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ABSTRACT 

    Joint adjustment of cryptic relatedness and population structure is necessary to reduce 

bias in DNA sequence analysis; however, existent sparse regression methods model these 

two confounders separately. Incorporating prior biological information has great potential 

to enhance statistical power but such information is often overlooked in many existent 

sparse regression models. We developed a unified sparse regression (USR) to incorporate 

prior information and jointly adjust for cryptic relatedness, population structure and other 

environmental covariates. Our USR models cryptic relatedness as a random effect and 

population structure as fixed effect and utilize the weighted penalties to incorporate prior 

knowledge. As demonstrated by extensive simulations, our USR algorithm can discover 

more true causal variants while maintain a lower false discovery rate than do several 

commonly used feature selection methods. It can detect rare and common variants with 

almost equal efficiency. 

After further investigation and assessing the oracle property of the USR method, we 

propose a unified test (uFineMap) for accurately localizing causal loci and a unified test 

(uHDSet) for identifying high-dimensional sparse associations in deep sequencing 

genomic data of multi-ethnic individuals. These novel tests are based on scaled sparse 

linear mixed regressions with Lp (0<p<1) norm regularization. Under extensive simulated 

scenarios, the proposed tests appropriately controlled Type I error rate and appeared more 

powerful than several existing prominent methods (famSKAT and Gemma).  

In addition, we incorporate the idea of Generalized Linear Mixed Models (GLMMs) to 

further extend the USR model for non-Gaussian phenotype data. The generalized USR 

method include structure regularization (i.e., group L1 norm and sparse group L1 norm) as 



well. The algorithm is applicable to a wide range of genetic data association analyses, 

which can incorporate the effect of a group of SNPs or genes in an integrative way. It can 

be used as variable screening method to reduce the number of variables, under a wide range 

of high-dimensional data with complex group structure. 
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CHAPTER 1  INTRODUCTION 

1.1 Genome wide association study (GWAS) 

Genome-wide association studies (GWAS) is an examination of many common genetic 

variants in different individuals to see if any variant is associated with a trait. GWASs 

typically focus on associations between single-nucleotide polymorphisms (SNPs) and 

traits like major diseases. GWAS become a relatively common way for scientists to identify 

genes involved in human disease. The first successful GWAS was published in 2005. It 

investigated patients with age-related macular degeneration and found two SNPs with 

significantly altered allele frequency compared to healthy controls (Klein, Zeiss et al. 

2005). Next-generation sequencing (NGS) technologies provide great potential for 

identifying both rare and common sequence variants. A number of GWAS have been 

developed for identifying marker sets that harbor functional genetic variants. 

An illustration of a Manhattan plot (Figure 1.1) depicting several strongly associated risk 

loci. Each dot represents a SNP, with the X-axis showing genomic location and Y-axis 

showing association level (Ikram, Xueling et al. 2010). 

 

Figure 1.1. Manhattan plot from a GWAS study investigating microcirculation (Ikram, 
Xueling et al. 2010) 

 

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://en.wikipedia.org/wiki/Single-nucleotide_polymorphisms
https://en.wikipedia.org/wiki/Age-related_macular_degeneration
https://en.wikipedia.org/wiki/Allele_frequency
https://en.wikipedia.org/wiki/Manhattan_plot
https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://en.wikipedia.org/wiki/Genetic_association
https://en.wikipedia.org/wiki/Microcirculation
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GWAS also have several issues and limitations. Lack of well-defined case and control 

groups, insufficient sample size, control for multiple testing and control for population 

stratification are common problems (Pearson and Manolio 2008). 

Single marker association tests bear poor statistical power to identify associated rare 

variants due to their very low frequencies. Reginal or gene set based association tests yield 

better power. Generalized linear model provides an effective approach to identify variant 

sets associated with different type of phenotypes while adjust for covariates of unrelated 

individuals (Yi, Liu et al. 2011, Lee, Wu et al. 2012). However, the assumption of 

independence between individuals is frequently violated in sequence association studies. 

In the presence of complex pedigree structure or/and cryptic relatedness, it is more 

challenging to correct for population structure (Price, Zaitlen et al. 2010), especially for 

rare variants detection (Mathieson and McVean 2012). Furthermore, some prominent tests 

(e.g., SKAT family tests and Gemma) require that the number of markers in a testing set is 

much smaller than the sample size. In a typical population deep sequencing study, it is 

quite common that interested genomic regions or even the whole genome will have 

genotypic data of a larger number of marker loci (close to or even larger than sample size, 

which we call it high dimensional set or HDS), but the functional genetic variants are very 

sparse among all the variants under test. 

1.2 Mixed models 

A mixed model is a statistical model containing both fixed effects and random effects. It 

is particularly useful in settings where repeated measurements are made on the 

same statistical units (longitudinal study), or where measurements are made on clusters of 

https://en.wikipedia.org/wiki/Multiple_comparisons
https://en.wikipedia.org/wiki/Population_stratification
https://en.wikipedia.org/wiki/Population_stratification
https://en.wikipedia.org/wiki/Repeated_measures_design
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Longitudinal_study
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related statistical units. In another word, the random effect is designed to resolve the non-

independence by assuming a different “baseline” value for each subject. 

1.2.1  Linear mixed model (LMM) 

In most linear model, major interest is on average and variation about the averages. For 

example, linear regression, T-tests and ANOVA test. The variant of linear mixed model is 

where parameters in an linear model are treated not as constant but as random variables. 

Consider the simple model 
ij i j      , where i  is the random effect and j

represents fixed effect, ij  is then a mixture of random and fixed term. The model is called 

linear mixed model (LMM).  

A number of sequence association tests have been developed for identifying marker sets 

that harbor functional genetic variants. Most of them, however, do not jointly model cryptic 

relatedness, population structure and other covariates. These confounders, if not 

appropriately adjusted for, may inflate false positive rates or deflate false negative rates. 

With the growing demand of analyzing next generation sequencing data of multi-ethnic 

individuals, linear mixed models are emerging as a method of choice for conducting 

genetic association studies in humans and other organisms. The advantages of the mixed- 

model association methods include the prevention of false positive associations due to 

population or relatedness structure and an increase in power obtained through the 

application of a correction that is specific to this structure (Yang, Zaitlen et al. 2014). There 

is a variety of different linear mixed model methods/software packages have been 

developed for the application of GWA studies, such as EMMAX (Kang, Sul et al. 2010), 

GenABEL (Aulchenko, Ripke et al. 2007), FaST-LMM (Lippert, Listgarten et al. 2011), 
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Mendel (Lange, Papp et al. 2013), famSKAT (Chen, Meigs et al. 2013) and GEMMA 

(Zhou and Stephens 2012). These methods differ in details of methodology implemented 

and various user-chosen options such as the method and number of SNPs used to estimate 

the kinship (relatedness) matrix (Eu-Ahsunthornwattana, Miller et al. 2014). Within the 

framework of linear mixed models, famSKAT and GEMMA appeared as two powerful 

sequence association tests for identifying small marker sets that harbor dense functional 

genetic variants.  

1.2.2  Generalized linear mixed model (GLMM) 

The past few decades have seen LM and LMM extended to generalized linear model 

(GLM) and generalized linear mixed model (GLMM). The essence of this generalization 

is two-fold: first, the data are not necessarily assumed to be Gaussian distributed; second, 

that the mean is not necessarily taken as a linear combination of parameters but some link 

function of mean is. If all the parameters are considered as fixed constants the model is a 

GLM; if some are treated as random it is a GLMM (McCulloch and Neuhaus 2001). 

Recently, some promising association methods are proposed to handle the non-Gaussian 

phenotype by using GLMM. Lea presented a binomial mixed model and an efficient, 

sampling-based algorithm (MACAU: Mixed model association for count data via data 

augmentation) for approximate parameter estimation and p-value computation (Lea, Tung 

et al. 2015). This framework allows users to simultaneously account for both the over-

dispersed, count-based sequencing data, as well as genetic relatedness among individuals. 

Another savvy GLMM method is lme4 (Bates 2014) which implement several different 

types of mixed-effects models, including linear mixed models, generalized linear mixed 

models and nonlinear mixed models. 
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1.3 Sparse regression 

Sparse regression is highly related to sparse representation or sparse approximation in 

compressive sensing problem. A general goal of sparse regression is to reconstruct a signal 

or regression coefficients of sampling measurements. Sparse regression is especially 

powerful for solving underdetermined system and prevent overfitting.   

In general, sparse regression is realized by the regularized regression, which refers to the 

regularized optimization problem arg min{ ( , ) ( )}f P 
x

x x y x . ),( yxf is the cost function 

of prediction x given data y, and )(xP is typically a penalty on the complexity of x. 

Regularization term can be used to learn simpler models, induce models to be sparse, 

introduce group structure into the learning problem. 

1.3.1 Lasso 

Lasso (least absolute shrinkage and selection operator), introduced by Robert Tibshirani 

(Tibshirani 1996), is a regression analysis method that performs both variable 

selection and regularization in order to enhance the prediction accuracy and interpretability 

of the statistical model it produces.  

In the linear regression setting, suppose that we are given N samples{( , )}i iyx , where 

each 
1 2( , ,..., )T

i i i imx x xx  is a m-dimensional predictor vector, and iy R  is the response 

variable. It is often write the Lasso problem in the Lagrangian form for some 0 . 

}||||||||
2

1
{min

1

2

2
βXβy

β


 NmR

 

Lasso can be interpreted as linear regression for which the coefficients have Laplace 

prior distributions. The Laplace distribution is sharply peaked at zero (its first derivative is 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Variable_selection
https://en.wikipedia.org/wiki/Variable_selection
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Laplace_distribution
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discontinuous) and it concentrates its probability mass closer to zero than does the normal 

distribution. This provides an alternative explanation of why lasso tends to set some 

coefficients to zero. The counter plot of Figure 1.2 demonstrates how the L1 norm penalty 

induce sparsity. Basically, sparsity is induced by sharp edges lying on the axis of an 

isosurface. 

The lasso problem is a quadratic program with a convex constraint. There are many 

quadratic program methods for solving the lasso. However, a simple and effective 

computational algorithm is coordinate descent while applying soft-thresholding for each 

iteration (Hastie, Tibshirani et al. 2015). 

The tuning parameter 0  controls the complexity of the model. Smaller value of 

induce more parameters and allow the model to have a better fitting to the training data. 

On the contrary, larger   restrict the parameters more, leading to sparser, more 

interpretable models that fit the data less closely. An example of solution path of Lasso 

with respect to different   is shown in Figure 1.3. 
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Figure 1.2. Two-dimension contour plot of lasso (left) and ridge regression (right).The 
solid blue areas are constraint region. The ̂  depicts the unconstrained least square 
estimator   

 

Figure 1.3. Solution path for a Lasso problem 
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1.3.2 Elastic net 

In the fitting of regression models, the elastic net is a regularized regression method 

that linearly combines the L1 and L2 norm penalties of the lasso and ridge methods. 

Elastic-net is first introduced by (Zou and Hastie 2005) to address several shortcoming of 

Lasso. When p > n (the number of predictors is greater than the sample size) Lasso can 

select only n predictors (even when more are associated with the outcome) and it tends to 

select only one predictor from any set of highly correlated covariates. Additionally, even 

when n > p, if the predictors are strongly correlated, ridge regression tends to perform 

better. Again, the elastic net can be written by Lagrangian form 

}||||||||||||
2

1
{min

11

2

22

2

2
ββXβy

β

 
 NmR

 

Elastic net is also a quadratic program with convex constraint, so it can be solved by the 

similar algorithm as the lasso. It also has been proven that the Elastic net can be reduced 

to support vector machine (Zhou, Chen et al. 2014). 

1.3.3 Group sparsity 

Group lasso is a natural extension of the lasso. Yuan and Lin introduced the group lasso 

in order to allow predefined groups of covariates to be selected into or out of a model 

together, so that all the members of a particular group are either included or not included 

(Yuan and Lin 2006). Groups of features can be regularized by a sparsity constraint, which 

can be useful for expressing certain prior knowledge into an optimization problem. 

Another setting in which grouping is natural is in biological studies. Since SNPs and 

proteins often lie in known gene regions, an investigator may be more interested in which 

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Tikhonov_regularization
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genes are related to an outcome than whether particular individual SNPs are. The objective 

function for the group lasso is a natural generalization of the standard lasso objective 

}||||||||
2

1
{min

1

2

2

2

1





J

j

j

J

j

jjmR N
ββXy

β

  

Group lasso is usually solved by block-wise coordinate descent algorithm (Yuan and Lin 

2006). The convexity ensure the algorithm can be converged to the global minimal point. 

It is possible to extend the group lasso to the so-called sparse group lasso (Simon, Friedman 

et al. 2013), which can select individual covariates within a group, by adding an 

additional L1 norm penalty to each group subspace. The objective function of sparse group 

lasso is shown below. 

}||||||||||||
2

1
{min

12

1

21

2

2

1

βββXy
β

  


J

j

j

J

j

jjmR N
 

 

Figure 1.4. An example of selected predictors via group lasso and sparse group lasso 
regularization term.  

1.3.4 Application in genomic data analysis 

In recent years, sparse regression models are widely used in genomic data. Given the 

large number of genetic variants from NGS data and only limited sample size, sparse 

regression model appeals more powerful than traditional regression based method in term 

of variants or genes fine mapping. Accurately pinpointing specific causal variants is 

necessary for elucidating genetic architecture of a complex disease. Sparse representation 
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models were established to select a promising sparse set from a large number of 

variants(Wu, Chen et al. 2009, Zhou, Sehl et al. 2010) (Wu, Chen et al. 2009, Zhou, Sehl 

et al. 2010), e.g., those within a gene or a pathway. Such models allow the size of a testing 

set (gene or pathway) exceed the number of study participants (Fan and Li 2001, Zou and 

Hastie 2005) by the use of regularization terms (e.g., L0 norm, L1 norm, L2 norm). 

Lasso penalized logistic regression was first implemented in case–control disease gene 

mapping (Wu, Chen et al. 2009). The elastic net regularized regression along with cross-

validation to find the optimal tuning parameter was investigated in GWAS data 

(Waldmann, Mészáros et al. 2013). (Zhou, Sehl et al. 2010) first applied group lasso in 

GWAS on breast cancer data. (Larson and Schaid 2014) and (Ayers and Cordell 2013) 

further extend the structure sparse regularized methods to rare variants analysis. The 

proposed method analyzes all genes at once, allowing grouping of all (rare and common) 

variants within a gene, along with subgrouping of the rare variants. 

The reminder of the dissertation proposed novel sparse regression methods based on 

linear mixed model and generalized linear mixed model with Lp (0<p<1) norm 

regularization and group sparse regularization. Although the L0 norm penalty yields 

sparsest solution, its discontinuity makes the problem to be NP-hard (Natarajan 1995), 

which is nearly infeasible for the regression model with a large number of predictors. The 

L1 norm penalty or Lasso is a well-developed and computationally feasible method, with 

the relaxation of L0 norm penalty. On one hand, if a particular restricted isometric property 

(RIP) holds, the solution of lasso and L0 norm penalty are identical (Candes and Tao 2005); 

on the other hand, solving L1 norm is a convex optimization problem which is feasible for 

large scale genetic variants. Elastic-net (Zou and Hastie 2005)  is a mixture penalty derived 
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from L1 norm and L2 norm. Although it is more robust to Gaussian noise than Lasso, the 

additional turning parameter requires more computational effect to estimate a global 

optimal solution. Recently, Lp norm (0 < p < 1), as an alternative relaxation, has aroused 

more interests (Xu, Chang et al. 2012), which yields more sparse solutions than does the 

Lasso. Despite these merits, existent sparse representation algorithms still suffer the 

limitations of aforesaid set (e.g., gene, pathway) based association methods. 

Figure 1.5 and Figure 1.6 show the unit balls and comparison of different Lp norms. 

Sparse solution requires a Lp (0<p≤1) norm. 

 

Figure 1.5 Unit ball for different Lp norms in 3-dimension 

 

Figure 1.6 Unit ball for different Lp norms in 2-dimension 
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Figure 1.7 two-dimension contour plot of lasso, ridge and bridge regression (Lp (0<p≤1) 
norm) 
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CHAPTER 2  THE UNIFIED SPARSE REGRESSION (USR) MODEL 

2.1 Introduction 

    Complex diseases and traits are likely to be influenced by both common and rare 

genetic variants. The whole genome sequencing has provided a powerful tool for the study 

of complex diseases and traits, because more rare variants can be detected from the 

sequencing data with higher resolutions. In other words, the number of rare variants 

detected by sequencing data is much larger than that of common variants detected in 

GWAS studies. In addition, the low frequency of rare variants makes association based 

testing extremely difficult, i.e., having the low statistical power to detect each single rare 

variant. For this reason, current methods use two major approaches. First, one collapses or 

combines the genotype data in a specific region, then claim whether the whole region is 

associated with traits or not. Although with a considerably power gain, these kinds of 

methods lack the ability to pinpoint the causal variants at SNP level. The second approach 

is to detect rare and common variants separately or set a threshold based on minor allele 

frequency. However, such a test approach is in favor of common variants, which usually 

lose power for detecting rare variants, and vise versa. We aim to provide a method that can 

consider both rare and common variants equally while maintain the accuracy of single 

causal variants detection.  

A generalized linear model (GLM) provides a popular way to take both common and 

rare variants as well as environmental factors into consideration. Nevertheless, the classical 

GLM has limitations. First, GLM tends to detect too many variants corresponding to non-

zero coefficients in the regression model, resulting in too many degrees of freedom and the 

reduction of statistical power. It is hard to pinpoint which variants are the main causal 
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variants. Second, GLM assumes that individuals in the samples are unrelated, i.e., 

independently identical distributed (i.i.d), which is not the case in practice. A model that 

can adjust complex pedigree structures and handle high dimensional variants data is 

needed. To this end, we propose a novel sparse regression model to overcome the 

limitations of existing methods.  

Classical sparse regression models always assume that the individuals in data are i.i.d, 

so that the quadratic loss function is an unbiased estimator of likelihood and acts as the loss 

function. However, this is not the case in real world. According to the pedigree’s impact 

on continuous phenotypes (Thompson and Shaw 1990), we propose to use a modified 

Kinship matrix to adjust the correlation between pedigrees and develop a new quadratic 

loss function. In short, our model can deal with the data of complex relationship and 

pedigree structures, which are common in real case. 

In addition, we want to utilize as much prior information as possible. A natural way to 

incorporate prior knowledge is to add a weight coefficient on each feature. By doing this, 

we encourage the highly suspected variants while discourage lower risk variants into the 

model. This design gives a flexible framework in variants selection. 

In this dissertation, we propose a sparse regression model with adjustment of pedigree 

structure and with weighted sparse penalty terms including Elastic-net, and Lp norm 

(0<p<1) in order to detect the association of genotype with phenotype data. The phenotype 

data can be either continuous or binary. We solve the L1/2 norm problem by the half 

threshold algorithm (Xu, Chang et al. 2012), and solve the Lp norm regularization model 

by a smoothing method (Chen, Xu et al. 2010). Our modified elastic-net regularization 

model is solved by a coordinate decent algorithm (Friedman, Hastie et al. 2007, Friedman, 
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Hastie et al. 2010), which is faster than many existing algorithms especially when the data 

matrix is large. Based on the solution path for different regularization parameter , we use 

the Akaike Information Criteria (AIC) to choose an optimal penalty parameter . Then we 

use the stability selection method to get the appropriate sparse regression coefficients. To 

evaluate our methods, we compare our method with the single marker test ( 2 test), Elastic-

net, Orthogonal Matching Pursuit (OMP) and FOcal Underdetermined System Solver 

(FOCUSS) (Rao and Kreutz-Delgado 1999). Furthermore, we extend our family 

adjustment and weighted model to the one with Elastic-net penalty. 

Our proposed approach has the following advantages: (i) The model can adjust pedigree 

structures; (ii) The Lp norm regularization model can yield higher true positive rate while 

lower false discovery rate than other methods; (iii) The weighted regularization term 

provides a flexible way to incorporate prior knowledge; (iv) Our model can be easily 

extended to accommodate environmental covariates. 

The reminder of the dissertation is organized as follows. In the method section, we 

present our family adjusted sparse regression model with weighted regularization in detail. 

In the result section, we evaluate the performance of our model on both simulation and real 

data. In the conclusion and discussion section, we discuss both the advantages and 

disadvantages of our model. Finally, we give a perspective on our future work. 

2.2 The USR (Unified sparse regression) method 

2.2.1 Notations 

    Let n denote the total number of subjects, and m denote the number of independent 

variables. Let
1 2( , ,..., )T

ny y yY contain the trait values of the n subjects. We write
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1 2( , ,..., )mX x x x , where 1 2( , ,..., )T

i i i inx x xx , represents genotype data for subject i;

1 2( , ,..., )LW w w w , where 
1 2( , ,..., )T

i i i inw w ww  represents fixed-effect confounders, 

e.g., population structure surrogates, age, and gender; and
1 2( , ,..., )T

nZ z z z , where 

1 2( , ,..., )T

i i i inz z zz  represents random-effect, e.g., pedigree structure.    

2.2.2 Joint adjustment of confounders 

    For data with a known pedigree structure, we consider the following linear mixed-effect 

model: 

0   Y Wα Xβ Zb ε                                                                                                   (2.1) 

where 0 ~ ( , )nNε 0 I , ),(~ Φ0b N  , )(
ij

Φ  is the kinship matrix or IBD (Identity-by-

Descent) matrix, 
ij

  equals to twice of the kinship coefficient between subject i and j; 

T

L
),...,,(

21
α  and T

m
),...,,,(

210
β  are vectors of corresponding regression 

coefficients.  

    A classical model was proposed by (Thompson and Shaw 1990) to summarize the 

random effect due to pedigree structure and random noise 
0
ε  into a new error term 

),(~ Σ0ε N , IΦΣ
22


 


 

To be explicit: 

εXβWαY                                                                                                                    (2.2) 
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    For the data of cryptic relatedness, the kinship matrix can be inferred by extent 

algorithm, e.g., the REAP (Thornton, Tang et al. 2012). The coefficients of variance 

component 2


  and 

2


  can be inferred by  

For a givenΣ , the likelihood can be formulated as: 

)
2

)()(
exp(

||)2(

1
),(

1

2

XβWαYΣXβWαY

Σ

βα



T

n
L



 

The Log-likelihood is: 

)()()),(log(),( 1
XβWαYΣXβWαYβαβα  TLl  

2.2.3 The generic Lp regularization 

    A general form of regularized regression is given by: 

)}()),(log({minarg)ˆ,ˆ(
,

ββαβα




Plikelihood   

    The natural approach towards regularizing the sparsity of the solution of to use the 

number of non-zero coefficients as a penalty, i.e., L0 norm. However, it is not 

computationally tractable. Lp norm is a closer relaxation comparing to L1 norm. It is well 

known (Chen, Xu et al. 2010, Xu, Chang et al. 2012) that Lp (0<p<1) norm regularization 

term can give more sparse solution than L1 norm based regularization, also known as the 

famous least absolute shrinkage and selection operator (Lasso). If we define the Lp norm 

based regularization term as 



m

j

p

j

p

p
P

1

||||||)( 


ββ , 10  p  then the problem 

becomes to find the minimizer 

}||||)(){(minarg),(minarg)ˆ,ˆ( 1

,,

p

p

T

RRRR mLmL

f βXβWαYΣXβWαYβαβα
βαβα

 



                    (2.3) 
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In particular, if the data only contain unrelated subjects, i.e., IΦ , IΣ )( 22


 


 , eq. 

(2.3) collapses to the classic least square sparse regression. Similar to other sparse 

regressions, we define the selected risk variants to be the set of non-zero regression 

coefficients, i.e., }0|{ 
i

i  . 

2.2.4 Incorporating prior information 

The regularization term in eq. (2.3) can be modified to incorporate prior knowledge. For 

this purpose, we introduce a weighted regularization term. To be explicit, the weighted Lp 

norm regularization is:  

}||||)(){(minarg)ˆ,ˆ( 1

,

p

p

T

RR mL

γβXβWαYΣXβWαYβα
βα

 



                           (2.4) 

Where T

mm
),...,,(

2211
γβ  and 0

j
  represent marker wise weights. 

An appropriate choice of weights can improve statistical power. Each weight 
j

  is pre-

specified, taking the genotypes, covariates and prior knowledge into account. The weight

j
  reflects the relative importance or preference of the jth variant. On one hand, we can 

assign a particular marker with small penalty weight, if we want to include the marker into 

the sparse representation. On the other hand, a marker with a large weight is more likely to 

be excluded from the sparse representation. 

There are several ways to determine the weights. For example, we can give non-

synonymous SNPs or the SNPs in the risk gene lower weights to increase their chances to 

enter the model. Another way to assign weights is based on minor allele frequency. When 

analyzing rare and common variants together, we can assign lower weights to rare variants, 
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in order to compensate for their low frequencies. Since in practice we do not know exactly 

which variants have high risk, the weights should be assigned prudently.  

In particular, if all 1
j

 , eq. (2.4) collapses to eq. (2.3), which is an unweighted one. 

The algorithm to solve eq. (2.4) is almost the same as for eq. (2.3). The only difference is 

to replace
j

 by
jj

 . For the sake of simplicity, we just present the algorithm for solving 

eq. (2.3). We assume all variants are equally weighted unless otherwise stated. 

2.2.5 Surrogate function of the USR problem 

Generally, the Lp (0<p<1) norm based regularization (eq. 2.3) is neither convex nor 

Lipschitz continuous, making the solution computationally difficult and time-consuming. 

We adopt the basic idea on non-convex and non-continuous optimization (Zhang and Chen 

2009) to solve the minimization problem of (2.3). To make the algorithm more stable and 

faster, we establish a lower bound to further regularize local optimal solution. Another 

issue with Lp norm regularization is that the iterative algorithm can be easily trapped at a 

local minimizer. Therefore, the choice of the initial point is crucial for the iterative 

algorithm. For this reason, we use the solution of L0.5 norm regularization as the initial 

point for the Lp regularization problem. The details are discussed below. 

    We use a smoothing approximation to the objective function in eq.(2.3) (Chen, Xu et al. 

2010) 

p

p

Tf ||)(||)()(),( 1
βXβWαYΣXβWαYβα


   

where T
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     The smoothing function ),( βα


f  is continuously differentiable and strictly convex on 

the set of  })max(|{ xx . Moreover, ),(),(lim
0

βαβα ff 





 

    All these properties show that this smoothing function is a good approximation to the 

original one but makes the problem easy to solve. 

2.2.6 Lower bound theory 

    Based on the first and second order necessary condition on the solution to the 

minimization problem, we derive a lower bound, and a sufficient and necessary condition 

to narrow the search of non-zero entries and guide the selection of causal variants. In our 

algorithm, we utilize the lower bound at each step to help refine the local minimizer. 

The lower bound theory for the unified sparse model 

Denote *

p
X  the set of local minimizers of objective formula (2.3)  

For any **

p
Xβ  derived from initial point 0

β , the following statements hold 

(i) Let ])
),(||||||||2

(,)
)(2

)1(
max[( 1

1

01

2

1

1

pp

ii

Ti

f

kppp
L 












βαΣAAΣA


 

for any 0),( ** 
iiii

LL ββ  

where ||: 


 nRXA  is a sub-matrix of  X , which consists of the jth columns of X , with 

j , }0|{)(support ** 
ii

i ββ , 
0

* |||| βK  

(ii) The smallest eigenvalue of matrix 1:
~~

min

1  BA ;  

where AΣAA
12

~  T
and )|(|)1(

~ 2*  p

i
diagpp B , and 0* 

i
  

Proof: 

For **

p
Xβ  , k

0

* |||| β , without loss of generality, we can assume 

T

k
)0,...,0,,...,,( **

2

*

1

* β  
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Let T

k
),...,,( **

2

*

1

* z  and knR A  be the submatrix of X , whose column is the 

corresponding index of vector *
Z  

Define a function RRg k :   by 

p

p

Tg ||||)()(:)( 1
zAzWαYΣAzWαYz    

Intuitively, we have 

p

p

Tf ||||)()()( **1**
βXβWαYΣXβWαYβ    

)(||||)()( **1*
zzAzWαYΣAzWαY gp

p

T     

where 
*

z is the local minimizer of )(zg , i.e., )( *
zg  should satisfy the following second 

order necessary condition at *
z  

)|(|)1(2|
)( 2*1

2

2

*








 pT diagpp
g

zAΣA
z

z
zz

 should be positive semi-definite. 

(i) kizppee p

ii

TT

i
,...,2,1,0||)1(2 2*1   AΣA   

Note 
ii

T

i

TT

i
ee )( 11
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1
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1

* )
)(2

)1(
(|| L
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The local minimizer of )()( 0*
βz fg  , should satisfy the first order necessary condition at

*
z  

0)||)(()(2|
)( 1**1
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pT signp
g

zzYAzWαΣA
z

z
zz

  

Because of **

p
Xβ  , 

we have ||)(||2|||||| *11*
YAzWαΣAz   Tpp  
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Together with the above formula  
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So the absolute value of all the nonzero entries of the solution should be no less than L1 

and L2 
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(ii) Define AΣAA
12

~  T
and )|(|)1(

~ 2*  p

i
diagpp B  

We have 0
~~
BA , where 0

~
,0

~
 BA  

Since 0
~
B , there exists a unique non-singular matrix 2

1~
B such that 2

1

2

1 ~~~
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Furthermore, we have 

0
~

)
~~~

(
~~~~~~~~~~

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1




BIBABBBBBBABBBA  

namely, for any kRx , 

0)
~~~

(
~

)
~~~

(
~

2

1

2

1

2

1

2

1

2

1

2

1




cIBABcxBIBABBx
TT , where xBc 2

1~
  



30 

Obviously, there exists an orthogonal matrix V such that 0)(
~~~

2

1

2

1




VIΛVIBAB
T , 

where Λ  is the diagonal matrix consisting of eigenvalues of 2

1

2

1 ~~~ 

BAB  

So all the eigenvalues of 2

1

2

1 ~~~ 

BAB  have to be larger than 1, i.e., the solution of the 

eigenvalue equation are not smaller than 1. To express explicitly, 

0|
~~~

| 2

1

2

1




IBAB  , where all eigenvalues 1  

Multiplying |
~

| 2

1

B at the left side, and then multiplying |
~

| 2

1


B at the right side of the 

equation, we have 

0|
~~

||
~

||
~~~

||
~

| 12

1

2

1

2

1

2

1

 


IBABIBABB   

Consequently, the smallest eigenvalue of matrix 1:
~~

min

1  BA                                      □ 

    The more detailed proof of this theory is described in the appendix of USR tests (Cao, 

Qin et al. 2015). 

2.2.7 USR algorithm  

    The L0.5 norm regularization has an analytical threshold operator (Xu, Chang et al. 2012) 

compared with arbitrary Lp (0<p<1) norm problem, which can be easily and fast solved. In 

addition, the L0.5 regularization always yields more sparse solution than that of using Lp 

when 0.5<p<1, and shows no significant difference from the one when 0<p<0.5 (XU, GUO 

et al. 2012). Thus in our algorithm, we first apply L0.5 thresholding algorithm (Xu, Chang 

et al. 2012) to obtain the solution of L0.5 problem and then use the solution of L0.5 as the 

initial point to search the minimizer of the Lp norm based regularization problem. 

The L0.5 regularization model is given by the following formulation (2.5) 

}||||)(){(minarg),( 2/1

2/1

1

,

βXβWαYΣXβWαYβα
βα

 



T

RR

optopt
mL

                     (2.5) 
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where 2

1

2/1
)||(|||| 




m

j

j
β  

According to (Xu, Chang et al. 2012), the solution of (2.5) can be obtained by the 

following thresholding operation 

))(( **1*

2/1,

*
XβWαYΣXββ  TR 


 

where )(
2/1,
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 is the half thresholding operator. It is given as follows: 
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    We name our algorithm to solve the problem (2.5) as the Hybrid L0.5-SCG algorithm, 

where SCG stands for the smoothing conjugate gradient. 

Unified sparse regression algorithm 

Step 1: Data centralization: 



n

i

ij
x

1

0 , for j=1,2,…m 

Step 2: For any given  , p, set iterative index r=0,  =0.0001; Initialize 0α )0(
, 0β )0(

 

Step 3: Update )()( )(1)1( rTTr
XβYWWWα    

Update
( 1) ( ) 1 ( 1) ( )

,1/2 ( ( ))r r T r rR      β β X Σ Y Wα Xβ  

Step 4: Apply the lower bounds to regularize )1( r
β  and use the SCG algorithm (Zhang et 

al., 2009) with the initial point )1( r
β  to find the minimizer 

)1( r

p
β  of objective function (2.3) 

Step 5: Calculate 2

)()1( |||| r

p

r

p
ββ 

  

If 

2

)()1( |||| r

p

r

p
ββ stop; otherwise return to Step 3 

Then
)1( r

p
β is the final solution 
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2.2.8 Tuning parameter selection 

    It is well known that the setting of regularization (tuning) parameter λ in eqs. (2.3) and 

(2.5) controls the tradeoff between data fitting fidelity and the use of prior knowledge. A 

larger λ results in a more sparse solution and vice versa. 

The selection of optimal regularization parameters is a difficult problem. If computing 

time is not a concern, it is helpful to optimize the objective function over a grid of points 

and monitor how new predictors enter the model as λ decreases. Another way is to 

minimize either the Bayesian information criterion (BIC) or AIC as a function of λ. Also, 

we can use cross-validation to select optimal λ. After the comparison of these methods in 

our simulations, we choose the AIC as our variable selection criterion. For our model, we 

have the following form of AIC (Cetin and Erar 2002) 

)1))()(log((2 1  
XβWαYΣXβWαY

TnkAIC  

The goal is to find an optimal λ so that the AIC value can be minimized. Since λ is the 

key parameter to determine the sparsity level, it is crucial to understand the relationship 

between AIC and λ. However, there is no explicit expression of AIC(λ). So we use the 

discrete search in log-scale to find the optimal λ that yields the smallest AIC value.  

However, a major drawback of AIC procedure is that it cannot control false positive rate 

or family-wise error rate. So we use the idea of stability selection (Meinshausen and 

Bühlmann 2010) to further control the false positive rate based on the selected λ. 

The basic idea about stability selection is to bootstrap the data, and then calculate the 

frequency of the variables to be selected. The higher frequency of the selected variables 

implies that they are more important. Hence, we can develop a new rank of importance of 
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each variable (i.e., variants), and then a frequency threshold is applied to select final risk 

variants. An advantage of the stability selection over AIC selection is that the expected 

number of falsely selected variables or false positive rate can be asymptotically controlled. 

The detailed procedure of hybrid AIC and stability selection is described below. 

Let },...,2,1{ nI   index the entire sample, and },...,2,1{ mS   be the set of selected 

genetic markers. Clearly S is determined by I and  , so we can write )(ˆ ISS  . For the 

entire set of variables },...,2,1{ mk  , the probability of variables being selected is defined 

as 

))(ˆ(ˆ ISkP
k

   

For a cut-off 10 
thr

  and a set of regularization parameters  , the set of stable 

variables is defined as }ˆmax:{ˆ
thrk

stable kS 





.  

Note by the AIC selection, the parameter set  equals to a single point of  that 

corresponds to the smallest AIC value. Let N ( mN || ) be the set of unrelated variables. 

Define V to be the number of falsely selected variables with stability selection, then 

|ˆ| stableSNV  . 

The detailed procedure of hybrid AIC and stability selection is described as below. 

The hybrid AIC and stability selection algorithm 

Step 1: Find the optimal regularization parameter λ that yields the smallest AIC value. 

Step 2: Bootstrap the original data T times, with subsample size  

Step 3: Calculate the selection probability 
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For t from 1 to T 

Let 
t

I  be the random subsample of },...,2,1{ n ,  2/|| nI
t
  

For k from 1 to K 

 

T

ISkI
T

t

t

k






 1

))(ˆ(
ˆ



 , where I  is the indicator function 

Step 4: Calculate the cut-off parameter 
thr

  by the pre-set false positive rate 

)1(
2

1
2

2

 

m

q
thr

  

Step 5: Get the stable variable set }ˆ:{ˆ
thrk

stable kS    

Despite the hybrid AIC and stability selection procedure, we also provide an adaptive 

method to make the solution to have predetermined k-sparsity. 

Unified Lp algorithm with predetermined sparsity 

Step 1: Data normalization: 
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Step 6: Apply the lower bounds to regularize 
)1( r

β  and use the SCG algorithm (Zhang et 

al., 2009) with the initial point 
)1( r

β  to find the minimizer 
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p
β  of objective function (2.3) 
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Step 7: Calculate 2
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ββ stop; otherwise return to Step3 

  The 
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β  is the final outcome with k-sparsity. 

2.3 Simulations 

In this section, we empirically compared our USR algorithm with single marker test (
2

test), Elastic-net, Orthogonal Matching Pursuit (OMP), FOcal Underdetermined System 

Solver (FOCUSS) (Rao and Kreutz-Delgado 1999) and Random Forest (Goldstein, 

Hubbard et al. 2010, Chen and Ishwaran 2012). We first compared these algorithms under 

our own simulation design with and without family structure. In addition, we compared the 

algorithms under the simulated data from GAW17. 

2.3.1 Simulation I: unrelated individuals 

To validate our USR, we performed simulation experiments based on the Encyclopedia 

of DNA Elements (ENCODE) data. This data set contains 522 haplotypes and 1688 SNPs. 

We used this haplotype pool to generate genotypes and the corresponding phenotypes, i.e., 

X and Y respectively in the linear mixed-effect model (1). The phenotypes are simulated 

based on the linear model with assigned causal SNPs under the controlled heritability. We 

implemented L0.1, L0.9, L0.5, Elastic-net, OMP and FOCUSS methods respectively. The 

Elastic-net and weighted Elastic-net programs were developed according to Friedman’s 

papers (Friedman, Hastie et al. 2007, Friedman, Hastie et al. 2010); OMP and FOCUSS 

(Rao and Kreutz-Delgado 1999) programs were downloaded from the link in their 

publications. 
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In this simulation, we generated 1000 samples and give the weight for each marker as 

follows, )1(2 MAFMAFweight   where MAF is the minor allele frequency.  

The detailed procedure of our experiment is as follows: 

Step1: Set the risk haplotype ratio to be 25% (risk haplotypes/all haplotypes); set the 

iterative index k=0, I(0)=Ø. 

Step2: k=k+1; randomly select a SNP as causal variant C(k); count the index of the 

haplotypes that contain C(k), and denote this index set as I(k) (risk haplotypes); 

Step3: I(k)=I(k-1)∪I(k); if I(k)>0.25, jump to Step4, otherwise return to Step2. 

Step4: Generate 10000 genotype samples from the pool randomly. 

Step5: Calculate each sample’s genetic score S, i.e., how many risk haplotypes that this 

sample has; S=0,1,2. 

Step6: Generate each sample’s phenotype: y=b*S+ε, ε ～ N(0,1), 

b=sqrt(0.01/(0.99*var(S))). 

To evaluate our methods, we compared them with the single marker test ( 2 test), 

Elastic-net, OMP and FOCUSS respectively. We also extended our family adjustment and 

weighted model to the one with Elastic-net penalty. For the numerical algorithm, we used 

the cyclical coordinate descent, computed along a regularization path. 

The receiver operating characteristic (ROC) curve is shown in Figure 2.1. 
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In this dissertation, the TPR is defined by the number of selected true variants divided 

by the total number of true variants; and the FPR is defined by the number of selected false 

variants divided by the total number of false variants. 

From Figure 2.1, by calculating the AUR (area under the ROC curve), we can conclude 

that weighted models with the use of L0.5 and L0.1 regularization term perform best among 

all the methods listed above, and the classic single marker test ( 2  test) has the lowest 

power. The FPR and TPR of FOCUSS and OMP methods were stuck in a low range, which 

is difficult to perform a comparison of AUR. In addition, FOCUSS became unstable with 

the tuning parameter getting larger and its TPR decrease with FPR increase. For the sake 

of stability and efficiency, we did not perform OMP and FOCUSS methods in the following 

sections. 

Table 2.1. The error rate of using optimal λ selected by the AIC 

N=1000,H2=0.05 TPR FPR 

Elastic-net 0.0745 0.0151 

L0.5 0.0805 0.0213 

L0.1 0.0021 1.5883e-4 

L0.9 0.0018 1.2202e-4 

 

Table 2.1 and Table 2.2 are generated by the average of 100 replicate simulations with 

1000 samples and 0.05 heritability. Apparently, the best method should have the highest 

TPR, while lowest FPR. However, there always exists a trade-off between TPR and FPR. 
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Figure 2.1. Methods comparison under population design of 1000 unrelated individuals. 
Each point (FPR,TPR) corresponds to a specific λ value, where FPR is false positive rate, 
and TPR is true positive rate. The large circles stand for the optimal λ selected by the 
AIC. 

Table 2.2. The error rate of variables by the hybrid AIC and Stability Selection method 

N=1000,H2=0.05 TPR FPR 

Elastic-net 0.0729 0.0142 

L0.5 0.0818 0.0208 

L0.1 0.0337 2.0743e-3 

L0.9 0.0261 2.3173e-3 

 

By comparing Table 2.1 with Table 2.2, we find that L0,5 and Elastic-net had quite similar 

performance under both AIC and Stability Selection. Under AIC, L0.1 and L0.9 appeared to 

be too conservative and yielded extremely low FPR and TPR. However, the stability 

selection rectified the conservativeness to make corresponding FPR closer to the pre-set 

type I error threshold (0.05). Therefore, we recommend hybrid stability selection with AIC 

as a better choice and just present results of using hybrid AIC and Stability Selection in the 

following sections. Furthermore, the L0.9 was shown not as good as L0.1 and L0.5, which is 
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also supported by the Section 2.3.3. So we mainly focused on L0.1 and L0.5 regularization 

methods for the remaining of the dissertation. 

2.3.2 Simulation II: admixed families 

    We downloaded the genotype data of region ENr113.4q26 from the ENCODE project 

Consortium. We inferred 180 CEU (Centre d’Etude du Polymorphisme Humain in Utah, 

USA) and 180 YRI (Yoruban in Ibadan, Nigeria) haplotypes. We observed 1,693 SNPs in 

total. At each SNP, we chose the minor allele in the YRI haplotype data as the reference 

allele. Following previous association study on African Americans (Qin, Morris et al. 2010), 

we adopted 8.0   vs. 2.0   as YRI-CEU admixture weights. To ‘genotype’ one 

admixed subject in the ENr113.4q26 region, we randomly chose one and another haplotype 

from the YRI or CEU haplotype data sets with probabilities   vs.   . In this simulated 

admixture, the frequencies of reference alleles at the 1,693 SNPs range from 0.0011 to 

0.5722. This simulation design includes three major steps. 

Step1. Generate parental dataset 

For each family, we generated father and mother independently. Each subject is 

composed of two haplotypes; each time we have 80% chance of randomly selecting a 

haplotype from YRI, and 20% from CEU. The local ancestry }2,1,0{
i

a  for the ith subject 

is the number of haplotypes from YRI data. This design does not model recombination in 

the small region (ENr113.4q26).  

Step2. Generate nuclear family with two children 
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Two children are generated for each family. To generate one child, we randomly selected 

one haplotype from father and the other from mother. We simulated N(=200) families with 

the same family structure, which is composed of two parents with two children. 

Step3. Generate trait values 

    To be explicit, for each person, we use the following model to generate trait values. 

iii
bY εβX  , ),(~),...,,(

21
Σ0NT

n
                                                                                                   (2.6) 

where ),...,,(
21 N

diag ΣΣΣΣ   

In our simulation, the covariate matrix for each family is IΦΣ
3

1

3

2


j
 

where 
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5.015.05.0

5.05.010

5.05.001

Φ  

is the kinship matrix. To simulate heritability 05.02 H , the true model we used is formula 

(2.6) 

where
)()1( 2

XβVarH

H
b


  

Using this model, we mainly compared the results with and without pedigree adjustment. 

Thus, we evenly assigned causal variants to include both rare and common variants and 

exclude the influence of weighted method. In this simulation, we did not consider any prior 

knowledge and set all the weight coefficients to be one. 

First, we compared our USR algorithm with other feature selection methods (e.g., 

Random Forest), using the genuine family structure. Second, to illustrate the capability of 

the USR to adjust for cryptic relatedness, we inferred the kinship matrix using the REAP 
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(Thornton, Tang et al. 2012) and adopted the inferred kinship matrix when applying our 

USR. 

Figure 2.2(a) shows the comparison among several methods without adjusting for family 

structure. For the Random Forest, we ranked the variables by their importance factors, and 

then selected different number of variables. Finally, we drew the corresponding ROC. The 

ROC and AUR indicate that L0.1 is the best method and the single marker test performs the 

worst. 

In Figure 2.2(b), adjusting genuine relatedness and estimated relatedness outperformed 

the ordinary regression, which ignoring the relatedness. The result of the USR using 

estimated kinship matrix is close to that of the USR using genuine kinship matrix. Hence, 

the estimated kinship based USR method is reliable for cryptic relatedness data analysis. 

The adjustment of a real kinship matrix appeared a bit better. The ROC also indicates that 

when the FPR, or type I error is low, the L0.1 solution is the best choice; when the FPR is 

higher, the L0.5 solution is the best choice. The Elastic-net sparse representation falls in 

between, indicating that is a more stable solution. 
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Figure 2.2 Methods comparison under 
family design of 200 unrelated nuclear 
families. (a) The ROC curves of five 
methods without adjusting for relatedness. 

 

 

(b) The ROC curves of two methods 

with adjusting for relatedness (by 

estimated kinship matrix and genuine 

kinship matrix) vs. the ordinary method 

without adjusting for relatedness. 

   

Table 2.3. The error rate of variables selected by hybrid AIC and Stability Selection 

N=800,H2=0.05 TPR FPR AUR 

Elastic-net, ordinary 0.0811 0.0223 0.6693 

Elastic-net, estimated kinship 0.1291 0.0237 0.6964 

Elastic-net, genuine kinship 0.1351 0.0243 0.7271 

L0.5, ordinary 0.0811 0.0169 0.7789 

L0.5 , estimated kinship 0.2320 0.0201 0.7808 

L0.5 , genuine kinship 0.2432 0.0205 0.8126 

L0.1, ordinary 0.0435 3.623e-3 0.7884 

L0.1 , estimated kinship 0.0501 4.521e-3 0.8063 

L0.1, genuine kinship 0.0526 4.753e-3 0.8198 

 

Table 2.3 is generated by the average of 100 replicate simulations with 200 nuclear 

families (800 samples) and 0.05 heritability. In terms of AUR, the L0.1 and L0.5 Family 
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adjustment models are the best models. The result confirms again that the model with 

adjusted family structure yields higher TPR while lower FPR and FDR (false discover rate).  

2.3.3 Comparison of different Lp norm 

Here we show the comparison of different Lp norm regularization model based on 

Simulation II: the admix family design. In this simulation, we change p from 0.1 to 0.9 and 

compare their AUR with Elastic-net regularization and single marker test. Similar to the 

design in Simulation II, we set the total heritability to be 5% and repeat each simulation 

500 times. 
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Figure 2.3. The ROC curve comparison for 
six different Lp norms under admixed 
family design with 23 rare causal variants. 
The legend “Family” stands for regression 
with adjustment of family structure. 

 

 

Figure 2.4. The ROC curve comparison 
for three different Lp norms, Elastic-net 
and single marker test under admixed 
family design with 23 rare causal 
variants.   

  

 

Figure 2.5. The comparison of ROC curve 
for six different Lp norms under admixed 
family design with 23 rare and 15 common 
causal variants. The legend “Family” 
stands for regression with adjustment of 
family structure. 

 

 

Figure 2.6. The comparison of ROC 
curve for three different Lp norms, 
Elastic-net and single marker test under 
admixed family design with 23 rare and 
15 common causal variants.   

   

 

Table 2.4. The AUR comparison under 

different methods with 23 rare causal 

variants, where AUR_F represents 

regression with adjustment of family 

structure 

Methods AUR AUR_F 

Lp (p=0.1) 0.788354 0.812526 

Lp (p=0.2) 0.789371 0.814508 

 Table 2.5. The AUR comparison under 
different methods with 23 rare and 15 
common causal variants, where AUR_F 
represents regression with adjustment of 
family structure 

Methods AUR AUR_F 

Lp (p=0.1) 0.704866 0.711651 

Lp (p=0.2) 0.70587 0.71215 

Lp (p=0.3) 0.706421 0.713496 
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Lp (p=0.3) 0.79092 0.821876 

Lp (p=0.4) 0.786989 0.820463 

Lp (p=0.5) 0.778918 0.819813 

Lp (p=0.6) 0.777636 0.817066 

Lp (p=0.7) 0.769813 0.813395 

Lp (p=0.8) 0.76676 0.809379 

Lp (p=0.9) 0.762718 0.799369 

Elastic-net 0.669337 0.72705 

Random 

Forest 0.590643  

single marker 

test 0.614267  

 

Lp (p=0.4) 0.706007 0.714173 

Lp (p=0.5) 0.704962 0.712474 

Lp (p=0.6) 0.700806 0.707429 

Lp (p=0.7) 0.694789 0.700064 

Lp (p=0.8) 0.690193 0.692156 

Lp (p=0.9) 0.681642 0.683268 

Elastic-net 0.643623 0.6598 

Random 

Forest 0.575592  

single marker 

test 0.549118  

 

 

    Figure. 2.3 to 2.6 and Table 2.4, Table 2.5 indicate that when p<0.5, the Lp norm based 

regularization yeilds the highest AUR, while any Lp norm based regularization  

outperforms the Elastic-net based test. The single marker test always gives the worse 

result. 

2.4 GAW18 data analysis 

To further demonstrate the effectiveness of our USR, we compared it with competitors 

under an official simulation from the Genetic Analysis Workshop 17 (GAW17). This data 

set contains real genotypes of 24,487 SNPs from 3,205 genes on 697 subjects, together 

with simulated phenotypes of these subjects. We chose replicate 1 of Q1 as outcomes and 

applied the algorithms to locate promising SNPs from genotype data. Both the weighted 

and unweighted versions of our USR detected 5 causal SNPs within two genes (FLT1 and 

KDR). Three of the causal SNPs were rare variants but were missed by the single marker 

test (Figure 2.7, Table 2.6). Again, in this comparison, our USR inclined to discover rare 

casual variants with higher true positive than the single marker test. 
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To illustrate effectiveness of our algorithm to locate rare genetic variants, we applied it 

to the analysis of Mexican Americans sequence data from the GAW18. This dataset 

contains next generation sequencing data of 850 subjects within 21 large families. 

2.4.1 Simulated phenotype analysis 

First, we analyzed the simulated DBP (diastolic blood pressure), where DBP was set to 

be influenced by 1243 variants of 245 genes and 1040 variants of 205 genes respectively. 

After quality control, we selected 504 subjects within the region of 1244 variants from 

three genes (SLC35E2, TNN and MAP4) that influenced the phenotypic data. All the data 

we used were from the first visit of the longitudinal data. We connected raw DBP data with 

covariates and population structure (adjusted by the first 10 PCs of the genotypic matrix) 

and pedigree structure by our generalized sparse regression model.  

 

Figure 2.7. The ROC of Chromosome 13 data. The weights are generated by the 
correlation coefficients between phenotypes and variants. 

Table 2.6. Identified casual rare variants for phenotype 

Causal gene and 

SNPs 

Single 

marker 

test 

Elastic-

Net 

Weighted 

Elastic-

Net 

L0.5 Weighted 

L0.5 

L0.1 Weighted 

L0.1 

MAF 

KDR/C4S1874 × √ √ √ √ √ √ 0.00717 
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KDR/C4S1877 √ √ √ √ √ √ √ 0.164993 

KDR/C4S1884 × × √ √ √ √ √ 0.0208 

KDR/C4S1887 × × × √ √ √ √ 0.00717 

FLT1/C13S523 √ √ √ √ √ √ √ 0.066714 

FLT1/C13S523 × × √ √ √ √ √ 0.004304 

Note: A “√” indicated that the corresponding marker was detected as a causal marker by a 

particular method. A × indicated that that the corresponding marker was not detected as 

causal marker by a particular method.   

Table 2.7. The error rate of GAW18 data 

N=504, SNPs=1243 TPR FPR AUR 

Elastic-net 0.173913 0.070434 0.643622 

Elastic-net Family 0.26087 0.160524 0.678642 

Elastic-net Family&Weight 0.217391 0.05733 0.681642 

L0.5 0.173913 0.045864 0.694789 

L0.5 Family 0.217391 0.052416 0.707428 

L0.5 Family&Weight 0.217391 0.074529 0.712473 

L0.1 0.26087 0.09828 0.700806 

L0.1 Family 0.217391 0.052416 0.711650 

L0.1 Family&Weight 0.26087 0.09828 0.714172 

 

In this analysis, our USR algorithm appeared to have better TPR and better AUR 

compared to the algorithms without adjusting pedigree structure, while maintaining almost 

the same FPR level (Table 2.7). The pedigree adjustment appeared to be both necessary 

and beneficial as shown by this set of results. 
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2.4.2 Real phenotype analysis 

Finally, we applied the proposed USR to analyze real DNA sequence data on DBP and 

SBP (systolic blood pressure) from GAW18. After quality control, we obtained GWAS 

data of 783 Mexican Americans with 438,790 SNPs and NGS data of 506 Mexicans with 

6,824,165 SNPs. When analyzing the GWAS data using our USR algorithm, we obtained 

sparse representation for each chromosome by choosing the entire chromosome as a 

window. However, for the sequence data set, it is too large to be analyzed as a whole 

window.  Thus, we divided each of the large chromosome (1,3,5,7,9)  into two equal parts 

and obtained their sparse representations separately.  

Based on above algorithm, we analyzed GWAS and sequence data by our USR 

separately to find the susceptible genetic variants. Combining the significant variants 

selected by both GWAS and sequence data, we identified 23 promising genes (Table 3S). 

We also identified 3 significant pathways relevant to hypertension by pathway wise SKAT 

(Wu, Lee et al. 2011). The most significant pathway (p=3.24e-8) was Glioma, including 

BRAF, SHC3, CAMK2B, EGFR, and PDGFRB. An independent study (Houben, 

Louwman et al. 2004) suggested that Glima pathway would be associated with 

hypertension through potentially neurocarcinogenic effects of antihypertensive 

medication. The second most significant pathway (p=2.74e-7) is the regulation of actin 

cytoskeleton pathway, including GNA12, BRAF, EGFR, PDGFRB and PIP5K1B. This 

pathway was identified to be associated with hypertension by an independent study 

(Tripodi, Valtorta et al. 1996). The third most significant pathway (p=3.87e-6) is chronic 

myeloid leukemia pathway, including BRAF, RUNX1, SHC3 and MECOM. This 

pathway, as suggested by independent studies (Guymer, Cairns et al. 1993, Dumitrescu, 
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Seck et al. 2011), would highly influence benign intracranial hypertension and pulmonary 

arterial hypertension.  

Furthermore, we found some new candidate genes and pathways that were not reported 

in the previous independent study. For example, FMO1 (p=9.81e-5) is a risk gene of 

cardiovascular disease (Mendelsohn and Larrick 2013), which is usually associated with 

hypertension. Another susceptible gene is AGBL1 (p=8.16e-4), which is associated with 

carotid plaque (Dong, Beecham et al. 2012), and prehypertension is associated with 

significantly increased carotid atherosclerotic plaque (Hong, Wang et al. 2013). We also 

report long-term depression pathway (p=4.21e-6) as a significant pathway. It might cause 

depression that is a risk factor of hypertension (Meng, Chen et al. 2012).  

 

Figure 2.8. The Manhattan plot for SNPs on odd numbered chromosomes. The p-values 
were computed from single marker tests. The red circles stand for the markers selected by 
our USR. We used SBP+DBP as the phenotype. The genome-wide nominal significance 
level was set to be 10-7, as shown by the green horizontal line. 

2.5 Conclusion 

Many existent sparse regression algorithms assume unrelated subjects. Such algorithms 

fail to adjust for complex pedigrees and cryptic relatedness as often occur in the genomic 

data. In this article, we have proposed the USR algorithm for variant selection from DNA 
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sequence data with an arbitrary intra-individual relationship and population structure. Our 

USR algorithm allows informative weighting to incorporate prior knowledge. This 

approach provides a flexible way to adjust for preference or risk variants. Extensive 

simulation results indicated that a properly predetermined weighting scheme can notably 

improve selection accuracy of causal variants.  

Our algorithm can handle both rare and common variants with equal efficiency. The 

ability of our algorithm to pinpoint causal variants, especially rare causal variants, was 

clearly demonstrated by intensive simulations. We suggest using Lp norms (0.1< p <0.5) in 

the model since these regularization terms provide better performance in terms of AUR, 

TPR and FPR. For the sake of computational speed, L0.5 norm is a better choice. In 

particular, our algorithm can solve the low sample size but high dimensional feature 

problem, that is, sample size is less than the number of variants, as often happens in 

genomic studies. 

Like existent methods, our algorithm has some limitations. First, it focuses on a single 

variant effect on a trait of interest. A more powerful strategy would be to group multiple 

variants and incorporate group wide information into the model. Doing so, however, would 

scarify single marker resolution. Second, our algorithm assumes linear relationship 

between phenotype and genotype, which may be unrealistic for many scenarios in practice.  

Extension to nonlinear regression models call for additional efforts. Last, it deserves further 

investigation on how to choose the optimal tuning parameter and the optimal set of features. 
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CHAPTER 3  SIGNIFICANCE TESTS FOR UNIFIED SPARSE REGRESSION 

3.1 Introduction 

Deep sequencing technologies have been generating huge amounts of data of rare and 

common DNA sequence variants. A number of sequence association tests have been 

developed for identifying marker sets (e.g., a group of SNPs or CNVs) that contain 

functional genetic variants. Most of them, however, do not jointly model cryptic 

relatedness, population structure and other covariates. With the growing demand of 

analyzing next generation sequencing data of multi-ethnic individuals, linear mixed models 

have become popular because of their demonstrated effectiveness in accounting for sample 

relatedness (Amos 1994) and population structure which occurs when there are large-scale 

systematic differences in genetic ancestry among individuals in a sample. Typical 

examples include individuals with various levels of immigrant ancestry and more recent 

shared ancestors than one would expect in a homogenies population. Cryptic relatedness, 

refers to the presence of relatives in a sample of ostensibly unrelated individuals, could 

pose more serious confounding than population structure (Devlin and Roeder 1999), 

especially for samples from small and isolated populations (Voight and Pritchard 2005). 

Accounting for population structure is more challenging when family structure or cryptic 

relatedness is also present (Price, Zaitlen et al. 2010). We paved the way to correct for the 

effects of both confounders jointly. 

Within the framework of linear mixed models, famSKAT (Chen, Meigs et al. 2013) and 

GEMMA (Zhou and Stephens 2012) appeared as two powerful sequence association tests 

for identifying small marker sets that harbor dense functional genetic variants. FamSKAT 

is a set based test which is an extension of SKAT to be applicable to family data. GEMMA 
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is a computationally efficient method for fitting multivariate linear mixed models. These 

prominent tests require that the number of markers in a testing set is much smaller than the 

sample size. However, in population deep sequencing studies, one encounters quite often 

high dimensional data sets (HDS), where the number of marker loci is larger than the 

sample size and the number of functional variants is very small. The aforementioned tests 

are incapable of identifying the functional variants on such sparse HDS. With high-

dimensional sparse functional marker data sets, the aforesaid tests are incapable to identify 

them. Some sparse regression methods were developed to localize individual functional 

markers from high-dimensional marker sets, jointly modeling pedigree structure and 

population structure. They include Lasso (Rakitsch, Lippert et al. 2013), Ridge regression 

(Endelman 2011), Elastic-net (Zou and Hastie 2005) and the USR that we proposed 

recently (Cao, Qin et al. 2014). However, these methods yield biased solutions and are 

ineffective to prevent false discoveries of random markers and high-dimensional marker 

sets irrelevant to functional variants. 

In this article, we first present a unified test (uFineMap) for accurately localizing causal 

loci. The uFineMap is a marker wise test under a scaled sparse linear mixed regression, 

which jointly models marker wise effect, relatedness and population stratification. It 

applies scaled Lp (0 < p <1) norm regularization to generate a de-biased solution. Next, we 

present an additional significant test (uHDSet) for identifying high-dimensional sparse 

associations in deep sequencing genomic data of related individuals. The uHDset integrates 

the marker wise statistics of the uFineMap to identify susceptible high-dimensional marker 

sets. In the uHDSet, the dependence among markers is modeled to appropriately control 

set-based Type I error rates. Under extensive simulations, the uFineMap outperformed the 
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GEMMA (Zhou and Stephens 2012) and a Scaled Lasso based method (Javanmard and 

Montanari 2014). The uHDSet yields higher statistical power than famSKAT and GEMMA. 

Applications to Framingham Heart Study also show that our method yields novel 

interesting candidate genes and pathways for follow-up studies, showing its advantages 

over the two compared prominent alternative methods. Finally, caveats of the proposed 

methods and perspective future efforts are discussed. 

3.2 Unified scaled Lp norm regularized regression model 

We still assume that the phenotypes, genotypes and covariates follow eq. (2.2). To avoid 

the puzzle of tuning parameter selection and reduce the uncertainty of sparse regression 

methods for model selection, we adopt the idea of scaled sparse linear regression(Sun and 

Zhang), which jointly estimates the regression coefficients and the noise level of the data. 

The estimated noise level is critical to correct the bias caused by the regularization term. 

With a correction of the bias, the de-biased estimator is applied to construct uFineMap 

statistics for each variable before testing for marker wise significance for each variant. 

For the scaled Lp norm based sparse regression problem, we modify the problem to the 

following form: 
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                           (3.1) 

In the unified scaled sparse regression, the tuning parameter   is updated in an iterative 

procedure. But we still need to choose an initial tuning parameter 
0
  to reach a solution. 

However, the selection of the 
0
  is more flexible and less sensitive to our significance test. 

Because the estimated noise level ̂ and the bias caused by the Lp norm regularization are 
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both proportional to the initial 
0
 , they can be compensated by the procedure of 

constructing de-biased estimators. Furthermore, scaled Lp norm regularization can produce 

a robust and consistent estimation of the regression coefficients, which is critical for 

developing the asymptotic distribution of the de-biased estimators. For these reasons, we 

use scaled sparse regression. 

To solve the optimization problem (3.1), we combine  the algorithm for unified Lp norm 

based sparse regression(Cao, Qin et al.) with that for the general scaled sparse 

regression(Sun and Zhang 2012) and propose the following algorithm. 

Algorithm for unified scaled Lp norm sparse regression 

Step 1: Data centralization: 
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Step4: If 

2

)()1( |||| rr
ββ  stop; otherwise return to Step 3 

3.3 The de-biased version of scaled Lp norm regularized sparse regression 
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In HDSs (high dimensional sets), to obtain a stable and sparse solution, a regularization 

term is often needed. Take two widely used methods, Lasso and Ridge regression, as 

examples. Both of them utilize the regularization term to assure a unique and stable solution. 

On one hand, the regularization term can enforce most regression coefficients to shrink 

exactly to zero, contributing to dimension reduction; on the other hand, the bias introduced 

by the regularization makes the estimated non-zero regression coefficients inclined to be 

smaller than their true values. 

To assess the asymptotic Gaussian distribution of sparse regression coefficients, a de-

biased estimator is constructed. Adopting the idea of unbiased estimation(Bühlmann 2013, 

Javanmard and Montanari), we develop a de-biased estimator to recover the original 

unbiased regression coefficients. The detailed algorithm procedure is presented below. 

The Algorithm for de-biased estimator 

Step 1: Set 





ˆ

ˆ
 , where ̂  and̂ is the estimated parameters of the scaled sparse 

regression (3.1) 

Step 2: Set nT /)( 1
XΣXZ

  

Step 3: For i=1,2,…,m, solve 
i

z  by the following constraint convex program: 




||-||subject to

minimize

i
eZm

Zmm
T

 

Step 4: Set T

m
),...,,(

21
mmmM   

If any of the above problems is not feasible, then set 
mm

 IM  

Step 5: Define the unbiased estimator by )ˆ(
1ˆˆ 1

βXYΣMXββ  Tu

n
                        (3.2) 

Where β̂  is the solution of formula (3.1) 
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3.4 Hypothesis tests and confidence intervals 

Without loss of generality, we assume that the following true model holds 

εXβY 
0

, ),(~ 22
IΦΣ0ε


 


N  

where Y is the covariates adjusted phenotype; 
0

β is the ground truth regression 

coefficients which stands for true signal.  

We define the sparsity level of 
0

β as }0|},...,2,1{{
,00


i
mis  . In this dissertation, we 

apply a weak assumption for the sparse model, which is ))log(/(
0

mnOs  . Without any 

further notice, we always assume that this assumption holds. 

3.4.1 uFineMap test 

For each marker i, our goal is to develop a significance test to determine whether each 

regression coefficient 
i

  is significant or not. For a specific },...,2,1{ mi , we define the 

null hypothesis H0: 0
i

 and the alternative hypothesis H1: 0
i

  

Assuming the linear mixed model (2.2) with Gaussian noise and fixed design matrix X 

and considering the de-biased estimator (3.2), we have the following asymptotic 

distribution. 

),0()ˆˆ( 120 TT
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Nn XMΣMXββ
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With this property, we can directly derive the significance test for each marker. The p-

value for each variable can be defined by the following: 

))
][ˆ

|ˆ|
(1(2)(

,

1

ii

TT

i
n

iP
XMΣMX






 

, mi ,...,2,1  

where   is the cumulative distribution function of a standard normal distribution. 

Intuitively, an asymptotic two-sided confidence interval for variable i with a significance 

level α is expressed as below: 
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ii

, where 
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Proof: 

We first need to define the Compatibility condition. For a fixed design matrix, we 

propose the following compatibility condition. 

There exists a 0 0  , such that for anyβ satisfying
00

|| || 3 || ||c

p p

p S pS
β β , the following 

inequality holds 
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β                                                                                                       (S3.1) 

In general, it is a relatively mild condition, but it is required to ensure the asymptotic 

property for the estimators. 

The estimator in (3.1) should satisfy Karush-Kuhn-Tucker (KKT) conditions, which 

implies: 
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The KKT conditions can be rewritten as 
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Based on (3.2), it holds that  
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The last two equations combined with the KKT conditions imply that 
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Next we will show that
n

Δ
is asymptotically negligible. 

0

0

0

ˆ|| || || ( )( ) ||

ˆ|| ( ) || || ( ) ||

ˆ|| ( ) ||p

n



 

 

  

  

 

Δ
MZ I β β

MZ I β β

β β

                                                                                            (S3.3) 

We need to estimate the bound of 
0ˆ|| ( ) ||pβ β  

According to the basic inequality ((Bühlmann and Van De Geer 2011) Lemma 6.1), it 

holds that 
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We define 1 ( )

0
1

: {max | | / }T j

j m
J n 

 
 ε Σ X   

On J , by assuming 02  and using (S3.4), we have 

0 1 0
0 0

ˆ ˆ( ) ( ) ˆ ˆ2 || || || || 2 || ||
T T

p p

p p
n

  


 
   

β β X Σ X β β
β β β β  

Applying the triangle inequality to the left hand side yields 
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Similarly, on the right-hand side we have 
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Now, combining the left- and the right-hand side we conclude that 
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Inserting the compatibility condition (S3.1) into (S3.5) we get following inequality on J  
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We insert (S3.5) in the first inequality, and use compatibility condition (S3.1) in second 

inequality. For the third inequality we use 2 24 4uv u v   

Hence, on J it holds that 



60 

0 0

2

0

4ˆ|| ||p

p

s


 β β                                                                                                                     (S3.6) 

Combining the result of (S3.3) and (S3.6), we come up with:
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Moreover, we need to show that the set J and bound (S3.7) is ubiquitous. 

Suppose that all the diagonal elements of the covariance matrix 
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From (S3.7) and (S3.8), we come up with the following conclusion: 
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Finally, from (S3.2) and (S3.9), we conclude that 

0 2 1ˆ( - ) (0, )du T Tn N  β β MX Σ XM                                                                                            □ 

3.4.2 uHDSet test 

Starting from the uFineMap test, we still need to control the family-wise error rate 

(FWER), i.e., the Type I error rates to claim the whole significant region. Similar to the 
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classical region based test, there are some commonly used correction methods based on p-

values from uFineMap tests to control the FWER or false discovery rate (Benjamini and 

Hochberg 1995, Benjamini and Hochberg 2000). We intend to develop an efficient 

multiple testing adjustment, taking dependence into consideration, which would be more 

powerful than uncorrelated adjustment (e.g. the Bonferroni-Holm correction). 

For uHDSet test, the null hypothesis is H0: 0...
21


m

 , and the alternative 

hypothesis H1: },...,2,1{,0 mi
i

   

We borrowed the idea of van de Geer et al. (van de Geer, Bühlmann et al. 2013) to 

construct a new statistic for uHDSet significance test by utilizing the previous uFineMap 

tests: 
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is asymptotically equivalent to the 

maximum of a sequence of dependent )1(2  variables, whose distribution relies on the 

design matrix XΣX
1T . For a fixed matrix XΣX

1T , we can easily simulate its distribution 

and use its quantile to estimate the p-value of the uHDSet statistic S. 

Proof: 
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From the marker wise theory, for any {1,2,..., }i m , we have 
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As a result, we come up with 

0

1 1{1,2,..., } {1,2,..., }
, ,

ˆ| | | |
( max | ) ( max | ) 0

ˆ ˆ[ ] [ ]

u

i i i

T T T Ti m i m
i i i i

n W
P z P z

 

   


   X X

MX Σ XM MX Σ XM
 

 

3.5 Simulation: Complex Families 

To further compare different methods fairly, instead of using our own or over-simplified 

simulation data, we used the software SeqSIMLA2 (Chung, Tsai et al. 2015). SeqSIMLA2 

can simulate sequence data in families under quantitative disease models. Using 

SeqSIMLA2, we generate quantitative traits for 8 large families with 67 individuals and 

1000 SNPs in total. 
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Figure 3.1. The family tree for each simulated family in complex family simulation 

3.5.1 Type I error rate evaluation 

  To verify the validity of our proposed tests, we need to evaluate if the Type I error is well 

controlled under the null hypothesis. Figure 3.2(a) and 3.2(b) show the Q-Q plots for 

uFineMap test and uHDSet test respectively. The results indicate that the Type I error rate 

is appropriately controlled in complex family structure. 

 

Figure 3.2. (a) The Q-Q plot for 
uFineMap test 

 

 

(b) The Q-Q plot for uHDSet test 
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3.5.2 Power comparison 

We randomly assign 50 causal variants (25 common, 25 rare) to generate the continuous 

phenotype. Additionally, we proposed two simulation setting for markers effects. We 

assign all causal markers to be positively related to the trait value for the same causal 

direction setting. For the different causal direction setting, half of the causal markers are 

randomly given a negative relationship with the trait value. 

 

 

 

Figure 3.3. (a) Power comparison for 

uHDSet test with same causal direction. 

 (b) Power comparison for uHDSet test with 

different causal direction. 

 

 

 

Figure 3.4. (a) Power comparison for 

uFineMap test with same causal direction. 

 (b) Power comparison for uFineMap test with 

different causal direction. 

   

Figure 3.3 and Figure 3.4 present the power comparison of competing methods under 

same direction and different direction settings respectively. The similar patterns also 

occurred at a marker wise tests comparison. To make the presentation concise, we only 

show the result of regional tests, and the result of marker wise tests can be found in Figure 
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3.5 and 3.6. We can draw the conclusion that all three methods are robust with respect to 

causal variants direction. But our uHDSet test is almost uniformly more powerful than 

Gemma and famSKAT for SeqSIMLA simulation data. 

 

Figure 3.5. Power comparison for 
uFineMap test with same causal direction 

 

 

Figure 3.6. Power comparison for 
uFineMap test with different causal 
direction 

   

We also provide power comparison for different sample size (Figure 3.7 and 3.8). 

 

Figure 3.7. Power comparison for 
uFineMap test under different sample 
size  

 

 

Figure 3.8. Power comparison for uHDSet 
test under different sample size 

   

Table 3.1. The computational time for three selected methods 

uHDSet test famSKAT Gemma 

505s(1 core)/71.5s(8 cores) 1.04s 0.617s 

Note the computational time is of one core is non-parallel computing. The testing data are 

generated by SeqSIMLA2 simulation with 552 samples and 1000 SNPs. CPU: Intel® 

Core™ i5-2410M @ 2.30GHz 
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3.6 Framingham heart study data 

To demonstrate the effectiveness of our methods for real genetic variants detection, we 

applied them to the analysis of sequence data of Framingham Heart Study. This dataset 

contains both GWAS and next generation sequencing (NGS) data from 4229 subjects with 

HipBMD data. We used the FISH (Zhang, Pei et al. 2014) method for genotype imputation 

and selected HipBMD as the phenotype data. After quality control, we obtained 3322 

individuals with 6,500,475 SNPs in total. We apply two kinds of data analysis strategies: 

whole genome analysis and pathway based analysis. 

We present figure for PC1 vs PC2 (Figure 3.9) which stands for population structure.  

 

Figure 3.9. The PC1 vs PC2 plot for Framingham Heart Study genotype data 

Figure 3.9 indicates that there is no significant population stratification for this data set. 

It is mainly due to the samples that are homogeneous. 

3.6.1 Whole genome analysis 

We separate each chromosome into several genetic windows and then apply our 

uFineMap and uHDSet tests in each window. We set the window size to be 100kb base 

pairs. After the separation, the whole genome is separated by a total number of 16514 sets 
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of markers. The phenotype is adjusted by the covariates and the top 10 principle 

components of the genotype before the application of the proposed method. Following the 

same process as in the simulation studies, we obtain the results and draw the Manhattan 

plots for 22 chromosomes, as shown in Figure 3.10 and Figure 3.11 respectively. 

 

Figure 3.10. The Manhattan plot for uFineMap test of 22 chromosomes. Each point 

represents p-value of its corresponding SNP. 

 

Figure 3.11. The Manhattan plot for uHDSet test of 22 chromosomes. Each point 
represents p-value of a 100kb window SNPs region. 

By combining the overlapped region of Figure 3.10 and Figure 3.11, the uHDSet test 

report 68 regions of highest susceptibility that exceed a p-value threshold of 0.001. The 
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reported p-value is based on the whole regional test. According to GeneCards websites, 

there are 11 genes (Table 3.2) within the selected regions that are associated with BMD or 

osteoporosis disease, which further confirms our findings. However, these 11 genes are 

missed by the use of famSKAT and Gemma method. The reported p-value of Gemma is 

generated by the minimal p-value after Bonferroni correction for the SNPs within the 

region. 

Table 3.2. The selected susceptibility genes by uHDSet test 

Gene Chromosome uHDSet p-value famSKAT p-value Gemma p-value 

DNM3 1 2.47E-06 0.071107033 0.963871 

APOB 2 7.43E-05 0.018075521 0.044156 

ERC1 12 0.000154572 0.075876014 0.54554 

SRD5A1 5 0.000267385 0.227392554 1 

NR3C2 4 0.000317415 0.884812719 0.287339 

PLCG1 20 0.000487724 0.022591921 1 

INSIG2 2 0.00067805 0.73450689 0.29285 

CYP24A1 20 0.000719511 0.132626874 1 

ITGA1 5 0.000794757 0.143515502 1 

BMPR2 2 0.000901023 0.762703102 0.729078 

WNT4 1 0.000940191 0.602006435 0.718623 

For the marker wise test, the uFineMap test report 82 susceptible SNPs that exceed a p-

value threshold of 10-5. Table 3.3 shows the 6 reported SNPs that are associated with BMD 

or osteoporosis disease according to GeneCards websites. 

Table 3.3. The selected susceptibility SNPs by uFineMap test 

SNPs Gene Chromosome uFineMap Gemma 
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rs11571334 ALOX12 17 4.47E-07 4.68E-05 

rs3136452 F2 11 5.39E-07 8.37E-05 

rs1264891 OVGP1 1 2.36E-06 5.53E-05 

rs10513003 ITGA1 5 4.38E-06 2.99E-05 

rs1491717 GC 4 5.17E-06 7.43E-05 

rs235766 BMP2 20 5.67E-06 2.99E-05 

3.6.2 Pathway analysis 

To further illustrate the benefit of the uHDSet test, we collect 880 pathways from KEGG, 

REACTOME and BIOCARTA pathway analysis databases. We first extract genes 

belonging to each pathway, then select the corresponding SNPs. The selected SNPs of a 

specific pathway are combined to form the design matrix for association tests. We list 6 

most significant pathways that pass p-value cut-off 10-3 in Table 3.4 for which the 

prominent famSKAT methods fails to detect. The two P38/MAPK pathways were 

previously found to play a critical role by other publications (Lee, Suh et al. 2008, Kim, 

Kim et al. 2013). Endogenous Sterols pathway is also related with BMD reported by 

another study (Warriner and Saag 2013). Chemokines pathway is important regulator in 

development, homeostasis and pathophysiological processes associated with osteoporosis 

(Lazennec and Richmond 2010). 

Table 3.4. The selected functional pathways by uHDSet test only 

Pathway name 

uHDSet  

p-value 

famSKT 

p-value 

REACTOME_FACILITATIVE_NA_INDEPENDENT_GLUCOSE_TRANSP

ORTERS 5.00E-05 0.05809 

REACTOME_ACTIVATED_TAK1_MEDIATES_P38_MAPK_ACTIVATIO

N 7.00E-05 0.05635 



70 

REACTOME_P38MAPK_EVENTS 8.00E-05 0.09401 

REACTOME_ENDOGENOUS_STEROLS 0.00016 0.00110 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 3.00E-04 0.07827 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES 0.00065 0.13751 

Each p-value in Table 3.4 is generated based on a whole pathway-based region. It can 

be seen that, our uHDSet method is more powerful than famSKAT in identifying 

significant pathways which contain a relatively large number of genetic markers. 

3.7 Conclusion 

Some promising association tests with the adjustment of family structure have been 

established on the LDSs (low dimensional sets). However, these methods would suffer 

power loss in high dimensional data. To overcome the limitations of these tests, we propose 

the uFineMap and uHDSet test for assessing the significance of the HDSs with cryptic 

relatedness, which are based on novel scaled linear mixed sparse regression. The proposed 

tests are designed to address the challenge of variants detection under complex pedigree 

structures, which implement an explicit way to appropriately control the Type I error rate 

at both single marker level and SNPs set level. 

The promising results of testing on both simulated and real data indicate that the 

uFineMap and uHDSet test yield a considerably higher statistical power gain in comparison 

to other competing methods, especially for high dimensional data with cryptic relatedness. 

The uFineMap test can pinpoint single susceptible variants with higher resolutions, even 

for rare functional variants. In addition, our methods also maintain substantial power for 
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detecting susceptibility variants in low dimensional data or large samples. Last but not least, 

our methods can identify both rare and common variants efficiently. 

One limitation of the proposed method is that we assume a linear mixed relationship 

between phenotype and genotype, which might not be true in the real world. Therefore, 

nonlinear regression models with adjustment of relatedness and population stratification 

may be more suitable. In addition, the overall computational complexity is 
2 3O( )n m , 

which is much longer than simply solving the sparse linear mixed model or other efficient 

methods designed for LDSs, particularly for extremely large data. To compensate for this 

issue, parallel computing is implemented to reduce the total computational time for large 

scale genetic data analysis. 
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CHAPTER 4  GENERALIZED UNIFIED SPARSE REGRESSION 

4.1 Introduction 

In statistics, a generalized linear mixed model (GLMM) is an extension to the 

generalized linear model in which the linear predictor contains random effects in addition 

to the usual fixed effects. It extends the idea of linear mixed models to non-normal data, 

which is typical in clinical data applications. In this dissertation, we mainly focus on binary 

phenotype data, since this kind of data is popular in genetic research. 

Mixed model is a statistical model containing both fixed effects and random effects. It 

is particular useful where measurements are made on clusters of related statistical units 

(family or longitudinal study). Assuming that the following linear model holds, 

maximizing the joint density for β and u , gives Henderson’s “mixed model equations” 

(MME) (Robinson 1991). 

εZuXβy  , where ),(~ R0ε N and ),(~ G0Nu  
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The solutions to the MME β̂  and û  are the best linear unbiased estimates (BLUE) and 

predictors (BLUP) for β  and u , respectively. This is a consequence of the Gauss-Markov 

theorem when the conditional variance of the outcome is not scalable to the identity matrix. 

When the conditional variance is known, then the inverse variance weighted least square 

estimate is BLUE. However, the conditional variance is rarely, if ever, known. So it is 

desirable to jointly estimate the variance and weighted parameter estimates when solving 

MME. 

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
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Another method used to fit such mixed models is that of the EM algorithm (Lindstrom 

and Bates 1988), where the variance components are treated as unobserved nuisance 

parameters in the joint likelihood. 

Generalized linear mixed models (or GLMMs) are an extension of linear mixed models 

to allow response variables from different distributions, such as binary responses. 

Alternatively, GLMMs is treated as an extension of generalized linear models (e.g., logistic 

regression) to include both fixed and random effects (hence mixed models). 

Standard GLMM can be written by the following form 

( [ | ])g E   y u Xβ Zu ε                                                                                            (4.1) 

where g is the link function for linear predictor, )|(~|
|
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u iYi
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However, fitting GLMMs via maximum likelihood involves integrating over the 

random effects. In general, those integrals cannot be expressed in analytical form. Various 

approximate methods have been developed, such as Penalized Quasi-Likelihood (PQL) 

(McCulloch 1997), Laplacian approximation and adaptive Gauss-Hermite quadrature 

(Bates, Maechler et al. 2014). In 2014, two papers (Groll and Tutz 2014, Schelldorfer, 

Meier et al. 2014) proposed a similar GLMM using L1 norm penalty for high-dimensional 

variable selection.  

In this article, we propose methods for high-dimensional GLMMs with group penalized 

regularization and Lp norm penalty. The Lp norm regularized GLMM is based on the 

previous USR methods; the group penalty norms are a group lasso type and sparse group 

lasso regularization. It can be solved with a cyclic coordinate descent optimization. For 

https://en.wikipedia.org/wiki/EM_algorithm
https://en.wikipedia.org/wiki/Nuisance_parameter
https://en.wikipedia.org/wiki/Nuisance_parameter
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Analytic_expression
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likelihood approximation of the GLMM, we implement Penalized Quasi-Likelihood (PQL) 

method which is efficient and robust. 

To the best of our knowledge, there does not exist any literature devoted to develop 

structure sparse regularization model (e.g., group L1 norm and sparse group L1 norm) for 

high-dimensional GLMM. One of the main contribution of the dissertation is the 

generalization of USR model to incorporate non-Gaussian phenotype using GLMM; 

another one is that we provide a new toolkit, considering more general penalties with group 

lasso and sparse group lasso. It yields solutions that are sparse at both the group and 

individual feature levels in fitting GLMM. The structure sparse regularized GLMM can be 

naturally extended to gene based or pathway based association analysis. 

4.2 Generalized linear mixed model with sparse regularizations 

4.2.1 Objective function approximation 

We assume that the non-Gaussian phenotype follows exponential family distribution, so 

the equation (4.1) holds. It is straightforward to write down the likelihood: 

| ( | ) ( )
iY i

i

L f y f d  u uu u u                                                                                       (4.2) 

where (0, )Nu Σ  

In (4.2), the integration is over the m-dimensional distribution of random effect u . In 

general, it cannot be simplified further or evaluated in closed form. We adapt penalized 

quasi-likelihood (PQL) method to approximate and find the estimator of likelihood 

(McCulloch and Neuhaus 2001). The penalized quasi-likelihood (PQL) approach is the 

most common estimation procedure for the generalized linear mixed model (GLMM) (Jang, 
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2006). Central to PQL is the use of a Laplace approximation for evaluating the high-

dimensional integral in the likelihood. 

According to (4.2), we utilize Laplace approximation to approximate the log-likelihood 

of the GLMM 

|

|

( , , ) log log ( | ) ( )

log exp{log ( | ) log ( )} log exp{ ( )}

U

U

l L f f d

f f d h d

 

  



 

Y u

Y u

β u y y u u u

y u u u u u
                                 (4.3) 

With 
|( ) log ( | ) log ( )Uh f f 

Y u
u y u u  

The basic form of Laplace’s approximation is based on a second-order Tylor series 

expansion: 

2

0

1 ( )
log exp{ ( )} ( ) log(2 ) log | |

2 2 T

m h
h d h 


   

 
u

u u u
u u

, where 
0

( )
|

h






u u

u
0

u
    (4.4) 

Combine (4.3) and (4.4), if we assume that (0, )Nu Σ , then we have 

11 1
log ( ) log(2 ) log | |

2 2 2

T

U

m
f    u u Σ u Σ , and 

1

|

1 1
( ) log ( | ) log(2 ) log | |

2 2 2

T m
h f    

Y u
u y u u Σ u Σ  

1

|

1
( | , , ) log( ( | ))

2

Tl f C  
Y u

u β X y y u u Σ u                                                              (4.5) 

Consider maximum likelihood of model (4.5), with additional regularization term. The 

general full model of GLMM with sparse regularization can be written as model (4.6). 

ˆ

ˆ arg min{ ( , , , ) ( )}
mR

l P


  
β

β β u X y β                                                                            (4.6) 

Model (4.6) is the general form of sparse regularized GLMM. 
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4.2.2 Algorithms for Lp norm regularized GLMM 

Given specific regularization term ( )P β , we derive different algorithms to solve them. 

Since, L1 norm penalty is already solved by (Groll and Tutz 2014, Schelldorfer, Meier et 

al. 2014), we consider the Lp (0<p<1) norm penalty. In another word, it is a generalization 

of USR model (Cao, Qin et al. 2014). 

ˆ

ˆ arg min{ ( , , , ) || || }
m

p

p
R

l 


  
β

β β u X y β                                                                          (4.7) 

To solve this model, we first investigate the likelihood of GLMM. Differentiating

( , , , )l β u X y in (4.5) with respect to u gives 

| 1

1

2

log ( | )

1
( )T

fl








 

 

  

Y u
y u

Σ u
u u

Z MΔ y μ Σ u

                                                                                     (4.8) 

where 2 1[ ( ) ( ) ]i idiag v g  M  and [ ( )]idiag g Δ  with 

[ | ]i iE y  u , ( )ig  is the link function and ( )iv   is the first derivative of the link 

function ( )ig  . For some models (e.g., binomial or Poisson), MΔ I  

Consequently, the optimal u should satisfy:  

1

2

1
( )T



 Z MΔ y μ Σ u                                                                                             (4.9) 

Differentiating ( , , , )l β u X y in (4.5) with respect to β gives 

| 0 2

2

log ( | ) 1
log | / |

2

1
( )

T

T

fl




 
  

  

 

Y u
y u

Z WZΣ I
β β β

X MΔ y μ

                                                (4.10) 

Based on (4.9) and (4.10), we propose the generalized USR as follows. 

The Algorithm for GLMM with Lp norm regularization (GLMM-Lp) 
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Step 1: Data centralization: 
1

0
n

ij

i

x


 , for j=1,2,…m 

Step 2: The random effect u  can be estimated as 
( 1) ( ) ( ) ( )ˆ ˆˆ ˆ( ( , , ))r T r r r  u ΣZ MΔ Y μ β u α  

Step 3: Update ( 1) ( ) 1 ( ) ( 1) ( )ˆˆ ˆ ˆˆ( ) ( ( , , ))r r T T r r r    α α W W W MΔ Y μ β u α  

Update regression coefficients ( 1) ( ) ( ) ( 1) ( 1)

,1/2

1ˆ ˆ ˆ ˆˆ( ( ( , , )))
2

r r T r r rR

    β β X MΔ Y μ β u α  

Step 4: Apply the lower bounds to regularize ( 1)ˆ r
β and use the SCG algorithm (Zhang et 

al., 2009) with the initial point ( 1)ˆ r
β  to find the minimizer

)1( r

p
β of objective function (8) 

Step 5: If 

2

)()1( |||| r

p

r

p
ββ  stop; otherwise return to Step 2 

 

In addition, we also modify the glmmLasso by replacing L1 norm with the elastic net 

penalty. So the number of selected variables could be larger than the number of sample 

size. The GLMM-EN (GLMM with Elastic Net regularization) can be written as: 

2

2 1
ˆ

1
ˆ

ˆ arg min{ ( , , , ) (1 ) || || || || }

arg min{ ( , , , ) || || }

m

m

R

R

l

g

  







    

 

β

β

β β u X y β β

β u X y β
                                                          (4.11) 

We apply proximal gradient descent algorithm (Chen, Lin et al. 2012) to solve GLMM-

EN, which is similar to soft-thresholding algorithm for lasso.  

The Algorithm for GLMM-EN 

Step 1: Data centralization: 
1

0
n

ij

i

x


 , for j=1,2,…m 

Step 2: The random effect u  can be estimated as 
( 1) ( ) ( ) ( )ˆ ˆˆ ˆ( ( , , ))r T r r r  u ΣZ MΔ Y μ β u α  

Step 3: Update ( 1) ( ) 1 ( ) ( 1) ( )ˆˆ ˆ ˆˆ( ) ( ( , , ))r r T T r r r    α α W W W MΔ Y μ β u α  

Step 4: Apply line search to get the optimal step size t 

Start from 
0t t , repeat t t ( 0 1  ), until satisfy:  
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( ) ( ) ( ) ( ) ( ) ( ) 2

2( ( )) ( ) ( ) ( ) || ( ) ||
2

r r r r T r r

t t t

t
g tG g t g G G    β β β β β β  

Step5: Update regression coefficients 
( 1) ( ) ( )ˆ( ( ))r r r

tprox t g   β β β  

where ( ) 0 | |t

x t x t

prox x x t

x t x t

 


 
   

 

Step 5: If 
( 1) ( )

2|| ||r r   β β  stop; otherwise return to Step 2 

 

 

4.2.3 Algorithms for group lasso regularized GLMM 

Furthermore, to incorporate group wise sparsity and select groups of SNPs from genes, 

we propose group L1 norm regularized GLMM (GLMM-GL). Suppose we can divide 

predictors into L groups, with gp  predictors in group g . The GLMM-GL can be written 

as.  

2
ˆ 1

ˆ arg min{ ( , , , ) || || }
m

L

g g
R g

l p
 

   
β

β β u X y β                                                                         (4.12) 

To solve (4.12), we implement the idea of group-wise coordinate descent algorithm 

(Meier, Van De Geer et al. 2008, Friedman, Hastie et al. 2010) and propose the following 

algorithm for GLMM-GL. 

The Algorithm for GLMM-GL 

Step 1: Data centralization: 
1

0
n

ij

i

x


 , for j=1,2,…m 

Step 2: The random effect u  can be estimated as ( 1) ( ) ( ) ( )ˆ ˆˆ ˆ( ( , , ))r T r r r  u ΣZ MΔ Y μ β u α  

Update ( 1) ( ) 1 ( ) ( 1) ( )ˆˆ ˆ ˆˆ( ) ( ( , , ))r r T T r r r    α α W W W MΔ Y μ β u α  
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Step 3: For g from 1 to L, update group-wise regression coefficients 

Check if gr

g

p
l




 2

2)(
||

ˆ
||
β

, g=g+1; otherwise continue to Step 4  

Step 4: Define 
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Find t  s.t.,   tStS r

gg

r

g
)ˆ()ˆ( )()(

βdβ using line search 

Step 5: If 

2

)()1( |||| rr
ββ stop; otherwise return to Step 2 

 

4.2.4 Algorithms for sparse group lasso regularized GLMM 

One major disadvantage of the group lasso penalty is that it does not yield sparsity within 

a group. That is, if a group of parameters is non-zero, they will all be non-zero. In this case, 

we need to provide additional penalty that can select predictors at both group and single 

marker level. Sparse group lasso penalty (Simon, Friedman et al. 2013) is widely used to 

overcome this issue of group lasso. The GLMM with sparse group lasso regularization 

(GLMM-SGL) can be expressed as follows: 

2 1
ˆ 1

ˆ arg min{ ( , , , ) (1 ) || || || || }
m

L

g g
R g

l p  
 

    
β

β β u X y β β                                         (4.13) 

To solve (4.13), we implement the modified version of group-wise coordinate descent 

algorithm for sparse group lasso (Vincent and Hansen 2014). The detailed algorithm is 

shown below: 

The Algorithm for GLMM-SGL 
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Step 1: Data centralization: 
1

0
n

ij

i

x


 , for j=1,2,…m 

Step 2: The random effect u  can be estimated as ( 1) ( ) ( ) ( )ˆ ˆˆ ˆ( ( , , ))r T r r r  u ΣZ MΔ Y μ β u α  

Update ( 1) ( ) 1 ( ) ( 1) ( )ˆˆ ˆ ˆˆ( ) ( ( , , ))r r T T r r r    α α W W W MΔ Y μ β u α  

Step 3: Outloop:  

For J  from 1 to L, update group-wise regression coefficients 

Check if 
( )( , ) (1 )r

J Jk p   g , let ( 1)ˆ
J

r β 0 ; otherwise continue to Step 4  

where ( ) ( )( , , , )r r

J J Jl g β u X y  is the first derivative over the group J  

Step 4: Innerloop: 

Define ( ) ( ) ( ) 1
( )

2

J r T r T

J J J J JJ JQ  β X g X H X , where JJH  is the submatrix of Hessian matrix, 

the index of JJH  corresponds to index of group J 

( ) ( ) ( ) ( )

2 1( ) (1 ) || || || ||J r r r

J J J Jp    β β β  

Let 
( ) ( ) ( ) ( )arg min{ ( ) ( )}

ninner J
J

inner J r J r

J J J
R

Q 


  
β

β β β  

Step 5: if inner

Jβ  satisfy inner loop criteria, proceed to Step 6; otherwise return to Step 4 

Step 6: If 
( 1) ( )

2|| || .r r outloop  β β stop; otherwise return to Step 2 

 

 

4.2.5 Logistic mixed model with sparse regularizations 

Binary phenotype or case-control study is one of the most widely used design in genomic 

data.  Without loss of much generality, we narrow down our GLMM to be logistic mixed 

model in the following discussion. 
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Consider the odd ratio inference problem. In this case, the phenotype {0,1}iy  stands for 

control( 0iy  ) and case( 1iy  ) respectively. The conditional probability of the phenotype 

is: 
1

Pr(y 0 | , )
i

1 exp( )
i i T T

i i

 
  

x z
x β z u

, 

1
Pr(y 1 | , )

i
1 exp( )

i i T T
i i

 
 

x z
x β z u

 

To be explicit, the logistic mixed model is: 

 logit( ( | ))E  Y u Xβ Zu , where ~ ( , )Nu 0 Σ  

To estimate the parameters, consider the integrated likelihood: 
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Since the integral cannot be evaluated as a closed form, an alternative is to use a Laplace 

approximation. The corresponding log-likelihood can be expressed as: 
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Consequently, the logistic linear mixed model with sparse regularization can be 

expressed as: 

ˆ arg min ( ) ( )
mR

l P


  
β

β β β                                                                                             (4.14) 
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To further extend our model for different prior knowledge, we consider different 

regularization functions as discussed above: 

Lp norm: ( ) || ||p

pP β β  

Elastic-net penalty: 2

2 1( ) (1 ) || || || ||P    β β β  

Group lasso: 2

1

( ) || ||
L

g g

g

P p


β β  

Sparse group lasso: 2 1

1

( ) (1 ) || || || ||
L

g g

g

P p 


  β β β  

4.2.6 Tuning parameter selection 

As we discussed in Section 2.2.8, tuning parameter selection is an open problem. All the 

four models we proposed in this section need an appropriate tuning parameter selection 

strategy. However, the fitting term of GLMM is different from the least square regression 

loss function. The previous hybrid AIC and stability selection method is too conservative 

in parameter selection for GLMM loss function. In this chapter, we applied a less 

conservative method for the selection of parameters. We implemented cross validation with 

one standard error rule (1 SE rule) (Friedman, Hastie et al. 2001). The 1 SE rule is defined 

as selecting the most parsimonious model whose error is no more than one standard error 

above the error of the best model. 

4.3 Simulation: Nuclear families with binary phenotype  

To demonstrate the effectiveness of the group penalties, we proposed three types of 

simulation strategy and compared their performance. The first is without group structure, 

which is using the exactly same genotype generation procedure. The second one divides 
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1000 SNPs into 100 groups (each group has 10 SNPs). We set the SNPs’ correlation within 

the same group to be 0.4, and between groups to be 0.1. In addition, we randomly assign 6 

causal groups, and each group has different number of causal SNPs. The third strategy is 

to maintain the same group structure as the second one, but assign each causal group only 

one causal SNP. 

We compare our method with “lme4” (Bates 2007), “glmnet” (Friedman, Hastie et al. 

2009), “glmmLasso” (Schelldorfer, Meier et al. 2014) and “SKAT” (Wu, Lee et al. 2011). 

“lme4” solves generalized linear mixed model without sparse regularization; “glmnet” can 

handle the logistic regression with Lasso regularization, but it does not consider mixed 

effect for pedigree structure. “glmmLasso” provide a variable selection approach for 

generalized linear mixed models by L1-penalized estimation. “SKAT” perform a kernel-

regression-based association test for SNPs set. 

4.3.1 Non-group structure simulation 

We use the same genotype sampling procedure as in Section 2.3.2. For the binary 

phenotype simulation, we employed the following liability threshold model. The only 

difference is the setting of the additional prevalence parameter. 

0Pri i ib X β ε ,
1 2( , ,..., ) ~ ( , )T

n N   0 Σ                                                            (4.15) 

1Pr( 1) (Pr )i iY    

Using this simulation, we compare competitive methods under three different causal 

SNPs settings. The first one is the “Sparse Group” model, where we randomly assign 15 

causal groups, and each groups contains only one causal SNPs. The second is the “Dense 

Group” model, where we only define 6 causal groups but more than 4 causal SNPs are 
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assigned for each causal group. The third one is the“Mixture Group” model which is a 

combination of “Sparse Group” and “Dense Group”, including 3 dense causal groups and 

6 sparse causal groups. 

To illustrate the robustness of our methods regarding to different causal direction of 

SNPs (i.e., protective SNPs and deleterious SNPs), we provide two options of 0β : one is 

setting all the causal effect to be same direction, i.e., 
0 1j   , for all j belongs to 

predetermined causal SNPs; the other one randomly assigns half of causal SNPs to have 

negative effect. The comparison of ROC curves is shown in Figure 4.1 and Figure 4.2 

below and Table 4.1 compares the area under curve (AUC). Each point of ROC is generated 

by 500 times of replication. 

Figure 4.1. The ROC for non-group 

design, Heritability=0.5, “Sparse Group” 

design, same direction. (a) SNPs 

selection 

 

 

(b) Groups of SNPs selection  
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Figure 4.2. The ROC for non-group 
design, Heritability=0.5, “Sparse Group” 
design, different direction. (a) SNPs 
selection 

 

 

(b) Groups of SNPs selection 

   

In Figure 4.1(a), the TPR is defined by the number of selected true casual SNPs divided 

by the total number of true casual SNPs; and the FPR is defined by the number of selected 

false SNPs divided by the total number of false SNPs. On the other hand, in Figure 4.1(b), 

the TPR is defined by the number of selected true casual groups divided by the total number 

of true casual groups; and the FPR is defined by the number of selected false groups divided 

by the total number of false groups. 

Figure 4.1(a) and Table 4.1 indicate that the GLMM-L0.5 is comparable to glmmLasso 

and GLMM-EN, and all the three GLMM sparse regularized methods outperform the 

glmnet without random effect. Under “Sparse Group”, in terms of single causal SNPs 

identification power, all the non-group sparse methods perform better than GLMM-GL and 

GLMM-SGL. GLMM-SGL, where the regularization parameter is set to be 0.5  , being 

more powerful than GLMM-GL. 

Figure 4.1(b) and Table 4.2 show that the GLMM-GL yields higher power than GLMM-

SGL in terms of group-wise discovery rate. However, the GLMM-GL method is less 
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powerful under “Sparse Group” setting. We can also conclude that all the GLMM-SGL 

methods have similar detection power regarding to causal groups. 

Table 4.1. The ROC for causal SNPs selection under non-group design 

 

GLMM-

L0.5 

glmmL

asso 

GLMM

-EN glmnet GLMM-GL GLMM-SGL 

Sparse Group, Same 

Direction 0.8381 0.8350 0.8253 0.4028 0.7573 0.8261 

Sparse Group, 

Different Direction 0.8336 0.8343 0.8229 0.4103 0.7617 0.8254 

Dense Group, Same 

Direction 0.8085 0.8133 0.8058 0.6863 0.9213 0.9163 

Dense Group, 

Different Direction 0.8234 0.8158 0.8175 0.6971 0.9351 0.9250 

 

Table 4.2. The ROC for causal groups selection under non-group design 

 

GLMM-

GL 

GLMM-

SGL(0.2) 

GLMM-

SGL(0.5) 

GLMM-

SGL(0.8) 
SKAT 

Sparse Group, Same 

Direction 
0.8032 0.7902 0.798 0.798 0.6356 

Sparse Group, Different 

Direction 
0.8083 0.7856 0.7951 0.7951 0.638 

Dense Group, Same 

Direction 
0.9201 0.9587 0.9592 0.9592 0.8497 

Dense Group, Different 

Direction 
0.9356 0.962 0.964 0.964 0.8348 

 

Figure 4.3 and Figure 4.4 show the ROC comparison under “Dense Group” design. The 

GLMM-GL clearly overwhelmed other methods in both single causal SNPs and causal 

groups discovery. GLMM-SGLs are just second to GLMM-GL, which is under our 

expectation. Since the causal SNPs forms a clear group structure, group regularized 

GLMM methods are favorable.  
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Figure 4.3. The ROC for non-group 
design, Heritability=0.5, “Dense Group” 
design, same direction. (a) SNPs selection 

 

 

(b) Groups of SNPs selection 

   

 

Figure 4.4. The ROC for non-group 
design, Heritability=0.5, “Dense Group” 
design, different direction. (a) SNPs 
selection 

 

 

(b) Groups of SNPs selection 

   

Theoretically, all the methods in comparison are not sensitive to causal direction of SNPs. 

It is proved by the closeness of performance between Figure 4.1 and Figure 4.2. For sake 

of simplicity, we only show the result of same causal direction setting in the remaining 

section. 
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4.3.2 Group structure simulation 

To control the correlation between SNPs, we used multivariate Gaussian distribution to 

simulate underlying distribution of correlated SNPs. At each SNP, we chose the same 

minor allele frequency as in the YRI and CEU mixed haplotype data. In this simulated 

admixture, the frequencies of minor alleles range from 0.0011 to 0.5722. This simulation 

design includes three major steps. 

Step1. Generate parental dataset  

For each family, we generated father and mother independently. Each subject is 

composed of two haplotypes; For each haplotype, we assign a multi-variate Gaussian 

distribution ~ (0, )n m m mG N  , where m m  is the predetermined covariate matrix of SNPs. 

We set within group correlation to be 0.4 and between group correlation to be 0.1 in m m . 

For each haplotype of SNP j, if 
1( )j jG MAF  , we assign the corresponding haplotype 

to be 1, otherwise we set the corresponding  haplotype to be 0. 

Step2. Generate nuclear family with two children 

Two children are generated for each family. To generate one child, we randomly selected 

one haplotype from father and the other from mother. We simulated 150 families with the 

same family structure, which is composed of two parents with two children. 

Step3. Generate trait values 

    To be explicit, for each person, we use the following model to generate trait values. 

0i i iY b X β ε , ),(~),...,,(
21

Σ0NT

n
                                                                                            (2.6) 

where ),...,,(
21 N

diag ΣΣΣΣ   
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In our simulation, the covariate matrix for each family is IΦΣ
3

1

3

2


j
 

where 























15.05.05.0

5.015.05.0

5.05.010

5.05.001

Φ  

is the kinship matrix. To simulate different heritability 2H  0.5 or 0.1, the true model we 

used is formula (4.15) 

where
)()1( 2

XβVarH

H
b


  

 

Figure 4.5. The ROC for group design, 
Heritability=0.5, “Sparse Group” design, 
same direction. (a) SNPs selection 

 

 

(b) Groups of SNPs selection (b) Groups of SNPs selection 
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Figure 4.6. The ROC for group design, 
Heritability=0.5, “Dense Group” design, 
different direction. (a) SNPs selection 

 

 

(b) Groups of SNPs selection 

   

 

Figure 4.7. The ROC for group design, 
Heritability=0.5, “Mixture Group” design, 
different direction. (a) SNPs selection 

 

 

(b) Groups of SNPs selection 

   

Table 4.3. The AUC for causal SNPs selection under group design 

 

GLMM-L0.5 glmmLasso GLMM-EN glmnet GLMM-GL GLMM-SGL 

Sparse Group 0.7800 0.7762 0.7668 0.4084 0.7034 0.8034 

Dense Group 0.7308 0.7415 0.7305 0.6330 0.8837 0.8611 

Mixtrue Group 0.7473 0.7336 0.7284 0.5848 0.8535 0.8481 

 

Table 4.4. The AUC for causal groups selection under group design 

 

GLMM-GL GLMM-SGL(0.2) GLMM-SGL(0.5) GLMM-SGL(0.8) SKAT 

Sparse Group 0.8186 0.7876 0.7958 0.7958 0.6660 
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Dense Group 0.9044 0.9020 0.9050 0.9050 0.7747 

Mixtrue Group 0.8517 0.8465 0.8480 0.8480 0.7235 

 

Results in Figure 4.5 to 4.7 illustrate the trend of ROC under three different simulation 

designs (“Sparse Group”, “Dense Group” and “Mixture Group”). The AUC (area under 

curve) in Table 4.3 and 4.4 indicate the similar pattern as in Section 4.3.1. So far, one major 

conclusion is that the AUC and performance of GLMM-GL and GLMM-SGL mainly 

depend on the distribution of causal SNPs in each group. If causal SNPs are concentrated 

within a few groups, the causal groups’ detection power would be higher. In group-wise 

detection power, GLMM-SGL is comparable to GLMM-GL. GLMM-SGL is expected to 

be a robust method between single variable sparse regularized GLMM and group 

regularized GLMM. In addition, the GLMM-Lp is as good as glmmLasso, and has even 

better computational efficiency. 

4.4 Framingham heart study data  

To illustrate the effectiveness of the group regularized GLMM methods for real genetic 

variants identification, we applied them to the analysis of Framingham Heart Study data. 

This dataset contains sequence data of 8990 subjects which are generated by Affymetrix 

500K genotyping platform. 

The initial step in data preprocessing is to exclude individuals or SNPs with too much 

missing genotype data. We applied a filtering strategy which excludes individuals or SNPs 

with more than 10% missing genotypes. Then we used IMPUTE2 (Howie, Donnelly et al. 

2009) for genotype imputation based on the filtered data. Consequently, we got 8915 

subjects’ genotype data with 476907 annotated SNPs. Finally, we obtained 1519 
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individuals in total, 499 subjects with confirmed fracture and 1020 without fracture. We 

grouped SNPs by their corresponding genes and applied a whole genome analysis strategy 

to analyze each chromosome as a whole data. The tuning parameter is determined by 1 SE 

rule discussed in section 4.2.6.  

By using GLMM-SGL method, we totally selected 169 genes. According to GeneCards 

websites, there are 26 genes (Table 4.5) within the selected regions that are associated with 

BMD or osteoporosis disease. We selected 428 SNPs by GLMM-L0.5 method, and 31 of 

them are reported by literature, which is listed in Table 4.6. 

Table 4.5. The selected susceptibility genes by GLMM-SGL 

Selected Genes P-value of SKAT 

A4GALT 0.170945311 

CTDP1 0.010612726 

ITGB2 0.041121675 

FMN1 0.19998 

NIN 0.196937896 

NR1H2 0.142696666 

INSR 0.130728863 

RUNX1 0.075256402 

MC2R 0.101311204 

CLDN14 0.04476686 

SALL4 0.06442441 

FOXG1 0.01359052 

WRB 0.097248032 

ANXA2 0.106435907 

DIO2 0.036973428 

ATP8B1 0.025232579 

RNASEH2B 0.19998 

MB 0.01302217 

TTR 0.153804318 

TMPRSS6 0.054912598 

CXXC1 0.066942867 

NKX2-1 0.007047425 

PCNT 0.19998 

GRAP2 0.189967487 

MARK3 0.082637776 
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CACNA1A 0.0193284 

 

Table 4.6. The selected susceptibility genes by GLMM-L0.5 

rs number Gene 

rs7874142 COL5A1 

rs10859155 DCN 

rs14144 POLR1D 

rs571118 KL 

rs9525625 TNFSF11 

rs1854521 SLC10A2 

rs1335808 COL4A1 

rs1955711 FBXO33 

rs10873099 OTX2 

rs941845 CATSPERB 

rs3945958 CHGA 

rs1551868 OCA2 

rs409668 LIPC 

rs11634686 SMAD3 

rs17785209 THSD4 

rs1630373 ERCC4 

rs1861868 FTO 

rs1493892 ADAMTS18 

rs11867674 CA10 

rs4622543 PRKCA 

rs12452379 TIMP2 

rs4277413 DCC 

rs12959396 TNFRSF11A 

rs9950037 CDH7 

rs17827157 DOK6 

rs7245376 CTDP1 

rs6085696 BMP2 

rs5011374 PLCB4 

rs1888406 CXADR 

rs2834694 RUNX1 

rs6001491 PDGFB 

 

In addition, we also performed KEGG pathway enrichment analysis and found 5 

enriched pathways by 169 selected genes (Table 4.7). Gene expression level changes in 
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neuroactive ligand-receptor interaction pathway is associated with osteoporosis (Liu, Zhu 

et al. 2015). 

Table 4.7. KEGG pathway enrichment analysis 

PathwayName #Gene Statistics 

Neuroactive ligand-receptor interaction 5 rawP=0.0017;adjP=0.0204 

Cell adhesion molecules (CAMs) 3 rawP=0.0086;adjP=0.0300 

Axon guidance 3 rawP=0.0079;adjP=0.0300 

Type II diabetes mellitus 2 rawP=0.0100;adjP=0.0300 

RNA degradation 2 rawP=0.0210;adjP=0.0420 

Long-term depression 2 rawP=0.0204;adjP=0.0420 

 

4.5 Conclusion 

Low-dimensional GLMMs and high-dimensional generalized linear model have been 

extensively studied in recent years. In addition, a few sparse regularized methods were 

proposed for high-dimensional GLMMs variable selection. However, all of the above 

methods ignore the effect of grouped variables, which are believed to have sparse effects 

both on a group and within group level. 

We developed algorithms for solving the group lasso and sparse group lasso 

optimization problem with a GLMM loss function. In addition, we extend USR model to 

non-Gaussian phenotype with an efficient algorithm. The proposed methods can handle 

high-dimensional GLMMs and allow for correlated grouped predictors simultaneously. 

The promising results on both simulated and real data indicate that the GLMM-GL and 

GLMM-SGL yield higher power in grouped SNPs detection, especially for high 

dimensional data with cryptic relatedness. 

However, there are still some open questions remain. Further theoretical research is 

needed to find ways of constructing significance test for high-dimensional predictors with 
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GLMM loss function. On the other hand, it deserves further investigation on how to choose 

the optimal tuning parameters and find the solution path of group lasso and sparse group 

lasso. Last but not least, allowing for overlapped group structure of SNPs within 

overlapped pathways is necessary for pathway-based approach.  
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CHAPTER 5  SUMMARY 

5.1 Overview 

In this thesis work, we are committed to developing a novel unified sparse regression 

(USR) approach for causal variants identification from family based sequencing data, 

especially under high dimensional settings. 

For Specific Aim 1, we develop a novel Lp norm based sparse regression model (USR) 

for identifying genetic variants sets influencing on specific phenotype. USR is an effective 

method to incorporate prior information and jointly adjust for relatedness, population 

structure and environmental covariates. Our algorithm adopts a modified kinship matrix to 

account for the confounding of complex relationship between pedigree members on a 

quantitative trait (Thompson and Shaw 1990). For the data of cryptic relatedness, we infer 

the kinship matrix by the REAP algorithm (Thornton, Tang et al. 2012). Meanwhile, our 

USR models population structure and other environmental covariates as fixed effects. To 

allow proper sparsity and incorporate prior knowledge, our USR algorithm applies a 

weighted regularization with Lp norm (0< p <1) to select sparse representation – a sparse 

subset from a large number (>sample size) of markers. Our algorithm can automatically 

search for a sparse representation and allow users to determine the size of output set. As 

demonstrated by extensive sequence data analyses, our USR appears more effective than 

many existent sparse regression models.  

For Specific Aim 2, we develop theories to assess statistical significance and control the 

Type I error rates of genetic variants and gene sets by using scaled Lp norm regularized 

sparse regression model. Besides the feature selection method of USR, we need to further 

evaluate the asymptotic property of USR estimators, in order to control the Type I error 
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rate or Family-wise error rate. We first present a unified test (uFineMap) for accurately 

localizing causal loci. The uFineMap is a marker wise test under a scaled sparse linear 

mixed regression, which jointly models marker wise effect, relatedness and population 

stratification. It applies scaled Lp (0 < p <1) norm regularization to generate a de-biased 

solution. Next, we present a unified test (uHDSet) for identifying high-dimensional sparse 

associations in deep sequencing genomic data of related individuals. The uHDset integrates 

the marker wise statistics of the uFineMap to identify susceptible high-dimensional marker 

sets. In the uHDSet, the dependence among markers is modeled to appropriately control 

set-based Type I error rates. Under extensive simulations, the uFineMap outperformed the 

GEMMA (Zhou and Stephens 2012) and a Scaled Lasso based method (Javanmard and 

Montanari).  The uHDSet yields higher statistical power than famSKAT and GEMMA. 

For Specific Aim 3, we accommodate to non-Gaussian phenotype data and grouped 

high-dimensional covariates by developing generalized unified sparse regression model for 

association analysis. In a wide range of practical genetic data settings, binary phenotypes 

are commonly appeared other than continuous phenotype. It is critical to extend our USR 

methods to accommodate binary phenotypes. Although the non-Gaussian property and 

pedigree structure introduce analytical challenges for incorporating case-control data 

analysis into the regression model, there are several methods working on it. Generalized 

linear mixed models (GLMMs) are widely used to model correlated and clustered non-

Gaussian responses (Jang and Lim 2006, Bates 2007). Since there is no analytical form of 

the original likelihood function of Generalized linear mixed model, we adopted the idea of 

PQL (Penalized quasi-likelihood) method (Mammen and van de Geer 1997) for the 

likelihood approximation with Lp norm regularization. Consequently, we proposed and 
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generalized a new USR method to efficiently incorporate binary phenotype data while 

adjusting for high-dimensional grouped variants and random relatedness structure.  

The general workflow for the three aims of this thesis is displayed in Figure 5.1. 

 

Figure 5.1 Overview of USR models 

5.2 Future work 

Although we have developed sophisticated methods for genetic data analysis, there are 

still many open questions to be answered. The generalized linear mixed model with group 

sparse regularization requires a more efficient parameter selection strategy, in order to 

control the Type I error rate, family-wise error rate or false discovery rate. Further effort is 

needed to investigate the solution path of GLMM-GL and GLMM-SGL methods. 
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In addition to a single type of phenotypes, pleiotropic effect of high-dimensional genetic 

variants with random relatedness is another important extension. Pleiotropy occurs when 

one gene influences two or more seemingly unrelated phenotypic traits. Consequently, a 

method that can integrate related phenotypes together would be more powerful to detect 

the genetic mutation which has pleiotropic effect. 

Last but not the least, to increase the computational efficiency of USR test method is 

also important since current computational complexity is 
2 3O( )n m , which is nearly 

impractical for large genetic region even with parallel computing. A better way to divide 

and group variants can dramatically reduce computational cost which is worth of further 

investigation. 

 

  

https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Phenotypic_trait
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