ANALYSIS OF THE EPSTEIN-BARR VIRUS LYTIC TRANSCRIPTOME USING HIGH-THROUGHPUT SEQUENCING METHODS

AN ABSTRACT

SUBMITTED ON THE FOURTH DAY OF MARCH 2016
 TO THE DEPARTMENT OF PATHOLOGY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE GRADUATE SCHOOL OF TULANE UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
BY

APPROVED BY:

Abstract

The lytic replicative cascade in Epstein-Barr virus and other herpesviruses has traditionally been understood to involve the ordered expression of sets of protein-coding genes. Recent experiments using tiling microarrays and next-generation sequencing, however, have indicated extensive transcription outside of known coding regions. In this study, strandspecific Illumina RNA-Seq reveals abundant antisense and intergenic transcription of the EBV genome during lytic replication. Both polyadenylated and non-polyadenylated transcripts are shown to arise from nearly the entire genome. However, the complex and overlapping nature of these transcripts confounds attempts to resolve their structures with short-read RNA-Seq alone. In order to resolve the structures of polyadenylated transcripts on a global level, the Transciptome Resolution by Integration of Multi-platform Data (TRIMD) method was developed. This method combines data from Pacific Biosciences long-read SMRT sequencing (Iso-Seq protocol) with data from Illumina RNA-Seq and deepCAGE. Using TRIMD we identify nearly 300 unannotated transcripts in replicating Epstein-Barr virus. These transcripts illustrate multiple strategies by which the virus achieves its remarkable level of transcript diversity, including alternative promoter usage, alternative splicing, readthrough transcription and intergenic splicing. The TRIMD method is simple and flexible, and scripts have been developed to facilitate its application to other genomes.

ANALYSIS OF THE EPSTEIN-BARR VIRUS LYTIC TRANSCRIPTOME USING HIGH-THROUGHPUT SEQUENCING METHODS

A DISSERTATION
SUBMITTED ON THE FOURTH DAY OF MARCH 2016
TO THE DEPARTMENT OF PATHOLOGY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE GRADUATE SCHOOL OF TULANE UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
BY

Victoria Belancio, PhD

ACKNOWLEDGMENT

I am profoundly grateful to my mentor, Dr. Erik Flemington. He is an insightful, astute and accomplished researcher who is nevertheless endlessly supportive of his students. I consider myself extremely lucky to have found a home in his lab. Also, I couldn't ask for a more intelligent, creative, capable group of scientists to model myself after than my committee: Drs. Victoria Belancio, Prescott Deininger, Tong Wu and Kun Zhang. I'm delighted to have worked with the smart, friendly and funny members of the Flemington Lab: Melody Baddoo, Subing Cao, Monica Concha, Tom Laskow, Zhen Lin, Hani Nakhoul, Claire Roberts, Mike Strong, Xia Wang, Qinyan Yin and Yi Yu. Likewise I have learned so much from my friends and colleagues in the BMS Program, especially our Study Group: Emily Carron, Van Hoang, Grace Jairo, Nicki Kikendall, Narae Lee, Courtney Standlee and Manish Ranjan. I am grateful that much of my time as a PhD student has been supported by the National Cancer Institute in the form of a Ruth L. Kirschstein NRSA F31 fellowship. I am indebted to faculty members I have learned from at The Catholic University of America, especially Drs. Venigalla Rao, James Greene and Michael Mullins, and the University of New Orleans, especially Drs. Carla Penz and Phil DeVries, for encouraging me to pursue a PhD and a career in research. Finally, I am thankful for my friends and family near and far.

Lindsay Falke, Leah Levkowicz, Gerard Mangusso, Matt Morrin and the Purple Lightning troublemakers of Burgundy St. for filling my non-lab hours and acting appropriately impressed when I talk about science. Mom and Dad and aunts and uncles for providing an environment of both curiosity and diligence. And of course my boys, Phillip and Sid.

TABLE OF CONTENTS

ACKNOWLEDGMENT ii
LIST OF TABLES iv
LIST OF FIGURES v
CHAPTER 1: Introduction 1
CHAPTER 2: Global investigation of unannotated lytic

\qquad 10EBV transcription
CHAPTER 3: Global determination of novel EBV29
transcript structures
CHAPTER 4: Development of an algorithm to 52 automate transcript structure determination and annotation
CHAPTER 5: Materials and methods 62
CHAPTER 6: Discussion and future directions 81
LIST OF REFERENCES 91
APPENDICES
Appendix 1: TRIMD_start_validator.pl 104
Appendix 2: TRIMD_junction_validator.pl 125
Appendix 3: TRIMD_end_validator.pl 136
Appendix 4: TRIMD_transcript_validator.pl 154
Appendix 5: TRIMD_README.txt 169
Appendix 6: Validated EBV transcription start sites 177
Appendix 7: Validated EBV splice junctions 185
Appendix 8: Validated EBV polyadenylation sites 192
Appendix 9: Validated novel EBV transcripts 195
Appendix 10: Updated EBV-Akata annotation 205

LIST OF TABLES

I. Latency programs in EBV 3
II. RNA-Seq in uninduced and induced Akata cells 13
III. RNA-Seq using ribodepleted RNA in a reactivation 13
time course
IV: 5' and 3' RACE Primers 75
V: RT-PCR primers 77
VI. cDNA and PCR primers for strand-specific qRT- 78
PCR

LIST OF FIGURES

1: Reactivation and sequencing strategy 12
2: RNA-Seq sense and antisense read coverage of 14 cellular genes
3: RNA-Seq read coverage of the Akata EBV 15
genome at 24 hours postinduction
4: Novel transcription of the Akata genome 24 16
hours postinduction
5: Antisense transcription at known genes and 17 gene classes
6: Sense and antisense transcription at the EBNA2 19
locus
7: Sense and antisense transcription at the 20 EBNA3A locus
8: Sense and antisense transcription at the 21 EBNA3B locus
9: A novel antisense ORF in the EBNA3C locus 23
10: Genomic location of Stellaris FISH probes 24
11: Sequence motif conservation in EBNA 25 antisense transcripts
12: Splice junctions in the EBNA3A region 26
13: Splice junctions at 24 hours postinduction 28
14: Long-read sequence mapping data and 31 transcript identification and validation strategy
15: Length distribution of Iso-Seq CFLs from 32 different size fractions
16: CFLs mapping to the cellular gene RNF167 33
17: Validation of EBV transcript features 35
18: Annotated EBV 5’ start sites validated by 36TRIMD
19: Start sites identified by deepCAGE 37
20: Novel validated viral transcripts 39
21: Novel intergenic transcripts 41
22: Readthrough transcription and intergenic 43 splicing at the BZLF2 locus
23: Validated transcripts at the EBNA loci 45
24: Programmed exon skipping in the W repeat 48 region
25: Complex lytic promoter usage for LMP2 51 transcripts
26: Strand specific qRT-PCR 79
27: TRIMD-validated BRLF1 and BZLF1 84
isoforms
28: Length distribution of detected and predicted 88 polyadenylated EBV isoforms

CHAPTER 1

Introduction

Epstein-Barr Virus (EBV) is a ubiquitous human herpesvirus that causes disease worldwide. EBV was first discovered in 1964 in a cell line derived from a Burkitt lymphoma (BL) tumor in an African patient ${ }^{1}$. Since then links have been established between EBV and a number of other cancers, including Hodgkin lymphoma ${ }^{2}$, nasopharyngeal carcinoma ${ }^{3}$ and gastric cancers ${ }^{4}$.

Like most other herpesviruses, EBV can exist in both a latent and a lytic phase. On initial infection of a new host EBV productively infects epithelial cells in the oropharynx, using the lytic cascade to produce new virus particles ${ }^{5}$. These newly replicated virions then establish a latent infection in oropharyngeal B cells ${ }^{6,7}$. The latent infection commences with a gene expression program known as type III latency, in which eight viral proteins and several viral noncoding RNAs are expressed (Table I) ${ }^{8}$. EBV-infected cells in latency phase III are detectable by the human immune system and largely eliminated, however infected cells that enter the latency 0 program do not express viral proteins and can escape immune control ${ }^{9}$. Latent infection of some B cells generally persists for the life of the host. Latently infected B cells in vivo are largely resistant to entering a phase of productive EBV replication, however lytic reactivation in B cells does occur and is an essential component of the virus shedding that can occur in the saliva of even asymptomatic EBV carriers ${ }^{10,11}$.

Table I. Latency programs in EBV

Latency Program	Viral Proteins Expressed	Viral ncRNAs expressed
$\mathbf{I I I}$	EBNA1, EBNA2, EBNA3A, EBNA3B,	EBER1, EBER2, BARTs
$\mathbf{I I}$	EBNA3C, EBNA-LP, LMP1, LMP2	EBER1, EBER2, BARTs
\mathbf{I}	LMP1, LMP2, EBNA1	EBER1, EBER2, BARTs
$\mathbf{0}$	EBNA1 (only during cell division)	EBER1, EBER2

The EBV lytic cascade

When lytic reactivation is triggered, e.g. by B-cell differentiation or by acute stress ${ }^{12}$, the immediate early (IE) genes BZLF1 and BRLF1 are expressed to produce the proteins Zta (also known as ZEBRA ${ }^{13}$, and $E B 1^{14}$) and Rta. These transactivators function together to activate downstream genes in the lytic cascade ${ }^{15} ;$ Zta by binding to AP1-like sites in the promoters of both viral and cellular genes ${ }^{16}$, Rta by binding to Rta-responsive elements in promoters ${ }^{17,18}$ and by inducing cellular phosphatidylinositol-3 (PI3) kinase signaling ${ }^{19}$. Many of the early (E) viral genes activated by Zta and Rta function in host cell control and viral DNA replication: for example the exonuclease BGLF5 and the DNA polymerase BALF5 ${ }^{20,21}$. After viral DNA replication, the late (L) genes are transcribed by cellular RNA Polymerase II under the control of the viral pre-initiation complex ${ }^{22}$. The IE, E and L genes overlap temporally in expression, however viral DNA replication is required for L gene expression and this class of genes can be inhibited using the viral DNA polymerase inhibitor phosphonoacetic acid (PAA) ${ }^{23,24}$. Many L genes are involved in virion packaging and assembly, such as the packaging protein BDRF1, the capsid protein BDLF1 and the envelope glycoprotein BLLF1 ${ }^{24}$.

Pervasive transcription in herpesviruses

Our current understanding of lytic reactivation and viral replication is largely based on the ordered synthesis of mRNA transcripts that are translated into proteins, which in turn function both to carry out the necessary processes of virus production and to regulate the transcriptional cascade itself. Recently though, an even more complicated view of herpesviral lytic replication has begun to emerge as studies have revealed extensive lytic transcription that is not accounted for by currently annotated open reading frames.

An early indication that the herpesvirus lytic transcriptome is much larger than expected came from a large-scale cDNA cloning project using the betaherpesvirus Human Cytomegalovirus (HCMV) ${ }^{25}$. This study examined de novo HCMV infection of fibroblasts, during which time the virus is actively replicating, and detected extensive transcription of putative intergenic regions and a large number of transcripts antisense to known open reading frames. A subsequent study using Illumina RNA-Seq confirmed these findings ${ }^{26}$, with both studies noting that much of the novel transcription likely produces noncoding RNA. When ribosomal profiling was applied to the same system it was found that the HCMV proteome as well as the transcriptome was much larger than previously appreciated, with novel proteins being produced from unannotated short open reading frames as well as from truncated or frameshifted variations of known open reading frames ${ }^{27}$.

Pervasive transcription of the gammaherpesvirus Murine gammaherpesvirus 68 (MHV68) during productive infection of fibroblasts was first detected using a high-density tiling microarray ${ }^{28}$. The same method later showed similar widespread transcription of unannotated regions during viral reactivation in a latently infected B-cell line ${ }^{29}$. Several of
these transcripts were shown to be functional by targeting them for expression knockdown with antisense oligonucleotides, which resulted in changed expression levels of a viral protein ${ }^{30}$.

Abundant antisense and intergenic transcription has also been identified during replication in the gammaherpesvirus Kaposi sarcoma-associated herpesvirus (KSHV), first by tiling microarray in de novo infection of enodothelial cells ${ }^{31}$ and reactivated B cells ${ }^{32}$, then by RNASeq after lytic reactivation in an engineered epithelial cell line ${ }^{33}$. As seen in HCMV, the KSHV proteome is also significantly more complex than traditional annotation indicates, as revealed by both ribosomal profiling ${ }^{33}$ and liquid chromatography/tandem-mass spectrometry (LC-MS/MS) ${ }^{32}$.

In EBV, Dresang et al. used tiling microarray and LC-MS/MS to identify novel peptides and transcripts antisense to annotated open reading frames after induction of a B-cell line coinfected with EBV and KSHV^{32}. Concha et al. used RNA-seq to investigate transcription during viral reactivation in Akata cells and found intergenic viral transcripts and complex splicing ${ }^{34}$. Furthermore, Concha's 5' and 3' RACE experiments in a transcribed intergenic region revealed bidirectional transcription. These findings provided the first indication that transcription of the EBV genome may be more complex than previously thought.

The EBV genome and transcriptome

EBV's double-stranded DNA genome is approximately 171 kilobases long and densely packed with open reading frames, with over 70% of the genome annotated as being transcribed in at least one direction ${ }^{35}$. The genome is linear when packaged in the viral
capsid ${ }^{36}$ and circularizes upon infection to persist within the host cell as a stable episome ${ }^{37}$, typically in multiple copies. Each end of the linear genome consists of repeat sequence known as the terminal repeats: these terminal repeat ends are joined to form the circular chromosome ${ }^{38}$. In GenBank and other sequence repositories EBV genome sequences are typically represented in their linear form, with terminal repeat sequences at each end. However, the LMP2 gene spans the terminal repeats on the circular genome ${ }^{39}$. A linear representation of the EBV genome split at the terminal repeats impedes analysis of LMP2 RNA sequence data and so this study and others use a representation of the EBV genome split between the BBRF3 and BGLF3 genes, a region of relatively low transcription ${ }^{34}$.

Initial EBV genome sequencing was based on the common laboratory strain B95-8 ${ }^{40}$. As this strain contains a large genomic deletion a composite reference sequence was later developed by integrating sequence from another strain, Raji $i^{11,42}$. Subsequently, the genomic sequences of many more EBV strains have been determined and made available ${ }^{43-53}$. Transcripts have been annotated based on a mix of empirical evidence (e.g., Northern blots and Sanger sequencing of cDNA) and sequence analysis (i.e, the presence of open reading frames, TATA boxes and polyadenylation signals $)^{35,40}$. Regions of the EBV genome are described in terms of BamHI restriction fragments and most transcript names reflect this: e.g. the transcripts BZLF1 (BamHI fragment Z, Leftward reading Frame 1) and BHRF1 (BamHI fragment H, Rightward reading Frame 1) ${ }^{40}$.

At the genomic sequence level strains of EBV differ from each other largely based on variations in the latency genes ${ }^{53}$. In particular, variations in EBNA2 and the EBNA3A/B/C genes separate EBV strains into type I and type 2 groups (also known as types A and
B) ${ }^{47,54-56}$. Different virus strains are associated with different geographical regions, have different phenotypic properties and may have different disease-causing properties ${ }^{53}$.

EBV-infected cell lines

Many EBV-positive cell lines exist, including naturally infected lines derived from cancers, experimentally infected lymphoblastoid cell lines (LCLs) or epithelial cell lines, and cell lines carrying virus artificially engineered to exhibit particular properties. Data used in this dissertation is derived from naturally infected B-cell lines and LCLs, as described below.

The Akata cell line is an EBV-positive B-cell line that was established from a Burkitt lymphoma tumor recovered from a 4 -year-old Japanese girl ${ }^{57}$. Unlike the virus strains present in many cell lines, the Akata strain does not contain large genomic deletions relative to other EBV strains ${ }^{43,57}$. Akata cells generally express a type I latency program (see Table I), but can be synchronously induced to produce infectious virus by crosslinking the B-cell receptors (BCR) with anti-IgG antibodies ${ }^{57-59}$. The full genome sequence of the Akata strain, a type 1 strain of the virus is available ${ }^{43}$.

Similarly, Mutu cells exist in latency type I and can be induced to lytic replication by BCR crosslinking, in this case using anti-IgM antibodies ${ }^{60}$. The Mutu cell line was established from a biopsy from a Burkitt lymphoma patient in a region of Kenya with a high level of endemic EBV-positive BL^{60}. Mutu is a type 1 strain of the virus, and its complete genome sequence is available ${ }^{43}$. The AG876 cell line was also established from a Burkitt lymphoma tumor, in this case from an 8 -year-old boy in Ghana ${ }^{61}$. Unlike the Akata and Mutu cell lines, the EBV strain in AG876 cells is type 2. The genomic sequence AG876 strain is available ${ }^{45}$.

While the Akata, Mutu and AG876 cell lines were derived from naturally EBV-infected tumors, many other cell lines have been created by in vitro EBV infection. The common laboratory strain B95-8 was created by infecting tamarin (Saguinus oedipus) B cells with EBV that was isolated from a cell line derived from a patient with mononucleosis ${ }^{62,63}$. B95-8 cells exist in type III latency with a relatively high level of spontaneous reactivation (up to 5% of cells) ${ }^{64,65}$. For many years B95-8 was the predominant laboratory strain because of this constitutive virus production ${ }^{66}$.

The B95-8 strain of EBV is frequently used to immortalize primary B cells and create lymphoblastoid cell lines that generally persist in type III latency ${ }^{67}$. Many lymphoblastoid cell lines have been established and used in both EBV and cellular research, including by largescale efforts such as HapMap, ENCODE and the 1000 Genomes Project ${ }^{68-70}$. Though usually originally generated with cellular analysis in mind, cell lines and the associated data generated by these projects can also be used to gain insight into EBV and its interactions with host cells ${ }^{71}$. The cell lines JY, X50-7, GM12878, GM12892 and GM12891, used in Chapter 3, are lymphoblastoid cell lines immortalized with B95-8 $8^{66,68,72}$.

Specific Aims

The experiments and analysis described in this dissertation are guided by three specific aims: Aim 1: Globally investigate unannotated lytic EBV transcription

Aim 2: Globally determine novel EBV transcript structures
Aim 3: Develop an algorithm to automate transcript structure determination and annotation

The discovery of antisense and intergenic transcription in EBV, combined with indications of widespread unannotated transcription in related herpesviruses, indicated the need for detailed global investigation of unannotated transcription of the EBV genome during viral replication (Aim 1). This investigation, undertaken primarily using strand-specific Illumina short-read sequencing, is reported in Chapter 2 and a recent Journal of Virology publication ${ }^{73}$. In order to globally determine the structures of novel EBV transcripts (Aim 2), a new method was developed using data from Pacific Biosciences Iso-Seq long-read sequencing ${ }^{74}$, Illumina short read sequencing and deepCAGE ${ }^{75}$. This method, Transcript Resolution by Integration of Multi-platform Data (TRIMD) is described in Chapter 3. The efficacy of this method for structure resolution in the complex lytic transcriptome of EBV suggests its usefulness for annotating other gene-dense genomes. To this end, flexible, userfriendly scripts were developed that can be used to apply TRIMD to other genomes (Aim 3). The TRIMD software is described in Chapter 4 and reproduced in Appendices 1-5 and is freely available at available at https://github.com/flemingtonlab/public.

CHAPTER 2

Global investigation of unannotated lytic EBV transcription

The discovery by Concha et al. ${ }^{34}$ of complex bidirectional transcription in an intergenic region of the EBV genome raised the intriguing possibility of further bidirectional transcription upon lytic reactivation of EBV. To explore this possibility we took advantage of strand-specific Illumina RNA-Seq technology to globally investigate transcription of the EBV genome during viral replication. Much of the data in this chapter is reported in the publication ${ }^{73}$

O'Grady et al. (2014) Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. Journal of Virology 88, 1604-1616.

Strand-specific RNA-Seq of the lytic EBV transcriptome

To investigate the lytic transcriptome of EBV we used the Akata cell line, inducing lytic reactivation by crosslinking the B-cell receptors with an anti-IgG antibody. RNA was extracted from cells for RNA-Seq before and after BCR crosslinking. We subjected the RNA to poly(A)-selection to enrich for mRNA and polyadenylated noncoding RNA. Additionally, we extracted RNA and subjected it to ribodepletion in order to remove ribosomal RNA but retain other cellular and viral transcripts that are not polyadenylated, as functional transcripts without poly (A) tails are known in both eukaryotic cells and viruses ${ }^{76,77}$. RNA samples were prepared for sequencing using Illumina TruSeq Stranded sample prep kits to allow assignment of sequence reads to the DNA strand from which the transcript arose. Samples were sequenced on an Illumina HiSeq 2000 instrument and the reads mapped to the human (hg19 assembly) and EBV Akata (KC207813.143) genomes. The dramatic increase in reads
mapping to the EBV genome after BCR crosslinking indicated robust induction of viral lytic reactivation 24 hours after BCR crosslinking (Figure 1 and Tables II \& III).

Figure 1. Reactivation and sequencing strategy. Column charts represent fold change in the number of RNASeq reads mapped to the EBV genome, excluding EBER regions, at 0 and 24 hours. For the calculation of strand specificity, see Materials and Methods.

As accurate assignment of RNA-Seq reads to the appropriate genomic strand is crucial to the analysis of antisense transcription, we investigated the level of strand specificity obtained with the TruSeq method. Using a set of well-characterized, highly expressed cellular genes with no known antisense transcription (see Chapter 5, Materials and methods), we calculated an average background expression level that we could use to distinguish true antisense transcription from spurious background reads. We found strand specificity to be high, above 99.8\% in all samples (Figure 2 and Tables II \& III).

Extensive bidirectional transcription of the lytic EBV genome

Mapping strand-specific RNA-Seq reads to the EBV genome showed coverage across both strands of nearly the entire genome, in both the poly(A)-selected and the ribodepleted datasets (Figure 3). We used the degree of strand specificity calculated above to identify
Table II. RNA-seq in uninduced and induced Akata cells

Table III. RNA-seq using ribodepleted RNA in a reactivation time course

	Time course: ribodepleted								
	0	5 m	30m	1 h	2 h	4 h	8h	24h	48h
Number of reads	45,549,671	74,971,661	70,376,626	56,918,756	67,248,128	67,827695	59,551,327	67,001,626	67,472,115
Number of mapped reads	38,169,413	64,251,923	59,470,292	48,923,989	57,399,365	57,846,467	50,557,152	55,525,060	55,234,594
Number of reads mapped to EBV	25,679	26,144	32,612	17,452	33,100	154,174	375,296	852,760	394,352
Strand specificity	99.94\%	99.94\%	99.93\%	99.96\%	99.94\%	99.96\%	99.94\%	99.94\%	99.93\%
Strand specificity standard deviation	0.13	0.12	0.11	0.08	0.10	0.07	0.13	0.13	0.13

Figure 2. RNA-Seq sense and antisense read coverage of cellular genes GAPDH and ACTB.
regions of coverage that exceeded the expected background coverage plus four standard deviations. Genomic coordinates meeting this stringent coverage requirement were categorized as being transcribed (dark tracks in Figure 3).

The EBV genome is known to be gene-dense, with annotated exons covering over 70% of the genome ${ }^{43}$ (Figures $3 \& 4 \mathrm{~A}$). However, only 4% of the genome is annotated as having exons on both strands ${ }^{43}$. We observe RNA-Seq reads from poly(A)-selected RNA covering both strands over 65% of the genome. Even more striking, we observe reads from ribodepleted RNA covering both strands over 80% of the genome (Figure 4A). At least 50% of read coverage from each dataset was in regions not annotated as being exons.

Transcription of unannotated regions did not appear to be incidental, low-level transcription but instead occurred at high levels, with a substantial proportion of transcribed bases being covered at levels comparable to highly expressed cellular genes (Figure 4B). This extensive, high-depth coverage of unannotated EBV genomic regions suggests the existence of previously unidentified viral genes. Given the number of bases outside of previously
described exons that we identify here as being transcribed, we roughly estimated potential numbers of new genes. The average length of an annotated gene in the Akata genome is 1,697 bases; dividing the number of bases showing novel transcription by this length yields an estimated 78 novel genes in the poly(A)-selected dataset, and 98 in the ribodepleted dataset (Figure 4C). Using published average transcript lengths of cellular genes ${ }^{78-80}$ we obtain comparable estimated gene numbers. Because many of these novel transcripts may be noncoding (see below), we also estimated the number of possible novel genes using published catalogs of noncoding genes ${ }^{78,79}$. As noncoding genes are, on average, shorter than coding genes this calculation yields estimated numbers of unannotated genes ranging from 133 to 280 (Figure $4 C)$. These estimates do not take into

Figure 3. RNA-Seq read coverage of the Akata EBV genome at 24 hours postinduction. The scales are logarithmic. Transcribed bases tracks display bases with at least five reads with coverage above background levels (see Materials and Methods). account the potential for transcripts
overlapping on the same strand or for alternatively spliced transcripts. Given that both of these phenomena are common in lytic EBV^{34}, these numbers are likely underestimates of undiscovered genes. The more extensive coverage of the viral genome using ribodepleted data suggests that many unannotated EBV transcripts are not polyadenylated.
A

B

Transcription (poly(A) selected)

C

	*Average or ${ }^{\dagger}$ median transcript length	Predicted number of new transcripts (PolyA +)	Predicted number of new transcripts (RiboDep)
GENCODE IncRNA	${ }^{\dagger} 592$	225	280
GENCODE protein coding	${ }^{\dagger} 2453$	54	68
Cabill lincRNA	-1000	133	166
Cabili protein coding	${ }^{-2900}$	46	57
Akata average	1697	78	98

Figure 4. Novel transcription of the Akata genome 24 hours postinduction. (A) Percentage of the genome covered by annotated genes and by RNA-seq reads from poly(A) selected and from ribodepleted RNA. (B) Percentage of novel transcribed genome regions and their expression relative to cellular gene expression. Coverage percentage is based on the full length of both strands of genomic DNA, i.e., 342,646 potentially transcribed bases. (C) Predicted numbers of novel genes based on the number of transcribed bases divided by average of or median transcript lengths from published gene catalogs

Antisense transcription at known EBV gene loci

While we observed high levels of transcription in regions previously believed to be intergenic, we also observed extensive transcription antisense to known genes. Antisense transcription was particularly high at latency-associated loci, with antisense coverage in the ribodepleted dataset far exceeding sense coverage (Figure 5A). While this raises the exciting

Figure 5. Antisense transcription at known genes and gene classes. (A) Ratio of antisense to sense RPKM values at 24 h postinduction for annotated gene classes using RNA-Seq coverage from poly(A) selected (blue) and ribodepleted (orange) RNA. Transcription at EBER loci are excluded. (B) RPKM values for EBNA genes calculated using an unstranded (purple) or strand-specific (green) method on RNA-Seq data from poly(A) selected RNA (C) Sense and antisense RPKM values for annotated gene classes at nine time points after reactivation
possibility of functional antisense transcripts, it is also important to note for studies of the known genes in these regions, as antisense reads erroneously assumed to be sense reads seriously distort abundance estimates for latency-associated genes (Figure 5B).

RNA-Seq data from Akata cells harvested at multiple time points after BCR crosslinking provides a more detailed picture of the lytic cascade. Reads aligning to annotated exons in the sense direction showed the expected pattern of expression, with Immediate Early genes rising in abundance first, followed by Early and Late genes. Latent
genes also show deeper coverage after BCR crosslinking. The pattern of expression antisense to known genes differs, with the depth of reads antisense to all classes of known genes peaking at 24 hours, late in the lytic cycle (Figure 5C).

Latency type III gene expression has been detected previously in reactivated EBV, both at the mRNA and protein levels ${ }^{23,24,81,82}$. Our findings of high levels of antisense transcription suggest a more complicated role for latency-associated loci during lytic reactivation than has previously been understood.

Extensive antisense transcription at latency loci: an analysis of the EBNAs

The ratio of antisense to sense transcription is especially high at the Epstein-Barr virus Nuclear Antigen (EBNA) 2 and EBNA3 loci, with antisense read coverage substantially exceeding sense read coverage (Figures 6A, 7A \& 8A). EBNA2 and EBNA3A/B/C encode transcription factors that control a range of cellular genes during viral latency ${ }^{83-85}$. EBNA2, EBNA3A and EBNA3B are critical for the transformation of primary B cells into type III latency lymphoblastoid cell lines ${ }^{86,87}$, but the role of the EBNA genes in lytic reactivation is not yet understood.

Temporal dynamics of EBNA antisense transcription

Analysis of RNA-Seq read abundance across multiple post-induction time points shows that antisense read coverage at EBNA2, EBNA3A and EBNA3B loci peaks at 24 hours, with the same timing as annotated Late genes (Figures 6B, 7B \& 8B). Strand-specific qRT-PCR of RNA extracted at the same time points shows the same pattern (Figures 6C \& 8C). To

Figure 6. Sense and antisense transcription at the EBNA2 locus (A) RNA-seq read coverage from poly(A) selected and ribodepleted RNA, and coding potential evidence summary from the Coding Potential Calculator. Note the inset with a zoomed scale for the positive (sense) strand in ribodepleted coverage. (B) RPKM values for RNA-seq time course from ribodepleted RNA (C) Relative abundance of antisense transcription from 0 to 48 h measured by strand-specific qRT-PCR. Primer placement is shown in panel A. (D) Relative abundance of antisense transcription at 24 h after treatment with anti-IgG, anti-IgG plus PAA, or nothing (control). Measured by strand-specific qRT-PCR. (E) Relative abundance of antisense transcription in the nucleus and cytoplasm at 24 h after treatment with anti-IgG. Measured by strandspecific qRT-PCR. (F) FISH of EBNA2 antisense transcripts.

Figure 7. Sense and antisense transcription at the EBNA3A locus. (A) RNA-Seq read coverage from poly(A) selected and ribodepleted RNA (top tracks). Blue annotation tracks represent consensus from RACE fragments from 2 or more primers. Yellow circles indicate RACE fragments that end within 20 bases of another RACE fragment. Orange dashed ends indicate matching splice acceptors with different splice donors. Colored boxes on RACE gel images indicate bands corresponding to pictured fragments of the same color. Poly(A) reads track illustrates RNA-Seq reads mapping partially to poly(A) tails. Coding potential evidence summary is from the Coding Potential Calculator. (B) RPKM values from RNA-Seq reads from ribodepleted RNA time course (C) FISH of antisense EBNA3A transcripts.

Figure 8. Sense and antisense transcription at the EBNA3B locus (A) RNA-seq read coverage from poly(A) selected and ribodepleted RNA. Blue annotation tracks represents consensus from RACE fragments. Green annotation track represents a 3' RACE fragment (band indicated by green box on gel). Orange annotation tracks indicate 5^{\prime} RACE fragments (bands indicated by boxes on gel). Poly(A) reads track illustrates RNA-seq reads mapping partially to poly(A) tails. Coding potential evidence summary is from the Coding Potential Calculator. (B) RPKM values for RNA-seq time course using ribodepleted RNA. (C) Relative abundance of antisense transcription from 0 to 48 h measured by strand-specific qRT-PCR. Primer placement is shown in panel A. (D) Relative abundance of antisense transcription at 24 h after treatment with anti-IgG, anti-IgG plus PAA, or nothing (control). Results were obtained by strand-specific qRT-PCR. (E) Relative abundance of antisense transcription in the nucleus and cytoplasm at 24 h after treatment with anti-IgG. Results were obtained by strand-specific qRT-PCR. (F) FISH of antisense transcripts.
further investigate the potential classification of these antisense transcripts we treated Akata cells with PAA before induction. PAA specifically inhibits the viral DNA polymerase, preventing viral genome replication and the expression of Late genes. After BCR crosslinking, PAA treatment inhibited expression of transcripts antisense to EBNA2 and EBNA3B much more strongly than it inhibited expression of the Immediate Early gene Zta, as measured by strand-specific qRT-PCR (Figures 6D \& 8D).

Coding Potential of EBNA antisense transcripts

To facilitate functional analysis of these late antisense transcripts we interrogated the genomic sequence for possible open reading frames, known functional motifs and domains homologous to other genes. The Coding Potential Calculator ${ }^{88}$ reports an open reading frame opposite EBNA3C (Figure 9A \& B). This open reading frame is conserved in the genomic sequence of both the B95-8 and AG876 strains of the virus, supporting the possibility that an unreported protein-coding gene exists antisense to the EBNA3C open reading frame (Figure 9C). In contrast, no reliable open reading frames are detected antisense to EBNA2, EBNA3A or EBNA3B, and the Coding Potential Calculator reports a high likelihood that transcripts in this region are noncoding RNA (Figures 6A, 7A \& 8A).

Subcellular localization of EBNA antisense transcripts

The subcellular localization of biological molecules can provide indications of their function, and so we investigated the location of the noncoding EBNA2, EBNA3A and EBNA3B antisense transcripts. Strand-specific qRT-PCR of RNA isolated from the nuclear and cytoplasmic fractions of 24 -hour induced Akata cells indicates strong nuclear enrichment of

Figure 9. A novel antisense ORF in the EBNA3C locus. (A) Genomic location and RNA-Seq read coverage of a novel antisense ORF. (B) Coding Potential Calculator output for corresponding regions in the EBV strains Akata, B95-8 and AG876. (C) BLAST multiple sequence alignment of translated ORFs from Akata, B95-8 and AG876 sequences.

EBNA2 and EBNA3B antisense transcripts (Figures 6E \& 8E). Fluorescent in situ hybridization (FISH) using a series of probes targeted to the antisense transcripts also supports nuclear localization of transcripts antisense to EBNA2, EBNA3A and EBNA3B
(Figures 6F, 7C, 8F \& 10). We conclude that genes antisense to EBNA2, EBNA3A and EBNA3B produce nuclear long noncoding RNA transcripts with Late gene kinetics.

EBNA3 antisense transcript structures

RNA-Seq data has been used to infer the structures of cellular transcripts ${ }^{89-91}$. However, the apparent abundance of overlapping transcripts and the resulting deep and extensive RNA-

Figure 10. Genomic location of Stellaris FISH probes relative to known transcripts, RACE fragments and RNA-Seq read coverage.

Seq read coverage of the EBV genome confounds this type of analysis (compare Figure 2 to Figures 6A, 7A \& 8A). A previous study used 5' and 3' Rapid Amplification of cDNA Ends (RACE) to glean information about EBV transcript structure and revealed a more complex transcriptional architecture than RNA-Seq coverage made apparent ${ }^{34}$. We applied RACE to the EBNA3A and EBNA3B regions (Figure 7A \& 8A). Antisense to EBNA3B, we detected a 5' end and a 3' end that appear to correspond to a polyadenylated transcript that arises antisense to the final exon of EBNA3B and terminates between the first coding exon of EBNA3B and the final exon of EBNA3A (Figure 8A). The 5' start site is supported by two separate RACE primers, and the 3^{\prime} end is supported by one RACE primer and a pileup of RNA-Seq reads that contain partial poly(A) tails. The 3' end is further supported by the presence of a canonical polyadenylation signal (AATAAA) in the genomic sequence. This polyadenylation signal is fully conserved in both the B95-8 and AG876 strains of the virus (Figure 11B).

Transcription is more complex at the EBNA3A locus (Figure 7A). 5' RACE reveals two 5’ start sites antisense to EBNA3A's final exon. These two start sites are both supported by

A
Akata: GTCTTATAAATATAGGGGTCGTTTGACCTTAGGTCCACCTCTGGACACTATACAAGAAG
B95-8: GTCTTATAAAPATAGGGGGTCGTTTGACCTTAGGTCCACCTCTGGACACTATACAA $G G A A G$
AG876: GTCTTAAAAAPATAGGGGTCGTCTGTGCTTAGTTCCATCCCTGGACACTACACGAFGAAG
B
Akata: AATAAA ATCACAAACACAAGCA GGTGTGG
B95-8: FAATAAA ATCACAAACACAAGCAGGTGTGGA
AG876: A AATAAAATCACAAACACGAGTAGGTGTGGA

Figure 11. Sequence motif conservation. (A) TATA boxes for EBNA3A antisense transcripts. Red boxes indicate the locations of TATA motifs. (B) Polyadenylation signal for EBNA3B antisense transcript. Red boxes indicate AATAAA signal and downstream GT-rich element.

TATA box motifs that are conserved in the B95-8 and AG876 viral strains (Figure 11A). 3'
RACE located a 3' end site supported by poly(A)-tail containing RNA-Seq reads downstream of the 5' start sites. However, a 5' RACE fragment generated from randomly primed cDNA extends beyond that polyadenylation site. The same fragment was not generated from poly(A)-primed cDNA, demonstrating the presence of a longer, nonpolyadenylated transcript that arises from the more upstream of the 5’ start sites (Figure 7).

Surprisingly, 5' RACE in the sense direction revealed previously unannotated EBNA3Aoverlapping transcripts, which use unannotated transcription start sites and splice junctions (Figure 7A). One novel transcription start site is located in an intron upstream of the EBNA3A open reading frame. Multiple distinct RACE fragments corresponded to this transcription start site, including several that used the final annotated EBNA3A splice junction, one that contained the full intron sequence of that splice junction, and two that contained a novel, much longer splice junction. A second novel transcription start site near the final annotated EBNA3A splice donor was also detected with multiple primers (Figure 7A).

Further analysis of splicing at the EBNA3A locus revealed unreported splice junctions on both strands. Many of these were spanned by RNA-Seq reads from both poly(A)-selected and ribodepleted RNA, as well as RACE fragments. In many cases, novel splice junctions are supported by as many RNA-Seq reads as annotated splice junctions (Figure 12).

Figure 12. Splice junctions in the EBNA3A region that are annotated, detected in fragments from at least 2 RACE primers, or detected in RNA-Seq reads by TopHat analysis (at least 5 reads from poly(A)-selected RNA or 10 reads from ribodepleted RNA).

It should be noted that RNA-Seq read coverage extends beyond the start and end sites detected by RACE at both the EBNA3A and EBNA3B loci (Figures 7A \& 8A). Apparently, more overlapping transcripts are present that were not identified by this method. The presence of complex overlapping transcripts at the EBNA genes supports a role in reactivation for these loci that goes beyond a simple recapitulation of their latency-associated functions as protein-coding genes.

Extensive novel splicing in the lytic EBV transcriptome

Splicing is not thought to be common in EBV genes under lytic conditions ${ }^{35}$. Of 37 annotated splice junctions in the Akata genome, only 7 are in lytic genes (Figure 13A). Surprisingly, we observe 178 splice junctions, almost 5 times as many as have been previously annotated in latent and lytic genes combined. 84 of these are reported in both the poly(A)-selected and ribodepleted datasets, including all 7 annotated lytic junctions and 19 junctions annotated in latency-associated transcripts. A further 94 junctions are detected in one dataset or the other, but not both (Figure 13B). Most of the junctions detected in each dataset are unannotated (Figure 13C). We do not detect all of the annotated latencyassociated splice junctions despite observing RNA-Seq read coverage at all latency-associated loci: this may be indicative of alternative splicing at latency loci during lytic reactivation, as observed for EBNA3A, above (Figures 7A \& 12).

Figure 13. Splice junctions at 24 hours postinduction (A) Splice junctions supported by at least five RNA-Seq reads from poly(A) selected RNA or by at least ten RNA-Seq reads from ribodepleted RNA. Annotated splice junctions are color coded: blue, lytic genes; maroon, latent genes; and green, noncoding transcripts. (B) Venn diagram indicating numbers of junctions that are annotated, the number that are detected in poly(A) RNA data, and the number detected in ribodepleted RNA data. (C) Annotated and novel splice junctions detected in poly(A) selected or ribodepleted RNA.

CHAPTER 3

Global determination of novel EBV transcript structures

As seen in Chapter 2, the pervasiveness and complexity of EBV lytic transcription has defied efforts to fully define novel transcripts using short-read sequencing methods. New technologies for long-read sequencing have the potential to resolve many of these difficulties. Pacific Bioscience's Iso-Seq protocol uses Single-Molecule Real-Time (SMRT) long-read sequencing of cDNA to obtain sequences of full-length RNA transcripts ${ }^{74}$. Here, we integrate Iso-Seq data with Illumina RNA-Seq and deepCAGE data to globally elucidate viral transcript structure with a high degree of confidence.

Iso-Seq interrogation of the lytic EBV transcriptome

We crosslinked the B-cell receptors of Akata cells using anti-IgG to induce lytic reactivation using the same method as in Chapter 2. RNA was harvested at 20 and 24 hours, pooled and subjected to the Iso-Seq protocol. Raw SMRT read data was processed to obtain a set of consensus "full-length" isoforms (CFLs) using RS_IsoSeq on SMRTPortal version 1. The CFLs were mapped to both the human (hg 19 assembly) and EBV Akata (KC207813.143) genomes. Approximately 6% of the CFLs mapped to the EBV genome, consistent with results obtained with Illumina RNA-Seq reads (Figure 14A, Tables II \& III) ${ }^{34,73}$. CFLs were substantially longer than the 101-base Illumina RNA-Seq reads, with mapped CFL length ranging from 300 to 16,430 bases. The median length of mapped CFLs was 1,335 bases, and the length distribution was similar between CFLs mapped to the EBV genome and CFLs mapped to the cellular genome (Figure 14B). Size fractionation helped to reduce the bias toward sequencing smaller transcripts (Figure 15).

Figure 14. Long-read sequence mapping data and transcript identification and validation strategy. See also Figures S1, S2 \& S3. (A) Percentages of consensus fulllength isoforms mapped to cellular and EBV genomes. (B) Length distributions of consensus full-length isoforms mapped to cellular and EBV genomes. Blue boxes represent second and third quartiles, horizontal black lines indicate mean.
(C) Proportion of expressed annotated transcripts that are represented by full-length sequenced isoforms as a function of transcript length. (D) TRIMD data integration/transcript feature validation strategy. (E) Example of TRIMD validated cellular transcripts.

The Iso-Seq protocol was developed to sequence full-length RNA molecules ${ }^{74}$. To estimate the extent to which full-length transcripts are captured by the CFL dataset, we used a set of well-characterized cellular transcripts (RefSeq transcripts with Reviewed or Validated status).

We considered a cellular transcript to have full-length Iso-Seq coverage if a CFL's 5' and 3' ends matched the annotated transcript's 5' and 3' ends. We considered a cellular transcript to have partial Iso-Seq coverage if a CFL's 3' end matched the annotated transcript's 3 ' end but

Figure 15. Length distribution of Iso-Seq CFLs from different size fractions. 1-2 kb and 2-3 kb fractions were sequenced on two SMRT cells each. NSS $=$ Non-size-selected fraction, sequenced on four SMRT cells.
the CFL's 5' end did not match the annotated transcript's 5' end, and the annotated transcript had Illumina RNA-Seq reads mapping near its 5' end. We observed that the majority of transcripts shorter than 1,000 bases were represented by full-length CFL coverage, but that the proportion of transcripts with fulllength coverage decreased with increasing transcript length (Figure 14C).

Visual inspection of CFLs mapped to both the cellular and EBV genomes revealed CFLs that closely matched annotated genes and CFLs that appeared to represent novel isoforms (Figure 16). However, other CFLs had 5 ' ends that mapped progressively downstream of the annotated 5' end, suggesting that they represent the artifactual result of strand invasion during cDNA synthesis ${ }^{92}$. We also observed some CFLs with apparent splice junctions that were unannotated and noncanonical, and were only supported by a single SMRT read. We concluded that additional information from alternate platforms was necessary in order to determine with high confidence which CFLs could be interpreted as accurate full-length representations of transcripts.

Transcriptome Resolution through Integration of Multi-platform Data (TRIMD)

In order to identify 5^{\prime} ends, splice junctions and 3 ' ends with more certainty than can be obtained with Iso-Seq alone, we developed a method to integrate information from three distinct platforms: Iso-Seq, Illumina RNA-Seq and deepCAGE ${ }^{75}$. As described in the following sections, we validated transcript features (5^{\prime} ends, 3^{\prime} ends and splice junctions), each using multiple data sources, then used these sets of validated features to identify CFLs that represent true transcripts (Figure 14D). When applied to cellular transcripts this method performed well, identifying CFLs that closely match annotated transcripts as well as novel splice isoforms and isoforms using alternative transcription start sites and transcription termination sites (Figure 14E, F \& G). The development of software to implement TRIMD is described in

Chapter 4.

Figure 16. CFLs mapping to the cellular gene RNF167. CFLs appear to represent the annotated transcript and possible isoform variants, as well as splice junctions and 5' truncations that are likely artifacts.

Identification of transcription start sites in the lytic EBV genome

To gain more information about transcription start sites, we used deepCAGE (Cap Analysis of Gene Expression) ${ }^{75,93}$. This method makes use of the CAP-trapper protocol ${ }^{94}$, a method that acquires RNA fragments near their 5' caps. Iso-Seq, in contrast uses SMART (Switching Mechanism at 5' End of RNA Template) cDNA synthesis ${ }^{95}$ to identify transcript 5' ends. The substantially different mechanisms employed by deepCAGE and Iso-Seq lends confidence to start sites identified by both methods. Notably, the Iso-Seq 5' ends that appear to represent truncation artifacts are not typically supported by deepCAGE (data not shown).

To identify 5' start sites supported by both Iso-Seq and deepCAGE, we began by analyzing data from each method independently. We treated Iso-Seq 5' ends mapping within 8 bases of each other on the genome as start site clusters and calculated the chromosomal coordinate average of each cluster, weighted by SMRT read depth, to determine consensus Iso-Seq start sites. For deepCAGE data, we used the Paraclu algorithm ${ }^{96}$ to identify clusters then calculated chromosomal coordinate averages weighted by CAGE tag depth to identify CAGE start sites. Iso-Seq consensus start sites that were supported by CAGE start sites within 3 bases were considered validated transcript 5' start sites.

238 transcription start sites in the EBV genome are supported by both Iso-Seq and deepCAGE, a number more than three times higher than the number of EBV start sites annotated in GenBank (Figure 17A and Appendix 6). The majority (191) of these validated start sites are unannotated. We also validate 47 GenBank-annotated start sites. Many of these were annotated originally based on the location of TATA boxes in the genomic

Figure 17. Validation of EBV transcript features. See also Figures S4 \& S5. (A) Validation of 5’ starts. Pie chart indicates annotation status of validated 5' starts. "GenBank Refined" includes start sites previously annotated at TATA boxes and more accurately identified in this study. Bar chart indicates the number of GenBank-annotated 5' starts validated in this study (stippled = refined). Genome browser panel shows examples of validated 5' starts for the GenBank annotated BVRF2 and BVLF1 genes. (B) Validation of splice junctions. Pie chart indicates annotation status of validated splice junctions. Bar chart indicates the number of GenBank-annotated splice junctions validated in this study. Genome browser panel shows example validated splice junctions (thickness of splice junction features represents combined depth of Illumina RNA-Seq reads and SMRT circular consensus sequence reads). (C) Validation of 3' ends. Pie chart indicates annotation status of validated 3' ends. "GenBank Refined" includes end sites annotated at canonical polyadenylation signals that are more accurately identified in this study. Bar chart indicates the number of GenBank-annotated 3' ends validated in this study (stippled = refined). Genome browser panel shows example validated 3' ends for the GenBank annotated BVRF2/BdRF1 and BILF2 genes.
sequence ${ }^{43,97}$; using this empirical evidence we update the annotation to provide more accurate start sites (for updated annotation see Appendix 10). Also, several of the novel transcription start sites identified here appear to be associated with annotated open reading frames for which transcription start sites could not previously be identified because of the
absence of canonical TATA boxes immediately upstream (see Figure 17A, right panel).
Although this study substantially increases the number of known EBV transcription start sites, not all start sites were detected by this method. The start sites of annotated transcripts that are very long or that are latencyassociated were not as reliably detected in this study as those from shorter, lytic transcripts (Figure 18).

Many deepCAGE-identified 5' ends did not correspond to Iso-Seq identified 5' ends (Figure 19); these likely represent 5 ' ends of longer and/or non-polyadenylated transcripts, which are not well detected by the Iso-Seq protocol.

Figure 18. Annotated EBV 5' start sites validated by TRIMD. (A) Percentage of GenBank-annotated start sites for lytic- and latency-associated transcripts validated by TRIMD (B) Percentage of GenBank-annotated start sites for transcripts under or over 2000 bases long validated by TRIMD.

Identification of splice junctions in the lytic EBV genome

We used Illumina RNA-Seq data in conjunction with Iso-Seq CFLs to investigate splice junctions in the EBV transcriptome. Information about detected splice junctions was compiled from multiple sets of RNA-Seq data derived from Akata cells at various time points before or after BCR crosslinking. Splice junctions detected in both one or more IsoSeq CFLs and one or more Illumina RNA-Seq reads were considered validated. As in the Illumina RNA-Seq analysis in Chapter 2, we identified a much higher number of splice junctions than is annotated: a total of 226 splice junctions were supported by both Iso-Seq and Illumina RNA-Seq (Figure 17B and Appendix 7). This confirms 19 splice junctions that

Figure 19. Start sites identified by deepCAGE. (A) 5' start sites detected by deepCAGE only, and by both deepCAGE and Iso-Seq. DeepCAGE-identified start sites in genomic repeat regions are excluded. (B) Examples of deepCAGE peaks both supported by Iso-Seq and unsupported by Iso-Seq.
have been reported using Illumina RNA-Seq or other methods ${ }^{34,7,9,9-101} .27$ GenBankannotated splice junctions were validated, including all 7 junctions associated with annotated lytic transcripts and 20 junctions annotated in latency-associated transcripts. 180 novel splice junctions were validated, many at sequencing depths comparable to annotated splice junctions (see Figure 17B, right panel).

Identification of polyadenylation sites in the lytic EBV genome

As with 5 ' ends, we treated Iso-Seq 3' ends mapping within 8 bases of each other on the genome as single putative polyadenylation sites and calculated chromosomal coordinate averages weighted by SMRT read depth to identify consensus polyadenylation sites. To locate putative polyadenylation sites in Illumina RNA-Seq data, we used a modification of the approach used in Chapter 2 to identify partial poly(A) tails captured in sequencing reads. Clusters of poly(A) tail-containing reads mapping to within 8 bases of each other were identified and weighted average chromosomal coordinates calculated as for Iso-Seq ends. Iso-Seq consensus 3' ends within 8 bases of Illumina polyadenylation sites were considered validated 3^{\prime} ends.

This approach validated 54 polyadenylation sites (Appendix 8). In contrast to validated transcription start sites and splice junctions, most of the validated polyadenylation sites corresponded to 3^{\prime} ends already annotated in GenBank (Figure 17C). Similarly to transcription start sites, most 3' ends are annotated in GenBank based on genomic sequence motifs, in this case canonical AATAAA or AAUAAA polyadenylation signals ${ }^{43,97}$. We are now able to provide refined polyadenylation sites based on empirical evidence for 32 annotated GenBank 3' ends. Additionally, some of the unannotated polyadenylation sites are downstream of open reading frames for which transcription termination sites could not previously be estimated because of the lack of immediate downstream canonical polyadenylation signals (see Figure 17C, right panel for an example).

Isoform structure determination and annotation

We used the sets of validated transcription start sites, splice junctions and polyadenylation sites to determine which CFLs could be treated as fully validated transcript structures. At this step, 7,906 CFLs that mapped to the EBV genome were filtered and condensed to a final list of 353 distinct isoforms (Figure 20A: see Chapter 4 for more details). 59 of these correspond to GenBank annotated transcripts (Figure 20B \& C). Most annotated transcripts that were not validated are either very long or are latency-associated.

294 of the validated isoform structures were novel (Figure 20B and Appendix 9). These include splice variants of annotated transcripts, isoforms that extend or truncate annotated transcripts, chimeric transcripts produced by readthrough transcription and intergenic

Figure 20. Novel validated viral transcripts. See also Figures S6 \& S7. (A) Top track displays EBV-Akata GenBank annotated gene and structural features. Bottom track displays novel validated EBV transcripts identified in this study. (B) Annotation status of TRIMD-validated transcripts. (C) Number of GenBankannotated transcripts validated in this study. (D) Coding potential of novel EBV transcripts as determined by CPAT.
splicing, and wholly novel transcripts that arise from a novel transcription start site, span a putative intergenic region and terminate at a novel polyadenylation site. Nearly one quarter of the novel transcripts are likely noncoding (Figure 20D).

We provide a naming scheme for the novel transcripts based on the existing naming scheme for EBV genes ${ }^{40}$. The first two letters correspond to the genomic BamHI restriction fragment in which transcription initiates: e.g., BC is BamHI fragment C and Ba is BamHI fragment a. The next letter is R for Rightward transcripts (i.e., annotated on the plus strand)
or L for Leftward transcripts (i.e., annotated on the minus strand). The final letter in our
naming scheme is T for Transcript: the original naming scheme is based on protein-coding genes and uses F for reading Frame. We begin numbering our validated transcripts where the GenBank annotation numbering ends for each fragment. For example, BBRF3 is an annotated gene and we present here novel transcripts we designate BBRT4, BBRT5, etc.

Novel intergenic transcription of the lytic EBV genome

BCLT2, 3 and 4 are a set of overlapping transcripts that do not share any sequence with annotated EBV transcripts. They arise from three novel transcription start sites in the vicinity of, but antisense to the latency-associated Cp promoter, are transcribed through a putative intergenic region, and terminate at a shared polyadenylation site antisense to the viral IL10 homolog BCRF1 (Figure 21A). To gain insight into the possible functions of these transcripts we investigated the timing and context of their expression, their coding potential and their subcellular localization. Strand-specific qRT-PCR using primers to an overlapping region of BCLT2 and BCLT3 showed substantially higher abundance after BCR crosslinking in both Akata and Mutu cells (Figure 21B). Little or no BCLT2/3 expression was detected in the type III latency cell lines JY and X50-7, supporting lytic-specific induction of these transcripts. Also, no evidence of BCLT2-4 expression was detected by SMRT long-read sequencing of the type III latency cell lines GM12878, GM12891 and GM12892 ${ }^{102}$ (data not shown). Quantification of RNA-Seq reads from poly(A)-selected RNA harvested from Akata cells at multiple time points showed Illumina RNA-Seq read coverage in this region peaking at 24 hours after induction, consistent with Late gene expression (Figure 21C). Sequence analysis of BCLT2-4 using the Coding Potential Assessment Tool (CPAT) ${ }^{103}$ indicated all three transcripts are likely noncoding, though a small open reading frame is present in BCLT3 and BCLT4 (Figure 21A). Strand-specific qRT-PCR of RNA extracted

Figure 21. Novel intergenic transcripts. (A) Genome browser visualization of BCLT2-4 transcripts and supporting evidence. Grey shaded track displays GenBank-annotated features. (B) Strand-specific qRTPCR of BCLT2/3 in Akata, Mutu, JY and X50-7 cells. LI = type I latency , LIII = type III latency (C) Normalized Illumina RNA-Seq read counts of BCLT2/3/4 at multiple time points after induction. TPM $=$ transcripts per million. (D) Strand-specific qRT-PCR of nuclear and cytoplasmic fractions of induced Akata cells (24 h). (E) FISH and immunofluorescence of BCLT2/3/4 and EBV nuclear protein BMRF1.
from nuclear and cytoplasmic fractions of 24-hour induced Akata cells indicated strong nuclear enrichment of these transcripts (Figure 21D). This was confirmed by FISH using a set of fluorescently labeled probes targeting all three transcripts (Figure 21E). Simultaneous immunolabeling of the viral nuclear protein BMRF1 showed some degree of overlap with the BCLT2-4 transcripts. BMRF1 is known to be associated with newly synthesized viral
genomes ${ }^{104,105}$: colocalization with this protein suggests that BCLT2-4 transcripts may also associate with newly replicated viral DNA.

Readthrough transcription

Transcription start sites and polyadenylation sites shared by multiple transcripts are common in the EBV transcriptome (see, e.g., Figure 20A). The transcription start site upstream of the BZLF2 open reading frame is a striking example of this, giving rise to over 30 distinct transcripts (Figure 22). This transcription start site is not supported by a canonical TATA box and as such was not previously annotated; nevertheless the SMRT read and CAGE tag depth for this site is greater than that of any other EBV transcription start site detected in this study.

Only two of the transcript structures originating at this site contain the full BZLF2 open reading frame. These transcripts are unspliced and terminate at a pair of polyadenylation sites 23 bases apart, approximately 2 kb downstream of the transcription start site (Figure 22). Interestingly, both also contain the novel open reading frame antisense to EBNA3C that was described in Chapter 2 (Figure 9). This open reading frame begins approximately 350 bases downstream of the BZLF2 translation stop codon and is larger than BZLF2. It is possible that these transcripts, like others previously identified in $\mathrm{EBV}^{106,107}$, are bicistronic.

Most other isoforms arising from this locus are the result of transcriptional readthrough that bypasses both of the BZLF2-proximal polyadenylation sites. Several transcripts continue to bypass further polyadenylation sites, with some finally terminating nearly 19 kilobases downstream at a polyadenylation site shared with the BSLF2/BMLF1 mRNA. This

Figure 22. Readthrough transcription and intergenic splicing at the BZLF2 locus. From top: GenBank gene annotation, TRIMD-validated polyadenylation sites, Illumina short-read coverage of induced Akata cells with negative control GapmeR (green tracks) and induced Akata cells with GapmeR targeting BZLT12-22 (red tracks), novel validated isoforms (blue transcript features). Black arrows indicate transcripts whose largest ORF is an in-frame fusion.
transcriptional readthrough allows for intergenic splicing including, intriguingly, splicing that preserves partial or full open reading frames of annotated genes. Three isoforms (indicated by black arrows in Figure 22) are candidate mRNAs coding for chimeric proteins that contain protein structure from both BZLF2 and BLLF1.

A group of overlapping BZLF2-readthrough transcripts terminates at the unannotated polyadenylation site antisense to EBNA3B that was described by 3' RACE in Chapter 2
(Figure 8A). We designed a GapmeR antisense oligonucleotide targeted to an overlapping region of these transcripts and treated Akata cells with either this GapmeR or a negative control GapmeR prior to BCR crosslinking. Illumina short read RNA-Seq of poly(A)selected RNA harvested from these cells 24 hours after crosslinking revealed an interesting effect on transcripts from this locus: short-read coverage was substantially decreased over a large region of the EBV genome, much more extensive than that covered by the targeted isoforms (Figure 22, green and red coverage tracks). The pattern of coverage suggests that the GapmeR is strongly inhibiting a 12 kilobase, unspliced transcript that arises from the BZLF2-associated transcription start site and terminates at the BLLF1-associated polyadenylation site. Given the decrease in full-length CFL coverage for long transcripts (Figure 14C), a transcript of this length is unlikely to be detected by the Iso-Seq method. Interestingly, very long transcripts antisense to latency loci have also been reported in $\mathrm{KSHV}^{31,33}$.

EBNA3 antisense transcript structures

Despite relatively low Iso-Seq coverage across the EBNA loci, we were able to determine the isoform structures of several of the transcripts detected by RACE in Chapter 2 (Figures 7A, 8A and 23). The novel transcript BELT4 arises from a RACE-identified transcription start site antisense to EBNA3A (Figure 23A). It does not terminate at the pileup of poly(A)containing Illumina short reads depicted in Figure 7A but extends further downstream, utilizes an unannotated splice junction reported by Concha et al. ${ }^{34}$ and terminates at the BLLF1/2-associated polyadenylation site (Figure 23A and data not shown). BELT4 contains the full BLLF2 open reading frame. Two additional transcription start sites in the region give rise to additional isoforms (BLLT4-9). Interestingly, all of the isoforms arising antisense to

B

Figure 23. TRIMD-validated transcripts at the EBNA loci. Transcripts indicated with black arrows were partially described in Chapter 2, Figures 7 \& 8. (A) Validated splice junctions and transcripts at the EBNA3A locus. Splice junctions with * were detected in Chapter 2 and depicted in Figure 12. (B) Validated transcripts at the EBNA3B locus.
the coding exons of EBNA3A contain open reading frames: this locus appears to be a collection of 5' UTR-variant mRNAs coding for BLLF1 (gp350/220) and BLLF2.

Antisense to the coding exons of EBNA3B we identify several overlapping transcripts that originate at the BZLF2-associated transcription start site as discussed above (Figure 22), and also several shorter, unspliced transcripts (Figure 23B). 5' RACE and 3' RACE in Chapter 2 revealed a transcription initiation site and a polyadenylation site (Figure 8A); TRIMD confirms that the transcript BELT1 uses both of these sites (Figure 23B). Another transcript, BELT2, also arises from this start site and is spliced nearly 11 kilobases downstream to the BSLF2 open reading frame. A further transcription start site downstream of the first gives rise to the overlapping BELT3 transcript.

EBNA3 sense transcript structures

EBNA3A, EBNA3B and EBNA3C transcripts are annotated as arising from the Cp promoter, containing a repeating set of exons denoted as W1 and W2, then a pair of nonrepeat exons known as Y 1 and Y 2 , and finally terminating with their individual coding exons ${ }^{108,109}$. Under type I latency conditions in the Akata cell line the EBNA3 transcripts are not expressed (Table I). Expression of these genes has been reported by others during viral reactivation ${ }^{23,24}$, and we see Illumina short read coverage across the expected exons (data not shown). However, no Iso-Seq CFLs contained full-length annotated transcripts of the EBNA genes, likely because these transcripts are very long, ranging from 4,814 to 8,265 bases.

5' RACE experiments in Chapter 2 (Figure 7A) supported the existence of novel transcripts overlapping EBNA3A in the sense direction. Using TRIMD, we determined the full structure of one such transcript partially described by RACE: BLRT5 (Figures 23A and 7A). Interestingly, BLRT5 and four other overlapping isoforms (BLRT4, BERT1, BERT2 and BERT3) contain truncated versions of the EBNA3A open reading frame (Figure 23A). Truncated versions of EBNA2 and EBNA3C were also identified (data not shown).

Programmed exon skipping in W-repeat transcripts

While full-length annotated EBNA transcripts were not identified by Iso-Seq in reactivated Akata cells, many Iso-Seq CFLs do contain exons transcribed from the W repeat region (Figure 24A). Unexpectedly, these transcripts uniformly exclude W2 exons and do not splice to the Y 1 or Y 2 exons or the unique EBNA exons. Instead, each CFL contains multiple W1 exons and terminates with an exon encompassing the BHRF1 open reading frame. This is distinct from transcript structures detected by long-read sequencing in the type III latency LCLs GM12878, GM12892 and GM12891, which contain the expected W1-W2 splicing pattern and show no evidence of upstream splicing in the annotated BHRF1 transcripts (Figure 24A) ${ }^{102}$.

BHRF1 transcripts containing both W1 and W2 exons have been reported under latency conditions ${ }^{110-112}$, suggesting that the exclusion of W2 exons is a phenomenon associated with viral replication. To further investigate this possibility we performed qRT-PCR using primers spanning the W1-W1, W1-W2 and W1-BHRF1 splice junctions in type I latency (Akata and Mutu cells), viral reactivation (BCR-crosslinked Akata and Mutu cells) and type III latency (JY and X50-7 cells - Figure 24B). As expected, little or no W1-W1 and W1-BHRF1 splicing

Figure 24. Programmed exon skipping in the W repeat region. (A) Genome browser visualization of CFLs mapping to the W repeat region and/or BHRF1 gene in induced Akata cells and lymphoblastoid cell lines. (B) qRT-PCR using primers spanning the indicated splice junctions in Akata, Mutu, JY and X50-7 cells. LI = type I latency, LIII = type III latency, Lytic refers to 24 or 48 h induction in Akata and Mutu cells.
(C) Time course analysis of splice junction reads in polyA+ RNA from Akata cells. (D) Splice junction reads detected in polyA+ RNA from the type III latency cell line, JY.
was detected during either type of latency, but the abundance of both splice junctions was substantially increased during reactivation. Canonical W1-W2 splicing was detected at high levels in the type III latency cells relative to the type I latency cells. A substantial increase in W1-W2 splicing was also detected during viral reactivation by qRT-PCR, despite its absence from Iso-Seq data during reactivation. This is consistent with W1-W2 splicing being present in very long EBNA transcripts, which are unlikely to be detected by Iso-Seq.

Illumina short read sequencing from multiple time points following BCR crosslinking in Akata cells provides more information about the temporal dynamics of splicing in this region (Figure 24C). The annotated EBNA-associated splice junctions W1-W2, W2-W1, C2W1 and W0-W1 increase steadily throughout reactivation, even as the levels of viral transcription drop by 48 hours. Reactivated Akata cells have been shown to remain viable for at least 72 hours after BCR crosslinking ${ }^{23}$ and this evidence suggests that at least some Akata cells enter the type III latency phase after BCR crosslinking, as reported by Rowe et al. ${ }^{82}$ In contrast, the depth of coverage for the novel W1-W1 and W1-BHRF1 splice junctions increases after crosslinking to a peak at 24 hours, then decreases. Short-read sequencing from the type III latency JY cell line provides evidence supporting only the expression of annotated EBNA transcripts, with abundant splicing from W1-W2, C2-W1 and W2-Y1, and little or no splicing from W1-W1 or W1-BHRF1 (Figure 24D). Taken together, these results demonstrate distinct usage of the latency-associated W exons during viral reactivation.

Alternative promoter usage in LMP2 isoforms

The latency-associated gene LMP2 also undergoes significant transformations in its splicing pattern during viral reactivation, as demonstrated with Illumina short read sequencing ${ }^{34}$. Long-read sequencing with Iso-Seq confirms the presence of unannotated splice junctions and also reveals a previously undetected layer of complexity: that of alternative promoter usage. (Figure 25A). Strikingly, no Iso-Seq CFLs from BCR-crosslinked Akata cells are consistent with transcription initiation at the annotated transcription start site. No deepCAGE-derived transcription start sites are present at that location either (data not shown). In contrast, SMRT sequence reads from the type III latency LCLs GM12878, GM12892 and GM12891 are all consistent with transcript initiation occurring at the annotated LMP2A transcription start site ${ }^{102}$ (Figure 25A).

Most CFLs that contain LMP2 exons initiate from one of several locations upstream of the annotated LMP2 transcription start site, and many also exhibit novel splicing upstream of the annotated LMP2 exons. Most of these novel splice junctions are supported by Illumina short reads (Figure 25B). We validated expression of several junctions by qRT-PCR using junction-spanning primers and found that their expression is limited to cells undergoing viral replication (i.e., BCR-crosslinked Akata and Mutu cells - Figure 25C). We next performed qRT-PCR on RNA from nuclear and cytoplasmic fractions of BCR-crosslinked Akata cells (Figure 25D). We found the upstream junction associated with the only CFL that contained the full LMP2 reading frame (E in Figure 25) to be the most strongly enriched in the cytoplasm, suggesting that this isoform is exported to the cytoplasm for translation while others are retained in the nucleus for other functions. These findings demonstrate the remarkably complex nature of the lytic LMP2 locus, where alternative promoter usage and
alternative splicing lead to the production of a diverse group of LMP2 isoforms that occupy different cellular locations.

Figure 25. Complex lytic promoter usage for LMP2 transcripts. (A) Genome browser visualization of CFLs mapping to the LMP2 exons in induced Akata cells and lymphoblastoid cell lines. Arrows positioned at the beginning of reads signify those with validated 5’ ends. (B) Splice junction read depth for SMRT circular consensus and Illumina short-read sequencing. Labels A through E refer to junctions indicated below GenBankannotated gene track in (A). (C) PCR using junction-spanning primers in Akata, Mutu, JY and X50-7 cells. Akata + alphaIgG and Mutu+alphaIgM refer to Akata and Mutu cells induced for 24 and 48 h , respectively. (D) qRT-PCR of nuclear and cytoplasmic fractions of induced Akata cells (24 hours).

CHAPTER 4

Development of an algorithm to automate transcript structure determination and annotation

Efficiently parsing and integrating multiple data types at the genome scale requires automation. We implemented the TRIMD method with Perl scripts for our analysis of the lytic EBV genome (Figure 14D). Because the TRIMD concepts can be generalized to apply to other genomes the scripts were developed to be flexible and customizable, with easily adjustable parameters to accommodate the particularities of other genomes and datasets. The full suite of TRIMD scripts and documentation will be available under the GNU General Public License ${ }^{113}$ at https://github.com/flemingtonlab/public and is reproduced here as Appendices 1-5.

The TRIMD scripts were developed assuming that Iso-Seq, deepCAGE and Illumina shortread RNA-Seq data are processed according to the steps described in Chapter 5 (Materials and methods. Other programs and parameters may be used providing the output files are in the same format.

Transcription start site identification using TRIMD_start_validator.pl

The script TRIMD_start_validator.pl accepts as input a SAM file of mapped Iso-Seq CFLs, a SAM file of mapped CAGE tags, and a BED file of annotated polyadenylated transcripts.

Using the SAM file of mapped Iso-Seq CFLs, the script identifies CFLs that map to the user-specified chromosome and that are not softclipped at their 5' end. CFLs mapping to each strand are processed separately. The 5' start site of each qualifying CFL is identified and
its supporting SMRT read depth is extracted from the CFL name field. The number of SMRT reads supporting CFLs that start at each genomic coordinate are summed to produce a BedGraph file of CFL start sites. The script then uses this BedGraph file to identify clusters of CFL start sites, defining start sites within a user-specified distance of each other (default: 8) as single putative start sites and producing a temporary BED file of CFL start site clusters. Next, the script uses the cluster information in the temporary BED file and the start site read depth information in the BedGraph file to calculate an average of the genomic coordinates in each cluster, weighted by the depth of SMRT read starts at each position within the cluster. This weighted average is taken to be the Iso-Seq consensus start site for that cluster and a BED file of consensus Iso-Seq start sites is generated. The name field of each feature in this BED file includes the genomic coordinates of the entire cluster and the total SMRT read start site depth of the cluster. The coordinates reported in the BED file's chrStart and chrEnd fields represent the weighted average consensus start site and are zerobased, half-open relative to the genome while cluster coordinates in the name field are zerobased for plus strand start sites and one-based for minus strand start sites.

To identify putative start sites in the deepCAGE data TRIMD_start_validator.plincorporates the clustering algorithm Paraclu ${ }^{96}$. The script first processes mapped CAGE tags from the CAGE SAM file and formats the data for Paraclu by identifying tag start sites in the same way as for Iso-Seq CFLs (above). The script also collates this start site information into a BedGraph file that can be directly visualized on a genome browser. The Paraclu function of the script generates start site clusters and TRIMD_start_validator.pl filters the Paraclu output according to user-specified parameters (see Appendix 5, TRIMD_README.txt). A temporary BED file of CAGE start site clusters is generated and a weighted genomic
coordinate average calculated for each cluster as for Iso-Seq 5' ends (above). These weighted averages are taken as putative start sites detected by deepCAGE and a BED file is generated as for Iso-Seq start sites above.

TRIMD_start_validator.pl then compares each feature in the BED file of Iso-Seq identified start sites with the features in the BED file of deepCAGE-identified start sites. Iso-Seq 5’ start sites that are supported by a deepCAGE 5' start site within a user-specified distance (default: 3 bases) are considered validated 5' start sites and are printed to a BedDetail file, with information about the range and depth of the Iso-Seq start site cluster included in the sixth BedDetail field.

Finally, the list of annotated start sites is extracted from the user-supplied annotation file and each validated start site is compared to the annotated start sites. Validated start sites within a user-specified distance of annotated start sites (default: 10) are noted as annotated in the name field of the output BED file, others are noted as novel (see Appendix 6 for an example of the format). The script also provides the user with counts of total, annotated and novel 5' start sites validated, both in the terminal window and a separately generated text file.

Many parameters in TRIMD_start_validator.pl are adjustable; for example greater SMRT read or CAGE tag depth can be required for datasets that appear to contain a large number of background reads. The BedGraph files of Iso-Seq and CAGE start sites, as well as the BED files of start sites identified in either or both datasets, are useful for researchers to visually inspect the data and select suitable parameter values.

Splice junction identification using TRIMD_junction_validator.pl

The script TRIMD_junction_validator.pl accepts as input a file of splice junctions identified in Iso-Seq CFLs (in the format output by the GMAP aligner ${ }^{114}$), a file of splice junctions identified in Illumina RNA-Seq reads (in the format output by the STAR aligner ${ }^{15}$), a BED file of annotated polyadenylated transcripts and, optionally, a BED file of genomic regions to ignore in the analysis (e.g., repeat regions).

The script first compiles and reformats information about splice junctions detected by IsoSeq. Splice junctions corresponding to the user-specified chromosome are identified and the total SMRT read depth for each of these junctions is determined. This information is included in a BED file of Iso-Seq-identified junctions, in which chrStart and chrEnd coordinates of each junction feature refer to the first and last bases of the excised intron. If the user has supplied a BED file of genomic regions that are to be ignored, splice junctions with donors and/or acceptors in those regions are removed. Next an analogous process is carried out using the Illumina splice junctions file, converting relevant junctions to BED format and removing those in user-excluded regions.

After the BED files are generated containing lists of introns from Iso-Seq and from Illumina RNA-Seq, the script compares the junctions in the two files. Junctions that are detected by each platform with at least the user-specified depth requirements (default: 1 read from each platform) are considered validated. Lastly, annotated splice junctions are extracted from the user-specified annotation file and compared to the validated splice junctions. Annotated junctions are indicated as such in the BED output file and other junctions are indicated as
novel. The script also provides the user with counts of total, annotated and novel splice junctions validated, both in the terminal window and as a separately generated file.

Polyadenylation site identification using TRIMD_end_validator.pl

The script TRIMD_end_validator.pl accepts as input a SAM file of mapped Iso-Seq CFLs, a SAM file of mapped Illumina RNA-Seq reads, and a BED file of annotated polyadenylated transcripts.

The script first extracts 3' ends of Iso-Seq CFLs using a method analogous to that used by TRIMD_start_validator.pl to extract 5' CFL start sites (see above). A BedGraph file of Iso-Seq 3^{\prime} ends is generated and used to identify clusters of 3^{\prime} ends within a user-specified distance of each other (default: 8 bases). Consensus end sites within the clusters are determined in the same way as for consensus start sites: by calculating an average of genomic coordinates for each cluster weighted by SMRT read depth. A BedDetail file of Iso-Seq consensus 3' ends is generated, with the chrStart and chrEnd fields representing the consensus polyadenylation site (zero-based, half open) and the sixth field containing information about the range and depth of the full cluster.

To identify transcript 3' ends in Illumina RNA-Seq data, TRIMD_end_validator.pl first identifies RNA-Seq reads that map to the user-specified chromosome and end with a run of the user-specified number of As (or start with the user-specified number of Ts - default 5), with at least a user-specified number of bases that do not match the genomic sequence (default: 2). These reads, which contain putative poly(A) tails, are added to a SAM file that is then sorted by genomic coordinate. The script then extracts the polyadenylation site (defined
as the last base of the read that aligns to the genome before the terminal mismatches) from each read in this SAM file and produces a BedGraph file. The BedGraph file is then used to extract clusters and calculate consensus polyadenylation sites in the same way as for Iso-Seq 3^{\prime} and 5' ends.

Next, TRIMD_end_validator.pl compares the consensus 3' ends from Iso-Seq and from Illumina RNA-Seq. Iso-Seq consensus 3' ends that are supported by Illumina RNA-Seq consensus 3 ' ends within a user-specified number of bases (default: 4 upstream or 10 downstream) are considered validated 3' ends. Validated 3' ends are added to a BedDetail file that has a sixth field containing information about the range and depth of the Iso-Seq cluster. Because Illumina RNA-Seq 3' end clusters were usually downstream of Iso-Seq 3' end clusters in our datasets, Illumina RNA-Seq 3 ' end coordinates are used as the validated 3' end coordinates (chrStart and chrEnd in the BedDetail file).

Lastly, annotated 3' end sites are extracted from the user-supplied annotation file and compared to the validated ends. Validated ends within the user-specified distance of annotated ends (default: 10 bases) are indicated as annotated in the output BED file, others are indicated as novel. Additionally, the script provides users with a count of total, annotated and novel validated 3^{\prime} ends, both in the terminal window and as a separately generated text file.

Many TRIMD_end_validator.pl parameters are adjustable, e.g. minimum SMRT read or Illumina RNA-Seq poly(A)-tail read depth. Output files useful for researchers to select new parameter values, if necessary, include BedGraph files of Iso-Seq and Illumina RNA-Seq
polyadenylation sites, a SAM file of poly(A) tail-containing Illumina RNA-Seq reads, and BED files of 3' ends detected with each platform.

Transcript structure validation with TRIMD_transcript_validator.pl

The final script in the TRIMD suite, TRIMD_transcript_validator.pl, uses the BedDetail files output by TRIMD_start_validator.pl, TRIMD_junction_validator.pland TRIMD_end_validator.pl to interrogate the SAM file of Iso-Seq CFLs. A BED file of annotated polyadenylated transcripts is also used as input, to determine the annotation status of validated transcripts.

First, the script converts CFLs in the SAM file to BED format. The script then uses this BED file to obtain the 5' start site for each CFL, and reads the BED file of validated starts to determine whether the CFL's start site is contained within a cluster that was identified by TRIMD_start_validator.pl as representing a validated 5’ start site. CFLs with validated 5’ start sites are stored in an array along with the genomic coordinate of the validated consensus start site.

TRIMD_transcript_validator.pl then extracts the 3' end of each CFL that has been determined to have a validated 5^{\prime} end. Each end is compared to the coordinate ranges in the supplied file of validated 3' ends, and CFLs with validated 5' start sites and 3' end sites are stored in a subsequent array, along with the genomic coordinates of the validated start and end sites.

The script next investigates splice junctions in CFLs whose starts and ends are validated. CFLs with validated starts and ends that do not contain splice junctions are considered fully validated and added to a temporary BED file. Splice junctions in CFLs that contain validated
starts and ends are compared to validated splice junctions from the user-supplied file. If all splice junctions in a CFL with a validated start and end are validated, the CFL is considered fully validated and is added to the temporary BED file of validated transcripts.

At this point the BED file output contains transcripts whose structures are validated, however the start and end sites of the CFLs may need to be adjusted by a few bases to match the validated consensus start and end sites. Also, the temporary BED file likely contains multiple validated transcripts that represent the same transcript, but differ by a few bases at the CFL level in their 5 ' starts or 3^{\prime} ends, or have minor sequence variation caused by sequencing error. TRIMD_transcript_validator.pl thus adjusts the start and end sites when necessary and compares the transcripts to each other. Transcripts whose splice junctions match each other, whose start sites arise from the same cluster of validated start sites and whose end sites arise from the same cluster of validated end sites are considered to represent the same transcript structure. Their SMRT read depth is summed and they are represented in the output BED file as a single transcript feature. The name of one of the contributing CFLs is retained as the transcript name, and the score is the sum of all SMRT reads contributing to the transcript.

Finally, the BED file of validated transcripts is compared to the user-supplied annotation file of known polyadenylated transcripts. Transcripts that match annotated transcripts within user-supplied parameters are noted as such, with the name of the annotated transcript prepended to the CFL name of the transcript. Annotated transcripts are assigned the display color for that transcript in the annotation file. TRIMD_transcript_validator.pl also provides the
user with the number of total, novel and annotated transcripts validated, both in the terminal window and as a separately generated text file.

Using a genome browser to visually inspect the BED file of validated transcripts in conjunction with the BED files of validated starts, ends and splice junctions can help the user in troubleshooting and identification of possible false negatives and false positives. Additionally, the source code of TRIMD_transcript_validator.pl can be manipulated to generate intermediate files (a BED file of CFLs with validated 5' starts, a BED file of CFLs with validated 5' starts and 3' ends, and/or a BED file of fully validated CFLs before coordinate refinement) Lines of code that should be "uncommented" in order to produce these intermediate files are identified with comments including the word "uncomment".

CHAPTER 5

Materials and methods

Cell culture

Akata, Mutu, JY and X50-7 cells were cultured in RPMI 1640 medium (Thermo Scientific, catalog no. SH30027) supplemented with 10% fetal bovine serum (FBS; Invitrogen-Gibco, catalog no. 16000), and 0.5% penicillin-streptomycin (pen/strep; Invitrogen-Gibco, catalog no. 15070), in a humidified incubator at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$.

Lytic cycle induction

Near-saturation cell cultures were diluted with equal volumes of fresh RPMI 1640 (with 10% FBS and 0.5% pen /strep) one day prior to induction. The next day, cells were pelleted and resuspended at a concentration of 10^{6} cells/ml in fresh RPMI 1640 (with $10 \% \mathrm{FBS}$ and 0.5% pen/strep) plus $10 \mu \mathrm{~g} / \mathrm{ml}$ of anti-IgG (for Akata cells - Sigma-Aldrich, catalog no. I2136) or $10 \mu \mathrm{~g} / \mathrm{ml}$ of anti-IgM (for Mutu I cells - Sigma-Aldrich, catalog no. I0759). For Illumina RNA-seq, Akata cells were harvested at 0 minutes (uninduced), 5 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 24 hours, and 48 hours after induction. Mutu cells were harvested at 0 hours (uninduced) and 24 hours. For Pacific Biosciences Iso-Seq, Akata cells were harvested at 20 hours and 24 hours. For deepCAGE Akata cells were harvested at 24 hours.

For phosphonoacetic acid (PAA) experiments, Akata cells were resuspended in media that contained either $200 \mu \mathrm{~g}$ of PAA/ml or no PAA in addition to anti-IgG. Cells were harvested 24 hours after treatment.

Transcript knockdown with GapmeR antisense oligonucleotides

GapmeRs targeted to the BZLT12-22 transcripts (sequence: TTTGGCCAGTCTTAAT) were designed and ordered from Exiqon. For knockdown, Akata cells were pelleted and resuspended in RPMI 1640 medium supplemented with 10% FBS (no antibiotic) and maintained in antibiotic-free medium for at least 2 days. For transfection, 3×10^{6} cells per treatment were pelleted and resuspended in $100 \mu \mathrm{l}$ Nucleofector Solution R (Lonza catalog no. VVCA-1001) with 600 pmol targeted GapmeR of negative control GapmeR A (Exiqon, catalog no. 300613-04). Cells were electroporated using program G-16 and transferred to a 6-well plate containing warm RPMI $1640+10 \%$ FBS. On the following day an equal volume of RPMI $1640+10 \%$ FBS, with $10 \mu \mathrm{~g} / \mathrm{ml}$ anti-IgG or no anti-IgG was added to each well. 24 hours later the cells were harvested and RNA extracted (below).

RNA extraction

RNA was extracted with TRIzol reagent (Life Technologies, catalog no. 15596-018) according to the vendor's protocol. Nuclear and cytoplasmic RNA isolation for qRT-PCR was carried out using a cytoplasmic and nuclear RNA purification kit from Norgen Biotek (catalog no. 2100).

Illumina RNA-seq

RNA samples were treated with RNase-free DNase (Qiagen, catalog no. 79254 or Ambion, catalog no. AM1906) according to the vendor's protocol, then either poly(A)-selected or ribodepleted (Ribo-Zero; Epicentre, catalog no. MRZH11124) and prepared using the TruSeq stranded protocol (Illumina, catalog no. RS-930-2001). Ribodepleted samples underwent 101 base single-end sequencing using an Illumina HiSeq 2000 instrument. Poly(A)-selected samples underwent 2×101 base paired-end sequencing using an Illumina HiSeq 2000 instrument. RNA samples from the GapmeR knockdown experiment were poly(A)-selected and underwent 101 base single-end sequencing. Poly(A) selection, library preparation and sequencing were performed by the University of Wisconsin Biotechnology Center, Madison, Wisconsin, USA.

Pacific Biosciences Iso-Seq

For Iso-Seq, polyadenylated RNA was first selected using a Poly(A)Purist MAG kit (Life Technologies, catalog no. AM1922). 7 ug of poly(A) RNA from the 20 hour induction time point and 3.3 ug of polyA RNA from the 24 hour induction time points were pooled. Library preparation and sequencing were performed according to the Pacific Biosciences Iso-Seq protocol by the Johns Hopkins Deep Sequencing and Microarray Core Facility, Baltimore, Maryland, USA. Eight SMRT cells were used: two with a 1-2 kb RNA fraction, two with a 2-3 kb RNA fraction and four with non-size-selected RNA. Raw data was processed using RS_IsoSeq on SMRTPortal version 1^{74} to obtain full-length consensus isoforms.

deepCAGE

For deepCAGE, nAnT-iCAGE libraries ${ }^{116}$ were prepared from RNA extracted from two parallel samples of induced Akata cells. From each sample a portion of the RNA was treated with DNAse (Ambion AM1906) and a portion not treated, for four total samples. Samples were subjected to 50 -base single-end sequencing using an Illumina HiSeq 2500 instrument. Library preparation and sequencing were performed by DNAform, Yokohama, Japan.

Data acquisition

Pacific Biosciences SMRT sequence data for type III latency lymphoblastoid cell lines was downloaded from NCBI SRA, accession number SRP036136 ${ }^{102}$. RNA-Seq data for JY cells was downloaded from NCBI SRA, accession number SRR364065 ${ }^{34,117}$.

Sequence Alignments

Illumina RNA-Seq reads were aligned using indexes containing both the human (hg19 assembly) and the Akata EBV (KC207813.143) genomes. For these analyses, the circular EBV Akata genome was split between the BBRF3 and BGLF3 genes (between positions 107954 and 107955) rather than the terminal repeats to allow for the detection of LMP2 transcripts, which span the terminal repeats. Alignments were performed as noted for different analyses using Novoalign version 2.08.02 (Novocraft; -o SAM -r R, default options), Bowtie ${ }^{118}$ version 2 (-library-type fr-firststrand, default options) and STAR ${ }^{115}$ version 2.3.01 (default options unless otherwise noted). For analyses that used both pairedend and single-end RNA-Seq data (see Chapter 2), only the first read of the paired-end sequencing data was analyzed in order to maintain consistency.

Pacific Biosciences Iso-Seq full-length consensus isoforms (CFLs) were aligned and mapped with GMAP ${ }^{114}$ release 2014-07-21 to the human (hg 19 assembly) and Akata EBV (KC207813.1 ${ }^{43}$) genomes. The circular EBV Akata genome was split as above between positions 107954 and 107955. Full-length isoforms unpolished by Quiver were used in these analyses as we observed that Quiver polishing sometimes obscured introns and prevented discrimination of overlapping transcripts in the gene-dense EBV genome. Only reads mapping to a single location were retained (argument -n 1).
deepCAGE tags were mapped with STAR version 2.3.01 (--outFilterMultimapNmax 100 -outSAMprimaryFlag AllBestScore, to allow detection of potential start sites in repeat regions).

For Pacific Biosciences SMRT sequence data from type III latency lymphoblastoid cell lines, reads were first oriented using their poly(A) tails. Reads ending with AAAAAAA and reads beginning with TTTTTTT were extracted. Reads beginning with TTTTTTT and their quality scores were reversed to produce fastq files of "sense" oriented RNA. These reads were then aligned with GMAP ${ }^{114}$ release 2014-07-21 to the Akata EBV (KC207813.1 ${ }^{43}$) genome, split as above between positions 107954 and 107955.

Strand specificity calculation for Illumina RNA-Seq

Strand specificity was determined using a set of highly-expressed cellular genes without known antisense transcription (GAPDH, ACTB, RPL8, EEF2, RPS6, RPLP1, GNB2L1 and PFN1). To confirm the absence of antisense transcription, Bowtie2/TopHat aligned reads
were visualized on the IGV genome browser ${ }^{119,120}$ and each gene was visually inspected for clusters of antisense reads that might represent previously unannotated antisense transcripts. No likely antisense transcript was discovered for these genes. To calculate strand-specificity, coverage files were generated using IGVtools ${ }^{119,120}$ from Bowtie2/TopHat aligned data, containing the number of reads covering each genomic coordinate for each strand of each gene. The gene coverage files were converted to exon coverage files using the BedTools command intersectBed ${ }^{121}$ and an exon bed file from the hg19 assembly of the human genome. At all nucleotide positions with 200 or more sense reads, the number of antisense reads was divided by the number of sense reads and multiplied by 100 to obtain the percent background antisense reads. The mean and standard deviation were then calculated to determine the average level and variability of antisense background.

Calculation of EBV-mapping reads and induction level

The number of single-end or first-in-pair reads aligned to the EBV genome by Bowtie2/TopHat with a primary alignment (SAM FLAG code 0 or 16) was divided by the total number of reads with a primary alignment on either genome and multiplied by 100 . To allow better comparison between poly(A)-selected and ribodepleted datasets, reads overlapping the highly-expressed, non-polyadenylated EBER genes were removed in both directions prior to calculating the percentage of reads mapped to EBV. The fold change between induced and uninduced conditions was calculated by dividing the percentage of reads mapped to EBV at 24 hours post-induction by the percentage of reads mapped to EBV at 0 minutes post-induction.

Determination of transcribed EBV genome loci

Coverage files containing the number of reads covering each EBV genomic coordinate were generated with IGVtools for each strand of the EBV genome from Bowtie2/TopHat aligned files. For the purposes of this analysis a nucleotide position was considered to be transcribed if it met both of the following criteria: 1) the number of reads mapping to the respective base was greater than 4 , and 2) the number of reads mapping to that base was higher than the expected antisense background from opposite strand reads (i.e., the opposite strand read numbers multiplied by the average antisense background) plus 4 standard deviations. Transcription was considered to be "known" if the base was contained within a GenBank-annotated exon (KC207813.143).

Quantification of gene expression using strand information

For the analysis in Chapter 2, expression levels of known EBV and cellular genes were quantified from Bowtie2/TopHat aligned files using SAMMate ${ }^{122}$. Quantification was made strand-specific by using a separate annotation file for each strand in conjunction with a SAM file containing only reads aligning to the strand matching the annotation file. To allow for direct comparison of RPKM (reads per kilobase of transcript per million mapped reads) values generated for different strands, these RPKM values were multiplied by the ratio of the sum of read counts for that strand (as determined by SAMMate) to the total number of mapped reads for both strands of the two genomes (as determined by Bowtie2/TopHat). Levels of antisense expression to known genes were quantified using the annotation file for one strand together with a SAM file containing only reads aligning to the opposite strand. Antisense RPKM values were corrected as described above. Non-strand specific expression
values for previously known genes were obtained in the poly(A)-selected dataset by combining sense and antisense read counts for each gene from strand-specific SAMMate output and dividing by the gene's transcript length in thousands and by the number of million mapped reads.

For the analysis in Chapter 3, transcript abundance estimates were generated from Illumina RNA-Seq reads using RSEM ${ }^{123}$ with an annotation file including the human genome GRCh38 assembly and GenBank Akata annotation (KC207813.143).plus transcript coordinates representing the novel transcript BCLT2.

Comparison of novel EBV gene expression to cellular transcript levels

Prior to the determination of the structures or the novel EBV transcripts, RPKM or TPM values could not be calculated to measure abundance at the transcript level. To compare EBV transcription levels with cellular transcription levels for the analysis in Chapter 2, perbase EBV read counts were first normalized by dividing by the total number of million reads mapped by Bowtie2/TopHat to either genome. This value is the Reads per Million mapped reads (RPM) at each position. To determine the expression level of the top quartile of cellular genes, cellular gene expression was quantified with SAMMate ${ }^{122}$ as described in the previous section. The strand-specific RPKMs for the plus and minus strand cellular genes were combined, genes with fewer than two reads aligning were removed, and the top quartile expression level was determined. To allow comparison of per-base EBV read levels to the top quartile of cellular genes, the RPKM value representing the $75^{\text {th }}$ percentile of cellular genes was converted to an RPM value by multiplying by 1000 and dividing by the read length (101).

Determination of Iso-Seq and Illumina RNA-Seq coverage of cellular genes

An annotation file of human (hg 19 assembly) RefSeq ${ }^{124}$ RNA transcripts with either Reviewed or Validated status was downloaded using the UCSC Table Browser ${ }^{125}$. A transcript was considered to have full-length Iso-Seq coverage if an Iso-Seq CFL's 5' and 3' ends mapped within 50 and 20 bp respectively of the annotated transcript's 5^{\prime} and 3^{\prime} ends. A transcript was considered to have partial coverage if an Iso-Seq CFL's 3' end aligned within 20 bp of the annotated transcript's 3 ' end, its 5' end did not map within 50 bases of the annotated transcript's 5' end, and at least five Illumina RNA-Seq reads mapped by STAR to the first exon within 100 bp of the 5 " end (this reduces false calls of "partial coverage" for non-expressed transcripts that share a 3' end with expressed transcripts).

Identification of transcription start sites

Iso-Seq full-length consensus isoform 5' ends mapping without softclipping to within 8 bp of each other on the genome were considered a single candidate transcription start site. The consensus transcription start sites were determined by calculating weighted averages of the start coordinates, with weighting based on the number of SMRT reads starting at each coordinate.

Clusters of start sites in mapped deepCAGE data were extracted using Paraclu ${ }^{96}$. Clusters were required to be less than 20 bases long, contain at least 15 CAGE tags and have a relative density fold change of at least 2 . Consensus transcription start sites were determined by calculating weighted averages of the start coordinates, with weighting based on the number of CAGE tags starting at each coordinate. Consensus start sites appearing within 2
bases of each other in at least three of the four CAGE samples were used to validate SMRT consensus transcription start sites.

SMRT consensus transcription start sites were considered validated if they were within 3 bases of CAGE consensus transcription start sites.

Identification of splice junctions

For the analysis in Chapter 2 splice junctions were identified using TopHat ${ }^{126}$ version 2.0.6 (default options). Splice junctions in the poly(A)-selected RNA dataset were reported if they were supported by at least 5 reads. Splice junctions in the ribodepleted dataset were reported if they were supported by at least 10 reads, because approximately twice as many reads from this dataset mapped to the EBV genome (see Table 2). Because 101-bp reads cannot be assigned definitively to specific splice junctions within the repeats, junctions with a donor and/or acceptor in the W-repeat region (bases 75265-98628 on the inverted Akata genome) were ignored in this analysis.

For the analysis in Chapter 3 splice junctions were identified by GMAP (argument -f introns) for Iso-Seq CFLs and by STAR version 2.3.01 for Illumina reads. Splice junctions were considered validated if they were detected by both Iso-Seq and Illumina RNA-Seq datasets. To find Illumina reads mapping to splice junctions in the IR1 W repeat region (bases 75265-98628 on the inverted Akata genome), the STAR outFilterMismatchNmax argument was set to 100 to report alignments for reads that mapped up to 100 times. A repeat splice junction was considered to have been detected by Illumina RNA-Seq if any of the set of possible alignments was reported by STAR. Illumina RNA-Seq read depth for
repeat splice junctions was normalized by dividing by the number of equivalent genomic alignments possible.

Identification of polyadenylation sites

For the analysis in Chapter 2 Illumina RNA-Seq reads with runs of 5 or more Ts at their 5’ end were extracted from Novoalign-generated SAM alignment files from ribodepleted RNA isolated from cells treated with anti-IgG for 24 hours. All reads with 5^{\prime} poly $(T) s$ were then m to the Akata genome using BLAST version 2.2.28+ ${ }^{127}$. Reads with mismatches at the first two or more positions of the read were identified as candidate poly(A) tail reads. Mapping data for this set of reads were then used to generate a BED file for visualization on a genome browser.

For the analysis in Chapter 3 a combined Iso-Seq and Illumina RNA-Seq approach was used. To identify 3^{\prime} ends represented in the Iso-Seq data, full-length consensus isoform 3' ends aligning within 8 bp of each other on the genome were considered a single candidate polyadenylation site. The consensus polyadenylation sites were determined by calculating weighted averages of the end coordinates, with weighting based on the number of SMRT reads ending at each coordinate. Next, Illumina RNA-Seq reads containing putative poly(A) tails were extracted from STAR-generated SAM alignment files using the following criteria: reads identified by FLAG code as being first-of-pair (for paired-end sequencing) that end with a run of at least 5 As , at least 2 of which are softclipped (plus strand) or that start with a run of at least 5 Ts , at least 2 of which are softclipped (minus strand). Illumina reads with putative poly(A) tails were extracted from 22 different RNA-Seq datasets representing multiple time points relative to anti-IgG induction, and both poly(A)-selected and
ribodepleted RNA preparations. The alignment position of the softclipped-adjacent bases was taken to represent a candidate polyadenylation site, with sites situated within 8 bases of each other considered single candidate polyadenylation sites. The Illumina consensus polyadenylation site was determined using a read-end-depth weighted average as for the IsoSeq isoform 3' ends (above). Candidate polyadenylation sites were considered validated if they were supported by at least 5 SMRT reads and the presence of an Illumina candidate polyadenylation site on the same strand within 4 bases upstream or 10 bases downstream. As Illumina consensus polyadenylation sites were almost always downstream of Iso-Seq consensus polyadenylation sites, the coordinate of the Illumina consensus polyadenylation site was considered to be the validated end coordinate

Transcript validation

Each Iso-Seq CFL was examined to determine whether its 5^{\prime} end, 3^{\prime} end and splice junctions (if any) met the criteria described above for validation. When reporting transcripts, 5' and 3' ends that formed part of validated consensus transcription start sites and polyadenylation sites were adjusted to match the validated consensus sites, if necessary. Finally, Iso-Seq CFLs that had matching validated transcription start sites, polyadenylation sites and splice junctions (if any) were collapsed into "validated transcripts".

Calculation of Coding Potential

For the analysis in Chapter 2 the coding potential of known and novel transcripts was calculated using the Coding Potential Calculator ${ }^{88}$. For transcripts with ambiguous 5' or 3^{\prime}
ends, several sequences of varying length were used as input. Representative results are shown.

For the analysis in Chapter 3 sequences of validated isoforms were analyzed for coding potential and the presence of open reading frames with the Coding Potential Assessment Tool ${ }^{103}$.

5' and 3^{\prime} RACE

5' and 3' RACE (Rapid Amplification of cDNA ends) was performed using the SMARTer RACE cDNA Amplification Kit (Clontech catalog number 634924). cDNA was prepared with Primer A or with Random Primer Mix to detect polyadenylated and non-polyadenylated transcripts, respectively. Thermal cycling was performed according to the manufacturer's Program 2. RACE PCR products were cloned using a TOPO TA cloning kit (Invitrogen catalog number K4575) and sequenced using the Sanger method.

Table IV: 5' and 3' RACE Primers
EBNA3A

5' RACE primer 1	CCGGCGGCCAGGGTTTGCAGTCTCCA
5' RACE primer 2	ACGTGACACCTACGGCCACCTGTGCA
5' RACE primer 3	GCTCTCCGCGTCCTCACTTTCTTCCCG
5' RACE primer 4	TGCCCTGTTCCGTTCGTTTGCCCGCT
5' RACE primer 5	TGCACAGGTGGCCGTAGGTGTCACGT
5' RACE primer 6	ACACCGATCACCAGACGACTCCCAC
5' RACE primer 7	TCCCACCCCAGCCGGATCTCCCT
5' RACE primer 1	TGTGAACCCAACGCAGGCTCCAGTGA
5' RACE primer 2	CACGTCGTGCTAGGTCACTTTCGGCAGA
3' RACE primer 1	GCCAGCACTGTACGTTGTTGCATGCCG

qRT-PCR

For the analysis in Chapter 2, cDNA was synthesized from RNA extracted from PAAtreated cells at the 24 hour time point using the Superscript III First Strand Synthesis System (Invitrogen catalog number 18080-051) with oligo(dT) primers. qRT-PCR reactions were carried out using iQ SYBR Green Supermix (Bio-Rad catalog number Cat No: 170-8882) on a Bio-Rad CFX96 instrument as follows: $1 \mu \mathrm{l}$ cDNA product was denatured for 3 minutes at $95^{\circ} \mathrm{C}$ and amplified for 40 cycles of 15 seconds denaturation at $95^{\circ} \mathrm{C}$ and 1 minute annealing/extension at $60^{\circ} \mathrm{C}$. Transcript abundance was quantified using the Comparative C_{T} $\operatorname{method}\left(2^{-\Delta \Delta \mathrm{CT}}\right)$.

For the analysis in Chapter 3, cDNA was synthesized from RNA using an iScript cDNA synthesis kit (Rio-Rad catalog no. 170-8891) according to the vendor's protocol. Quantitative PCR was performed using iQ SYBR green Supermix (Bio-Rad, catalog no. 170-8882) on a Bio-Rad CFX96 instrument. $1 \mu \mathrm{l}$ of cDNA product was denatured for 3 min at $95^{\circ} \mathrm{C}$ and amplified for 40 cycles of 15 -s denaturation at $95^{\circ} \mathrm{C}$ and 1 -min annealing/extension at $58^{\circ} \mathrm{C}$. Total RNA transcript abundance was quantified using the comparative CT method $\left(2^{-\Delta \Delta C T}\right)$ normalized to ACTB. Nuclear to cytoplasmic ratios were calculated as $2^{- \text {NuclearCt-CytoplasmicCt. }}$.

Table V: RT-PCR primers

ACTB	CACTCTTCCAGCCTTCCTTC	GTACAGGTCTTTGCGGATGT
Zta (Ch. 2)	GAAGCCACCCGATTCTTGTAT	CGACGTACAAGGAAACCACTAC
Zta (Ch. 3)	CACGACGTACAAGGAAACCA	GAAGCCACCTCACGGTAGTG
W1-W1	TCGGGCCAGAGCCTAGGG	TGGTCCAGGGACTTCACTTC
W1-BHRF1	AGGGGAGACCGAAGTGAAGT	CCCTTGTTGAATAGGCCATC
W1-W2	AGGGGAGACCGAAGTGAAGT	CCTTCTACGGACTCGTCTGG
LMP2A 1-2	CCTACTCTCCACGGGATGAC	CGGTGTCAGCAGTTTCCTTT
Junction A	GCAGGTCAGACTTGGTGCTT	GAGTTGTTTCCGCCATCGT
Junction C	GCCCGAGGAGCTGTAGACC	GAGTTGTTTCCGCCATCGT
Junction D	CGATAGAGGGCCAGGTAGTG	GAGTTGTTTCCGCCATCGT
Junction E	GCAAAGGCAGGTCTTTCTCA	GAGTTGTTTCCGCCATCGT

Strand-specific qRT-PCR

The method of Feng et al..128 was used for strand-specific quantitative reverse-transcription PCR. cDNA was synthesized from RNA at $65^{\circ} \mathrm{C}$ for 50 minutes using gene-specific sequence modifying primers (or non-sequence modifying reverse primers for Zta and Kcnq1ot1) and ThermoScript reverse transcriptase (Life Technologies, catalog no. 12236022) according to the manufacturer's protocol. Quantitative PCR was performed using iQ SYBR green Supermix (Bio-Rad, catalog no. 170-8882) on a Bio-Rad CFX96 instrument. 1 $\mu \mathrm{l}$ of cDNA product was denatured for 3 min at $95^{\circ} \mathrm{C}$ and amplified for 40 cycles of $15-\mathrm{s}$ denaturation at $95^{\circ} \mathrm{C}$ and 1 -min annealing/extension at $58^{\circ} \mathrm{C}$. Melting-curve analysis was performed from 58 to $95^{\circ} \mathrm{C}$ with a ramp of $0.5^{\circ} \mathrm{C} / 5 \mathrm{~s}$ to confirm strand specificity (Figure 26). Total RNA transcript abundance was quantified using the comparative CT method $\left(2^{-\Delta \triangle C T}\right)$ normalized to ACTB. Nuclear to cytoplasmic ratios were calculated as $2^{\text {-NuclearCt-CytoplasmicCt }}$.

Table VI. cDNA and PCR primers for strand-specific qRT-PCR

EBNA2		
	cDNA primer	GCAACCCCTAACGTTTCACCgggcCggGAACCGG*
		GCAACCCCTAACGTTTCACC
	PCR primers	CGGGGAAGAGAATGGGAGC
Zta		
	cDNA primer	CACGACGTACAAGGAAACCA
	PCR primers	CACGACGTACAAGGAAACCA
		GAAGCCACCTCACGGTAGTG
EBNA3B		
	cDNA primer	TGGCATTGTACAGATACCACGAgcggCgGACCAAAAC*
		TGGCATTGTACAGATACCACGA
	PCR primers	CCGAAAGTGACCTAGCACGA
BCLT2/3		
	cDNA primer	GTTCAGTGCGTCGAGTGCTcgCggcGGAACAG*
	PCR primers	GTTCAGTGCGTCGAGTGCT
	rer primers	CGCCAACAAGGTTCAATTTT
ACTB		
	cDNA primer	GTACAGGTCTTTGCGGATGTttAtaTaACACTTCATG*
		GTACAGGTCTTTGCGGATGT
	PCR primers	САСТСТTССАGССТТССТTС
Kcnq1ot1		
	cDNA primer	GCTGATAAAGGCACCGGAAGGAAA
	PCR primers	GCTGATAAAGGCACCGGAAGGAAA
	PCR primers	TACCGGATCCAGGTTTGCAGTACA

[^0]

Figure 26. Strand specific qRT-PCR. Representative Ct curves and melting curves are shown for each set of primers. Sequence modifying RT primers increase (EBNA2 and EBNA3B) or decrease (ACTB) the melting temperature of the PCR amplicons relative to the unmodified amplicon.

FISH and immunofluorescence

For the analysis in Chapter 2, fluorescence in situ hybridization (FISH) was performed with custom Stellaris RNA FISH probes (Biosearch Technologies) using CAL Fluor Red 610, according to the vendor's protocol. $10 \times 10^{6} 24$ hour induced or uninduced Akata cells were used per treatment. Images were captured on a Leica DMRXA2 Deconvolution upright
microscope. 3D imaging of Akata cells was acquired using a 100x/1.35 oil objective on a motorized XYZ-stage with a Cooke SensiCAM camera using Slidebook software.

For the analysis in Chapter 3, immunolabeling was performed simultaneously with FISH using a modified version of the Stellaris protocol with mouse anti-EBV EA-D-p52/50 antibody (EMD Millipore catalog no. MAB8186) and Alexa Fluor 488 goat anti-mouse secondary antibody (Life Technologies catalog no. A11001). Briefly, $10 \times 10^{6} 24$ hour induced or uninduced Akata cells were washed, fixed in freshly made fixation buffer and permeabilized for approximately 24 h . Cells were hybridized overnight at $37^{\circ} \mathrm{C}$ using freshly made hybridization buffer with 50 nM FISH probe or no probe, then incubated with the primary antibody (diluted 1:200) for 3 hours at room temperature, washed, and incubated for 30 minutes with the secondary antibody (diluted $1: 500$) and $5 \mathrm{ng} / \mathrm{ml} \mathrm{DAPI}$ at $37^{\circ} \mathrm{C}$ in the dark. Cells were then washed a final time, mounted on slides with Prolong Diamond mounting medium (Life Technologies catalog no. P36961) and cured in the dark for two days. Imaging was performed using a Zeiss Axioplan 2 upright microscope and Z-stacks were deconvolved using Slidebook software, version 6 (Intelligent Imaging Innovations).

CHAPTER 6

Discussion and future directions

Increasing the functional capacity of the genome

Our findings of hundreds of new transcripts arising from pervasive transcription of the EBV genome indicate that the functional capacity of the genome extends far beyond a set of canonical open reading frames situated between TATA boxes and polyadenylation signals. Using our long-read sequencing based approach to identify new transcript structures we have revealed many different types of transcripts, including wholly novel transcripts, antisense transcripts, chimeric transcripts that fuse multiple annotated genes, and novel isoforms that feature alternative splicing, extended or truncated untranslated regions, and even truncated reading frames of known genes.

Many of the novel transcripts contain annotated open reading frames but extended or truncated untranslated regions (UTRs), especially 5' UTRs. Untranslated regions play major roles in mRNA regulation, often providing binding sites for regulatory proteins or RNAs that control mRNA cellular localization, translation or degradation ${ }^{129}$. Eukaryotes are known to use UTR variations to differentially control mRNA in different cell types and differentiation states ${ }^{130,131}$ and even between individual cells of the same type ${ }^{132}$. The abundance of related isoforms in our dataset suggest that the virus is exploiting UTR variations as a mechanism of mRNA modulation.

Alternative transcription start site usage sometimes goes beyond altering just the gene's 5 ' UTR and affects the open reading frame. For example, a truncated form of the LMP1
protein arising from alternative promoter usage during lytic replication in some EBV strains negatively regulates LMP1 signaling pathways and promotes degradation of full-length, latency-associated LMP1 $1^{133,134}$. Many of the novel transcripts reported here contain similar smaller, in-frame ORFs of annotated genes. Informatic analysis of many of these transcripts indicates that they are likely coding mRNA (data not shown). While we are unable to verify in this study whether or not these isoforms are translated, ribosomal profiling after treatment with harringtonine reveals pileups of initiating ribosomes at many downstream in-frame start codons within known ORFs of $\mathrm{KSHV}^{33}, \mathrm{HCMV}^{27}$ and humans ${ }^{135}$. The resulting N-terminal truncated proteins can play roles in cellular stress-response signaling ${ }^{136}$ and impact protein localization ${ }^{137}$.

In addition to truncated reading frames, some novel transcripts contain reading frames that are extended through alternative splicing (e.g. see Figures 25 A and 27) and even chimeric open reading frames (e.g, see Figure 22). The EBV fusion protein Raz, generated from an alternatively spliced transcript that produces a chimeric Rta-Zta protein, regulates Rta ${ }^{138}$. The novel transcripts presented here raise the possibility that the phenomenon of fusion proteins is more widespread in the EBV proteome.

Ribosomal profiling in KSHV^{33} and HCMV^{27} has also revealed extensive translation of previously unannotated ORFs. Often those ORFs were not previously identified because they are shorter than traditional ORFs, encoding 100 or fewer amino acids. Short proteins are also abundant in the human proteome ${ }^{139}$, and both viral and eukaryotic small peptides have been shown to be functional ${ }^{140,141}$. In some cases these short ORFs are translated from putative noncoding transcripts like KSHV's PAN ${ }^{33}$, raising the possibility that some of the

Figure 27. TRIMD-validated BRLF1 and BZLF1 isoforms. Light blue $=$ GenBank-annotated isoforms. Dark blue $=$ novel isoforms.
newly-identified EBV transcripts that appear to be noncoding may in fact be translated. In other cases the short ORFs are present in the putative 5' UTR of mRNA. It has long been known that upstream ORFs regulate at least one HCMV gene ${ }^{142}$ and ribosomal profiling suggests the mechanism may be widespread in HCMV^{27}. Functional upstream ORFs are also prevalent in the human genome, regulating mRNA translation and degradation ${ }^{143-145}$. Several of the novel EBV transcripts with extended 5' UTRs contain upstream ORFs (e.g., BZLT3/4/5: Figure 27), which may impact the translation or stability of those transcripts.

In addition to the many transcripts that are novel isoforms of known protein-coding genes with altered ORFs or UTRs, many of the novel transcripts are predicted to be noncoding.

This finding of substantial numbers of noncoding transcripts parallels findings from the human transcriptome, in which next-generation sequencing has revealed many long noncoding transcripts ${ }^{78,146}$. Some of these appear to be noncoding isoforms of coding genes (e.g. some LMP2 isoforms - Figure 25 and BZLT8 - Figure 27). Others represent novel transcription of putative intergenic regions (e.g. BCLT2-4 - Figure 21). Some are antisense to known protein coding genes (e.g. BZLT12-22 - Figures 22 \& 23): these are particularly abundant at latency loci. While some of the putative noncoding transcripts may encode novel short ORFs, those that we tested are mostly localized to the nucleus (Figures 6, 7, 8, $21 \& 25)$, suggesting noncoding roles. Several cellular lncRNAs that localize to the nucleus have been determined to function as transcriptional regulators. Interestingly, knockdown of the noncoding RNA arising from EBV's OriP locus leads to a widespread repression of viral transcription ${ }^{147}$, and knockdown of several different noncoding RNAs in MHV68 leads to altered expression of a lytic viral protein ${ }^{30}$.

Novel isoforms of latency-associated transcripts during reactivation

While many of the novel EBV transcripts are structural variations of lytic genes, latency loci are remarkable for the abundance of novel isoforms relative to annotated isoforms. LMP2 is particularly striking: neither LMP2A or LMP2B is detected in its annotated form in Iso-Seq CFLs, but multiple isoforms arising from alternative promoters and using alternative splicing are present (Figure 25). Isoforms of EBNA2, EBNA3A and EBNA3C arising from downstream transcription start sites are also present in our dataset (Figure 23 and data not shown). Full-length annotated forms of the EBNA transcripts are not detected by Iso-Seq, though that is possibly due to their length (see Chapter 3). Both LMP1 and EBNA1 are known to use alternate promoters during viral replication ${ }^{148-150}$; potentially other latency-
associated genes use a similar mechanism to provide an additional level of transcriptional and translational control under different gene expression programs. While transcription and translation of LMP2 and EBNA2/3A/3B/3C have been observed by others using microarrays and Western blots ${ }^{23,24,81,82}$, this level of structural detail was not observable with those technologies.

Mechanics of pervasive transcription

The mechanisms by which EBV achieves this high diversity of transcripts have yet to be determined. Many of the novel transcripts appear with the same timing as viral Late genes (Figures 6, 7, 8, 21 \& 24) which, unlike the Immediate Early or Early genes are under the transcriptional control of the viral pre-initiation complex (vPIC) ${ }^{22,151}$. While the vPIC is known to recognize the Late-gene associated genomic TATT motif, possibly it can also initiate transcription at alternate sites late in reactivation. Recent reports about cellular transcriptional control may offer some clues about readthrough transcription. Rutkowski et al. report massive transcriptional readthrough in the cellular genome of fibroblasts in response to HSV-1 infection ${ }^{152}$, while Vilborg et al. make a comparable observation in neural cells in response to osmotic stress ${ }^{153}$. These similar observations in very different systems hint at the possibility of a broadly used mechanism, especially considering that the osmotic stress-induced readthrough was dependent on intracellular Ca^{2+} release, a process critical to both HSV-1 infection ${ }^{154}$ and EBV reactivation ${ }^{155}$.

Refinement of EBV genome annotation

In addition to resolving the isoform structures of nearly 200 novel transcripts, using TRIMD we are able to refine the annotation for nearly two thirds of annotated transcripts. This assigns genomic start and end coordinates based on experimental evidence from multiple platforms, refining transcript ends that had previously been annotated based on the presence of TATA boxes and polyadenylation signal motifs in the genomic sequence ${ }^{43,97}$. Most refined ends correspond as expected with annotated ends, with transcription start sites occurring 25 to 35 bases downstream of TATA boxes and polyadenylation sites occurring 10 to 30 bases downstream of polyadenylation signals. In addition, we are able to determine 5' and 3' transcript ends for many genes that do not have canonical TATA boxes or polyadenylation signals near their open reading frames. The updated annotation is available as Appendix 10 and at https://github.com/flemingtonlab/public.

Completeness of annotation

While the set of isoforms we identified in Chapter 3 more than quadruples the size of the catalog of known EBV transcripts, we believe that further transcripts exist that were undetectable in this study. A sizable proportion of expressed cellular transcripts was not represented in our Iso-Seq dataset, with longer transcripts especially lacking representation (Figure 14C). To estimate how many polyadenylated EBV transcripts may remain undiscovered, we used information about the lengths of validated EBV isoforms and the proportion of annotated cellular transcripts of each length with full-length Iso-Seq coverage (Figure 14C). Further, we used the proportion of annotated EBV transcripts longer than 3,233 bases (the length of the longest EBV isoform validated by TRIMD) to estimate how
many longer transcripts might be missing from our dataset. Using these measures, we estimate that over 900 polyadenylated transcripts are expressed during EBV reactivation (Figure 28). Some of these transcripts were partially captured by Iso-Seq and TRIMD, as indicated by features in our sets of validated 5' starts, splice junctions and 3' ends that do not correspond to fully validated isoforms (see for example Figure 20).

It is also notable that we observed deeper and more extensive Illumina short-read coverage of the genome from ribodepleted RNA than from poly(A)-selected RNA (Figure 4). This indicates that there are likely many additional lytic EBV transcripts that are not polyadenylated, and therefore not detectable by the Iso-Seq method.

Figure 28. Length distribution of detected and predicted polyadenylated EBV isoforms. Number of predicted isoforms is calculated based on the proportion of full-length cellular transcripts captured (Figure 1C) and the percentage of annotated EBV transcripts longer than the longest validated isoform.

Future directions

As indicated above, capturing the structures of extremely long transcripts and of nonpolyadenylated transcripts will be necessary to create a complete annotation of the EBV transcriptome. New technologies will need to be developed and implemented to accomplish this. While this will be extremely helpful for transcript quantification purposes and the interpretation of genome-modification experiments, possibly more important than complete transcriptome annotation is identification of the function of these novel transcripts.

Knockdown of some noncoding transcripts in both EBV^{147} and MHV68 ${ }^{30}$ have had a global
impact on the viral lytic cycle; further investigation is necessary to elucidate the functions and mechanisms of other transcripts.

Important clues to the function of many transcripts may be gained by determining their coding status using ribosomal profiling. This method has revealed many novel and truncated reading frames in both KSHV^{33} and HCMV^{27}, and can indicate the coding status of EBV transcripts in a more rigorous and accurate way than sequence analysis. This could provide valuable insight into, for example, the alternative promoter usage at the LMP2 locus that appears to give rise to a collection of both nuclear noncoding and cytoplasmic coding transcripts (Figure 25).

Valuable information may also be gleaned from recently developed single-cell sequencing technologies. Though induced reactivation in Akata cells is believed to be largely synchronous there is always a small percentage of cells undergoing spontaneous reactivation, and single-cell imaging methods have shown that some cells respond differently to BCRcrosslinking, delaying their entry into the lytic cycle or causing a switch to a different form of latency ${ }^{82,156}$. This obscures the temporal dynamics of Immediate Early, Early and Late genes as observed in bulk sequencing (e.g., Figure 5), based on which we inferred that most novel transcripts detected here are Late. There is further the possibility that different viral or cellular transcripts are expressed in different cells at the same stage of reactivation, which can only be determined by analysis at the single-cell level.

This work is based largely on the analysis of transcripts present in EBV-infected cells at different stages of reactivation. Lytic genes are also known to be expressed upon de novo
infection of cells ${ }^{157-159}$, though it is not currently known whether the pervasive transcription associated with lytic reactivation occurs. Viral and cellular RNA is also known to be packaged into EBV virions and exosomes to facilitate infection ${ }^{157,160}$, though a global examination of the transcripts included has not been undertaken.

LIST OF REFERENCES

1

7 Anagnostopoulos, I., Hummel, M., Kreschel, C. \& Stein, H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood 85, 744-750 (1995).

9 Hochberg, D. et al. Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci US A 101, 239-244 (2004).

11 Yao, Q. Y., Rickinson, A. B. \& Epstein, M. A. A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer 35, 35-42 (1985).
Yao, Q. Y., Ogan, P., Rowe, M., Wood, M. \& Rickinson, A. B. Epstein-Barr virusinfected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer 43, 67-71 (1989).

Laichalk, L. L. \& Thorley-Lawson, D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-1307 (2005).

3 Grogan, E. et al. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci U S A 84, 1332-1336 (1987).

Chevallier-Greco, A. et al. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, $E B 1$ and $E B 2$, are required to activate transcription from an EBV early promoter. EMBO J 5, 3243-3249 (1986).

Feederle, R. et al. The Epstein-Barr virus lytic program is controlled by the cooperative functions of two transactivators. EMBO J 19, 3080-3089 (2000).

Farrell, P. J., Rowe, D. T., Rooney, C. M. \& Kouzarides, T. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to cfos. EMBO J 8, 127-132 (1989).

Gruffat, H. \& Sergeant, A. Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-1178 (1994).

Heilmann, A. M., Calderwood, M. A., Portal, D., Lu, Y. \& Johannsen, E. Genomewide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164 (2012).

Darr, C. D., Mauser, A. \& Kenney, S. Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75, 6135-6142 (2001).

El-Guindy, A., Heston, L. \& Miller, G. A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein. PLoS Pathog 6, e1001054 (2010).

Fixman, E. D., Hayward, G. S. \& Hayward, S. D. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006 (1995).

Aubry, V. et al. Epstein-Barr virus late gene transcription depends on the assembly of a virus-specific preinitiation complex. J Virol 88, 12825-12838 (2014).

Yuan, J., Cahir-McFarland, E., Zhao, B. \& Kieff, E. Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol 80, 2548-2565 (2006).

Lu, C. C. et al. Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345, 358-372 (2006).

Zhang, G. et al. Antisense transcription in the human cytomegalovirus transcriptome. J Virol 81, 11267-11281 (2007).

26 Gatherer, D. et al. High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 108, 19755-19760 (2011).

27 Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088-1093 (2012).

28 Johnson, L. S., Willert, E. K. \& Virgin, H. W. Redefining the genetics of murine gammaherpesvirus 68 via transcriptome-based annotation. Cell Host Microbe 7, 516526 (2010).

29 Cheng, B. Y. et al. Tiled microarray identification of novel viral transcript structures and distinct transcriptional profiles during two modes of productive murine gammaherpesvirus 68 infection. J Virol 86, 4340-4357 (2012).

30 Canny, S. P. et al. Pervasive transcription of a herpesvirus genome generates functionally important RNAs. MBio 5, e01033-01013 (2014).

31 Chandriani, S., Xu, Y. \& Ganem, D. The lytic transcriptome of Kaposi's sarcomaassociated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J Virol 84, 7934-7942 (2010).

32 Dresang, L. R. et al. Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes. BMC Genomics 12, 625 (2011).

33 Arias, C. et al. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcomaassociated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 10, e1003847 (2014).

34 Concha, M. et al. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J Virol 86, 1458-1467 (2012).

35 Farrell, P. J. Epstein-Barr virus genome. in Epstein-Barr Virus (ed E. S. Robertson) 263-287 (Caister Academic Press, 2005).

36 Pritchett, R. F., Hayward, S. D. \& Kieff, E. D. DNA of Epstein-Barr virus. I. Comparative studies of the DNA of Epstein-Barr virus from HR-1 and B95-8 cells: size, structure, and relatedness. J Virol 15, 556-559 (1975).

37 Lindahl, T. et al. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol 102, 511-530 (1976).

38 Kintner, C. R. \& Sugden, B. The structure of the termini of the DNA of EpsteinBarr virus. Cell 17, 661-671 (1979).

39 Laux, G., Perricaudet, M. \& Farrell, P. J. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7, 769-774 (1988).

Baer, R. et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211 (1984).

41 de Jesus, O. et al. Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84, 1443-1450 (2003).

42 Parker, B. D., Bankier, A., Satchwell, S., Barrell, B. \& Farrell, P. J. Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339-346 (1990).

43 Lin, Z. et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87, 1172-1182 (2013).

44 Tsai, M. H. et al. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep 5, 458-470 (2013).

Dolan, A., Addison, C., Gatherer, D., Davison, A. J. \& McGeoch, D. J. The genome of Epstein-Barr virus type 2 strain AG876. Virology 350, 164-170 (2006).

Kwok, H. et al. Genomic sequencing and comparative analysis of Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS One 7, e36939 (2012).

47 Kwok, H. et al. Genomic diversity of Epstein-Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J Virol 88, 10662-10672 (2014).

Lei, H. et al. Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC Genomics 14, 804 (2013).

Liu, P. et al. Direct sequencing and characterization of a clinical isolate of EpsteinBarr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. J Virol 85, 11291-11299 (2011).

Santpere, G. et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol 6, 846-860 (2014).

51 Tso, K. K. et al. Complete genomic sequence of Epstein-Barr virus in nasopharyngeal carcinoma cell line C666-1. Infect Agent Cancer 8, 29 (2013).

52 Zeng, M. S. et al. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol 79, 15323-15330 (2005).

3 Palser, A. L. et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol 89, 5222-5237 (2015).

54 Dambaugh, T., Hennessy, K., Chamnankit, L. \& Kieff, E. U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci U S A 81, 7632-7636 (1984).

55 Rowe, M. et al. Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J Virol 63, 1031-1039 (1989).

56 Sample, J. et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA3B, and EBNA-3C genes. JVirol 64, 4084-4092 (1990).

57 Takada, K. et al. An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 5, 147-156 (1991).

58 Takada, K. \& Ono, Y. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63, 445-449 (1989).

59 Takada, K. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32 (1984).

60 Gregory, C. D., Rowe, M. \& Rickinson, A. B. Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol 71 (Pt 7), 1481-1495, doi:10.1099/0022-1317-71-7-1481 (1990).

61 Pizzo, P. A., Magrath, I. T., Chattopadhyay, S. K., Biggar, R. J. \& Gerber, P. A new tumour-derived transforming strain of Epstein-Barr virus. Nature 272, 629-631 (1978).

62 Miller, G., Shope, T., Lisco, H., Stitt, D. \& Lipman, M. Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci U S A 69, 383-387 (1972).

63 Blacklow, N. R., Watson, B. K., Miller, G. \& Jacobson, B. M. Mononucleosis with heterophil antibodies and EB virus infection. Acquisition by an elderly patient in hospital. Am J Med 51, 549-552 (1971).

64 Bernasconi, M. et al. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray. Virol J 3, 43 (2006).

65 Gradoville, L., Kwa, D., El-Guindy, A. \& Miller, G. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 76, 5612-5626 (2002).

66 Skare, J., Edson, C., Farley, J. \& Strominger, J. L. The B95-8 isolate of Epstein-Barr virus arose from an isolate with a standard genome. J Virol 44, 1088-1091 (1982).

67 Frisan, T., Levitsky, V. \& Masucci, M. Generation of lymphoblastoid cell lines (LCLs) in Epstein-Barr Virus Protocols 125-127 (Springer, 2001).

68 International HapMap, C. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52-58 (2010).

69 Consortium, E. P. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799-816 (2007).

70 Siva, N. 1000 Genomes project. Nature biotechnology 26, 256-256 (2008).
71 Arvey, A. et al. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12, 233-245 (2012).

72 Wilson, G. \& Miller, G. Recovery of Epstein-Barr virus from nonproducer neonatal human lymphoid cell transformants. Virology 95, 351-358 (1979).

73 O'Grady, T. et al. Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. J Virol 88, 1604-1616 (2014).

74 Pacific Biosciences of California, I. PacBio. http://www.pacb.com/.
75 Kurosawa, J., Nishiyori, H. \& Hayashizaki, Y. Deep cap analysis of gene expression. Methods Mol Biol 687, 147-163 (2011).

76 Rosa, M. D., Gottlieb, E., Lerner, M. R. \& Steitz, J. A. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol 1, 785-796 (1981).

77 Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. \& Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12, R16 (2011).

78 Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915-1927 (2011).

79 Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775-1789 (2012).

80 Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22, 1760-1774 (2012).

81 Zetterberg, H., Stenglein, M., Jansson, A., Ricksten, A. \& Rymo, L. Relative levels of EBNA1 gene transcripts from the C/W, F and Q promoters in Epstein-Barr virustransformed lymphoid cells in latent and lytic stages of infection. J Gen Virol 80, 457466 (1999).

82 Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H. \& Rickinson, A. B. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66, 122-131 (1992).

83 Cohen, J. I. \& Kieff, E. An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65, 5880-5885 (1991).

84 Chen, A., Zhao, B., Kieff, E., Aster, J. C. \& Wang, F. EBNA-3B- and EBNA-3Cregulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 80, 10139-10150 (2006).

85 Cludts, I. \& Farrell, P. J. Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol 72, 1862-1869 (1998).

86 Cohen, J. I., Wang, F., Mannick, J. \& Kieff, E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86, 95589562 (1989).

87 Tomkinson, B., Robertson, E. \& Kieff, E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67, 2014-2025 (1993).

88 Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35, W345-349 (2007).

89 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012).

90 Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494-1512 (2013).

91 Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290-295 (2015).

Tang, D. T. et al. Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res 41, e44 (2013).

93 Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci US A 100, 15776-15781 (2003).

94 Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37, 327-336 (1996).

Smith, P. R. et al. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J Virol 74, 3082-3092 (2000).

102 Tilgner, H., Grubert, F., Sharon, D. \& Snyder, M. P. Defining a personal, allelespecific, and single-molecule long-read transcriptome. Proc Natl Acad Sci U S A 111, 9869-9874 (2014).

103 Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41, e74 (2013).

104 Daikoku, T. et al. Architecture of replication compartments formed during EpsteinBarr virus lytic replication. J Virol 79, 3409-3418 (2005).

105 Sugimoto, A. et al. Different distributions of Epstein-Barr virus early and late gene transcripts within viral replication compartments. J Virol 87, 6693-6699 (2013).

106 Manet, E. et al. Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J 8, 1819-1826 (1989).

107 Wang, F., Petti, L., Braun, D., Seung, S. \& Kieff, E. A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol 61, 945-954 (1987).

108 Bodescot, M., Perricaudet, M. \& Farrell, P. J. A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. J Virol 61, 3424-3430 (1987).

112 Pearson, G. R. et al. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 160, 151-161 (1987).

113 Free Software Foundation. GNU General Public License, http://www.gnu.org/licenses/gpl-3.0.en.html (2007).

114 Wu, T. D. \& Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859-1875 (2005).

115 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).

116 Murata, M. et al. Detecting expressed genes using CAGE. Methods Mol Biol 1164, 6785 (2014).

117 Lin, Z. et al. Detection of murine leukemia virus in the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-Seq-based exogenous agent detection pipeline, PARSES. J Virol 86, 2970-2977 (2012).

118 Langmead, B. \& Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359 (2012).

119 Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24-26 (2011).
120 Thorvaldsdottir, H., Robinson, J. T. \& Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178-192 (2013).

121 Quinlan, A. R. \& Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).
$122 \mathrm{Xu}, \mathrm{G}$. et al. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format. Source Code Biol Med 6, 2, (2011).

123 Li, B. \& Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

124 Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42, D756-763 (2014).

125 Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493-496 (2004).

126 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36 (2013).

127 Zhang, Z., Schwartz, S., Wagner, L. \& Miller, W. A greedy algorithm for aligning DNA sequences. J Comput Biol 7, 203-214 (2000).

128 Feng, L. et al. Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. Biotechniques 52, 263270 (2012).

129 Hughes, T. A. Regulation of gene expression by alternative untranslated regions. Trends Genet 22, 119-122 (2006).

130 Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M. \& Gotoh, O. Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene 364, 53-62 (2005).

131 Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563 (2005).

132 Velten, L. et al. Single-cell polyadenylation site mapping reveals 3^{\prime} isoform choice variability. Mol Syst Biol 11, 812 (2015).

133 Erickson, K. D. \& Martin, J. M. The late lytic LMP-1 protein of Epstein-Barr virus can negatively regulate LMP-1 signaling. J Virol 74, 1057-1060 (2000).

134 Pandya, J. \& Walling, D. M. Oncogenic activity of Epstein-Barr virus latent membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1. J Virol 80, 80388046 (2006).

135 Van Damme, P., Gawron, D., Van Criekinge, W. \& Menschaert, G. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics 13, 1245-1261 (2014).

136 Sasaki, A. et al. The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J Biol Chem 278, 2432-2436 (2003).

147 Cao, S. et al. New Noncoding Lytic Transcripts Derived from the Epstein-Barr Virus Latency Origin of Replication, oriP, Are Hyperedited, Bind the Paraspeckle Protein, NONO/p54nrb, and Support Viral Lytic Transcription. J Virol 89, 7120-7132 (2015).

149 Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. \& Sample, J. Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA1 protein. J Virol 70, 623-627 (1996).
Schaefer, B. C., Strominger, J. L. \& Speck, S. H. The Epstein-Barr virus BamHI F promoter is an early lytic promoter: lack of correlation with EBNA 1 gene transcription in group 1 Burkitt's lymphoma cell lines. J Virol 69, 5039-5047 (1995).
Shalak, V., Kaminska, M. \& Mirande, M. Translation initiation from two in-frame AUGs generates mitochondrial and cytoplasmic forms of the p43 component of the multisynthetase complex. Biochemistry 48, 9959-9968 (2009).

Furnari, F. B., Zacny, V., Quinlivan, E. B., Kenney, S. \& Pagano, J. S. RAZ, an Epstein-Barr virus transdominant repressor that modulates the viral reactivation mechanism. J Virol 68, 1827-1836 (1994).

Frith, M. C. et al. The abundance of short proteins in the mammalian proteome. PLoS Genet 2, e52 (2006).

Jaber, T. \& Yuan, Y. A virally encoded small peptide regulates RTA stability and facilitates Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 87, 34613470 (2013).

Andrews, S. J. \& Rothnagel, J. A. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15, 193-204 (2014).

Geballe, A. P. \& Mocarski, E. S. Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. J Virol 62, 3334-3340 (1988).

Calvo, S. E., Pagliarini, D. J. \& Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 106, 7507-7512 (2009).

Wittmann, J., Hol, E. M. \& Jack, H. M. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol Cell Biol 26, 12721287 (2006).

Spriggs, K. A., Bushell, M. \& Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol Cell 40, 228-237 (2010).

Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484-1488 (2007).

Hudson, G. S., Farrell, P. J. \& Barrell, B. G. Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95-8. J Virol 53, 528-535 (1985).

Serio, T. R., Cahill, N., Prout, M. E. \& Miller, G. A functionally distinct TATA box required for late progression through the Epstein-Barr virus life cycle. J Virol 72, 8338-8343 (1998).

Rutkowski, A. J. et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun 6, 7126 (2015).

Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. \& Steitz, J. A. Widespread Inducible Transcription Downstream of Human Genes. Mol Cell 59, 449-461 (2015).

Cheshenko, N. et al. Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163, 283-293 (2003).

Faggioni, A. et al. Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232, 1554-1556 (1986).

Chiu, Y. F., Sugden, A. U. \& Sugden, B. Epstein-Barr viral productive amplification reprograms nuclear architecture, DNA replication, and histone deposition. Cell Host Microbe 14, 607-618 (2013).

57 Jochum, S., Ruiss, R., Moosmann, A., Hammerschmidt, W. \& Zeidler, R. RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A 109, E1396-1404 (2012).

Kalla, M., Schmeinck, A., Bergbauer, M., Pich, D. \& Hammerschmidt, W. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A 107, 850-855 (2010).

Wen, W. et al. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 81, 1037-1042 (2007).

Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107, 6328-6333 (2010).

APPENDIX 1

TRIMD_start_validator.pl

```
#!/usr/bin/perl
#Accepts a SAM file of Iso-Seq fl data, a SAM file of CAGE data, and a
bed file of annotated polyadenylated transcripts. Counts the number of
non-clipped Iso-Seq reads with 5' starts at each genomic position and
estimates consensus locations of clusters of 5' starts. Uses Paraclu to
identify clusters of 5' starts in the CAGE data. Output includes a
bedgraph file of Iso-Seq 5' starts, a bed file of the weighted centers
of Iso-Seq start clusters, a bedgraph file of CAGE tag 5' starts, a bed
file of the weighted centers of Paraclu-identified CAGE 5' start
clusters, and a bed file of Iso_seq 5' starts supported by the CAGE
data, with their annotation status noted.
#USAGE:
# perl <PATH/TRIMD_start_validator.pl> </PATH/Iso-Seq_sam_file>
</PATH/CAGE_file> </PATH/Annotation_bed_file>
use warnings;
use strict;
die "USAGE: 'perl <PATH/TRIMD_start_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/CAGE_file> </PATH/Annotation_bed_file>'" unless
@ARGV == 3;
my ($SMRT_file, $CAGE_file, $ann_file) = @ARGV;
print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;
my $distance_between_SMRT_peaks;
my $min_tags;
my $min_dens;
my $min_length;
my $max_length;
my $dist_SMRT_CAGE;
my $min_SMRT;
my $ann_dist;
print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;
if ($answer eq "y") {
    $distance_between_SMRT_peaks = 8;
    $min_tags = 15;
    $min_dens = 2;
    $min_length = 1;
```

```
    $max_length = 20;
    $dist_SMRT_CAGE = 3;
    $min_SMRT = 1;
    $ann_dist = 10;
}
else {
    print "Enter desired window for collapsing Iso-Seq 5' starts (e.g.
8): ";
    $distance_between_SMRT_peaks = <STDIN>;
    chomp $distance_between_SMRT_peaks;
    print "Enter minimum tags per CAGE cluster (e.g. 15): ";
    $min_tags = <STDIN>;
    chomp $min_tags;
    print "Enter minimum relative density for CAGE clusters (e.g. 2):
'';
    $min_dens = <STDIN>;
    chomp $min_dens;
    print "Enter minimum CAGE cluster length (e.g. 1): ";
    $min_length = <STDIN>;
    chomp $min_length;
    print "Enter maximum CAGE cluster length (e.g. 20): ";
    $max_length = <STDIN>;
    chomp $max_length;
    print "Enter desired maximum allowable distance between Iso-Seq and
CAGE 5' starts (e.g. 3): ";
    $dist_SMRT_CAGE = <STDIN>;
    chomp $dist_SMRT_CAGE;
    print "Enter minimum number of SMRT reads to report a 5' start
(e.g. 1): ";
    $min_SMRT = <STDIN>;
    chomp $min_SMRT;
    print "Enter maximum distance in bp from an annotated start to be
called as 'annotated' (e.g. 10): '';
    $ann_dist = <STDIN>;
    chomp $ann_dist;
}
print '
        "--------------------------------------------------\n';
#####----------SMRT FILE PROCESSING---------------#####
system("awk '\$3==\"$viral_chr\"'' \Q$SMRT_file\E \| sort -k 4,4n >
\Q$SMRT_file\E.sorted.temp");
system("awk '\$2==0' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.plus.sam.temp");
system("awk '\$2==16' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.temp");
```

```
#processing of PLUS SMRT sam file
open(INF, "<$SMRT_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.plus.sam.read_starts.bedgraph") or die
"couldn't open file";
my $previous_coordinate=1;
my $count=0;
my $previous_chr = "start";
print "Processing Iso-Seq plus strand reads...\n";
while (my $line = <INF>) {
    chomp($line);
    my @cols = split("\t", $line);
    next if ($cols[5] =~ m/^\d+S/); #skips reads clipped at the 5' end
    my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
    if (($cols[2] eq $previous_chr) and ($cols[3] ==
$previous_coordinate)) {
            $count = $count + $split_id[1]; #increases the count by the
read depth for the putative isoform
    }
    else {
            if ($previous_chr eq "start") { #doesn't print out the
placeholder first line.
                $previous_chr = $cols[2]; #sets the previous
chromosome, previous coordinate and count values
                $previous_coordinate = $cols[3];
                $count = $split_id[1];
    }
    else {
        print OUT $previous_chr, "\t", $previous_coordinate-1,
"\t", $previous_coordinate, "\t", $count, "\n"; #prints to output file,
converting to chrStart 0-based bedgraph coordinate
                $previous_chr = $cols[2];
                $previous_coordinate = $cols[3];
                $count = $split_id[1];
            }
    }
}
print OUT $previous_chr, "\t", $previous_coordinate-1, "\t",
$previous_coordinate, "\t", $count, "\n"; #prints the last start
coordinates to output file
close(INF);
close(OUT);
system("rm \Q$SMRT_file\E.sorted.plus.sam.temp");
#processing of MINUS SMRT sam file
open(INF, "<$SMRT_file.sorted.minus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.minus.sam.read_starts.bedgraph.temp") or
die "couldn't open file";
```

```
my @CIGAR_dist;
my $sum;
my %minus_starts;
print "Processing Iso-Seq minus strand reads...\n";
while (my $line = <INF>) {
    chomp($line);
    my @cols = split("\t", $line);
    next if ($cols[5] =~ m/\d+S$/); #skips reads soft-clipped at the 5'
end
    while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR
string to determine the downstream coordinate
            push (@CIGAR_dist, $1);
    }
    $sum += $_ for @CIGAR_dist;
    my $start_coord = $cols[3] + $sum - 1; #subtract 1 to account for
start/end inclusion
    my $chr_start_coord = "$cols[2]\:$start_coord"; #combines the
chromosome and 5' end coordinate into a key to use for the hash
    $sum = 0;
    @CIGAR_dist = ();
    my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
    if (exists $minus_starts{$chr_start_coord}) { #if the key is
already in the hash, increases the value (count) by the read depth for
that putative isoform
                $minus_starts{$chr_start_coord} =
$minus_starts{$chr_start_coord} + $split_id[1];
    }
    else {
        $minus_starts{$chr_start_coord} = $split_id[1]; #if the key is
not already in the hash, a\overline{dds it with a value (count) of the read depth}
for that putative isoform
    }
}
foreach my $chr_start_coord (sort keys %minus_starts) { #prints out a(n
inadequately) sorted temporary bedgraph file
    my @split_keys = split("\:", $chr_start_coord);
    print OUT $split_keys[0], "\t", $split_keys[1]-1, "\t",
$split_keys[1], "\t-", $minus_starts{$chr_start_coord}, "\n"; #prints
to output file, converting chrStart to 0-based bedgraph coordinates
}
close(INF);
close(OUT);
system("sort -k 1,1 -k 2,2n
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp >
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph");
system("cat \Q$SMRT_file\E.sorted.plus.sam.read_starts.bedgraph
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp | sort -k2,3n
> \Q$SMRT_file\E.\Q$viral_chr\E.read_starts.bedgraph.noheader');
system("rm \Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp");
```

```
system("rm \Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph");
system("rm \Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.plus.sam.read_starts.bedgraph");
#add header to bedgraph file
open(INF, "<$SMRT_file.$viral_chr.read_starts.bedgraph.noheader") or
die "couldn't open file';
open(OUT, ">$SMRT_file.$viral_chr.read_starts.bedgraph") or die
"couldn't open file";
print OUT "track type=bedgraph
name=\"$SMRT_file.$viral_chr.read_starts.bedgraph\" description=\"5'
starts of SMRT reads from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
    print OUT $line;
}
close(OUT);
close(INF);
system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.read_starts.bedgraph.noheader");
#make a bed file from the SMRT bedgraph file:
open(INF, "<$SMRT_file.$viral_chr.read_starts.bedgraph") or die
"couldn't open fi`̄e";
open(OUT, ">$SMRT_file.starts.temp.bed") or die "couldn't open file";
print "Combining Iso-Seq 5' starts within $distance_between_SMRT_peaks
of each other and calculating consensus 5' starts...\n";
collapse_bedgraph($distance_between_SMRT_peaks);
close(INF);
close(OUT);
system("sort -k 1,1 -k 2,2n \Q$SMRT_file\E.starts.temp.bed >
\Q$SMRT_file\E.starts.bed.noheader");
system("rm \Q$SMRT_file.starts.temp.bed\E");
#add header to bed file
open(INF, "<$SMRT_file.starts.bed.noheader") or die "couldn't open
file";
open(OUT, ">$SMRT_file.$viral_chr.SMRT_starts.bed") or die "couldn't
open file";
print OUT "track type=bed
name=\"$SMRT_file.$viral_chr.SMRT_starts.bed\" description=\"consensus
5' starts of Iso-Seq reads within $$distance_between_SMRT_peaks bp
collapsed to weighted center from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
    print OUT $line;
}
close(OUT);
close(INF);
system("rm \Q$SMRT_file\E.starts.bed.noheader");
```

```
#####-_-------PROCESSING CAGE DATA---------------#####
print "Preparing CAGE file...\n";
system("awk '\$3==\"$viral_chr\"' \Q$CAGE_file\E \| sort -k 4,4n >
\Q$CAGE_file\E.sorted.temp");
system("awk '\$2==0 \|\| \$2==81 \|\| \$2==83 \|\| \$2==89 \|\|
\$2==137 \|\| \$2==161 \|\| \$2==163' \Q$CAGE_file\E.sorted.temp >
\Q$CAGE_file\E.sorted.plus.sam.temp");
system("awk '\$2==16 \|\| \$2==73 \|\| \$2==97 \|\| \$2==99 \|\|
\$2==145 \|\| \$2==147 \|\| \$2==153' \Q$CAGE_file\E.sorted.temp >
\Q$CAGE_file\E.sorted.minus.sam.temp");
#processing of plus CAGE sam file
open(INF, "<$CAGE_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$CAGE_file.read_starts.txt") or die "couldn't open file";
open(OUT2, ">$CAGE_file.starts.bedgraph.temp");
my $prev_coord=0.5;
my $start_count=0;
while (my $line = <INF>) {
    chomp($line);
    next if ($line =~ m/^@/); #skips header lines
    my @cols = split("\t", $line);
    if ($cols[3] == $prev_coord) {
        $start_count++; #increases the count by 1
    }
    else {
        if ($prev_coord == 0.5) { #doesn't print out the placeholder
first line.
            $prev_coord = $cols[3];
            $start_count = 1;
        }
            else {
                            print OUT $viral_chr, "\t+\t", $prev_coord, "\t",
$start_count, "\n"; #prints to output txt file for Paraclu
            print OUT2 $viral_chr, "\t", $prev_coord-1, "\t",
$prev_coord, "\t", $start_count, "\n"; #prints to output bedgraph file
            $prev_coord = $cols[3];
            $start_count = 1;
        }
    }
}
print OUT "$viral_chr\t+\t$prev_coord\t$start_count\n"; #prints the
last start coordinates to output file
close(INF);
system("rm \Q$CAGE_file\E.sorted.plus.sam.temp");
```

```
#processing of MINUS CAGE sam file
open(INF, "<$CAGE_file.sorted.minus.sam.temp") or die "couldn't open
file";
my @read_dist;
my $dist_sum;
my %minus_start;
while (my $line = <INF>) {
    chomp($line);
    my @cols = split("\t", $line);
    while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR
string to determine the downstream coordinate
                push (@read_dist, $1);
    }
    $dist_sum += $_ for @read_dist;
    my $start_coord = $cols[3] + $dist_sum - 1; #subtract one to
account for start/end inclusion
    $dist_sum = 0;
    @read_dist = ();
    if (exists $minus_start{$start_coord}) { #if the key is already in
the hash, increases the value (count) by the read depth for that
putative isoform
        $minus_start{$start_coord} = $minus_start{$start_coord} + 1;
    }
    else {
        $minus_start{$start_coord} = 1; #if the key is not already in
the hash, adds it with a value (count) of the read depth for that
putative isoform
    }
}
foreach my $start_coord (sort keys %minus_start) { #prints out a(n
inadequately) sorted file. Doesn't need to be sorted because Paraclu
will do that anyways.
    print OUT "$viral_chr\t-
\t$start_coord\t$minus_start{$start_coord}\n";
    print OUT2 $viral_chr, "\t", $start_coord-1, "\t", $start_coord,
"\t-", $minus_start{$start_coord}, "\n"; #prints to output bedgraph
file
}
close(INF);
close(OUT);
close(OUT2);
system("rm \Q$CAGE_file\E.sorted.minus.sam.temp");
system("rm \Q$CAGE_file\E.sorted.temp");
system("sort -k2,3\overline{n}\Q$CAGE_file\E.starts.bedgraph.temp >
\Q$CAGE_file\E.starts.bedgraph.noheader");
system("rm \Q$CAGE_file\E.starts.bedgraph.temp");
#add header to bedgraph file
open(INF, "<$CAGE_file.starts.bedgraph.noheader") or die "couldn't open
file";
open(OUT, ">$CAGE_file.$viral_chr.starts.bedgraph") or die "couldn't
open file";
```

```
print OUT "track type=bedgraph
name=\"$CAGE_file.$viral_chr.starts.bedgraph\" description=\"5' starts
of CAGE tags from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
    print OUT $line;
}
close(INF);
close(OUT);
system("rm \Q$CAGE_file\E.starts.bedgraph.noheader");
#Running Paraclu to define clusters
open(INF, "<$CAGE_file.read_starts.txt") or die "couldn't open file";
open(OUT, ">$CAGE_file.paraclu.txt.temp");
# paraclu.pl: perform parametric clustering of data attached to
sequences
# Written by Martin C Frith 2006
# Genome Exploration Research Group, RIKEN GSC and
# Institute for Molecular Bioscience, University of Queensland
# This program reads in a list of numeric values attached to positions
# in sequences. The list should have four tab- (or space-) separated
# columns containing: the sequence name, the strand, the position, and
# the value. (Multiple values for the same sequence/strand/position
# will be summed.) It outputs the clusters as eight tab-separated
# columns: sequence name, strand, start, end, number of values, sum of
# values, min d, max d. See below for the meaning of "d".
# An example line of input:
# chr1 + 17689 3
# Clustering is performed separately for different strands (as if each
# strand were a completely different sequence). It does not matter
# whether the position uses 0-based or 1-based coordinates: the
# program does not care, and the output will be consistent with the
# input.
# The clusters are defined as follows. A cluster is a maximal scoring
# segment, where the score of any segment is: the sum of the values in
# the segment minus d times the size of the segment. Large values of d
# give smaller, tighter clusters and small values of d give larger,
# looser clusters. The program finds all possible clusters for any
# value of d, and annotates each cluster with the maximum and minimum
# values of d that produce it. The ratio max d / min d provides a
# measure of the cluster's "stability".
# The output will include two types of obvious/trivial/degenerate
# clusters: those that cover single positions, and those that cover
# all of the positions in a sequence. For many purposes, it would be
# best to ignore these cases.
use strict;
```

```
use List::Util qw(min max);
my %data;
#warn "reading...\n";
while (<INF>) {
    chomp;
    s/#.*//; # ignore comments
    next unless /\S/; # skip blank lines
    my ($seq, $strand, $pos, $value) = split;
    my $key = "$seq $strand";
    push @{$data{$key}}, [ $pos, $value ];
}
warn "Clustering CAGE data...\n";
print OUT "# sequence, strand, start, end, sites, sum of values, min d,
max d\n";
for my $key (sort keys %data) { # iterate over sequences / strands
    my ($seq, $strand) = split " ", $key;
    my $sites = $data{$key};
    @$sites = sort { $$a[0] <=> $$b[0] } @$sites; # sort by position
    my $clusters = all_clusters($sites);
    for my $c (@$clusters) {
            my ($beg, $end, $tot, $sit, $min, $max) = @$c;
            my $beg_pos = $$sites[$beg] [0];
            my $end_pos = $$sites[$end] [0];
            printf OUT
"$seq\t$strand\t$beg_pos\t$end_pos\t$sit\t$tot\t%.3g\t%.3g\n",
            $min, $max;
    }
}
### Generic code to find clusters in a sparse sequence of values: ###
sub all_clusters {
    our $inf = 1e100; # hopefully much bigger than any value in the
input
        our $sites = shift; # input: reference to array of site locations
& values
    our $clusters = []; # output: reference to array of clusters
    get_clusters(0, $#$sites, -$inf);
    return $clusters;
}
# get clusters of sites between beg and end with density > min_density
sub get_clusters {
    our ($clusters, $inf);
    my ($beg, $end, $min_density) = @_;
```

```
    my ($prefix, $pmin, $ptot, $psit) = weakest_prefix($beg, $end);
    my ($suffix, $smin, $stot, $ssit) = weakest_suffix($beg, $end);
    $ptot == $stot and $psit == $ssit or die "internal error!";
    my $max_density = min $pmin, $smin;
    unless ($max_density == $inf) {
        my $break = $pmin < $smin ? $prefix + 1 : $suffix;
        my $new_min = max $min_density, $max_density;
        get_clusters($beg, $break-1, $new_min);
        get_clusters($break, $end, $new_min);
    }
    push @$clusters, [ $beg, $end, $ptot, $psit, $min_density,
$max_density ]
    if $max_density > $min_density;
}
# get least dense prefix (and total of values & sites)
sub weakest_prefix {
    our ($sites, $inf);
    my ($beg, $end) = @_;
    my $beg_pos = $$sites[$beg] [0];
    my $min_density = $inf;
    my $min_prefix = $end;
    my $tot = 0;
    my $sit = 0;
    for (my $i = $beg; $i < $end; ++$i) {
        $tot += $$sites[$i][1];
        next if $$sites[$i][0] == $$sites[$i+1][0]; # idiot-proofing
        ++$sit;
        my $dist = $$sites[$i+1][0] - $beg_pos;
        my $density = $tot / $dist;
        if ($density < $min_density) {
                $min_prefix = $i;
                $min_density = $density;
            }
    }
    $tot += $$sites[$end][1];
    ++$sit;
    return ($min_prefix, $min_density, $tot, $sit);
}
# get least dense suffix (and total of values & sites)
sub weakest_suffix {
    our ($sites, $inf);
    my ($beg, $end) = @_;
    my $end_pos = $$sites[$end] [0];
    my $min_density = $inf;
    my $min_suffix = $beg;
    my $tot= 0;
```

```
    my $sit = 0;
    for (my $i = $end; $i > $beg; --$i) {
    $tot += $$sites[$i][1];
    next if $$sites[$i][0] == $$sites[$i-1][0]; # idiot-proofing
    ++$sit;
    my $dist = $end_pos - $$sites[$i-1][0];
    my $density = $tot / $dist;
    if ($density < $min_density) {
            $min_suffix = $i;
            $min_density = $density;
    }
}
$tot += $$sites[$beg][1];
++$sit;
return ($min_suffix, $min_density, $tot, $sit);
}
close(INF);
close(OUT);
system("sort -k2,2 -k3,3n -k4,4rn \Q$CAGE_file\E.paraclu.txt.temp >
\Q$CAGE_file\E.paraclu.txt");
system("rm \Q$CAGE_file\E.paraclu.txt.temp");
#filtering clusters:
print "Extracting CAGE clusters containing $min_tags tags, density fold
change at least $min_dens, from $min_length to $max_length bp long\n';
my $length;
my $dens;
my $prev_start = 0;
my $prev_end = 0;
open(INF, "<$CAGE_file.paraclu.txt") or die "couldn't open file";
open(OUT,
">$CAGE_file.clusters.$min_tags.$min_dens.$min_length.$max_length.bed")
or die "couldn't open file";
while (my $line = <INF>) { #extracts clusters meeting the criteria.
Excludes subclusters.
    chomp($line);
    next if ($line =~ /^#/); #skips the header line
    my @cols = split("\t", $line);
    next if ($cols[5] < $min_tags);
    $length = $cols[3] - $cols[2] + 1;
    if (($length >= $min_length) and ($length <= $max_length)) {
        $dens = $cols[7] / $cols[6];
        if ($dens >= $min_dens) {
            next if (($cols[2] >= $prev_start) and ($cols[2] <=
$prev_end));
    if ($dens < 100) { #keep everything one-based (like sam)
for now; will convert to zero-based in next step
                                    printf OUT "%s\t%d\t%d\t%d%s%.1f\t%d\t%s\n", $cols[0],
```

\$cols[2], \$cols[3], \$cols[5], ":", \$dens, \$cols[5], \$cols[1]; \#limits the density output to 1 decimal place, but doesn't change huge numbers to exponents

```
}
else {
```

printf OUT "\%s\t\%d\t\%d\t\%d\%s\%.1e\t\%d\t\%s\n", \$cols[0],
\$cols[2], \$cols[3], \$cols[5], ":", \$dens, \$cols[5], \$cols[1]; \#changes
large numbers to exponents
\}
\$prev_start = \$cols[2];
\$prev_end = \$cols[3];
\}
\}
\}
close(INF);
close(OUT);
system("rm \Q\$CAGE_file\E.paraclu.txt");
\#getting weighted averages of Paraclu clusters:
my \$rangeStart_CAGE;
my \$rangeEnd_CAGE;
my \$strand_CAGE;
my \$CAGE_weighted_sum = 0;
my \$CAGE_weighted_average;

```
open(INF,
"<$CAGE_file.clusters.$min_tags.$min_dens.$min_length.$max_length.bed")
or die "couldn't open file";
open(OUT, ">$CAGE_file.$viral_chr.CAGE_starts.temp") or die "couldn't
open file";
while (my $line = <INF>) {
    chomp($line);
    my @cols = split("\t", $line);
    $rangeStart_CAGE = $cols[1];
    $rangeEnd_CAGE = $cols[2];
    $strand_CAGE = $cols[5];
    open(INF2, "<$CAGE_file.read_starts.txt") or die "couldn't open
file";
    while (my $line2 = <INF2>) {
        chomp($line2);
        my @cols2 = split("\t", $line2);
            if ((($cols2[2]) >= $rangeStart_CAGE) and (($cols2[2]) <=
$rangeEnd_CAGE) and ($cols2[1] eq $strand_CAGE)) {
                $CAGE_weighted_sum = $CAGE_weighted_sum +
($cols2[2]*$cols2[3]);
    }
    }
    $CAGE_weighted_average = sprintf("%1.0f",
($CAGE_weighted_sum/$cols[4]));
    if ($strand_CAGE eq "+") {
            print OUT $cols[0], "\t", $CAGE_weighted_average-1, "\t",
$CAGE_weighted_average, "\t", $rangeStart_CAGE-1, ":", $rangeEnd_CAGE-
```

```
1, ":", $cols[3], "\t", $cols[4], "\t", $strand_CAGE, "\n"; #prints
output, converting chrStart and range to 0-based
    }
    elsif ($strand_CAGE eq "-") {
            print OUT $cols[0], "\t", $CAGE_weighted_average-1, "\t",
$CAGE_weighted_average, "\t", $rangeStart_CAGE, ":", $rangeEnd_CAGE,
":-", $cols[3], "\t", $cols[4], "\t", $strand_CAGE, "\n"; #prints
output, converting chrStart to 0-based but keeping range 1-based
(because these are all chrEnds)
    }
    $CAGE_weighted_sum = 0;
    close(INF2);
}
close(INF);
close(OUT);
system("sort -k2,2n -k 3,3n
\Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.temp >
\Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.noheader');
system("rm \Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.temp");
#add header to bed file
open(INF, "<$CAGE_file.$viral_chr.CAGE_starts.noheader") or die
"couldn't open file";
open(OUT, ">$CAGE_file.$viral_chr.CAGE_starts.bed");
print OUT "track type=bed
name=\"$CAGE_file.$viral_chr.CAGE_starts.bed\" description=\"weighted
averages of CAGE clusters between $min_length and $max_length bases
long with at least $min_tags tags and relative density of at least
$min_dens from start_finder_sam_to_bed.pl and paraclu\"\n";
while (my $line = <INF>) {
    print OUT $line;
}
close(OUT);
close(INF);
system("rm \Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.noheader");
system("rm \Q$CAGE_file\E.read_starts.txt");
system("rm
\Q$CAGE_file\E.clusters.$min_tags.$min_dens.$min_length.$max_length.bed
");
#####----------SEEKING CAGE SUPPORT FOR SMRT STARTS-----------------######
open(INF, "<$CAGE_file.$viral_chr.CAGE_starts.bed" ) or die "couldn't
open file";
print "Extracting Iso-Seq 5' starts within $dist_SMRT_CAGE bases of
CAGE clusters...\n";
my %features_CAGE;
my $key_combo__CAGE;
```

```
while(my $line = <INF> ) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @cols = split("\t", $line);
    if ($cols[5] eq "+") { #for each line in the CAGE bed file, creates
a key for the hash combining coordinate and strand. Selects chrStart
for starts on the plus strand and chrEnd for starts on the minus
strand.
            $key_combo_CAGE = "$cols[1]:$cols[5]";
    }
    if ($cols[5] eq "-") {
        $key_combo_CAGE = "$cols[2]:$cols[5]";
    }
    $features_CAGE{$key_combo_CAGE} = $cols[4]; #enters a count value
for the key into the hash
}
close(INF);
open(INF, "<$SMRT_file.$viral_chr.SMRT_starts.bed" ) or die "couldn't
open file";
open(OUT,
">$SMRT_file.$viral_chr.SMRT_starts.bed.CAGE_support.bed.temp");
my $match_count;
my $lower_limit;
my $upper_limit;
while(my $line = <INF>) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @SMRT_cols = split("\t", $line);
    next if (abs $SMRT_cols[4] < $min_SMRT); #skips starts without
enough SMRT support
    foreach my $key_combo_CAGE (keys %features_CAGE) {
        my @CAGE_cols = split(":'", $key_combo_CAGE);
        if ($SMRT_cols[5] eq "+") {
            $lower_limit = $SMRT_cols[1]-$dist_SMRT_CAGE;
            $upper_limit = $SMRT_cols[1]+$dist_SMRT_CAGE;
        }
        if ($SMRT_cols[5] eq "-") {
            $lower_limit = $SMRT_cols[2]-$dist_SMRT_CAGE;
            $upper_limit = $SMRT_cols[2]+$dist_SMRT_CAGE;
        }
        if (($SMRT_cols[5] eq $CAGE_cols[1]) and ($CAGE_cols[0] >=
$lower_limit) and ($CAGE_cols[0] <= $upper_limit)) {
        if ($match_count) { #if more than one CAGE start matches
the SMRT start, selects the CAGE end with the most tags
                        if ($features_CAGE{$key_combo_CAGE} > $match_count) {
                $match_count = $features_CAGE{$key_combo_CAGE};
            }
        }
        else {
            $match_count = $features_CAGE{$key_combo_CAGE};
```

```
                }
            }
    }
    if ($match_count) {
        my $name = "$SMRT_cols[4].IsoSeq_$match_count.CAGE";
        my $count = $match_count + $SMRT_cols[4];
        print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$name\t$count\t$SMRT_cols
[5]\t$SMRT_cols[3]\n";
            undef($match_count);
        }
        else {
            my @range_cols = split (":'", $SMRT_cols[3]);
            print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$range_cols[2].IsoSeq\t$r
ange_cols[2]\t$SMRT_cols[5]\t$SMRT_cols[3]\n";
    }
}
close(OUT);
close(INF);
#####----------COMPARING TO ANNOTATED STARTS---------------######
open(INF, "<$ann_file" ) or die "couldn't open file";
print "Processing annotation file...\n";
#extract 5' starts from the annotation file:
#annotation file must be sorted by chrStart then chrEnd!
my @annotated_starts;
my $plus_prev_coord = 0;
my $minus_prev_coord = 0;
while(my $line = <INF>) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @ann_cols = split("\t", $line);
    next if $ann_cols[0] ne $viral_chr; #skip lines that aren't viral
    if ($ann_cols[5] eq "+'") {
        if ($ann_cols[1] != $plus_prev_coord) {
            push (@annotated_starts, "$ann_cols[1]:$ann_cols[5]");
            $plus_prev_coord = $ann_cols[1];
        }
    }
    elsif ($ann_cols[5] eq "-"){
        if ($ann_cols[2] != $minus_prev_coord) {
            push (@annotated_starts, "$ann_cols[2]:$ann_cols[5]");
            $minus_prev_coord = $ann_cols[2];
        }
    }
}
my $annotated = scalar @annotated_starts;
```

```
close(INF);
```

\#compare starts in the altered SMRT starts file (that already has info about CAGE starts) with annotated starts

```
open(INF,
"<$SMRT_file.$viral_chr.SMRT_starts.bed.CAGE_support.bed.temp" ) or die
"couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.validated_starts.bed");
print "Comparing Iso-seq starts to annotated starts...\n";
print OUT "track type=bedDetail
name=\"$SMRT_file.$viral_chr.validated_starts.bed\"
description=\"consensus Iso-Seq 5' starts of collapse value 8 supported
by at least $min_SMRT read(s) within $dist_SMRT_CAGE bp of CAGE
clusters or within $ann_dist bp of annotated starts. From
start_finder_sam_to_bed.pl\"\n";
my $annotated_found_by_SMRT = 0;
my $novel_found_by_SMRT_CAGE = 0;
my $SMRT_annotated = 0; #this is different than
$annotated_found_by_SMRT because depending on input parameters two SMRT
starts may correspond to a single annotated start or vice versa.
while(my $line = <INF>) {
    chomp($line);
    my @SMRT_cols = split("\t", $line);
    my $found_flag=0;
    foreach my $ann_start (@annotated_starts) {
        my @ann_cols = split(":", $ann_start);
        my $lowēr_limit = $ann_cols[0]-$ann_dist;
        my $upper_limit = $ann_cols[0]+$ann_dist;
        if ($SMRT_cols[5] eq "+') {
            if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[1]>=$lower_limit) and ($SMRT_cols[1]<=$upper_limit)) {
                                    if ($found_flag == 0) {
                                    print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\tt$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[\overline{6}]\n";
                                    $found_flag = 1;
                                    $annotated_found_by_SMRT++; #counts multiple
annotated starts near SMRT starts
                                    $SMRT_annotated++; #only counts one annotated start
per SMRT start
```

 \}
 elsif (\$found_flag == 1) \{
 \$annotated_found_by_SMRT++;
 \}
 \}
 \}
 if (\$SMRT_cols[5] eq "-") \{
 if ((\$SMRT_cols[5] eq \$ann_cols[1]) and
 (\$SMRT_cols[2]>=\$lower_limit) and (\$SMRT_cols[2]<=\$upper_limit)) \{
if (\$found_flag == 0) \{

```
print OUT $SMRT_cols[0], "\t", $SMRT_cols[1], "\t",
$SMRT_cols[2], "\tann_", $SMRT_cols[5], "_", $SMRT_cols[3], "\t",
abs($S\overline{MRT_cols[4]), "\\"", $SMRT_cols[5], "\t", $SM\overline{RT}_cols[6], "\n";}
                    $found_flag = 1;
                    $annotated_found_by_SMRT++;
                    $SMRT_annotated++;
        }
        elsif ($found_flag == 1) {
            $annotate\overline{d_found_by_SMRT++;}
        }
        }
    }
    }
    if ($found_flag == 0) {
        if ($SMRT_cols[3] =~ /.+IsoSeq_.+CAGE/) {
        print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";
        $novel_found_by_SMRT_CAGE++;
        }
    }
}
my $total_found = $SMRT_annotated + $novel_found_by_SMRT_CAGE;
close(INF);
close(OUT);
print '
```



```
open(OUT, ">${viral_chr}_validated_starts_stats.txt");
if ($total_found > 0) {
    if ($SMRT_annotated != $annotated_found_by_SMRT) {
            print "$total_found 5' starts found. $novel_found_by_SMRT_CAGE
are novel, $SMRT_annotated are annotated. $annotated_found_by_SMRT out
of $annotated total annotated 5' starts are found.\nNote that two
annotated starts may be within $ann_dist bp of a single Iso-Seq start
or vice versa.\n";
    print OUT "$viral_chr\n$total_found 5'
starts\n\t$novel_found_by_SMRT_CAGE novel\n\t$SMRT_annotated
annotated\n$annotated starts in annotation
file\n\t$annotated_found_by_SMRT detected by Iso-Seq\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
    }
    else {
        print "$total_found 5' starts found. $novel_found_by_SMRT_CAGE
are novel, $SMRT_annotated are annotated (out of a total of $annotated
annotated 5' starts).\n";
            print OUT "$viral_chr\n\n$total_found 5'
starts\n\t$novel_found_by_SMRT_CAGE novel\n\t$SMRT_annotated
annotated\n$annotated starts in annotation file\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
    }
```

```
}
else {
    print "No validated starts found.\n";
    print OUT "No validated starts found.\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
}
close(OUT);
system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.SMRT_starts.bed.CAGE_support.bed.temp");
#########################
sub collapse_bedgraph {
    my ($distance_between_peaks) = shift;
    my $prev_coord_plus = 1;
    my $prev_coord_minus = 1;
    my $count_sum_plus = 0;
    my $count_sum_minus = 0;
    my $weighted_coordinate_sum_plus = 0;
    my $weighted_coordinate_sum_minus = 0;
    my $weighted_average_plus;
    my $weighted_average_minus;
    my $first_plus = 1;
    my $first_minus = 1;
    my @coords_plus;
    my @coords_minus;
    my $chrStart_plus;
    my $chrEnd_plus;
    my $chrStart_minus;
    my $chrEnd_minus;
    while (my $line = <INF>) {
        chomp($line);
        next if ($line =~ /^track/); #skips the track definition line
        my @cols = split("\t", $line);
        if ($cols[3] > 0) { #if this coordinate has a positive count...
            if ($cols[1] <= $prev_coord_plus +
($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate
                            $count_sum_plus = $count_sum_plus + $cols[3]; #adds to
the sums to eventually calculate the weighted average
                            $weighted_coordinate_sum_plus =
$weighted_coordinate_sum_plus + ($cols[1]*$cols[3]);
                push (@coords_plus, $cols[1]);
                    $prev_coord_plus = $cols[1]; #sets the current
coordinate as the "previous coordinate" before moving on
            }
            else { #if the present coordinate is not within the
specified number of bp of the previous coordinate, need to print out a
feature
                            if ($first_plus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)
            $count_sum_plus = $cols[3];
```

```
    $weighted_coordinate_sum_plus = $cols[1]*$cols[3];
    $prev_coord_plus = $cols[1];
    push (@coords_plus, $cols[1]);
    $first_plus = 0;
    }
    else {
    $weighted_average_plus = sprintf("%1.0f",
($weighted_coordinate_sum_plus/$count_sum_plus)); #calculates weighted
average
    $chrStart_plus = $coords_plus[0];
    $chrEnd_plus = pop(@coords_plus);
    print OUT $viral_chr, "\t", $weighted_average_plus,
"\t", $weighted_average_plus+1, "\t", $chrStart_plus, ":",
$chrEnd_plus, ":", $count_sum_plus, "\t", $count_sum_plus, "\t+\n";
#prints out weighted average for plus strand features. Use printf to
round the weighted average.
                                    @coords_plus = ($cols[1]);
                                    $count_sum_plus = $cols[3]; #sets "previous
coordinate", count and sum of counts for the current coordinate
                        $weighted_coordinate_sum_plus = $cols[1]*$cols[3];
                        $prev_coord_plus = $cols[1];
            }
        }
    }
    elsif ($cols[3] < 0) { #if this coordinate has a negative
count...
    if ($cols[2] <= $prev_coord_minus +
($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate
    $count_sum_minus = $count_sum_minus + $cols[3]; #adds
to the sums to eventually calculate the weighted average
    $weighted_coordinate_sum_minus =
$weighted_coordinate_sum_minus + ($colls[\overline{2]}*$cols[3]);
                            push (@coords_minus, $cols[2]);
                            $prev_coord_minus = $cols[2]; #sets the current
coordinate as the "previous coordinate" before moving on
    }
    else { #if the present coordinate is not within the
specified number of bp of the previous coordinate, need to print out a
feature
                            if ($first_minus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)
            $count_sum_minus = $cols[3];
                        $weighted_coordinate_sum_minus = $cols[2]*$cols[3];
                        $prev_coord_minus = $cols[2];
        push (@coords_minus, $cols[2]);
        $first_minus = 0;
    }
    else {
            $weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/$count_sum_minus)); #calculates
weighted average.
        $chrStart_minus = $coords_minus[0];
        $chrEnd_minus = pop(@coords_minus);
```

print OUT \$viral_chr, "\t",
\$weighted_average_minus-1, "\t", \$weighted_average_minus, "\t", \$chrStart_minus, ":", \$chrEnd_minus, ":", \$count_sum_minus, "\t", abs(\$count_sum_minus), "\t-\n";
@coords_minus = (\$cols[2]);
@coords_minus = (\$cols[2]);
\$count_sum_minus = \$cols[3]; \#sets "previous
coordinate", count and sum of counts for the current coordinate
\$weighted_coordinate_sum_minus = \$cols[2]*\$cols[3];
\$prev_coord_minus = \$cols[2];
\}
\}
\}
\}
if (\$count_sum_plus > 0) \{\#calculates and prints out weighted average for the last feature (plus strand)
\$weighted_average_plus = sprintf("\%1.0f",
(\$weighted_coordinate_sum_plus/\$count_sum_plus));
\$chrStart_plus = \$coords_plus[0];
\$chrEnd_plus = pop(@coords_plus);
print OUT \$viral_chr, "\t", \$weighted_average_plus, "\t", \$weighted_average_plus+1, "\t", \$chrStart_plus, ":", \$chrEnd_plus, ":", \$count_sum_plus, "\t", \$count_sum_plus, "\t+\n"; \#prints out weighted average for plus strand features. Use printf to round the weighted average.
\}
if (\$count_sum_minus < 0) \{\#calculates and prints out weighted average for the last feature (minus strand)
\$weighted_average_minus = sprintf("\%1.0f",
(\$weighted_coordinate_sum_minus/\$count_sum_minus));
\$chrStart_minus = \$coords_minus[0];
\$chrEnd_minus = pop(@coords_minus);
print OUT \$viral_chr, "\t", \$weighted_average_minus-1, "\t",
\$weighted_average_minus, "\t", \$chrStart_minus, ":", \$chrEnd_minus, ":", \$count_sum_minus, "\t", abs(\$count_sum_minus), "\t-\n";
'\}
\}

APPENDIX 2

TRIMD_junction_validator.pl

```
#!/usr/bin/perl
#Accepts a junctions files from GMAP/Iso-Seq (generated with the -f
introns argument), an SJ.out.tab files from STAR/Illumina and an
annotation file. Returns 3 bed files: one of SMRT introns, one of
Illumina introns and one of introns detected by both methods.
Annotation status of validated introns is noted.
#USAGE:
# perl <PATH/TRIMD_junction_validator.pl> </PATH/Iso-Seq_introns_file>
</PATH/Illumina_SJ.out.tab_file> </PATH/transcript_annotation_bed_file>
<coordinates_to_ignore_bed_file(optional)>
use warnings;
use strict;
my ($SMRT_jfile, $ill_jfile, $ann_file, $ig_file) = @ARGV;
print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;
my $min_SMRTj;
my $min_illj;
print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;
if ($answer eq "y") {
    $min_SMRTj = 1;
    $min_illj = 1;
}
else {
    print "Enter minimum Iso-Seq read depth to report a splice junction
(e.g. 1): ";
    $min_SMRTj = <STDIN>;
    chomp $min_SMRTj;
    print "Enter minimum Illumina read depth to report a splice
junction (e.g. 1): ";
    $min_illj = <STDIN>;
    chomp $min_illj;
}
print '
    --------------------------------------------------------"';
#####----------GMAP/SMRT FILE CONVERSION--------------------
```

```
open(INF, "<$SMRT_jfile");
open(OUT, ">$SMRT_jfile.temp");
print "Processing Iso-Seq splice junctions...\n";
while(my $line = <INF> ) {
    chomp($line);
    my ($id) = $line =~ /\>(.+)\.i/;
    my ($chr) = $line =~ /\s(.+):/;
    my ($score) = $line =~ /\>.+\/(\d+)\//;
    my ($donor, $acceptor) = $line =~ /:(\d+)\.\.(\d+)/;
    next if $chr ne $viral_chr;
    if ($acceptor > $donor) {
        print OUT $chr, "\t", $donor, "\t", $acceptor - 1, "\t", $id,
"\t", $score, "\t+\n";
    }
    else {
        print OUT $chr, "\t", $acceptor, "\t", $donor - 1, "\t", $id,
"\t", $score, "\t-\n";
}
close(OUT);
close(INF);
system("sort -k2,3n \Q$SMRT_jfile\E.temp >
\Q$SMRT_jfile\E.sorted.temp"); #sorts so that duplicate introns will be
next to each other.
open(INF, "<$SMRT_jfile.sorted.temp" ) or die "couldn't reopen file";
open(OUT, ">$SMRT_jfile.bed.temp");
my $plus_previous_chr = "start";
my $plus_count = 0;
my $plus_previous_start = 0;
my $plus_previous_end = 0;
my $minus_previous_chr = "start";
my $minus_count = 0;
my $minus_previous_start = 0;
my $minus_previous_end = 0;
while (my $line = <INF>) {
    chomp($line);
    my @cols = split('\t", $line);
    if ($cols[5] eq "+'") { #plus and minus need to be treated
separately in case of introns with the same starts and ends annotated
on opposite strands
    if (($cols[0] eq $plus_previous_chr) and ($cols[1] ==
$plus_previous_start) and ($cols[2] == $plus_previous_end)) { #checks
to see if the intron matches the previous intron
            $plus_count = $plus_count + $cols[4];
    }
    else {
    if ($plus_previous_chr eq "start") { #prevents the initial
placeholder value from printing out as a line, and sets the values of
the first intron
```

```
    $plus_previous_chr = $cols[0];
    $plus_previous_start = $cols[1];
    $plus_previous_end = $cols[2];
    $plus_count = $cols[4];
    }
    else {
    print OUT
"$plus_previous_chr\t$plus_previous_start\t$plus_previous_end\t$plus_co
unt\t$plus_count\t+\n";
    $plus_previous_chr = $cols[0];
    $plus_previous_start = $cols[1];
    $plus_previous_end = $cols[2];
    $plus_count = $cols[4];
        }
    }
    }
    if ($cols[5] eq "-") {
        if (($cols[0] eq $minus_previous_chr) and ($cols[1] ==
$minus_previous_start) and ($cols[2] == $minus_previous_end)) {
                $minus_count = $minus_count + $cols[4];
    }
    else {
        if ($minus_previous_chr eq "start") {
                $minus_previous_chr = $cols[0];
            $minus_previous_start = $cols[1];
            $minus_previous_end = $cols[2];
            $minus_count = $cols[4];
        }
        else {
            print OUT
"$minus_previous_chr\t$minus_previous_start\t$minus_previous_end\t$minu
s_count\t$minus_count\t-\n"; #prints out in bed format
                        $minus_count = $cols[4];
                        $minus_previous_chr = $cols[0];
                        $minus_previous_start = $cols[1];
                        $minus_previous_end = $cols[2];
            }
        }
    }
}
print OUT
"$plus_previous_chr\t$plus_previous_start\t$plus_previous_end\t$plus_co
unt\t$plus_count\t+\n"; #adds the last plus strand feature
print OUT
"$minus_previous_chr\t$minus_previous_start\t$minus_previous_end\t$minu
s_count\t$minus_count\t-\n"; #adds the last plus strand feature
close(OUT);
close(INF);
system("sort -k2,3n \Q$SMRT_jfile\E.bed.temp >
\Q$SMRT_jfile\E.\Q$viral_chr\E.bed.sorted.temp");
system("rm \Q$SMRT_jfile\E.temp");
system("rm \Q$SMRT_jfile.sorted\E.temp");
system("rm \Q$SMRT_jfile\E.bed.temp");
```

```
#if an annotation file of regions to be ignored is supplied, remove the
SMRT junctions with a donor or acceptor in those regions:
if (defined $ig_file) {
    open(INF, "<$ig_file");
    print "Removing Iso-Seq junctions with donor or acceptor in ignored
region...\n";
    my @ig_coords;
    while(my $line = <INF>) {
        chomp($line);
        my @cols = split("\t", $line);
        my $ig_coord = "$cols[1]:$cols[2]";
        push (@ig_coords, $ig_coord);
    }
    close(INF);
    open(INF, "<$SMRT_jfile.$viral_chr.bed.sorted.temp") or die
"couldn't open file";
    open(OUT, ">$SMRT_jfile.$viral_chr.bed.noheader");
    while(my $line = <INF>) {
        chomp($line);
        my @cols = split( "\t", $line );
        my $found_flag=0;
        foreach my $ig_coord (@ig_coords) {
            my ($ig_start, $ig_end) = split (":", $ig_coord);
            if ((($cols[1] >= $ig_start) and ($cols[1] <= $ig_end)) ||
(($cols[2] >= $ig_start) and ($cols[2] <= $ig_end))) {
                        $found_flag = 1;
                        last;
                }
        }
        if ($found_flag == 0) {
            print OUT $line, "\n";
        }
    }
    close(INF);
    close(OUT);
}
#add header to bed file
if (defined $ig_file) {
    open(INF, "<$SMRT_jfile.$viral_chr.bed.noheader") or die "couldn't
open file";
}
else {
    open(INF, "<$SMRT_jfile.$viral_chr.bed.sorted.temp") or die
"couldn't open file";
}
open(OUT, ">$SMRT_jfile.$viral_chr.bed") or die "couldn't open file";
print OUT "track type=bed name=\"$SMRT_jfile.$viral_chr.bed\"
description=\"Iso-Seq introns from splice_junction_matcher.pl\"\n";
while (my $line = <INF>) {
```

```
    print OUT $line;
}
close(OUT);
close(INF);
if (defined $ig_file) {
    system("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.bed.noheader");
}
system("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.bed.sorted.temp");
#####----------STAR/ILLUMINA FILE CONVERSION----------------######
open(INF, "<$ill_jfile" ) or die "couldn't open file";
open(OUT, ">$ill_jfile.$viral_chr.bed");
print "Processing Illumina splice junctions...\n";
print OUT "track type=bed name=\"$ill_jfile.$viral_chr.bed\"
description=\"Illumina STAR introns from
splice_junction_matcher.pl\"\n';
while(my $line = <INF> ) {
    chomp($line);
    my @cols = split( "\t", $line );
    tr/12/+-/ foreach ($cols[3]); #change the numeric strand
indicators to + or -
    next if $cols[0] ne $viral_chr; #skip lines that aren't viral
    my $chrStart = $cols[1] - 1; #changes the start coordinate to 0-
based for bed
    print OUT
"$cols[0]\t$chrStart\t$cols[2]\t$cols[4]\t$cols[6]\t$cols[3]\n";
}
close(OUT);
close(INF);
#if an annotation file of regions to be ignored is supplied, remove the
Illumina junctions with a donor or acceptor in those regions:
if (defined $ig_file) {
    open(INF, "<$ig_file");
    print "Removing Illumina junctions with donor or acceptor in
ignored region...\n";
    my @ig_coords;
    while(my $line = <INF>) {
        chomp($line);
        my @cols = split("\t", $line);
        my $ig_coord = "$cols[1]:$cols[2]";
        push (@ig_coords, $ig_coord);
    }
    close(INF);
    open(INF, "<$ill_jfile.$viral_chr.bed") or die "couldn't open
file";
    open(OUT, ">$ill_jfile.$viral_chr.no_ignored.bed");
```

```
    print OUT "track type=bed
name=\"$ill_jfile.$viral_chr.no_ignored.bed\" description=\"Illumina
STAR introns from splice_junction_matcher.pl\"\n";
    while(my $line = <INF>) {
        chomp($line);
        next if ($line =~ /^track/); #skips the track definition line
        my @cols = split( "\t", $line );
        my $found_flag=0;
        foreach my $ig_coord (@ig_coords) {
            my ($ig_start, $ig_end) = split (":", $ig_coord);
            if ((($cols[1] >= $ig_start) and ($cols[1] <= $ig_end)) ||
(($cols[2] >= $ig_start) and ($cols[2] <= $ig_end))) {
                $found_flag = 1;
                last;
                }
        }
        if ($found_flag == 0) {
            print OUT $line, "\n";
        }
    }
    close(INF);
    close(OUT);
    system("rm \Q$ill_jfile\E.\Q$viral_chr\E.bed");
}
#####----------GMAP/ILLUMINA COMPARISON--------------#####
if (defined $ig_file) {
    open(INF, "<$ill_jfile.$viral_chr.no_ignored.bed" ) or die
"couldn't open file";
}
else {
    open(INF, "<$ill_jfile.$viral_chr.bed" ) or die "couldn't open
file";
}
print "Checking for matching splice junctions...\n";
my %ill_junctions;
while(my $line = <INF> ) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @cols = split("\t", $line);
    next if ($cols[4] < $min_illj);
    my $ill_key_combo = "$cols[0]$cols[1]$cols[2]$cols[5]"; #for each
line in the Illumina file, creates a key for the hash combining
chromosome, start coordinate, end coordinate and strand
    $ill_junctions{$ill_key_combo} = $cols[4]; #enters a count value
for the key into the hash
}
close(INF);
```

```
open(INF, "<$SMRT_jfile.$viral_chr.bed" ) or die "couldn't open file";
open(OUT, ">$SMRT_jfile.$viral_chr.illumina_support.bed.temp");
while(my $line = <INF>) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @cols = split("\t", $line);
    next if ($cols[4] < $min_SMRTj);
    my $SMRT_key_combo = "$cols[0]$cols[1]$cols[2]$cols[5]"; #for each
line in the SMRT file, creates a variable/key combining chromosome,
start coordinate, end coordinate and strand
    if (exists $ill_junctions{$SMRT_key_combo}) { #checks to see if the
key exists in the Illumina hash: if so, prints it out
            my $junction_depth = $cols[4] +
$ill_junctions{$SMRT_key_combo};
        print OUT
"$cols[0]\t$cols[1]\t$cols[2]\t$cols[4].IsoSeq_$ill_junctions{$SMRT_key
_combo}.Ill\t$junction_depth\t$cols[5]\n";
        }
        else {
            print OUT
"$cols[0]\t$cols[1]\t$cols[2]\t$cols[3].IsoSeq\t$cols[4]\t$cols[5]\n";
    }
}
close(INF);
close(OUT);
#####----------ANNOTATION FILE COMPARISON---------------#####
#First extract intron coordinates from the annotation file
open(INF, "<$ann_file");
print "Processing annotation file...\n";
my @intron_start;
my @intron_end;
my %ann_intron_coord_pair;
my $start;
my $end;
while (my $line = <INF>) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @cols = split("\t", $line);
    next if $cols[0] ne $viral_chr; #skip lines that aren't viral
    my $intron_number = $cols[\overline{9}] - 1;
    next if ($intron_number == 0);
    my @block_sizes = split(",", $cols[10]);
    my @block_starts = split(",", $cols[11]);
    for (my $i = 0; $i < $intron_number; $i = $i + 1) { #for the
transcript currently in the "while" loop, creates an array of intron
start sites relative to the genome
        $start = $cols[1] + $block_sizes[$i] + $block_starts[$i];
        push(@intron_start, $start);
```

\}
for (my \$i2 = 1; \$i2 < \$cols[9]; \$i2 = \$i2 + 1) \{ \#for the transcript currently in the "while" loop, creates an array of intron end sites relative to the genome
\$end = \$cols[1] + \$block_starts[\$i2];
push(@intron_end, \$end);
\}
for (my \$i3 = 0; \$i3 < \$intron_number; \$i3 = \$i3 + 1) \{ \#for the transcript currently in the "while" loop, matches up intron start and end sites to create a hash of complete intron coordinates relative to the genome
my \$intron_coords =
"\$cols[0]:\$intron_start[\$i3]:\$intron_end [\$i3]:\$cols[5]";
if (exists \$ann_intron_coord_pair\{\$intron_coords\}) \{
\$ann_intron_coord_pair\{\$intron_coords\} =
\$ann_intron_coord_pair\{\$intron_coords\} + 1; \#if the intron is already in the hash (from another transcript), increase the count
\}
else \{
\$ann_intron_coord_pair\{\$intron_coords\} = 1; \#if the intron is not already in the hash, adds it with a value of 1
\}
\}
@intron_start = ();
@intron_end = (); \#intron starts and ends have been assigned to the \%ann_intron_pair hash; empty them for the next transcript \}

```
my $ann_count = 0;
```

if (defined \$ig_file) \{
open(INF, "<\$ig_file");
my @ig_coords;
while(my \$line = <INF>) \{
chomp(\$line);
my @cols = split("\t", \$line);
my \$ig_coord = "\$cols[1]:\$cols[2]";
push (@ig_coords, \$ig_coord);
\}
close(INF);
foreach my \$ann_intron_coord_pair (keys \%ann_intron_coord_pair) \{
my (\$ann_chr, \$ann_start, \$ann_end, \$ann_strand) = split (":",
\$ann_intron_coord_pair);
my \$found_flag = 0;
foreach my \$ig_coord (@ig_coords) \{
my (\$ig_start, \$ig_end) = split (":", \$ig_coord);
if (((\$ann_start >= \$ig_start) and (\$ann_start <= \$ig_end))
|| ((\$ann_end >= \$ig_start) and (\$ann_end <= \$ig_end))) \{
\$found_flag = 1;
last;
\}
\}
if (\$found_flag == 0) \{
\$ann_count++;

```
        }
    }
}
else {
    $ann_count = scalar (keys %ann_intron_coord_pair);
}
close(INF);
#Compare introns in the altered (with Illumina data) SMRT file to
annotated introns
open(INF, "<$SMRT_jfile.$viral_chr.illumina_support.bed.temp");
open(OUT, ">$SMRT_jfile.$viral_chr.validated_introns.bed");
print "Comparing Iso-Seq junctions to annotation file...\n";
print OUT "track type=bed
name=\"$SMRT_jfile.$viral_chr.validated_introns.bed\"
description=\"Introns detected by Iso-Seq with read depth at least
$min_SMRTj supported by Illumina-detected junctions with read depth at
least $min_illj and/or annotation. From
splice_junction_matcher.pl\"\n';
my $val_SMRT_count = 0;
my $ann_SMRT_count = 0;
my $nov_SMRT_count = 0;
while (my $line = <INF>) {
    chomp($line);
    my @SMRT_cols = split("\t", $line);
    my $SMRT_intron_coords =
"$SMRT_cols[0]:$SMRT_cols[1]:$SMRT_cols[2]:$SMRT_cols[5]"; #creates a
key to search the has of annotated introns
    if (exists $ann_intron_coord_pair{$SMRT_intron_coords}) { #if the
intron matches an annotated intron, notes that and prints out the line
            print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\tt$SMRT_cols[4]\t$SMRT_cols[5]\n";
        $ann_SMRT_count++;
        $val_SMRT_count++;
    }
    else {
        if ($SMRT_cols[3] =~ /.+IsoSeq_.+Ill/) { #if the intron doesn't
match an annotated intron but does have Illumina support, notes that
and prints out the line
                            print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\n';
            $nov_SMRT_count++;
            $val_SMRT_count++;
        }
    }
}
close(OUT);
```

```
close(INF);
print "------------------------------------------------------_n';
open(OUT, ">${viral_chr}_validated_introns_stats.txt");
if ($val_SMRT_count > 0) {
    print "$val_SMRT_count validated junctions detected in the Iso-Seq
file. $nov_SMRT_count are novel and $ann_SMRT_count are annotated (out
of $ann_count annotated junctions).\n";
    if (defined $ig_file) {
        print OUT "$viral_chr\n\n$val_SMRT_count validated
junctions\n\t$nov_SMRT_count novel\n\t$ann_SMRT_count
annotated\n$ann_count junctions in annotation file\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n\t$ig_file\n';
    }
    else {
        print OUT "$viral_chr\n\n$val_SMRT_count validated
junctions\n\t$nov_SMRT_count novel\n\t$ann_SMRT_count
annotated\n$ann_count junctions in annotation fíle\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n";
    }
}
else {
    print "No validated junctions found.\n";
    if (defined $ig_file) {
            print OUT "No validated junctions found.\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n\t$ig_file\n';
    }
    else{
            print OUT "No validated junctions found.\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file \n";
    }
}
close(OUT);
system ("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.illumina_support.bed.temp");
```


APPENDIX 3

TRIMD_end_validator.pl

```
#!/usr/bin/perl
#Accepts a SAM file using Iso-Seq fl data, a SAM file using Illumina
data, and a bed file of annotated polyadenylated transcripts. Counts
the number of non-clipped Iso-Seq reads with 3' ends at each genomic
position and estimates consensus locations of clusters of 3' ends.
Extracts Illumina reads containing apparent polyA tails and estimates
consensus locations of clusters of polyadenylation sites. Output
includes bedgraph files of all 3' ends, bed files of the weighted
centers of end clusters, a sam file of reads with polyA tails and a bed
file of Iso-Seq 3' ends supported by either the annotation or the
Illumina data.
#USAGE:
# perl <PATH/TRIMD_end_validator.pl> </PATH/Iso-Seq_sam_file>
</PATH/Illumina_sam_file> </PATH/Annotation_bed_file>
use warnings;
use strict;
die "USAGE: 'perl <PATH/TRIMD_end_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/Illumina_sam_file> </PATH/Annotation_bed_file>'"
unless @ARGV == 3;
my ($SMRT_file, $ill_file, $ann_file) = @ARGV;
print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;
my $distance_between_SMRT_peaks;
my $min_As;
my $min_softclip;
my $distance_between_ill_peaks;
my $dist_SMRT_ill_d;
my $dist_SMRT_ill_u;
my $min_SMRT;
my $min_ill;
my $ann_dist;
print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;
if ($answer eq "y") {
    $distance_between_SMRT_peaks = 8;
    $min_As = 5;
    $min_softclip = 2;
    $distance_between_ill_peaks = 8;
```

```
    $dist_SMRT_ill_d = 10;
    $dist_SMRT_ill_u = 4;
    $min_SMRT = 5;
    $min_ill = 1;
    $ann_dist = 10;
}
else {
    print "Enter desired window for collapsing Iso-Seq 3' ends (e.g.
8): ";
    $distance_between_SMRT_peaks = <STDIN>;
    chomp $distance_between_SMRT_peaks;
    print "Enter minimum number of As for Illumina poly(A) tails (e.g.
5): ";
    $min_As = <STDIN>;
    chomp $min_As;
    print "Enter minimum number of mismatches for Illumina poly(A)
tails (e.g. 2): ";
    $min_softclip = <STDIN>;
    chomp $min_softclip;
    print "Enter desired window for collapsing Illumina 3' ends (e.g.
8): ";
    $distance_between_ill_peaks = <STDIN>;
    chomp $distance_between_ill_peaks;
    print "Enter number of bases downstream of Iso-Seq ends to look for
Illumina support (e.g. 10): ";
    $dist_SMRT_ill_d = <STDIN>;
    chomp $dist_SMRT_ill_d;
    print "Enter number of bases upstream of Iso-Seq ends to look for
Illumina support (e.g. 4): ";
    $dist_SMRT_ill_u = <STDIN>;
    chomp $dist_SMRT_ill_u;
    print "Enter minimum number of Iso_seq reads to report a 3' end
(e.g. 5): ";
    $min_SMRT = <STDIN>;
    chomp $min_SMRT;
    print "Enter minimum number of Illumina poly(A) tails to support a
3' end (e.g. 1): ";
    $min_ill = <STDIN>;
    chomp $min_ill;
    print "Enter maximum distance in bp from an annotated end to be
called as 'annotated' (e.g. 10): ";
    $ann_dist = <STDIN>;
    chomp $ann_dist;
}
print '
``` \(\qquad\)
```

\#\#\#\#\#---------SMRT FILE PROCESSING--------------\#\#\#\#\#
system("awk '\$3==\"$viral_chr\"' \Q$SMRT_file\E \| sort -k 4,4n >
\Q$SMRT_file\E.sorted.temp");
system("awk '\$2==0' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.plus.sam.temp");
system("awk '\$2==16' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.temp");
\#processing of PLUS sam file
open(INF, "<$SMRT_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.plus.sam.read_ends.bedgraph.temp") or die
"couldn't open file";
my @dist;
my \$sum;
my %plus_ends;
print "Processing Iso-Seq plus strand reads...\n";
while (my $line = <INF>) {
    chomp($line);
my @cols = split("\t", $line);
    next if ($cols[5] =~ m/\d+S$/); #skips reads soft-clipped at the 3'
end
    while ($cols[5] =~ /(\d+)[DMNX=]/g) { \#these lines use the CIGAR
string to determine the downstream coordinate
push (@dist, \$1);
}
\$sum += \$_ for @dist;
my \$end_coord = \$cols[3] + \$sum - 1; \#subtract 1 to account for
start/end inclusion
my $chr_end_coord = "$cols[2]\:\$end_coord"; \#combines the
chromosome and \overline{3' end coordinate into a key to use for the hash}
\$sum = 0;
@dist = ();
my @split_id = split("\/", \$cols[0]); \#extracts the read depth for
this putative isoform from its id
if (exists $plus_ends{$chr_end_coord}) { \#if the key is already in
the hash, increases the value (count) by 1
$plus_ends{$chr_end_coord} = $plus_ends{$chr_end_coord} +
\$split_id[1];
}
else {
$plus_ends{$chr_end_coord} = \$split_id[1]; \#if the key is not
already in the hash, ad\overline{ds it with a value (count) of the read depth}
}
}
foreach my \$chr_end_coord (sort keys %plus_ends) { \#prints out a(n
inadequately) sorted temporary bedgraph file
my @split_keys = split("\:", \$chr_end_coord);
print OUT' \$split_keys[0], "\t", \$split_keys[1]-1, "\t",
\$split_keys[1], "\t", $plus_ends{$chr_end_coord}, "\n"; \#prints to

```
```

output file, converting chrStart to 0-based bedgraph coordinates
}
close(INF);
close(OUT);
system("rm \Q$SMRT_file\E.sorted.plus.sam.temp");
#processing of MINUS sam file
open(INF, "<$SMRT_file.sorted.minus.sam.temp") or die "couldn't open
file";
open(OUT, ">\$SMRT_file.sorted.minus.sam.read_ends.bedgraph.temp") or
die "couldn't open file";
my \$previous_coordinate=1;
my \$count=0;
my \$previous_chr = "start";
print "Processing Iso-Seq minus strand reads...\n";
while (my $line = <INF>) {
    chomp($line);
my @cols = split("\t", $line);
    next if ($cols[5] =~ m/^\d+S/); \#skips reads soft-clipped at the 3'
end
my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
    if (($cols[2] eq $previous_chr) and ($cols[3] ==
\$previous_coordinate)) {
\$count = \$count + $split_id[1]; #increases the count by the
read depth for the putative isoform
    }
    else {
            if ($previous_chr eq "start") { \#doesn't print out the
placeholder first linē.
\$previous_chr = \$cols[2]; \#sets the previous
chromosome, previous coordinate and count values
\$previous_coordinate = \$cols[3];
\$count = \$split_id[1];
}
else {
print OUT \$previous_chr, "\t", \$previous_coordinate-1,
"\t", \$previous_coordinate, "\t-", \$count, "\n"; \#prints to output
file, converting chrStart to 0-based bedgraph coordinates
\$previous_chr = \$cols[2];
\$previous_coordinate = \$cols[3];
\$count = \$split_id[1];
}
}
}
print OUT \$previous_chr, "\t", \$previous_coordinate-1, "\t",
\$previous_coordinate, "\t-", \$count, "\n"; \#prints the last start
coordinates to output file
close(INF);
close(OUT);

```
```

system("cat \Q$SMRT_file\E.sorted.plus.sam.read_ends.bedgraph.temp
\Q$SMRT_file\E.sorted.minus.sam.read_ends.bedgraph.temp | sort -k2,3n >
\Q$SMRT_file\E.\Q$viral_chr\E.read_ends.bedgraph.noheader");
system("rm \Q$SMRT_file\E.sorted.plus.sam.read_ends.bedgraph.temp");
system("rm \Q$SMRT_file\E.sorted.minus.sam.read_ends.bedgraph.temp");
system("rm \Q$SMRT_file\E.sorted.minus.sam.temp");
#add header to bedgraph file
open(INF, "<$SMRT_file.$viral_chr.read_ends.bedgraph.noheader") or die
"couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.read_ends.bedgraph") or die "couldn't
open file";
print OUT "track type=bedGraph
name=\"$SMRT_file.\$viral_chr.read_ends.bedgraph\" description=\"3' ends
of Iso-Seq reads from end_finder_sam_to_bed.pl\"\n";
while (my \$line = <INF>) {
print OUT $line;
}
close(OUT);
close(INF);
system("rm \Q$SMRT_file\E.\Q$viral_chr\E.read_ends.bedgraph.noheader");
#make a bed file from the SMRT bedgraph file:
open(INF, "<$SMRT_file.$viral_chr.read_ends.bedgraph") or die "couldn't
open file";
open(OUT, ">$SMRT_file.ends.temp.bed") or die "couldn't open file";
print "Combining Iso-Seq 3' ends within $distance_between_SMRT_peaks of
each other and calculating consensus 3' ends...\n";
collapse_bedgraph($distance_between_SMRT_peaks);
close(INF);
close(OUT);
system("sort -k 1,1 -k 2,2n \Q$SMRT_file\E.ends.temp.bed >
\Q$SMRT_file\E.ends.bed.noheader");
system("rm \Q$SMRT_file.ends.temp.bed\E");
#add header to bed file
open(INF, "<$SMRT_file.ends.bed.noheader") or die "couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.SMRT_ends.bed") or die "couldn't open
file";
print OUT "track type=bed name=\"$SMRT_file.$viral_chr.SMRT_ends.bed\"
description=\"consensus 3' ends of Iso-Seq reads within
\$distance_between_SMRT_peaks bp collapsed to weighted center from
end_finder_sam_to_bed.pl\"\n";
while (my \$line = <INF>) {
print OUT \$line;
}
close(OUT);
close(INF);

```
```

system("rm \Q$SMRT_file\E.ends.bed.noheader");
#####----------ILLUMINA FILE PROCESSING-------------------
open(INF, "<$ill_file") or die "couldn't open input file";
open(OUT, ">\$ill_file.polyA_ends.temp") or die "couldn't open output
file";
print "Extracting Illumina reads with at least \$min_As As and at least
\$min_softclip mismatches...\n";
while (my $line = <INF>) {
    chomp($line);
my @cols = split("\t", $line);
    next if ($cols[0] eq "\@HD" || \$cols[0] eq "\@PG" || \$cols[0] eq
"\@SQ"); \#skips SAM file header lines
next if \$cols[2] ne $viral_chr;
    if ($cols[1] == 81 || \$cols[1] == 83 || \$cols[1] == 89 || $cols[1]
== 16) { #selects reads with FLAG codes indicating they are first in
pair on the plus strand
            if (($cols[5] =~ m/\d+S$/) and ($cols[9] =~ m/A{$min_As}$/)) {

# selects reads with softclipping and a run of As at the end

                my ($softclips) = $cols[5] =~ m/(\d+)S$/; #pulls out the
    number of softclipped bases
if (\$softclips > \$min_softclip) { \#selects reads with at
least the specified number of softclipped bases
print OUT $line, "\n";
                }
        }
    }
    elsif ($cols[1] == 73 || \$cols[1] == 97 || \$cols[1] == 99 ||
$cols[1] == 0) { #selects reads with FLAG codes indicating they are
first in pair on the minus strand
    if (($cols[5] =~ m/^\d+S/) and ($cols[9] =~ m/^T{$min_As}/)) {
\#selects reads with softclipping and a run of Ts at the beginning
my (\$softclips) = $cols[5] =~ m/^(\d+)S/; #pulls out the
number of softclipped bases
                if ($softclips > \$min_softclip) { \#selects reads with at
least the specified number of softclipped bases
print OUT $line, "\n";
                }
            }
    }
}
close(INF);
close(OUT);
system ("sort -k 4,4n \Q$ill_file\E.polyA_ends.temp >
\Q$ill_file\E.polyA_ends.sam");
system ("rm \Q$ill_file\E.polyA_ends.temp");
open(INF, "<$ill_file.polyA_ends.sam") or die "couldn't open file";
open(OUT, ">$ill_file.polyA_sites.temp") or die "couldn't open file";

```
```

print "Processing Illumina reads with polyA tails...\n";
\#create a file with the coordinates corresponding to the polyA ends of
the reads, and sort it by those coordinates
my \$cigar_sum;
my \$cigar_calc;
my @plus_ends;
my @read_dist;
while (my $line = <INF>) {
    chomp($line);
my @cols = split("\t", $line);
    if ($cols[1] == 73 || \$cols[1] == 97 || \$cols[1] == 99 || $cols[1]
== 0) { #minus strand
    print OUT "$cols[2]\t$cols[3]\t0\n";
    }
    elsif ($cols[1] == 81 || \$cols[1] == 83 || \$cols[1] == 89 ||
$cols[1] == 16) { #plus strand
        while ($cols[5] =~ /(\d+)[DMNX=]/g) { \#these lines use the CIGAR
string to determine the downstream coordinate
push (@read_dist, \$1);
}
\$cigar_sum += \$_ for @read_dist;
\$cigar_calc = \$cols[3] + \$cigar_sum - 1; \#subtract one to account
for start/end inclusion
$cigar_sum = 0;
        @read_dist = ();
        print OUT "$cols[2]\t$cigar_calc\t1\n";
        }
}
close(INF);
close(OUT);
system("sort -k 1,1 -k 2,2n \Q$ill_file.polyA_sites.temp\E >
\Q$ill_file.polyA_sites.temp\E.sorted");
#create a bedgraph file from the sorted coordinates file
open(INF, "<$ill_file.polyA_sites.temp.sorted") or die "couldn't open
file";
open(OUT, ">\$ill_file.polyA_sites.temp.bedgraph") or die "couldn't open
file";
my \$chrom_minus;
my \$previous_coordinate_m=0;
my \$count_m=0;
my \$chrom_plus;
my \$previous_coordinate_p=0;
my \$count_p=0;
while (my \$line = <INF>) {
my @cols = split("\t", \$line);

```
```

    #reads on the plus strand:
    if ($cols[2] == 1) {
    if ($chrom_plus) { #if $chrom_plus has been defined (i.e. there
    is a previous plus strand read)
if ((\$cols[0] eq $chrom_plus) and ($cols[1] ==
\$previous_coordinate_p)) {
\$count_p++;
}
else {
print OUT \$chrom_plus, "\t", \$previous_coordinate_p-
1, "\t", \$previous_coordinate_p, "\t", \$count_p, "\n"; \#prints to
output file, converting chrStart to 0-based bedgraph coordinates
\$previous_coordinate_p = \$cols[1];
\$count_p = 1;
}
}
else { \#if \$chrom_plus has not been defined (i.e. there is no
previous plus strand read)
\$chrom_plus = \$cols[0];
\$previous_coordinate_p = \$cols[1];
$count_p = 1;
    }
    }
    #reads on the minus strand:
    elsif ($cols[2] == 0) {
if ($chrom_minus) {
                            if (($cols[0] eq $chrom_minus) and ($cols[1] ==
\$previous_coordinate_m)) {
\$count_m++;
}
else {
print OUT \$chrom_minus, "\t", \$previous_coordinate_m-
1, "\t", \$previous_coordinate_m, "\t-", \$count_m, "\n"; \#prints to
output file, converting chrStart to 0-based bedgraph coordinates
\$chrom_minus = \$cols[0];
\$previous_coordinate_m = \$cols[1];
\$count_m = 1;
}
}
else {
\$chrom_minus = \$cols[0];
\$previous_coordinate_m = \$cols[1];
\$count_m = 1;
}
}
}
\#prints to output file, converting chrStart to 0-based bedgraph
coordinates
print OUT \$chrom_plus, "\t", \$previous_coordinate_p-1, "\t",
\$previous_coordinate_p, "\t", \$count_p, "\n";
print OUT \$chrom_minus, "\t", \$previous_coordinate_m-1, "\t",
\$previous_coordinate_m, "\t-", \$count_m, "\n";
close(INF);

```
```

close(OUT);
system("sort -k 1,1 -k 2,2n \Q$ill_file\E.polyA_sites.temp.bedgraph >
\Q$ill_file\E.polyA_sites.bedgraph.noheader");
system("rm \Q$ill_file\E.polyA_sites.temp.bedgraph");
system("rm \Q$ill_file\E.polyA_sites.temp.sorted");
system("rm \Q$ill_file\E.polyA_sites.temp");
#add header to bedgraph file
open(INF, "<$ill_file.polyA_sites.bedgraph.noheader") or die "couldn't
open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.bedgraph") or die
"couldn't open file";
print OUT "track type=bedGraph
name=\"$ill_file.$viral_chr.polyA_sites.bedgraph\" description=\"polyA
sites in Il\umina reads with at least 5As and at least 2 mismatches
from end_finder_sam_to_bed.pl\"\n";
while (my \$line = <INF>) {
print OUT $line;
}
close(OUT);
close(INF);
system("rm \Q$ill_file\E.polyA_sites.bedgraph.noheader");
\#make a bed file from the Illumina bedgraph file:
open(INF, "<$ill_file.$viral_chr.polyA_sites.bedgraph") or die
"couldn't open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.temp.bed") or die
"couldn't open file";
print "Combining Illumina polyA tails within
$distance_between_ill_peaks of each other and calculating consensus 3'
ends...\n";
collapse_bedgraph($distance_between_ill_peaks);
close(INF);
close(OUT);
system("sort -k 1,1 -k 2,2n
\Q$ill_file\E.\Q$viral_chr\E.polyA_sites.temp.bed >
\Q$ill_file\E.\Q$viral_chr\E.polyA_sites.bed.noheader');
system("rm \Q$ill_file\E.\Q$viral_chr\E.polyA_sites.temp.bed");
\#add header to bed file
open(INF, "<$ill_file.$viral_chr.polyA_sites.bed.noheader") or die
"couldn't open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.bed") or die "couldn't
open file";
print OUT "track type=bed name=\"$ill_file.$viral_chr.polyA_sites.bed\"
description=\"consensus polyA sites of Illumina reads with tails of 5
As with 2 mismatches within \$distance_between_ill_peaks bp collapsed to
weighted centers from end_finder_sam_`七o_bed.p\overline{l\"\n"';}

```
```

while (my \$line = <INF>) {
print OUT $line;
}
close(OUT);
close(INF);
system("rm \Q$ill_file\E.\Q\$viral_chr\E.polyA_sites.bed.noheader");
\#\#\#\#\#----------SEEKING ILLUMINA SUPPORT FOR SMRT ENDS----------------

###### 

open(INF, "<$ill_file.$viral_chr.polyA_sites.bed" ) or die "couldn't
open file";
print 'Extracting Iso-Seq 3' ends with Illumina polyA tails within
\$dist_SMRT_ill_d bases downstream or \$dist_SMRT_ill_u upstream...\n'';
my %features_ill;
my \$key_combo_ill;
while(my $line = <INF> ) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
my @cols = split("\t", $line);
    if ($cols[5] eq "'+") { \#for each line in the Illumina polyA reads
bed file, creates a key for the hash combining coordinate and strand.
Selects chrEnd for ends on the plus strand and chrStart for ends on the
minus strand.
$key_combo_ill = "$cols[2]:$cols[5]";
    }
    if ($cols[5] eq "-") {
$key_combo_ill = "$cols[1]:\$cols[5]";
}
$features_ill{$key_combo_ill} = $cols[4]; #enters a count value for
the key into the hash
}
close(INF);
open(INF, "<$SMRT_file.$viral_chr.SMRT_ends.bed" ) or die "couldn't
open file";
open(OUT, ">$SMRT_file.\$viral_chr.ends.bed.illumina_support.bed.temp");
my \$ill_coord;
my \$match_count;
my \$lower_limit;
my \$upper_limit;
while(my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
my @SMRT_cols = split("\t", \$line);
next if (abs \$SMRT_cols[4] < \$min_SMRT);
foreach my \$key_combo_ill (keys %features_ill) {
my @ill_cols = split(":", \$key_combo_ill);

```
```

    next if (abs $features_ill{$key_combo_ill} < $min_ill);
    if ($SMRT_cols[5] eq "+'") { #sets boundaries for plus strand
    support
\$lower_limit = $SMRT_cols[2]-$dist_SMRT_ill_u;
\$upper_limit = $SMRT_cols[2]+$dist_SMRT_ill_d;
}
if (\$SMRT_cols[5] eq "-") { \#sets boundaries for minus strand
support
\$lower_limit = $SMRT_cols[1]-$dist_SMRT_ill_d;
\$upper_limit = $SMRT_cols[1]+$dist_SMRT_ill_u;
}
if ((\$SMRT_cols[5] eq $ill_cols[1]) and ($ill_cols[0] >=
$lower_limit) and ($ill_cols[0] <= $upper_limit)) {
            if ($match_count) { \#if more than one Illumina end matches
the SMRT end, selects \overline{Illumina end with the most reads}
if ($features_ill{$key_combo_ill} > \$match_count){
\$match_count = $features_ill{$key_combo_ill};
\$ill_coord = \$ill_cols[0];
}
}
else {
\$match_count = $features_ill{$key_combo_ill};
\$ill_coord = $ill_cols[0];
        }
    }
    }
    if ($match_count) {
if (\$SMRT_cols[5] eq "+") {
my $nāme = "$SMRT_cols[4].IsoSeq_\$match_count.Ill";
my \$count = \$match_count + \$SMRT_cols[4];
print OUT \$SMRT_cols[0], "\t", \$ill_coord-1, "\t",
\$ill_coord, "\t", \$name, "\t", \$count, "\t", \$SMRT_cols[5], "\t",
$SMRT_cols[3], "\n"; #prints to output, adjusting chrStart to 0-based
            undef($match_count);
}
if (\$SMRT_cols[5] eq "-") {
my $name = "$SMRT_cols[4].IsoSeq_\$match_count.Ill";
my \$count = \$match_count + \$SMRT_cols[4];
print OUT \$SMRT_cols[0], "\t", \$ill_coord, "\t",
\$ill_coord+1, "\t", \$name, "\t", \$count, "\t", \$SMRT_cols[5], "\t",
$SMRT_cols[3], "\n"; #prints to output, adujsting chrEnd
            undef($match_count);
}
}
else {
my @range_cols = split (":", $SMRT_cols[3]); #includes SMRT
ends that are not supported by Illumina in this temporary file
            print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$range_cols[2].IsoSeq\t$r
ange_cols[2]\t$SMRT_cols[5]\t$SMRT_cols[3]\n";
}
}

```
```

close(OUT);
close(INF);

```
```

\#\#\#\#\#----------COMPARING TO ANNOTATED ENDS---------------\#\#\#\#\#\#
open(INF, "<\$ann_file" ) or die "couldn't open file";
print "Processing annotation file...\n";
\#extract 3' ends from the annotation file:
\#annotation file must be sorted by chrStart then chrEnd!
my @annotated_ends;
my \$plus_prev_coord = 0;
my \$minus_prev_coord = 0;
while(my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
my @ann_cols = split("\t", \$line);
next if \$ann_cols[0] ne $viral_chr; #skip lines that aren't viral
    if ($ann_cols[5] eq "+"') {
if (\$ann_cols[2] != $plus_prev_coord) {
            push (@annotated_ends, "$añn_cols[2]:\$ann_cols[5]");
\#creates an array with chrEnd and strand
\$plus_prev_coord = $ann_cols[2];
        }
    }
    elsif ($ann_cols[5] eq "-"){
if (\$ann_cols[1] != $minus_prev_coord) {
        push (@annotated_ends, "$ann__cols[1]:\$ann_cols[5]");
\#creates an array with chrStart and strand
\$minus_prev_coord = \$ann_cols[1];
}
}
}
my \$annotated = scalar @annotated_ends;

```
close(INF);
\#compare ends in the altered SMRT ends file (that already has info
about Illumina ends) with annotated ends
open(INF, "<\$SMRT_file.\$viral_chr.ends.bed.illumina_support.bed.temp")
or die "couldn't open file";
open(OUT, ">\$SMRT_file.\$viral_chr.validated_ends.bed");
print "Comparing Iso-Seq ends to annotated ends... \({ }^{\text {(n"; }}\)
print OUT "track type=bedDetail
name=\"\$SMRT_file.\$viral_chr.SMRT_ends.bed.illumina_support.bed\"
description=-""validated ēnds suppōrted by at least \$min_SMRT Iso-Seq
read ends within \$distance_between_SMRT_peaks bp, with an Illumina
polyA site within \$dist_SMRT_ill_d bp downstream or \$dist_SMRT_ill_u bp
```

upstream, or within \$ann_dist bp of an annotated end. Illumina polyA
sites have at least \$min_ill reads with \$min_As As and \$min_softclip
mismatches, within \$distance_between_ill_peaks bp of each other. From
end_finder_sam_to_bed.p<br>"\n";
my \$annotated_found_by_SMRT = 0;
my \$novel_found_by_SMRT_ill = 0;
my \$SMRT_annotated = 0; \#this is different than
\$annotated_found_by_SMRT because depending on input parameters two SMRT
ends may correspond to a single annotated end or vice versa.
while(my $line = <INF>) {
    chomp($line);
my @SMRT_cols = split("\t", \$line);
my \$found_flag=0;
foreach my \$ann_end (@annotated_ends) {
my @ann_col\overline{s = split(":", \$ann_end);}
my \$lower_limit = $ann_cols[0]-$ann_dist;
my \$upper_limit = $ann_cols[0]+$ann_dist;
if ($ann_cols[1] eq "+") {
            if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[2]>=$lower_limit) and ($SMRT_cols[2]<=$upper_limit)) {
                if ($found_flag == 0) {
print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";
\$found_flag = 1;
\$annotated_found_by_SMRT++;
$SMRT_annotated++;
        }
        elsif ($found_flag == 1) {
$annotate\overline{d}_found_by_SMRT++;
        }
        }
    }
    if ($ann_cols[1] eq "-") {
if ((\$SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[1]>=$lower_limit) and ($SMRT_cols[1]<=$upper_limit)) {
        if ($found_flag == 0) {
print OUT \$SMRT_cols[0], "\t", \$SMRT_cols[1], "\t",
\$SMRT_cols[2], "\tann_", \$SMRT_cols[5], "_", $SMRT_cols[\overline{3], "\t",}
abs($SMRT_cols[4]), "\t", \$SMRT_cols[5], "\t", \$SMRT_cols[6], "\n";
\$found_flag = 1;
\$annotated_found_by_SMRT++;
$SMRT_annotated++;
            }
            elsif ($found_flag == 1) {
$annotated_found_by_SMRT++;
            }
        }
    }
    }
    if ($found_flag == 0) {
if (\$SMRT_cols[3] =~ /.+IsoSeq_.+Ill/) {
print OUT

```
```

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";
\$novel_found_by_SMRT_ill++;
}
}
}
my \$total_found = \$SMRT_annotated + \$novel_found_by_SMRT_ill;
close(INF);
close(OUT);
print "-

```

```

open(OUT, ">${viral_chr}_validated_ends_stats.txt");
if ($total_found > 0) {
if (\$SMRT_annotated != $annotated_found_by_SMRT) {
            print "$total_found 3' ends found. \$novel_found_by_SMRT_ill are
novel, \$SMRT_annotated are annotated. \$annotated_found_by_SMRT out of
\$annotated total annotated 3' ends are found.\nNote that two annotated
ends may be within $ann_dist bp of a single Iso-Seq end or vice
versa.\n";
    print OUT "$viral_chr\n\n$total_found 3'
ends\n\t$novel_found_by_SMRT_ill novel<br>overline{n}\t$SMRT_annotated
annotated\n$annotated 3' ends in annotation\n\t$annotated_found_by_SMRT
detected by Iso-Seq\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
}
else {
print "\$total_found 3' ends found. \$novel_found_by_SMRT_ill are
novel, \$SMRT_annotate\overline{d}}\mathrm{ are annotated (out of a tōtal of $annotated
annotated 3' ends).\n\n";
            print OUT "$viral_chr\n\n$total_found 3'
ends\n\t$novel_found_by_SMRT_ill novel\n\t$SMRT_annotated
annotated\n$annotated 3' ends in annotation\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
    }
}
else {
    print "No 3' ends validated\n";
    print OUT 'No validated 3' ends found\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
}
close(OUT);
system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.ends.bed.illumina_support.bed.temp");
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
sub collapse_bedgraph {
my (\$distance_between_peaks) = shift;
my \$prev_coord_plus = 0;
my \$prev_coord_minus = 0;

```
```

    my $count_sum_plus = 0;
    my $count_sum_minus = 0;
    my $weighted_coordinate_sum_plus = 0;
    my $weighted_coordinate_sum_minus = 0;
    my $weighted_average_plus;
    my $weighted_average_minus;
    my $first_plus = 1;
    my $first_minus = 1;
    my @coords_plus;
    my @coords_minus;
    my $chrStart_plus;
    my $chrEnd_plus;
    my $chrStart_minus;
    my $chrEnd_minus;
    while (my $line = <INF>) {
    chomp($line);
    next if ($line =~ /^track/); #skips the track definition line
    my @cols = split("\t", $line);
    if ($cols[3] > 0) { #if this coordinate has a positive count...
    if ($cols[2] <= $prev_coord_plus +
    (\$distance_between_peaks)) { \#if the coordinate is within the specified
number of bp of the previous coordinate
\$count_sum_plus = \$count_sum_plus + \$cols[3]; \#adds to
the sums to eventually calculate the weighted average
\$weighted_coordinate_sum_plus =
$weighted_coordinate_sum_plus + ($cols[2]*\$cols[3]);
push (@coords_plus, \$cols[2]);
\$prev_coord_plus = $cols[2]; #sets the current
coordinate as the "previous coordinate" before moving on
        }
        else { #if the present coordinate is not within the
specified number of bp of the previous coordinate, need to print out a
feature
                            if ($first_plus == 1) { \#"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)
\$count_sum_plus = \$cols[3];
\$weighted_coordinate_sum_plus = $cols[2]*$cols[3];
\$prev_coord_plus = \$cols[2];
push (@coords_plus, \$cols[2]);
\$first_plus = 0;
}
else {
$weighted_average_plus = sprintf("%1.0f",
($weighted_coordinate_sum_plus/\$count_sum_plus)); \#calculates weighted
average
\$chrStart_plus = \$coords_plus[0];
\$chrEnd_plus = pop(@coords_plus);
print OUT \$viral_chr, "\t", \$weighted_average_plus-
1, "\t", \$weighted_average_plus, "\t", \$chrStart_plus, ":",
\$chrEnd_plus, ":", \$count_sum_plus, "\t", $count_sum_plus, "\t+\n";
#prints out weighted average for plus strand features. Use printf to
round the weighted average.
@coords_plus = ($cols[2]);

```
\$count_sum_plus = \$cols[3]; \#sets "previous
coordinate", count and sum of counts for the current coordinate \$weighted_coordinate_sum_plus = \$cols[2]*\$cols[3]; \$prev_coord_plus = \$cols[2];
\}
\}
\}
elsif (\$cols[3] < 0) \{ \#if this coordinate has a negative count...
if (\$cols[1] <= \$prev_coord_minus +
(\$distance_between_peaks)) \{ \#if the coordinate is within the specified number of bp of the previous coordinate
\$count_sum_minus = \$count_sum_minus + \$cols[3]; \#adds
to the sums to eventually calculate the weighted average
\$weighted_coordinate_sum_minus =
\$weighted_coordinate_sum_minus + (\$cols[1]*\$cols[3]);
push (@coords_minus, \$cols[1]);
\$prev_coord_minus = \$cols[1]; \#sets the current
coordinate as the "previous coordinate" before moving on
\}
else \{ \#if the present coordinate is not within the specified number of bp of the previous coordinate, need to print out a feature
if (\$first_minus == 1) \{ \#"first" flag avoids wonkiness if the first coordinate is far from coordinate 1 (don't need to print out a feature yet)
\$count_sum_minus = \$cols[3];
\$weighted_coordinate_sum_minus = \$cols[1]*\$cols[3];
\$prev_coord_minus = \$cols[1];
push (@coords_minus, \$cols[1]);
\$first_minus = 0;
\}
else \{
\$weighted_average_minus = sprintf("\%1.0f",
(\$weighted_coordinate_sum_minus/\$count_sum_minus)); \#calculates weighted average
\$chrStart_minus = \$coords_minus[0];
\$chrEnd_minus = pop(@coords_minus);
print OŪT \$viral_chr, "\t",
\$weighted_average_minus, "\t", \$weighted_average_minus+1, "\t", \$chrStart_minus, ":", \$chrEnd_minus, ":", \$count_sum_minus, "\t", abs(\$count_sum_minus), "\t-\n";
@coords_minus = (\$cols[1]);
\$count_sum_minus = \$cols[3]; \#sets "previous
coordinate", count and sum of counts for the current coordinate \$weighted_coordinate_sum_minus = \$cols[1]*\$cols[3]; \$prev_coord_minus = \$cols[1];
\}
\}
\}
\}
if (\$count_sum_plus > 0) \{\#calculates and prints out weighted average for the last feature (plus strand)
\$weighted_average_plus = sprintf("\%1.0f",
```

($weighted_coordinate_sum_plus/$count_sum_plus));
\$chrStart_plus = \$coords_plus[0];
\$chrEnd_plus = pop(@coords_plus);
print OUT \$viral_chr, "\t", \$weighted_average_plus-1, "\t",
\$weighted_average_plus, "\t", \$chrStart_plus, ":", \$chrEnd_plus, ":",
\$count_sum_plus, "\t", $count_sum_plus, "\t+\n";
    }
    if ($count_sum_minus < 0) {\#calculates and prints out weighted
average for the last feature (minus strand)
$weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/\$count_sum_minus));
\$chrStart_minus = \$coords_minus[0];
\$chrEnd_minus = pop(@coords_minus);
print OUT \$viral_chr, "\t", \$weighted_average_minus, "\t",
\$weighted_average_minus+1, "\t", \$chrStart_minus, ":", \$chrEnd_minus,
":", $count_sum_minus, "\t", abs($count_sum_minus), "\t-\n";
}
}

```

\section*{APPENDIX 4}

TRIMD_structure_validator.pl
```

\#!usr/bin/perl
\#Takes a sam file of Iso-Seq fl isoforms and compares them to a list of
validated 5' ends, 3' ends and introns to create a list of validated
transcript structures, which are compared to an annotation file.
use warnings;
use strict;
die "USAGE: 'perl <PATH/TRIMD_transcript_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/validated_starts_file> </PATH/validated_ends_file>
</PATH/validated_introns_file> </PATH/Annotation_bed_file>'" unless
@ARGV == 5;
my (\$test_file, \$valid_starts_file, \$valid_ends_file,
\$valid_introns_file, \$ann_file) = (@ARGV);
print "Enter maximum distance from an annotated 5' start to be called
annotated (e.g. 10): ";
my \$start_dist = <STDIN>;
chomp \$start_dist;
print "Enter maximum distance from an annotated 3' end to be called
annotated (e.g. 10): ";
my \$end_dist = <STDIN>;
chomp $end_dist;
#Convert SMRT sam file to bed:
print "-------------------------------------------------------_nReformatting
Iso-Seq file...\n';
open(INF, "<$test_file") or die "couldn't open input file";
open(OUT, ">\$test_file.bed") or die "couldn't open output file";
while (my \$line = <INF>) {
$line =~ s/\r//g;
    chomp($line);
next if (\$line =~ m/\@/); \#skips SAM header lines
my @cols = split("\t", \$line);
my @split_id = split("\/", \$cols[0]);
my \$strand;
my \$chr = \$cols[2];
my \$chr_start = \$cols[3] - 1;
my \$chr_end = 0;
my \$feature_name = \$cols[0];
my \$score = \$split_id[1];
my $color = "133,0,33";
    if ($cols[1] == 0) {
\$strand = "+";

```
```

    }
    elsif ($cols[1] == 16) {
        $strand = "-";
    }
    else {
        next; #skips isoforms that aren't mapped
    }
    my @split_CIGAR_temp = split(/(\d+\D)/, $cols[5]); #splits CIGAR
    code into segments a}\mathrm{ and puts segments into an array (but also the empty
values between them)
my @split_CIGAR;
foreach my $temporary(@split_CIGAR_temp) { #removes empty values
from the array
        if ($temporary =~ m/\d+\D/) {
push(@split_CIGAR, \$temporary);
}
}
my \$exon_sum = 0;
my @exon_lengths = ();
my @block_starts = (0);
my \$count = 0;
foreach my \$split_CIGAR(@split_CIGAR) {
$count++;
        if (($count == 1) \&\& (my (\$five_prime_clipped_bases) =
$split_CIGAR =~ m/(\d+)S$/)) { \#ignores soft clipping at the beginning
}
elsif (($count > 1) && (my ($three_prime_clipped_bases) =
$split_CIGAR =~ m/(\d+)S$/)) { \#ignores soft clipping at the end
}
elsif ($split_CIGAR =~ m/N$/) { \#if element is an intron...
push(@exon_lengths, $exon_sum); #...adds the last value to
the exon sum...
                            my ($intron_length) = \$split_CIGAR =~ m/(\d+)/;\#...gets
intron length...
my \$new_block_start = \$exon_lengths[-1] + \$block_starts[-1]

+ \$intron_length;\#...calculates new blockStart...
push(@block_starts, \$new_block_start);\#.:.adds new
blockStart to array.:.
$exon_sum = 0;#...and resets the exon sum
      }
      else {
          my ($value) = $split_CIGAR =~ m/(\d+)/;
          if ($split_CIGAR =~ m/I\$/) {\#ignores insertions
\$exon_sum = \$exon_sum - 0;
}
else {\#adds matches, mismatches and deletions to the exon
sum
\$exon_sum = \$exon_sum + \$value;
}
}
}
push(@exon_lengths, \$exon_sum); \#at the end of the CIGAR array,
push the last exon sum into the exon_lengths array
\$chr_end = \$chr_start + \$block_starts[-1] + \$exon_lengths[-1];

```
```

    my $exon_number = @exon_lengths;
    print OUT $chr, "\t", $chr_start, "\t", $chr_end, "\t",
    \$feature_name, "\t", \$score, "\t", \$strand, "\t", \$chr_start, "\t",
\$chr_end, "\t", \$color, "\t", $exon_number, "\t", join("\,",
@exon_lengths), "\t", join("\,", @block_starts), "\n";
}
close(INF);
close(OUT);
#Create an array of validated start sites from the start sites input
file:
open(INF, "<$valid_starts_file") or die "couldn't open file";
my @valid_start;
while (my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
push (@valid_start, $line); #puts each line of the start sites file
into an array to be checked later
}
close(INF);
#Check each start site in the SMRT reads file against the array of
validated start sites:
open(INF, "<$test_file.bed") or die "couldn't open file";
\#open(OUT, ">\$test_file.valid_start.bed.temp"); \#uncomment to print out
file of isoforms with validated starts
print "Checking start sites...\n";
my @good_start;
my \$new_start_line;
while (my $line = <INF>) {
    chomp($line);
next if ($line =~ /^track/); #skips the track definition line
    my ($chrom, \$chromStart, \$chromEnd, \$name, \$score, \$strand,
\$thickStart, \$thickEnd, \$itemRgb, \$blockCount, \$blockSizes,
\$blockStarts) = split("\t", $line);
    if ($strand eq "'+") {
foreach my \$valid_start (@valid_start) { \#checks to see if the 5'
end of the (plus strand) SMRT transcript matches a range of possible
start site values from the list of validated start sites
my @start_cols = split("\t", $valid_start);
            my ($rangē_start, \$range_end, \$SMRT_depth) = split(":",
$start_cols[6]);
    if (($chrom eq $start_cols[0]) and ($strand eq
$start_cols[5]) and ($chromStart >= $range_start) and ($chromStart <=
\$range_end)) {
$new_start_line = "$line\t\$start_cols[1]"; \#creates a
line for the read, changing the start site to the consensus start site
and adding an extra field with the original start site
push (@good_start, \$new_start_line); \#if the start
site matches, pushes the line into a new àrray ōf SMRT transcripts with

```
```

validated 5' ends
\#print OUT $new_start_line, "\n"; #uncomment to print
out file of isoforms with validated starts
                                    last;
            }
    }
    }
    elsif ($strand eq "-"){
foreach my \$valid_start (@valid_start) { \#checks to see if the 5'
end of the (minus strand) SMRT transcript matches a range of possible
start site values from the list of validated start sites
my @start_cols = split("\t", $valid_start);
            my ($range_start, \$range_end, \$SMRT_depth) = split(":",
$start_cols[6]);
            if (($chrom eq $start_cols[0]) and ($strand eq
$start_cols[5]) and ($chromEnd >= $range_start) and ($chromEnd <=
\$range_end)) {
$new_start_line = "$line\t\$start_cols[2]"; \#creates a
line for the read, changing the start site to the consensus start site
and adding an extra field with the original start site
push (@good_start, \$new_start_line); \#if the start
site matches, pushes the line into a new array of SMRT transcripts with
validated 5' ends
\#print OUT \$new_start_line, "\n"; \#uncomment to print
out file of isoforms with validated starts
last;
}
}
}
}
my $good_start_number = scalar @good_start;
#close(OUT); #uncomment to print out file of isoforms with validated
starts and ends
close(INF); #have an array in memory of reads that have validated 5'
ends, and their newly estimated 5' ends. Can uncomment lines to have an
output a file of reads (in their original form) that have validated 5'
ends.
#Create an array of validated end sites from the end sites input file:
open(INF, "<$valid_ends_file") or die "couldn't open file";
my @valid_end;
while (my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
push (@valid_end, $line); #puts each line of the end sites file
into an array to be checked later
}
close(INF);
#open(OUT, ">$test_file.valid_start_and_end.bed.temp"); \#uncomment to

```
```

print out file of isoforms with validated starts and ends
print "Checking end sites...\n";
my @good_start_and_end;
my \$new_end_line;
foreach my $good_start (@good_start) { #starts with the array of SMRT
transcripts with validated 5' ends
    my ($chrom, \$chromStart, \$chromEnd, \$name, \$score, \$strand,
\$thickStart, \$thickEnd, \$itemRgb, \$blockCount, \$blockSizes,
\$blockStarts, \$new_coord) = split("\t", $good_start);
    if ($strand eq "+") { \#determines 3' end of the SMRT transcript
foreach my \$valid_end (@valid_end) { \#checks to see if the 3' end
of the SMRT transcript matches a range of possible 3' end values from
the list of validated start sites
my @end_cols = split("\t", $valid_end);
                            my ($range_start, \$range_end, \$SMR}T_depth) = split(":'"
$end_cols[6]);
                            if (($chrom eq $end_cols[0]) and ($strand eq $end_cols[5])
and ($chromEnd >= $range_start) and ($chromEnd <= \$range_end)) {
$new_end_line = "$good_start\t\$end_cols[2]";
push (@good_start_and_end, \$new_end_line);
\#print OUT $new_end_line, "\n"; #uncomment to print out
file of isoforms with validated starts and ends
                                    last;
            }
        }
    }
    elsif ($strand eq "-") {
foreach my \$valid_end (@valid_end) { \#checks to see if the 3'
end of the SMRT transcript matches a range of possible 3' end values
from the list of validated start sites
my @end_cols = split("\t", $valid_end);
                            my ($range_start, \$range_end, \$SMRT_depth) = split(":'",
$end_cols[6]);
            if (($chrom eq $end_cols[0]) and ($strand eq $end_cols[5])
and ($chromStart >= $range_start) and ($chromStart <= \$range_end)) {
$new_end_line =
"$chrom\t$chromStart\t$chromEnd\t$name\t$score\t$strand\t$thickStart\t\$
thickEnd\t$itemRgb\t$blockCount\t$blockSizes\t$blockStarts\t$end_cols[1
]\t$new_coord";
push (@good_start_and_end, \$new_end_line);
\#print OUT \$new_end_line, "\n"; \#uncomment to print out
file of isoforms with validated starts and ends
last;
}
}
}
}
my \$good_start_end_number = scalar @good_start_and_end;
\#close(OUT); \#uncomment to print out file of isoforms with validated
starts and ends

```
```

open(INF, "<\$valid_introns_file") or die "couldn't open file";
my @valid_intron;
while (my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
push (@valid_intron, $line); #creates an array of valid splice
junctions
}
close(INF);
open(OUT, ">$test_file.validated_unrefined.bed.temp");
print "Checking splice junctions...\n";
my \$start;
my \$end;
my @intron_start;
my @intron_end;
my @intron_coord_pair;
my @good_intron_counter;
foreach my \$good_start_and_end (@good_start_and_end) { \#starts with the
array of SMRT transcripts with validated 5' and 3' ends
my @cols = split("\t", \$good_start_and_end);
my \$intron_strand = \$cols[5];
my \$intron_number = $cols[9] - 1;
    if ($intron_number == 0) { \#if a SMRT transcript has validated 5'
and 3' ends and no introns, it is fully validated
print OUT \$good_start_and_end, "\n";
}
else {
my @block_sizes = split('",', \$cols[10]);
my @block_starts = split('",", \$cols[11]);
for (my \$\overline{i}=0; \$i < \$intron_number; \$i = \$i + 1) { \#for the
transcript currently in the "while" loop, creates an array of intron
start sites relative to the genome
\$start = \$cols[1] + $block_sizes[$i] + $block_starts[$i];
push(@intron_start, \$start);
}
for (my \$i2 = 1; \$i2 < \$cols[9]; \$i2 = \$i2 + 1) { \#for the
transcript currently in the "while" loop, creates an array of intron
end sites relative to the genome
\$end = \$cols[1] + $block_starts[$i2];
push(@intron_end, \$end);
}
for (my \$i3 = 0; \$i3 < \$intron_number; \$i3 = \$i3 + 1) { \#for the
transcript currently in the "while" loop, matches up intron start and
end sites to create an array of complete intron coordinates relative to
the genome
my $intron_coords = "$intron_start[$i3]:$intron_end[\$i3]";
push (@int\overline{ron_coord_pair, \$in̄tron_coords);}

```
\}
@intron_start = ();
@intron_end = (); \#intron starts and ends have been assigned to the @intron_coords array; empty them for the next transcript
foreach my \$intron_coord_pair (@intron_coord_pair) \{ \#goes through each intron in the SMRT transcript
my @coords = split(":", \$intron_coord_pair); \#allows extraction of the start and end coordinates from each intron in the SMRT transcript
foreach my \$valid_intron (@valid_intron) \{ \#goes through each intron in the array of validated introns my @valid_coords = split("\t", \$valid_intron); \#allows extraction of the start and end coordinates from each validated intron
next if \$cols[0] ne \$valid_coords[0]; \#enforces
chromosome matching
next if \$intron_strand ne \$valid_coords[5]; \#enforces

\section*{strand matching}
if ((\$coords[0] == \$valid_coords[1]) and (\$coords[1]
== \$valid_coords[2])) \{
push(@good_intron_counter, \$intron_coord_pair);
\#puts introns that are validated for this transcript into an array (this really just functions as a counter)
\}
\}
\}
@intron_coord_pair = (); \#once each intron in the SMRT transcript has been examined, empty the array for the next transcript
if (@good_intron_counter == \$intron_number) \{ \#check to see if all of the introns in the transcript are validated
print OUT \$good_start_and_end, "\n";
\}
@good_intron_counter = (); \#after checking to see if all the introns in the transcript are validated, empties this array for the next transcript
\}
\}
close(OUT);
\#system("sort -k 2,2n -k 3,3n \Q\$test_file\E.valid_start.bed.temp > \Q\$test_file\E.valid_start.bed"); \#uncomment to print out file of isoforms with validated starts \#system("rm \Q\$test_file\E.valid_start.bed.temp"); \#uncomment to print out file of isoforms with validated starts
\#system("sort -k 2,2n -k 3,3n
\Q\$test_file\E.valid_start_and_end.bed.temp > \Q\$test_file\E.valid_start_and_end.bed"); \#uncomment to print out file of isoforms with validated starts and ends
\#system("rm \Q\$test_file\E.valid_start_and_end.bed.temp"); \#uncomment to print out file of isoforms with validated starts and ends
system("sort -k2,2n -k3,3n \Q\$test_file\E.validated_unrefined.bed.temp
```

> \Q$test_file\E.validated_unrefined.bed");
system("rm}\Q$test_file\E.validated_unrefined.bed.temp")
open(INF, "<$test_file.validated_unrefined.bed");
open(OUT, ">$test_file.validated_refined.temp");
my \$new_block_size;
my @exon_start;
my @exon_end;
my @exon_coord_pair;
my \$validated_count = 0;
while (my $line = <INF>) {
    chomp($line);
my @cols = split("\t", \$line);
my \$exon_number = $cols[9];
    if ($exon_number == 1) { \#if a SMRT transcript has validated 5' and
3' ends and no introns, it is fully validated. Just adjust the start
and end to the consensus sites and fix the BlockSize accordingly
\$new_block_size = $cols[13]-$cols[12];
print OUT
"$cols[0]\t$cols[12]\t$cols[13]\t$cols[3]\t$cols[4]\t$cols[5]\t$cols[12
]\t$cols[13]\t$cols[8]\t$cols[9]\t$new_block_size\t$cols[11]\n";
\$validated_count++;
}
else { \#need to adjust the start and end sites and also the
blockStarts and blockSizes
my @block_sizes = split(",", \$cols[10]);
my @block_starts = split(",", \$cols[11]);
for (my \$i = 0; \$i < \$exon_number; \$i = \$i + 1) { \#for the
transcript currently in the "while" loop, creates an array of exon
start sites relative to the genome
\$start = \$cols[1] + $block_starts[$i];
push(@exon_start, \$start);
}
for (my \$i2 = 0; \$i2 < \$exon_number; \$i2 = \$i2 + 1) { \#for the
transcript currently in the "while" loop, creates an array of intron
end sites relative to the genome
\$end = \$cols[1] + $block_starts[$i2] + $block_sizes[$i2];
push(@exon_end, \$end);
}
shift(@exon_start); \#removes the first exon start
unshift(@exon_start, \$cols[12]); \#replaces the first exon start
with the adjust chrStart value
pop(@exon_end); \#removes the last exon end
push(@exon_end, \$cols[13]); \#replaces the last exon end with
the adjusted chrEnd value
for (my \$i3 = 0; \$i3 < \$exon_number; \$i3 = \$i3 + 1) { \#for the
transcript currently in the "while" loop, matches up intron start and
end sites to create an array of complete intron coordinates relative to
the genome
my $exon_coords = "$exon_start[$i3]:$exon_end[\$i3]";
push (@exon_coord_pair, \$exon_coords);
}
@exon_start = ();

```
```

    @exon_end = (); #intron starts and ends have been assigned to the
    @intron_coords array; empty them for the next transcript
my @new_starts;
my @new_sizes;
\#print \$cols[3], "\t", @exon_coord_pair, "\n";
foreach my \$exon_coord_pair (@exon_coord_pair) { \#goes through
each exon in the SMRT transcript
my @coords = split(":", \$exon_coord_pair);
my \$blockStart = \$coords[0] - \$cols[12];
my \$blockSize = \$coords[1] - \$coords[0];
push (@new_starts, \$blockStart);
push (@new_sizes, \$blockSize);
}
@exon_coord_pair = ();
shift(@new_starts); \#removes the first value of the new_starts
array, so we can replace it with 0 (it won't be 0 already if chrStart
has been updated)
my \$assembled_starts = join(",", 0, @new_starts);
my $assembled_sizes = join(",", @new_sizes);
        print OUT
"$cols[0]\t$cols[12]\t$cols[13]\t$cols[3]\t$cols[4]\t$cols[5]\t$cols[12
]\t$cols[13]\t$cols[8]\t$cols[9]\t$assembled_sizes\t\$assembled_starts\n
";
$validated_count++;
    }
}
#then need to add code to collapse the transcripts with identical
structure into a single feature
close(INF);
close(OUT);
system("sort -k 2,2n -k 3,3n -k11,11 -k12,12 -k5,5n
\Q$test_file\E.validated_refined.temp >
\Q$test_file\E.validated_refined.bed");
system("rm \Q$test_file\E.validated_refined.temp");
\#Collapsing matching transcripts into single isoforms
open(INF, "<$test_file.validated_refined.bed");
open(OUT, ">$test_file.isoforms.bed");
print "Collapsing matching transcripts into isoforms...\n";
my \$prev_chr_plus = "start";
my \$prev_chrStart_plus = 0;
my \$prev_chrEnd_plus = 0;
my \$prev_name_plus;
my \$count_plus = 0;
my \$prev_rgb_plus;
my \$prev_blocks_plus;
my \$prev_blockSizes_plus = "1,1";
my \$prev_blockStarts_plus = "0,0";
my \$prev_chr_minus = "start";

```
```

my \$prev_chrStart_minus = 0;
my \$prev_chrEnd_minus = 0;
my \$prev_name_minus;
my \$count_minus = 0;
my \$prev_rgb_minus;
my \$prev_blocks_minus;
my \$prev_blockSizes_minus = "1,1";
my \$prev_blockStarts_minus = "0,0";
my \$iso_count = 0;
while(my $line = <INF>) {
    chomp($line);
my @cols = split("\t", $line);
    if ($cols[5] eq "+") {
if ((\$cols[0] eq $prev_chr_plus) and ($cols[1] ==
$prev_chrStart_plus) and ($cols [2] == $prev_chrEnd_plus) and ($cols[10]
eq $prev_blockSizes_plus) and ($cols[11] eq \$prev_blockStarts_plus)) {
\$count_plus = \$count_plus + \$cols[4];
\$prev_chr_plus = \$cols[0];
\$prev_name_plus = \$cols[3];
\$prev_rgb_plus = \$cols[8];
\$prev_blocks_plus = $cols[9];
            }
            else {
        if ($count_plus == 0) {
\$prev_chrStart_plus = \$cols[1];
\$prev_chrEnd_plus = \$cols[2];
\$prev_blockSizes_plus = \$cols[10];
\$prev_blockStarts_plus = \$cols[11];
\$count_plus = \$cols[4];
\$prev_chr_plus = \$cols[0];
\$prev_name_plus = \$cols[3];
\$prev_rgb_plus = \$cols[8];
\$prev_blocks_plus = $cols[9];
        }
        else {
            print OUT
"$prev_chr_plus\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_name_plu
s\t$count_plus\t\+\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_rgb_p
lus\t$prev_blocks_plus\t$prev_blockSizes_plus\t$prev_blockStarts_plus\n
";
\$iso_count++;
\$prev_chrStart_plus = \$cols[1];
\$prev_chrEnd_plus = \$cols[2];
\$prev_blockSizes_plus = \$cols[10];
\$prev_blockStarts_plus = \$cols[11];
\$count_plus = \$cols[4];
\$prev_chr_plus = \$cols[0];
\$prev_name_plus = \$cols[3];
\$prev_rgb_plus = \$cols[8];
\$prev_blocks_plus = \$cols[9];
}
}
}

```
```

    elsif ($cols[5] eq "-") {
    if (($cols[0] eq $prev_chr_minus) and ($cols[1] ==
    $prev_chrStart_minus) and ($cols[2] == $prev_chrEnd_minus) and
($cols[10] eq $prev_blockSizes_minus) and ($cols[11] eq
\$prev_blockStarts_minus)) {
\$count_minus = \$count_minus + \$cols[4];
\$prev_chr_minus = \$cols[0];
\$prev_name_minus = \$cols[3];
\$prev_rgb_minus = \$cols[8];
\$prev_blocks_minus = $cols[9];
            }
        else {
            if ($count_minus == 0) {
\$prev_chrStart_minus = \$cols[1];
\$prev_chrEnd_minus = \$cols[2];
\$prev_blockSizes_minus = \$cols[10];
\$prev_blockStarts_minus = \$cols[11];
\$count_minus = \$cols[4];
\$prev_chr_minus = \$cols[0];
\$prev_name_minus = \$cols[3];
\$prev_rgb_minus = \$cols[8];
\$prev_blocks_minus = $cols[9];
        }
        else {
            print OUT
"$prev_chr_minus\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_name_
minus\t$count_minus\t\-
\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_rgb_minus\t$prev_bloc
ks_minus\t$prev_blockSizes_minus\t$prev_blockStarts_minus\n";
\$iso_count++;
\$prev_chrStart_minus = \$cols[1];
\$prev_chrEnd_minus = \$cols[2];
\$prev_blockSizes_minus = \$cols[10];
\$prev_blockStarts_minus = \$cols[11];
\$count_minus = \$cols[4];
\$prev_chr_minus = \$cols[0];
\$prev_name_minus = \$cols[3];
\$prev_rgb_minus = \$cols[8];
\$prev_blocks_minus = $cols[9];
        }
        }
    }
}
if ($count_plus > 0) {\#prints out the last feature (plus strand)
print OUT
"$prev_chr_plus\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_name_plu
s\t$count_plus\t\+\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_rgb_p
lus\t$prev_blocks_plus\t$prev_blockSizes_plus\t\$prev_blockStarts_plus\n
";
$iso_count++;
}
if ($count_minus > 0) {\#prints out the last feature (minus strand)
print OUT

```
```

"$prev_chr_minus\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_name_
minus\t$count_minus\t\-
\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_rgb_minus\t$prev_bloc
ks_minus\t$prev_blockSizes_minus\t\$prev_blockStarts_minus\n";
\$iso_count++;
}
close(INF);
close(OUT);
my @ann;

```
```

open(INF, "<\$ann_file") or die "couldn't open file";
while (my $line = <INF>) {
    chomp($line);
next if (\$line =~ /^track/); \#skips the track definition line
push (@ann, $line); #puts each line of the annotation file into an
array to be checked later
}
close(INF);
open(INF, "<$test_file.isoforms.bed") or die "couldn't open file";
open(OUT, ">\$test_file.validated_transcripts.bed");
print "Checking for annotated isoforms...\n";
my \$upper_limit_s;
my \$lower_limit_s;
my \$upper_limit_e;
my \$lower_limit_e;
my \$ann_count = 0;

```
print OUT "track type=bed name=\"\$test_file.validated_transcripts.bed\"
description=\"validated transcript structures from
transcript_structure_validator.pl\"\n";
while (my \$line \(=<\) INF>) \{
 chomp(\$line);
 next if (\$line =~ /^track/); \#skips the track definition line
 my @val_cols = split("\t", \$line);
 my \$found_flag=0;
 foreach my \$ann (@ann) \{
 my \$val_introns = 0;
 my \$ann_introns = 0;
 my @ann_cols = split("\t", \$ann);
 next if (\$val_cols[5] ne \$ann_cols[5]);
 next if (\$val_cols[9] ne \$ann_cols[9]);
 if (\$val_cols[5] eq "+") \{
 \$upper_limit_s = \$ann_cols[1] + \$start_dist;
 \$lower_limit_s = \$ann_cols[1] - \$start_dist;
 \$upper_limit_e = \$ann_cols[2] + \$end_dist;
 \$lower_limit_e = \$ann_cols[2] - \$end_dist;
 \}
 if (\$val_cols[5] eq "-") \{
 \$uppēr_limit_s = \$ann_cols[1] + \$end_dist;
```

            $lower_limit_s = $ann_cols[1] - $end_dist;
            $upper_limit_e = $ann_cols[2] + $start_dist;
            $lower_limit_e = $ann_cols[2] - $start_dist;
    }
if ((\$val_cols[1] >= $lower_limit_s) and ($val_cols[1] <=
$upper_limit_s)) {
            if (($val_cols[2] >= $lower_limit_e) and ($val_cols[2] <=
$upper_limit_e)) {
                                    if ($val_cols[9] == 1) {
print OUT \$val_cols[0], "\t", \$val_cols[1], "\t",
\$val_cols[2], "\t", \$ann_cols[3], "_", \$val_cols[3], "\t",
\$val_cols[4], "\t", \$val_cols[5], "\t", \$val_cols[6], "\t",
\$val_cols[7], "\t", \$ann_cols[8], "\t", \$val_cols[9], "\t",
\$val_cols[10], "\t", \$val_cols[11], "\n";
\$ann_count++;
\$found_flag=1;
}
else {
my \$val_intron_number = \$val_cols[9] - 1;
my @val_block_sizes = split(",", \$val_cols[10]);
my @val_block_starts = split(",", \$val_cols[11]);
for (my \$i = 0; \$i < \$val_intron_number; \$i = \$i +

1) { \#for the transcript currently in the "while" loop, creates an
array of intron start sites relative to the genome
\$start = \$val_cols[1] + $val_block_sizes[$i] +
$val_block_starts[$i];
$val_introns = "$val_introns:\$start";
}
for (my \$i2 = 1; \$i2 < \$val_cols[9]; \$i2 = \$i2 + 1)
{ \#for the transcript currently in the "while" loop, creates an array
of intron end sites relative to the genome
\$end = \$val_cols[1] + $val_block_starts[$i2];
$val_introns = "$val_introns:\$end";
}
my \$ann_intron_number = \$ann_cols[9] - 1;
my @ann_block_sizes = split(",", \$ann_cols[10]);
my @ann_block_starts = split(",", \$ann_cols[11]);
for (my \$i = 0; \$i < \$ann_intron_number; \$i = \$i +
2) { \#for the annotation currently in the "foreach" loop, creates an
array of intron start sites relative to the genome
\$start = \$ann_cols[1] + $ann_block_sizes[$i] +
$ann_block_starts[$i];
$ann_introns = "$ann_introns:\$start";
}
for (my \$i2 = 1; \$i2 < \$ann_cols[9]; \$i2 = \$i2 + 1)
{ \#for the annotation currently in the "foreach" loop, creates an array
of intron end sites relative to the genome
\$end = \$ann_cols[1] + $ann_block_starts[$i2];
$ann_introns = "$ann_introns:$end";
 }
 if ($val_introns eq \$ann_introns) {
print OUT \$val_cols[0], "\t", \$val_cols[1],
"\t", \$val_cols[2], "\t", \$ann_cols[3], "_", \$val_cols[3],""\t",
\$val_cols[4], "\t", \$val_cols[\overline{5], "\t", \$val_cols[6], "\t",}
\$val_cols[7], "\t", \$ann_cols[8], "\t", \$val_cols[9], "\t",
```
```

\$val_cols[10], "\t", \$val_cols[11], "\n";
\$ann_count++;
$found_flag=1;
                    }
                }
            }
        }
    }
    if ($found_flag == 0){
print OUT \$line, "\n";
}
}
close(INF);
close(OUT);
open(OUT, ">validated_isoforms_stats.txt");
my \$novel_count = \$iso_count - $ann_count;
print OUT "$iso_count validated transcripts\n\t$novel_count
novel\n\t$ann_count annotated\n';
close(OUT);
print "

```

```

\n$good_start_number sequences have validated start sites.\n";
print "$good_start_end_number sequences have validated start and end
sites.\n";
print "\$validated_count fully validated sequences collapse into
$iso_count distinct isoforms.\n";
print "$ann_count isoforms match annotated transcripts.\n";
system("rm \Q$test_file\E.validated_refined.bed");
system("rm \Q$test_file\E.validated_unrefined.bed");
system("rm \Q$test_file\E.isoforms.bed");
system("rm \Q$test_file\E.bed");

```

\section*{APPENDIX 5}

TRIMD_README.txt

TRIMD
Transcriptome Resolution by Integration of Multi-platform Data
==1
Scripts included:
TRIMD_start_finder.pl
TRIMD_junction_matcher.pl
TRIMD_end_finder.pl
TRIMD_isoform_validator.pl

Notes for all scripts:
Defaults are set using the Epstein-Barr virus Akata strain as a model.
Annotation file should contain only features for polyadenylated transcripts.
Fasta files of Iso-Seq data must have names formatted as putative_isoform_id/number_of_SMRT_reads/length, as from the Iso-Seq pipeline.

TRIMD_start_finder.pl

USAGE: perl /PATH/TRIMD_start_finder.pl </PATH/SMRT_sam_file> </PATH/CAGE_file> </PATH/Annotation_bed_file>

Accepts a SAM file of Iso-Seq fl data, a SAM file of CAGE data, and a bed file of annotated polyadenylated transcripts. Counts the number of non-clipped SMRT reads with 5 ' starts at each genomic position and estimates consensus locations of clusters of 5' starts. Uses Paraclu to identify clusters of 5' starts in the CAGE data. Output includes BEDGRAPH files of all 5 ' starts, BED files of the weighted centers of start clusters and a BED file of Iso-Seq 5' starts supported by either the annotation or the CAGE data.
Paraclu was written by Martin C Frith 2006, Genome Exploration Research Group, RIKEN GSC and Institute for Molecular Bioscience, University of Queensland and distributed under the GNU General Public License.

\section*{INPUT}
1. SAM file of Iso-Seq fl isoforms: this script was developed using data aligned with GMAP (-f samse option). Other aligners may also be appropriate.
2. SAM file of CAGE reads: this script was developed using data aligned with STAR. Other aligners may also be appropriate.
3. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions, promoters) these should be removed to avoid false positives.

\section*{PARAMETERS}
1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between both SAM files (field 3) and the BED annotation file (field 1). Does not have to be viral, but for organisms with multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt
2. Window for collapsing Iso-Seq 5' starts: Iso-Seq 5' starts within this number of bases of each other will be considered to represent the same transcription start site. The consensus transcription start site is determined by calculating an average of the coordinates in the cluster, weighted by read depth at each coordinate.
Default: 8
3. Minimum tags per CAGE cluster: the minimum number of CAGE tags in a cluster to be considered a potential transcription start site.
Default: 15
4. Minimum relative density for CAGE clusters: a measure of change in tag density between the cluster and its surroundings. Higher number \(=\) bigger change. For more information, see the Paraclu paper referenced Default: 2
5. Minimum CAGE cluster length: the minimum cluster length, in base pairs, to be considered a potential transcription start site.
Default: 1
6. Maximum CAGE cluster length: the maximum cluster length, in base pairs, to be considered a potential transcription start site.
Default: 20
7. Maximum allowable distance between Iso-Seq and CAGE 5' starts: Maximum distance of a CAGE consensus start site from an Iso-Seq consensus start site to consider the start site validated.
Default: 3
8. Minimum number of SMRT reads to report a \(5^{\prime}\) start: the minimum number of Iso-Seq 5' starts in a cluster to be considered a potential transcription start site
Default: 1
9. Maximum distance in bp from an annotated start site to be called as "annotated"

Default: 10

\section*{OUTPUT}
1. A BED file of validated 5 ' starts: this file is in bedDetail format, using the first 6 standard bed fields and an additional field that is necessary for the TRIMD_isoform_validator.pl script. The coordinates are those of the Iso-Seq consensus 5' start. The name field is in the format [nov|ann]_[+|-]_123.IsoSeq_456.CAGE and indicates whether the start site is novel or annotated, strand, the number of SMRT reads supporting it and the number of CAGE tags supporting it. The score is the number of SMRT reads and CAGE tags added together. The additional field indicates the range of the SMRT start cluster and number of supporting SMRT reads. Note that the validated starts file includes Iso-Seq starts that are supported by CAGE and/or annotation data. You may wish to filter the results to contain only starts that are supported by CAGE.
2. A text file with the number of total, novel and annotated 5 ' start sites validated, and a record of the input files.
3. BED file of Iso-Seq consensus 5' starts
4. BEDGRAPH file of all nonclipped Iso-Seq 5' starts
5. BED file of CAGE consensus 5 ' starts
6. BEDGRAPH file of all nonclipped CAGE 5' starts

TRIMD_junction_matcher.pl

USAGE: perl /PATH/TRIMD_junction_matcher.pl </PATH/SMRT_introns_file>
</PATH/Illumina_SJ.out.tab_file> </PATH/transcript_annotation_bed_file>
<coordinates_to_ignore_bed_file(optional)>
Accepts a junctions files from GMAP/SMRT (generated with the -f introns argument) and an SJ.out.tab files from STAR/Illumina.
Returns 3 bed files: one of SMRT splice junctions, one of Illumina splice junctions and one of junctions detected by both methods. The coordinates in the output bed files correspond to the first and last bases of the introns. Optionally, splice junctions in repeat regions can be ignored by providing a bed file with the coordinates of those junctions.

\section*{INPUT}
1. A file of Iso-Seq splice junctions data generated by GMAP (-f introns argument)
2. A file of Illumina splice junctions data generated by STAR (SJ.out.tab file in default STAR output).
3. BED file of annotated polyadenylated transcripts
4. (optional) BED file of genomic regions to ignore (e.g. repeat regions)

\section*{PARAMETERS}
1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between both junction files and the BED annotation file (field 1). Does not have to be viral, but for organisms with multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt
2. Minimum SMRT read depth to report a splice junction
3. Minimum Illumina RNA-seq read depth to report a splice junction

OUTPUT
1. BED file of validated splice junctions: this file is in BED format, using the first 6 standard bed fields. The coordinates correspond to the first and last base of the excised intron. The name field is in the format [nov |ann]_123.IsoSeq_456.CAGE and indicates whether the junction is novel or annotated, the number of SMRT reads supporting it and the number of Illumina reads supporting it. The score is the number of SMRT reads and Illumina reads added together.
2. A text file with the number of total, novel and annotated splice junctions validated, and a record of the input files.
3. BED file of splice junctions detected on the specified chromosome in the Iso-Seq data
4. BED file of splice junctions detected on the specified chromosome in the Illumina data

TRIMD_end_finder.pl

USAGE: perl /PATH/TRIMD_end_finder.pl </PATH/SMRT_sam_file> </PATH/Illumina_sam_file> </PATH/Annotation_bed_file>

Accepts a SAM file using Iso-Seq fl data, a SAM file using Illumina data, and a BED file of annotated polyadenylated transcripts. Counts the number of non-clipped SMRT reads with \(3^{\prime}\) ends at each genomic position and estimates consensus locations of clusters of \(3^{\prime}\) ends. Extracts Illumina reads containing apparent poly(A) tails and estimates consensus locations of clusters of polyadenylation sites. Output includes BEDGRAPH files of all 3 ' ends, BED files of the weighted centers of end clusters, a sam file of reads with polyA tails and a BED file of Iso-Seq 3' ends supported by either the annotation or the Illumina data.

SMRT fl read names must be formatted as putative_isoform_id/number_of_SMRT_reads/length.

\section*{INPUT}
1. SAM file of Iso-Seq fl isoforms: this script was developed using data aligned with GMAP (-f samse option). Other aligners may also be appropriate.
2. SAM file of Illumina RNA-seq data: Illumina libraries should have been prepared with stranded TruSeq or a similar protocol. Sequence data can be paired-end or single-end. This script was developed using data aligned with STAR. Other aligners may also be appropriate.
3. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions, promoters) these should be removed to avoid false positives.

\section*{PARAMETERS}
1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between both SAM files (field 3) and the BED annotation file (field 1). Does not have to be viral, but for organisms with multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt
2. Window for collapsing Iso-Seq 3' ends: Iso-Seq 3' ends within this number of bases of each other will be considered to represent the same polyadenlyation site. The consensus Iso-Seq polyadenylation site is determined by calculating an average of the coordinates in the cluster, weighted by read depth at each coordinate.
Default: 8
3. Minimum number of As for Illumina poly(A) tails: the number of As (or Ts, as appropriate) required in a read to indicate the presence of a poly(A) tail.
Default: 5
4. Minimum number of mismatches for Illumina poly(A) tails: the number of terminal mismatches in a read relative to the genome sequence to indicate the presence of a poly(A) tail.
Default: 2
5. Window for collapsing Illumina \(3^{\prime}\) ends: Illumina reads containing poly(A) tails within this number of bases of each other will be considered to represent the same polyadenylation site. The consensus Illumina polyadenylation site is determined by calculating an average of the coordinates in the cluster, weighted by read depth at each coordinate.
Default: 8
6. Number of bases downstream of Iso-Seq consensus 3' ends to look for Illumina support

Default: 10
7. Number of bases upstream of Iso-Seq consensus 3' ends to look for Illumina support Default: 4
8. Minimum number of SMRT reads to report a 3' end

Default: 5
9. Minimum number of Illumina poly(A) tail reads to report a \(3^{\prime}\) end Default: 1
10. Maximum distance in bp from an annotated end to be called as "annotated" Default: 25

\section*{OUTPUT}
1. BED file of validated \(3^{\prime}\) ends

This file is in bedDetail format, using the first 6 standard bed fields and an additional field that is necessary for the TRIMD_isoform_validator.pl script. The coordinates are those of the Illumina consensus 3' end. The name field is in the format [nov \(\mid\) ann \(]_{-}[+\mid-] _\)123.IsoSeq_456.CAGE and indicates whether the end is novel or annotated, strand, the number of SMRT reads supporting it and the number of Illumina poly(A) reads supporting it. The score is the number of SMRT reads and Illumina poly(A) reads added together. The additional field indicates the range of the SMRT end cluster and number of supporting SMRT reads. Note that the validated starts file includes SMRT ends that are supported by Illumina and/or annotation data. You may wish to filter the results to contain only starts that are supported by Illumina.
2. A text file with the number of total, novel and annotated 3 ' end sites validated, and a record of the input files.
3. BED file of Iso-Seq consensus 3 ' ends
4. BEDGRAPH file of nonclipped Iso-Seq 3' ends
5. BED file of Illumina consensus \(3^{\prime}\) ends
6. BEDGRAPH file of nonclipped Illumina 3' ends
7. SAM file of Illumina reads containing putative poly(A) tails
===1

TRIMD_isoform_validator.pl

USAGE: perl /PATH/TRIMD_isoform_validator.pl </PATH/SMRT_sam_file>
</PATH/validated_starts_file> </PATH/validated_ends_file> </PATH/validated_introns_file>
</PATH/Annotation_bed_file>

Takes a SAM file of Iso-Seq fl isoforms and compares them to a list of validated \(5^{\prime}\) ends, \(3^{\prime}\) ends and introns to create a list of validated isoform structures, which are compared to an annotation file.

\section*{INPUT}
1. SAM file of Iso-Seq fl isoforms
2. BedDetail file of validated starts: the output file from TRIMD_start_finder.pl that ends
".validated_starts.bed"
3. BedDetail file of validated ends: the output file from TRIMD_end_finder.pl that ends ".validated_ends.bed"
4. BedDetail file of validated splice junctions: the output file from TRIMD_junction_matcher.pl that ends
".validated_introns.bed"
5. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions, promoters) these should be removed to avoid false positives.

Note that the chromosome names must match exactly between all of the input files.

\section*{PARAMETERS}
1. Maximum distance from an annotated 5 ' start to be called annotated

Default: 10
2. Maximum distance from an annotated \(3^{\prime}\) end to be called annotated

Default: 10
Note that if there are overlapping transcripts, more than one may be called as the same "annotated" transcript, depending on how the distance parameters are set.

\section*{OUTPUT}
1. BED file of validated isoform structures: this file is in bed format, using all 12 standard fields. The coordinate for the \(5^{\prime}\) start is taken from the Iso-Seq consensus \(5^{\prime}\) start site and the coordinate for the \(3^{\prime}\) end is taken from the Illumina poly \((\mathrm{A})\) read consensus 3 ' end. The name is that of one of the Iso-Seq isoforms representing that transcript, prefixed by any matching annotated transcript. The score is the number of SMRT reads that support that transcript. ThickStart and thickEnd (fields 7 and 8) match chrStart and chrEnd (fields 2 and 3): no information about ORFs is inferred. If the transcript is called as annotated, the color (field 9) is imported from the annotation file.
2. A text file with the number of total, novel and annotated isoforms validated, and a record of the input files.
==1

\section*{LICENSE}
\(\qquad\)

Distributed under the GNU General Public License. For more, see License.txt

\section*{PLEASE CITE}
tba
and
Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A (2008) A code for transcription initiation in mammalian genomes" Genome Research 18(1):1-12.

CONTACT

Erik Flemington (erik@tulane.edu)
Tina O'Grady (tmogrady@gmail.com)

\section*{APPENDIX 6}

Validated EBV transcription start sites
\begin{tabular}{|c|c|c|c|c|}
\hline chrStart & chrEnd & ID & Read depth & Strand \\
\hline 599 & 600 & nov_+_18.SMRT_369.CAGE & 387 & + \\
\hline 610 & 611 & ann_-_43.SMRT_9828.CAGE & 9871 & - \\
\hline 1734 & 1735 & nov_-_48.SMRT_765.CAGE & 813 & - \\
\hline 2567 & 2568 & nov_-_11.SMRT_128.CAGE & 139 & - \\
\hline 3178 & 3179 & nov_-_11.SMRT_1937.CAGE & 1948 & - \\
\hline 3193 & 3194 & nov_-_21.SMRT_59.CAGE & 80 & - \\
\hline 3397 & 3398 & ann_-_24.SMRT_3205.CAGE & 3229 & - \\
\hline 3500 & 3501 & nov_-_1.SMRT_100.CAGE & 101 & - \\
\hline 3850 & 3851 & nov_+_16.SMRT_320.CAGE & 336 & + \\
\hline 4383 & 4384 & nov_+_19.SMRT_192.CAGE & 211 & + \\
\hline 4391 & 4392 & ann_-_12.SMRT_231.CAGE & 243 & - \\
\hline 4450 & 4451 & ann_-_3.SMRT_165.CAGE & 168 & - \\
\hline 5148 & 5149 & nov_-_2.SMRT_154.CAGE & 156 & - \\
\hline 5174 & 5175 & nov_-_1.SMRT_105.CAGE & 106 & - \\
\hline 6208 & 6209 & ann_-_2550.SMRT_24906.CAGE & 27456 & - \\
\hline 7705 & 7706 & ann_-_73.SMRT_1894.CAGE & 1967 & - \\
\hline 7765 & 7766 & nov_+_51.SMRT_434.CAGE & 485 & + \\
\hline 8655 & 8656 & nov_-_2.SMRT_2089.CAGE & 2091 & - \\
\hline 10381 & 10382 & ann_-_1899.SMRT_20750.CAGE & 22649 & - \\
\hline 10648 & 10649 & nov_-_5.SMRT_320.CAGE & 325 & - \\
\hline 10888 & 10889 & nov_-_1.SMRT_178.CAGE & 179 & - \\
\hline 11441 & 11442 & nov_-_18.SMRT_282.CAGE & 300 & - \\
\hline 11491 & 11492 & nov_-_2.SMRT_224.CAGE & 226 & - \\
\hline 11606 & 11607 & nov_+_1.SMRT_107.CAGE & 108 & + \\
\hline 11639 & 11640 & nov_-_2.SMRT_59.CAGE & 61 & - \\
\hline 11753 & 11754 & ann_-_431.SMRT_22227.CAGE & 22658 & - \\
\hline 12629 & 12630 & nov_-_67.SMRT_41153.CAGE & 41220 & - \\
\hline 12659 & 12660 & ann_-_340.SMRT_423.CAGE & 763 & - \\
\hline 13796 & 13797 & nov_+_1.SMRT_96.CAGE & 97 & + \\
\hline 14503 & 14504 & nov_-_17.SMRT_127.CAGE & 144 & - \\
\hline 14696 & 14697 & nov_-_11.SMRT_113.CAGE & 124 & - \\
\hline 15102 & 15103 & nov_-_36.SMRT_423.CAGE & 459 & - \\
\hline 15945 & 15946 & nov_-_2.SMRT_70.CAGE & 72 & - \\
\hline 16557 & 16558 & nov_+_3.SMRT_907.CAGE & 910 & + \\
\hline 16984 & 16985 & ann_-_28.SMRT_15038.CAGE & 15066 & - \\
\hline 18317 & 18318 & nov_+_6.SMRT_155.CAGE & 161 & + \\
\hline 19392 & 19393 & nov_+_419.SMRT_762.CAGE & 1181 & + \\
\hline 20624 & 20625 & nov_+_3.SMRT_212.CAGE & 215 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 22563 & 22564 & nov_-_858.SMRT_7056.CAGE & 7914 & - \\
\hline 22587 & 22588 & ann_-_40.SMRT_970.CAGE & 1010 & - \\
\hline 22695 & 22696 & nov_-_4.SMRT_211.CAGE & 215 & - \\
\hline 23149 & 23150 & nov_-_10.SMRT_227.CAGE & 237 & - \\
\hline 23521 & 23522 & nov_+_6.SMRT_275.CAGE & 281 & + \\
\hline 23919 & 23920 & nov_+_151.SMRT_9868.CAGE & 10019 & + \\
\hline 24396 & 24397 & nov_+_52.SMRT_113.CAGE & 165 & + \\
\hline 24424 & 24425 & ann_-_5.SMRT_2217.CAGE & 2222 & - \\
\hline 24470 & 24471 & nov_+_39.SMRT_349.CAGE & 388 & \(+\) \\
\hline 24642 & 24643 & ann_+_12.SMRT_1546.CAGE & 1558 & + \\
\hline 25612 & 25613 & nov_+_2.SMRT_62.CAGE & 64 & + \\
\hline 27060 & 27061 & ann_+_45.SMRT_10982.CAGE & 11027 & + \\
\hline 27459 & 27460 & nov_-_13.SMRT_224.CAGE & 237 & - \\
\hline 27960 & 27961 & ann_+_80.SMRT_10972.CAGE & 11052 & \(+\) \\
\hline 28287 & 28288 & nov_+_20.SMRT_74.CAGE & 94 & \(+\) \\
\hline 28508 & 28509 & nov_+_4.SMRT_241.CAGE & 245 & \(+\) \\
\hline 28682 & 28683 & nov_+_1.SMRT_698.CAGE & 699 & + \\
\hline 29574 & 29575 & nov_-_5.SMRT_237.CAGE & 242 & - \\
\hline 29614 & 29615 & nov_-_3.SMRT_265.CAGE & 268 & - \\
\hline 29845 & 29846 & ann_-_555.SMRT_42730.CAGE & 43285 & - \\
\hline 29880 & 29881 & ann_-_2.SMRT_141.CAGE & 143 & - \\
\hline 30286 & 30287 & nov_-_21.SMRT_813.CAGE & 834 & - \\
\hline 30587 & 30588 & nov_-_3.SMRT_72.CAGE & 75 & - \\
\hline 30679 & 30680 & nov_-_41.SMRT_1350.CAGE & 1391 & - \\
\hline 30818 & 30819 & nov_-_10.SMRT_282.CAGE & 292 & - \\
\hline 31049 & 31050 & nov_-_29.SMRT_59.CAGE & 88 & - \\
\hline 32615 & 32616 & nov_-_1.SMRT_1117.CAGE & 1118 & - \\
\hline 32701 & 32702 & nov_-_1.SMRT_182.CAGE & 183 & - \\
\hline 32930 & 32931 & nov_-_1.SMRT_307.CAGE & 308 & - \\
\hline 32957 & 32958 & nov_-_1.SMRT_179.CAGE & 180 & - \\
\hline 33059 & 33060 & nov_-_1.SMRT_260.CAGE & 261 & - \\
\hline 33097 & 33098 & nov_-_1.SMRT_2115.CAGE & 2116 & - \\
\hline 33117 & 33118 & nov_-_1.SMRT_138.CAGE & 139 & - \\
\hline 33204 & 33205 & nov_-_1.SMRT_3133.CAGE & 3134 & - \\
\hline 33324 & 33325 & nov_-_1.SMRT_174.CAGE & 175 & - \\
\hline 33569 & 33570 & nov_-_1.SMRT_272.CAGE & 273 & - \\
\hline 34833 & 34834 & nov_-_1.SMRT_2336.CAGE & 2337 & - \\
\hline 35009 & 35010 & nov_-_26.SMRT_48315.CAGE & 48341 & - \\
\hline 36316 & 36317 & nov_+_2.SMRT_830.CAGE & 832 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 36715 & 36716 & nov_+_1.SMRT_69.CAGE & 70 & + \\
\hline 39251 & 39252 & nov_-_1.SMRT_59.CAGE & 60 & - \\
\hline 40390 & 40391 & nov_+_3.SMRT_304.CAGE & 307 & \(+\) \\
\hline 41344 & 41345 & nov_-_7.SMRT_275.CAGE & 282 & - \\
\hline 41597 & 41598 & nov_-_41.SMRT_458.CAGE & 499 & - \\
\hline 41972 & 41973 & ann_-_278.SMRT_258.CAGE & 536 & - \\
\hline 42093 & 42094 & nov_-_37.SMRT_130.CAGE & 167 & - \\
\hline 42913 & 42914 & nov_-_9.SMRT_510.CAGE & 519 & - \\
\hline 42960 & 42961 & nov_-_95.SMRT_1776.CAGE & 1871 & - \\
\hline 43338 & 43339 & nov_-_11.SMRT_2121.CAGE & 2132 & - \\
\hline 43362 & 43363 & nov_-_4.SMRT_292.CAGE & 296 & - \\
\hline 43541 & 43542 & nov_+_1.SMRT_128.CAGE & 129 & \(+\) \\
\hline 43592 & 43593 & nov_+_7.SMRT_12372.CAGE & 12379 & + \\
\hline 48118 & 48119 & nov_+_25.SMRT_365.CAGE & 390 & \(+\) \\
\hline 49310 & 49311 & nov_-_46.SMRT_4758.CAGE & 4804 & - \\
\hline 49367 & 49368 & nov_+_43.SMRT_187.CAGE & 230 & \(+\) \\
\hline 50466 & 50467 & ann_-_1397.SMRT_11863.CAGE & 13260 & - \\
\hline 52764 & 52765 & nov_-_13.SMRT_1011.CAGE & 1024 & - \\
\hline 53956 & 53957 & nov_-_5.SMRT_158.CAGE & 163 & - \\
\hline 55122 & 55123 & nov_+_5.SMRT_91.CAGE & 96 & \(+\) \\
\hline 55911 & 55912 & ann_-_7.SMRT_8241.CAGE & 8248 & - \\
\hline 55967 & 55968 & nov_+_32.SMRT_150.CAGE & 182 & \(+\) \\
\hline 56540 & 56541 & ann_-_35.SMRT_1777.CAGE & 1812 & - \\
\hline 56600 & 56601 & ann_+_47.SMRT_183.CAGE & 230 & \(+\) \\
\hline 56626 & 56627 & ann_+_41.SMRT_1250.CAGE & 1291 & \(+\) \\
\hline 56870 & 56871 & nov_-_26.SMRT_760.CAGE & 786 & - \\
\hline 58622 & 58623 & ann_-_742.SMRT_36211.CAGE & 36953 & - \\
\hline 58730 & 58731 & nov_-_22.SMRT_992.CAGE & 1014 & - \\
\hline 59835 & 59836 & nov_-_8.SMRT_430.CAGE & 438 & - \\
\hline 59909 & 59910 & nov_-_59.SMRT_96.CAGE & 155 & - \\
\hline 60067 & 60068 & nov_-_12.SMRT_377.CAGE & 389 & - \\
\hline 60251 & 60252 & nov_-_243.SMRT_8593.CAGE & 8836 & - \\
\hline 60600 & 60601 & ann_-_2.SMRT_636.CAGE & 638 & - \\
\hline 63743 & 63744 & nov_-_5.SMRT_173.CAGE & 178 & - \\
\hline 63852 & 63853 & nov_+_2.SMRT_224.CAGE & 226 & \(+\) \\
\hline 63931 & 63932 & nov_+_1.SMRT_133.CAGE & 134 & \(+\) \\
\hline 65094 & 65095 & ann_+_47.SMRT_18054.CAGE & 18101 & + \\
\hline 71970 & 71971 & nov_+_18.SMRT_166.CAGE & 184 & \(+\) \\
\hline 72926 & 72927 & ann_+_27.SMRT_369.CAGE & 396 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 74051 & 74052 & nov_-_2.SMRT_61.CAGE & 63 & - \\
\hline 74831 & 74832 & nov_-_15.SMRT_145.CAGE & 160 & - \\
\hline 75175 & 75176 & nov_-_35.SMRT_192.CAGE & 227 & - \\
\hline 77648 & 77649 & ann_+_2.SMRT_356.CAGE & 358 & + \\
\hline 80720 & 80721 & nov_+_1.SMRT_356.CAGE & 357 & + \\
\hline 98915 & 98916 & nov_+_1.SMRT_83.CAGE & 84 & + \\
\hline 100357 & 100358 & nov_+_9.SMRT_214.CAGE & 223 & + \\
\hline 101661 & 101662 & nov_-_1.SMRT_1113.CAGE & 1114 & - \\
\hline 101677 & 101678 & nov_-_1.SMRT_128.CAGE & 129 & - \\
\hline 101764 & 101765 & nov_-_1.SMRT_350.CAGE & 351 & - \\
\hline 101786 & 101787 & nov_-_1.SMRT_1114.CAGE & 1115 & - \\
\hline 103581 & 103582 & nov_-_1.SMRT_275.CAGE & 276 & - \\
\hline 103684 & 103685 & nov_-_1.SMRT_123.CAGE & 124 & - \\
\hline 103765 & 103766 & ann_-_126.SMRT_48592.CAGE & 48718 & - \\
\hline 104766 & 104767 & ann_+_102.SMRT_42958.CAGE & 43060 & + \\
\hline 104920 & 104921 & nov_+_36.SMRT_14276.CAGE & 14312 & + \\
\hline 105143 & 105144 & nov_+_8.SMRT_379.CAGE & 387 & + \\
\hline 105294 & 105295 & nov_-_1.SMRT_126.CAGE & 127 & - \\
\hline 105392 & 105393 & nov_+_21.SMRT_997.CAGE & 1018 & + \\
\hline 105562 & 105563 & nov_+_6.SMRT_87.CAGE & 93 & + \\
\hline 105598 & 105599 & nov_+_7.SMRT_113.CAGE & 120 & + \\
\hline 105633 & 105634 & nov_+_2.SMRT_66.CAGE & 68 & \(+\) \\
\hline 105654 & 105655 & nov_+_4.SMRT_205.CAGE & 209 & + \\
\hline 105841 & 105842 & nov_+_3.SMRT_244.CAGE & 247 & + \\
\hline 105936 & 105937 & nov_+_9.SMRT_250.CAGE & 259 & + \\
\hline 106064 & 106065 & nov_+_1.SMRT_165.CAGE & 166 & \(+\) \\
\hline 106348 & 106349 & nov_+_4.SMRT_1786.CAGE & 1790 & \(+\) \\
\hline 108104 & 108105 & nov_-_35.SMRT_652.CAGE & 687 & - \\
\hline 108606 & 108607 & nov_-_22.SMRT_307.CAGE & 329 & - \\
\hline 108646 & 108647 & nov_-_42.SMRT_106.CAGE & 148 & - \\
\hline 109041 & 109042 & nov_-_2.SMRT_64.CAGE & 66 & - \\
\hline 109095 & 109096 & nov_+_21.SMRT_10416.CAGE & 10437 & + \\
\hline 109184 & 109185 & nov_-_1.SMRT_99.CAGE & 100 & - \\
\hline 109516 & 109517 & ann_-_155.SMRT_2355.CAGE & 2510 & - \\
\hline 109554 & 109555 & nov_+_1.SMRT_122.CAGE & 123 & \(+\) \\
\hline 109573 & 109574 & nov_+_10.SMRT_5977.CAGE & 5987 & + \\
\hline 109727 & 109728 & nov_-_17.SMRT_110.CAGE & 127 & - \\
\hline 109842 & 109843 & ann_+_172.SMRT_18237.CAGE & 18409 & + \\
\hline 110486 & 110487 & nov_+_5.SMRT_114.CAGE & 119 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 112360 & 112361 & nov_+_1813.SMRT_50392.CAGE & 52205 & \(+\) \\
\hline 113215 & 113216 & nov_+_6.SMRT_6960.CAGE & 6966 & + \\
\hline 123054 & 123055 & nov_-_3.SMRT_1507.CAGE & 1510 & - \\
\hline 125948 & 125949 & ann_+_20.SMRT_16318.CAGE & 16338 & \(+\) \\
\hline 127102 & 127103 & ann_+_336.SMRT_5770.CAGE & 6106 & \(+\) \\
\hline 128963 & 128964 & nov_+_2.SMRT_88.CAGE & 90 & \(+\) \\
\hline 129735 & 129736 & ann_+_74.SMRT_7531.CAGE & 7605 & \(+\) \\
\hline 130772 & 130773 & ann_+_720.SMRT_6507.CAGE & 7227 & + \\
\hline 131714 & 131715 & ann_+_92.SMRT_2103.CAGE & 2195 & \(+\) \\
\hline 131763 & 131764 & nov_+_14.SMRT_1080.CAGE & 1094 & + \\
\hline 135227 & 135228 & ann_-_28.SMRT_2944.CAGE & 2972 & - \\
\hline 135743 & 135744 & nov_-_13.SMRT_99.CAGE & 112 & - \\
\hline 135865 & 135866 & nov_-_3.SMRT_72.CAGE & 75 & - \\
\hline 136009 & 136010 & nov_-_8.SMRT_61.CAGE & 69 & - \\
\hline 136283 & 136284 & nov_-_58.SMRT_698.CAGE & 756 & - \\
\hline 136346 & 136347 & nov_+_14.SMRT_297.CAGE & 311 & + \\
\hline 137815 & 137816 & ann_+_34.SMRT_2374.CAGE & 2408 & + \\
\hline 138538 & 138539 & nov_+_14.SMRT_77.CAGE & 91 & + \\
\hline 138807 & 138808 & nov_-_1.SMRT_258.CAGE & 259 & - \\
\hline 139385 & 139386 & ann_-_70.SMRT_3140.CAGE & 3210 & - \\
\hline 139443 & 139444 & ann_+_593.SMRT_10469.CAGE & 11062 & + \\
\hline 139716 & 139717 & nov_+_93.SMRT_498.CAGE & 591 & \(+\) \\
\hline 139796 & 139797 & ann_+_162.SMRT_53017.CAGE & 53179 & + \\
\hline 140922 & 140923 & ann_-_20.SMRT_2943.CAGE & 2963 & - \\
\hline 141133 & 141134 & nov_-_1.SMRT_56.CAGE & 57 & - \\
\hline 141590 & 141591 & nov_+_2.SMRT_51.CAGE & 53 & \(+\) \\
\hline 141643 & 141644 & nov_-_3.SMRT_95.CAGE & 98 & - \\
\hline 141674 & 141675 & nov_-_2.SMRT_81.CAGE & 83 & - \\
\hline 141799 & 141800 & nov_+_1.SMRT_422.CAGE & 423 & \(+\) \\
\hline 142237 & 142238 & nov_-_6.SMRT_62.CAGE & 68 & - \\
\hline 142908 & 142909 & ann_-_1301.SMRT_39016.CAGE & 40317 & - \\
\hline 143363 & 143364 & nov_-_12.SMRT_131.CAGE & 143 & - \\
\hline 143437 & 143438 & nov_-_5.SMRT_323.CAGE & 328 & - \\
\hline 143867 & 143868 & nov_+_2.SMRT_60.CAGE & 62 & \(+\) \\
\hline 144154 & 144155 & nov_-_4.SMRT_535.CAGE & 539 & - \\
\hline 144255 & 144256 & nov_+_58.SMRT_725.CAGE & 783 & \(+\) \\
\hline 145374 & 145375 & nov_+_2.SMRT_101.CAGE & 103 & + \\
\hline 146927 & 146928 & nov_-_4.SMRT_365.CAGE & 369 & - \\
\hline 147032 & 147033 & nov_-_97.SMRT_1094.CAGE & 1191 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 150164 & 150165 & nov_+_2.SMRT_107.CAGE & 109 & + \\
\hline 152491 & 152492 & nov_-_1.SMRT_857.CAGE & 858 & - \\
\hline 152867 & 152868 & ann_-_203.SMRT_59254.CAGE & 59457 & - \\
\hline 153639 & 153640 & nov_-_2.SMRT_305.CAGE & 307 & - \\
\hline 153968 & 153969 & ann_-_7.SMRT_265.CAGE & 272 & - \\
\hline 154024 & 154025 & nov_-_9.SMRT_297.CAGE & 306 & - \\
\hline 154100 & 154101 & nov_-_1.SMRT_390.CAGE & 391 & - \\
\hline 154144 & 154145 & nov_-_14.SMRT_522.CAGE & 536 & - \\
\hline 155814 & 155815 & ann_+_43.SMRT_1311.CAGE & 1354 & + \\
\hline 156011 & 156012 & nov_+_28.SMRT_1262.CAGE & 1290 & \(+\) \\
\hline 156860 & 156861 & nov_+_11.SMRT_265.CAGE & 276 & + \\
\hline 156949 & 156950 & ann_-_2.SMRT_287.CAGE & 289 & - \\
\hline 157036 & 157037 & nov_-_5.SMRT_130.CAGE & 135 & - \\
\hline 157040 & 157041 & ann_+_2078.SMRT_16853.CAGE & 18931 & \(+\) \\
\hline 157697 & 157698 & nov_-_4.SMRT_315.CAGE & 319 & - \\
\hline 159860 & 159861 & nov_+_1.SMRT_56.CAGE & 57 & \(+\) \\
\hline 160213 & 160214 & nov_+_201.SMRT_13429.CAGE & 13630 & \(+\) \\
\hline 160263 & 160264 & nov_-_2.SMRT_411.CAGE & 413 & - \\
\hline 160298 & 160299 & nov_+_41.SMRT_50.CAGE & 91 & \(+\) \\
\hline 160572 & 160573 & ann_+_297.SMRT_5954.CAGE & 6251 & \(+\) \\
\hline 160811 & 160812 & nov_+_54.SMRT_2042.CAGE & 2096 & + \\
\hline 161000 & 161001 & ann_+_3.SMRT_729.CAGE & 732 & \(+\) \\
\hline 161265 & 161266 & nov_+_3503.SMRT_25085.CAGE & 28588 & \(+\) \\
\hline 161561 & 161562 & nov_+_173.SMRT_4140.CAGE & 4313 & \(+\) \\
\hline 161726 & 161727 & nov_+_4.SMRT_252.CAGE & 256 & \(+\) \\
\hline 161762 & 161763 & ann_+_6.SMRT_167.CAGE & 173 & \(+\) \\
\hline 161795 & 161796 & ann_+_6.SMRT_148.CAGE & 154 & \(+\) \\
\hline 161835 & 161836 & nov_+_1.SMRT_341.CAGE & 342 & \(+\) \\
\hline 163056 & 163057 & nov_-_3.SMRT_82.CAGE & 85 & - \\
\hline 163079 & 163080 & nov_-_24.SMRT_2100.CAGE & 2124 & - \\
\hline 163333 & 163334 & nov_-_7.SMRT_104.CAGE & 111 & - \\
\hline 164547 & 164548 & nov_+_17.SMRT_5300.CAGE & 5317 & + \\
\hline 165000 & 165001 & nov_-_7.SMRT_901.CAGE & 908 & - \\
\hline 165920 & 165921 & nov_+_21.SMRT_232.CAGE & 253 & \(+\) \\
\hline 166431 & 166432 & nov_+_22.SMRT_4923.CAGE & 4945 & \(+\) \\
\hline 166520 & 166521 & nov_-_1.SMRT_123.CAGE & 124 & - \\
\hline 169341 & 169342 & nov_-_35.SMRT_828.CAGE & 863 & - \\
\hline 169395 & 169396 & nov_+_8.SMRT_62.CAGE & 70 & + \\
\hline 169527 & 169528 & nov_-_7.SMRT_181.CAGE & 188 & - \\
\hline
\end{tabular}
\begin{tabular}{|r|r|l|r|c|}
\hline 169648 & 169649 & ann_+_1852.SMRT_7176.CAGE & 9028 & + \\
\hline 169676 & 169677 & ann_-_26.SMRT_2365.CAGE & 2391 & - \\
\hline 169713 & 169714 & nov_-_5.SMRT_149.CAGE & 154 & - \\
\hline 169766 & 169767 & nov_+_1959.SMRT_15063.CAGE & 17022 & + \\
\hline 171265 & 171266 & nov_+_3.SMRT_155.CAGE & 158 & + \\
\hline
\end{tabular}

\section*{APPENDIX 7}

Validated EBV splice junctions
\begin{tabular}{|c|c|c|c|c|}
\hline chrStart & chrEnd & ID & Read Depth & Strand \\
\hline 833 & 1498 & nov_8SMRT_278Ill & 286 & + \\
\hline 833 & 4820 & nov_8SMRT_57Ill & 65 & \(+\) \\
\hline 833 & 4932 & nov_1SMRT_1Ill & 2 & + \\
\hline 833 & 8523 & nov_3SMRT_41Ill & 44 & \(+\) \\
\hline 1838 & 3856 & nov_2SMRT_116Ill & 118 & + \\
\hline 1838 & 4820 & nov_1SMRT_34Ill & 35 & + \\
\hline 1838 & 5006 & nov_1SMRT_2Ill & 3 & + \\
\hline 1838 & 8523 & nov_8SMRT_36Ill & 44 & + \\
\hline 1905 & 2004 & nov_2SMRT_42Ill & 44 & - \\
\hline 1905 & 3569 & nov_1SMRT_5Ill & 6 & - \\
\hline 1905 & 5020 & nov_7SMRT_19Ill & 26 & - \\
\hline 3799 & 4535 & nov_1SMRT_3Ill & 4 & + \\
\hline 5169 & 5685 & nov_1SMRT_3Ill & 4 & - \\
\hline 5172 & 11224 & nov_1SMRT_4Ill & 5 & - \\
\hline 5185 & 8523 & ann_120SMRT_2331Ill & 2451 & + \\
\hline 5802 & 8523 & nov_2SMRT_16Ill & 18 & + \\
\hline 6217 & 8523 & nov_1SMRT_19Ill & 20 & + \\
\hline 6531 & 8523 & nov_2SMRT_35Ill & 37 & + \\
\hline 7335 & 8523 & nov_5SMRT_49Ill & 54 & + \\
\hline 7623 & 8523 & nov_1SMRT_2Ill & 3 & + \\
\hline 7973 & 8523 & nov_3SMRT_5Ill & 8 & + \\
\hline 8106 & 8523 & nov_4SMRT_38Ill & 42 & + \\
\hline 8221 & 8523 & nov_35SMRT_298Ill & 333 & + \\
\hline 8446 & 8523 & nov_4SMRT_83Ill & 87 & + \\
\hline 9768 & 11217 & nov_1SMRT_2Ill & 3 & - \\
\hline 9768 & 11224 & nov_1SMRT_182Ill & 183 & - \\
\hline 10295 & 11224 & nov_1SMRT_11Ill & 12 & - \\
\hline 11894 & 12392 & nov_1SMRT_43Ill & 44 & - \\
\hline 12366 & 15626 & nov_1SMRT_54Ill & 55 & + \\
\hline 15751 & 16548 & nov_1SMRT_267Ill & 268 & + \\
\hline 16783 & 18577 & nov_1SMRT_7Ill & 8 & + \\
\hline 16783 & 22834 & nov_1SMRT_22Ill & 23 & + \\
\hline 19705 & 22834 & nov_1SMRT_4Ill & 5 & + \\
\hline 20577 & 21444 & nov_3SMRT_9Ill & 12 & - \\
\hline 20577 & 22381 & nov_2SMRT_46Ill & 48 & - \\
\hline 20577 & 22702 & nov_3SMRT_107Ill & 110 & - \\
\hline 20915 & 22182 & nov_1SMRT_14Ill & 15 & + \\
\hline 21111 & 22702 & nov_1SMRT_5Ill & 6 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 21444 & 22381 & nov_1SMRT_7Ill & 8 & - \\
\hline 21444 & 22702 & nov_1SMRT_13Ill & 14 & - \\
\hline 21603 & 22381 & nov_110SMRT_653Ill & 763 & - \\
\hline 21603 & 22702 & nov_13SMRT_1490Ill & 1503 & - \\
\hline 22467 & 22834 & nov_2SMRT_2091ll & 211 & + \\
\hline 22485 & 22702 & nov_1SMRT_35Ill & 36 & - \\
\hline 22890 & 23119 & nov_1SMRT_1Ill & 2 & - \\
\hline 22890 & 23541 & nov_2SMRT_240Ill & 242 & - \\
\hline 22890 & 29078 & nov_2SMRT_49Ill & 51 & - \\
\hline 23045 & 24077 & nov_1SMRT_1Ill & 2 & + \\
\hline 23045 & 24099 & nov_5SMRT_282Ill & 287 & + \\
\hline 23298 & 29078 & nov_1SMRT_24Ill & 25 & - \\
\hline 23789 & 24099 & nov_5SMRT_88Ill & 93 & + \\
\hline 24042 & 24266 & nov_1SMRT_2Ill & 3 & - \\
\hline 24252 & 25247 & nov_1SMRT_6Ill & 7 & + \\
\hline 24252 & 25455 & nov_1SMRT_1Ill & 2 & + \\
\hline 26474 & 27513 & nov_1SMRT_24Ill & 25 & + \\
\hline 26474 & 27601 & nov_1SMRT_45Ill & 46 & + \\
\hline 29502 & 31025 & nov_1SMRT_1Ill & 2 & - \\
\hline 36381 & 37821 & nov_2SMRT_20Ill & 22 & + \\
\hline 36775 & 37821 & nov_8SMRT_216Ill & 224 & + \\
\hline 36775 & 41171 & nov_4SMRT_20Ill & 24 & + \\
\hline 37923 & 41171 & ann_13SMRT_581Ill & 594 & + \\
\hline 40259 & 41171 & nov_1SMRT_7Ill & 8 & + \\
\hline 40494 & 41171 & nov_2SMRT_15Ill & 17 & + \\
\hline 40494 & 41513 & nov_1SMRT_3Ill & 4 & + \\
\hline 40494 & 41827 & nov_1SMRT_3Ill & 4 & + \\
\hline 40750 & 41171 & nov_1SMRT_10Ill & 11 & + \\
\hline 40750 & 41513 & nov_1SMRT_3Ill & 4 & + \\
\hline 40898 & 41141 & nov_4SMRT_70Ill & 74 & - \\
\hline 40898 & 41585 & nov_1SMRT_9Ill & 10 & - \\
\hline 41303 & 41513 & nov_19SMRT_647Ill & 666 & + \\
\hline 41303 & 41827 & nov_2SMRT_44Ill & 46 & + \\
\hline 41668 & 41827 & nov_16SMRT_531Ill & 547 & + \\
\hline 41939 & 46854 & ann_21SMRT_253Ill & 274 & + \\
\hline 41939 & 48114 & nov_1SMRT_16Ill & 17 & + \\
\hline 41939 & 50212 & nov_1SMRT_10Ill & 11 & + \\
\hline 41939 & 51368 & nov_6SMRT_5Ill & 11 & + \\
\hline 41939 & 57650 & nov_1SMRT_7Ill & 8 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 43753 & 46854 & nov_1SMRT_3Ill & 4 & + \\
\hline 43806 & 46854 & nov_6SMRT_87Ill & 93 & + \\
\hline 43806 & 51368 & nov_1SMRT_23Ill & 24 & + \\
\hline 44550 & 48114 & nov_1SMRT_7Ill & 8 & + \\
\hline 45116 & 46854 & nov_8SMRT_325Ill & 333 & + \\
\hline 45116 & 48114 & nov_1SMRT_31Ill & 32 & + \\
\hline 46769 & 46854 & nov_1SMRT_16Ill & 17 & + \\
\hline 46937 & 47908 & nov_7SMRT_54Ill & 61 & + \\
\hline 46937 & 48114 & nov_22SMRT_431Ill & 453 & + \\
\hline 46937 & 48433 & nov_1SMRT_7Ill & 8 & + \\
\hline 46937 & 51368 & nov_2SMRT_10Ill & 12 & + \\
\hline 47136 & 47908 & nov_3SMRT_8Ill & 11 & + \\
\hline 47136 & 48114 & nov_4SMRT_85Ill & 89 & + \\
\hline 47801 & 48114 & nov_1SMRT_6Ill & 7 & + \\
\hline 48325 & 48433 & ann_73SMRT_1665Ill & 1738 & + \\
\hline 48325 & 50212 & nov_8SMRT_315Ill & 323 & + \\
\hline 48325 & 51368 & nov_6SMRT_43Ill & 49 & + \\
\hline 48516 & 50212 & ann_79SMRT_2081Ill & 2160 & + \\
\hline 48516 & 51368 & nov_2SMRT_12IIl & 14 & + \\
\hline 48959 & 50212 & nov_5SMRT_22Ill & 27 & + \\
\hline 49484 & 50212 & nov_1SMRT_12Ill & 13 & + \\
\hline 49506 & 50212 & nov_3SMRT_37Ill & 40 & + \\
\hline 49606 & 49748 & nov_2SMRT_15Ill & 17 & + \\
\hline 49606 & 50212 & nov_1SMRT_34Ill & 35 & + \\
\hline 49648 & 50212 & nov_1SMRT_3Ill & 4 & + \\
\hline 49822 & 50212 & nov_2SMRT_24Ill & 26 & + \\
\hline 49858 & 50212 & nov_3SMRT_29Ill & 32 & + \\
\hline 50339 & 51368 & ann_72SMRT_673Ill & 745 & + \\
\hline 50471 & 51368 & nov_31SMRT_143Ill & 174 & + \\
\hline 50963 & 51368 & nov_3SMRT_12Ill & 15 & + \\
\hline 51197 & 51368 & nov_1SMRT_3Ill & 4 & + \\
\hline 51506 & 57650 & nov_4SMRT_155Ill & 159 & + \\
\hline 56155 & 57650 & nov_3SMRT_6Ill & 9 & + \\
\hline 56431 & 57650 & nov_1SMRT_5Ill & 6 & + \\
\hline 58045 & 63426 & ann_6SMRT_464Ill & 470 & \(+\) \\
\hline 58045 & 63728 & nov_2SMRT_69111 & 71 & + \\
\hline 58045 & 64648 & nov_3SMRT_163Ill & 166 & + \\
\hline 58045 & 64942 & nov_2SMRT_34Ill & 36 & + \\
\hline 58646 & 60126 & nov_1SMRT_3Ill & 4 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 58944 & 63426 & nov_1SMRT_22Ill & 23 & + \\
\hline 59677 & 60126 & nov_1SMRT_1Ill & 2 & - \\
\hline 60049 & 60126 & ann_101SMRT_1818Ill & 1919 & - \\
\hline 60049 & 60291 & nov_3SMRT_35Ill & 38 & - \\
\hline 60049 & 63466 & nov_1SMRT_7Ill & 8 & - \\
\hline 60049 & 63767 & nov_1SMRT_6Ill & 7 & - \\
\hline 60213 & 60291 & ann_9SMRT_684Ill & 693 & - \\
\hline 60213 & 63466 & nov_1SMRT_22Ill & 23 & - \\
\hline 60213 & 63657 & nov_1SMRT_1Ill & 2 & - \\
\hline 60213 & 65533 & nov_1SMRT_3Ill & 4 & - \\
\hline 63641 & 63728 & ann_5SMRT_603Ill & 608 & + \\
\hline 63641 & 64394 & nov_4SMRT_105Ill & 109 & + \\
\hline 63827 & 63908 & ann_4SMRT_394Ill & 398 & + \\
\hline 63827 & 64394 & nov_3SMRT_213Ill & 216 & + \\
\hline 64157 & 64239 & ann_5SMRT_379Ill & 384 & + \\
\hline 64320 & 64394 & ann_5SMRT_831Ill & 836 & + \\
\hline 64320 & 64648 & nov_3SMRT_130Ill & 133 & + \\
\hline 64565 & 64648 & ann_14SMRT_1630Ill & 1644 & + \\
\hline 64565 & 64840 & nov_1SMRT_57Ill & 58 & + \\
\hline 64864 & 64942 & ann_21SMRT_1283Ill & 1304 & + \\
\hline 64864 & 68776 & nov_2SMRT_125Ill & 127 & + \\
\hline 65051 & 66638 & nov_3SMRT_287Ill & 290 & + \\
\hline 65051 & 68776 & ann_23SMRT_952Ill & 975 & + \\
\hline 65167 & 66638 & nov_1SMRT_11Ill & 12 & + \\
\hline 65167 & 68776 & nov_2SMRT_581ll & 60 & + \\
\hline 65529 & 68776 & nov_2SMRT_9Ill & 11 & + \\
\hline 66264 & 66638 & nov_2SMRT_11Ill & 13 & \(+\) \\
\hline 66264 & 68776 & nov_3SMRT_15Ill & 18 & + \\
\hline 66871 & 68776 & nov_1SMRT_4Ill & 5 & \(+\) \\
\hline 67045 & 68776 & nov_1SMRT_56Ill & 57 & + \\
\hline 67211 & 68776 & nov_18SMRT_329Ill & 347 & + \\
\hline 67591 & 68776 & nov_12SMRT_213Ill & 225 & + \\
\hline 68320 & 68776 & nov_2SMRT_110Ill & 112 & + \\
\hline 103462 & 104870 & nov_1SMRT_257Ill & 258 & - \\
\hline 104875 & 105314 & nov_95SMRT_21300Ill & 21395 & + \\
\hline 104896 & 105314 & ann_1SMRT_312Ill & 313 & + \\
\hline 104974 & 105314 & nov_3SMRT_95Ill & 98 & + \\
\hline 105058 & 105314 & nov_20SMRT_1234Ill & 1254 & + \\
\hline 113441 & 118460 & ann_6SMRT_3455Ill & 3461 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 118632 & 127509 & nov_1SMRT_2Ill & 3 & \(+\) \\
\hline 118632 & 129072 & nov_1SMRT_2Ill & 3 & \(+\) \\
\hline 118632 & 142986 & ann_1SMRT_30Ill & 31 & \(+\) \\
\hline 135023 & 135129 & ann_213SMRT_17391Ill & 17604 & - \\
\hline 135023 & 142536 & nov_11SMRT_97Ill & 108 & - \\
\hline 135023 & 146657 & nov_1SMRT_8Ill & 9 & - \\
\hline 135023 & 152589 & nov_4SMRT_10Ill & 14 & - \\
\hline 135023 & 152631 & nov_17SMRT_48Ill & 65 & - \\
\hline 135023 & 152838 & nov_10SMRT_246Ill & 256 & - \\
\hline 135023 & 153422 & nov_1SMRT_24Ill & 25 & - \\
\hline 135050 & 135129 & nov_1SMRT_51Ill & 52 & - \\
\hline 135276 & 152631 & nov_2SMRT_1Ill & 3 & - \\
\hline 135356 & 152838 & nov_1SMRT_1Ill & 2 & - \\
\hline 136811 & 137844 & nov_1SMRT_7Ill & 8 & \(+\) \\
\hline 140729 & 141401 & nov_1SMRT_53Ill & 54 & - \\
\hline 140729 & 142536 & nov_1SMRT_26Ill & 27 & - \\
\hline 140943 & 141401 & nov_1SMRT_2Ill & 3 & - \\
\hline 140943 & 142536 & nov_1SMRT_1Ill & 2 & - \\
\hline 140963 & 141401 & ann_449SMRT_9735Ill & 10184 & - \\
\hline 140963 & 141930 & nov_2SMRT_7Ill & 9 & - \\
\hline 140963 & 142060 & nov_1SMRT_7Ill & 8 & - \\
\hline 140963 & 142536 & nov_120SMRT_1821Ill & 1941 & - \\
\hline 140963 & 152403 & nov_1SMRT_1Ill & 2 & - \\
\hline 140963 & 152589 & nov_4SMRT_30Ill & 34 & - \\
\hline 140963 & 152631 & nov_28SMRT_144IIl & 172 & - \\
\hline 140963 & 152766 & nov_1SMRT_10Ill & 11 & - \\
\hline 140963 & 152838 & nov_58SMRT_411Ill & 469 & - \\
\hline 141563 & 152631 & nov_2SMRT_1Ill & 3 & - \\
\hline 141978 & 142536 & nov_1SMRT_10Ill & 11 & - \\
\hline 141978 & 152838 & nov_1SMRT_2Ill & 3 & - \\
\hline 142029 & 142536 & nov_1SMRT_12Ill & 13 & - \\
\hline 142029 & 152631 & nov_1SMRT_5Ill & 6 & - \\
\hline 142029 & 152838 & nov_3SMRT_5Ill & 8 & - \\
\hline 142197 & 143852 & nov_1SMRT_77Ill & 78 & + \\
\hline 142204 & 152631 & nov_1SMRT_4Ill & 5 & - \\
\hline 142210 & 142986 & nov_1SMRT_114Ill & 115 & \(+\) \\
\hline 142769 & 152838 & nov_2SMRT_20Ill & 22 & - \\
\hline 143330 & 143418 & ann_1SMRT_351Ill & 352 & \(+\) \\
\hline 143330 & 143920 & nov_1SMRT_126Ill & 127 & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 143390 & 143920 & nov_1SMRT_36Ill & 37 & + \\
\hline 146731 & 152589 & nov_1SMRT_1Ill & 2 & - \\
\hline 146731 & 152631 & nov_1SMRT_5Ill & 6 & - \\
\hline 146995 & 152403 & nov_1SMRT_1Ill & 2 & - \\
\hline 146995 & 152589 & nov_1SMRT_5Ill & 6 & - \\
\hline 146995 & 152631 & nov_1SMRT_5Ill & 6 & - \\
\hline 146995 & 152838 & nov_1SMRT_6Ill & 7 & - \\
\hline 147236 & 152631 & nov_1SMRT_1Ill & 2 & - \\
\hline 147814 & 150084 & nov_1SMRT_2Ill & 3 & - \\
\hline 147814 & 152403 & nov_1SMRT_6Ill & 7 & - \\
\hline 147814 & 152589 & nov_1SMRT_19Ill & 20 & - \\
\hline 147814 & 152631 & nov_2SMRT_35Ill & 37 & - \\
\hline 147814 & 152838 & nov_1SMRT_24Ill & 25 & - \\
\hline 149419 & 157904 & nov_1SMRT_1Ill & 2 & + \\
\hline 150367 & 152589 & nov_4SMRT_62Ill & 66 & - \\
\hline 150367 & 152631 & nov_1SMRT_991ll & 100 & - \\
\hline 150367 & 152838 & nov_2SMRT_127Ill & 129 & - \\
\hline 153081 & 153166 & ann_59SMRT_6716Ill & 6775 & - \\
\hline 153081 & 153422 & nov_59SMRT_2462Ill & 2521 & - \\
\hline 153271 & 153422 & ann_60SMRT_9985Ill & 10045 & - \\
\hline 153686 & 156893 & nov_2SMRT_12Ill & 14 & - \\
\hline 153721 & 154690 & nov_2SMRT_48Ill & 50 & - \\
\hline 153721 & 155693 & nov_7SMRT_87Ill & 94 & - \\
\hline 153721 & 156893 & nov_4SMRT_70Ill & 74 & - \\
\hline 154212 & 155303 & nov_1SMRT_16Ill & 17 & + \\
\hline 155694 & 156893 & nov_1SMRT_4Ill & 5 & - \\
\hline 155953 & 156893 & ann_9SMRT_2566Ill & 2575 & - \\
\hline 157376 & 157748 & nov_9SMRT_49111 & 58 & + \\
\hline 157376 & 158709 & nov_1SMRT_511Ill & 512 & + \\
\hline 160743 & 160875 & nov_2SMRT_781ll & 80 & + \\
\hline 161718 & 161810 & nov_1SMRT_42Ill & 43 & + \\
\hline 168022 & 168150 & ann_139SMRT_9112Ill & 9251 & - \\
\hline
\end{tabular}

\section*{APPENDIX 8}

Validated EBV polyadenylation sites
\begin{tabular}{|c|c|c|c|c|}
\hline chrStart & chrEnd & ID & Read Depth & Strand \\
\hline 58 & 59 & ann_-_150.SMRT_115.Ill & 265 & - \\
\hline 1466 & 1467 & nov_-_222.SMRT_40.Ill & 262 & - \\
\hline 4775 & 4776 & ann_-_2806.SMRT_60.Ill & 2866 & - \\
\hline 9646 & 9647 & ann_-_3383.SMRT_411.Ill & 3794 & - \\
\hline 9674 & 9675 & ann_+_216.SMRT_7.Ill & 223 & + \\
\hline 12599 & 12600 & ann_-_422.SMRT_185.Ill & 607 & - \\
\hline 20188 & 20189 & ann_-_1089.SMRT_225.Ill & 1314 & - \\
\hline 20304 & 20305 & ann_+_495.SMRT_10.Ill & 505 & + \\
\hline 26205 & 26206 & ann_-_69.SMRT_3.Ill & 72 & - \\
\hline 26496 & 26497 & ann_+_300.SMRT_26.Ill & 326 & + \\
\hline 29046 & 29047 & ann_-_918.SMRT_63.Ill & 981 & - \\
\hline 29058 & 29059 & ann_+_467.SMRT_380.Ill & 847 & + \\
\hline 32284 & 32285 & nov_-_35.SMRT_2219.Ill & 2254 & - \\
\hline 40597 & 40598 & ann_-_775.SMRT_77.Ill & 852 & - \\
\hline 42963 & 42964 & ann_-_33.SMRT_36.Ill & 69 & - \\
\hline 47810 & 47811 & ann_-_1578.SMRT_48.Ill & 1626 & - \\
\hline 52124 & 52125 & ann_+_170.SMRT_12.Ill & 182 & + \\
\hline 52118 & 52119 & ann_-_126.SMRT_253.Ill & 379 & - \\
\hline 55952 & 55953 & ann_-_90.SMRT_6.Ill & 96 & - \\
\hline 57315 & 57316 & ann_+_140.SMRT_39.Ill & 179 & + \\
\hline 58049 & 58050 & ann_-_1228.SMRT_143.Ill & 1371 & - \\
\hline 69232 & 69233 & ann_+_217.SMRT_21.Ill & 238 & + \\
\hline 73394 & 73395 & nov_-_126.SMRT_16.Ill & 142 & - \\
\hline 73545 & 73546 & ann_+_79.SMRT_15.Ill & 94 & + \\
\hline 101010 & 101011 & ann_+_11.SMRT_5.Ill & 16 & + \\
\hline 101276 & 101277 & ann_-_110.SMRT_4492.Ill & 4602 & - \\
\hline 103134 & 103135 & nov_-_6.SMRT_5.Ill & 11 & - \\
\hline 106523 & 106524 & ann_+_325.SMRT_346.Ill & 671 & + \\
\hline 106943 & 106944 & ann_-_470.SMRT_168.Ill & 638 & - \\
\hline 111702 & 111703 & nov_+_174.SMRT_6.Ill & 180 & + \\
\hline 113031 & 113032 & ann_-_45.SMRT_17.Ill & 62 & - \\
\hline 113074 & 113075 & ann_+_1967.SMRT_60.Ill & 2027 & + \\
\hline 129779 & 129780 & nov_-_5.SMRT_1.Ill & 6 & - \\
\hline 129808 & 129809 & ann_+_659.SMRT_195.Ill & 854 & \(+\) \\
\hline 132677 & 132678 & nov_+_5.SMRT_1.Ill & 6 & + \\
\hline 133100 & 133101 & ann_+_1071.SMRT_459.Ill & 1530 & + \\
\hline 133630 & 133631 & ann_-_373.SMRT_222.Ill & 595 & - \\
\hline 138492 & 138493 & ann_-_125.SMRT_11.Ill & 136 & - \\
\hline
\end{tabular}
\begin{tabular}{|r|r|l|r|c|}
\hline 138524 & 138525 & ann_+_58.SMRT_2.Ill & 60 & + \\
\hline 140304 & 140305 & ann_-_1620.SMRT_115.Ill & 1735 & - \\
\hline 140333 & 140334 & ann_+_917.SMRT_286.Ill & 1203 & + \\
\hline 145994 & 145995 & ann_+_83.SMRT_13.Ill & 96 & + \\
\hline 146001 & 146002 & nov_-_150.SMRT_8.Ill & 158 & - \\
\hline 150127 & 150128 & nov_-_14.SMRT_5.Ill & 19 & - \\
\hline 150159 & 150160 & nov_-_36.SMRT_10.Ill & 46 & - \\
\hline 152531 & 152532 & ann_+_8.SMRT_4.Ill & 12 & + \\
\hline 152866 & 152867 & ann_-_111.SMRT_196.Ill & 307 & - \\
\hline 156897 & 156898 & ann_+_106.SMRT_33.Ill & 139 & + \\
\hline 158702 & 158703 & ann_+_2160.SMRT_5.Ill & 2165 & + \\
\hline 162442 & 162443 & ann_+_4736.SMRT_239.Ill & 4975 & + \\
\hline 162444 & 162445 & ann_-_94.SMRT_15.Ill & 109 & - \\
\hline 167304 & 167305 & ann_-_142.SMRT_108.Ill & 250 & - \\
\hline 167444 & 167445 & ann_+_175.SMRT_10.Ill & 185 & + \\
\hline 171013 & 171014 & ann_+_3878.SMRT_67.Ill & 3945 & + \\
\hline
\end{tabular}

\section*{APPENDIX 9}

Validated novel EBV transcripts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline chrStart & chrEnd & ID & Strand & \begin{tabular}{l}
Block \\
Count
\end{tabular} & BlockSize & BlockStart \\
\hline 599 & 9675 & BBRT4 & + & 3 & 234,253,1152 & 0,4333,7924 \\
\hline 599 & 9675 & BBRT5 & + & 2 & 234,1152 & 0,7924 \\
\hline 599 & 9675 & BBRT6 & + & 3 & 234,365,1152 & 0,4221,7924 \\
\hline 599 & 9675 & BBRT7 & + & 4 & \[
\begin{gathered}
\hline 234,340,179 \\
1152
\end{gathered}
\] & \[
\begin{gathered}
0,899,4407,79 \\
24
\end{gathered}
\] \\
\hline 599 & 9675 & BBRT8 & + & 3 & 234,340,1152 & 0,899,7924 \\
\hline 599 & 9675 & BBRT9 & + & 4 & \[
\begin{gathered}
234,340,365, \\
1152
\end{gathered}
\] & \[
\begin{gathered}
0,899,4221,79 \\
24
\end{gathered}
\] \\
\hline 4383 & 9675 & BGRT2 & \(+\) & 2 & 802,1152 & 0,4140 \\
\hline 7765 & 9675 & BGRT3 & + & 2 & 681,1152 & 0,758 \\
\hline 7765 & 9675 & BGRT4 & \(+\) & 2 & 456,1152 & 0,758 \\
\hline 7765 & 9675 & BGRT5 & + & 2 & 208,1152 & 0,758 \\
\hline 7765 & 9675 & BGRT6 & + & 1 & 1910 & 0 \\
\hline 7765 & 9675 & BGRT7 & + & 2 & 341,1152 & 0,758 \\
\hline 16557 & 20305 & BcRT2 & \(+\) & 2 & 226,1728 & 0,2020 \\
\hline 16557 & 26497 & BcRT3 & + & 3 & 226,211,2398 & 0,6277,7542 \\
\hline 19392 & 20305 & BTRT2 & + & 1 & 913 & 0 \\
\hline 20624 & 26497 & BTRT3 & + & 5 & \[
\begin{gathered}
\hline 291,285,211, \\
153,1042
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,1558,2210,3 \\
475,4831
\end{gathered}
\] \\
\hline 23521 & 26497 & BXRT2 & \(+\) & 2 & 268,2398 & 0,578 \\
\hline 23521 & 26497 & BXRT3 & + & 1 & 2976 & 0 \\
\hline 24396 & 26497 & BVRT3 & \(+\) & 1 & 2101 & 0 \\
\hline 24470 & 26497 & BVRT4 & + & 1 & 2027 & 0 \\
\hline 25612 & 26497 & BVRT5 & \(+\) & 1 & 885 & 0 \\
\hline 28287 & 29059 & BdRT2 & + & 1 & 772 & 0 \\
\hline 28508 & 29059 & BIRT1 & \(+\) & 1 & 551 & 0 \\
\hline 28682 & 29059 & BIRT2 & + & 1 & 377 & 0 \\
\hline 36316 & 52125 & BIRT3 & + & 6 & \[
\begin{gathered}
65,102,132,4 \\
26,127,757
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,1505,4855,5 \\
197,13896,150 \\
52 \\
\hline
\end{gathered}
\] \\
\hline 36316 & 52125 & BIRT4 & + & 5 & \[
\begin{gathered}
65,102,132,4 \\
26,757 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,1505,4855,5 \\
197,15052
\end{gathered}
\] \\
\hline 36715 & 52125 & BIRT5 & + & 9 & \[
\begin{gathered}
60,102,132,1 \\
55,112,83,21 \\
1,83,1913
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,1106,4456,4 \\
798,5112,1013 \\
9,11399,11718 \\
, 13497 \\
\hline
\end{gathered}
\] \\
\hline 40390 & 52125 & BIRT6 & + & 3 & 104,112,757 & 0,1437,10978 \\
\hline 40390 & 69233 & BIRT7 & + & 8 & \[
\begin{gathered}
104,132,426, \\
138,395,216, \\
109,457
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,781,1123,10 \\
978,17260,242 \\
58,24552,2838 \\
6
\end{gathered}
\] \\
\hline 40390 & 69233 & BIRT8 & + & 10 & \[
\begin{aligned}
& \hline 104,426,138, \\
& 395,215,99,1 \\
& 71,216,109,4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0,1123,10978, \\
& 17260,23036,2 \\
& 3338,24004,24 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline & & & & & 57 & 258,24552,283 \\
86\end{array}\right]\)\begin{tabular}{c}
\\
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline & & & & & 522,66,66,66, & \begin{array}{c}0,4893,7966,1 \\
1039,14112,23 \\
331,32388\end{array} \\
\hline 72926 & 106524 & \text { BCRT4 } & + & 7 & 66,66,1210 & \\
\hline 77648 & 106524 & \text { BWRT2 } & + & 4 & 237,66,66,12 \\
10 & 0,9390,18609, \\
27666\end{array}\right]\)\begin{tabular}{c}
\\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 156011 & 156898 & BRRT3 & + & 1 & 887 & 0 \\
\hline 156011 & 158703 & BRRT4 & \(+\) & 1 & 2692 & 0 \\
\hline 156860 & 158703 & BRRT5 & + & 1 & 1843 & 0 \\
\hline 157040 & 158703 & BRRT6 & + & 2 & 336,955 & 0,708 \\
\hline 159860 & 162443 & BKRT5 & + & 1 & 2583 & 0 \\
\hline 160213 & 162443 & BKRT6 & \(+\) & 2 & 530,1568 & 0,662 \\
\hline 160213 & 162443 & BKRT7 & \(+\) & 1 & 2230 & 0 \\
\hline 160298 & 162443 & BKRT8 & + & 1 & 2145 & 0 \\
\hline 161000 & 162443 & BKRT9 & \(+\) & 1 & 1443 & 0 \\
\hline 161265 & 162443 & BKRT10 & + & 1 & 1178 & 0 \\
\hline 161561 & 162443 & BKRT11 & \(+\) & 2 & 157,633 & 0,249 \\
\hline 161561 & 162443 & BKRT12 & \(+\) & 1 & 882 & 0 \\
\hline 161726 & 162443 & BKRT13 & \(+\) & 1 & 717 & 0 \\
\hline 161795 & 162443 & BKRT14 & \(+\) & 1 & 648 & 0 \\
\hline 161835 & 162443 & BKRT15 & \(+\) & 1 & 608 & 0 \\
\hline 165920 & 167445 & BBRT10 & \(+\) & 1 & 1525 & 0 \\
\hline 169395 & 171014 & BBRT11 & \(+\) & 1 & 1619 & 0 \\
\hline 169766 & 171014 & BBRT12 & \(+\) & 1 & 1248 & 0 \\
\hline 167304 & 169714 & BBLT5 & - & 2 & 718,1564 & 0,846 \\
\hline 167304 & 169528 & BBLT6 & - & 2 & 718,1378 & 0,846 \\
\hline 167304 & 169528 & BBLT7 & - & 1 & 2224 & 0 \\
\hline 167304 & 169342 & BBLT8 & - & 1 & 2038 & 0 \\
\hline 167304 & 169342 & BBLT9 & - & 2 & 718,1192 & 0,846 \\
\hline 162444 & 163334 & BBLT10 & - & 1 & 890 & 0 \\
\hline 162444 & 163080 & BKLT1 & - & 1 & 636 & 0 \\
\hline 162444 & 163057 & BKLT2 & - & 1 & 613 & 0 \\
\hline 152866 & 157698 & BRLT2 & - & 3 & 215,264,805 & 0,556,4027 \\
\hline 152866 & 157698 & BRLT3 & - & 5 & \[
\begin{gathered}
215,105,299 \\
260,805 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,300,556,282 \\
7,4027 \\
\hline
\end{gathered}
\] \\
\hline 152866 & 157037 & BRLT4 & - & 3 & 215,2272,144 & 0,556,4027 \\
\hline 152866 & 157037 & BRLT5 & - & 4 & \[
\begin{gathered}
\hline 215,105,299 \\
144
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,300,556,402 \\
7
\end{gathered}
\] \\
\hline 152866 & 156950 & BRLT6 & - & 4 & \[
\begin{gathered}
\hline 215,105,299, \\
57 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0,300,556,402 \\
7 \\
\hline
\end{gathered}
\] \\
\hline 133630 & 156950 & BRLT7 & - & 4 & \[
\begin{gathered}
\hline 1393,243,264 \\
, 57 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,19208,19792 \\
, 23263 \\
\hline
\end{gathered}
\] \\
\hline 152866 & 154145 & BZLT3 & - & 3 & 215,105,723 & 0,300,556 \\
\hline 152866 & 154145 & BZLT4 & - & 2 & 215,723 & 0,556 \\
\hline 152866 & 154101 & BZLT5 & - & 2 & 215,679 & 0,556 \\
\hline 152866 & 154025 & BZLT6 & - & 3 & 215,105,603 & 0,300,556 \\
\hline 152866 & 153969 & BZLT7 & - & 2 & 215,547 & 0,556 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 152866 & 153640 & BZLT8 & - & 3 & 215,105,218 & 0,300,556 \\
\hline 150159 & 152868 & BZLT9 & - & 2 & 208,279 & 0,2430 \\
\hline 150127 & 152868 & BZLT10 & - & 1 & 2741 & 0 \\
\hline 150127 & 152868 & BZLT11 & - & 2 & 240,279 & 0,2462 \\
\hline 146001 & 152868 & BZLT12 & - & 2 & 994,465 & 0,6402 \\
\hline 146001 & 152868 & BZLT13 & - & 2 & 1813,279 & 0,6588 \\
\hline 146001 & 152868 & BZLT14 & - & 3 & 1813,283,30 & 0,4083,6837 \\
\hline 146001 & 152868 & BZLT15 & - & 2 & 1813,237 & 0,6630 \\
\hline 146001 & 152868 & BZLT16 & - & 2 & 1813,30 & 0,6837 \\
\hline 146001 & 152868 & BZLT17 & - & 2 & 730,279 & 0,6588 \\
\hline 146001 & 152868 & BZLT18 & - & 2 & 994,30 & 0,6837 \\
\hline 146001 & 152868 & BZLT19 & - & 2 & 994,279 & 0,6588 \\
\hline 146001 & 152868 & BZLT20 & - & 2 & 1235,237 & 0,6630 \\
\hline 146001 & 152868 & BZLT21 & - & 2 & 994,237 & 0,6630 \\
\hline 146001 & 152868 & BZLT22 & - & 2 & 730,237 & 0,6630 \\
\hline 140304 & 152868 & BZLT23 & - & 2 & 659,30 & 0,12534 \\
\hline 140304 & 152868 & BZLT24 & - & 2 & 659,237 & 0,12327 \\
\hline 140304 & 152868 & BZLT25 & - & 3 & 659,577,30 & 0,1097,12534 \\
\hline 140304 & 152868 & BZLT26 & - & 2 & 659,465 & 0,12099 \\
\hline 140304 & 152868 & BZLT27 & - & 3 & 659,628,237 & 0,1097,12327 \\
\hline 140304 & 152868 & BZLT28 & - & 2 & 659,102 & 0,12462 \\
\hline 140304 & 152868 & BZLT29 & - & 2 & 659,279 & 0,12285 \\
\hline 140304 & 152868 & BZLT30 & - & 3 & 659,803,237 & 0,1097,12327 \\
\hline 140304 & 152868 & BZLT31 & - & 3 & 659,162,237 & 0,1097,12327 \\
\hline 140304 & 152868 & BZLT32 & - & 3 & 659,1368,30 & 0,1097,12534 \\
\hline 140304 & 152868 & BZLT33 & - & 3 & 659,628,30 & 0,1097,12534 \\
\hline 133630 & 152868 & BZLT34 & - & 2 & 1393,237 & 0,19001 \\
\hline 133630 & 152868 & BZLT35 & - & 2 & 1393,279 & 0,18959 \\
\hline 133630 & 152868 & BZLT36 & - & 3 & 1393,227,30 & 0,1499,19208 \\
\hline 133630 & 152868 & BZLT37 & - & 2 & 1393,30 & 0,19208 \\
\hline 133630 & 152868 & BZLT38 & - & 3 & 1393,147,237 & 0,1499,19001 \\
\hline 150159 & 152492 & Be3LT1 & - & 1 & 2333 & 0 \\
\hline 146001 & 147033 & BELT1 & - & 1 & 1032 & 0 \\
\hline 133630 & 147033 & BELT2 & - & 2 & 1393,376 & 0,13027 \\
\hline 146001 & 146928 & BELT3 & - & 1 & 927 & 0 \\
\hline 140304 & 144155 & BELT4 & - & 2 & 659,1619 & 0,2232 \\
\hline 140304 & 143438 & BLLT4 & - & 2 & 659,2037 & 0,1097 \\
\hline 140304 & 143438 & BLLT5 & - & 2 & 659,902 & 0,2232 \\
\hline 140304 & 143364 & BLLT6 & - & 1 & 3060 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 140304 & 143364 & BLLT7 & - & 2 & 659,828 & 0,2232 \\
\hline 140304 & 143364 & BLLT8 & - & 2 & 425,828 & 0,2232 \\
\hline 140304 & 143364 & BLLT9 & - & 2 & 659,1963 & 0,1097 \\
\hline 140304 & 142909 & BLLT10 & - & 2 & 659,373 & 0,2232 \\
\hline 140304 & 142909 & BLLT11 & - & 2 & 659,979 & 0,1626 \\
\hline 140304 & 142909 & BLLT12 & - & 2 & 639,1508 & 0,1097 \\
\hline 140304 & 142909 & BLLT13 & - & 2 & 659,849 & 0,1756 \\
\hline 140304 & 142909 & BLLT14 & - & 2 & 425,1508 & 0,1097 \\
\hline 140304 & 142909 & BLLT15 & - & 3 & 659,628,373 & 0,1097,2232 \\
\hline 140304 & 142909 & BLLT16 & - & 2 & 639,373 & 0,2232 \\
\hline 133630 & 142909 & BLLT17 & - & 2 & 1393,373 & 0,8906 \\
\hline 140304 & 142238 & BLLT18 & - & 2 & 659,837 & 0,1097 \\
\hline 140304 & 142238 & BLLT19 & - & 1 & 1934 & 0 \\
\hline 140304 & 141675 & BLLT20 & - & 2 & 659,274 & 0,1097 \\
\hline 140304 & 141644 & BLLT21 & - & 1 & 1340 & 0 \\
\hline 140304 & 141644 & BLLT22 & - & 2 & 659,243 & 0,1097 \\
\hline 140304 & 141134 & BLLT23 & - & 1 & 830 & 0 \\
\hline 133630 & 136284 & BSLT3 & - & 2 & 1393,1155 & 0,1499 \\
\hline 133630 & 136284 & BSLT4 & - & 1 & 2654 & 0 \\
\hline 133630 & 136010 & BSLT5 & - & 2 & 1420,881 & 0,1499 \\
\hline 133630 & 136010 & BSLT6 & - & 2 & 1393,881 & 0,1499 \\
\hline 133630 & 136010 & BSLT7 & - & 1 & 2380 & 0 \\
\hline 133630 & 135866 & BSLT8 & - & 2 & 1393,737 & 0,1499 \\
\hline 133630 & 135744 & BSLT9 & - & 1 & 2114 & 0 \\
\hline 133630 & 135744 & BSLT10 & - & 2 & 1393,615 & 0,1499 \\
\hline 133630 & 135228 & BSLT11 & - & 1 & 1598 & 0 \\
\hline 106943 & 109728 & BFLT3 & - & 1 & 2785 & 0 \\
\hline 106943 & 109185 & BFLT4 & - & 1 & 2242 & 0 \\
\hline 106943 & 109042 & BFLT5 & - & 1 & 2099 & 0 \\
\hline 106943 & 108647 & BFLT6 & - & 1 & 1704 & 0 \\
\hline 106943 & 108607 & BFLT7 & - & 1 & 1664 & 0 \\
\hline 103134 & 103766 & BHLT2 & - & 1 & 632 & 0 \\
\hline 101276 & 101787 & BHLT3 & - & 1 & 511 & 0 \\
\hline 101276 & 101765 & BHLT4 & - & 1 & 489 & 0 \\
\hline 101276 & 101678 & BHLT5 & - & 1 & 402 & 0 \\
\hline 101276 & 101662 & BHLT6 & - & 1 & 386 & 0 \\
\hline 73394 & 75176 & BCLT2 & - & 1 & 1782 & 0 \\
\hline 73394 & 74832 & BCLT3 & - & 1 & 1438 & 0 \\
\hline 73394 & 74052 & BCLT4 & - & 1 & 658 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 58049 & 63744 & BNLT3 & - & 2 & 2000,278 & 0,5417 \\
\hline 58049 & 63744 & BNLT4 & - & 3 & 1628,87,87 & 0,2077,5608 \\
\hline 58049 & 63744 & BNLT5 & - & 2 & 2164,278 & 0,5417 \\
\hline 58049 & 60252 & BNLT6 & - & 2 & 2000,126 & 0,2077 \\
\hline 58049 & 60252 & BNLT7 & - & 1 & 2203 & 0 \\
\hline 58049 & 60068 & BNLT8 & - & 1 & 2019 & 0 \\
\hline 58049 & 59910 & BNLT9 & - & 1 & 1861 & 0 \\
\hline 58049 & 59836 & BNLT10 & - & 1 & 1787 & 0 \\
\hline 58049 & 58731 & BNLT11 & - & 1 & 682 & 0 \\
\hline 55952 & 58623 & BNLT12 & - & 1 & 2671 & 0 \\
\hline 55952 & 56871 & BALT6 & - & 1 & 919 & 0 \\
\hline 52118 & 53957 & BALT7 & - & 1 & 1839 & 0 \\
\hline 52118 & 52765 & BALT8 & - & 1 & 647 & 0 \\
\hline 47810 & 49311 & BALT9 & - & 1 & 1501 & 0 \\
\hline 40597 & 43363 & BILT3 & - & 1 & 2766 & 0 \\
\hline 40597 & 43339 & BILT4 & - & 2 & 301,2198 & 0,544 \\
\hline 40597 & 42961 & BILT5 & - & 1 & 2364 & 0 \\
\hline 40597 & 42961 & BILT6 & - & 2 & 301,1376 & 0,988 \\
\hline 40597 & 42914 & BILT7 & - & 1 & 2317 & 0 \\
\hline 40597 & 42094 & BILT8 & - & 1 & 1497 & 0 \\
\hline 40597 & 41598 & BILT9 & - & 2 & 301,457 & 0,544 \\
\hline 40597 & 41598 & BILT10 & - & 1 & 1001 & 0 \\
\hline 40597 & 41345 & BILT11 & - & 2 & 301,204 & 0,544 \\
\hline 40597 & 41345 & BILT12 & - & 1 & 748 & 0 \\
\hline 32284 & 33570 & BILT13 & - & 1 & 1286 & 0 \\
\hline 32284 & 33325 & BILT14 & - & 1 & 1041 & 0 \\
\hline 32284 & 33205 & BILT15 & - & 1 & 921 & 0 \\
\hline 32284 & 33118 & BILT16 & - & 1 & 834 & 0 \\
\hline 32284 & 33098 & BILT17 & - & 1 & 814 & 0 \\
\hline 32284 & 33060 & BILT18 & - & 1 & 776 & 0 \\
\hline 32284 & 32958 & BILT19 & - & 1 & 674 & 0 \\
\hline 32284 & 32931 & BILT20 & - & 1 & 647 & 0 \\
\hline 32284 & 32702 & BILT21 & - & 1 & 418 & 0 \\
\hline 32284 & 32616 & BILT22 & - & 1 & 332 & 0 \\
\hline 29046 & 31050 & BILT23 & - & 1 & 2004 & 0 \\
\hline 29046 & 30819 & BILT24 & - & 1 & 1773 & 0 \\
\hline 29046 & 30680 & BILT25 & - & 1 & 1634 & 0 \\
\hline 29046 & 30588 & BILT26 & - & 1 & 1542 & 0 \\
\hline 29046 & 30287 & BILT27 & - & 1 & 1241 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 29046 & 29881 & BILT28 & - & 1 & 835 & 0 \\
\hline 20188 & 29846 & BILT29 & - & 3 & 1415,596,768 & 0,2514,8890 \\
\hline 20188 & 29846 & BILT30 & - & 3 & 923,188,768 & 0,2514,8890 \\
\hline 20188 & 29846 & BILT31 & - & 3 & 389,188,768 & 0,2514,8890 \\
\hline 29046 & 29615 & BILT32 & - & 1 & 569 & 0 \\
\hline 29046 & 29575 & BILT33 & - & 1 & 529 & 0 \\
\hline 20188 & 24425 & BVLT2 & - & 3 & 1256,188,884 & 0,2514,3353 \\
\hline 20188 & 24425 & BVLT3 & - & 2 & 389,2044 & 0,2193 \\
\hline 20188 & 23150 & BXLT3 & - & 4 & \[
\begin{gathered}
389,159,188, \\
31
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,1256,2514,2 \\
931
\end{gathered}
\] \\
\hline 20188 & 23150 & BXLT4 & - & 1 & 2962 & 0 \\
\hline 20188 & 23150 & BXLT5 & - & 2 & 1415,448 & 0,2514 \\
\hline 20188 & 22696 & BXLT6 & - & 2 & 1415,315 & 0,2193 \\
\hline 20188 & 22696 & BXLT7 & - & 1 & 2508 & 0 \\
\hline 20188 & 22588 & BXLT8 & - & 2 & 1415,207 & 0,2193 \\
\hline 20188 & 22588 & BXLT9 & - & 2 & 1256,207 & 0,2193 \\
\hline 20188 & 22564 & BXLT10 & - & 2 & 1415,183 & 0,2193 \\
\hline 20188 & 22564 & BXLT11 & - & 2 & 389,183 & 0,2193 \\
\hline 20188 & 22564 & BXLT12 & - & 2 & 389,1120 & 0,1256 \\
\hline 20188 & 22564 & BXLT13 & - & 3 & 389,159,183 & 0,1256,2193 \\
\hline 12599 & 15103 & BDLT5 & - & 1 & 2504 & 0 \\
\hline 12599 & 14697 & BDLT6 & - & 1 & 2098 & 0 \\
\hline 12599 & 14504 & BDLT7 & - & 1 & 1905 & 0 \\
\hline 9646 & 12630 & BDLT8 & - & 1 & 2984 & 0 \\
\hline 9646 & 12630 & BDLT9 & - & 2 & 649,1406 & 0,1578 \\
\hline 9646 & 12630 & BDLT10 & - & 2 & 122,1406 & 0,1578 \\
\hline 9646 & 12630 & BDLT11 & - & 2 & 2248,238 & 0,2746 \\
\hline 9646 & 12630 & BDLT12 & - & 2 & 122,1413 & 0,1571 \\
\hline 4775 & 12630 & BDLT13 & - & 2 & 397,1406 & 0,6449 \\
\hline 9646 & 11492 & BDLT14 & - & 1 & 1846 & 0 \\
\hline 9646 & 11442 & BDLT15 & - & 1 & 1796 & 0 \\
\hline 9646 & 10889 & BDLT16 & - & 1 & 1243 & 0 \\
\hline 9646 & 10649 & BDLT17 & - & 1 & 1003 & 0 \\
\hline 1466 & 6209 & BGLT6 & - & 2 & 439,1189 & 0,3554 \\
\hline 1466 & 6209 & BGLT7 & - & 3 & 439,149,524 & 0,3554,4219 \\
\hline 4775 & 5175 & BGLT8 & - & 1 & 400 & 0 \\
\hline 4775 & 5149 & BGLT9 & - & 1 & 374 & 0 \\
\hline 1466 & 4451 & BGLT10 & - & 2 & 439,882 & 0,2103 \\
\hline 1466 & 4451 & BGLT11 & - & 1 & 2985 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1466 & 3194 & BGLT12 & - & 1 & 1728 & 0 \\
\hline 1466 & 2568 & BGLT13 & - & 2 & 439,564 & 0,538 \\
\hline 1466 & 2568 & BGLT14 & - & 1 & 1102 & 0 \\
\hline 58 & 2568 & BGLT15 & - & 1 & 2510 & 0 \\
\hline
\end{tabular}

\section*{APPENDIX 10}

Updated EBV-Akata annotation
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline chrStart & chrEnd & ID & Strand & block Count & blockStart & blockSize \\
\hline 58 & 611 & BBLF1 & - & 1 & 553 & 0 \\
\hline 58 & 1735 & BGLF5 & - & 1 & 1677 & 0 \\
\hline 1466 & 3179 & BGLF4 & - & 1 & 1713 & 0 \\
\hline 1466 & 3398 & BGLF3.5 & - & 1 & 1932 & 0 \\
\hline 1466 & 4392 & BGLF3 & - & 1 & 2926 & 0 \\
\hline 3850 & 9675 & BGRF1/BDRF1 & + & 2 & 1335,1152 & 0,4673 \\
\hline 4775 & 6209 & BGLF2 & - & 1 & 1434 & 0 \\
\hline 4775 & 7706 & BGLF1 & - & 1 & 2931 & 0 \\
\hline 4775 & 8363 & BDLF4 & - & 1 & 3588 & 0 \\
\hline 4775 & 8613 & BDLF3.5 & - & 1 & 3838 & 0 \\
\hline 9646 & 10382 & BDLF3 & - & 1 & 736 & 0 \\
\hline 9646 & 11754 & BDLF2 & - & 1 & 2108 & 0 \\
\hline 9646 & 12660 & BDLF1 & - & 1 & 3014 & 0 \\
\hline 12599 & 17019 & BcLF1 & - & 1 & 4420 & 0 \\
\hline 16669 & 20283 & BcRF1 & + & 1 & 3614 & 0 \\
\hline 18317 & 20305 & BTRF1 & + & 1 & 1988 & 0 \\
\hline 20188 & 22564 & BXLF2 & - & 1 & 2376 & 0 \\
\hline 20188 & 24443 & BXLF1 & - & 1 & 4255 & 0 \\
\hline 23919 & 26497 & BXRF1 & + & 1 & 2578 & 0 \\
\hline 24642 & 26497 & BVRF1 & + & 1 & 1855 & 0 \\
\hline 26205 & 27460 & BVLF1 & - & 1 & 1255 & 0 \\
\hline 27060 & 29059 & BVRF2 & + & 1 & 1999 & 0 \\
\hline 27960 & 29059 & BdRF1 & + & 1 & 1099 & 0 \\
\hline 29046 & 29846 & BILF2 & - & 1 & 800 & 0 \\
\hline 29953 & 52119 & RPMS1 & + & 10 & \[
\begin{gathered}
\hline 124,106,134,102, \\
132,155,112,147 \\
1,83,1907 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline 0,1085,2196,7868,1 \\
1218,11561,11874, \\
16901,18480,20259 \\
\hline
\end{array}
\] \\
\hline 30543 & 30921 & Repeat_region & + & 1 & 378 & 0 \\
\hline 30683 & 30704 & ebv-miR-BART3* & + & 1 & 21 & 0 \\
\hline 30720 & 30742 & ebv-miR-BART3 & + & 1 & 22 & 0 \\
\hline 30819 & 30841 & ebv-miR-BART4 & + & 1 & 22 & 0 \\
\hline 30857 & 30880 & ebv-miR-BART4* & + & 1 & 23 & 0 \\
\hline 30942 & 30966 & \[
\begin{gathered}
\text { ebv-miR-BART1- } \\
5 \mathrm{p} \\
\hline
\end{gathered}
\] & + & 1 & 24 & 0 \\
\hline 30978 & 31000 & \[
\begin{gathered}
\hline \text { ebv-miR-BART1- } \\
3 \mathrm{p} \\
\hline
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 31144 & 31166 & ebv-miR-BART15 & + & 1 & 22 & 0 \\
\hline 31267 & 31291 & ebv-miR-BART5 & \(+\) & 1 & 24 & 0 \\
\hline 31309 & 31327 & ebv-miR-BART5* & + & 1 & 18 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 31387 & 31411 & ebv-miR-BART16 & \(+\) & 1 & 24 & 0 \\
\hline 31507 & 31529 & \begin{tabular}{l}
ebv-miR- \\
BART17-5p
\end{tabular} & \(+\) & 1 & 22 & 0 \\
\hline 31545 & 31568 & \begin{tabular}{l}
ebv-miR- \\
BART17-3p
\end{tabular} & + & 1 & 23 & 0 \\
\hline 31625 & 31647 & \[
\begin{gathered}
\text { ebv-miR-BART6- } \\
5 p \\
\hline
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 31663 & 31685 & \[
\begin{gathered}
\text { ebv-miR-BART6- } \\
3 p \\
\hline
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 32161 & 35304 & LF3 & - & 1 & 3143 & 0 \\
\hline 32356 & 34874 & Repeat_IR4_PstI & + & 1 & 2518 & 0 \\
\hline 34799 & 36037 & oriLyt & + & 1 & 1238 & 0 \\
\hline 34864 & 35921 & DRright_similar_t
O_40265..41308 & + & 1 & 1057 & 0 \\
\hline 37106 & 37127 & \begin{tabular}{l}
ebv-miR- \\
BART21-5p
\end{tabular} & + & 1 & 21 & 0 \\
\hline 37140 & 37162 & \[
\begin{gathered}
\text { ebv-miR- } \\
\text { BART21-3p }
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 37590 & 37612 & \begin{tabular}{l}
ebv-miR- \\
BART18-3p
\end{tabular} & \(+\) & 1 & 22 & 0 \\
\hline 38027 & 38049 & ebv-miR-BART7* & + & 1 & 22 & 0 \\
\hline 38063 & 38085 & ebv-miR-BART7 & + & 1 & 22 & 0 \\
\hline 38360 & 38382 & ebv-miR-BART8 & + & 1 & 22 & 0 \\
\hline 38395 & 38418 & ebv-miR-BART8* & + & 1 & 23 & 0 \\
\hline 38547 & 38569 & ebv-miR-BART9* & + & 1 & 22 & 0 \\
\hline 38585 & 38608 & ebv-miR-BART9 & \(+\) & 1 & 23 & 0 \\
\hline 38792 & 38815 & ebv-miR-BART22 & + & 1 & 23 & 0 \\
\hline 38910 & 38932 & \begin{tabular}{l}
ebv-miR- \\
BART10*
\end{tabular} & \(+\) & 1 & 22 & 0 \\
\hline 38945 & 38968 & ebv-miR-BART10 & + & 1 & 23 & 0 \\
\hline 39126 & 39150 & \[
\begin{gathered}
\hline \text { ebv-miR- } \\
\text { BART11-5p }
\end{gathered}
\] & + & 1 & 24 & 0 \\
\hline 39164 & 39185 & \begin{tabular}{l}
ebv-miR- \\
BART11-3p
\end{tabular} & + & 1 & 21 & 0 \\
\hline 39526 & 39548 & ebv-miR-BART12 & \(+\) & 1 & 22 & 0 \\
\hline 39805 & 39828 & \begin{tabular}{l}
ebv-miR- \\
BART19-5p
\end{tabular} & + & 1 & 23 & 0 \\
\hline 39844 & 39865 & \begin{tabular}{l}
ebv-miR- \\
BART19-3p
\end{tabular} & + & 1 & 21 & 0 \\
\hline 39929 & 39950 & \begin{tabular}{l}
ebv-miR- \\
BART20-5p
\end{tabular} & + & 1 & 21 & 0 \\
\hline 39964 & 39986 & \begin{tabular}{l}
ebv-miR- \\
BART20-3p
\end{tabular} & + & 1 & 22 & 0 \\
\hline 40116 & 40138 & \begin{tabular}{l}
ebv-miR- \\
BART13*
\end{tabular} & \(+\) & 1 & 22 & 0 \\
\hline 40153 & 40176 & ebv-miR-BART13 & + & 1 & 23 & 0 \\
\hline 40334 & 40356 & ebv-miRBART14* & + & 1 & 22 & 0 \\
\hline 40368 & 40390 & ebv-miR-BART14 & + & 1 & 22 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 40597 & 41973 & LF2 & - & 1 & 1376 & 0 \\
\hline 40597 & 43339 & LF1 & - & 1 & 2742 & 0 \\
\hline 40597 & 44232 & BILF1 & - & 1 & 3635 & 0 \\
\hline 42962 & 47876 & BALF5 & - & 1 & 4914 & 0 \\
\hline 44337 & 44359 & \[
\begin{gathered}
\hline \text { ebv-miR-BART2- } \\
5 p \\
\hline
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 44337 & 44397 & \[
\begin{gathered}
\hline \text { ebv-miR-BART2- } \\
3 p \\
\hline
\end{gathered}
\] & + & 1 & 24 & 0 \\
\hline 47136 & 52119 & A73 & + & 4 & 1189,83,127,751 & 0,1297,3076,4232 \\
\hline 47810 & 50467 & BALF4 & - & 1 & 2657 & 0 \\
\hline 47810 & 52496 & BALF3 & - & 1 & 4686 & 0 \\
\hline 50708 & 52124 & BARF0 & + & 1 & 1416 & 0 \\
\hline 52118 & 55944 & BALF2 & - & 1 & 3826 & 0 \\
\hline 55952 & 56541 & BALF1 & - & 1 & 589 & 0 \\
\hline 56626 & 57316 & BARF1 & + & 1 & 690 & 0 \\
\hline 57626 & 69233 & LMP-2A & + & 9 & \[
\begin{gathered}
\hline 419,215,99,249,8 \\
1,171,216,109,45 \\
7
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,5800,6102,6282,6 \\
613,6768,7022,731 \\
6,11150
\end{gathered}
\] \\
\hline 58049 & 58623 & BNLF2a & - & 1 & 574 & 0 \\
\hline 58049 & 60601 & LMP-1 & - & 3 & 2000,87,310 & 0,2077,2242 \\
\hline 58049 & 58423 & BNLF2b & - & 1 & 374 & 0 \\
\hline 59496 & 59658 & Repeat_unit_range
_167452..167484 & + & 1 & 162 & 0 \\
\hline 60836 & 69233 & LMP-2B & + & 9 & \[
\begin{gathered}
155,215,99,249,8 \\
1,171,216,109,45 \\
7 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0,2590,2892,3072,3 \\
403,3558,3812,410 \\
6,7940 \\
\hline
\end{gathered}
\] \\
\hline 61183 & 63319 & \[
\begin{gathered}
\hline \text { TR_repeat- } \\
\text { unit_range_16913 } \\
8 . .169671
\end{gathered}
\] & + & 1 & 2136 & 0 \\
\hline 65059 & 69233 & BNRF1 & + & 1 & 4174 & 0 \\
\hline 70004 & 70171 & EBER1 & + & 1 & 167 & 0 \\
\hline 70331 & 70505 & EBER2 & + & 1 & 174 & 0 \\
\hline 70691 & 72577 & OriP & + & 1 & 1886 & 0 \\
\hline 70797 & 71307 & FR_Repeats_EBN A1_Binding_sites_ I & + & 1 & 510 & 0 \\
\hline 72285 & 72400 & Dyad_Symmetry_ EBNA1_Binding_ site_II & 72285 & 115 & 0 & \\
\hline 72926 & 73546 & BCRF1/IL10 & + & 1 & 620 & 0 \\
\hline 74600 & 74601 & Cp_Promoter & \(+\) & 1 & 1 & 0 \\
\hline 74600 & 101011 & Cp-EBNA2 & + & 19 & \[
\begin{gathered}
144,32,66,132,66 \\
, 132,66,132,66,1 \\
32,66,132,66,132 \\
, 66,132,33,122,1 \\
641
\end{gathered}
\] & \(0,290,3219,3366,62\)
\(92,6439,9365,9512\),
\(12438,12585,15511\)
\(, 15658,18584,1873\)
\(1,21657,21804,241\)
\(45,24262,24770\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 74600 & 145995 & Cp-EBNA3A & + & 21 & \[
\begin{gathered}
144,32,66,132,66 \\
, 132,66,132,66,1 \\
32,66,132,66,132 \\
, 66,132,33,122,1 \\
72,344,2577 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,290,3219,3366,62 \\
92,6439,9365,9512, \\
12438,12585,15511 \\
, 15658,18584,1873 \\
1,21657,21804,241 \\
45,24262,43860,68 \\
386,68818 \\
\hline
\end{gathered}
\] \\
\hline 74600 & 152532 & Cp-EBNA3B & + & 21 & \[
\begin{gathered}
144,32,66,132,66 \\
, 132,66,132,66,1 \\
32,66,132,66,132 \\
, 66,132,33,122,1 \\
72,402,5996 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,290,3219,3366,62 \\
92,6439,9365,9512, \\
12438,12585,15511 \\
, 15658,18584,1873 \\
1,21657,21804,241 \\
45,24262,43860,71 \\
456,71936 \\
\hline
\end{gathered}
\] \\
\hline 74600 & 152532 & Cp-EBNA3C & \(+\) & 21 & \[
\begin{gathered}
144,32,66,132,66 \\
, 132,66,132,66,1 \\
32,66,132,66,132 \\
, 66,132,33,122,1 \\
72,367,3039 \\
\hline
\end{gathered}
\] & \(0,290,3219,3366,62\)
\(92,6439,9365,9512\),
\(12438,12585,15511\)
\(, 15658,18584,1873\)
\(1,21657,21804,241\)
\(45,24262,43860,74\)
452,74893 \\
\hline 74600 & 160578 & Cp-EBNA1 & \(+\) & 21 & \[
\begin{gathered}
144,32,66,132,66 \\
, 132,66,132,66,1 \\
32,66,132,66,132 \\
, 66,132,33,122,1 \\
72,367,1869 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,290,3219,3366,62 \\
92,6439,9365,9512, \\
12438,12585,15511 \\
, 15658,18584,1873 \\
1,21657,21804,241 \\
45,24262,43860,74 \\
452,84109 \\
\hline
\end{gathered}
\] \\
\hline 75265 & 98628 & IR1_W_repeats & \(+\) & 1 & 23363 & 0 \\
\hline 75805 & 76957 & BWRF1 & \(+\) & 1 & 1152 & 0 \\
\hline 77648 & 101011 & EBNA-LP & + & 19 & \[
\begin{array}{r}
27,61,132,66,132 \\
, 66,132,66,132,6 \\
6,132,66,132,66 \\
132,33,122,59,88 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline 0,176,318,3244,339 \\
1,6317,6464,9390,9 \\
537,12463,12610,1 \\
5536,15683,18609 \\
18756,21097,21214 \\
, 21722,23275
\end{gathered}
\] \\
\hline 99662 & 99782 & Repeat_unit_range
\[
-36294 . .36302
\] & + & 1 & 120 & 0 \\
\hline 100506 & 100560 & \[
\begin{gathered}
\text { Repeat_unit_range } \\
-37138 . .37143 \\
\hline
\end{gathered}
\] & + & 1 & 54 & 0 \\
\hline 101276 & 103797 & BHLF1 & - & 1 & 2521 & 0 \\
\hline 101558 & 103096 & IR2/NotI_repeats & \(+\) & 1 & 1538 & 0 \\
\hline 103568 & 104561 & OriLyt & + & 1 & 993 & 0 \\
\hline 103633 & 104677 & \[
\begin{gathered}
\hline \text { DRleft_similar_to } \\
\text { _142819.. } 143875 \\
\hline
\end{gathered}
\] & + & 1 & 1044 & 0 \\
\hline 104741 & 104763 & ebv-miR-BHRF11 & + & 1 & 22 & 0 \\
\hline 104766 & 106524 & BHRF1 & + & 1 & 1758 & 0 \\
\hline 104766 & 106524 & BHRF1_latent_spl ice_variant & + & 2 & 130,1210 & 0,548 \\
\hline 106120 & 106142 & \[
\begin{gathered}
\text { ebv-miR-BHRF1- } \\
2^{*}
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 106155 & 106177 & ebv-miR-BHRF1-
\[
2
\] & + & 1 & 22 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 106235 & 106257 & \[
\begin{gathered}
\text { ebv-miR-BHRF1- } \\
3
\end{gathered}
\] & + & 1 & 22 & 0 \\
\hline 106943 & 108105 & BFLF2 & - & 1 & 1162 & 0 \\
\hline 106943 & 109517 & BFLF1 & - & 1 & 2574 & 0 \\
\hline 109095 & 111703 & BFRF1A & \(+\) & 1 & 2608 & 0 \\
\hline 109842 & 113075 & BFRF1 & + & 1 & 3233 & 0 \\
\hline 110486 & 113075 & BFRF2 & + & 1 & 2589 & 0 \\
\hline 112360 & 113075 & BFRF3 & \(+\) & 1 & 715 & 0 \\
\hline 113031 & 123091 & BPLF1 & - & 1 & 10060 & 0 \\
\hline 113031 & 126224 & BOLF1 & - & 1 & 13195 & 0 \\
\hline 113404 & 160578 & Qp-EBNA1 & \(+\) & 3 & 37,172,1869 & 0,5056,45305 \\
\hline 113412 & 113460 & EBNA_1_Binding _site_III & \(+\) & 1 & 48 & 0 \\
\hline 120666 & 120913 & \[
\begin{gathered}
\text { Repeat_unit_range } \\
-57298 . .57348
\end{gathered}
\] & + & 1 & 247 & 0 \\
\hline 121369 & 121414 & \[
\begin{gathered}
\text { Repeat_unit_range } \\
-58001 . .58015 \\
\hline
\end{gathered}
\] & + & 1 & 45 & 0 \\
\hline 125918 & 129809 & BORF1 & \(+\) & 1 & 3891 & 0 \\
\hline 127102 & 129809 & BORF2 & \(+\) & 1 & 2707 & 0 \\
\hline 129705 & 133101 & BaRF1 & \(+\) & 1 & 3396 & 0 \\
\hline 130772 & 133101 & BMRF1 & \(+\) & 1 & 2329 & 0 \\
\hline 131714 & 133101 & BMRF2 & \(+\) & 1 & 1387 & 0 \\
\hline 133220 & 133363 & Repeat_unit_range
\(-69852 . .69922\) & \(+\) & 1 & 143 & 0 \\
\hline 133630 & 135228 & BSLF2/BMLF1 & - & 2 & 1393,99 & 0,1499 \\
\hline 133630 & 137783 & BSLF1 & - & 1 & 4153 & 0 \\
\hline 134541 & 134631 & Repeat_unit_range
\[
-71173 . .71181
\] & \(+\) & 1 & 90 & 0 \\
\hline 137815 & 138525 & BSRF1 & + & 1 & 710 & 0 \\
\hline 138492 & 139386 & BLLF3 & - & 1 & 894 & 0 \\
\hline 139443 & 140334 & BLRF1 & \(+\) & 1 & 891 & 0 \\
\hline 139796 & 140334 & BLRF2 & + & 1 & 538 & 0 \\
\hline 140304 & 140923 & BLLF2 & - & 1 & 619 & 0 \\
\hline 140304 & 142909 & \[
\begin{gathered}
\text { BLLF1- } \\
\text { splice_variant }
\end{gathered}
\] & - & 2 & 659,1508 & 0,1097 \\
\hline 140304 & 142909 & BLLF1 & - & 1 & 2605 & 0 \\
\hline 141051 & 141388 & \[
\begin{gathered}
\text { Repeat_unit_range } \\
-77683 . .77713
\end{gathered}
\] & + & 1 & 337 & 0 \\
\hline 144956 & 145026 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_A } \\
\hline
\end{gathered}
\] & + & 1 & 70 & 0 \\
\hline 145029 & 145055 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_B } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 26 & 0 \\
\hline 145055 & 145130 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_C }
\end{gathered}
\] & + & 1 & 75 & 0 \\
\hline 145134 & 145160 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_B } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 26 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 145160 & 145238 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_C } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 78 & 0 \\
\hline 145238 & 145309 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_A } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 71 & 0 \\
\hline 145319 & 145397 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_C } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 78 & 0 \\
\hline 145397 & 145468 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_A } \\
\hline
\end{gathered}
\] & + & 1 & 71 & 0 \\
\hline 145644 & 145731 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_D }
\end{gathered}
\] & \(+\) & 1 & 87 & 0 \\
\hline 145731 & 145818 & \[
\begin{gathered}
\text { Repeat_family_typ } \\
\text { e_D } \\
\hline
\end{gathered}
\] & \(+\) & 1 & 87 & 0 \\
\hline 148270 & 148387 & \[
\begin{gathered}
\text { Repeat_unit_range } \\
-84902 . .84961
\end{gathered}
\] & \(+\) & 1 & 117 & 0 \\
\hline 150159 & 152868 & BZLF2 & - & 1 & 2709 & 0 \\
\hline 150810 & 150993 & Repeat_unit_range
\[
-87442 . .87456
\] & + & 1 & 183 & 0 \\
\hline 151248 & 151521 & Repeat_unit_range -87880.. 87918 & \(+\) & 1 & 273 & 0 \\
\hline 152866 & 153969 & BZLF1 & - & 3 & 215,105,547 & 0,300,556 \\
\hline 152866 & 157037 & BRLF1 & - & 3 & 215,2531,144 & 0,556,4027 \\
\hline 153321 & 153420 & Repeat_region & \(+\) & 1 & 99 & 0 \\
\hline 155814 & 156898 & BRRF1 & \(+\) & 1 & 1084 & 0 \\
\hline 157040 & 158703 & BRRF2 & \(+\) & 1 & 1663 & 0 \\
\hline 158984 & 159620 & Repeat_family-IR3 & \(+\) & 1 & 636 & 0 \\
\hline 160572 & 162443 & BKRF2 & \(+\) & 1 & 1871 & 0 \\
\hline 160811 & 162443 & BKRF3 & \(+\) & 1 & 1632 & 0 \\
\hline 161762 & 162443 & BKRF4 & \(+\) & 1 & 681 & 0 \\
\hline 162444 & 165001 & BBLF4 & - & 1 & 2557 & 0 \\
\hline 164547 & 167445 & BBRF1 & \(+\) & 1 & 2898 & 0 \\
\hline 166431 & 167445 & BBRF2 & \(+\) & 1 & 1014 & 0 \\
\hline 167304 & 169677 & BBLF2/BBLF3 & - & 2 & 718,1527 & 0,846 \\
\hline 169648 & 171014 & BBRF3 & \(+\) & 1 & 1366 & 0 \\
\hline
\end{tabular}

\section*{BIOGRAPHY}

Christina (Tina) O'Grady was born and raised in Kimberley, British Columbia. She attended the University of British Columbia in Vancouver to earn her Bachelor of Science in Biology. She then enrolled at The Catholic University of America in Washington, DC, where she completed a dual Master's program in Cell \& Microbial Biology and Library \& Information Science. She worked as a librarian for several years at the University of New Orleans and at Mount Sinai School of Medicine in New York, NY, all the while becoming increasingly interested in biological information and its potential to answer important questions. In 2011 she was admitted to the Biomedical Sciences program at Tulane University School of

Medicine and soon received a Ruth L. Kirschstein NRSA F31 predoctoral fellowship to work in the lab of Dr. Erik Flemington. Upon completion of her PhD she will relocate to Belgium for a postdoctoral fellowship with Drs. Ingrid Struman and Franck Dequiedt at the University of Liège.```

[^0]: *Lower case letters indicate sequence-modifying bases

