ

γ
a1

)
h+ 2

κ

γ
a1hσ+(

κ

γ
a1 − 2

κ

γ
a2 +

κ2

γ2
a2

1

)
h2

)
+O(σ3)

(3.24)

By combining (3.20), (3.23) and (3.24), we have

2 =2−
(

2 + 2
κ

γ
a1

)
h+ 2

(
C +

κ

γ
a1

)
hσ+(

2
κ

γ
a1 − 2

κ

γ
a2 +

κ2

γ2
a2

1

)
h2 +O(σ3)

That means

1 +
κ

γ
a1 = 0(

C +
κ

γ
a1

)
hσ +

(
κ

γ
a1 −

κ

γ
a2 +

1

2

κ2

γ2
a2

1

)
h2 = 0
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We can get

a1 = −γ
κ

a2 =
γ

κ

(
(C − 1)

σ

h
− 1

2

)
.

By plugging in the value of a1 and a2 into (3.19), we have

x1(t1) = −ξ
(
1 + h− 2Chσ + h2

)
+O(σ3).

Now we consider the time period from t1 to t2. When the h = 0, two

oscillators are in exact anti-phase and t2 − t1 = 0. In the perturbed case,

we assume

t2 − t1 = b1h+ b2h
2 +O(σ3)

Then

A(t2 − t1) = exp

(
−κ
γ

(1 + σ)(b1h+ b2h
2) +O(σ3)

)
= exp

(
−κ
γ
h(b1 + b1σ + b2h) +O(σ3)

)
= 1− κ

γ
b1h−

κ

γ
b1hσ +

(
−κ
γ
b2 +

1

2

κ2

γ2
b2

1

)
h2 +O(σ3)

B(t2 − t1) = exp

(
−κ
γ

(1− σ)(b1h+ b2h
2) +O(σ3)

)
= exp

(
−κ
γ
h(b1 − b1σ + b2h) +O(σ3)

)
= 1− κ

γ
b1h+

κ

γ
b1hσ +

(
−κ
γ
b2 +

1

2

κ2

γ2
b2

1

)
h2 +O(σ3)
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A(t2 − t1) +B(t2 − t1) =2

(
1− κ

γ
b1h+

(
−κ
γ
b2 +

1

2

κ2

γ2
b2

1

)
h2

)
+

O(σ3)

A(t2 − t1)−B(t2 − t1) =− 2
κ

γ
b1hσ +O(σ3)

By (3.21), we know

−2ξ =− 2ξ(1 + h− 2Chσ + h2)

(
1− κ

γ
b1h+(

−κ
γ
b2 +

1

2

κ2

γ2
b2

1

)
h2

)
+ 2η

κ

γ
b1hσ +O(σ3)

=− 2ξ

(
1 +

(
1− κ

γ
b1

)
h− 2Chσ+(

1− κ

γ
b1 −

κ

γ
b2 +

1

2

κ2

γ2
b2

1

)
h2

)
+ 2η

κ

γ
b1hσ +O(σ3)

That gives us

b1 =
γ

κ

b2 =
γ

κ

(
1

2
− σ

h

(
2C +

η

ξ

))
.

Plugging in the values of b1 and b2 into (3.22), we have

2x2(t2) =x1(t1)(A−B)(t2 − t1) + x2(t1)(A+B)(t2 − t1)

=− ξ(1 + h− 2Chσ)

(
−2

κ

γ
b1hσ

)
−2η

(
1− κ

γ
b1h+

(
−κ
γ
b2 +

1

2

κ2

γ2
b2

1

)
h2

)
+O(σ3)

=2ξhσ − 2η

(
1− h+

(
2C +

η

ξ

)
hσ

)
+O(σ3)
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x2(t2) = −η
(

1− h+

(
2C +

η

ξ
− ξ

η

)
hσ

)
+O(σ3) (3.25)

We have

hnew = h

(
1− σ

(
η2 − ξ2

ηξ
+ 2 log

(
η

ξ

)))
Since η = λ− ξ > ξ and σ is small, we know

hnew < h

That means for the perturbed anti-phase case, the perturbation is decreas-

ing, thus anti-phase state is stable.

(b) In-phase State

For the in-phase case, we assume the two oscillators start at x1(0) = η,

x2(0) = η(1 − h), where h is the initial perturbation as defined in the

anti-phase above, and h is O(σ). The time at which IB2 switches is t1. If

IB1 and IB2 are exactly in-phase, then IB1 and IB2 switch direction at

the same time. If not, there are two possible things that can happen:active

trap related to oscillator 1 switches position first, or active trap related to

oscillator 2 switches position first. We denote the first possibility as case

(1), and the second one as case (2). We study both cases to see if they

could happen, and also do the stability study. The relative positions of

the two immersed bodies are summarized in Table 3.2. The illustration

figure showing the position of traps and oscillators at critical time with

both possibility is shown in Fig 3.9.

From (3.16) and (3.17), we have
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(a) Case (1), x1 switches direction first.

(b) Case (2), x2 switches direction first.

Figure 3.9: Relative position of the oscillators at the critical times, perturbed in-phase case.
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time x1(t) x2(t)

0 η η(1− h)
t1 (before IB2 switches trap) x1(t1) ξ
t1 (after IB2 switches trap) x1(t1) −η
t2 (if case(1) happens) ξ x2(t2) (< −ξ)
t2 (if case(2) happens) x1(t2) (> ξ) −ξ

Table 3.2: Relative position of two immersed bodies in critical times for in-phase state.

2x1(t1) = η(2− h)A(t1) + ηhB(t1) (3.26)

2ξ = η(2− h)A(t1)− ηhB(t1) (3.27)

If IB1 and IB2 are exact in-phase, we have h = 0. From (3.27), we have

2ξ = 2ηA(t1)

ξ

η
= A(t1)

t1 =
γ

κ

1

1 + σ
C

=
γ

κ
(1− σ + σ2)C +O(σ3)

If IB1 and IB2 are not exact in-phase, we assume

t1 = c0 + c1h+ c2h
2 +O(σ3)

Here c0 = γ
κ
(1− σ + σ2)C.
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A(t1) = exp

(
−κ
γ

(1 + σ)
(γ
κ

(1− σ + σ2)C + c1h+ c2h
2
)

+O(σ3)

)
= exp

(
−C − κ

γ
h(c1 + c1σ + c2h) +O(σ3)

)
=
ξ

η

(
1− κ

γ
c1h−

κ

γ
c1hσ +

(
−κ
γ
c2 +

1

2

κ2

γ2
c2

1

)
h2

)
+O(σ3)

η(2− h)A(t1) =η(2− h)
ξ

η

(
1− κ

γ
c1h−

κ

γ
c1hσ +

(
−κ
γ
c2 +

1

2

k2

γ2
c2

1

)
h2

)
+O(σ3)

=ξ

(
2−

(
1 + 2

κ

γ
c1

)
h− 2

κ

γ
c1hσ +

κ

γ

(
c1 − 2c2 +

κ

γ
c2

1

)
h2

)
+O(σ3)

(3.28)

B(t1) = exp

(
−κ
γ

(1− σ)
(γ
κ

(1− σ + σ2)C + c1h+ c2h
2
)

+O(σ3)

)
= exp

(
−C + 2Cσ(1− σ)− κ

γ
h(c1 − c1σ + c2h) +O(σ3)

)
=
ξ

η

(
1 + 2Cσ − κ

γ
hc1

)
+O(σ2)

− ηhB(t1) = ξ

(
−h− 2Chσ +

k

γ
c1h

2

)
+O(σ3) (3.29)

By combining (3.27), (3.28), (3.29), we have

2 = 2−
(

2 + 2
κ

γ
c1

)
h−2

(
κ

γ
c1 + C

)
hσ+

κ

γ

(
2c1 − 2c2 +

κ

γ
c2

1

)
h2+O(σ3)

That means
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c1 = −γ
κ

c2 =
γ

κ

(
(1− C)

σ

h
− 1

2

)

By plugging in the value of c1 and c2 into (3.26), we have

x1(t1) = ξ(1 + h+ 2Chσ + h2) +O(σ3)

Now we consider the time period from t1 to t2. We assume

t2 − t1 = d0 + d1h+ d2h
2 +O(σ3)

Then

A(t2 − t1) = exp

(
−κ
γ

(1 + σ)(d0 + d1h+ d2h
2) +O(σ3)

)
= exp

(
−κ
γ

(
d0 + d0σ + d1h+ d1hσ + d2h

2
)

+O(σ3)

)
=D

(
1− κ

γ
d0σ −

κ

γ
d1h+

1

2

κ2

γ2
d2

0σ
2 +

(
−κ
γ
d1 +

κ2

γ2
d0d1

)
hσ

+

(
−κ
γ
d2 +

1

2

κ2

γ2
d2

1

)
h2

)
+O(σ3)

B(t2 − t1) = exp

(
−κ
γ

(1− σ)(d0 + d1h+ d2h
2) +O(σ3)

)
= exp

(
−κ
γ

(
d0 − d0σ + d1h− d1hσ + d2h

2
)

+O(σ3)

)
=D

(
1 +

κ

γ
d0σ −

κ

γ
d1h+

1

2

κ2

γ2
d2

0σ
2 +

(
κ

γ
d1 −

κ2

γ2
d0d1

)
hσ

+

(
−κ
γ
d2 +

1

2

κ2

γ2
d2

1

)
h2

)
+O(σ3)
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(A+B)(t2 − t1) =2D

(
1− κ

γ

(
d1h+ d2h

2
)

+
1

2

κ2

γ2
(d2

0σ
2 + d2

1h
2)

)
+O(σ3)

(A−B)(t2 − t1) =2D

(
−κ
γ
d0σ −

κ

γ
d1hσ +

κ2

γ2
d0d1hσ

)
+O(σ3)

Here D = exp
(
−κ
γ
d0

)
.

If Case(1) happens,

2ξ = x1(t1)(A(t2 − t1) +B(t2 − t1))− η(A(t2 − t1)−B(t2 − t1))

(3.30)

2x2(t2) = x1(t1)(A(t2 − t1)−B(t2 − t1))− η(A(t2 − t1) +B(t2 − t1))

(3.31)

By (3.30),

2ξ =2ξD(1 + h+ 2Ch+ h2)

(
1− k

γ
d0h−

k

γ
d2h

2 +
1

2

k2

γ2
d2

0σ
2 +

1

2

k2

γ2
d2

1h
2

)
+ 2ηD

(
k

γ
d0σ +

k

γ
d1hσ −

k2

γ2
d0d1hσ

)
+O(σ3)

That gives us

D = 1

d0 = 0

d1 =
γ

κ

d2 =
γ

κ

(
1

2
+
σ

h

(
2C +

η

ξ

))
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By plugging in the values of d0, d1, d2 into (3.31), we have

2x2(t2) =2ξ(1 + h+ 2Ch+ h2) (−hσ)− 2η(1− h− κ

γ
d2h

2 +
1

2
h2) +O(σ3)

=− 2η

(
1− h−

(
2C +

η

ξ
− ξ

η

)
hε

)
+O(ε3)

x2(t2) =− η
(

1− h−
(

2C +
η

ξ
− ξ

η

)
hσ

)
+O(σ3)

If we define hnew as in the anti-phase case, we have

hnew = h

(
1 +

(
η

ξ
− ξ

η
+ 2 log

(
η

ξ

))
σ

)
> h.

This means the perturbation increases in the in-phase case, so the in-phase

state is unstable if we have Case 1.

If Case (2) happens,

2x1(t2) = x1(t1)(A(t2 − t1) +B(t2 − t1))− η(A(t2 − t1)−B(t2 − t1))

(3.32)

−2ξ = x1(t1)(A(t2 − t1)−B(t2 − t1))− η(A(t2 − t1) +B(t2 − t1))

(3.33)

By (3.33),

−2ξ =2ξD(1 + h+ 2Chσ + h2)

(
−κ
γ
d0σ −

κ

γ
d1hσ +

κ2

γ2
d0d1hσ

)
− 2ηD

(
1− κ

γ
d1h−

κ

γ
d2h

2 +
1

2

κ2

γ2
d2

0σ
2 +

1

2

κ2

γ2
d2

1h
2

)
+O(σ3)

=− 2ηD − 2ηD
κ

γ
d0h+ 2ξD

κ

γ
d0σ +O(σ2)



39

That means

ξ = ηD

2ηD
κ

γ
d1h− 2ξD

κ

γ
d0σ = 0

Which means D = ξ/η.

By plugging D in (3.32), we have

2x1(t2) = 2ξD +O(ε)

x1(t2) = ξ
ξ

η
< ξ

This contradicts to the assumption that x1(t2) > ξ for case 2, thus case 2

will not happen.
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Chapter 4

Numerical Simulation of Stokes

Case

4.1 Numerical Method

We use the method of regularized Stokeslets introduced in [22] to perform numerical

simulations of oscillators in a zero Reynolds number flow. An illustration showing

the parameters used in the model is shown in Fig 4.1.

Figure 4.1: Illustration graph for single oscillator system.

We use the explicit solution for the velocity due to a collection of regularized

forces. Our procedure is as follows:
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1. Set up the values of parameters: viscosity of the fluid (µ), radius of the oscil-

lator (a), distance between traps for a single oscillator (λ), threshold distance

for trap switching (ξ), number of discretization points on the oscillator (Nb),

trapping stiffness (κ) and membrane stiffness (KK). The default setting of the

parameters with the description is shown in Table 4.1. Discretize the immersed

body by Nb points equally placed on the boundary. Set the initial position of

the active trap and immersed boundary points. Here we assume the trap and

the immersed body have the same shape.

2. Based on the position of immersed boundary points and the trap points, we

compute the trapping force F̃i(t) and membrane force F̂i(t) for each immersed

boundary point Xi(t), i = 1, . . . , Nb. Get F(Xi) by adding the two force to-

gether, that’s the total external force exerted on the position Xi(t).

3. Apply the velocity formulas (equation (3.4) and (3.5) or (3.12) and (3.13) de-

pend on different scenario) with proper ε to get the velocity of the immersed

boundary points.

4. Update the position of the immersed boundary points by Euler’s method.

Xi(t+ ∆t) = Xi(t) + ∆t Ui(t)

Here Ui(t) is the velocity of the ith immersed boundary point at time t computed

in step 3.

5. Compute the centroid of the immersed body. Check if it reaches the threshold

distance to the active trap. If it does, then turn off the current trap and activate

the other.

6. Go back to step 2 to do another loop of simulation.
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description parameter value

Fluid viscosity µ 0.5
Membrane stiffness K 105 ds

Trap stiffness κ 5 ds
Distance between the traps for a single oscillator λ 0.3
Threshold distance to change the trap position ξ 0.05

Radius of the immersed body a 0.05
Number of points on the immersed boundary Nb 40

Initial distance between neighboring IB points ds a
√

2(1− cos( 2π
Nb

))

Stokeslet parameter ε 0.5 ds
Time step ∆t 10−4

Table 4.1: The default setting for dimensionless parameters used in Stokes flow cases.

4.2 Single Oscillator Simulation

1. Convergence Study.

First of all, we would like to check if we are using a proper blob size for the

regularized Stokeslet. The temporal period obtained from numerical simulation

for ε varies from 0.5 ds to 2 ds is shown in Table 4.2. Compared to the temporal

period using the Oseen approximation (T = 1.8435), the difference is between

0.5% and 3%. In the following simulations, we choose ε = 0.5 ds.

ε/ds 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
T 1.8533 1.8563 1.8591 1.8618 1.8645 1.874 1.8699 1.8727

ε/ds 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
T 1.8755 1.8783 1.8812 1.8871 1.8901 1.8901 1.8931 1.8962

Table 4.2: The temporal period computed with the choosing of different blob size. Using the same
set of parameters, the half temporal period computed using Oseen approximation is 1.8435. Here ε
is the blob size for Stokeslet, and T represents the half temporal period.

We also checked how the numerical solution depended upon ∆t. We varied the

time step from 10−5, 5 × 10−5 and 10−4, and compared the temporal period

with the Oseen tensor approximation. Table 4.3 shows the difference is within

0.55%.

2. Change parameters to check the code.
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∆t Regularized Stokeslet Oseen

10−5 1.85327 1.8435
5× 10−5 1.85325 1.8435

10−4 1.85330 1.8435

Table 4.3: The half temporal period comparison between regularized Stokeslets and Oseen Approx-
imation, with different dt.

To validate our code, we explored the effects of the parameters λ, ξ and k on

the temporal period, and compare with the Oseen solution.

(a) Distance between traps (λ).

Our default setting is λ = 6a, and ξ = a. In this part, we change λ

from 3a to 10a, and compare the result of temporal period of oscillation

with Oseen tensor approximation. The difference is around 0.5%. The

comparison result is shown in Fig 4.2.
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Figure 4.2: The temporal period comparison between regularized Stokeslet and Oseen Approxima-
tion, with different distance between traps λ.

(b) Threshold distance (ξ).
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The temporal period of oscillation as the threshold distance ξ varies from

0.4a to 1.6a is shown in Fig 4.3. The comparison result difference is around

around 0.62%.
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Figure 4.3: The temporal period comparison between regularized Stokeslet and Oseen Approxima-
tion, with different ξ.

(c) Trap stiffness (κ).

In this part, we change the trapping stiffness κ from 3 ds to 7 ds, and the

temporal period compared with Oseen tensor approximation is shown in

Fig 4.4. The comparison result differs around 0.55%.

3. The effect of spatial periodicity.

Here we compare the oscillator in free space to the one with periodic copies to

study the effect of periodicity. In this part, we compare the temporal periodicity

of oscillator in Stokes free space with two cases:

(a) Singly periodical oscillators where the oscillating direction is same as the

spatial period. In this part, we consider the case that the oscillators lies on
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trapping stiffness
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Figure 4.4: The temporal period comparison between regularized Stokeslet and Oseen Approxima-
tion, with different trapping stiffness κ.

Figure 4.5: The spatial period is same as oscillating direction. Here L is the spatial periodicity.
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x−axis, and they also oscillate in x−direction. An illustration graph for

this situation is shown in Fig 4.5. We run cases for spatial period L from

20a to 80a, where a is the radius of the oscillator. The comparison between

singly periodic and free space regularized Stokeslet temporal periodicity is

shown in Fig 4.6, the maximum difference between them is 0.25%.

A periodic line of oscillators exhibit a longer temporal period than the

single one in free space. As the oscillators get closer, the temporal period

increases.

We conjecture that this is consistent with the anti-phase stability of two

oscillators coupled in Stokes fluid in free space. By introducing periodicity

in x−direction, the neighboring oscillators are forced to move exactly in-

phase. However, the nature of the neighboring oscillators in free space

tend to be anti-phase. This conflict of interest makes the temporal period

of the singly periodic case larger than in free space.
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Figure 4.6: The temporal period comparison between singly periodic oscillators case (a) and single
oscillator in Stokes free space.

(b) Singly periodical oscillators where the oscillating direction is orthogonal to



47

the spatial period. In this part, we consider the case that the oscillators

Figure 4.7: The spatial period is orthogonal to the oscillating direction. Here L is the spatial
periodicity.

oscillate in y−direction, while they are periodic in x−direction. An illus-

tration graph for this situation is shown in Fig 4.7. To avoid the Stokes

paradox, we change the spatial periodicity from 3 a to 10 a (a is the radius

of the oscillator), not too close so the neighboring oscillators can overlap,

nor too large that the Stokes paradox may involved. The comparison of

temporal periodicity is shown in Fig 4.8.

As the oscillators get closer, the temporal period decreases. This is con-

sistent with the two oscillators study when the oscillators are vertically

placed. The periodicity can be seen as exact in-phase, and the numerical

simulation of two vertically placed oscillators shows that the exact in-phase

initial setting is stable. When the neighboring oscillators are closer, they

oscillate more quickly.
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Figure 4.8: The temporal period comparison between singly periodic oscillators case (b) and single
oscillator in Stokes free space.

4.3 Two Oscillators

Here, we study the coupling of two oscillators in three scenarios in free space.

1. Parallel placed oscillators.

We assume two oscillators are placed on x−axis and they also moving in x−direction,

this is the same assumption as in [4]. We assume the trap positions are listed

in table 4.4, and the four cases we study are listed in table 4.5.

Trap ID Centroid position

T(1,−1) (0,0)
T(1,1) (0.3, 0)
T(2,−1) (0.5, 0)
T(2,1) (0.8, 0)

Table 4.4: The setting of trap position.

The snapshots of the exact in-phase case is shown in Fig 4.9. At t = 0, the

two oscillators are placed exact in-phase and both are moving left. At t = 0.6,
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Initial Setting Oscillator 1 T1,active Oscillator 2 T2,active

Exact in-phase (0.1, 0) T(1,−1) (0.6, 0) T(2,−1)

Perturbed in-phase (0.1, 0) T(1,−1) (0.61, 0) T(2,−1)

Exact anti-phase (0.1, 0) T(1,−1) (0.7, 0) T(2,1)

Perturbed anti-phase (0.1, 0) T(1,−1) (0.69, 0) T(2,1)

Table 4.5: The initial setting of four cases.

the right one switches direction first while the one on the left still moving left.

The left oscillator keep trying to move left, while the right one generates a large

velocity field toward right to prevent the left one from reaching the threshold

distance to the active trap. Around t = 2.2, the left oscillator about to switch

direction and lead the the two oscillators show an perturbed anti-phase position.

Later, the two oscillators behave like the perturbed anti-phase case and goes to

exact anti-phase coupling.

We do simulations for these four cases, and get the shifted centroid plotted in

Fig 4.10. To quantify the coupling state of the two oscillators, we study

Q1,2(t, 0.5) =
< x1, x2 >

||x1|| ||x2||

The computed Q for four cases are plotted in Fig 4.11.

2. Vertically placed oscillators.

We also study the case where the moving directions of two oscillators are or-

thogonal to the direction on which the oscillators are placed. We assume the

oscillators are moving in x−direction, and the two oscillating systems are cen-

tered on y−axis. The setting of trap positions are listed in table 4.6. We placed

the two oscillators close in the vertical position to avoid Stokes paradox. The

initial setting of the four cases we study are listed in table 4.7.

The numerical simulation of four cases shows that the exact in-phase case keeps
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Figure 4.9: Snapshot of two oscillators coupling through fluid. Initially set to be exact in-phase
state, and the coupling goes to anti-phase.
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(a) Exact in-phase initial setting.
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(b) Perturbed in-phase initial setting.
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(c) Exact anti-phase initial setting.
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(d) Perturbed anti-phase initial setting.

Figure 4.10: The shifted centroid plot of four cases of parallel placed oscillators. All four cases go
to anti-phase.

time
0 5 10 15

Q

-1

-0.5

0

0.5

1 Exact in-phase
Perturbed in-phase
Exact anti-phase
Perturbed anti-phase

Figure 4.11: Coupling indicator for four cases, parallel placed oscillator.
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Trap ID Centroid position

T(1,−1) (0,0)
T(1,1) (0.3, 0)
T(2,−1) (0, 0.3)
T(2,1) (0.3, 0.3)

Table 4.6: The setting of trap position.

Initial Setting Oscillator 1 T1,active Oscillator 2 T2,active

Exact in-phase (0.1, 0) T(1,−1) (0.1, 0.3) T(2,−1)

Perturbed in-phase (0.1, 0) T(1,−1) (0.11, 0.3) T(2,−1)

Exact anti-phase (0.1, 0) T(1,−1) (0.2, 0.3) T(2,1)

Perturbed anti-phase (0.1, 0 ) T(1,−1) (0.19, 0.3) T(2,1)

Table 4.7: The initial setting of four cases.

in-phase, and all other cases goes to anti-phase. The centroid plots are shown in

4.12 and the coupling indicator is shown in 4.13. Here, round-off error does not

alter the exact in-phase equilibrium solution. However, a small perturbation

will change it to anti-phase. The snapshots in Fig 4.14 shows the transition of

the perturbed in-phase case to anti-phase state. A snapshot of the flow field in

a larger domain at t = 1 is plotted in Fig 4.15.



53

time
0 5 10 15

s
h

if
te

d
 c

e
n

tr
o

id
 p

lo
t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Oscillator1
Oscillator2

(a) Exact in-phase initial setting.
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(b) Perturbed in-phase initial setting.
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(c) Exact anti-phase initial setting.
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(d) Perturbed anti-phase initial setting.

Figure 4.12: The shifted centroid plot of four cases of vertical placed oscillators. The exact in-phase
case keeps in-phase, all others go to anti-phase.
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Figure 4.13: Coupling indicator for four cases, vertical placed oscillator.
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Figure 4.14: Snapshots of perturbed in-phase case.
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Figure 4.15: Snapshot of perturbed in-phase case at t = 1 for a larger domain.
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3. Horizontal-vertical oscillators.

Here, we assume oscillator 1 is vertically placed and moving in the y−direction,

and oscillator 2 is horizontally placed and moving in the x− direction.

Based on the setting of two oscillators, the in-phase or anti-phase states of two

oscillators depend on our choice of the positive direction. However, we can still

study if they are coupled or not. If the Q we evaluated is close to 1 or -1, we

can say they are synchronized.

The trap positions are set as in table 4.8. Here d is variable to study how the

distance between the oscillators affects the locomotion of oscillators. We use the

same set of initial position: Oscillator 1 is centered at (0, 0.11) and attracted

by T(1,1), Oscillator 2 is centered at (d+ 0.1, 0) and attracted by T(2,−1).

Trap ID Centroid position

T(1,−1) (0, -0.15)
T(1,1) (0, 0.15)
T(2,−1) (d, 0)
T(2,1) (d+ 0.3, 0)

Table 4.8: The setting of trap position.

We study three cases of d = 0.3, d = 0.5 and d = 0.8. The trajectory of the

oscillators are shown in Fig 4.16. Oscillator 1 shows larger deviation from the

center line than oscillator 2. And when they are further away, the deviation

getting smaller.

When we study the synchronization state, we assume the vertical oscillator ro-

tates clockwise by 90 degree to compare with the horizontal one. Using the

projection of two oscillators on their oscillating direction, we compute the syn-

chronization state shown in Fig 4.17. Notice the range of Q varies from -0.975

to -1, this indicates all three cases goes close to anti-phase. When oscillator 1

reaches the bottom position, oscillator 2 is farest away from oscillator 1. When
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Figure 4.16: Trajectory of oscillators with different d. Here the trajectory is shown in blue, and the
possible trap positions are shown in red.

oscillator 1 reaches the top position, oscillator 1 is closest to oscillator 1. The

snapshot of d = 0.3 case is shown in Fig 4.18. A snapshot of the velocity field

in a larger domain at t = 1 is shown in Fig 4.19.

4.4 Multiple Oscillator

In this part, we study the cases where three immersed bodies are placed along the

same line and the oscillating direction is same as the line. The distance between

the neighboring oscillators are set to be the same. An illustration figure showing the

position of the oscillators is shown in Fig 4.20.

1. The three immersed bodies all have driven force.

The shifted centroid plot of three oscillators is shown in Fig 4.21, the indicators

Q(1,2), Q(1,3) and Q(2,3) are shown in Fig 4.22. We observe the neighboring

oscillators tend to go anti-phase, while the two lateral oscillators tend to go
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0 0.2 0.4 0.6

-0.2

0

0.2

time = 0

0 0.2 0.4 0.6

-0.2

0

0.2

time = 0.5

0 0.2 0.4 0.6

-0.2

0

0.2

time = 1

0 0.2 0.4 0.6

-0.2

0

0.2

time = 1.5

0 0.2 0.4 0.6

-0.2

0

0.2

time = 2

0 0.2 0.4 0.6

-0.2

0

0.2

time = 2.5

0 0.2 0.4 0.6

-0.2

0

0.2

time = 3

0 0.2 0.4 0.6

-0.2

0

0.2

time = 3.5

0 0.2 0.4 0.6

-0.2

0

0.2

time = 4

Figure 4.18: Snapshots of two oscillators placed in horizontal-vertical group.
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Figure 4.19: Snapshot of two oscillators placed in horizontal-vertical group at t = 1.

Figure 4.20: Illustration figure of three oscillators with random initial condition.
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Figure 4.21: Shifted centroid plot for three oscillators.
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Figure 4.22: Coupling indicator Q. Q(1,3) greater than zero shows the twco lateral oscillators tend to
go in-phase, while Q(1,2) and Q(2,3) less than zero shows the middle oscillator tends to go anti-phase
to the lateral ones.

2. Only the two lateral ones are driven, the one in the middle is passively moving

with the fluid.

In this case, the oscillator in the middle could be seen as an indicator in the

fluid. The shifted centroid plot is shown in Fig 4.23, and the corresponding

indicator plot is shown in Fig 4.24. The previous case of three driven oscillators
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can be seen as adding a third oscillator to the two oscillator coupled system, and

the third oscillator dramatically changes the coupling state of the original two.

Without the oscillator in the middle, the two oscillators IB1 and IB3 have an

anti-phase coupling. By adding the oscillator in the middle, both IB1 and IB3

are anti-phase to IB2, which is the oscillator in the middle. And their coupling

state change from anti-phase to in-phase.
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Figure 4.23: Shifted centroid plot for three oscillators.
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Figure 4.24: Coupling indicator Q. Q(1,3) = −1 shows the two lateral oscillators are exact anti-
phase, while Q(1,2) and Q(2,3) around zero indicates the middle oscillator just passively move with
the fluid.
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Chapter 5

Navier Stokes Flow

In this chapter, we discuss the oscillators’ behavior in the presence of inertia. The

mathematical model is discussed in Chapter 2.

The fluid motion is described by Navier-Stokes equation (2.1) with incompress-

ibility condition (2.2). The body-fluid interaction between the immersed body and

the surrounding fluid is described by (2.3) and (2.4). And the force exerted on the

immersed body is described by (2.5) to (2.8).

5.1 Numerical Background

In this section, we introduce the numerical methods to solve our problem.

5.1.1 The Immersed Boundary Method

The immersed boundary method was first introduced by Charles Peskin in [25] to

simulate the flow patterns around heart valves. The essential idea of this method is to

treat the fluid and the immersed body with two different frames. The immersed body

is described in a Lagrangian frame (which moves with the fluid), and the surrounding

fluid is described in an Eulerian frame (which spatially fixed) [26].
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We describe the fluid domain D using a regular, finite difference mesh with ∆x =

∆y. Periodic boundary condition is imposed. We describe the immersed body by Nb

points on its boundary. The points on the immersed boundary are described as Xk
s ,

where s is a Lagrangian index that goes from 1 to Nb, and k means the kth time step.

The spreading of the force is based on (2.3). In each time step, we spread the force

exerted by each immersed boundary point to the nearby fluid mesh points within 2

cell size by blob function (5.1),

Φh(r) =
1

4∆x

(
1 + cos(

πr

2∆x
)
)

(5.1)

For example, the force Fk
s is exerting on the immersed boundary point Xk

s = (Xk
s , Y

k
s ),

and Xk
s is located in the cell of fluid mesh formed by x(i,j), x(i,j+1), x(i+1,j) and

x(i+1,j+1). The the force F(s,k) is spread to the mesh points xm,n = (xm, yn) (i− 1 ≤

m ≤ i+ 2, j − 1 ≤ n ≤ j + 2) with the weight wm,n given by (5.2).

wm,n =

(
1

4∆x

(
1 + cos(

π(Xk
s − xm)

2∆x

))
·
(

1

4∆x

(
1 + cos(

π(Y k
s − yn)

2∆x

))
. (5.2)

The spread force at the point xm,n is

fkm,n = wm,nF
k
s . (5.3)

After the computation of force spreading in each time step, we compute the ve-

locity at each fluid mesh point, and then we interpolate back the velocity from the

grid to get the velocity of the immersed body by (2.4) using the same blob function.

We get the velocity Uk
s of Xk

s at time step k by (5.4).

Uk
s =

∑
i−1≤m≤i+2, j−1≤n≤j+2

wm,nu
k
m,n (5.4)
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5.2 Computation Steps

In this section, we describe what we do in each time step. At the very beginning,

we initialize the parameters as in the Stokes case. Also, we descretize the fluid to

mesh points and set the initial velocity field of the fluid to be zero everywhere. We

assume at the beginning of time step k, we have the position of the active trap points

Tk
s = (Txks , T y

k
s ), position of the immersed boundary points Xk

s = (xks , y
k
s ) where s

goes from 1 to Nb. We also have the velocity uki,j = (uki,j, v
k
i,j) on the mesh points

xi,j = (xi,j, yi,j) in the fluid where 1 ≤ i, j ≤ N , and N is the number of points on

each side of the evaluated domain.

Here are the things we do in the following order in time step k,

1. Find the force exerted on immersed boundary points.

Compute the external force acting on the immersed boundary points, based on

the positions of the immersed boundary points and the acting trap points. The

total force acting on immersed body is composed of two part: membrane force

Fm and trap force Ft.

Fs = Fms + Fts, s = 1, . . . , Nb

Here

Fms =K1((||Xs+1 −Xs|| − ds)vs+1,s + (||Xs−1 −Xs|| − ds)vs−1,s)+

K2 · ((||Xs+2 −Xs|| − ds2)vs+2,s + (||Xs−2 −Xs|| − ds2)vs−2,s)

Fms =κ · (Ts −Xs)

Here vi,j is the normalized vector defined by

vi,j =
xi − xj
||xi − xj||
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Since both the immersed body and the trap are closed, we use XNb+j = Xj,

TNb+j = Tj, j = 1, 2. Here K1 is the tensile spring stiffness, K2 is the bending

spring stiffness, κ is the trapping stiffness. ds is the rest length for the neigh-

boring immersed boundary points, and ds2 is the rest length for the next neigh-

boring immersed boundary points. For simplicity, we assume K1 = K2 = K.

2. Spread the exerted force to fluid mesh points.

Spread the force acting on the immersed boundary points to the surrounding

fluid mesh points based on equation (2.3) using (5.3). In this step, we can get

fi,j for 1 ≤ i, j ≤ N .

3. Solve the discretized Navier-Stokes equation on the regular, periodic grid using

Fast Fourier transforms [27].

An upwind scheme was used for the convection term, and centered differences

for other terms.

4. Compute velocities of immersed boundary points.

Get the velocity of the immersed boundary points by equation (2.4). Numeri-

cally we do interpolation given by (5.4) to get Us
k+1 (1 ≤ s ≤ Nb) from uk+1

i,j

(1 ≤ i, j ≤ N).

5. Update the position of the immersed body.

Here we use forward-Euler method to update the immersed body by

Xk+1(s) = Xk(s) + ∆t Uk+1.

6. Check if we need to switch the acting trap.

If we have

|T̄k − ¯Xk+1| < ξ,
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here T̄k and ¯Xk+1 represent the centroid of the trap and immersed body re-

spectively, we turn off the acting trap and turn on the other one.

The operations in this time step is finished and start over for the next time step.

In the case of Stokes flow in a domainD with doubly periodic boundary conditions,

there is a compatibility condition of the force applied on the domain. These forces

must integrate to zero over D. This is easily seen by integrating the equation over

the periodic cell. For instance, such a constraint is met by the force generated by

free microswimmers [28]. However, the trap forces used in our model oscillator are

external forces that do not sum to zero. This compatibility condition did not arise in

the previous chapter, since doubly-periodic boundary condition were not used. For

Stokes immersed boundary models, where periodic boundary condition were used for

simplicity, modifications to the algorithm have been introduced in [27,29].

It have been noted that problems with this condition may appear when solving

the Navier-Stokes equation numerically on a doubly-periodic domain in the presence

of external forces that do not integrete to zero at very low Reynolds number [29].

5.3 Numerical Simulation for a Single Oscillator.

First, we study the case of single oscillator in 2∗2 doubly periodic Navier-Stokes fluid

and compare it with the case of an oscillator in free Stokes fluid. The default setting

of the parameters are listed as in table 5.1.

5.3.1 Convergence study

1. Check for dt.

The first thing we would like to make sure is whether we are using a reasonable

dt. We run cases with the same initial setting with dt = 10−4 and dt = 10−5,
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description parameter value

Spatial periodicity L 2
Distance between the traps for a single oscillator λ 0.3
Threshold distance to change the trap position ξ 0.05

Spatial mesh size ∆x 1
26

Number of mesh point on each side for a spatial period N L/dx
Radius of the immersed body a 0.05

Time step dt 10−4

Fluid viscosity µ 1
Fluid density ρ 10

Number of points on the immersed boundary Nb 40
Spring stiffness between the IB points K 105

Spring stiffness between the IB point and the trap κ 5

Table 5.1: The default setting for dimensionless parameters used in Navier-Stokes cases.

the difference between these two cases is within 0.01%. Our default time step

is therefore chosen to be dt = 10−4.

2. Check for dx.

Another thing we check is if we discretize the space properly. For the same

immersed body, we discretize the boundary to equally spaced points. We check

the discretization of 40, 80 and 160 points for the immersed boundary, and

change the mesh grid size of fluid corresponding to them. For the domain

D = [0, 2]× [0, 2], we choose a 128× 128, 256× 256 and 512× 512 grid, so ds/h

is about 0.5. The centroid plot is shown in Fig 5.1 with the moving trajectory

of the centroid of the immersed body starting at the same initial position for

a 0.5s time period. The maximum difference between the displacement of the

trajectory of three cases is within 0.3%.

To study the spatial convergence rate, we denoted the centroid position of os-

cillator as x40(t), x80(t) and x160(t) corresponding to Nb = 40, 80, 160. We also

assume x160(t) is close enough to the exact solution. Without changing other
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Figure 5.1: Centroid plot of single oscillator with different Nb.

parameters, we have

||x40 − x160|| :=|x40(T )− x160(T )|Chp

||x80 − x160|| :=|x80(T )− x160(T )|C(
h

2
)p

Here T = 2.5 is the final time of our computation period, C is a constant, h

is the distance between neighboring immersed boundary points, and p is the

convergence rate. p can be computed by

p =
1

log 2
log

(
||x40 − x160||
||x80 − x160||

)
.

p = 1.75 in our study.
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5.3.2 Inertia affects the oscillator motion

In order study how inertia affect the locomotion of the oscillator, we change ρ to

change Reynolds number, and the Reynolds number is computed by (5.5). Here umax

is the maximum velocity through the whole simulation process, thus Reynolds number

(Re) is computed at the very end of each simulation.

Re =
ρ a umax

µ
(5.5)

5.3.3 Modify Re by changing fluid density ρ

We assume doubly periodic boundary condition for the Navier-Stokes case to use

discrete fast Fourier transform. By varying ρ to change Re, we have the simulated

temporal period for oscillator in Navier-Stokes fluid and the compared temporal pe-

riod with same parameters for Oseen solution in free space in Stokes fluid as shown in

Fig 5.2. We would like to see the temporal period in the Navier-Stokes case approach

the Stokes case as Re→ 0.

Note that without inertia, an oscillator should never overshoot its target position.

When such overshoot occurs at low but nonzero Reynolds number, it is an indication

that the numerical solution is polluted because of the non-zero sum of forces in the

doubly-periodic domain. Fig 5.2 shows the temporal period for the oscillator in un-

bounded Stokes fluid with dash line, and the blue curve represents the temporal period

for the oscillator corresponding to the same set of parameters in the Navier-Stokes

case. The red curve represents the overshoot of the oscillator related to different Re,

and is scaled by the radius of the oscillator a. In the overshooting part, the oscillator

moves in the opposite direction to the trapping force direction, this is due to the pres-

ence of intertia, and the overshoot should increase with Re. However, the overshoot

plot is non-physical for very small Re in our simulation. When Re = 0, the fluid

becomes Stokes fluid, and there should be no overshoot for the oscillator. However,
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Figure 5.2: Single oscillator in Navier-Stokes fluid.

in our simulation, the overshoot increases as Re gets closer to zero for very small Re.

We note that the conflict comes from the doubly-period assumption of space and the

exerting force. The red point indicates the Re at which minimal overshoot occurs,

and the corresponding ρ = 9.8. We will modify our algorithm at Re lower than this

value as discussed below.

For the Stokes equations on a doubly-periodic domain, the total force should be

zero. However, in our simulation,

∫
D

fdx ≈
Nb∑
s=1

Fsds 6= 0

One way to deal with this conflict is to introduce a uniform force adjustment

everywhere on the fluid gird to balance with the total force exerted on the immersed

body, so that the total force sums to zero on the periodic domain, as in [29]. With

such adjustment, we rerun the simulations and get Fig 5.3. We show results for the

case of a domain D = [0, L] × [0, L] for both L = 2 and L = 4. Note that temporal
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Figure 5.3: Single oscillator in Navier-Stokes fluid, with the adjusted force. Temporal period com-
parison between cases of Navier-Stokes and free space Stokes.

period of the oscillator on the larger domain L = 4 where the modified force per grid

point is less than that for L = 2 approaches the Stokes period as Re→ 0.

5.3.4 High Re case

When the Re is large, the deformation of the elastic body is observed. Fig 5.4 shows

a sequence of snapshots for single oscillator with Re = 40. We can observe large

deformation in the snapshots of time = 3, time = 8 and time = 11.

5.4 Numerical Simulation for Two Oscillators

Here, we study the coupling of two oscillators in a Navier-Stokes fluid.

The cases we study are two oscillators placed next to each other, and we study

the coupling of these two when they are initially set to be exactly in-phase, exactly

anti-phase, as well as perturbed in-phase and perturbed anti-phase with different

Reynolds numbers.
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Figure 5.4: For Re = 40, the deformation of the elastic body is observed.

5.4.1 Exactly in-phase / anti-phase case

In the simulations for the exact in-phase and anti-phase initial setting, the two os-

cillators keep the in-phase / anti-phase state for all Re. A centroid plot for ρ = 10

(exactly in-phase state has Re = 0.08, and exactly anti-phase has Re = 0.05.) case

is shown in Fig 5.5.

With this small amount of inertia, the unstable in-phase equalibrium state can

remain in-phase, and not goes to anti-phase as in the case of Stokes. This indicates

the smoothing of velocity transition at switch times stabilizes the system.

5.4.2 Perturbed in-phase / anti-phase case

In the study of perturbed in-phase and anti-phase study, we set the trap position as

in Table 5.2, and the initial setting of exactly in-phase / anti-phase is defined in Table

5.3.
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Figure 5.5: Both in-phase state and anti-phase state keep in-phase / anti-phase. (ρ = 10)

Trap ID Centroid of trap

T(1,−1) (0.1, 0.5)
T(1,1) (0.4, 0.5)
T(2,−1) (0.6, 0.5)
T(2,1) (0.9, 0.5)

Table 5.2: The setting of trap position.

T1,active T2,active IB1 IB2

Exactly in-phase T(1,−1) T(2,−1) (0.16, 0.5) (0.66, 0.5)
Exactly anti-phase T(1,−1) T(2,1) (0.16, 0.5) (0.84, 0.5)

Table 5.3: The initial setting of active traps and oscillators positions. IBi indicates the centroid of
immersed body i, i = 1, 2.
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For the coupling of two oscillators in Stokes fluid in free space, we have shown

analytically and numerically that only the anti-phase state is stable and the in-phase

state is unstable. However, this is not always the case for Navier-Stokes.

For the same amount of perturbation, by choosing different fluid density ρ to

change Reynolds number, the coupling state changes. Without force adjustment,

we consider ρ = 10 is the smallest reasonable Reynolds number we could use, and

examine densities in the range ρ = 10 to ρ = 100.

To quantify the coupling state, Q is defined as

Q =


Q(t, 1), for 0 ≤ t < 5

Q(t, t− 4), for 5 ≤ t < 14

Q(t, 10), for t ≥ 14

We choose a small viewing window (t = 1) to capture the initial perturbation part

of the coupling, and smoothly transfer to a large viewing window to get the coupling

state for a longer period of time. The compared temporal period for free space Stokes

case is T = 7.4, and our viewing window of t = 10 is used to capture the coupling of

one temporal period.

1. Perturbed in-phase state.

We perturb the exact in-phase state by 0.01 (which is 5% of the distance

for an oscillator can travel) by moving the initial IB2 to (0.67, 0.5), that is

x2 − x1 = 0.01. We see that at low Reynolds number, the perturbed in-phase

case approaches the anti-phase case. However, with the same amount of per-

turbation, the perturbed in-phase case approaches the in-phase equilibrium for

high Reynolds number.

For these two simulations, the centroid plots of two oscillators are shown in Fig

5.6. We observe the overshoot of oscillators in the Re = 0.43 case, but the
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overshoot is not obvious in Re = 0.06 case. We quantify the coupling state

by Q in Fig 5.7 (a), which is consistent with our observation. The perturbed

in-phase state is unstable at low Reynolds number, and stable at high Reynolds

number. A Q plot for 10 ≤ ρ ≤ 100 (0.06 ≤ Re ≤ 0.43) with the difference of

ρ be 5 is shown in Fig 5.7 (b).
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Figure 5.6: Centroid plot for perturbed in-phase state.
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Figure 5.7: Q plot.(a) shows Q plot for ρ = 10 (Re = 0.06) and ρ = 100 (Re = 0.43). (b) shows Q
plot for 10 ≤ ρ ≤ 100 (0.06 ≤ Re ≤ 0.43), with difference of 5 in ρ between each simulation.

We further run a sequence of perturbations by making

x2 − x1 = 0, 0.01, 0.02, 0.03, 0.04, 0.05,
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which is from zero perturbation to 0.25(λ− 2ξ) perturbation. A phase diagram

is shown in Fig 5.8. The blue stars indicate that in-phase state was stable

with the perturbation shown in y−axis, and Reynolds number in x−axis. The

red circles indicate in-phase state was unstable for the given perturbation and

Reynolds number. For the time period we run for simulation, the unstable in-

phase cases show a tendency to move to anti-phase, but not all of them reach

exact anti-phase state due to the limitation of computing time.

The stability region of the in-phase state gets larger as Reynolds number gets

larger.
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Figure 5.8: Blue stars indicate that in-phase state was stable and red circles indicate that in-phase
state was unstable.

2. Perturbed anti-phase state.

Similar to the in-phase case, we do the same stability study for the perturbed

anti-phase case. We make IB2 farther away from the active trap by 0.01, that
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is x1 + x2 = −0.01. The centroid plots are shown in Fig 5.9. We observe more

overshoot in Re = 0.40 case than Re = 0.06 case. The anti-phase state is stable

in low Reynolds number cases, and unstable in high Reynolds number cases.

The corresponding Q plot is shown in Fig 5.10 (a), and the stability indicator

Q is plotted for 10 ≤ ρ ≤ 100 (0.06 ≤ Re ≤ 0.40) with the difference of ρ be 5

is shown in Fig 5.10 (b). The red circles indicate that the anti-phase was stable

to those perturbations, while the blue stars indicate that the anti-phase was

unstable. For the time period we run for simulations, the unstable anti-phase

cases showed a tendency to in-phase, but not all of them reach the in-phase

state due to the limitation of computing time.
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(a) ρ = 10, Re = 0.06.
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Figure 5.9: Perturbed anti-phase state.

We further run a sequence of perturbations by making

x1 + x2 = 0,−0.01,−0.02,−0.03,−0.04,−0.05

which is from zero perturbation to 0.25(λ − 2ξ) perturbation, and the cor-

responding phase diagram is shown in Fig 5.11. The stability region of the

anti-phase state gets smaller as Reynolds number gets larger.



78

0 20 40 60 80

-1

-0.5

0

0.5

1

ρ=10

ρ=100

(a)

time

0 20 40 60 80

Q

-1

-0.5

0

0.5

1

(b)

Figure 5.10: Q plot. (a) shows Q plot for ρ = 10 (Re = 0.06) and ρ = 100 (Re = 0.40). (b) shows
Q plot for 10 ≤ ρ ≤ 100 (0.06 ≤ Re ≤ 0.40), with difference of 5 in ρ between each simulation.
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Figure 5.11: Blue star indicates anti-phase unstable, red circle indicates anti-phase stable.
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5.4.3 High Re case

Fig 5.12 shows a sequence of snapshots of two oscillators at a higher Reynolds number,

Re = 40.9. Here we see that the perturbed anti-phase position goes to an in-phase

state. Also note that the immersed oscillator experience significant deformation.

5.5 Multiple Oscillators

Here we present a simulation of multiple oscillators coupled through the fluid. An

illustration of the initial setting of four oscillators is shown in Fig 5.13. Four oscillators

are placed on the vertices of a square, and the initial setting of active trap positions

and oscillator positions is randomly generated. Fig 5.14 shows the centroid plot of

the four oscillators with all of them shifted to move between −0.1 and 0.1. All four

oscillators synchronize in-phase. The snapshots of the transition from random initial

position to in-phase state is shown in Fig 5.15, and a larger snapshot of initial and

end velocity field is shown in Fig 5.16.
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Figure 5.12: For Re = 40.1, the coupling state of two oscillators is in-phase, and the deformation is
observed.
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Figure 5.13: Illustration graph for four oscillators coupling.
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Figure 5.14: Centroid plot for four oscillators. Re = 0.14, ρ = 20

.
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Figure 5.15: Snapshots of four oscillators coupled through fluid.
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Figure 5.16: Random placed oscillators become in-phase at the end of simulation time.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we considered the hydrodynamic interaction between immersed

colloidal bodies and a surrounding fluid. We studied the synchronization of these

oscillators.

6.1.1 Stokes fluid

For oscillators immersed in a Stokes fluid, we numerically compute the temporal

period of a single oscillator using the method of regularized Stokeslets and have the

following results:

• The temporal period obtained from the numerical simulation is the same as

that obtained from an Oseen tensor approximation analytically.

• For singly-periodic boundary conditions, two cases are studied. If the oscilla-

tion direction is the same as the spatial periodicity, the temporal period of the

oscillation is longer than the case of single oscillator in free space. If the oscil-

lation direction is orthogonal to the spatial periodicity, the temporal period of

the oscillation is shorter than the case of the single oscillator in free space.
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Kotar et. al. [4] showed that there are two equilibrium for the motion of two oscil-

lators placed side-by-side: in-phase (unstable) and anti-phase (stable). We validated

their result analytically and numerically, and also extended this to other possible setts

of oscillators numerically:

• If two oscillators are placed side-by-side and initialized in-phase, the simulated

oscillators do not remain in-phase.

• If two oscillators are vertically placed and initialized in-phase, the simulated

oscillators remain in-phase. Small perturbations break the equilibrium and

make the oscillators become anti-phase quickly.

We study the case where three immersed bodies are placed along the same line

and the oscillating direction is same as the line. We showed that by adding a third

oscillator to the two oscillator system, the coupling state of the original two oscillators

changed from anti-phase to in-phase.

6.1.2 Navier-Stokes fluid

We extend the simulation of hydrodynamic interactions to a Navier-Stokes fluid and

study how inertia affects the coupling of oscillators. By using the immersed boundary

method to simulate the fluid-structure interaction, we have the following results:

• The temporal period for a single oscillator in a doubly periodic Navier-Stokes

fluid is longer than the period of a single oscillator in a free space Stokes fluid.

As the spatial periodicity increases, the temporal period decreases.

• Overshooting and deformation of oscillators are observed as Reynolds number

gets larger.
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We study the cases of two oscillators placed side-by-side. We have shown that

because inertia smooths the velocity field in time, oscillators initialized exactly in-

phase and anti-phase state remain in their original state. For perturbed in-phase and

anti-phase states, we have

• The attraction region for anti-phase state gets smaller as Re gets larger.

• The attraction region for in-phase state gets larger as Re gets larger.

6.2 Future Work

We propose to:

• Change the setting of the two oscillators in the Navier-Stokes fluid to explore

synchrony when the orientation of oscillators are varied.

• Study coupled oscillators in a non-Newtonian fluid. By immersing the oscillators

in a viscoelastic fluid, the coupling dynamics may differ from our study in a

Newtonian fluid .

• Study multiple oscillators in a Navier-Stokes fluid. We only showed one case of

more than two oscillators coupled in a Navier-Stokes fluid. Further work will

vary Re and the positions, oscillation directions, and numbers of oscillators in

the fluid.
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