

ABSTRACT

The lytic replicative cascade in Epstein-Barr virus and other herpesviruses has traditionally

been understood to involve the ordered expression of sets of protein-coding genes. Recent

experiments using tiling microarrays and next-generation sequencing, however, have

indicated extensive transcription outside of known coding regions. In this study, strand-

specific Illumina RNA-Seq reveals abundant antisense and intergenic transcription of the

EBV genome during lytic replication. Both polyadenylated and non-polyadenylated

transcripts are shown to arise from nearly the entire genome. However, the complex and

overlapping nature of these transcripts confounds attempts to resolve their structures with

short-read RNA-Seq alone. In order to resolve the structures of polyadenylated transcripts

on a global level, the Transciptome Resolution by Integration of Multi-platform Data

(TRIMD) method was developed. This method combines data from Pacific Biosciences

long-read SMRT sequencing (Iso-Seq protocol) with data from Illumina RNA-Seq and

deepCAGE. Using TRIMD we identify nearly 300 unannotated transcripts in replicating

Epstein-Barr virus. These transcripts illustrate multiple strategies by which the virus achieves

its remarkable level of transcript diversity, including alternative promoter usage, alternative

splicing, readthrough transcription and intergenic splicing. The TRIMD method is simple

and flexible, and scripts have been developed to facilitate its application to other genomes.

	

	

	

	
 ii

ACKNOWLEDGMENT

I am profoundly grateful to my mentor, Dr. Erik Flemington. He is an insightful, astute and

accomplished researcher who is nevertheless endlessly supportive of his students. I consider

myself extremely lucky to have found a home in his lab. Also, I couldn’t ask for a more

intelligent, creative, capable group of scientists to model myself after than my committee:

Drs. Victoria Belancio, Prescott Deininger, Tong Wu and Kun Zhang. I’m delighted to have

worked with the smart, friendly and funny members of the Flemington Lab: Melody

Baddoo, Subing Cao, Monica Concha, Tom Laskow, Zhen Lin, Hani Nakhoul, Claire

Roberts, Mike Strong, Xia Wang, Qinyan Yin and Yi Yu. Likewise I have learned so much

from my friends and colleagues in the BMS Program, especially our Study Group: Emily

Carron, Van Hoang, Grace Jairo, Nicki Kikendall, Narae Lee, Courtney Standlee and Manish

Ranjan. I am grateful that much of my time as a PhD student has been supported by the

National Cancer Institute in the form of a Ruth L. Kirschstein NRSA F31 fellowship. I am

indebted to faculty members I have learned from at The Catholic University of America,

especially Drs. Venigalla Rao, James Greene and Michael Mullins, and the University of New

Orleans, especially Drs. Carla Penz and Phil DeVries, for encouraging me to pursue a PhD

and a career in research. Finally, I am thankful for my friends and family near and far.

Lindsay Falke, Leah Levkowicz, Gerard Mangusso, Matt Morrin and the Purple Lightning

troublemakers of Burgundy St. for filling my non-lab hours and acting appropriately

impressed when I talk about science. Mom and Dad and aunts and uncles for providing an

environment of both curiosity and diligence. And of course my boys, Phillip and Sid.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENT ……………………… ii

LIST OF TABLES ……………………… iv

LIST OF FIGURES ……………………… v

CHAPTER 1: Introduction ……………………… 1

CHAPTER 2: Global investigation of unannotated lytic
 EBV transcription

……………………… 10

CHAPTER 3: Global determination of novel EBV
 transcript structures

……………………… 29

CHAPTER 4: Development of an algorithm to
 automate transcript structure determination and
 annotation

……………………… 52

CHAPTER 5: Materials and methods ……………………… 62

CHAPTER 6: Discussion and future directions ……………………… 81

LIST OF REFERENCES ……………………… 91

APPENDICES
 Appendix 1: TRIMD_start_validator.pl ……………………… 104
 Appendix 2: TRIMD_junction_validator.pl ……………………… 125
 Appendix 3: TRIMD_end_validator.pl ……………………… 136
 Appendix 4: TRIMD_transcript_validator.pl ……………………… 154
 Appendix 5: TRIMD_README.txt ……………………… 169
 Appendix 6: Validated EBV transcription start sites ……………………… 177
 Appendix 7: Validated EBV splice junctions ……………………… 185
 Appendix 8: Validated EBV polyadenylation sites ……………………… 192
 Appendix 9: Validated novel EBV transcripts ……………………… 195
 Appendix 10: Updated EBV-Akata annotation ……………………… 205

	

	
 	
 iv

LIST OF TABLES

I. Latency programs in EBV

……………………… 3

II. RNA-Seq in uninduced and induced Akata cells

……………………… 13

III. RNA-Seq using ribodepleted RNA in a reactivation
 time course

……………………… 13

IV: 5’ and 3’ RACE Primers

……………………… 75

V: RT-PCR primers

……………………… 77

VI. cDNA and PCR primers for strand-specific qRT-
 PCR

……………………… 78

	

	
 	
 v

LIST OF FIGURES

1: Reactivation and sequencing strategy

……………………… 12

2: RNA-Seq sense and antisense read coverage of
 cellular genes

……………………… 14

3: RNA-Seq read coverage of the Akata EBV
 genome at 24 hours postinduction

……………………… 15

4: Novel transcription of the Akata genome 24
 hours postinduction

……………………… 16

5: Antisense transcription at known genes and
 gene classes

……………………… 17

6: Sense and antisense transcription at the EBNA2
 locus

……………………… 19

7: Sense and antisense transcription at the
 EBNA3A locus

……………………… 20

8: Sense and antisense transcription at the
 EBNA3B locus

……………………… 21

9: A novel antisense ORF in the EBNA3C locus

……………………… 23

10: Genomic location of Stellaris FISH probes

……………………… 24

11: Sequence motif conservation in EBNA
 antisense transcripts

……………………… 25

12: Splice junctions in the EBNA3A region

……………………… 26

13: Splice junctions at 24 hours postinduction

……………………… 28

14: Long-read sequence mapping data and
 transcript identification and validation strategy

……………………… 31

15: Length distribution of Iso-Seq CFLs from
 different size fractions

……………………… 32

	

	
 	
 vi

16: CFLs mapping to the cellular gene RNF167

……………………… 33

17: Validation of EBV transcript features

……………………… 35

18: Annotated EBV 5’ start sites validated by
 TRIMD

……………………… 36

19: Start sites identified by deepCAGE

……………………… 37

20: Novel validated viral transcripts

……………………… 39

21: Novel intergenic transcripts

……………………… 41

22: Readthrough transcription and intergenic
 splicing at the BZLF2 locus

……………………… 43

23: Validated transcripts at the EBNA loci

……………………… 45

24: Programmed exon skipping in the W repeat
 region

……………………… 48

25: Complex lytic promoter usage for LMP2
 transcripts

……………………… 51

26: Strand specific qRT-PCR

……………………… 79

27: TRIMD-validated BRLF1 and BZLF1
 isoforms

……………………… 84

28: Length distribution of detected and predicted
 polyadenylated EBV isoforms

……………………… 88

CHAPTER 1

Introduction

2

Epstein-Barr Virus (EBV) is a ubiquitous human herpesvirus that causes disease worldwide.

EBV was first discovered in 1964 in a cell line derived from a Burkitt lymphoma (BL) tumor

in an African patient1. Since then links have been established between EBV and a number of

other cancers, including Hodgkin lymphoma2, nasopharyngeal carcinoma3 and gastric

cancers4.

Like most other herpesviruses, EBV can exist in both a latent and a lytic phase. On initial

infection of a new host EBV productively infects epithelial cells in the oropharynx, using the

lytic cascade to produce new virus particles5. These newly replicated virions then establish a

latent infection in oropharyngeal B cells6,7. The latent infection commences with a gene

expression program known as type III latency, in which eight viral proteins and several viral

noncoding RNAs are expressed (Table I)8. EBV-infected cells in latency phase III are

detectable by the human immune system and largely eliminated, however infected cells that

enter the latency 0 program do not express viral proteins and can escape immune control9.

Latent infection of some B cells generally persists for the life of the host. Latently infected B

cells in vivo are largely resistant to entering a phase of productive EBV replication, however

lytic reactivation in B cells does occur and is an essential component of the virus shedding

that can occur in the saliva of even asymptomatic EBV carriers10,11.

3

Table I. Latency programs in EBV
Latency
Program Viral Proteins Expressed Viral ncRNAs expressed

III EBNA1, EBNA2, EBNA3A, EBNA3B,
EBNA3C, EBNA-LP, LMP1, LMP2 EBER1, EBER2, BARTs

II LMP1, LMP2, EBNA1 EBER1, EBER2, BARTs
I EBNA1 EBER1, EBER2, BARTs
0 EBNA1 (only during cell division) EBER1, EBER2

The EBV lytic cascade

When lytic reactivation is triggered, e.g. by B-cell differentiation or by acute stress12, the

immediate early (IE) genes BZLF1 and BRLF1 are expressed to produce the proteins Zta

(also known as ZEBRA13, and EB114) and Rta. These transactivators function together to

activate downstream genes in the lytic cascade15; Zta by binding to AP1-like sites in the

promoters of both viral and cellular genes16, Rta by binding to Rta-responsive elements in

promoters17,18 and by inducing cellular phosphatidylinositol-3 (PI3) kinase signaling19. Many

of the early (E) viral genes activated by Zta and Rta function in host cell control and viral

DNA replication: for example the exonuclease BGLF5 and the DNA polymerase

BALF520,21. After viral DNA replication, the late (L) genes are transcribed by cellular RNA

Polymerase II under the control of the viral pre-initiation complex22. The IE, E and L genes

overlap temporally in expression, however viral DNA replication is required for L gene

expression and this class of genes can be inhibited using the viral DNA polymerase inhibitor

phosphonoacetic acid (PAA)23,24. Many L genes are involved in virion packaging and

assembly, such as the packaging protein BDRF1, the capsid protein BDLF1 and the

envelope glycoprotein BLLF124.

4

Pervasive transcription in herpesviruses

Our current understanding of lytic reactivation and viral replication is largely based on the

ordered synthesis of mRNA transcripts that are translated into proteins, which in turn

function both to carry out the necessary processes of virus production and to regulate the

transcriptional cascade itself. Recently though, an even more complicated view of herpesviral

lytic replication has begun to emerge as studies have revealed extensive lytic transcription

that is not accounted for by currently annotated open reading frames.

An early indication that the herpesvirus lytic transcriptome is much larger than expected

came from a large-scale cDNA cloning project using the betaherpesvirus Human

Cytomegalovirus (HCMV)25. This study examined de novo HCMV infection of fibroblasts,

during which time the virus is actively replicating, and detected extensive transcription of

putative intergenic regions and a large number of transcripts antisense to known open

reading frames. A subsequent study using Illumina RNA-Seq confirmed these findings26,

with both studies noting that much of the novel transcription likely produces noncoding

RNA. When ribosomal profiling was applied to the same system it was found that the

HCMV proteome as well as the transcriptome was much larger than previously appreciated,

with novel proteins being produced from unannotated short open reading frames as well as

from truncated or frameshifted variations of known open reading frames27.

Pervasive transcription of the gammaherpesvirus Murine gammaherpesvirus 68 (MHV68)

during productive infection of fibroblasts was first detected using a high-density tiling

microarray28. The same method later showed similar widespread transcription of

unannotated regions during viral reactivation in a latently infected B-cell line29. Several of

5

these transcripts were shown to be functional by targeting them for expression knockdown

with antisense oligonucleotides, which resulted in changed expression levels of a viral

protein30.

Abundant antisense and intergenic transcription has also been identified during replication in

the gammaherpesvirus Kaposi sarcoma-associated herpesvirus (KSHV), first by tiling

microarray in de novo infection of enodothelial cells31 and reactivated B cells32, then by RNA-

Seq after lytic reactivation in an engineered epithelial cell line33. As seen in HCMV, the

KSHV proteome is also significantly more complex than traditional annotation indicates, as

revealed by both ribosomal profiling33 and liquid chromatography/tandem-mass

spectrometry (LC-MS/MS)32.

In EBV, Dresang et al. used tiling microarray and LC-MS/MS to identify novel peptides and

transcripts antisense to annotated open reading frames after induction of a B-cell line

coinfected with EBV and KSHV32. Concha et al. used RNA-seq to investigate transcription

during viral reactivation in Akata cells and found intergenic viral transcripts and complex

splicing34. Furthermore, Concha’s 5’ and 3’ RACE experiments in a transcribed intergenic

region revealed bidirectional transcription. These findings provided the first indication that

transcription of the EBV genome may be more complex than previously thought.

The EBV genome and transcriptome

EBV’s double-stranded DNA genome is approximately 171 kilobases long and densely

packed with open reading frames, with over 70% of the genome annotated as being

transcribed in at least one direction35. The genome is linear when packaged in the viral

6

capsid36 and circularizes upon infection to persist within the host cell as a stable episome37,

typically in multiple copies. Each end of the linear genome consists of repeat sequence

known as the terminal repeats: these terminal repeat ends are joined to form the circular

chromosome38. In GenBank and other sequence repositories EBV genome sequences are

typically represented in their linear form, with terminal repeat sequences at each end.

However, the LMP2 gene spans the terminal repeats on the circular genome39. A linear

representation of the EBV genome split at the terminal repeats impedes analysis of LMP2

RNA sequence data and so this study and others use a representation of the EBV genome

split between the BBRF3 and BGLF3 genes, a region of relatively low transcription34.

Initial EBV genome sequencing was based on the common laboratory strain B95-840. As this

strain contains a large genomic deletion a composite reference sequence was later developed

by integrating sequence from another strain, Raji41,42. Subsequently, the genomic sequences

of many more EBV strains have been determined and made available43-53. Transcripts have

been annotated based on a mix of empirical evidence (e.g., Northern blots and Sanger

sequencing of cDNA) and sequence analysis (i.e, the presence of open reading frames,

TATA boxes and polyadenylation signals)35,40. Regions of the EBV genome are described in

terms of BamHI restriction fragments and most transcript names reflect this: e.g. the

transcripts BZLF1 (BamHI fragment Z, Leftward reading Frame 1) and BHRF1 (BamHI

fragment H, Rightward reading Frame 1)40.

At the genomic sequence level strains of EBV differ from each other largely based on

variations in the latency genes53. In particular, variations in EBNA2 and the EBNA3A/B/C

genes separate EBV strains into type I and type 2 groups (also known as types A and

7

B)47,54-56. Different virus strains are associated with different geographical regions, have

different phenotypic properties and may have different disease-causing properties53.

EBV-infected cell lines

Many EBV-positive cell lines exist, including naturally infected lines derived from cancers,

experimentally infected lymphoblastoid cell lines (LCLs) or epithelial cell lines, and cell lines

carrying virus artificially engineered to exhibit particular properties. Data used in this

dissertation is derived from naturally infected B-cell lines and LCLs, as described below.

The Akata cell line is an EBV-positive B-cell line that was established from a Burkitt

lymphoma tumor recovered from a 4-year-old Japanese girl57. Unlike the virus strains present

in many cell lines, the Akata strain does not contain large genomic deletions relative to other

EBV strains43,57. Akata cells generally express a type I latency program (see Table I), but can

be synchronously induced to produce infectious virus by crosslinking the B-cell receptors

(BCR) with anti-IgG antibodies57-59. The full genome sequence of the Akata strain, a type 1

strain of the virus is available43.

Similarly, Mutu cells exist in latency type I and can be induced to lytic replication by BCR

crosslinking, in this case using anti-IgM antibodies60. The Mutu cell line was established

from a biopsy from a Burkitt lymphoma patient in a region of Kenya with a high level of

endemic EBV-positive BL60. Mutu is a type 1 strain of the virus, and its complete genome

sequence is available43. The AG876 cell line was also established from a Burkitt lymphoma

tumor, in this case from an 8-year-old boy in Ghana61. Unlike the Akata and Mutu cell lines,

the EBV strain in AG876 cells is type 2. The genomic sequence AG876 strain is available45.

8

While the Akata, Mutu and AG876 cell lines were derived from naturally EBV-infected

tumors, many other cell lines have been created by in vitro EBV infection. The common

laboratory strain B95-8 was created by infecting tamarin (Saguinus oedipus) B cells with EBV

that was isolated from a cell line derived from a patient with mononucleosis62,63. B95-8 cells

exist in type III latency with a relatively high level of spontaneous reactivation (up to 5% of

cells)64,65. For many years B95-8 was the predominant laboratory strain because of this

constitutive virus production66.

The B95-8 strain of EBV is frequently used to immortalize primary B cells and create

lymphoblastoid cell lines that generally persist in type III latency67. Many lymphoblastoid cell

lines have been established and used in both EBV and cellular research, including by large-

scale efforts such as HapMap, ENCODE and the 1000 Genomes Project68-70. Though

usually originally generated with cellular analysis in mind, cell lines and the associated data

generated by these projects can also be used to gain insight into EBV and its interactions

with host cells71. The cell lines JY, X50-7, GM12878, GM12892 and GM12891, used in

Chapter 3, are lymphoblastoid cell lines immortalized with B95-866,68,72.

Specific Aims

The experiments and analysis described in this dissertation are guided by three specific aims:

Aim 1: Globally investigate unannotated lytic EBV transcription

Aim 2: Globally determine novel EBV transcript structures

Aim 3: Develop an algorithm to automate transcript structure determination and annotation

9

The discovery of antisense and intergenic transcription in EBV, combined with indications

of widespread unannotated transcription in related herpesviruses, indicated the need for

detailed global investigation of unannotated transcription of the EBV genome during viral

replication (Aim 1). This investigation, undertaken primarily using strand-specific Illumina

short-read sequencing, is reported in Chapter 2 and a recent Journal of Virology

publication73. In order to globally determine the structures of novel EBV transcripts (Aim 2),

a new method was developed using data from Pacific Biosciences Iso-Seq long-read

sequencing74, Illumina short read sequencing and deepCAGE75. This method, Transcript

Resolution by Integration of Multi-platform Data (TRIMD) is described in Chapter 3. The

efficacy of this method for structure resolution in the complex lytic transcriptome of EBV

suggests its usefulness for annotating other gene-dense genomes. To this end, flexible, user-

friendly scripts were developed that can be used to apply TRIMD to other genomes (Aim 3).

The TRIMD software is described in Chapter 4 and reproduced in Appendices 1-5 and is

freely available at available at https://github.com/flemingtonlab/public.

CHAPTER 2

Global investigation of unannotated lytic EBV transcription

11

The discovery by Concha et al.34 of complex bidirectional transcription in an intergenic

region of the EBV genome raised the intriguing possibility of further bidirectional

transcription upon lytic reactivation of EBV. To explore this possibility we took advantage

of strand-specific Illumina RNA-Seq technology to globally investigate transcription of the

EBV genome during viral replication. Much of the data in this chapter is reported in the

publication73

O’Grady et al. (2014) Global bidirectional transcription of the Epstein-Barr virus

genome during reactivation. Journal of Virology 88, 1604-1616.

Strand-specific RNA-Seq of the lytic EBV transcriptome

To investigate the lytic transcriptome of EBV we used the Akata cell line, inducing lytic

reactivation by crosslinking the B-cell receptors with an anti-IgG antibody. RNA was

extracted from cells for RNA-Seq before and after BCR crosslinking. We subjected the RNA

to poly(A)-selection to enrich for mRNA and polyadenylated noncoding RNA. Additionally,

we extracted RNA and subjected it to ribodepletion in order to remove ribosomal RNA but

retain other cellular and viral transcripts that are not polyadenylated, as functional transcripts

without poly(A) tails are known in both eukaryotic cells and viruses76,77. RNA samples were

prepared for sequencing using Illumina TruSeq Stranded sample prep kits to allow

assignment of sequence reads to the DNA strand from which the transcript arose. Samples

were sequenced on an Illumina HiSeq 2000 instrument and the reads mapped to the human

(hg19 assembly) and EBV Akata (KC207813.143) genomes. The dramatic increase in reads

12

mapping to the EBV genome after BCR crosslinking indicated robust induction of viral lytic

reactivation 24 hours after BCR crosslinking (Figure 1 and Tables II & III).

As accurate assignment of RNA-Seq reads to the appropriate genomic strand is crucial to the

analysis of antisense transcription, we investigated the level of strand specificity obtained

with the TruSeq method. Using a set of well-characterized, highly expressed cellular genes

with no known antisense transcription (see Chapter 5, Materials and methods), we calculated an

average background expression level that we could use to distinguish true antisense

transcription from spurious background reads. We found strand specificity to be high, above

99.8% in all samples (Figure 2 and Tables II & III).

Extensive bidirectional transcription of the lytic EBV genome

Mapping strand-specific RNA-Seq reads to the EBV genome showed coverage across both

strands of nearly the entire genome, in both the poly(A)-selected and the ribodepleted

datasets (Figure 3). We used the degree of strand specificity calculated above to identify

Figure 1. Reactivation and sequencing strategy. Column charts represent fold change in the number of RNA-
Seq reads mapped to the EBV genome, excluding EBER regions, at 0 and 24 hours. For the calculation of
strand specificity, see Materials and Methods.

13

14

regions of coverage that exceeded the expected background coverage plus four standard

deviations. Genomic coordinates meeting this stringent coverage requirement were

categorized as being transcribed (dark tracks in Figure 3).

The EBV genome is known to be gene-dense, with annotated exons covering over 70% of

the genome43 (Figures 3 & 4A). However, only 4% of the genome is annotated as having

exons on both strands43 . We observe RNA-Seq reads from poly(A)-selected RNA covering

both strands over 65% of the genome. Even more striking, we observe reads from

ribodepleted RNA covering both strands over 80% of the genome (Figure 4A). At least 50%

of read coverage from each dataset was in regions not annotated as being exons.

Transcription of unannotated regions did not appear to be incidental, low-level transcription

but instead occurred at high levels, with a substantial proportion of transcribed bases being

covered at levels comparable to highly expressed cellular genes (Figure 4B). This extensive,

high-depth coverage of unannotated EBV genomic regions suggests the existence of

previously unidentified viral genes. Given the number of bases outside of previously

Figure 2. RNA-Seq sense and antisense read coverage of cellular genes GAPDH and ACTB.

15

described exons that we identify here as

being transcribed, we roughly estimated

potential numbers of new genes. The

average length of an annotated gene in

the Akata genome is 1,697 bases;

dividing the number of bases showing

novel transcription by this length yields

an estimated 78 novel genes in the

poly(A)-selected dataset, and 98 in the

ribodepleted dataset (Figure 4C). Using

published average transcript lengths of

cellular genes78-80 we obtain comparable

estimated gene numbers. Because many

of these novel transcripts may be

noncoding (see below), we also

estimated the number of possible novel

genes using published catalogs of

noncoding genes78,79. As noncoding

genes are, on average, shorter than

coding genes this calculation yields

estimated numbers of unannotated

genes ranging from 133 to 280 (Figure

4C). These estimates do not take into

account the potential for transcripts

F
ig

ur
e

3.
 R

N
A

-S
eq

 re
ad

 c
ov

er
ag

e
of

 th
e

A
ka

ta
 E

B
V

 g
en

om
e

at
 2

4
ho

ur
s

po
st

in
du

ct
io

n.
 T

he
 s

ca
le

s
ar

e
lo

ga
rit

hm
ic

. T
ra

ns
cr

ib
ed

 b
as

es
 tr

ac
ks

 d
is

pl
ay

 b
as

es

w
ith

 a
t l

ea
st

 fi
ve

 re
ad

s
w

ith
 c

ov
er

ag
e

ab
ov

e
ba

ck
gr

ou
nd

 le
ve

ls
 (s

ee
 M

at
er

ia
ls

 a
nd

 M
et

ho
ds

).

16

overlapping on the same strand or for alternatively spliced transcripts. Given that both of

these phenomena are common in lytic EBV34, these numbers are likely underestimates of

undiscovered genes. The more extensive coverage of the viral genome using ribodepleted

data suggests that many unannotated EBV transcripts are not polyadenylated.

Antisense transcription at known EBV gene loci

While we observed high levels of transcription in regions previously believed to be

intergenic, we also observed extensive transcription antisense to known genes. Antisense

transcription was particularly high at latency-associated loci, with antisense coverage in the

ribodepleted dataset far exceeding sense coverage (Figure 5A). While this raises the exciting

Figure 4. Novel transcription of the Akata genome 24 hours postinduction. (A) Percentage of the genome
covered by annotated genes and by RNA-seq reads from poly(A) selected and from ribodepleted RNA.
(B) Percentage of novel transcribed genome regions and their expression relative to cellular gene
expression. Coverage percentage is based on the full length of both strands of genomic DNA, i.e., 342,646
potentially transcribed bases. (C) Predicted numbers of novel genes based on the number of transcribed
bases divided by average of or median transcript lengths from published gene catalogs

17

possibility of functional

antisense transcripts, it is

also important to note for

studies of the known genes

in these regions, as antisense

reads erroneously assumed

to be sense reads seriously

distort abundance estimates

for latency-associated genes

(Figure 5B).

RNA-Seq data from Akata

cells harvested at multiple

time points after BCR

crosslinking provides a

more detailed picture of the

lytic cascade. Reads aligning

to annotated exons in the

sense direction showed the

expected pattern of

expression, with Immediate

Early genes rising in

abundance first, followed by

Early and Late genes. Latent

Figure 5. Antisense transcription at known genes and gene classes.
(A) Ratio of antisense to sense RPKM values at 24 h postinduction for
annotated gene classes using RNA-Seq coverage from poly(A) selected
(blue) and ribodepleted (orange) RNA. Transcription at EBER loci are
excluded. (B) RPKM values for EBNA genes calculated using an
unstranded (purple) or strand-specific (green) method on RNA-Seq
data from poly(A) selected RNA (C) Sense and antisense RPKM values
for annotated gene classes at nine time points after reactivation

18

genes also show deeper coverage after BCR crosslinking. The pattern of expression antisense

to known genes differs, with the depth of reads antisense to all classes of known genes

peaking at 24 hours, late in the lytic cycle (Figure 5C).

Latency type III gene expression has been detected previously in reactivated EBV, both at

the mRNA and protein levels23,24,81,82. Our findings of high levels of antisense transcription

suggest a more complicated role for latency-associated loci during lytic reactivation than has

previously been understood.

Extensive antisense transcription at latency loci: an analysis of the EBNAs

The ratio of antisense to sense transcription is especially high at the Epstein-Barr virus

Nuclear Antigen (EBNA) 2 and EBNA3 loci, with antisense read coverage substantially

exceeding sense read coverage (Figures 6A, 7A & 8A). EBNA2 and EBNA3A/B/C encode

transcription factors that control a range of cellular genes during viral latency83-85. EBNA2,

EBNA3A and EBNA3B are critical for the transformation of primary B cells into type III

latency lymphoblastoid cell lines86,87, but the role of the EBNA genes in lytic reactivation is

not yet understood.

Temporal dynamics of EBNA antisense transcription

Analysis of RNA-Seq read abundance across multiple post-induction time points shows that

antisense read coverage at EBNA2, EBNA3A and EBNA3B loci peaks at 24 hours, with the

same timing as annotated Late genes (Figures 6B, 7B & 8B). Strand-specific qRT-PCR of

RNA extracted at the same time points shows the same pattern (Figures 6C & 8C). To

19

Figure 6. Sense and antisense transcription at the EBNA2 locus (A) RNA-seq read coverage from poly(A)
selected and ribodepleted RNA, and coding potential evidence summary from the Coding Potential
Calculator. Note the inset with a zoomed scale for the positive (sense) strand in ribodepleted coverage.
(B) RPKM values for RNA-seq time course from ribodepleted RNA (C) Relative abundance of antisense
transcription from 0 to 48 h measured by strand-specific qRT-PCR. Primer placement is shown in panel A.
(D) Relative abundance of antisense transcription at 24 h after treatment with anti-IgG, anti-IgG plus PAA,
or nothing (control). Measured by strand-specific qRT-PCR. (E) Relative abundance of antisense
transcription in the nucleus and cytoplasm at 24 h after treatment with anti-IgG. Measured by strand-
specific qRT-PCR. (F) FISH of EBNA2 antisense transcripts.

20

Figure 7. Sense and antisense transcription at the EBNA3A locus. (A) RNA-Seq read coverage from
poly(A) selected and ribodepleted RNA (top tracks). Blue annotation tracks represent consensus from
RACE fragments from 2 or more primers. Yellow circles indicate RACE fragments that end within 20
bases of another RACE fragment. Orange dashed ends indicate matching splice acceptors with different
splice donors. Colored boxes on RACE gel images indicate bands corresponding to pictured fragments of
the same color. Poly(A) reads track illustrates RNA-Seq reads mapping partially to poly(A) tails. Coding
potential evidence summary is from the Coding Potential Calculator. (B) RPKM values from RNA-Seq
reads from ribodepleted RNA time course (C) FISH of antisense EBNA3A transcripts.

21

Figure 8. Sense and antisense transcription at the EBNA3B locus (A) RNA-seq read coverage from
poly(A) selected and ribodepleted RNA. Blue annotation tracks represents consensus from RACE
fragments. Green annotation track represents a 3′ RACE fragment (band indicated by green box on
gel). Orange annotation tracks indicate 5′ RACE fragments (bands indicated by boxes on gel). Poly(A)
reads track illustrates RNA-seq reads mapping partially to poly(A) tails. Coding potential evidence
summary is from the Coding Potential Calculator. (B) RPKM values for RNA-seq time course using
ribodepleted RNA. (C) Relative abundance of antisense transcription from 0 to 48 h measured by
strand-specific qRT-PCR. Primer placement is shown in panel A. (D) Relative abundance of antisense
transcription at 24 h after treatment with anti-IgG, anti-IgG plus PAA, or nothing (control). Results
were obtained by strand-specific qRT-PCR. (E) Relative abundance of antisense transcription in the
nucleus and cytoplasm at 24 h after treatment with anti-IgG. Results were obtained by strand-specific
qRT-PCR. (F) FISH of antisense transcripts.

22

further investigate the potential classification of these antisense transcripts we treated Akata

cells with PAA before induction. PAA specifically inhibits the viral DNA polymerase,

preventing viral genome replication and the expression of Late genes. After BCR

crosslinking, PAA treatment inhibited expression of transcripts antisense to EBNA2 and

EBNA3B much more strongly than it inhibited expression of the Immediate Early gene Zta,

as measured by strand-specific qRT-PCR (Figures 6D & 8D).

Coding Potential of EBNA antisense transcripts

To facilitate functional analysis of these late antisense transcripts we interrogated the

genomic sequence for possible open reading frames, known functional motifs and domains

homologous to other genes. The Coding Potential Calculator88 reports an open reading

frame opposite EBNA3C (Figure 9A & B). This open reading frame is conserved in the

genomic sequence of both the B95-8 and AG876 strains of the virus, supporting the

possibility that an unreported protein-coding gene exists antisense to the EBNA3C open

reading frame (Figure 9C). In contrast, no reliable open reading frames are detected

antisense to EBNA2, EBNA3A or EBNA3B, and the Coding Potential Calculator reports a

high likelihood that transcripts in this region are noncoding RNA (Figures 6A, 7A & 8A).

Subcellular localization of EBNA antisense transcripts

The subcellular localization of biological molecules can provide indications of their function,

and so we investigated the location of the noncoding EBNA2, EBNA3A and EBNA3B

antisense transcripts. Strand-specific qRT-PCR of RNA isolated from the nuclear and

cytoplasmic fractions of 24-hour induced Akata cells indicates strong nuclear enrichment of

23

EBNA2 and EBNA3B antisense transcripts (Figures 6E & 8E). Fluorescent in situ

hybridization (FISH) using a series of probes targeted to the antisense transcripts also

supports nuclear localization of transcripts antisense to EBNA2, EBNA3A and EBNA3B

(Figures 6F, 7C, 8F & 10). We conclude that genes antisense to EBNA2, EBNA3A and

EBNA3B produce nuclear long noncoding RNA transcripts with Late gene kinetics.

EBNA3 antisense transcript structures

RNA-Seq data has been used to infer the structures of cellular transcripts89-91. However, the

apparent abundance of overlapping transcripts and the resulting deep and extensive RNA-

Figure 9. A novel antisense ORF in the EBNA3C locus. (A) Genomic location and RNA-Seq read
coverage of a novel antisense ORF. (B) Coding Potential Calculator output for corresponding regions
in the EBV strains Akata, B95-8 and AG876. (C) BLAST multiple sequence alignment of translated
ORFs from Akata, B95-8 and AG876 sequences.

24

Seq read coverage of the EBV genome confounds this type of analysis (compare Figure 2 to

Figures 6A, 7A & 8A). A previous study used 5’ and 3’ Rapid Amplification of cDNA Ends

(RACE) to glean information about EBV transcript structure and revealed a more complex

transcriptional architecture than RNA-Seq coverage made apparent34. We applied RACE to

the EBNA3A and EBNA3B regions (Figure 7A & 8A). Antisense to EBNA3B, we detected

a 5’ end and a 3’ end that appear to correspond to a polyadenylated transcript that arises

antisense to the final exon of EBNA3B and terminates between the first coding exon of

EBNA3B and the final exon of EBNA3A (Figure 8A). The 5’ start site is supported by two

separate RACE primers, and the 3’ end is supported by one RACE primer and a pileup of

RNA-Seq reads that contain partial poly(A) tails. The 3’ end is further supported by the

presence of a canonical polyadenylation signal (AATAAA) in the genomic sequence. This

polyadenylation signal is fully conserved in both the B95-8 and AG876 strains of the virus

(Figure 11B).

Transcription is more complex at the EBNA3A locus (Figure 7A). 5’ RACE reveals two 5’

start sites antisense to EBNA3A’s final exon. These two start sites are both supported by

Figure 10. Genomic location of Stellaris FISH probes relative to known transcripts, RACE fragments
and RNA-Seq read coverage.

25

TATA box motifs that are conserved in the B95-8 and AG876 viral strains (Figure 11A). 3’

RACE located a 3’ end site supported by poly(A)-tail containing RNA-Seq reads

downstream of the 5’ start sites. However, a 5’ RACE fragment generated from randomly

primed cDNA extends beyond that polyadenylation site. The same fragment was not

generated from poly(A)-primed cDNA, demonstrating the presence of a longer, non-

polyadenylated transcript that arises from the more upstream of the 5’ start sites (Figure 7).

Surprisingly, 5’ RACE in the sense direction revealed previously unannotated EBNA3A-

overlapping transcripts, which use unannotated transcription start sites and splice junctions

(Figure 7A). One novel transcription start site is located in an intron upstream of the

EBNA3A open reading frame. Multiple distinct RACE fragments corresponded to this

transcription start site, including several that used the final annotated EBNA3A splice

junction, one that contained the full intron sequence of that splice junction, and two that

contained a novel, much longer splice junction. A second novel transcription start site near

the final annotated EBNA3A splice donor was also detected with multiple primers

(Figure 7A).

Figure 11. Sequence motif conservation. (A) TATA boxes for EBNA3A antisense transcripts. Red
boxes indicate the locations of TATA motifs. (B) Polyadenylation signal for EBNA3B antisense
transcript. Red boxes indicate AATAAA signal and downstream GT-rich element.

26

Further analysis of splicing at the EBNA3A locus revealed unreported splice junctions on

both strands. Many of these were spanned by RNA-Seq reads from both poly(A)-selected

and ribodepleted RNA, as well as RACE fragments. In many cases, novel splice junctions are

supported by as many RNA-Seq reads as annotated splice junctions (Figure 12).

It should be noted that RNA-Seq read coverage extends beyond the start and end sites

detected by RACE at both the EBNA3A and EBNA3B loci (Figures 7A & 8A). Apparently,

more overlapping transcripts are present that were not identified by this method. The

presence of complex overlapping transcripts at the EBNA genes supports a role in

reactivation for these loci that goes beyond a simple recapitulation of their latency-associated

functions as protein-coding genes.

Figure 12. Splice junctions in the EBNA3A region that are annotated, detected in fragments from at
least 2 RACE primers, or detected in RNA-Seq reads by TopHat analysis (at least 5 reads from
poly(A)-selected RNA or 10 reads from ribodepleted RNA).

27

Extensive novel splicing in the lytic EBV transcriptome

Splicing is not thought to be common in EBV genes under lytic conditions35. Of 37

annotated splice junctions in the Akata genome, only 7 are in lytic genes (Figure 13A).

Surprisingly, we observe 178 splice junctions, almost 5 times as many as have been

previously annotated in latent and lytic genes combined. 84 of these are reported in both the

poly(A)-selected and ribodepleted datasets, including all 7 annotated lytic junctions and 19

junctions annotated in latency-associated transcripts. A further 94 junctions are detected in

one dataset or the other, but not both (Figure 13B). Most of the junctions detected in each

dataset are unannotated (Figure 13C). We do not detect all of the annotated latency-

associated splice junctions despite observing RNA-Seq read coverage at all latency-associated

loci: this may be indicative of alternative splicing at latency loci during lytic reactivation, as

observed for EBNA3A, above (Figures 7A & 12).

28

Figure 13. Splice junctions at 24 hours postinduction (A) Splice junctions supported by at least five
RNA-Seq reads from poly(A) selected RNA or by at least ten RNA-Seq reads from ribodepleted RNA.
Annotated splice junctions are color coded: blue, lytic genes; maroon, latent genes; and green, noncoding
transcripts. (B) Venn diagram indicating numbers of junctions that are annotated, the number that are
detected in poly(A) RNA data, and the number detected in ribodepleted RNA data. (C) Annotated and
novel splice junctions detected in poly(A) selected or ribodepleted RNA.

CHAPTER 3

Global determination of novel EBV transcript structures

30

As seen in Chapter 2, the pervasiveness and complexity of EBV lytic transcription has defied

efforts to fully define novel transcripts using short-read sequencing methods. New

technologies for long-read sequencing have the potential to resolve many of these

difficulties. Pacific Bioscience’s Iso-Seq protocol uses Single-Molecule Real-Time (SMRT)

long-read sequencing of cDNA to obtain sequences of full-length RNA transcripts74. Here,

we integrate Iso-Seq data with Illumina RNA-Seq and deepCAGE data to globally elucidate

viral transcript structure with a high degree of confidence.

Iso-Seq interrogation of the lytic EBV transcriptome

We crosslinked the B-cell receptors of Akata cells using anti-IgG to induce lytic reactivation

using the same method as in Chapter 2. RNA was harvested at 20 and 24 hours, pooled and

subjected to the Iso-Seq protocol. Raw SMRT read data was processed to obtain a set of

consensus “full-length” isoforms (CFLs) using RS_IsoSeq on SMRTPortal version 1. The

CFLs were mapped to both the human (hg 19 assembly) and EBV Akata (KC207813.143)

genomes. Approximately 6% of the CFLs mapped to the EBV genome, consistent with

results obtained with Illumina RNA-Seq reads (Figure 14A, Tables II & III)34,73. CFLs were

substantially longer than the 101-base Illumina RNA-Seq reads, with mapped CFL length

ranging from 300 to 16,430 bases. The median length of mapped CFLs was 1,335 bases, and

the length distribution was similar between CFLs mapped to the EBV genome and CFLs

mapped to the cellular genome (Figure 14B). Size fractionation helped to reduce the bias

toward sequencing smaller transcripts (Figure 15).

31

The Iso-Seq protocol was developed to sequence full-length RNA molecules74. To estimate

the extent to which full-length transcripts are captured by the CFL dataset, we used a set of

well-characterized cellular transcripts (RefSeq transcripts with Reviewed or Validated status).

We considered a cellular transcript to have full-length Iso-Seq coverage if a CFL’s 5’ and 3’

ends matched the annotated transcript’s 5’ and 3’ ends. We considered a cellular transcript to

have partial Iso-Seq coverage if a CFL’s 3’ end matched the annotated transcript’s 3’ end but

Figure 14. Long-read sequence mapping data and transcript identification and
validation strategy. See also Figures S1, S2 & S3. (A) Percentages of consensus full-
length isoforms mapped to cellular and EBV genomes. (B) Length distributions of
consensus full-length isoforms mapped to cellular and EBV genomes. Blue boxes
represent second and third quartiles, horizontal black lines indicate mean.
(C) Proportion of expressed annotated transcripts that are represented by full-length
sequenced isoforms as a function of transcript length. (D) TRIMD data
integration/transcript feature validation strategy. (E) Example of TRIMD validated
cellular transcripts.

32

the CFL’s 5’ end did not match the annotated

transcript’s 5’ end, and the annotated transcript

had Illumina RNA-Seq reads mapping near its

5’ end. We observed that the majority of

transcripts shorter than 1,000 bases were

represented by full-length CFL coverage, but

that the proportion of transcripts with full-

length coverage decreased with increasing

transcript length (Figure 14C).

Visual inspection of CFLs mapped to both the

cellular and EBV genomes revealed CFLs that

closely matched annotated genes and CFLs that

appeared to represent novel isoforms (Figure

16). However, other CFLs had 5’ ends that mapped progressively downstream of the

annotated 5’ end, suggesting that they represent the artifactual result of strand invasion

during cDNA synthesis92. We also observed some CFLs with apparent splice junctions that

were unannotated and noncanonical, and were only supported by a single SMRT read. We

concluded that additional information from alternate platforms was necessary in order to

determine with high confidence which CFLs could be interpreted as accurate full-length

representations of transcripts.

Figure 15. Length distribution of Iso-Seq
CFLs from different size fractions. 1-2 kb and
2-3 kb fractions were sequenced on two SMRT
cells each. NSS = Non-size-selected fraction,
sequenced on four SMRT cells.

33

Transcriptome Resolution through Integration of Multi-platform Data (TRIMD)

In order to identify 5’ ends, splice junctions and 3’ ends with more certainty than can be

obtained with Iso-Seq alone, we developed a method to integrate information from three

distinct platforms: Iso-Seq, Illumina RNA-Seq and deepCAGE75. As described in the

following sections, we validated transcript features (5’ ends, 3’ ends and splice junctions),

each using multiple data sources, then used these sets of validated features to identify CFLs

that represent true transcripts (Figure 14D). When applied to cellular transcripts this method

performed well,

identifying CFLs that

closely match annotated

transcripts as well as

novel splice isoforms

and isoforms using

alternative transcription

start sites and

transcription termination

sites (Figure 14E, F &

G). The development of

software to implement

TRIMD is described in

Chapter 4.

Figure 16. CFLs mapping to the cellular gene RNF167. CFLs appear to
represent the annotated transcript and possible isoform variants, as well as
splice junctions and 5’ truncations that are likely artifacts.

34

Identification of transcription start sites in the lytic EBV genome

To gain more information about transcription start sites, we used deepCAGE (Cap Analysis

of Gene Expression)75,93. This method makes use of the CAP-trapper protocol94, a method

that acquires RNA fragments near their 5’ caps. Iso-Seq, in contrast uses SMART (Switching

Mechanism at 5’ End of RNA Template) cDNA synthesis95 to identify transcript 5’ ends.

The substantially different mechanisms employed by deepCAGE and Iso-Seq lends

confidence to start sites identified by both methods. Notably, the Iso-Seq 5’ ends that appear

to represent truncation artifacts are not typically supported by deepCAGE (data not shown).

To identify 5’ start sites supported by both Iso-Seq and deepCAGE, we began by analyzing

data from each method independently. We treated Iso-Seq 5’ ends mapping within 8 bases

of each other on the genome as start site clusters and calculated the chromosomal

coordinate average of each cluster, weighted by SMRT read depth, to determine consensus

Iso-Seq start sites. For deepCAGE data, we used the Paraclu algorithm96 to identify clusters

then calculated chromosomal coordinate averages weighted by CAGE tag depth to identify

CAGE start sites. Iso-Seq consensus start sites that were supported by CAGE start sites

within 3 bases were considered validated transcript 5’ start sites.

238 transcription start sites in the EBV genome are supported by both Iso-Seq and

deepCAGE, a number more than three times higher than the number of EBV start sites

annotated in GenBank (Figure 17A and Appendix 6). The majority (191) of these validated

start sites are unannotated. We also validate 47 GenBank-annotated start sites. Many of these

were annotated originally based on the location of TATA boxes in the genomic

35

sequence43,97; using this empirical evidence we update the annotation to provide more

accurate start sites (for updated annotation see Appendix 10). Also, several of the novel

transcription start sites identified here appear to be associated with annotated open reading

frames for which transcription start sites could not previously be identified because of the

Figure 17. Validation of EBV transcript features. See also Figures S4 & S5. (A) Validation of 5’ starts. Pie
chart indicates annotation status of validated 5’ starts. “GenBank Refined” includes start sites previously
annotated at TATA boxes and more accurately identified in this study. Bar chart indicates the number of
GenBank-annotated 5’ starts validated in this study (stippled = refined). Genome browser panel shows
examples of validated 5’ starts for the GenBank annotated BVRF2 and BVLF1 genes. (B) Validation of
splice junctions. Pie chart indicates annotation status of validated splice junctions. Bar chart indicates the
number of GenBank-annotated splice junctions validated in this study. Genome browser panel shows
example validated splice junctions (thickness of splice junction features represents combined depth of
Illumina RNA-Seq reads and SMRT circular consensus sequence reads). (C) Validation of 3’ ends. Pie chart
indicates annotation status of validated 3’ ends. “GenBank Refined” includes end sites annotated at
canonical polyadenylation signals that are more accurately identified in this study. Bar chart indicates the
number of GenBank-annotated 3’ ends validated in this study (stippled = refined). Genome browser panel
shows example validated 3’ ends for the GenBank annotated BVRF2/BdRF1 and BILF2 genes.

36

absence of canonical TATA boxes immediately upstream (see Figure 17A, right panel).

Although this study substantially increases the number of known EBV transcription start

sites, not all start sites were detected by this method. The start sites of annotated transcripts

that are very long or that are latency-

associated were not as reliably

detected in this study as those from

shorter, lytic transcripts (Figure 18).

Many deepCAGE-identified 5’ ends

did not correspond to Iso-Seq

identified 5’ ends (Figure 19); these

likely represent 5’ ends of longer

and/or non-polyadenylated

transcripts, which are not well

detected by the Iso-Seq protocol.

Identification of splice junctions in the lytic EBV genome

We used Illumina RNA-Seq data in conjunction with Iso-Seq CFLs to investigate splice

junctions in the EBV transcriptome. Information about detected splice junctions was

compiled from multiple sets of RNA-Seq data derived from Akata cells at various time

points before or after BCR crosslinking. Splice junctions detected in both one or more Iso-

Seq CFLs and one or more Illumina RNA-Seq reads were considered validated. As in the

Illumina RNA-Seq analysis in Chapter 2, we identified a much higher number of splice

junctions than is annotated: a total of 226 splice junctions were supported by both Iso-Seq

and Illumina RNA-Seq (Figure 17B and Appendix 7). This confirms 19 splice junctions that

Figure 18. Annotated EBV 5’ start sites validated by
TRIMD. (A) Percentage of GenBank-annotated start sites
for lytic- and latency-associated transcripts validated by
TRIMD (B) Percentage of GenBank-annotated start sites for
transcripts under or over 2000 bases long validated by
TRIMD.

37

have been reported using Illumina RNA-Seq or other methods34,73,98-101. 27 GenBank-

annotated splice junctions were validated, including all 7 junctions associated with annotated

lytic transcripts and 20 junctions annotated in latency-associated transcripts. 180 novel splice

junctions were validated, many at sequencing depths comparable to annotated splice

junctions (see Figure 17B, right panel).

Identification of polyadenylation sites in the lytic EBV genome

As with 5’ ends, we treated Iso-Seq 3’ ends mapping within 8 bases of each other on the

genome as single putative polyadenylation sites and calculated chromosomal coordinate

averages weighted by SMRT read depth to identify consensus polyadenylation sites. To

locate putative polyadenylation sites in Illumina RNA-Seq data, we used a modification of

the approach used in Chapter 2 to identify partial poly(A) tails captured in sequencing reads.

Clusters of poly(A) tail-containing reads mapping to within 8 bases of each other were

identified and weighted average chromosomal coordinates calculated as for Iso-Seq ends.

Iso-Seq consensus 3’ ends within 8 bases of Illumina polyadenylation sites were considered

validated 3’ ends.

Figure 19. Start sites identified by deepCAGE. (A) 5’ start sites detected by deepCAGE only,
and by both deepCAGE and Iso-Seq. DeepCAGE-identified start sites in genomic repeat
regions are excluded. (B) Examples of deepCAGE peaks both supported by Iso-Seq and
unsupported by Iso-Seq.

38

This approach validated 54 polyadenylation sites (Appendix 8). In contrast to validated

transcription start sites and splice junctions, most of the validated polyadenylation sites

corresponded to 3’ ends already annotated in GenBank (Figure 17C). Similarly to

transcription start sites, most 3’ ends are annotated in GenBank based on genomic sequence

motifs, in this case canonical AATAAA or AAUAAA polyadenylation signals43,97. We are

now able to provide refined polyadenylation sites based on empirical evidence for 32

annotated GenBank 3’ ends. Additionally, some of the unannotated polyadenylation sites are

downstream of open reading frames for which transcription termination sites could not

previously be estimated because of the lack of immediate downstream canonical

polyadenylation signals (see Figure 17C, right panel for an example).

Isoform structure determination and annotation

We used the sets of validated transcription start sites, splice junctions and polyadenylation

sites to determine which CFLs could be treated as fully validated transcript structures. At

this step, 7,906 CFLs that mapped to the EBV genome were filtered and condensed to a

final list of 353 distinct isoforms (Figure 20A: see Chapter 4 for more details). 59 of these

correspond to GenBank annotated transcripts (Figure 20B & C). Most annotated transcripts

that were not validated are either very long or are latency-associated.

294 of the validated isoform structures were novel (Figure 20B and Appendix 9). These

include splice variants of annotated transcripts, isoforms that extend or truncate annotated

transcripts, chimeric transcripts produced by readthrough transcription and intergenic

39

splicing, and wholly novel transcripts that arise from a novel transcription start site, span a

putative intergenic region and terminate at a novel polyadenylation site. Nearly one quarter

of the novel transcripts are likely noncoding (Figure 20D).

We provide a naming scheme for the novel transcripts based on the existing naming scheme

for EBV genes40. The first two letters correspond to the genomic BamHI restriction

fragment in which transcription initiates: e.g., BC is BamHI fragment C and Ba is BamHI

fragment a. The next letter is R for Rightward transcripts (i.e., annotated on the plus strand)

or L for Leftward transcripts (i.e., annotated on the minus strand). The final letter in our

Figure 20. Novel validated viral transcripts. See also Figures S6 & S7. (A) Top track displays EBV-Akata
GenBank annotated gene and structural features. Bottom track displays novel validated EBV transcripts
identified in this study. (B) Annotation status of TRIMD-validated transcripts. (C) Number of GenBank-
annotated transcripts validated in this study. (D) Coding potential of novel EBV transcripts as determined by
CPAT.

40

naming scheme is T for Transcript: the original naming scheme is based on protein-coding

genes and uses F for reading Frame. We begin numbering our validated transcripts where

the GenBank annotation numbering ends for each fragment. For example, BBRF3 is an

annotated gene and we present here novel transcripts we designate BBRT4, BBRT5, etc.

Novel intergenic transcription of the lytic EBV genome

BCLT2, 3 and 4 are a set of overlapping transcripts that do not share any sequence with

annotated EBV transcripts. They arise from three novel transcription start sites in the

vicinity of, but antisense to the latency-associated Cp promoter, are transcribed through a

putative intergenic region, and terminate at a shared polyadenylation site antisense to the

viral IL10 homolog BCRF1 (Figure 21A). To gain insight into the possible functions of these

transcripts we investigated the timing and context of their expression, their coding potential

and their subcellular localization. Strand-specific qRT-PCR using primers to an overlapping

region of BCLT2 and BCLT3 showed substantially higher abundance after BCR crosslinking

in both Akata and Mutu cells (Figure 21B). Little or no BCLT2/3 expression was detected in

the type III latency cell lines JY and X50-7, supporting lytic-specific induction of these

transcripts. Also, no evidence of BCLT2-4 expression was detected by SMRT long-read

sequencing of the type III latency cell lines GM12878, GM12891 and GM12892102 (data not

shown). Quantification of RNA-Seq reads from poly(A)-selected RNA harvested from

Akata cells at multiple time points showed Illumina RNA-Seq read coverage in this region

peaking at 24 hours after induction, consistent with Late gene expression (Figure 21C).

Sequence analysis of BCLT2-4 using the Coding Potential Assessment Tool (CPAT)103

indicated all three transcripts are likely noncoding, though a small open reading frame is

present in BCLT3 and BCLT4 (Figure 21A). Strand-specific qRT-PCR of RNA extracted

41

from nuclear and cytoplasmic fractions of 24-hour induced Akata cells indicated strong

nuclear enrichment of these transcripts (Figure 21D). This was confirmed by FISH using a

set of fluorescently labeled probes targeting all three transcripts (Figure 21E). Simultaneous

immunolabeling of the viral nuclear protein BMRF1 showed some degree of overlap with

the BCLT2-4 transcripts. BMRF1 is known to be associated with newly synthesized viral

Figure 21. Novel intergenic transcripts. (A) Genome browser visualization of BCLT2-4 transcripts and
supporting evidence. Grey shaded track displays GenBank-annotated features. (B) Strand-specific qRT-
PCR of BCLT2/3 in Akata, Mutu, JY and X50-7 cells. LI = type I latency , LIII = type III latency
(C) Normalized Illumina RNA-Seq read counts of BCLT2/3/4 at multiple time points after induction.
TPM = transcripts per million. (D) Strand-specific qRT-PCR of nuclear and cytoplasmic fractions of
induced Akata cells (24 h). (E) FISH and immunofluorescence of BCLT2/3/4 and EBV nuclear
protein BMRF1.

42

genomes104,105: colocalization with this protein suggests that BCLT2-4 transcripts may also

associate with newly replicated viral DNA.

Readthrough transcription

Transcription start sites and polyadenylation sites shared by multiple transcripts are common

in the EBV transcriptome (see, e.g., Figure 20A). The transcription start site upstream of the

BZLF2 open reading frame is a striking example of this, giving rise to over 30 distinct

transcripts (Figure 22). This transcription start site is not supported by a canonical TATA

box and as such was not previously annotated; nevertheless the SMRT read and CAGE tag

depth for this site is greater than that of any other EBV transcription start site detected in

this study.

Only two of the transcript structures originating at this site contain the full BZLF2 open

reading frame. These transcripts are unspliced and terminate at a pair of polyadenylation

sites 23 bases apart, approximately 2 kb downstream of the transcription start site (Figure

22). Interestingly, both also contain the novel open reading frame antisense to EBNA3C that

was described in Chapter 2 (Figure 9). This open reading frame begins approximately 350

bases downstream of the BZLF2 translation stop codon and is larger than BZLF2. It is

possible that these transcripts, like others previously identified in EBV106,107, are bicistronic.

Most other isoforms arising from this locus are the result of transcriptional readthrough that

bypasses both of the BZLF2-proximal polyadenylation sites. Several transcripts continue to

bypass further polyadenylation sites, with some finally terminating nearly 19 kilobases

downstream at a polyadenylation site shared with the BSLF2/BMLF1 mRNA. This

43

transcriptional readthrough allows for intergenic splicing including, intriguingly, splicing that

preserves partial or full open reading frames of annotated genes. Three isoforms (indicated

by black arrows in Figure 22) are candidate mRNAs coding for chimeric proteins that

contain protein structure from both BZLF2 and BLLF1.

A group of overlapping BZLF2-readthrough transcripts terminates at the unannotated

polyadenylation site antisense to EBNA3B that was described by 3’ RACE in Chapter 2

Figure 22. Readthrough transcription and intergenic splicing at the BZLF2 locus. From top: GenBank
gene annotation, TRIMD-validated polyadenylation sites, Illumina short-read coverage of induced Akata
cells with negative control GapmeR (green tracks) and induced Akata cells with GapmeR targeting
BZLT12-22 (red tracks), novel validated isoforms (blue transcript features). Black arrows indicate
transcripts whose largest ORF is an in-frame fusion.

44

(Figure 8A). We designed a GapmeR antisense oligonucleotide targeted to an overlapping

region of these transcripts and treated Akata cells with either this GapmeR or a negative

control GapmeR prior to BCR crosslinking. Illumina short read RNA-Seq of poly(A)-

selected RNA harvested from these cells 24 hours after crosslinking revealed an interesting

effect on transcripts from this locus: short-read coverage was substantially decreased over a

large region of the EBV genome, much more extensive than that covered by the targeted

isoforms (Figure 22, green and red coverage tracks). The pattern of coverage suggests that

the GapmeR is strongly inhibiting a 12 kilobase, unspliced transcript that arises from the

BZLF2-associated transcription start site and terminates at the BLLF1-associated

polyadenylation site. Given the decrease in full-length CFL coverage for long transcripts

(Figure 14C), a transcript of this length is unlikely to be detected by the Iso-Seq method.

Interestingly, very long transcripts antisense to latency loci have also been reported in

KSHV31,33.

EBNA3 antisense transcript structures

Despite relatively low Iso-Seq coverage across the EBNA loci, we were able to determine

the isoform structures of several of the transcripts detected by RACE in Chapter 2 (Figures

7A, 8A and 23). The novel transcript BELT4 arises from a RACE-identified transcription

start site antisense to EBNA3A (Figure 23A). It does not terminate at the pileup of poly(A)-

containing Illumina short reads depicted in Figure 7A but extends further downstream,

utilizes an unannotated splice junction reported by Concha et al.34 and terminates at the

BLLF1/2-associated polyadenylation site (Figure 23A and data not shown). BELT4 contains

the full BLLF2 open reading frame. Two additional transcription start sites in the region give

rise to additional isoforms (BLLT4-9). Interestingly, all of the isoforms arising antisense to

45

Figure 23. TRIMD-validated transcripts at the EBNA loci. Transcripts indicated with black arrows were
partially described in Chapter 2, Figures 7 & 8. (A) Validated splice junctions and transcripts at the
EBNA3A locus. Splice junctions with * were detected in Chapter 2 and depicted in Figure 12. (B) Validated
transcripts at the EBNA3B locus.

46

the coding exons of EBNA3A contain open reading frames: this locus appears to be a

collection of 5’ UTR-variant mRNAs coding for BLLF1 (gp350/220) and BLLF2.

Antisense to the coding exons of EBNA3B we identify several overlapping transcripts that

originate at the BZLF2-associated transcription start site as discussed above (Figure 22), and

also several shorter, unspliced transcripts (Figure 23B). 5’ RACE and 3’ RACE in Chapter 2

revealed a transcription initiation site and a polyadenylation site (Figure 8A); TRIMD

confirms that the transcript BELT1 uses both of these sites (Figure 23B). Another transcript,

BELT2, also arises from this start site and is spliced nearly 11 kilobases downstream to the

BSLF2 open reading frame. A further transcription start site downstream of the first gives

rise to the overlapping BELT3 transcript.

EBNA3 sense transcript structures

EBNA3A, EBNA3B and EBNA3C transcripts are annotated as arising from the Cp

promoter, containing a repeating set of exons denoted as W1 and W2, then a pair of non-

repeat exons known as Y1 and Y2, and finally terminating with their individual coding

exons108,109. Under type I latency conditions in the Akata cell line the EBNA3 transcripts are

not expressed (Table I). Expression of these genes has been reported by others during viral

reactivation23,24, and we see Illumina short read coverage across the expected exons (data not

shown). However, no Iso-Seq CFLs contained full-length annotated transcripts of the

EBNA genes, likely because these transcripts are very long, ranging from 4,814 to 8,265

bases.

47

5’ RACE experiments in Chapter 2 (Figure 7A) supported the existence of novel transcripts

overlapping EBNA3A in the sense direction. Using TRIMD, we determined the full

structure of one such transcript partially described by RACE: BLRT5 (Figures 23A and 7A).

Interestingly, BLRT5 and four other overlapping isoforms (BLRT4, BERT1, BERT2 and

BERT3) contain truncated versions of the EBNA3A open reading frame (Figure 23A).

Truncated versions of EBNA2 and EBNA3C were also identified (data not shown).

Programmed exon skipping in W-repeat transcripts

While full-length annotated EBNA transcripts were not identified by Iso-Seq in reactivated

Akata cells, many Iso-Seq CFLs do contain exons transcribed from the W repeat region

(Figure 24A). Unexpectedly, these transcripts uniformly exclude W2 exons and do not splice

to the Y1 or Y2 exons or the unique EBNA exons. Instead, each CFL contains multiple W1

exons and terminates with an exon encompassing the BHRF1 open reading frame. This is

distinct from transcript structures detected by long-read sequencing in the type III latency

LCLs GM12878, GM12892 and GM12891, which contain the expected W1-W2 splicing

pattern and show no evidence of upstream splicing in the annotated BHRF1 transcripts

(Figure 24A)102.

BHRF1 transcripts containing both W1 and W2 exons have been reported under latency

conditions110-112, suggesting that the exclusion of W2 exons is a phenomenon associated with

viral replication. To further investigate this possibility we performed qRT-PCR using primers

spanning the W1-W1, W1-W2 and W1-BHRF1 splice junctions in type I latency (Akata and

Mutu cells), viral reactivation (BCR-crosslinked Akata and Mutu cells) and type III latency

(JY and X50-7 cells – Figure 24B). As expected, little or no W1-W1 and W1-BHRF1 splicing

48

Figure 24. Programmed exon skipping in the W repeat region. (A) Genome browser visualization of CFLs
mapping to the W repeat region and/or BHRF1 gene in induced Akata cells and lymphoblastoid cell lines.
(B) qRT-PCR using primers spanning the indicated splice junctions in Akata, Mutu, JY and X50-7 cells. LI
= type I latency, LIII = type III latency, Lytic refers to 24 or 48 h induction in Akata and Mutu cells.
(C) Time course analysis of splice junction reads in polyA+ RNA from Akata cells. (D) Splice junction
reads detected in polyA+ RNA from the type III latency cell line, JY.

49

was detected during either type of latency, but the abundance of both splice junctions was

substantially increased during reactivation. Canonical W1-W2 splicing was detected at high

levels in the type III latency cells relative to the type I latency cells. A substantial increase in

W1-W2 splicing was also detected during viral reactivation by qRT-PCR, despite its absence

from Iso-Seq data during reactivation. This is consistent with W1-W2 splicing being present

in very long EBNA transcripts, which are unlikely to be detected by Iso-Seq.

Illumina short read sequencing from multiple time points following BCR crosslinking in

Akata cells provides more information about the temporal dynamics of splicing in this

region (Figure 24C). The annotated EBNA-associated splice junctions W1-W2, W2-W1, C2-

W1 and W0-W1 increase steadily throughout reactivation, even as the levels of viral

transcription drop by 48 hours. Reactivated Akata cells have been shown to remain viable

for at least 72 hours after BCR crosslinking23 and this evidence suggests that at least some

Akata cells enter the type III latency phase after BCR crosslinking, as reported by Rowe et

al.82 In contrast, the depth of coverage for the novel W1-W1 and W1-BHRF1 splice

junctions increases after crosslinking to a peak at 24 hours, then decreases. Short-read

sequencing from the type III latency JY cell line provides evidence supporting only the

expression of annotated EBNA transcripts, with abundant splicing from W1-W2, C2-W1

and W2-Y1, and little or no splicing from W1-W1 or W1-BHRF1 (Figure 24D). Taken

together, these results demonstrate distinct usage of the latency-associated W exons during

viral reactivation.

50

Alternative promoter usage in LMP2 isoforms

The latency-associated gene LMP2 also undergoes significant transformations in its splicing

pattern during viral reactivation, as demonstrated with Illumina short read sequencing34.

Long-read sequencing with Iso-Seq confirms the presence of unannotated splice junctions

and also reveals a previously undetected layer of complexity: that of alternative promoter

usage. (Figure 25A). Strikingly, no Iso-Seq CFLs from BCR-crosslinked Akata cells are

consistent with transcription initiation at the annotated transcription start site. No

deepCAGE-derived transcription start sites are present at that location either (data not

shown). In contrast, SMRT sequence reads from the type III latency LCLs GM12878,

GM12892 and GM12891 are all consistent with transcript initiation occurring at the

annotated LMP2A transcription start site102 (Figure 25A).

Most CFLs that contain LMP2 exons initiate from one of several locations upstream of the

annotated LMP2 transcription start site, and many also exhibit novel splicing upstream of

the annotated LMP2 exons. Most of these novel splice junctions are supported by Illumina

short reads (Figure 25B). We validated expression of several junctions by qRT-PCR using

junction-spanning primers and found that their expression is limited to cells undergoing viral

replication (i.e., BCR-crosslinked Akata and Mutu cells – Figure 25C). We next performed

qRT-PCR on RNA from nuclear and cytoplasmic fractions of BCR-crosslinked Akata cells

(Figure 25D). We found the upstream junction associated with the only CFL that contained

the full LMP2 reading frame (E in Figure 25) to be the most strongly enriched in the

cytoplasm, suggesting that this isoform is exported to the cytoplasm for translation while

others are retained in the nucleus for other functions. These findings demonstrate the

remarkably complex nature of the lytic LMP2 locus, where alternative promoter usage and

51

alternative splicing lead to the production of a diverse group of LMP2 isoforms that occupy

different cellular locations.

Figure 25. Complex lytic promoter usage for LMP2 transcripts. (A) Genome browser visualization of CFLs
mapping to the LMP2 exons in induced Akata cells and lymphoblastoid cell lines. Arrows positioned at the
beginning of reads signify those with validated 5’ ends. (B) Splice junction read depth for SMRT circular
consensus and Illumina short-read sequencing. Labels A through E refer to junctions indicated below GenBank-
annotated gene track in (A). (C) PCR using junction-spanning primers in Akata, Mutu, JY and X50-7 cells.
Akata+alphaIgG and Mutu+alphaIgM refer to Akata and Mutu cells induced for 24 and 48 h, respectively.
(D) qRT-PCR of nuclear and cytoplasmic fractions of induced Akata cells (24 hours).

CHAPTER 4

Development of an algorithm to automate transcript structure determination and annotation

53

Efficiently parsing and integrating multiple data types at the genome scale requires

automation. We implemented the TRIMD method with Perl scripts for our analysis of the

lytic EBV genome (Figure 14D). Because the TRIMD concepts can be generalized to apply

to other genomes the scripts were developed to be flexible and customizable, with easily

adjustable parameters to accommodate the particularities of other genomes and datasets.

The full suite of TRIMD scripts and documentation will be available under the GNU

General Public License113 at https://github.com/flemingtonlab/public and is reproduced

here as Appendices 1-5.

The TRIMD scripts were developed assuming that Iso-Seq, deepCAGE and Illumina short-

read RNA-Seq data are processed according to the steps described in Chapter 5 (Materials

and methods). Other programs and parameters may be used providing the output files are in

the same format.

Transcription start site identification using TRIMD_start_val idator .p l

The script TRIMD_start_validator.pl accepts as input a SAM file of mapped Iso-Seq CFLs, a

SAM file of mapped CAGE tags, and a BED file of annotated polyadenylated transcripts.

Using the SAM file of mapped Iso-Seq CFLs, the script identifies CFLs that map to the

user-specified chromosome and that are not softclipped at their 5’ end. CFLs mapping to

each strand are processed separately. The 5’ start site of each qualifying CFL is identified and

54

its supporting SMRT read depth is extracted from the CFL name field. The number of

SMRT reads supporting CFLs that start at each genomic coordinate are summed to produce

a BedGraph file of CFL start sites. The script then uses this BedGraph file to identify

clusters of CFL start sites, defining start sites within a user-specified distance of each other

(default: 8) as single putative start sites and producing a temporary BED file of CFL start site

clusters. Next, the script uses the cluster information in the temporary BED file and the start

site read depth information in the BedGraph file to calculate an average of the genomic

coordinates in each cluster, weighted by the depth of SMRT read starts at each position

within the cluster. This weighted average is taken to be the Iso-Seq consensus start site for

that cluster and a BED file of consensus Iso-Seq start sites is generated. The name field of

each feature in this BED file includes the genomic coordinates of the entire cluster and the

total SMRT read start site depth of the cluster. The coordinates reported in the BED file’s

chrStart and chrEnd fields represent the weighted average consensus start site and are zero-

based, half-open relative to the genome while cluster coordinates in the name field are zero-

based for plus strand start sites and one-based for minus strand start sites.

To identify putative start sites in the deepCAGE data TRIMD_start_validator.pl incorporates

the clustering algorithm Paraclu96. The script first processes mapped CAGE tags from the

CAGE SAM file and formats the data for Paraclu by identifying tag start sites in the same

way as for Iso-Seq CFLs (above). The script also collates this start site information into a

BedGraph file that can be directly visualized on a genome browser. The Paraclu function of

the script generates start site clusters and TRIMD_start_validator.pl filters the Paraclu

output according to user-specified parameters (see Appendix 5, TRIMD_README.txt). A

temporary BED file of CAGE start site clusters is generated and a weighted genomic

55

coordinate average calculated for each cluster as for Iso-Seq 5’ ends (above). These weighted

averages are taken as putative start sites detected by deepCAGE and a BED file is generated

as for Iso-Seq start sites above.

TRIMD_start_validator.pl then compares each feature in the BED file of Iso-Seq identified

start sites with the features in the BED file of deepCAGE-identified start sites. Iso-Seq 5’

start sites that are supported by a deepCAGE 5’ start site within a user-specified distance

(default: 3 bases) are considered validated 5’ start sites and are printed to a BedDetail file,

with information about the range and depth of the Iso-Seq start site cluster included in the

sixth BedDetail field.

Finally, the list of annotated start sites is extracted from the user-supplied annotation file and

each validated start site is compared to the annotated start sites. Validated start sites within a

user-specified distance of annotated start sites (default: 10) are noted as annotated in the

name field of the output BED file, others are noted as novel (see Appendix 6 for an example

of the format). The script also provides the user with counts of total, annotated and novel 5’

start sites validated, both in the terminal window and a separately generated text file.

Many parameters in TRIMD_start_validator.pl are adjustable; for example greater SMRT read

or CAGE tag depth can be required for datasets that appear to contain a large number of

background reads. The BedGraph files of Iso-Seq and CAGE start sites, as well as the BED

files of start sites identified in either or both datasets, are useful for researchers to visually

inspect the data and select suitable parameter values.

56

Splice junction identification using TRIMD_junct ion_val idator .p l

The script TRIMD_junction_validator.pl accepts as input a file of splice junctions identified in

Iso-Seq CFLs (in the format output by the GMAP aligner114), a file of splice junctions

identified in Illumina RNA-Seq reads (in the format output by the STAR aligner115), a BED

file of annotated polyadenylated transcripts and, optionally, a BED file of genomic regions

to ignore in the analysis (e.g., repeat regions).

The script first compiles and reformats information about splice junctions detected by Iso-

Seq. Splice junctions corresponding to the user-specified chromosome are identified and the

total SMRT read depth for each of these junctions is determined. This information is

included in a BED file of Iso-Seq-identified junctions, in which chrStart and chrEnd

coordinates of each junction feature refer to the first and last bases of the excised intron. If

the user has supplied a BED file of genomic regions that are to be ignored, splice junctions

with donors and/or acceptors in those regions are removed. Next an analogous process is

carried out using the Illumina splice junctions file, converting relevant junctions to BED

format and removing those in user-excluded regions.

After the BED files are generated containing lists of introns from Iso-Seq and from Illumina

RNA-Seq, the script compares the junctions in the two files. Junctions that are detected by

each platform with at least the user-specified depth requirements (default: 1 read from each

platform) are considered validated. Lastly, annotated splice junctions are extracted from the

user-specified annotation file and compared to the validated splice junctions. Annotated

junctions are indicated as such in the BED output file and other junctions are indicated as

57

novel. The script also provides the user with counts of total, annotated and novel splice

junctions validated, both in the terminal window and as a separately generated file.

Polyadenylation site identification using TRIMD_end_val idator .p l

The script TRIMD_end_validator.pl accepts as input a SAM file of mapped Iso-Seq CFLs, a

SAM file of mapped Illumina RNA-Seq reads, and a BED file of annotated polyadenylated

transcripts.

The script first extracts 3’ ends of Iso-Seq CFLs using a method analogous to that used by

TRIMD_start_validator.pl to extract 5’ CFL start sites (see above). A BedGraph file of Iso-Seq

3’ ends is generated and used to identify clusters of 3’ ends within a user-specified distance

of each other (default: 8 bases). Consensus end sites within the clusters are determined in the

same way as for consensus start sites: by calculating an average of genomic coordinates for

each cluster weighted by SMRT read depth. A BedDetail file of Iso-Seq consensus 3’ ends is

generated, with the chrStart and chrEnd fields representing the consensus polyadenylation

site (zero-based, half open) and the sixth field containing information about the range and

depth of the full cluster.

To identify transcript 3’ ends in Illumina RNA-Seq data, TRIMD_end_validator.pl first

identifies RNA-Seq reads that map to the user-specified chromosome and end with a run of

the user-specified number of As (or start with the user-specified number of Ts – default 5),

with at least a user-specified number of bases that do not match the genomic sequence

(default: 2). These reads, which contain putative poly(A) tails, are added to a SAM file that is

then sorted by genomic coordinate. The script then extracts the polyadenylation site (defined

58

as the last base of the read that aligns to the genome before the terminal mismatches) from

each read in this SAM file and produces a BedGraph file. The BedGraph file is then used to

extract clusters and calculate consensus polyadenylation sites in the same way as for Iso-Seq

3’ and 5’ ends.

Next, TRIMD_end_validator.pl compares the consensus 3’ ends from Iso-Seq and from

Illumina RNA-Seq. Iso-Seq consensus 3’ ends that are supported by Illumina RNA-Seq

consensus 3’ ends within a user-specified number of bases (default: 4 upstream or 10

downstream) are considered validated 3’ ends. Validated 3’ ends are added to a BedDetail file

that has a sixth field containing information about the range and depth of the Iso-Seq

cluster. Because Illumina RNA-Seq 3’ end clusters were usually downstream of Iso-Seq 3’

end clusters in our datasets, Illumina RNA-Seq 3’ end coordinates are used as the validated

3’ end coordinates (chrStart and chrEnd in the BedDetail file).

Lastly, annotated 3’ end sites are extracted from the user-supplied annotation file and

compared to the validated ends. Validated ends within the user-specified distance of

annotated ends (default: 10 bases) are indicated as annotated in the output BED file, others

are indicated as novel. Additionally, the script provides users with a count of total, annotated

and novel validated 3’ ends, both in the terminal window and as a separately generated text

file.

Many TRIMD_end_validator.pl parameters are adjustable, e.g. minimum SMRT read or

Illumina RNA-Seq poly(A)-tail read depth. Output files useful for researchers to select new

parameter values, if necessary, include BedGraph files of Iso-Seq and Illumina RNA-Seq

59

polyadenylation sites, a SAM file of poly(A) tail-containing Illumina RNA-Seq reads, and

BED files of 3’ ends detected with each platform.

Transcript structure validation with TRIMD_transcr ipt_val idator .p l

The final script in the TRIMD suite, TRIMD_transcript_validator.pl, uses the BedDetail files

output by TRIMD_start_validator.pl, TRIMD_junction_validator.pl and TRIMD_end_validator.pl

to interrogate the SAM file of Iso-Seq CFLs. A BED file of annotated polyadenylated

transcripts is also used as input, to determine the annotation status of validated transcripts.

First, the script converts CFLs in the SAM file to BED format. The script then uses this

BED file to obtain the 5’ start site for each CFL, and reads the BED file of validated starts

to determine whether the CFL’s start site is contained within a cluster that was identified by

TRIMD_start_validator.pl as representing a validated 5’ start site. CFLs with validated 5’ start

sites are stored in an array along with the genomic coordinate of the validated consensus

start site.

TRIMD_transcript_validator.pl then extracts the 3’ end of each CFL that has been determined

to have a validated 5’ end. Each end is compared to the coordinate ranges in the supplied file

of validated 3’ ends, and CFLs with validated 5’ start sites and 3’ end sites are stored in a

subsequent array, along with the genomic coordinates of the validated start and end sites.

The script next investigates splice junctions in CFLs whose starts and ends are validated.

CFLs with validated starts and ends that do not contain splice junctions are considered fully

validated and added to a temporary BED file. Splice junctions in CFLs that contain validated

60

starts and ends are compared to validated splice junctions from the user-supplied file. If all

splice junctions in a CFL with a validated start and end are validated, the CFL is considered

fully validated and is added to the temporary BED file of validated transcripts.

At this point the BED file output contains transcripts whose structures are validated,

however the start and end sites of the CFLs may need to be adjusted by a few bases to

match the validated consensus start and end sites. Also, the temporary BED file likely

contains multiple validated transcripts that represent the same transcript, but differ by a few

bases at the CFL level in their 5’ starts or 3’ ends, or have minor sequence variation caused

by sequencing error. TRIMD_transcript_validator.pl thus adjusts the start and end sites when

necessary and compares the transcripts to each other. Transcripts whose splice junctions

match each other, whose start sites arise from the same cluster of validated start sites and

whose end sites arise from the same cluster of validated end sites are considered to represent

the same transcript structure. Their SMRT read depth is summed and they are represented in

the output BED file as a single transcript feature. The name of one of the contributing CFLs

is retained as the transcript name, and the score is the sum of all SMRT reads contributing to

the transcript.

Finally, the BED file of validated transcripts is compared to the user-supplied annotation file

of known polyadenylated transcripts. Transcripts that match annotated transcripts within

user-supplied parameters are noted as such, with the name of the annotated transcript

prepended to the CFL name of the transcript. Annotated transcripts are assigned the display

color for that transcript in the annotation file. TRIMD_transcript_validator.pl also provides the

61

user with the number of total, novel and annotated transcripts validated, both in the terminal

window and as a separately generated text file.

Using a genome browser to visually inspect the BED file of validated transcripts in

conjunction with the BED files of validated starts, ends and splice junctions can help the

user in troubleshooting and identification of possible false negatives and false positives.

Additionally, the source code of TRIMD_transcript_validator.pl can be manipulated to generate

intermediate files (a BED file of CFLs with validated 5’ starts, a BED file of CFLs with

validated 5’ starts and 3’ ends, and/or a BED file of fully validated CFLs before coordinate

refinement) Lines of code that should be “uncommented” in order to produce these

intermediate files are identified with comments including the word “uncomment”.

CHAPTER 5

Materials and methods

63

Cell culture

Akata, Mutu, JY and X50-7 cells were cultured in RPMI 1640 medium (Thermo Scientific,

catalog no. SH30027) supplemented with 10% fetal bovine serum (FBS; Invitrogen-Gibco,

catalog no. 16000), and 0.5% penicillin-streptomycin (pen/strep; Invitrogen-Gibco, catalog

no. 15070), in a humidified incubator at 37°C and 5% CO2.

Lytic cycle induction

Near-saturation cell cultures were diluted with equal volumes of fresh RPMI 1640 (with 10%

FBS and 0.5% pen/strep) one day prior to induction. The next day, cells were pelleted and

resuspended at a concentration of 106 cells/ml in fresh RPMI 1640 (with 10% FBS and 0.5%

pen/strep) plus 10 µg/ml of anti-IgG (for Akata cells - Sigma-Aldrich, catalog no. I2136) or

10 µg/ml of anti-IgM (for Mutu I cells - Sigma-Aldrich, catalog no. I0759). For Illumina

RNA-seq, Akata cells were harvested at 0 minutes (uninduced), 5 minutes, 30 minutes, 1

hour, 2 hours, 4 hours, 8 hours, 24 hours, and 48 hours after induction. Mutu cells were

harvested at 0 hours (uninduced) and 24 hours. For Pacific Biosciences Iso-Seq, Akata cells

were harvested at 20 hours and 24 hours. For deepCAGE Akata cells were harvested at 24

hours.

64

For phosphonoacetic acid (PAA) experiments, Akata cells were resuspended in media that

contained either 200 µg of PAA/ml or no PAA in addition to anti-IgG. Cells were harvested

24 hours after treatment.

Transcript knockdown with GapmeR antisense oligonucleotides

GapmeRs targeted to the BZLT12-22 transcripts (sequence: TTTGGCCAGTCTTAAT)

were designed and ordered from Exiqon. For knockdown, Akata cells were pelleted and

resuspended in RPMI 1640 medium supplemented with 10% FBS (no antibiotic) and

maintained in antibiotic-free medium for at least 2 days. For transfection, 3 × 106 cells per

treatment were pelleted and resuspended in 100 µl Nucleofector Solution R (Lonza catalog

no. VVCA-1001) with 600 pmol targeted GapmeR of negative control GapmeR A (Exiqon,

catalog no. 300613-04). Cells were electroporated using program G-16 and transferred to a

6-well plate containing warm RPMI 1640 + 10% FBS. On the following day an equal

volume of RPMI 1640 + 10% FBS, with 10 µg/ml anti-IgG or no anti-IgG was added to

each well. 24 hours later the cells were harvested and RNA extracted (below).

RNA extraction

RNA was extracted with TRIzol reagent (Life Technologies, catalog no. 15596-018)

according to the vendor’s protocol. Nuclear and cytoplasmic RNA isolation for qRT-PCR

was carried out using a cytoplasmic and nuclear RNA purification kit from Norgen Biotek

(catalog no. 2100).

65

Illumina RNA-seq

RNA samples were	
 treated with RNase-free DNase (Qiagen, catalog no. 79254 or Ambion,

catalog no. AM1906) according to the vendor's protocol, then either poly(A)-selected or

ribodepleted (Ribo-Zero; Epicentre, catalog no. MRZH11124) and prepared using the

TruSeq stranded protocol (Illumina, catalog no. RS-930-2001). Ribodepleted samples

underwent 101 base single-end sequencing using an Illumina HiSeq 2000 instrument.

Poly(A)-selected samples underwent 2 × 101 base paired-end sequencing using an Illumina

HiSeq 2000 instrument. RNA samples from the GapmeR knockdown experiment were

poly(A)-selected and underwent 101 base single-end sequencing. Poly(A) selection, library

preparation and sequencing were performed by the University of Wisconsin Biotechnology

Center, Madison, Wisconsin, USA.

Pacific Biosciences Iso-Seq

For Iso-Seq, polyadenylated RNA was first selected using a Poly(A)Purist MAG kit (Life

Technologies, catalog no. AM1922). 7 ug of poly(A) RNA from the 20 hour induction time

point and 3.3 ug of polyA RNA from the 24 hour induction time points were pooled.

Library preparation and sequencing were performed according to the Pacific Biosciences

Iso-Seq protocol by the Johns Hopkins Deep Sequencing and Microarray Core Facility,

Baltimore, Maryland, USA. Eight SMRT cells were used: two with a 1-2 kb RNA fraction,

two with a 2-3 kb RNA fraction and four with non-size-selected RNA. Raw data was

processed using RS_IsoSeq on SMRTPortal version 174 to obtain full-length consensus

isoforms.

66

deepCAGE

For deepCAGE, nAnT-iCAGE libraries116 were prepared from RNA extracted from two

parallel samples of induced Akata cells. From each sample a portion of the RNA was treated

with DNAse (Ambion AM1906) and a portion not treated, for four total samples. Samples

were subjected to 50-base single-end sequencing using an Illumina HiSeq 2500 instrument.

Library preparation and sequencing were performed by DNAform, Yokohama, Japan.

Data acquisition

Pacific Biosciences SMRT sequence data for type III latency lymphoblastoid cell lines was

downloaded from NCBI SRA, accession number SRP036136102. RNA-Seq data for JY cells

was downloaded from NCBI SRA, accession number SRR36406534,117.

Sequence Alignments

Illumina RNA-Seq reads were aligned using indexes containing both the human (hg19

assembly) and the Akata EBV (KC207813.143) genomes. For these analyses, the circular

EBV Akata genome was split between the BBRF3 and BGLF3 genes (between positions

107954 and 107955) rather than the terminal repeats to allow for the detection of LMP2

transcripts, which span the terminal repeats. Alignments were performed as noted for

different analyses using Novoalign version 2.08.02 (Novocraft; -o SAM –r R, default

options), Bowtie118 version 2 (–library-type fr-firststrand, default options) and STAR115

version 2.3.01 (default options unless otherwise noted). For analyses that used both paired-

end and single-end RNA-Seq data (see Chapter 2), only the first read of the paired-end

sequencing data was analyzed in order to maintain consistency.

67

Pacific Biosciences Iso-Seq full-length consensus isoforms (CFLs) were aligned and mapped

with GMAP114 release 2014-07-21 to the human (hg 19 assembly) and Akata EBV

(KC207813.143) genomes. The circular EBV Akata genome was split as above between

positions 107954 and 107955. Full-length isoforms unpolished by Quiver were used in these

analyses as we observed that Quiver polishing sometimes obscured introns and prevented

discrimination of overlapping transcripts in the gene-dense EBV genome. Only reads

mapping to a single location were retained (argument –n 1).

deepCAGE tags were mapped with STAR version 2.3.01 (--outFilterMultimapNmax 100 --

outSAMprimaryFlag AllBestScore, to allow detection of potential start sites in repeat

regions).

For Pacific Biosciences SMRT sequence data from type III latency lymphoblastoid cell lines,

reads were first oriented using their poly(A) tails. Reads ending with AAAAAAA and reads

beginning with TTTTTTT were extracted. Reads beginning with TTTTTTT and their

quality scores were reversed to produce fastq files of “sense” oriented RNA. These reads

were then aligned with GMAP 114 release 2014-07-21 to the Akata EBV (KC207813.143)

genome, split as above between positions 107954 and 107955.

Strand specificity calculation for Illumina RNA-Seq

Strand specificity was determined using a set of highly-expressed cellular genes without

known antisense transcription (GAPDH, ACTB, RPL8, EEF2, RPS6, RPLP1, GNB2L1 and

PFN1). To confirm the absence of antisense transcription, Bowtie2/TopHat aligned reads

68

were visualized on the IGV genome browser119,120 and each gene was visually inspected for

clusters of antisense reads that might represent previously unannotated antisense transcripts.

No likely antisense transcript was discovered for these genes. To calculate strand-specificity,

coverage files were generated using IGVtools119,120 from Bowtie2/TopHat aligned data,

containing the number of reads covering each genomic coordinate for each strand of each

gene. The gene coverage files were converted to exon coverage files using the BedTools

command intersectBed121 and an exon bed file from the hg19 assembly of the human

genome. At all nucleotide positions with 200 or more sense reads, the number of antisense

reads was divided by the number of sense reads and multiplied by 100 to obtain the percent

background antisense reads. The mean and standard deviation were then calculated to

determine the average level and variability of antisense background.

Calculation of EBV-mapping reads and induction level

The number of single-end or first-in-pair reads aligned to the EBV genome by

Bowtie2/TopHat with a primary alignment (SAM FLAG code 0 or 16) was divided by the

total number of reads with a primary alignment on either genome and multiplied by 100. To

allow better comparison between poly(A)-selected and ribodepleted datasets, reads

overlapping the highly-expressed, non-polyadenylated EBER genes were removed in both

directions prior to calculating the percentage of reads mapped to EBV. The fold change

between induced and uninduced conditions was calculated by dividing the percentage of

reads mapped to EBV at 24 hours post-induction by the percentage of reads mapped to

EBV at 0 minutes post-induction.

69

Determination of transcribed EBV genome loci

Coverage files containing the number of reads covering each EBV genomic coordinate were

generated with IGVtools for each strand of the EBV genome from Bowtie2/TopHat

aligned files. For the purposes of this analysis a nucleotide position was considered to be

transcribed if it met both of the following criteria: 1) the number of reads mapping to the

respective base was greater than 4, and 2) the number of reads mapping to that base was

higher than the expected antisense background from opposite strand reads (i.e., the opposite

strand read numbers multiplied by the average antisense background) plus 4 standard

deviations. Transcription was considered to be “known” if the base was contained within a

GenBank-annotated exon (KC207813.143).

Quantification of gene expression using strand information

For the analysis in Chapter 2, expression levels of known EBV and cellular genes were

quantified from Bowtie2/TopHat aligned files using SAMMate122. Quantification was made

strand-specific by using a separate annotation file for each strand in conjunction with a SAM

file containing only reads aligning to the strand matching the annotation file. To allow for

direct comparison of RPKM (reads per kilobase of transcript per million mapped reads)

values generated for different strands, these RPKM values were multiplied by the ratio of the

sum of read counts for that strand (as determined by SAMMate) to the total number of

mapped reads for both strands of the two genomes (as determined by Bowtie2/TopHat).

Levels of antisense expression to known genes were quantified using the annotation file for

one strand together with a SAM file containing only reads aligning to the opposite strand.

Antisense RPKM values were corrected as described above. Non-strand specific expression

70

values for previously known genes were obtained in the poly(A)-selected dataset by

combining sense and antisense read counts for each gene from strand-specific SAMMate

output and dividing by the gene’s transcript length in thousands and by the number of

million mapped reads.

For the analysis in Chapter 3, transcript abundance estimates were generated from Illumina

RNA-Seq reads using RSEM123 with an annotation file including the human genome

GRCh38 assembly and GenBank Akata annotation (KC207813.143).plus transcript

coordinates representing the novel transcript BCLT2.

Comparison of novel EBV gene expression to cellular transcript levels

Prior to the determination of the structures or the novel EBV transcripts, RPKM or TPM

values could not be calculated to measure abundance at the transcript level. To compare

EBV transcription levels with cellular transcription levels for the analysis in Chapter 2, per-

base EBV read counts were first normalized by dividing by the total number of million reads

mapped by Bowtie2/TopHat to either genome. This value is the Reads per Million mapped

reads (RPM) at each position. To determine the expression level of the top quartile of

cellular genes, cellular gene expression was quantified with SAMMate122 as described in the

previous section. The strand-specific RPKMs for the plus and minus strand cellular genes

were combined, genes with fewer than two reads aligning were removed, and the top quartile

expression level was determined. To allow comparison of per-base EBV read levels to the

top quartile of cellular genes, the RPKM value representing the 75th percentile of cellular

genes was converted to an RPM value by multiplying by 1000 and dividing by the read

length (101).

71

Determination of Iso-Seq and Illumina RNA-Seq coverage of cellular genes

An annotation file of human (hg 19 assembly) RefSeq124 RNA transcripts with either

Reviewed or Validated status was downloaded using the UCSC Table Browser125. A

transcript was considered to have full-length Iso-Seq coverage if an Iso-Seq CFL’s 5’ and 3’

ends mapped within 50 and 20 bp respectively of the annotated transcript’s 5’ and 3’ ends. A

transcript was considered to have partial coverage if an Iso-Seq CFL’s 3’ end aligned within

20 bp of the annotated transcript’s 3’ end, its 5’ end did not map within 50 bases of the

annotated transcript’s 5’ end, and at least five Illumina RNA-Seq reads mapped by STAR to

the first exon within 100 bp of the 5’ end (this reduces false calls of “partial coverage” for

non-expressed transcripts that share a 3’ end with expressed transcripts).

Identification of transcription start sites

Iso-Seq full-length consensus isoform 5’ ends mapping without softclipping to within 8 bp

of each other on the genome were considered a single candidate transcription start site. The

consensus transcription start sites were determined by calculating weighted averages of the

start coordinates, with weighting based on the number of SMRT reads starting at each

coordinate.

Clusters of start sites in mapped deepCAGE data were extracted using Paraclu96. Clusters

were required to be less than 20 bases long, contain at least 15 CAGE tags and have a

relative density fold change of at least 2. Consensus transcription start sites were determined

by calculating weighted averages of the start coordinates, with weighting based on the

number of CAGE tags starting at each coordinate. Consensus start sites appearing within 2

72

bases of each other in at least three of the four CAGE samples were used to validate SMRT

consensus transcription start sites.

SMRT consensus transcription start sites were considered validated if they were within 3

bases of CAGE consensus transcription start sites.

Identification of splice junctions

For the analysis in Chapter 2 splice junctions were identified using TopHat126 version 2.0.6

(default options). Splice junctions in the poly(A)-selected RNA dataset were reported if they

were supported by at least 5 reads. Splice junctions in the ribodepleted dataset were reported

if they were supported by at least 10 reads, because approximately twice as many reads from

this dataset mapped to the EBV genome (see Table 2). Because 101-bp reads cannot be

assigned definitively to specific splice junctions within the repeats, junctions with a donor

and/or acceptor in the W-repeat region (bases 75265-98628 on the inverted Akata genome)

were ignored in this analysis.

For the analysis in Chapter 3 splice junctions were identified by GMAP (argument –f

introns) for Iso-Seq CFLs and by STAR version 2.3.01 for Illumina reads. Splice junctions

were considered validated if they were detected by both Iso-Seq and Illumina RNA-Seq

datasets. To find Illumina reads mapping to splice junctions in the IR1 W repeat region

(bases 75265-98628 on the inverted Akata genome), the STAR outFilterMismatchNmax

argument was set to 100 to report alignments for reads that mapped up to 100 times. A

repeat splice junction was considered to have been detected by Illumina RNA-Seq if any of

the set of possible alignments was reported by STAR. Illumina RNA-Seq read depth for

73

repeat splice junctions was normalized by dividing by the number of equivalent genomic

alignments possible.

Identification of polyadenylation sites

For the analysis in Chapter 2 Illumina RNA-Seq reads with runs of 5 or more Ts at their 5’

end were extracted from Novoalign-generated SAM alignment files from ribodepleted RNA

isolated from cells treated with anti-IgG for 24 hours. All reads with 5’ poly(T)s were then m

to the Akata genome using BLAST version 2.2.28+127. Reads with mismatches at the first

two or more positions of the read were identified as candidate poly(A) tail reads. Mapping

data for this set of reads were then used to generate a BED file for visualization on a

genome browser.

For the analysis in Chapter 3 a combined Iso-Seq and Illumina RNA-Seq approach was used.

To identify 3’ ends represented in the Iso-Seq data, full-length consensus isoform 3’ ends

aligning within 8 bp of each other on the genome were considered a single candidate

polyadenylation site. The consensus polyadenylation sites were determined by calculating

weighted averages of the end coordinates, with weighting based on the number of SMRT

reads ending at each coordinate. Next, Illumina RNA-Seq reads containing putative poly(A)

tails were extracted from STAR-generated SAM alignment files using the following criteria:

reads identified by FLAG code as being first-of-pair (for paired-end sequencing) that end

with a run of at least 5 As, at least 2 of which are softclipped (plus strand) or that start with a

run of at least 5 Ts, at least 2 of which are softclipped (minus strand). Illumina reads with

putative poly(A) tails were extracted from 22 different RNA-Seq datasets representing

multiple time points relative to anti-IgG induction, and both poly(A)-selected and

74

ribodepleted RNA preparations. The alignment position of the softclipped-adjacent bases

was taken to represent a candidate polyadenylation site, with sites situated within 8 bases of

each other considered single candidate polyadenylation sites. The Illumina consensus

polyadenylation site was determined using a read-end-depth weighted average as for the Iso-

Seq isoform 3’ ends (above). Candidate polyadenylation sites were considered validated if

they were supported by at least 5 SMRT reads and the presence of an Illumina candidate

polyadenylation site on the same strand within 4 bases upstream or 10 bases downstream. As

Illumina consensus polyadenylation sites were almost always downstream of Iso-Seq

consensus polyadenylation sites, the coordinate of the Illumina consensus polyadenylation

site was considered to be the validated end coordinate

Transcript validation

Each Iso-Seq CFL was examined to determine whether its 5’ end, 3’ end and splice junctions

(if any) met the criteria described above for validation. When reporting transcripts, 5’ and 3’

ends that formed part of validated consensus transcription start sites and polyadenylation

sites were adjusted to match the validated consensus sites, if necessary. Finally, Iso-Seq CFLs

that had matching validated transcription start sites, polyadenylation sites and splice

junctions (if any) were collapsed into “validated transcripts”.

Calculation of Coding Potential

For the analysis in Chapter 2 the coding potential of known and novel transcripts was

calculated using the Coding Potential Calculator88. For transcripts with ambiguous 5’ or 3’

75

ends, several sequences of varying length were used as input. Representative results are

shown.

For the analysis in Chapter 3 sequences of validated isoforms were analyzed for coding

potential and the presence of open reading frames with the Coding Potential Assessment

Tool103.

5′ and 3′ RACE

5’ and 3’ RACE (Rapid Amplification of cDNA ends) was performed using the SMARTer

RACE cDNA Amplification Kit (Clontech catalog number 634924). cDNA was prepared

with Primer A or with Random Primer Mix to detect polyadenylated and non-polyadenylated

transcripts, respectively. Thermal cycling was performed according to the manufacturer’s

Program 2. RACE PCR products were cloned using a TOPO TA cloning kit (Invitrogen

catalog number K4575) and sequenced using the Sanger method.

Table IV: 5’ and 3’ RACE Primers
EBNA3A

5’ RACE primer 1 CCGGCGGCCAGGGTTTGCAGTCTCCA
5’ RACE primer 2 ACGTGACACCTACGGCCACCTGTGCA
5’ RACE primer 3 GCTCTCCGCGTCCTCACTTTCTTCCCG
5’ RACE primer 4 TGCCCTGTTCCGTTCGTTTGCCCGCT
5’ RACE primer 5 TGCACAGGTGGCCGTAGGTGTCACGT
5’ RACE primer 6 ACACCGATCACCAGACGACTCCCAC
5’ RACE primer 7 TCCCACCCCAGCCGGATCTCCCT

EBNA3B
5’ RACE primer 1 TGTGAACCCAACGCAGGCTCCAGTGA
5’ RACE primer 2 CACGTCGTGCTAGGTCACTTTCGGCAGA
3’ RACE primer 1 GCCAGCACTGTACGTTGTTGCATGCCG

76

qRT-PCR

For the analysis in Chapter 2, cDNA was synthesized from RNA extracted from PAA-

treated cells at the 24 hour time point using the Superscript III First Strand Synthesis System

(Invitrogen catalog number 18080-051) with oligo(dT) primers. qRT-PCR reactions were

carried out using iQ SYBR Green Supermix (Bio-Rad catalog number Cat No: 170-8882) on

a Bio-Rad CFX96 instrument as follows: 1 µl cDNA product was denatured for 3 minutes at

95°C and amplified for 40 cycles of 15 seconds denaturation at 95°C and 1 minute

annealing/extension at 60°C. Transcript abundance was quantified using the Comparative CT

method (2-ΔΔCT).

For the analysis in Chapter 3, cDNA was synthesized from RNA using an iScript cDNA

synthesis kit (Rio-Rad catalog no. 170-8891) according to the vendor’s protocol. Quantitative

PCR was performed using iQ SYBR green Supermix (Bio-Rad, catalog no. 170-8882) on a

Bio-Rad CFX96 instrument. 1 µl of cDNA product was denatured for 3 min at 95°C and

amplified for 40 cycles of 15-s denaturation at 95°C and 1-min annealing/extension at 58°C.

Total RNA transcript abundance was quantified using the comparative CT method (2-ΔΔCT)

normalized to ACTB. Nuclear to cytoplasmic ratios were calculated as 2-NuclearCt-CytoplasmicCt.

77

Table V: RT-PCR primers
ACTB CACTCTTCCAGCCTTCCTTC GTACAGGTCTTTGCGGATGT
Zta (Ch. 2) GAAGCCACCCGATTCTTGTAT CGACGTACAAGGAAACCACTAC
Zta (Ch. 3) CACGACGTACAAGGAAACCA GAAGCCACCTCACGGTAGTG
W1-W1 TCGGGCCAGAGCCTAGGG TGGTCCAGGGACTTCACTTC
W1-BHRF1 AGGGGAGACCGAAGTGAAGT CCCTTGTTGAATAGGCCATC
W1-W2 AGGGGAGACCGAAGTGAAGT CCTTCTACGGACTCGTCTGG
LMP2A 1-2 CCTACTCTCCACGGGATGAC CGGTGTCAGCAGTTTCCTTT
Junction A GCAGGTCAGACTTGGTGCTT GAGTTGTTTCCGCCATCGT
Junction C GCCCGAGGAGCTGTAGACC GAGTTGTTTCCGCCATCGT
Junction D CGATAGAGGGCCAGGTAGTG GAGTTGTTTCCGCCATCGT
Junction E GCAAAGGCAGGTCTTTCTCA GAGTTGTTTCCGCCATCGT

Strand-specific qRT-PCR

The method of Feng et al.128 was used for strand-specific quantitative reverse-transcription

PCR. cDNA was synthesized from RNA at 65°C for 50 minutes using gene-specific

sequence modifying primers (or non-sequence modifying reverse primers for Zta and

Kcnq1ot1) and ThermoScript reverse transcriptase (Life Technologies, catalog no. 12236-

022) according to the manufacturer’s protocol. Quantitative PCR was performed using iQ

SYBR green Supermix (Bio-Rad, catalog no. 170-8882) on a Bio-Rad CFX96 instrument. 1

µl of cDNA product was denatured for 3 min at 95°C and amplified for 40 cycles of 15-s

denaturation at 95°C and 1-min annealing/extension at 58°C. Melting-curve analysis was

performed from 58 to 95°C with a ramp of 0.5°C/5 s to confirm strand specificity (Figure

26). Total RNA transcript abundance was quantified using the comparative CT method

(2-ΔΔCT) normalized to ACTB. Nuclear to cytoplasmic ratios were calculated as

2-NuclearCt-CytoplasmicCt.

78

Table VI. cDNA and PCR primers for strand-specific qRT-PCR
EBNA2

cDNA primer GCAACCCCTAACGTTTCACCgggcCggGAACCGG*

PCR primers GCAACCCCTAACGTTTCACC
CGGGGAAGAGAATGGGAGC

Zta
cDNA primer CACGACGTACAAGGAAACCA
PCR primers CACGACGTACAAGGAAACCA

GAAGCCACCTCACGGTAGTG
EBNA3B

cDNA primer TGGCATTGTACAGATACCACGAgcggCgGACCAAAAC*

PCR primers TGGCATTGTACAGATACCACGA
CCGAAAGTGACCTAGCACGA

BCLT2/3
cDNA primer GTTCAGTGCGTCGAGTGCTcgCggcGGAACAG*

PCR primers GTTCAGTGCGTCGAGTGCT
CGCCAACAAGGTTCAATTTT

ACTB
cDNA primer GTACAGGTCTTTGCGGATGTttAtaTaACACTTCATG*

PCR primers GTACAGGTCTTTGCGGATGT
CACTCTTCCAGCCTTCCTTC

Kcnq1ot1
cDNA primer GCTGATAAAGGCACCGGAAGGAAA

PCR primers GCTGATAAAGGCACCGGAAGGAAA
TACCGGATCCAGGTTTGCAGTACA

*Lower case letters indicate sequence-modifying bases

79

FISH and immunofluorescence

For the analysis in Chapter 2, fluorescence in situ hybridization (FISH) was performed with

custom Stellaris RNA FISH probes (Biosearch Technologies) using CAL Fluor Red 610,

according to the vendor’s protocol. 10 × 106 24 hour induced or uninduced Akata cells were

used per treatment. Images were captured on a Leica DMRXA2 Deconvolution upright

Figure 26. Strand specific qRT-PCR. Representative Ct curves and melting
curves are shown for each set of primers. Sequence modifying RT primers
increase (EBNA2 and EBNA3B) or decrease (ACTB) the melting temperature
of the PCR amplicons relative to the unmodified amplicon.

80

microscope. 3D imaging of Akata cells was acquired using a 100x/1.35 oil objective on a

motorized XYZ-stage with a Cooke SensiCAM camera using Slidebook software.

For the analysis in Chapter 3, immunolabeling was performed simultaneously with FISH

using a modified version of the Stellaris protocol with mouse anti-EBV EA-D-p52/50

antibody (EMD Millipore catalog no. MAB8186) and Alexa Fluor 488 goat anti-mouse

secondary antibody (Life Technologies catalog no. A11001). Briefly, 10 × 106 24 hour

induced or uninduced Akata cells were washed, fixed in freshly made fixation buffer and

permeabilized for approximately 24 h. Cells were hybridized overnight at 37°C using freshly

made hybridization buffer with 50 nM FISH probe or no probe, then incubated with the

primary antibody (diluted 1:200) for 3 hours at room temperature, washed, and incubated for

30 minutes with the secondary antibody (diluted 1:500) and 5 ng/ml DAPI at 37°C in the

dark. Cells were then washed a final time, mounted on slides with Prolong Diamond

mounting medium (Life Technologies catalog no. P36961) and cured in the dark for two

days. Imaging was performed using a Zeiss Axioplan 2 upright microscope and Z-stacks

were deconvolved using Slidebook software, version 6 (Intelligent Imaging Innovations).

CHAPTER 6

Discussion and future directions

82

Increasing the functional capacity of the genome

Our findings of hundreds of new transcripts arising from pervasive transcription of the EBV

genome indicate that the functional capacity of the genome extends far beyond a set of

canonical open reading frames situated between TATA boxes and polyadenylation signals.

Using our long-read sequencing based approach to identify new transcript structures we

have revealed many different types of transcripts, including wholly novel transcripts,

antisense transcripts, chimeric transcripts that fuse multiple annotated genes, and novel

isoforms that feature alternative splicing, extended or truncated untranslated regions, and

even truncated reading frames of known genes.

Many of the novel transcripts contain annotated open reading frames but extended or

truncated untranslated regions (UTRs), especially 5’ UTRs. Untranslated regions play major

roles in mRNA regulation, often providing binding sites for regulatory proteins or RNAs

that control mRNA cellular localization, translation or degradation129. Eukaryotes are known

to use UTR variations to differentially control mRNA in different cell types and

differentiation states130,131 and even between individual cells of the same type132. The

abundance of related isoforms in our dataset suggest that the virus is exploiting UTR

variations as a mechanism of mRNA modulation.

Alternative transcription start site usage sometimes goes beyond altering just the gene’s 5’

UTR and affects the open reading frame. For example, a truncated form of the LMP1

83

protein arising from alternative promoter usage during lytic replication in some EBV strains

negatively regulates LMP1 signaling pathways and promotes degradation of full-length,

latency-associated LMP1133,134. Many of the novel transcripts reported here contain similar

smaller, in-frame ORFs of annotated genes. Informatic analysis of many of these transcripts

indicates that they are likely coding mRNA (data not shown). While we are unable to verify

in this study whether or not these isoforms are translated, ribosomal profiling after treatment

with harringtonine reveals pileups of initiating ribosomes at many downstream in-frame start

codons within known ORFs of KSHV33, HCMV27 and humans135. The resulting N-terminal

truncated proteins can play roles in cellular stress-response signaling136 and impact protein

localization137.

In addition to truncated reading frames, some novel transcripts contain reading frames that

are extended through alternative splicing (e.g. see Figures 25A and 27) and even chimeric

open reading frames (e.g, see Figure 22). The EBV fusion protein Raz, generated from an

alternatively spliced transcript that produces a chimeric Rta-Zta protein, regulates Rta138. The

novel transcripts presented here raise the possibility that the phenomenon of fusion proteins

is more widespread in the EBV proteome.

Ribosomal profiling in KSHV33 and HCMV27 has also revealed extensive translation of

previously unannotated ORFs. Often those ORFs were not previously identified because

they are shorter than traditional ORFs, encoding 100 or fewer amino acids. Short proteins

are also abundant in the human proteome139, and both viral and eukaryotic small peptides

have been shown to be functional140,141. In some cases these short ORFs are translated from

putative noncoding transcripts like KSHV’s PAN33, raising the possibility that some of the

84

newly-identified EBV transcripts that appear to be noncoding may in fact be translated. In

other cases the short ORFs are present in the putative 5’ UTR of mRNA. It has long been

known that upstream ORFs regulate at least one HCMV gene142 and ribosomal profiling

suggests the mechanism may be widespread in HCMV27. Functional upstream ORFs are also

prevalent in the human genome, regulating mRNA translation and degradation143-145. Several

of the novel EBV transcripts with extended 5’ UTRs contain upstream ORFs (e.g.,

BZLT3/4/5: Figure 27), which may impact the translation or stability of those transcripts.

In addition to the many transcripts that are novel isoforms of known protein-coding genes

with altered ORFs or UTRs, many of the novel transcripts are predicted to be noncoding.

Figure 27. TRIMD-validated BRLF1 and BZLF1 isoforms. Light blue = GenBank-annotated isoforms.
Dark blue = novel isoforms.

85

This finding of substantial numbers of noncoding transcripts parallels findings from the

human transcriptome, in which next-generation sequencing has revealed many long

noncoding transcripts78,146. Some of these appear to be noncoding isoforms of coding genes

(e.g. some LMP2 isoforms – Figure 25 and BZLT8 – Figure 27). Others represent novel

transcription of putative intergenic regions (e.g. BCLT2-4 – Figure 21). Some are antisense

to known protein coding genes (e.g. BZLT12-22 – Figures 22 & 23): these are particularly

abundant at latency loci. While some of the putative noncoding transcripts may encode

novel short ORFs, those that we tested are mostly localized to the nucleus (Figures 6, 7, 8,

21 & 25), suggesting noncoding roles. Several cellular lncRNAs that localize to the nucleus

have been determined to function as transcriptional regulators. Interestingly, knockdown of

the noncoding RNA arising from EBV’s OriP locus leads to a widespread repression of viral

transcription147, and knockdown of several different noncoding RNAs in MHV68 leads to

altered expression of a lytic viral protein30.

Novel isoforms of latency-associated transcripts during reactivation

While many of the novel EBV transcripts are structural variations of lytic genes, latency loci

are remarkable for the abundance of novel isoforms relative to annotated isoforms. LMP2 is

particularly striking: neither LMP2A or LMP2B is detected in its annotated form in Iso-Seq

CFLs, but multiple isoforms arising from alternative promoters and using alternative splicing

are present (Figure 25). Isoforms of EBNA2, EBNA3A and EBNA3C arising from

downstream transcription start sites are also present in our dataset (Figure 23 and data not

shown). Full-length annotated forms of the EBNA transcripts are not detected by Iso-Seq,

though that is possibly due to their length (see Chapter 3). Both LMP1 and EBNA1 are

known to use alternate promoters during viral replication148-150; potentially other latency-

86

associated genes use a similar mechanism to provide an additional level of transcriptional

and translational control under different gene expression programs. While transcription and

translation of LMP2 and EBNA2/3A/3B/3C have been observed by others using

microarrays and Western blots23,24,81,82, this level of structural detail was not observable with

those technologies.

Mechanics of pervasive transcription

The mechanisms by which EBV achieves this high diversity of transcripts have yet to be

determined. Many of the novel transcripts appear with the same timing as viral Late genes

(Figures 6, 7, 8, 21 & 24) which, unlike the Immediate Early or Early genes are under the

transcriptional control of the viral pre-initiation complex (vPIC)22,151. While the vPIC is

known to recognize the Late-gene associated genomic TATT motif, possibly it can also

initiate transcription at alternate sites late in reactivation. Recent reports about cellular

transcriptional control may offer some clues about readthrough transcription. Rutkowski et

al. report massive transcriptional readthrough in the cellular genome of fibroblasts in

response to HSV-1 infection152, while Vilborg et al. make a comparable observation in neural

cells in response to osmotic stress153. These similar observations in very different systems

hint at the possibility of a broadly used mechanism, especially considering that the osmotic

stress-induced readthrough was dependent on intracellular Ca2+ release, a process critical to

both HSV-1 infection154 and EBV reactivation155.

87

Refinement of EBV genome annotation

In addition to resolving the isoform structures of nearly 200 novel transcripts, using TRIMD

we are able to refine the annotation for nearly two thirds of annotated transcripts. This

assigns genomic start and end coordinates based on experimental evidence from multiple

platforms, refining transcript ends that had previously been annotated based on the presence

of TATA boxes and polyadenylation signal motifs in the genomic sequence43,97. Most refined

ends correspond as expected with annotated ends, with transcription start sites occurring 25

to 35 bases downstream of TATA boxes and polyadenylation sites occurring 10 to 30 bases

downstream of polyadenylation signals. In addition, we are able to determine 5’ and 3’

transcript ends for many genes that do not have canonical TATA boxes or polyadenylation

signals near their open reading frames. The updated annotation is available as Appendix 10

and at https://github.com/flemingtonlab/public.

Completeness of annotation

While the set of isoforms we identified in Chapter 3 more than quadruples the size of the

catalog of known EBV transcripts, we believe that further transcripts exist that were

undetectable in this study. A sizable proportion of expressed cellular transcripts was not

represented in our Iso-Seq dataset, with longer transcripts especially lacking representation

(Figure 14C). To estimate how many polyadenylated EBV transcripts may remain

undiscovered, we used information about the lengths of validated EBV isoforms and the

proportion of annotated cellular transcripts of each length with full-length Iso-Seq coverage

(Figure 14C). Further, we used the proportion of annotated EBV transcripts longer than

3,233 bases (the length of the longest EBV isoform validated by TRIMD) to estimate how

88

many longer transcripts might be missing from our dataset. Using these measures, we

estimate that over 900 polyadenylated transcripts are expressed during EBV reactivation

(Figure 28). Some of these transcripts were partially captured by Iso-Seq and TRIMD, as

indicated by features in our sets of validated 5’ starts, splice junctions and 3’ ends that do not

correspond to fully validated isoforms (see for

example Figure 20).

It is also notable that we observed deeper and

more extensive Illumina short-read coverage of

the genome from ribodepleted RNA than from

poly(A)-selected RNA (Figure 4). This indicates

that there are likely many additional lytic EBV

transcripts that are not polyadenylated, and

therefore not detectable by the Iso-Seq method.

Future directions

As indicated above, capturing the structures of extremely long transcripts and of non-

polyadenylated transcripts will be necessary to create a complete annotation of the EBV

transcriptome. New technologies will need to be developed and implemented to accomplish

this. While this will be extremely helpful for transcript quantification purposes and the

interpretation of genome-modification experiments, possibly more important than complete

transcriptome annotation is identification of the function of these novel transcripts.

Knockdown of some noncoding transcripts in both EBV147 and MHV6830 have had a global

Figure 28. Length distribution of detected and
predicted polyadenylated EBV isoforms.
Number of predicted isoforms is calculated
based on the proportion of full-length cellular
transcripts captured (Figure 1C) and the
percentage of annotated EBV transcripts
longer than the longest validated isoform.

89

impact on the viral lytic cycle; further investigation is necessary to elucidate the functions

and mechanisms of other transcripts.

Important clues to the function of many transcripts may be gained by determining their

coding status using ribosomal profiling. This method has revealed many novel and truncated

reading frames in both KSHV33 and HCMV27, and can indicate the coding status of EBV

transcripts in a more rigorous and accurate way than sequence analysis. This could provide

valuable insight into, for example, the alternative promoter usage at the LMP2 locus that

appears to give rise to a collection of both nuclear noncoding and cytoplasmic coding

transcripts (Figure 25).

Valuable information may also be gleaned from recently developed single-cell sequencing

technologies. Though induced reactivation in Akata cells is believed to be largely

synchronous there is always a small percentage of cells undergoing spontaneous reactivation,

and single-cell imaging methods have shown that some cells respond differently to BCR-

crosslinking, delaying their entry into the lytic cycle or causing a switch to a different form of

latency82,156. This obscures the temporal dynamics of Immediate Early, Early and Late genes

as observed in bulk sequencing (e.g., Figure 5), based on which we inferred that most novel

transcripts detected here are Late. There is further the possibility that different viral or

cellular transcripts are expressed in different cells at the same stage of reactivation, which

can only be determined by analysis at the single-cell level.

This work is based largely on the analysis of transcripts present in EBV-infected cells at

different stages of reactivation. Lytic genes are also known to be expressed upon de novo

90

infection of cells157-159, though it is not currently known whether the pervasive transcription

associated with lytic reactivation occurs. Viral and cellular RNA is also known to be

packaged into EBV virions and exosomes to facilitate infection157,160, though a global

examination of the transcripts included has not been undertaken.

LIST OF REFERENCES

92

1 Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus Particles in Cultured
Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703 (1964).

2 Murray, P. & Young, L. Hodgkin’s lymphoma: molecular pathogenesis and the
contribution of the Epstein-Barr virus. in Epstein-Barr Virus (ed E. Robertson)
(Norfolk: Caiser Academic Press, 2005).

3 Raab-Traub, N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12,
431-441 (2002).

4 Takano, Y. et al. The role of the Epstein-Barr virus in the oncogenesis of EBV (+)
gastric carcinomas. Virchows Archiv 434, 17-22 (1999).

5 Sixbey, J. W., Nedrud, J. G., Raab-Traub, N., Hanes, R. A. & Pagano, J. S. Epstein-
Barr virus replication in oropharyngeal epithelial cells. N Engl J Med 310, 1225-1230
(1984).

6 Karajannis, M. A., Hummel, M., Anagnostopoulos, I. & Stein, H. Strict
lymphotropism of Epstein-Barr virus during acute infectious mononucleosis in
nonimmunocompromised individuals. Blood 89, 2856-2862 (1997).

7 Anagnostopoulos, I., Hummel, M., Kreschel, C. & Stein, H. Morphology,
immunophenotype, and distribution of latently and/or productively Epstein-Barr
virus-infected cells in acute infectious mononucleosis: implications for the
interindividual infection route of Epstein-Barr virus. Blood 85, 744-750 (1995).

8 Niedobitek, G. et al. Epstein-Barr virus (EBV) infection in infectious mononucleosis:
virus latency, replication and phenotype of EBV-infected cells. J Pathol 182, 151-159
(1997).

9 Hochberg, D. et al. Demonstration of the Burkitt's lymphoma Epstein-Barr virus
phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S
A 101, 239-244 (2004).

10 Yao, Q. Y., Ogan, P., Rowe, M., Wood, M. & Rickinson, A. B. Epstein-Barr virus-
infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer
43, 67-71 (1989).

11 Yao, Q. Y., Rickinson, A. B. & Epstein, M. A. A re-examination of the Epstein-Barr
virus carrier state in healthy seropositive individuals. Int J Cancer 35, 35-42 (1985).

93

12 Laichalk, L. L. & Thorley-Lawson, D. A. Terminal differentiation into plasma cells
initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-1307
(2005).

13 Grogan, E. et al. Transfection of a rearranged viral DNA fragment, WZhet, stably
converts latent Epstein-Barr viral infection to productive infection in lymphoid cells.
Proc Natl Acad Sci U S A 84, 1332-1336 (1987).

14 Chevallier-Greco, A. et al. Both Epstein-Barr virus (EBV)-encoded trans-acting
factors, EB1 and EB2, are required to activate transcription from an EBV early
promoter. EMBO J 5, 3243-3249 (1986).

15 Feederle, R. et al. The Epstein-Barr virus lytic program is controlled by the co-
operative functions of two transactivators. EMBO J 19, 3080-3089 (2000).

16 Farrell, P. J., Rowe, D. T., Rooney, C. M. & Kouzarides, T. Epstein-Barr virus
BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-
fos. EMBO J 8, 127-132 (1989).

17 Gruffat, H. & Sergeant, A. Characterization of the DNA-binding site repertoire for
the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-1178 (1994).

18 Heilmann, A. M., Calderwood, M. A., Portal, D., Lu, Y. & Johannsen, E. Genome-
wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164 (2012).

19 Darr, C. D., Mauser, A. & Kenney, S. Epstein-Barr virus immediate-early protein
BRLF1 induces the lytic form of viral replication through a mechanism involving
phosphatidylinositol-3 kinase activation. J Virol 75, 6135-6142 (2001).

20 El-Guindy, A., Heston, L. & Miller, G. A subset of replication proteins enhances
origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein.
PLoS Pathog 6, e1001054 (2010).

21 Fixman, E. D., Hayward, G. S. & Hayward, S. D. Replication of Epstein-Barr virus
oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on
Zta in cotransfection assays. J Virol 69, 2998-3006 (1995).

22 Aubry, V. et al. Epstein-Barr virus late gene transcription depends on the assembly of
a virus-specific preinitiation complex. J Virol 88, 12825-12838 (2014).

23 Yuan, J., Cahir-McFarland, E., Zhao, B. & Kieff, E. Virus and cell RNAs expressed
during Epstein-Barr virus replication. J Virol 80, 2548-2565 (2006).

24 Lu, C. C. et al. Genome-wide transcription program and expression of the Rta
responsive gene of Epstein-Barr virus. Virology 345, 358-372 (2006).

25 Zhang, G. et al. Antisense transcription in the human cytomegalovirus transcriptome.
J Virol 81, 11267-11281 (2007).

94

26 Gatherer, D. et al. High-resolution human cytomegalovirus transcriptome. Proc Natl
Acad Sci U S A 108, 19755-19760 (2011).

27 Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088-1093
(2012).

28 Johnson, L. S., Willert, E. K. & Virgin, H. W. Redefining the genetics of murine
gammaherpesvirus 68 via transcriptome-based annotation. Cell Host Microbe 7, 516-
526 (2010).

29 Cheng, B. Y. et al. Tiled microarray identification of novel viral transcript structures
and distinct transcriptional profiles during two modes of productive murine
gammaherpesvirus 68 infection. J Virol 86, 4340-4357 (2012).

30 Canny, S. P. et al. Pervasive transcription of a herpesvirus genome generates
functionally important RNAs. MBio 5, e01033-01013 (2014).

31 Chandriani, S., Xu, Y. & Ganem, D. The lytic transcriptome of Kaposi's sarcoma-
associated herpesvirus reveals extensive transcription of noncoding regions,
including regions antisense to important genes. J Virol 84, 7934-7942 (2010).

32 Dresang, L. R. et al. Coupled transcriptome and proteome analysis of human
lymphotropic tumor viruses: insights on the detection and discovery of viral genes.
BMC Genomics 12, 625 (2011).

33 Arias, C. et al. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-
associated herpesvirus genome using next-generation sequencing reveals novel
genomic and functional features. PLoS Pathog 10, e1003847 (2014).

34 Concha, M. et al. Identification of new viral genes and transcript isoforms during
Epstein-Barr virus reactivation using RNA-Seq. J Virol 86, 1458-1467 (2012).

35 Farrell, P. J. Epstein-Barr virus genome. in Epstein-Barr Virus (ed E. S. Robertson)
263-287 (Caister Academic Press, 2005).

36 Pritchett, R. F., Hayward, S. D. & Kieff, E. D. DNA of Epstein-Barr virus. I.
Comparative studies of the DNA of Epstein-Barr virus from HR-1 and B95-8 cells:
size, structure, and relatedness. J Virol 15, 556-559 (1975).

37 Lindahl, T. et al. Covalently closed circular duplex DNA of Epstein-Barr virus in a
human lymphoid cell line. J Mol Biol 102, 511-530 (1976).

38 Kintner, C. R. & Sugden, B. The structure of the termini of the DNA of Epstein-
Barr virus. Cell 17, 661-671 (1979).

39 Laux, G., Perricaudet, M. & Farrell, P. J. A spliced Epstein-Barr virus gene expressed
in immortalized lymphocytes is created by circularization of the linear viral genome.
EMBO J 7, 769-774 (1988).

95

40 Baer, R. et al. DNA sequence and expression of the B95-8 Epstein-Barr virus
genome. Nature 310, 207-211 (1984).

41 de Jesus, O. et al. Updated Epstein-Barr virus (EBV) DNA sequence and analysis of
a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84, 1443-1450
(2003).

42 Parker, B. D., Bankier, A., Satchwell, S., Barrell, B. & Farrell, P. J. Sequence and
transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region.
Virology 179, 339-346 (1990).

43 Lin, Z. et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus
strains. J Virol 87, 1172-1182 (2013).

44 Tsai, M. H. et al. Spontaneous lytic replication and epitheliotropism define an
Epstein-Barr virus strain found in carcinomas. Cell Rep 5, 458-470 (2013).

45 Dolan, A., Addison, C., Gatherer, D., Davison, A. J. & McGeoch, D. J. The genome
of Epstein-Barr virus type 2 strain AG876. Virology 350, 164-170 (2006).

46 Kwok, H. et al. Genomic sequencing and comparative analysis of Epstein-Barr virus
genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS One 7,
e36939 (2012).

47 Kwok, H. et al. Genomic diversity of Epstein-Barr virus genomes isolated from
primary nasopharyngeal carcinoma biopsy samples. J Virol 88, 10662-10672 (2014).

48 Lei, H. et al. Identification and characterization of EBV genomes in spontaneously
immortalized human peripheral blood B lymphocytes by NGS technology. BMC
Genomics 14, 804 (2013).

49 Liu, P. et al. Direct sequencing and characterization of a clinical isolate of Epstein-
Barr virus from nasopharyngeal carcinoma tissue by using next-generation
sequencing technology. J Virol 85, 11291-11299 (2011).

50 Santpere, G. et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes
derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol 6,
846-860 (2014).

51 Tso, K. K. et al. Complete genomic sequence of Epstein-Barr virus in
nasopharyngeal carcinoma cell line C666-1. Infect Agent Cancer 8, 29 (2013).

52 Zeng, M. S. et al. Genomic sequence analysis of Epstein-Barr virus strain GD1 from
a nasopharyngeal carcinoma patient. J Virol 79, 15323-15330 (2005).

53 Palser, A. L. et al. Genome diversity of Epstein-Barr virus from multiple tumor types
and normal infection. J Virol 89, 5222-5237 (2015).

96

54 Dambaugh, T., Hennessy, K., Chamnankit, L. & Kieff, E. U2 region of Epstein-Barr
virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci U S A 81,
7632-7636 (1984).

55 Rowe, M. et al. Distinction between Epstein-Barr virus type A (EBNA 2A) and type
B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J Virol 63,
1031-1039 (1989).

56 Sample, J. et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-
3B, and EBNA-3C genes. J Virol 64, 4084-4092 (1990).

57 Takada, K. et al. An Epstein-Barr virus-producer line Akata: establishment of the cell
line and analysis of viral DNA. Virus Genes 5, 147-156 (1991).

58 Takada, K. & Ono, Y. Synchronous and sequential activation of latently infected
Epstein-Barr virus genomes. J Virol 63, 445-449 (1989).

59 Takada, K. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus
in Burkitt lymphoma lines. Int J Cancer 33, 27-32 (1984).

60 Gregory, C. D., Rowe, M. & Rickinson, A. B. Different Epstein-Barr virus-B cell
interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen
Virol 71 (Pt 7), 1481-1495, doi:10.1099/0022-1317-71-7-1481 (1990).

61 Pizzo, P. A., Magrath, I. T., Chattopadhyay, S. K., Biggar, R. J. & Gerber, P. A new
tumour-derived transforming strain of Epstein-Barr virus. Nature 272, 629-631
(1978).

62 Miller, G., Shope, T., Lisco, H., Stitt, D. & Lipman, M. Epstein-Barr virus:
transformation, cytopathic changes, and viral antigens in squirrel monkey and
marmoset leukocytes. Proc Natl Acad Sci U S A 69, 383-387 (1972).

63 Blacklow, N. R., Watson, B. K., Miller, G. & Jacobson, B. M. Mononucleosis with
heterophil antibodies and EB virus infection. Acquisition by an elderly patient in
hospital. Am J Med 51, 549-552 (1971).

64 Bernasconi, M. et al. Quantitative profiling of housekeeping and Epstein-Barr virus
gene transcription in Burkitt lymphoma cell lines using an oligonucleotide
microarray. Virol J 3, 43 (2006).

65 Gradoville, L., Kwa, D., El-Guindy, A. & Miller, G. Protein kinase C-independent
activation of the Epstein-Barr virus lytic cycle. J Virol 76, 5612-5626 (2002).

66 Skare, J., Edson, C., Farley, J. & Strominger, J. L. The B95-8 isolate of Epstein-Barr
virus arose from an isolate with a standard genome. J Virol 44, 1088-1091 (1982).

67 Frisan, T., Levitsky, V. & Masucci, M. Generation of lymphoblastoid cell lines
(LCLs) in Epstein-Barr Virus Protocols 125-127 (Springer, 2001).

97

68 International HapMap, C. et al. Integrating common and rare genetic variation in
diverse human populations. Nature 467, 52-58 (2010).

69 Consortium, E. P. et al. Identification and analysis of functional elements in 1% of
the human genome by the ENCODE pilot project. Nature 447, 799-816 (2007).

70 Siva, N. 1000 Genomes project. Nature biotechnology 26, 256-256 (2008).

71 Arvey, A. et al. An atlas of the Epstein-Barr virus transcriptome and epigenome
reveals host-virus regulatory interactions. Cell Host Microbe 12, 233-245 (2012).

72 Wilson, G. & Miller, G. Recovery of Epstein-Barr virus from nonproducer neonatal
human lymphoid cell transformants. Virology 95, 351-358 (1979).

73 O'Grady, T. et al. Global bidirectional transcription of the Epstein-Barr virus genome
during reactivation. J Virol 88, 1604-1616 (2014).

74 Pacific Biosciences of California, I. PacBio. http://www.pacb.com/.

75 Kurosawa, J., Nishiyori, H. & Hayashizaki, Y. Deep cap analysis of gene expression.
Methods Mol Biol 687, 147-163 (2011).

76 Rosa, M. D., Gottlieb, E., Lerner, M. R. & Steitz, J. A. Striking similarities are
exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the
adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol 1, 785-796
(1981).

77 Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L.
Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12, R16
(2011).

78 Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs
reveals global properties and specific subclasses. Genes Dev 25, 1915-1927 (2011).

79 Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome Res 22, 1775-1789
(2012).

80 Harrow, J. et al. GENCODE: the reference human genome annotation for The
ENCODE Project. Genome Res 22, 1760-1774 (2012).

81 Zetterberg, H., Stenglein, M., Jansson, A., Ricksten, A. & Rymo, L. Relative levels of
EBNA1 gene transcripts from the C/W, F and Q promoters in Epstein-Barr virus-
transformed lymphoid cells in latent and lytic stages of infection. J Gen Virol 80, 457-
466 (1999).

98

82 Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H. & Rickinson, A. B. Three
pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B
lymphocytes. J Virol 66, 122-131 (1992).

83 Cohen, J. I. & Kieff, E. An Epstein-Barr virus nuclear protein 2 domain essential for
transformation is a direct transcriptional activator. J Virol 65, 5880-5885 (1991).

84 Chen, A., Zhao, B., Kieff, E., Aster, J. C. & Wang, F. EBNA-3B- and EBNA-3C-
regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines.
J Virol 80, 10139-10150 (2006).

85 Cludts, I. & Farrell, P. J. Multiple functions within the Epstein-Barr virus EBNA-3A
protein. J Virol 72, 1862-1869 (1998).

86 Cohen, J. I., Wang, F., Mannick, J. & Kieff, E. Epstein-Barr virus nuclear protein 2 is
a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86, 9558-
9562 (1989).

87 Tomkinson, B., Robertson, E. & Kieff, E. Epstein-Barr virus nuclear proteins
EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J
Virol 67, 2014-2025 (1993).

88 Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence
features and support vector machine. Nucleic Acids Res 35, W345-349 (2007).

89 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012).

90 Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using
the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494-1512
(2013).

91 Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nat Biotechnol 33, 290-295 (2015).

92 Tang, D. T. et al. Suppression of artifacts and barcode bias in high-throughput
transcriptome analyses utilizing template switching. Nucleic Acids Res 41, e44 (2013).

93 Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of
transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci
U S A 100, 15776-15781 (2003).

94 Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP
trapper. Genomics 37, 327-336 (1996).

99

95 Chenchik, A. et al. Generation and use of high-quality cDNA from small amounts of
total RNA by SMART PCR. in Gene cloning and analysis by RT-PCR Biotechniques
Molecular Laboratory Methods Series (eds Paul D. Siebert & James W. Larrick)
(Biotechniques Books, 1998).

96 Frith, M. C. et al. A code for transcription initiation in mammalian genomes. Genome
Res 18, 1-12 (2008).

97 Farrell, P. J. Epstein-Barr virus. The B95-8 strain map. Methods Mol Biol 174, 3-12
(2001).

98 Cao, S. et al. High-throughput RNA sequencing-based virome analysis of 50
lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 89, 713-
729 (2015).

99 Edwards, R. H., Marquitz, A. R. & Raab-Traub, N. Epstein-Barr virus BART
microRNAs are produced from a large intron prior to splicing. J Virol 82, 9094-9106
(2008).

100 Sadler, R. H. & Raab-Traub, N. Structural analyses of the Epstein-Barr virus BamHI
A transcripts. J Virol 69, 1132-1141 (1995).

101 Smith, P. R. et al. Structure and coding content of CST (BART) family RNAs of
Epstein-Barr virus. J Virol 74, 3082-3092 (2000).

102 Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-
specific, and single-molecule long-read transcriptome. Proc Natl Acad Sci U S A 111,
9869-9874 (2014).

103 Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free
logistic regression model. Nucleic Acids Res 41, e74 (2013).

104 Daikoku, T. et al. Architecture of replication compartments formed during Epstein-
Barr virus lytic replication. J Virol 79, 3409-3418 (2005).

105 Sugimoto, A. et al. Different distributions of Epstein-Barr virus early and late gene
transcripts within viral replication compartments. J Virol 87, 6693-6699 (2013).

106 Manet, E. et al. Epstein-Barr virus bicistronic mRNAs generated by facultative
splicing code for two transcriptional trans-activators. EMBO J 8, 1819-1826 (1989).

107 Wang, F., Petti, L., Braun, D., Seung, S. & Kieff, E. A bicistronic Epstein-Barr virus
mRNA encodes two nuclear proteins in latently infected, growth-transformed
lymphocytes. J Virol 61, 945-954 (1987).

108 Bodescot, M., Perricaudet, M. & Farrell, P. J. A promoter for the highly spliced
EBNA family of RNAs of Epstein-Barr virus. J Virol 61, 3424-3430 (1987).

 100

109 Sample, J., Hummel, M., Braun, D., Birkenbach, M. & Kieff, E. Nucleotide
sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable
transcriptional initiation site. Proc Natl Acad Sci U S A 83, 5096-5100 (1986).

110 Austin, P. J., Flemington, E., Yandava, C. N., Strominger, J. L. & Speck, S. H.
Complex transcription of the Epstein-Barr virus BamHI fragment H rightward open
reading frame 1 (BHRF1) in latently and lytically infected B lymphocytes. Proc Natl
Acad Sci U S A 85, 3678-3682 (1988).

111 Bodescot, M. & Perricaudet, M. Epstein-Barr virus mRNAs produced by alternative
splicing. Nucleic Acids Res 14, 7103-7114 (1986).

112 Pearson, G. R. et al. Identification of an Epstein-Barr virus early gene encoding a
second component of the restricted early antigen complex. Virology 160, 151-161
(1987).

113 Free Software Foundation. GNU General Public License,
<http://www.gnu.org/licenses/gpl-3.0.en.html> (2007).

114 Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program
for mRNA and EST sequences. Bioinformatics 21, 1859-1875 (2005).

115 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21
(2013).

116 Murata, M. et al. Detecting expressed genes using CAGE. Methods Mol Biol 1164, 67-
85 (2014).

117 Lin, Z. et al. Detection of murine leukemia virus in the Epstein-Barr virus-positive
human B-cell line JY, using a computational RNA-Seq-based exogenous agent
detection pipeline, PARSES. J Virol 86, 2970-2977 (2012).

118 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat
Methods 9, 357-359 (2012).

119 Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24-26 (2011).

120 Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer
(IGV): high-performance genomics data visualization and exploration. Brief Bioinform
14, 178-192 (2013).

121 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842 (2010).

122 Xu, G. et al. SAMMate: a GUI tool for processing short read alignments in
SAM/BAM format. Source Code Biol Med 6, 2, (2011).

 101

123 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

124 Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic
Acids Res 42, D756-763 (2014).

125 Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32,
D493-496 (2004).

126 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol 14, R36 (2013).

127 Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning
DNA sequences. J Comput Biol 7, 203-214 (2000).

128 Feng, L. et al. Technique for strand-specific gene-expression analysis and monitoring
of primer-independent cDNA synthesis in reverse transcription. Biotechniques 52, 263-
270 (2012).

129 Hughes, T. A. Regulation of gene expression by alternative untranslated regions.
Trends Genet 22, 119-122 (2006).

130 Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M. & Gotoh, O. Species-specific
variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene
364, 53-62 (2005).

131 Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science
309, 1559-1563 (2005).

132 Velten, L. et al. Single-cell polyadenylation site mapping reveals 3' isoform choice
variability. Mol Syst Biol 11, 812 (2015).

133 Erickson, K. D. & Martin, J. M. The late lytic LMP-1 protein of Epstein-Barr virus
can negatively regulate LMP-1 signaling. J Virol 74, 1057-1060 (2000).

134 Pandya, J. & Walling, D. M. Oncogenic activity of Epstein-Barr virus latent
membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1. J Virol 80, 8038-
8046 (2006).

135 Van Damme, P., Gawron, D., Van Criekinge, W. & Menschaert, G. N-terminal
proteomics and ribosome profiling provide a comprehensive view of the alternative
translation initiation landscape in mice and men. Mol Cell Proteomics 13, 1245-1261
(2014).

136 Sasaki, A. et al. The N-terminal truncated isoform of SOCS3 translated from an
alternative initiation AUG codon under stress conditions is stable due to the lack of a
major ubiquitination site, Lys-6. J Biol Chem 278, 2432-2436 (2003).

 102

137 Shalak, V., Kaminska, M. & Mirande, M. Translation initiation from two in-frame
AUGs generates mitochondrial and cytoplasmic forms of the p43 component of the
multisynthetase complex. Biochemistry 48, 9959-9968 (2009).

138 Furnari, F. B., Zacny, V., Quinlivan, E. B., Kenney, S. & Pagano, J. S. RAZ, an
Epstein-Barr virus transdominant repressor that modulates the viral reactivation
mechanism. J Virol 68, 1827-1836 (1994).

139 Frith, M. C. et al. The abundance of short proteins in the mammalian proteome.
PLoS Genet 2, e52 (2006).

140 Jaber, T. & Yuan, Y. A virally encoded small peptide regulates RTA stability and
facilitates Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 87, 3461-
3470 (2013).

141 Andrews, S. J. & Rothnagel, J. A. Emerging evidence for functional peptides
encoded by short open reading frames. Nat Rev Genet 15, 193-204 (2014).

142 Geballe, A. P. & Mocarski, E. S. Translational control of cytomegalovirus gene
expression is mediated by upstream AUG codons. J Virol 62, 3334-3340 (1988).

143 Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause
widespread reduction of protein expression and are polymorphic among humans.
Proc Natl Acad Sci U S A 106, 7507-7512 (2009).

144 Wittmann, J., Hol, E. M. & Jack, H. M. hUPF2 silencing identifies physiologic
substrates of mammalian nonsense-mediated mRNA decay. Mol Cell Biol 26, 1272-
1287 (2006).

145 Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene
expression during conditions of cell stress. Mol Cell 40, 228-237 (2010).

146 Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for
pervasive transcription. Science 316, 1484-1488 (2007).

147 Cao, S. et al. New Noncoding Lytic Transcripts Derived from the Epstein-Barr Virus
Latency Origin of Replication, oriP, Are Hyperedited, Bind the Paraspeckle Protein,
NONO/p54nrb, and Support Viral Lytic Transcription. J Virol 89, 7120-7132
(2015).

148 Schaefer, B. C., Strominger, J. L. & Speck, S. H. The Epstein-Barr virus BamHI F
promoter is an early lytic promoter: lack of correlation with EBNA 1 gene
transcription in group 1 Burkitt's lymphoma cell lines. J Virol 69, 5039-5047 (1995).

149 Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. & Sample, J. Transcription start
sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage
Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-
1 protein. J Virol 70, 623-627 (1996).

 103

150 Hudson, G. S., Farrell, P. J. & Barrell, B. G. Two related but differentially expressed
potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr
virus B95-8. J Virol 53, 528-535 (1985).

151 Serio, T. R., Cahill, N., Prout, M. E. & Miller, G. A functionally distinct TATA box
required for late progression through the Epstein-Barr virus life cycle. J Virol 72,
8338-8343 (1998).

152 Rutkowski, A. J. et al. Widespread disruption of host transcription termination in
HSV-1 infection. Nat Commun 6, 7126 (2015).

153 Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Widespread
Inducible Transcription Downstream of Human Genes. Mol Cell 59, 449-461 (2015).

154 Cheshenko, N. et al. Herpes simplex virus triggers activation of calcium-signaling
pathways. J Cell Biol 163, 283-293 (2003).

155 Faggioni, A. et al. Calcium modulation activates Epstein-Barr virus genome in latently
infected cells. Science 232, 1554-1556 (1986).

156 Chiu, Y. F., Sugden, A. U. & Sugden, B. Epstein-Barr viral productive amplification
reprograms nuclear architecture, DNA replication, and histone deposition. Cell Host
Microbe 14, 607-618 (2013).

157 Jochum, S., Ruiss, R., Moosmann, A., Hammerschmidt, W. & Zeidler, R. RNAs in
Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A 109,
E1396-1404 (2012).

158 Kalla, M., Schmeinck, A., Bergbauer, M., Pich, D. & Hammerschmidt, W. AP-1
homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the
epigenetic state of the viral genome. Proc Natl Acad Sci U S A 107, 850-855 (2010).

159 Wen, W. et al. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic
infection, is expressed as an immediate-early gene after primary infection of B
lymphocytes. J Virol 81, 1037-1042 (2007).

160 Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad
Sci U S A 107, 6328-6333 (2010).

APPENDIX 1

TRIMD_start_validator.pl

 105

#!/usr/bin/perl

#Accepts a SAM file of Iso-Seq fl data, a SAM file of CAGE data, and a
bed file of annotated polyadenylated transcripts. Counts the number of
non-clipped Iso-Seq reads with 5' starts at each genomic position and
estimates consensus locations of clusters of 5' starts. Uses Paraclu to
identify clusters of 5' starts in the CAGE data. Output includes a
bedgraph file of Iso-Seq 5' starts, a bed file of the weighted centers
of Iso-Seq start clusters, a bedgraph file of CAGE tag 5' starts, a bed
file of the weighted centers of Paraclu-identified CAGE 5' start
clusters, and a bed file of Iso_seq 5' starts supported by the CAGE
data, with their annotation status noted.

#USAGE:
perl <PATH/TRIMD_start_validator.pl> </PATH/Iso-Seq_sam_file>
</PATH/CAGE_file> </PATH/Annotation_bed_file>

use warnings;
use strict;

die "USAGE: 'perl <PATH/TRIMD_start_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/CAGE_file> </PATH/Annotation_bed_file>'" unless
@ARGV == 3;

my ($SMRT_file, $CAGE_file, $ann_file) = @ARGV;

print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;

my $distance_between_SMRT_peaks;
my $min_tags;
my $min_dens;
my $min_length;
my $max_length;
my $dist_SMRT_CAGE;
my $min_SMRT;
my $ann_dist;

print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;

if ($answer eq "y") {
 $distance_between_SMRT_peaks = 8;
 $min_tags = 15;
 $min_dens = 2;
 $min_length = 1;

 106

 $max_length = 20;
 $dist_SMRT_CAGE = 3;
 $min_SMRT = 1;
 $ann_dist = 10;
}
else {
 print "Enter desired window for collapsing Iso-Seq 5' starts (e.g.
8): ";
 $distance_between_SMRT_peaks = <STDIN>;
 chomp $distance_between_SMRT_peaks;

 print "Enter minimum tags per CAGE cluster (e.g. 15): ";
 $min_tags = <STDIN>;
 chomp $min_tags;

 print "Enter minimum relative density for CAGE clusters (e.g. 2):
";
 $min_dens = <STDIN>;
 chomp $min_dens;

 print "Enter minimum CAGE cluster length (e.g. 1): ";
 $min_length = <STDIN>;
 chomp $min_length;

 print "Enter maximum CAGE cluster length (e.g. 20): ";
 $max_length = <STDIN>;
 chomp $max_length;

 print "Enter desired maximum allowable distance between Iso-Seq and
CAGE 5' starts (e.g. 3): ";
 $dist_SMRT_CAGE = <STDIN>;
 chomp $dist_SMRT_CAGE;

 print "Enter minimum number of SMRT reads to report a 5' start
(e.g. 1): ";
 $min_SMRT = <STDIN>;
 chomp $min_SMRT;

 print "Enter maximum distance in bp from an annotated start to be
called as 'annotated' (e.g. 10): ";
 $ann_dist = <STDIN>;
 chomp $ann_dist;
}

print "--\n";

#####----------SMRT FILE PROCESSING-------------######
system("awk '\$3==\"$viral_chr\"' \Q$SMRT_file\E \| sort -k 4,4n >
\Q$SMRT_file\E.sorted.temp");
system("awk '\$2==0' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.plus.sam.temp");
system("awk '\$2==16' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.temp");

 107

#processing of PLUS SMRT sam file
open(INF, "<$SMRT_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.plus.sam.read_starts.bedgraph") or die
"couldn't open file";

my $previous_coordinate=1;
my $count=0;
my $previous_chr = "start";
print "Processing Iso-Seq plus strand reads...\n";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 next if ($cols[5] =~ m/^\d+S/); #skips reads clipped at the 5' end
 my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
 if (($cols[2] eq $previous_chr) and ($cols[3] ==
$previous_coordinate)) {

$count = $count + $split_id[1]; #increases the count by the
read depth for the putative isoform
 }
 else {

if ($previous_chr eq "start") { #doesn't print out the
placeholder first line.

$previous_chr = $cols[2]; #sets the previous
chromosome, previous coordinate and count values

$previous_coordinate = $cols[3];
$count = $split_id[1];

}
else {

print OUT $previous_chr, "\t", $previous_coordinate-1,
"\t", $previous_coordinate, "\t", $count, "\n"; #prints to output file,
converting to chrStart 0-based bedgraph coordinate

$previous_chr = $cols[2];
$previous_coordinate = $cols[3];
$count = $split_id[1];

}
 }
}

print OUT $previous_chr, "\t", $previous_coordinate-1, "\t",
$previous_coordinate, "\t", $count, "\n"; #prints the last start
coordinates to output file
close(INF);
close(OUT);

system("rm \Q$SMRT_file\E.sorted.plus.sam.temp");

#processing of MINUS SMRT sam file
open(INF, "<$SMRT_file.sorted.minus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.minus.sam.read_starts.bedgraph.temp") or
die "couldn't open file";

 108

my @CIGAR_dist;
my $sum;
my %minus_starts;
print "Processing Iso-Seq minus strand reads...\n";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 next if ($cols[5] =~ m/\d+S$/); #skips reads soft-clipped at the 5'
end
 while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR
string to determine the downstream coordinate

push (@CIGAR_dist, $1);
 }
 $sum += $_ for @CIGAR_dist;
 my $start_coord = $cols[3] + $sum - 1; #subtract 1 to account for
start/end inclusion
 my $chr_start_coord = "$cols[2]\:$start_coord"; #combines the
chromosome and 5' end coordinate into a key to use for the hash
 $sum = 0;
 @CIGAR_dist = ();
 my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
 if (exists $minus_starts{$chr_start_coord}) { #if the key is
already in the hash, increases the value (count) by the read depth for
that putative isoform

$minus_starts{$chr_start_coord} =
$minus_starts{$chr_start_coord} + $split_id[1];
 }
 else {

$minus_starts{$chr_start_coord} = $split_id[1]; #if the key is
not already in the hash, adds it with a value (count) of the read depth
for that putative isoform
 }
}

foreach my $chr_start_coord (sort keys %minus_starts) { #prints out a(n
inadequately) sorted temporary bedgraph file
 my @split_keys = split("\:", $chr_start_coord);
 print OUT $split_keys[0], "\t", $split_keys[1]-1, "\t",
$split_keys[1], "\t-", $minus_starts{$chr_start_coord}, "\n"; #prints
to output file, converting chrStart to 0-based bedgraph coordinates
}
close(INF);
close(OUT);

system("sort -k 1,1 -k 2,2n
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp >
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph");

system("cat \Q$SMRT_file\E.sorted.plus.sam.read_starts.bedgraph
\Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp | sort -k2,3n
> \Q$SMRT_file\E.\Q$viral_chr\E.read_starts.bedgraph.noheader");

system("rm \Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph.temp");

 109

system("rm \Q$SMRT_file\E.sorted.minus.sam.read_starts.bedgraph");
system("rm \Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.plus.sam.read_starts.bedgraph");

#add header to bedgraph file
open(INF, "<$SMRT_file.$viral_chr.read_starts.bedgraph.noheader") or
die "couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.read_starts.bedgraph") or die
"couldn't open file";

print OUT "track type=bedgraph
name=\"$SMRT_file.$viral_chr.read_starts.bedgraph\" description=\"5'
starts of SMRT reads from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.read_starts.bedgraph.noheader");

#make a bed file from the SMRT bedgraph file:
open(INF, "<$SMRT_file.$viral_chr.read_starts.bedgraph") or die
"couldn't open file";
open(OUT, ">$SMRT_file.starts.temp.bed") or die "couldn't open file";

print "Combining Iso-Seq 5' starts within $distance_between_SMRT_peaks
of each other and calculating consensus 5' starts...\n";
collapse_bedgraph($distance_between_SMRT_peaks);

close(INF);
close(OUT);

system("sort -k 1,1 -k 2,2n \Q$SMRT_file\E.starts.temp.bed >
\Q$SMRT_file\E.starts.bed.noheader");
system("rm \Q$SMRT_file.starts.temp.bed\E");

#add header to bed file
open(INF, "<$SMRT_file.starts.bed.noheader") or die "couldn't open
file";
open(OUT, ">$SMRT_file.$viral_chr.SMRT_starts.bed") or die "couldn't
open file";

print OUT "track type=bed
name=\"$SMRT_file.$viral_chr.SMRT_starts.bed\" description=\"consensus
5' starts of Iso-Seq reads within $distance_between_SMRT_peaks bp
collapsed to weighted center from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm \Q$SMRT_file\E.starts.bed.noheader");

 110

#####----------PROCESSING CAGE DATA-------------######

print "Preparing CAGE file...\n";

system("awk '\$3==\"$viral_chr\"' \Q$CAGE_file\E \| sort -k 4,4n >
\Q$CAGE_file\E.sorted.temp");
system("awk '\$2==0 \|\| \$2==81 \|\| \$2==83 \|\| \$2==89 \|\|
\$2==137 \|\| \$2==161 \|\| \$2==163' \Q$CAGE_file\E.sorted.temp >
\Q$CAGE_file\E.sorted.plus.sam.temp");
system("awk '\$2==16 \|\| \$2==73 \|\| \$2==97 \|\| \$2==99 \|\|
\$2==145 \|\| \$2==147 \|\| \$2==153' \Q$CAGE_file\E.sorted.temp >
\Q$CAGE_file\E.sorted.minus.sam.temp");

#processing of plus CAGE sam file

open(INF, "<$CAGE_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$CAGE_file.read_starts.txt") or die "couldn't open file";
open(OUT2, ">$CAGE_file.starts.bedgraph.temp");

my $prev_coord=0.5;
my $start_count=0;

while (my $line = <INF>) {
 chomp($line);
 next if ($line =~ m/^@/); #skips header lines
 my @cols = split("\t", $line);
 if ($cols[3] == $prev_coord) {

$start_count++; #increases the count by 1
 }

 else {
if ($prev_coord == 0.5) { #doesn't print out the placeholder

first line.
$prev_coord = $cols[3];
$start_count = 1;

}

else {
print OUT $viral_chr, "\t+\t", $prev_coord, "\t",

$start_count, "\n"; #prints to output txt file for Paraclu
print OUT2 $viral_chr, "\t", $prev_coord-1, "\t",

$prev_coord, "\t", $start_count, "\n"; #prints to output bedgraph file
$prev_coord = $cols[3];
$start_count = 1;

}
 }
}
print OUT "$viral_chr\t+\t$prev_coord\t$start_count\n"; #prints the
last start coordinates to output file
close(INF);

system("rm \Q$CAGE_file\E.sorted.plus.sam.temp");

 111

#processing of MINUS CAGE sam file
open(INF, "<$CAGE_file.sorted.minus.sam.temp") or die "couldn't open
file";

my @read_dist;
my $dist_sum;
my %minus_start;

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR
string to determine the downstream coordinate

push (@read_dist, $1);
 }
 $dist_sum += $_ for @read_dist;
 my $start_coord = $cols[3] + $dist_sum - 1; #subtract one to
account for start/end inclusion
 $dist_sum = 0;
 @read_dist = ();
 if (exists $minus_start{$start_coord}) { #if the key is already in
the hash, increases the value (count) by the read depth for that
putative isoform

$minus_start{$start_coord} = $minus_start{$start_coord} + 1;
 }
 else {

$minus_start{$start_coord} = 1; #if the key is not already in
the hash, adds it with a value (count) of the read depth for that
putative isoform
 }
}
foreach my $start_coord (sort keys %minus_start) { #prints out a(n
inadequately) sorted file. Doesn't need to be sorted because Paraclu
will do that anyways.
 print OUT "$viral_chr\t-
\t$start_coord\t$minus_start{$start_coord}\n";
 print OUT2 $viral_chr, "\t", $start_coord-1, "\t", $start_coord,
"\t-", $minus_start{$start_coord}, "\n"; #prints to output bedgraph
file
}
close(INF);
close(OUT);
close(OUT2);

system("rm \Q$CAGE_file\E.sorted.minus.sam.temp");
system("rm \Q$CAGE_file\E.sorted.temp");
system("sort -k2,3n \Q$CAGE_file\E.starts.bedgraph.temp >
\Q$CAGE_file\E.starts.bedgraph.noheader");
system("rm \Q$CAGE_file\E.starts.bedgraph.temp");

#add header to bedgraph file
open(INF, "<$CAGE_file.starts.bedgraph.noheader") or die "couldn't open
file";
open(OUT, ">$CAGE_file.$viral_chr.starts.bedgraph") or die "couldn't
open file";

 112

print OUT "track type=bedgraph
name=\"$CAGE_file.$viral_chr.starts.bedgraph\" description=\"5' starts
of CAGE tags from start_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(INF);
close(OUT);

system("rm \Q$CAGE_file\E.starts.bedgraph.noheader");

#Running Paraclu to define clusters

open(INF, "<$CAGE_file.read_starts.txt") or die "couldn't open file";
open(OUT, ">$CAGE_file.paraclu.txt.temp");

paraclu.pl: perform parametric clustering of data attached to
sequences

Written by Martin C Frith 2006
Genome Exploration Research Group, RIKEN GSC and
Institute for Molecular Bioscience, University of Queensland

This program reads in a list of numeric values attached to positions
in sequences. The list should have four tab- (or space-) separated
columns containing: the sequence name, the strand, the position, and
the value. (Multiple values for the same sequence/strand/position
will be summed.) It outputs the clusters as eight tab-separated
columns: sequence name, strand, start, end, number of values, sum of
values, min d, max d. See below for the meaning of "d".

An example line of input:
chr1 + 17689 3
Clustering is performed separately for different strands (as if each
strand were a completely different sequence). It does not matter
whether the position uses 0-based or 1-based coordinates: the
program does not care, and the output will be consistent with the
input.

The clusters are defined as follows. A cluster is a maximal scoring
segment, where the score of any segment is: the sum of the values in
the segment minus d times the size of the segment. Large values of d
give smaller, tighter clusters and small values of d give larger,
looser clusters. The program finds all possible clusters for any
value of d, and annotates each cluster with the maximum and minimum
values of d that produce it. The ratio max d / min d provides a
measure of the cluster's "stability".

The output will include two types of obvious/trivial/degenerate
clusters: those that cover single positions, and those that cover
all of the positions in a sequence. For many purposes, it would be
best to ignore these cases.

use strict;

 113

use List::Util qw(min max);

my %data;

#warn "reading...\n";

while (<INF>) {
 chomp;
 s/#.*//; # ignore comments
 next unless /\S/; # skip blank lines

 my ($seq, $strand, $pos, $value) = split;
 my $key = "$seq $strand";
 push @{$data{$key}}, [$pos, $value];
}

warn "Clustering CAGE data...\n";

print OUT "# sequence, strand, start, end, sites, sum of values, min d,
max d\n";

for my $key (sort keys %data) { # iterate over sequences / strands
 my ($seq, $strand) = split " ", $key;
 my $sites = $data{$key};

 @$sites = sort { $$a[0] <=> $$b[0] } @$sites; # sort by position

 my $clusters = all_clusters($sites);

 for my $c (@$clusters) {
my ($beg, $end, $tot, $sit, $min, $max) = @$c;
my $beg_pos = $$sites[$beg][0];
my $end_pos = $$sites[$end][0];
printf OUT

"$seq\t$strand\t$beg_pos\t$end_pos\t$sit\t$tot\t%.3g\t%.3g\n",
$min, $max;

 }
}

Generic code to find clusters in a sparse sequence of values: ###

sub all_clusters {
 our $inf = 1e100; # hopefully much bigger than any value in the
input
 our $sites = shift; # input: reference to array of site locations
& values
 our $clusters = []; # output: reference to array of clusters
 get_clusters(0, $#$sites, -$inf);
 return $clusters;
}

get clusters of sites between beg and end with density > min_density
sub get_clusters {
 our ($clusters, $inf);
 my ($beg, $end, $min_density) = @_;

 114

 my ($prefix, $pmin, $ptot, $psit) = weakest_prefix($beg, $end);
 my ($suffix, $smin, $stot, $ssit) = weakest_suffix($beg, $end);
 $ptot == $stot and $psit == $ssit or die "internal error!";
 my $max_density = min $pmin, $smin;

 unless ($max_density == $inf) {
my $break = $pmin < $smin ? $prefix + 1 : $suffix;
my $new_min = max $min_density, $max_density;
get_clusters($beg, $break-1, $new_min);
get_clusters($break, $end, $new_min);

 }

 push @$clusters, [$beg, $end, $ptot, $psit, $min_density,
$max_density]

if $max_density > $min_density;
}

get least dense prefix (and total of values & sites)
sub weakest_prefix {
 our ($sites, $inf);
 my ($beg, $end) = @_;

 my $beg_pos = $$sites[$beg][0];
 my $min_density = $inf;
 my $min_prefix = $end;
 my $tot = 0;
 my $sit = 0;

 for (my $i = $beg; $i < $end; ++$i) {
$tot += $$sites[$i][1];
next if $$sites[$i][0] == $$sites[$i+1][0]; # idiot-proofing
++$sit;
my $dist = $$sites[$i+1][0] - $beg_pos;
my $density = $tot / $dist;
if ($density < $min_density) {

$min_prefix = $i;
$min_density = $density;

}
 }

 $tot += $$sites[$end][1];
 ++$sit;
 return ($min_prefix, $min_density, $tot, $sit);
}

get least dense suffix (and total of values & sites)
sub weakest_suffix {
 our ($sites, $inf);
 my ($beg, $end) = @_;

 my $end_pos = $$sites[$end][0];
 my $min_density = $inf;
 my $min_suffix = $beg;
 my $tot = 0;

 115

 my $sit = 0;

 for (my $i = $end; $i > $beg; --$i) {
$tot += $$sites[$i][1];
next if $$sites[$i][0] == $$sites[$i-1][0]; # idiot-proofing
++$sit;
my $dist = $end_pos - $$sites[$i-1][0];
my $density = $tot / $dist;
if ($density < $min_density) {

$min_suffix = $i;
$min_density = $density;

}
 }

 $tot += $$sites[$beg][1];
 ++$sit;
 return ($min_suffix, $min_density, $tot, $sit);
}

close(INF);
close(OUT);

system("sort -k2,2 -k3,3n -k4,4rn \Q$CAGE_file\E.paraclu.txt.temp >
\Q$CAGE_file\E.paraclu.txt");
system("rm \Q$CAGE_file\E.paraclu.txt.temp");

#filtering clusters:
print "Extracting CAGE clusters containing $min_tags tags, density fold
change at least $min_dens, from $min_length to $max_length bp long\n";

my $length;
my $dens;
my $prev_start = 0;
my $prev_end = 0;

open(INF, "<$CAGE_file.paraclu.txt") or die "couldn't open file";
open(OUT,
">$CAGE_file.clusters.$min_tags.$min_dens.$min_length.$max_length.bed")
or die "couldn't open file";

while (my $line = <INF>) { #extracts clusters meeting the criteria.
Excludes subclusters.
 chomp($line);
 next if ($line =~ /^#/); #skips the header line
 my @cols = split("\t", $line);
 next if ($cols[5] < $min_tags);
 $length = $cols[3] - $cols[2] + 1;
 if (($length >= $min_length) and ($length <= $max_length)) {

$dens = $cols[7] / $cols[6];
if ($dens >= $min_dens) {

next if (($cols[2] >= $prev_start) and ($cols[2] <=
$prev_end));

if ($dens < 100) { #keep everything one-based (like sam)
for now; will convert to zero-based in next step

printf OUT "%s\t%d\t%d\t%d%s%.1f\t%d\t%s\n", $cols[0],

 116

$cols[2], $cols[3], $cols[5], ":", $dens, $cols[5], $cols[1]; #limits
the density output to 1 decimal place, but doesn't change huge numbers
to exponents

}
else {

printf OUT "%s\t%d\t%d\t%d%s%.1e\t%d\t%s\n", $cols[0],
$cols[2], $cols[3], $cols[5], ":", $dens, $cols[5], $cols[1]; #changes
large numbers to exponents

}
$prev_start = $cols[2];
$prev_end = $cols[3];

}
 }
}
close(INF);
close(OUT);

system("rm \Q$CAGE_file\E.paraclu.txt");

#getting weighted averages of Paraclu clusters:

my $rangeStart_CAGE;
my $rangeEnd_CAGE;
my $strand_CAGE;
my $CAGE_weighted_sum = 0;
my $CAGE_weighted_average;

open(INF,
"<$CAGE_file.clusters.$min_tags.$min_dens.$min_length.$max_length.bed")
or die "couldn't open file";
open(OUT, ">$CAGE_file.$viral_chr.CAGE_starts.temp") or die "couldn't
open file";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 $rangeStart_CAGE = $cols[1];
 $rangeEnd_CAGE = $cols[2];
 $strand_CAGE = $cols[5];
 open(INF2, "<$CAGE_file.read_starts.txt") or die "couldn't open
file";
 while (my $line2 = <INF2>) {

chomp($line2);
my @cols2 = split("\t", $line2);
if ((($cols2[2]) >= $rangeStart_CAGE) and (($cols2[2]) <=

$rangeEnd_CAGE) and ($cols2[1] eq $strand_CAGE)) {
$CAGE_weighted_sum = $CAGE_weighted_sum +

($cols2[2]*$cols2[3]);
}

 }
 $CAGE_weighted_average = sprintf("%1.0f",
($CAGE_weighted_sum/$cols[4]));
 if ($strand_CAGE eq "+") {

print OUT $cols[0], "\t", $CAGE_weighted_average-1, "\t",
$CAGE_weighted_average, "\t", $rangeStart_CAGE-1, ":", $rangeEnd_CAGE-

 117

1, ":", $cols[3], "\t", $cols[4], "\t", $strand_CAGE, "\n"; #prints
output, converting chrStart and range to 0-based
 }
 elsif ($strand_CAGE eq "-") {

print OUT $cols[0], "\t", $CAGE_weighted_average-1, "\t",
$CAGE_weighted_average, "\t", $rangeStart_CAGE, ":", $rangeEnd_CAGE,
":-", $cols[3], "\t", $cols[4], "\t", $strand_CAGE, "\n"; #prints
output, converting chrStart to 0-based but keeping range 1-based
(because these are all chrEnds)
 }
 $CAGE_weighted_sum = 0;
 close(INF2);
}

close(INF);
close(OUT);

system("sort -k2,2n -k 3,3n
\Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.temp >
\Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.noheader");
system("rm \Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.temp");

#add header to bed file

open(INF, "<$CAGE_file.$viral_chr.CAGE_starts.noheader") or die
"couldn't open file";
open(OUT, ">$CAGE_file.$viral_chr.CAGE_starts.bed");

print OUT "track type=bed
name=\"$CAGE_file.$viral_chr.CAGE_starts.bed\" description=\"weighted
averages of CAGE clusters between $min_length and $max_length bases
long with at least $min_tags tags and relative density of at least
$min_dens from start_finder_sam_to_bed.pl and paraclu\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm \Q$CAGE_file\E.\Q$viral_chr\E.CAGE_starts.noheader");
system("rm \Q$CAGE_file\E.read_starts.txt");
system("rm
\Q$CAGE_file\E.clusters.$min_tags.$min_dens.$min_length.$max_length.bed
");

#####----------SEEKING CAGE SUPPORT FOR SMRT STARTS-------------######

open(INF, "<$CAGE_file.$viral_chr.CAGE_starts.bed") or die "couldn't
open file";

print "Extracting Iso-Seq 5' starts within $dist_SMRT_CAGE bases of
CAGE clusters...\n";

my %features_CAGE;
my $key_combo_CAGE;

 118

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);

 if ($cols[5] eq "+") { #for each line in the CAGE bed file, creates
a key for the hash combining coordinate and strand. Selects chrStart
for starts on the plus strand and chrEnd for starts on the minus
strand.

$key_combo_CAGE = "$cols[1]:$cols[5]";
 }
 if ($cols[5] eq "-") {

$key_combo_CAGE = "$cols[2]:$cols[5]";
 }

$features_CAGE{$key_combo_CAGE} = $cols[4]; #enters a count value
for the key into the hash
}

close(INF);

open(INF, "<$SMRT_file.$viral_chr.SMRT_starts.bed") or die "couldn't
open file";
open(OUT,
">$SMRT_file.$viral_chr.SMRT_starts.bed.CAGE_support.bed.temp");

my $match_count;
my $lower_limit;
my $upper_limit;

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @SMRT_cols = split("\t", $line);

 next if (abs $SMRT_cols[4] < $min_SMRT); #skips starts without
enough SMRT support
 foreach my $key_combo_CAGE (keys %features_CAGE) {

my @CAGE_cols = split(":", $key_combo_CAGE);
if ($SMRT_cols[5] eq "+") {

$lower_limit = $SMRT_cols[1]-$dist_SMRT_CAGE;
$upper_limit = $SMRT_cols[1]+$dist_SMRT_CAGE;

}
if ($SMRT_cols[5] eq "-") {

$lower_limit = $SMRT_cols[2]-$dist_SMRT_CAGE;
$upper_limit = $SMRT_cols[2]+$dist_SMRT_CAGE;

}
if (($SMRT_cols[5] eq $CAGE_cols[1]) and ($CAGE_cols[0] >=

$lower_limit) and ($CAGE_cols[0] <= $upper_limit)) {
if ($match_count) { #if more than one CAGE start matches

the SMRT start, selects the CAGE end with the most tags
if ($features_CAGE{$key_combo_CAGE} > $match_count) {

$match_count = $features_CAGE{$key_combo_CAGE};
}

}
else {

$match_count = $features_CAGE{$key_combo_CAGE};

 119

}
}

 }
 if ($match_count) {

my $name = "$SMRT_cols[4].IsoSeq_$match_count.CAGE";
my $count = $match_count + $SMRT_cols[4];
print OUT

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$name\t$count\t$SMRT_cols
[5]\t$SMRT_cols[3]\n";

undef($match_count);
 }
 else {

my @range_cols = split (":", $SMRT_cols[3]);
print OUT

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$range_cols[2].IsoSeq\t$r
ange_cols[2]\t$SMRT_cols[5]\t$SMRT_cols[3]\n";
 }
}

close(OUT);
close(INF);

#####----------COMPARING TO ANNOTATED STARTS-------------######
open(INF, "<$ann_file") or die "couldn't open file";

print "Processing annotation file...\n";

#extract 5' starts from the annotation file:
#annotation file must be sorted by chrStart then chrEnd!
my @annotated_starts;
my $plus_prev_coord = 0;
my $minus_prev_coord = 0;

while(my $line = <INF>) {
 chomp($line);
 next if ($line =~ /^track/); #skips the track definition line

my @ann_cols = split("\t", $line);
 next if $ann_cols[0] ne $viral_chr; #skip lines that aren't viral
 if ($ann_cols[5] eq "+") {

if ($ann_cols[1] != $plus_prev_coord) {
push (@annotated_starts, "$ann_cols[1]:$ann_cols[5]");
$plus_prev_coord = $ann_cols[1];

}
 }
 elsif ($ann_cols[5] eq "-"){

if ($ann_cols[2] != $minus_prev_coord) {
push (@annotated_starts, "$ann_cols[2]:$ann_cols[5]");
$minus_prev_coord = $ann_cols[2];

}
 }
}

my $annotated = scalar @annotated_starts;

 120

close(INF);

#compare starts in the altered SMRT starts file (that already has info
about CAGE starts) with annotated starts

open(INF,
"<$SMRT_file.$viral_chr.SMRT_starts.bed.CAGE_support.bed.temp") or die
"couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.validated_starts.bed");

print "Comparing Iso-seq starts to annotated starts...\n";

print OUT "track type=bedDetail
name=\"$SMRT_file.$viral_chr.validated_starts.bed\"
description=\"consensus Iso-Seq 5' starts of collapse value 8 supported
by at least $min_SMRT read(s) within $dist_SMRT_CAGE bp of CAGE
clusters or within $ann_dist bp of annotated starts. From
start_finder_sam_to_bed.pl\"\n";

my $annotated_found_by_SMRT = 0;
my $novel_found_by_SMRT_CAGE = 0;
my $SMRT_annotated = 0; #this is different than
$annotated_found_by_SMRT because depending on input parameters two SMRT
starts may correspond to a single annotated start or vice versa.

while(my $line = <INF>) {
 chomp($line);
 my @SMRT_cols = split("\t", $line);
 my $found_flag=0;
 foreach my $ann_start (@annotated_starts) {

my @ann_cols = split(":", $ann_start);
my $lower_limit = $ann_cols[0]-$ann_dist;
my $upper_limit = $ann_cols[0]+$ann_dist;
if ($SMRT_cols[5] eq "+") {

if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[1]>=$lower_limit) and ($SMRT_cols[1]<=$upper_limit)) {

if ($found_flag == 0) {
print OUT

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";

$found_flag = 1;
$annotated_found_by_SMRT++; #counts multiple

annotated starts near SMRT starts
$SMRT_annotated++; #only counts one annotated start

per SMRT start
}
elsif ($found_flag == 1) {

$annotated_found_by_SMRT++;
}

}
}
if ($SMRT_cols[5] eq "-") {

if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[2]>=$lower_limit) and ($SMRT_cols[2]<=$upper_limit)) {

if ($found_flag == 0) {

 121

print OUT $SMRT_cols[0], "\t", $SMRT_cols[1], "\t",
$SMRT_cols[2], "\tann_", $SMRT_cols[5], "_", $SMRT_cols[3], "\t",
abs($SMRT_cols[4]), "\t", $SMRT_cols[5], "\t", $SMRT_cols[6], "\n";

$found_flag = 1;
$annotated_found_by_SMRT++;
$SMRT_annotated++;

}
elsif ($found_flag == 1) {

$annotated_found_by_SMRT++;
}

}
}

 }
 if ($found_flag == 0) {

if ($SMRT_cols[3] =~ /.+IsoSeq_.+CAGE/) {
print OUT

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";

$novel_found_by_SMRT_CAGE++;
}

 }
}

my $total_found = $SMRT_annotated + $novel_found_by_SMRT_CAGE;

close(INF);
close(OUT);

print "--\n";

open(OUT, ">${viral_chr}_validated_starts_stats.txt");

if ($total_found > 0) {
 if ($SMRT_annotated != $annotated_found_by_SMRT) {

print "$total_found 5' starts found. $novel_found_by_SMRT_CAGE
are novel, $SMRT_annotated are annotated. $annotated_found_by_SMRT out
of $annotated total annotated 5' starts are found.\nNote that two
annotated starts may be within $ann_dist bp of a single Iso-Seq start
or vice versa.\n";

print OUT "$viral_chr\n$total_found 5'
starts\n\t$novel_found_by_SMRT_CAGE novel\n\t$SMRT_annotated
annotated\n$annotated starts in annotation
file\n\t$annotated_found_by_SMRT detected by Iso-Seq\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
 }
 else {

print "$total_found 5' starts found. $novel_found_by_SMRT_CAGE
are novel, $SMRT_annotated are annotated (out of a total of $annotated
annotated 5' starts).\n";

print OUT "$viral_chr\n\n$total_found 5'
starts\n\t$novel_found_by_SMRT_CAGE novel\n\t$SMRT_annotated
annotated\n$annotated starts in annotation file\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
 }

 122

}
else {
 print "No validated starts found.\n";
 print OUT "No validated starts found.\n\ninput
files:\n\t$SMRT_file\n\t$CAGE_file\n\t$ann_file\n";
}

close(OUT);

system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.SMRT_starts.bed.CAGE_support.bed.temp");

#########################
sub collapse_bedgraph {
 my ($distance_between_peaks) = shift;
 my $prev_coord_plus = 1;
 my $prev_coord_minus = 1;
 my $count_sum_plus = 0;
 my $count_sum_minus = 0;
 my $weighted_coordinate_sum_plus = 0;
 my $weighted_coordinate_sum_minus = 0;
 my $weighted_average_plus;
 my $weighted_average_minus;
 my $first_plus = 1;
 my $first_minus = 1;
 my @coords_plus;
 my @coords_minus;
 my $chrStart_plus;
 my $chrEnd_plus;
 my $chrStart_minus;
 my $chrEnd_minus;

 while (my $line = <INF>) {
chomp($line);
next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);
if ($cols[3] > 0) { #if this coordinate has a positive count...

if ($cols[1] <= $prev_coord_plus +
($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate

$count_sum_plus = $count_sum_plus + $cols[3]; #adds to
the sums to eventually calculate the weighted average

$weighted_coordinate_sum_plus =
$weighted_coordinate_sum_plus + ($cols[1]*$cols[3]);

push (@coords_plus, $cols[1]);
$prev_coord_plus = $cols[1]; #sets the current

coordinate as the "previous coordinate" before moving on
}
else { #if the present coordinate is not within the

specified number of bp of the previous coordinate, need to print out a
feature

if ($first_plus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)

$count_sum_plus = $cols[3];

 123

$weighted_coordinate_sum_plus = $cols[1]*$cols[3];
 $prev_coord_plus = $cols[1];
push (@coords_plus, $cols[1]);
$first_plus = 0;

}
else {

$weighted_average_plus = sprintf("%1.0f",
($weighted_coordinate_sum_plus/$count_sum_plus)); #calculates weighted
average

$chrStart_plus = $coords_plus[0];
$chrEnd_plus = pop(@coords_plus);
print OUT $viral_chr, "\t", $weighted_average_plus,

"\t", $weighted_average_plus+1, "\t", $chrStart_plus, ":",
$chrEnd_plus, ":", $count_sum_plus, "\t", $count_sum_plus, "\t+\n";
#prints out weighted average for plus strand features. Use printf to
round the weighted average.

@coords_plus = ($cols[1]);
 $count_sum_plus = $cols[3]; #sets "previous

coordinate", count and sum of counts for the current coordinate
$weighted_coordinate_sum_plus = $cols[1]*$cols[3];
$prev_coord_plus = $cols[1];

}
}

}
elsif ($cols[3] < 0) { #if this coordinate has a negative

count...
if ($cols[2] <= $prev_coord_minus +

($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate

$count_sum_minus = $count_sum_minus + $cols[3]; #adds
to the sums to eventually calculate the weighted average

$weighted_coordinate_sum_minus =
$weighted_coordinate_sum_minus + ($cols[2]*$cols[3]);

push (@coords_minus, $cols[2]);
$prev_coord_minus = $cols[2]; #sets the current

coordinate as the "previous coordinate" before moving on
}
else { #if the present coordinate is not within the

specified number of bp of the previous coordinate, need to print out a
feature

if ($first_minus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)

$count_sum_minus = $cols[3];
$weighted_coordinate_sum_minus = $cols[2]*$cols[3];
$prev_coord_minus = $cols[2];
push (@coords_minus, $cols[2]);
$first_minus = 0;

}
else {

$weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/$count_sum_minus)); #calculates
weighted average.

$chrStart_minus = $coords_minus[0];
$chrEnd_minus = pop(@coords_minus);

 124

print OUT $viral_chr, "\t",
$weighted_average_minus-1, "\t", $weighted_average_minus, "\t",
$chrStart_minus, ":", $chrEnd_minus, ":", $count_sum_minus, "\t",
abs($count_sum_minus), "\t-\n";

@coords_minus = ($cols[2]);
@coords_minus = ($cols[2]);
$count_sum_minus = $cols[3]; #sets "previous

coordinate", count and sum of counts for the current coordinate
$weighted_coordinate_sum_minus = $cols[2]*$cols[3];
$prev_coord_minus = $cols[2];

}
}

}
 }

 if ($count_sum_plus > 0) {#calculates and prints out weighted
average for the last feature (plus strand)

$weighted_average_plus = sprintf("%1.0f",
($weighted_coordinate_sum_plus/$count_sum_plus));

$chrStart_plus = $coords_plus[0];
$chrEnd_plus = pop(@coords_plus);
print OUT $viral_chr, "\t", $weighted_average_plus, "\t",

$weighted_average_plus+1, "\t", $chrStart_plus, ":", $chrEnd_plus,
":", $count_sum_plus, "\t", $count_sum_plus, "\t+\n"; #prints out
weighted average for plus strand features. Use printf to round the
weighted average.
 }

 if ($count_sum_minus < 0) {#calculates and prints out weighted
average for the last feature (minus strand)

$weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/$count_sum_minus));

$chrStart_minus = $coords_minus[0];
$chrEnd_minus = pop(@coords_minus);
print OUT $viral_chr, "\t", $weighted_average_minus-1, "\t",

$weighted_average_minus, "\t", $chrStart_minus, ":", $chrEnd_minus,
":", $count_sum_minus, "\t", abs($count_sum_minus), "\t-\n";
 }
}

APPENDIX 2

TRIMD_junction_validator.pl

 126

#!/usr/bin/perl

#Accepts a junctions files from GMAP/Iso-Seq (generated with the -f
introns argument), an SJ.out.tab files from STAR/Illumina and an
annotation file. Returns 3 bed files: one of SMRT introns, one of
Illumina introns and one of introns detected by both methods.
Annotation status of validated introns is noted.

#USAGE:
perl <PATH/TRIMD_junction_validator.pl> </PATH/Iso-Seq_introns_file>
</PATH/Illumina_SJ.out.tab_file> </PATH/transcript_annotation_bed_file>
<coordinates_to_ignore_bed_file(optional)>

use warnings;
use strict;

my ($SMRT_jfile, $ill_jfile, $ann_file, $ig_file) = @ARGV;

print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;

my $min_SMRTj;
my $min_illj;

print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;

if ($answer eq "y") {
 $min_SMRTj = 1;
 $min_illj = 1;
}
else {
 print "Enter minimum Iso-Seq read depth to report a splice junction
(e.g. 1): ";
 $min_SMRTj = <STDIN>;
 chomp $min_SMRTj;

 print "Enter minimum Illumina read depth to report a splice
junction (e.g. 1): ";
 $min_illj = <STDIN>;
 chomp $min_illj;
}

print "--\n";

#####----------GMAP/SMRT FILE CONVERSION-------------######

 127

open(INF, "<$SMRT_jfile");
open(OUT, ">$SMRT_jfile.temp");

print "Processing Iso-Seq splice junctions...\n";

while(my $line = <INF>) {
 chomp($line);
 my ($id) = $line =~ /\>(.+)\.i/;
 my ($chr) = $line =~ /\s(.+):/;
 my ($score) = $line =~ /\>.+\/(\d+)\//;
 my ($donor, $acceptor) = $line =~ /:(\d+)\.\.(\d+)/;
 next if $chr ne $viral_chr;
 if ($acceptor > $donor) {

print OUT $chr, "\t", $donor, "\t", $acceptor - 1, "\t", $id,
"\t", $score, "\t+\n";
 }
 else {

print OUT $chr, "\t", $acceptor, "\t", $donor - 1, "\t", $id,
"\t", $score, "\t-\n";
 }
}
close(OUT);
close(INF);

system("sort -k2,3n \Q$SMRT_jfile\E.temp >
\Q$SMRT_jfile\E.sorted.temp"); #sorts so that duplicate introns will be
next to each other.

open(INF, "<$SMRT_jfile.sorted.temp") or die "couldn't reopen file";
open(OUT, ">$SMRT_jfile.bed.temp");

my $plus_previous_chr = "start";
my $plus_count = 0;
my $plus_previous_start = 0;
my $plus_previous_end = 0;
my $minus_previous_chr = "start";
my $minus_count = 0;
my $minus_previous_start = 0;
my $minus_previous_end = 0;

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 if ($cols[5] eq "+") { #plus and minus need to be treated
separately in case of introns with the same starts and ends annotated
on opposite strands

if (($cols[0] eq $plus_previous_chr) and ($cols[1] ==
$plus_previous_start) and ($cols[2] == $plus_previous_end)) { #checks
to see if the intron matches the previous intron

$plus_count = $plus_count + $cols[4];
}
else {

if ($plus_previous_chr eq "start") { #prevents the initial
placeholder value from printing out as a line, and sets the values of
the first intron

 128

$plus_previous_chr = $cols[0];
$plus_previous_start = $cols[1];
$plus_previous_end = $cols[2];
$plus_count = $cols[4];

}
else {

print OUT
"$plus_previous_chr\t$plus_previous_start\t$plus_previous_end\t$plus_co
unt\t$plus_count\t+\n";

$plus_previous_chr = $cols[0];
$plus_previous_start = $cols[1];
$plus_previous_end = $cols[2];
$plus_count = $cols[4];

}
}

 }
 if ($cols[5] eq "-") {

if (($cols[0] eq $minus_previous_chr) and ($cols[1] ==
$minus_previous_start) and ($cols[2] == $minus_previous_end)) {

$minus_count = $minus_count + $cols[4];
}
else {

if ($minus_previous_chr eq "start") {
$minus_previous_chr = $cols[0];
$minus_previous_start = $cols[1];
$minus_previous_end = $cols[2];
$minus_count = $cols[4];

}
else {

print OUT
"$minus_previous_chr\t$minus_previous_start\t$minus_previous_end\t$minu
s_count\t$minus_count\t-\n"; #prints out in bed format

$minus_count = $cols[4];
$minus_previous_chr = $cols[0];
$minus_previous_start = $cols[1];
$minus_previous_end = $cols[2];

}
}

 }
}

print OUT
"$plus_previous_chr\t$plus_previous_start\t$plus_previous_end\t$plus_co
unt\t$plus_count\t+\n"; #adds the last plus strand feature
print OUT
"$minus_previous_chr\t$minus_previous_start\t$minus_previous_end\t$minu
s_count\t$minus_count\t-\n"; #adds the last plus strand feature
close(OUT);
close(INF);

system("sort -k2,3n \Q$SMRT_jfile\E.bed.temp >
\Q$SMRT_jfile\E.\Q$viral_chr\E.bed.sorted.temp");
system("rm \Q$SMRT_jfile\E.temp");
system("rm \Q$SMRT_jfile.sorted\E.temp");
system("rm \Q$SMRT_jfile\E.bed.temp");

 129

#if an annotation file of regions to be ignored is supplied, remove the
SMRT junctions with a donor or acceptor in those regions:
if (defined $ig_file) {
 open(INF, "<$ig_file");
 print "Removing Iso-Seq junctions with donor or acceptor in ignored
region...\n";
 my @ig_coords;
 while(my $line = <INF>) {

chomp($line);
my @cols = split("\t", $line);
my $ig_coord = "$cols[1]:$cols[2]";
push (@ig_coords, $ig_coord);

 }
 close(INF);

 open(INF, "<$SMRT_jfile.$viral_chr.bed.sorted.temp") or die
"couldn't open file";
 open(OUT, ">$SMRT_jfile.$viral_chr.bed.noheader");

 while(my $line = <INF>) {
chomp($line);
my @cols = split("\t", $line);
my $found_flag=0;
foreach my $ig_coord (@ig_coords) {

my ($ig_start, $ig_end) = split (":", $ig_coord);
if ((($cols[1] >= $ig_start) and ($cols[1] <= $ig_end)) ||

(($cols[2] >= $ig_start) and ($cols[2] <= $ig_end))) {
$found_flag = 1;
last;

}
}
if ($found_flag == 0) {

print OUT $line, "\n";
}

 }

 close(INF);
 close(OUT);
}

#add header to bed file
if (defined $ig_file) {
 open(INF, "<$SMRT_jfile.$viral_chr.bed.noheader") or die "couldn't
open file";
}
else {
 open(INF, "<$SMRT_jfile.$viral_chr.bed.sorted.temp") or die
"couldn't open file";
}
open(OUT, ">$SMRT_jfile.$viral_chr.bed") or die "couldn't open file";

print OUT "track type=bed name=\"$SMRT_jfile.$viral_chr.bed\"
description=\"Iso-Seq introns from splice_junction_matcher.pl\"\n";
while (my $line = <INF>) {

 130

 print OUT $line;
}
close(OUT);
close(INF);

if (defined $ig_file) {
 system("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.bed.noheader");
}
system("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.bed.sorted.temp");

#####----------STAR/ILLUMINA FILE CONVERSION-------------######

open(INF, "<$ill_jfile") or die "couldn't open file";
open(OUT, ">$ill_jfile.$viral_chr.bed");

print "Processing Illumina splice junctions...\n";
print OUT "track type=bed name=\"$ill_jfile.$viral_chr.bed\"
description=\"Illumina STAR introns from
splice_junction_matcher.pl\"\n";

while(my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 tr/12/+-/ foreach ($cols[3]); #change the numeric strand
indicators to + or -
 next if $cols[0] ne $viral_chr; #skip lines that aren't viral
 my $chrStart = $cols[1] - 1; #changes the start coordinate to 0-
based for bed
 print OUT
"$cols[0]\t$chrStart\t$cols[2]\t$cols[4]\t$cols[6]\t$cols[3]\n";
}

close(OUT);
close(INF);

#if an annotation file of regions to be ignored is supplied, remove the
Illumina junctions with a donor or acceptor in those regions:
if (defined $ig_file) {
 open(INF, "<$ig_file");
 print "Removing Illumina junctions with donor or acceptor in
ignored region...\n";
 my @ig_coords;
 while(my $line = <INF>) {

chomp($line);
my @cols = split("\t", $line);
my $ig_coord = "$cols[1]:$cols[2]";
push (@ig_coords, $ig_coord);

 }
 close(INF);

 open(INF, "<$ill_jfile.$viral_chr.bed") or die "couldn't open
file";
 open(OUT, ">$ill_jfile.$viral_chr.no_ignored.bed");

 131

 print OUT "track type=bed
name=\"$ill_jfile.$viral_chr.no_ignored.bed\" description=\"Illumina
STAR introns from splice_junction_matcher.pl\"\n";

 while(my $line = <INF>) {
chomp($line);
next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);
my $found_flag=0;
foreach my $ig_coord (@ig_coords) {

my ($ig_start, $ig_end) = split (":", $ig_coord);
if ((($cols[1] >= $ig_start) and ($cols[1] <= $ig_end)) ||

(($cols[2] >= $ig_start) and ($cols[2] <= $ig_end))) {
$found_flag = 1;
last;

}
}
if ($found_flag == 0) {

print OUT $line, "\n";
}

 }

 close(INF);
 close(OUT);
 system("rm \Q$ill_jfile\E.\Q$viral_chr\E.bed");
}

#####----------GMAP/ILLUMINA COMPARISON-------------######

if (defined $ig_file) {
 open(INF, "<$ill_jfile.$viral_chr.no_ignored.bed") or die
"couldn't open file";
}
else {
 open(INF, "<$ill_jfile.$viral_chr.bed") or die "couldn't open
file";
}

print "Checking for matching splice junctions...\n";

my %ill_junctions;

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);

 next if ($cols[4] < $min_illj);
my $ill_key_combo = "$cols[0]$cols[1]$cols[2]$cols[5]"; #for each

line in the Illumina file, creates a key for the hash combining
chromosome, start coordinate, end coordinate and strand

$ill_junctions{$ill_key_combo} = $cols[4]; #enters a count value
for the key into the hash
}

close(INF);

 132

open(INF, "<$SMRT_jfile.$viral_chr.bed") or die "couldn't open file";
open(OUT, ">$SMRT_jfile.$viral_chr.illumina_support.bed.temp");

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);

 next if ($cols[4] < $min_SMRTj);
 my $SMRT_key_combo = "$cols[0]$cols[1]$cols[2]$cols[5]"; #for each
line in the SMRT file, creates a variable/key combining chromosome,
start coordinate, end coordinate and strand

if (exists $ill_junctions{$SMRT_key_combo}) { #checks to see if the
key exists in the Illumina hash: if so, prints it out

my $junction_depth = $cols[4] +
$ill_junctions{$SMRT_key_combo};

 print OUT
"$cols[0]\t$cols[1]\t$cols[2]\t$cols[4].IsoSeq_$ill_junctions{$SMRT_key
_combo}.Ill\t$junction_depth\t$cols[5]\n";

}
 else {

print OUT
"$cols[0]\t$cols[1]\t$cols[2]\t$cols[3].IsoSeq\t$cols[4]\t$cols[5]\n";
 }
}
close(INF);
close(OUT);

#####----------ANNOTATION FILE COMPARISON-------------######

#First extract intron coordinates from the annotation file
open(INF, "<$ann_file");

print "Processing annotation file...\n";

my @intron_start;
my @intron_end;
my %ann_intron_coord_pair;
my $start;
my $end;

while (my $line = <INF>) {
 chomp($line);
 next if ($line =~ /^track/); #skips the track definition line
 my @cols = split("\t", $line);
 next if $cols[0] ne $viral_chr; #skip lines that aren't viral
 my $intron_number = $cols[9] - 1;
 next if ($intron_number == 0);
 my @block_sizes = split(",", $cols[10]);
 my @block_starts = split(",", $cols[11]);
 for (my $i = 0; $i < $intron_number; $i = $i + 1) { #for the
transcript currently in the "while" loop, creates an array of intron
start sites relative to the genome

$start = $cols[1] + $block_sizes[$i] + $block_starts[$i];
push(@intron_start, $start);

 133

 }
 for (my $i2 = 1; $i2 < $cols[9]; $i2 = $i2 + 1) { #for the
transcript currently in the "while" loop, creates an array of intron
end sites relative to the genome

$end = $cols[1] + $block_starts[$i2];
push(@intron_end, $end);

 }
 for (my $i3 = 0; $i3 < $intron_number; $i3 = $i3 + 1) { #for the
transcript currently in the "while" loop, matches up intron start and
end sites to create a hash of complete intron coordinates relative to
the genome

my $intron_coords =
"$cols[0]:$intron_start[$i3]:$intron_end[$i3]:$cols[5]";

if (exists $ann_intron_coord_pair{$intron_coords}) {
$ann_intron_coord_pair{$intron_coords} =

$ann_intron_coord_pair{$intron_coords} + 1; #if the intron is already
in the hash (from another transcript), increase the count

}
else {

$ann_intron_coord_pair{$intron_coords} = 1; #if the intron
is not already in the hash, adds it with a value of 1

}
 }
 @intron_start = ();
 @intron_end = (); #intron starts and ends have been assigned to the
%ann_intron_pair hash; empty them for the next transcript
}

my $ann_count = 0;

if (defined $ig_file) {
 open(INF, "<$ig_file");
 my @ig_coords;
 while(my $line = <INF>) {

chomp($line);
my @cols = split("\t", $line);
my $ig_coord = "$cols[1]:$cols[2]";
push (@ig_coords, $ig_coord);

 }
 close(INF);

 foreach my $ann_intron_coord_pair (keys %ann_intron_coord_pair) {
my ($ann_chr, $ann_start, $ann_end, $ann_strand) = split (":",

$ann_intron_coord_pair);
my $found_flag = 0;
foreach my $ig_coord (@ig_coords) {

my ($ig_start, $ig_end) = split (":", $ig_coord);
if ((($ann_start >= $ig_start) and ($ann_start <= $ig_end))

|| (($ann_end >= $ig_start) and ($ann_end <= $ig_end))) {
$found_flag = 1;
last;

}
}
if ($found_flag == 0) {

$ann_count++;

 134

}
 }
}
else {
 $ann_count = scalar (keys %ann_intron_coord_pair);
}

close(INF);

#Compare introns in the altered (with Illumina data) SMRT file to
annotated introns

open(INF, "<$SMRT_jfile.$viral_chr.illumina_support.bed.temp");
open(OUT, ">$SMRT_jfile.$viral_chr.validated_introns.bed");

print "Comparing Iso-Seq junctions to annotation file...\n";

print OUT "track type=bed
name=\"$SMRT_jfile.$viral_chr.validated_introns.bed\"
description=\"Introns detected by Iso-Seq with read depth at least
$min_SMRTj supported by Illumina-detected junctions with read depth at
least $min_illj and/or annotation. From
splice_junction_matcher.pl\"\n";

my $val_SMRT_count = 0;
my $ann_SMRT_count = 0;
my $nov_SMRT_count = 0;

while (my $line = <INF>) {
 chomp($line);
 my @SMRT_cols = split("\t", $line);
 my $SMRT_intron_coords =
"$SMRT_cols[0]:$SMRT_cols[1]:$SMRT_cols[2]:$SMRT_cols[5]"; #creates a
key to search the has of annotated introns
 if (exists $ann_intron_coord_pair{$SMRT_intron_coords}) { #if the
intron matches an annotated intron, notes that and prints out the line

print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\n";

$ann_SMRT_count++;
$val_SMRT_count++;

 }
 else {

if ($SMRT_cols[3] =~ /.+IsoSeq_.+Ill/) { #if the intron doesn't
match an annotated intron but does have Illumina support, notes that
and prints out the line

print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\n";

$nov_SMRT_count++;
$val_SMRT_count++;

}
 }
}
close(OUT);

 135

close(INF);

print "--\n";

open(OUT, ">${viral_chr}_validated_introns_stats.txt");

if ($val_SMRT_count > 0) {
 print "$val_SMRT_count validated junctions detected in the Iso-Seq
file. $nov_SMRT_count are novel and $ann_SMRT_count are annotated (out
of $ann_count annotated junctions).\n";
 if (defined $ig_file) {

print OUT "$viral_chr\n\n$val_SMRT_count validated
junctions\n\t$nov_SMRT_count novel\n\t$ann_SMRT_count
annotated\n$ann_count junctions in annotation file\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n\t$ig_file\n";
 }
 else {

print OUT "$viral_chr\n\n$val_SMRT_count validated
junctions\n\t$nov_SMRT_count novel\n\t$ann_SMRT_count
annotated\n$ann_count junctions in annotation file\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n";
 }
}
else {
 print "No validated junctions found.\n";
 if (defined $ig_file) {

print OUT "No validated junctions found.\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file\n\t$ig_file\n";
 }
 else{

print OUT "No validated junctions found.\n\ninput
files:\n\t$SMRT_jfile\n\t$ill_jfile\n\t$ann_file \n";
 }
}

close(OUT);

system ("rm \Q$SMRT_jfile\E.\Q$viral_chr\E.illumina_support.bed.temp");

APPENDIX 3

TRIMD_end_validator.pl

 137

#!/usr/bin/perl

#Accepts a SAM file using Iso-Seq fl data, a SAM file using Illumina
data, and a bed file of annotated polyadenylated transcripts. Counts
the number of non-clipped Iso-Seq reads with 3' ends at each genomic
position and estimates consensus locations of clusters of 3' ends.
Extracts Illumina reads containing apparent polyA tails and estimates
consensus locations of clusters of polyadenylation sites. Output
includes bedgraph files of all 3' ends, bed files of the weighted
centers of end clusters, a sam file of reads with polyA tails and a bed
file of Iso-Seq 3' ends supported by either the annotation or the
Illumina data.

#USAGE:
perl <PATH/TRIMD_end_validator.pl> </PATH/Iso-Seq_sam_file>
</PATH/Illumina_sam_file> </PATH/Annotation_bed_file>

use warnings;
use strict;

die "USAGE: 'perl <PATH/TRIMD_end_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/Illumina_sam_file> </PATH/Annotation_bed_file>'"
unless @ARGV == 3;

my ($SMRT_file, $ill_file, $ann_file) = @ARGV;

print "Enter name of viral chromosome (e.g. chrEBV_Akata_inverted): ";
my $viral_chr = <STDIN>;
chomp $viral_chr;

my $distance_between_SMRT_peaks;
my $min_As;
my $min_softclip;
my $distance_between_ill_peaks;
my $dist_SMRT_ill_d;
my $dist_SMRT_ill_u;
my $min_SMRT;
my $min_ill;
my $ann_dist;

print "Use default parameters [y/n]? ";
my $answer = <STDIN>;
chomp $answer;

if ($answer eq "y") {
 $distance_between_SMRT_peaks = 8;
 $min_As = 5;
 $min_softclip = 2;
 $distance_between_ill_peaks = 8;

 138

 $dist_SMRT_ill_d = 10;
 $dist_SMRT_ill_u = 4;
 $min_SMRT = 5;
 $min_ill = 1;
 $ann_dist = 10;
}
else {
 print "Enter desired window for collapsing Iso-Seq 3' ends (e.g.
8): ";
 $distance_between_SMRT_peaks = <STDIN>;
 chomp $distance_between_SMRT_peaks;

 print "Enter minimum number of As for Illumina poly(A) tails (e.g.
5): ";
 $min_As = <STDIN>;
 chomp $min_As;

 print "Enter minimum number of mismatches for Illumina poly(A)
tails (e.g. 2): ";
 $min_softclip = <STDIN>;
 chomp $min_softclip;

 print "Enter desired window for collapsing Illumina 3' ends (e.g.
8): ";
 $distance_between_ill_peaks = <STDIN>;
 chomp $distance_between_ill_peaks;

 print "Enter number of bases downstream of Iso-Seq ends to look for
Illumina support (e.g. 10): ";
 $dist_SMRT_ill_d = <STDIN>;
 chomp $dist_SMRT_ill_d;

 print "Enter number of bases upstream of Iso-Seq ends to look for
Illumina support (e.g. 4): ";
 $dist_SMRT_ill_u = <STDIN>;
 chomp $dist_SMRT_ill_u;

 print "Enter minimum number of Iso_seq reads to report a 3' end
(e.g. 5): ";
 $min_SMRT = <STDIN>;
 chomp $min_SMRT;

 print "Enter minimum number of Illumina poly(A) tails to support a
3' end (e.g. 1): ";
 $min_ill = <STDIN>;
 chomp $min_ill;

 print "Enter maximum distance in bp from an annotated end to be
called as 'annotated' (e.g. 10): ";
 $ann_dist = <STDIN>;
 chomp $ann_dist;
}

print "--\n";

 139

#####----------SMRT FILE PROCESSING-------------######
system("awk '\$3==\"$viral_chr\"' \Q$SMRT_file\E \| sort -k 4,4n >
\Q$SMRT_file\E.sorted.temp");
system("awk '\$2==0' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.plus.sam.temp");
system("awk '\$2==16' \Q$SMRT_file\E.sorted.temp >
\Q$SMRT_file\E.sorted.minus.sam.temp");
system("rm \Q$SMRT_file\E.sorted.temp");

#processing of PLUS sam file
open(INF, "<$SMRT_file.sorted.plus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.plus.sam.read_ends.bedgraph.temp") or die
"couldn't open file";

my @dist;
my $sum;
my %plus_ends;
print "Processing Iso-Seq plus strand reads...\n";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 next if ($cols[5] =~ m/\d+S$/); #skips reads soft-clipped at the 3'
end
 while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR
string to determine the downstream coordinate

push (@dist, $1);
 }
 $sum += $_ for @dist;
 my $end_coord = $cols[3] + $sum - 1; #subtract 1 to account for
start/end inclusion
 my $chr_end_coord = "$cols[2]\:$end_coord"; #combines the
chromosome and 3' end coordinate into a key to use for the hash
 $sum = 0;
 @dist = ();
 my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
 if (exists $plus_ends{$chr_end_coord}) { #if the key is already in
the hash, increases the value (count) by 1

$plus_ends{$chr_end_coord} = $plus_ends{$chr_end_coord} +
$split_id[1];
 }
 else {

$plus_ends{$chr_end_coord} = $split_id[1]; #if the key is not
already in the hash, adds it with a value (count) of the read depth
 }
}

foreach my $chr_end_coord (sort keys %plus_ends) { #prints out a(n
inadequately) sorted temporary bedgraph file
 my @split_keys = split("\:", $chr_end_coord);
 print OUT $split_keys[0], "\t", $split_keys[1]-1, "\t",
$split_keys[1], "\t", $plus_ends{$chr_end_coord}, "\n"; #prints to

 140

output file, converting chrStart to 0-based bedgraph coordinates
}
close(INF);
close(OUT);

system("rm \Q$SMRT_file\E.sorted.plus.sam.temp");

#processing of MINUS sam file
open(INF, "<$SMRT_file.sorted.minus.sam.temp") or die "couldn't open
file";
open(OUT, ">$SMRT_file.sorted.minus.sam.read_ends.bedgraph.temp") or
die "couldn't open file";

my $previous_coordinate=1;
my $count=0;
my $previous_chr = "start";
print "Processing Iso-Seq minus strand reads...\n";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 next if ($cols[5] =~ m/^\d+S/); #skips reads soft-clipped at the 3'
end
 my @split_id = split("\/", $cols[0]); #extracts the read depth for
this putative isoform from its id
 if (($cols[2] eq $previous_chr) and ($cols[3] ==
$previous_coordinate)) {

$count = $count + $split_id[1]; #increases the count by the
read depth for the putative isoform
 }
 else {

if ($previous_chr eq "start") { #doesn't print out the
placeholder first line.

$previous_chr = $cols[2]; #sets the previous
chromosome, previous coordinate and count values

$previous_coordinate = $cols[3];
$count = $split_id[1];

}
else {

print OUT $previous_chr, "\t", $previous_coordinate-1,
"\t", $previous_coordinate, "\t-", $count, "\n"; #prints to output
file, converting chrStart to 0-based bedgraph coordinates

$previous_chr = $cols[2];
$previous_coordinate = $cols[3];
$count = $split_id[1];

}
 }
}

print OUT $previous_chr, "\t", $previous_coordinate-1, "\t",
$previous_coordinate, "\t-", $count, "\n"; #prints the last start
coordinates to output file
close(INF);
close(OUT);

 141

system("cat \Q$SMRT_file\E.sorted.plus.sam.read_ends.bedgraph.temp
\Q$SMRT_file\E.sorted.minus.sam.read_ends.bedgraph.temp | sort -k2,3n >
\Q$SMRT_file\E.\Q$viral_chr\E.read_ends.bedgraph.noheader");

system("rm \Q$SMRT_file\E.sorted.plus.sam.read_ends.bedgraph.temp");
system("rm \Q$SMRT_file\E.sorted.minus.sam.read_ends.bedgraph.temp");
system("rm \Q$SMRT_file\E.sorted.minus.sam.temp");

#add header to bedgraph file
open(INF, "<$SMRT_file.$viral_chr.read_ends.bedgraph.noheader") or die
"couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.read_ends.bedgraph") or die "couldn't
open file";

print OUT "track type=bedGraph
name=\"$SMRT_file.$viral_chr.read_ends.bedgraph\" description=\"3' ends
of Iso-Seq reads from end_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm \Q$SMRT_file\E.\Q$viral_chr\E.read_ends.bedgraph.noheader");

#make a bed file from the SMRT bedgraph file:
open(INF, "<$SMRT_file.$viral_chr.read_ends.bedgraph") or die "couldn't
open file";
open(OUT, ">$SMRT_file.ends.temp.bed") or die "couldn't open file";

print "Combining Iso-Seq 3' ends within $distance_between_SMRT_peaks of
each other and calculating consensus 3' ends...\n";
collapse_bedgraph($distance_between_SMRT_peaks);

close(INF);
close(OUT);

system("sort -k 1,1 -k 2,2n \Q$SMRT_file\E.ends.temp.bed >
\Q$SMRT_file\E.ends.bed.noheader");
system("rm \Q$SMRT_file.ends.temp.bed\E");

#add header to bed file
open(INF, "<$SMRT_file.ends.bed.noheader") or die "couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.SMRT_ends.bed") or die "couldn't open
file";

print OUT "track type=bed name=\"$SMRT_file.$viral_chr.SMRT_ends.bed\"
description=\"consensus 3' ends of Iso-Seq reads within
$distance_between_SMRT_peaks bp collapsed to weighted center from
end_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

 142

system("rm \Q$SMRT_file\E.ends.bed.noheader");

#####----------ILLUMINA FILE PROCESSING-------------######

open(INF, "<$ill_file") or die "couldn't open input file";
open(OUT, ">$ill_file.polyA_ends.temp") or die "couldn't open output
file";

print "Extracting Illumina reads with at least $min_As As and at least
$min_softclip mismatches...\n";

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 next if ($cols[0] eq "\@HD" || $cols[0] eq "\@PG" || $cols[0] eq
"\@SQ"); #skips SAM file header lines
 next if $cols[2] ne $viral_chr;
 if ($cols[1] == 81 || $cols[1] == 83 || $cols[1] == 89 || $cols[1]
== 16) { #selects reads with FLAG codes indicating they are first in
pair on the plus strand

if (($cols[5] =~ m/\d+S$/) and ($cols[9] =~ m/A{$min_As}$/)) {
selects reads with softclipping and a run of As at the end

my ($softclips) = $cols[5] =~ m/(\d+)S$/; #pulls out the
number of softclipped bases

if ($softclips > $min_softclip) { #selects reads with at
least the specified number of softclipped bases

print OUT $line, "\n";
}

}
 }
 elsif ($cols[1] == 73 || $cols[1] == 97 || $cols[1] == 99 ||
$cols[1] == 0) { #selects reads with FLAG codes indicating they are
first in pair on the minus strand

if (($cols[5] =~ m/^\d+S/) and ($cols[9] =~ m/^T{$min_As}/)) {
#selects reads with softclipping and a run of Ts at the beginning

my ($softclips) = $cols[5] =~ m/^(\d+)S/; #pulls out the
number of softclipped bases

if ($softclips > $min_softclip) { #selects reads with at
least the specified number of softclipped bases

print OUT $line, "\n";
}

}
 }
}

close(INF);
close(OUT);

system ("sort -k 4,4n \Q$ill_file\E.polyA_ends.temp >
\Q$ill_file\E.polyA_ends.sam");
system ("rm \Q$ill_file\E.polyA_ends.temp");

open(INF, "<$ill_file.polyA_ends.sam") or die "couldn't open file";
open(OUT, ">$ill_file.polyA_sites.temp") or die "couldn't open file";

 143

print "Processing Illumina reads with polyA tails...\n";
#create a file with the coordinates corresponding to the polyA ends of
the reads, and sort it by those coordinates

my $cigar_sum;
my $cigar_calc;
my @plus_ends;
my @read_dist;

while (my $line = <INF>) {
 chomp($line);

my @cols = split("\t", $line);
if ($cols[1] == 73 || $cols[1] == 97 || $cols[1] == 99 || $cols[1]

== 0) { #minus strand
print OUT "$cols[2]\t$cols[3]\t0\n";

}
elsif ($cols[1] == 81 || $cols[1] == 83 || $cols[1] == 89 ||

$cols[1] == 16) { #plus strand
 while ($cols[5] =~ /(\d+)[DMNX=]/g) { #these lines use the CIGAR

string to determine the downstream coordinate
push (@read_dist, $1);

}
$cigar_sum += $_ for @read_dist;
$cigar_calc = $cols[3] + $cigar_sum - 1; #subtract one to account

for start/end inclusion
$cigar_sum = 0;
@read_dist = ();
print OUT "$cols[2]\t$cigar_calc\t1\n";

}
}
close(INF);
close(OUT);

system("sort -k 1,1 -k 2,2n \Q$ill_file.polyA_sites.temp\E >
\Q$ill_file.polyA_sites.temp\E.sorted");

#create a bedgraph file from the sorted coordinates file

open(INF, "<$ill_file.polyA_sites.temp.sorted") or die "couldn't open
file";
open(OUT, ">$ill_file.polyA_sites.temp.bedgraph") or die "couldn't open
file";

my $chrom_minus;
my $previous_coordinate_m=0;
my $count_m=0;
my $chrom_plus;
my $previous_coordinate_p=0;
my $count_p=0;

while (my $line = <INF>) {

my @cols = split("\t", $line);

 144

#reads on the plus strand:
if ($cols[2] == 1) {
 if ($chrom_plus) { #if $chrom_plus has been defined (i.e. there

is a previous plus strand read)
if (($cols[0] eq $chrom_plus) and ($cols[1] ==

$previous_coordinate_p)) {
$count_p++;

}
else {

print OUT $chrom_plus, "\t", $previous_coordinate_p-
1, "\t", $previous_coordinate_p, "\t", $count_p, "\n"; #prints to
output file, converting chrStart to 0-based bedgraph coordinates

$previous_coordinate_p = $cols[1];
$count_p = 1;

}
}

 else { #if $chrom_plus has not been defined (i.e. there is no
previous plus strand read)

$chrom_plus = $cols[0];
$previous_coordinate_p = $cols[1];
$count_p = 1;

}
}

#reads on the minus strand:
elsif ($cols[2] == 0) {
if ($chrom_minus) {

if (($cols[0] eq $chrom_minus) and ($cols[1] ==
$previous_coordinate_m)) {

$count_m++;
}
else {

print OUT $chrom_minus, "\t", $previous_coordinate_m-
1, "\t", $previous_coordinate_m, "\t-", $count_m, "\n"; #prints to
output file, converting chrStart to 0-based bedgraph coordinates

$chrom_minus = $cols[0];
$previous_coordinate_m = $cols[1];
$count_m = 1;

}
}
else {

$chrom_minus = $cols[0];
$previous_coordinate_m = $cols[1];
$count_m = 1;

}
}

}
#prints to output file, converting chrStart to 0-based bedgraph
coordinates
print OUT $chrom_plus, "\t", $previous_coordinate_p-1, "\t",
$previous_coordinate_p, "\t", $count_p, "\n";
print OUT $chrom_minus, "\t", $previous_coordinate_m-1, "\t",
$previous_coordinate_m, "\t-", $count_m, "\n";

close(INF);

 145

close(OUT);

system("sort -k 1,1 -k 2,2n \Q$ill_file\E.polyA_sites.temp.bedgraph >
\Q$ill_file\E.polyA_sites.bedgraph.noheader");
system("rm \Q$ill_file\E.polyA_sites.temp.bedgraph");
system("rm \Q$ill_file\E.polyA_sites.temp.sorted");
system("rm \Q$ill_file\E.polyA_sites.temp");

#add header to bedgraph file
open(INF, "<$ill_file.polyA_sites.bedgraph.noheader") or die "couldn't
open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.bedgraph") or die
"couldn't open file";

print OUT "track type=bedGraph
name=\"$ill_file.$viral_chr.polyA_sites.bedgraph\" description=\"polyA
sites in Illumina reads with at least 5As and at least 2 mismatches
from end_finder_sam_to_bed.pl\"\n";
while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm \Q$ill_file\E.polyA_sites.bedgraph.noheader");

#make a bed file from the Illumina bedgraph file:
open(INF, "<$ill_file.$viral_chr.polyA_sites.bedgraph") or die
"couldn't open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.temp.bed") or die
"couldn't open file";

print "Combining Illumina polyA tails within
$distance_between_ill_peaks of each other and calculating consensus 3'
ends...\n";
collapse_bedgraph($distance_between_ill_peaks);

close(INF);
close(OUT);

system("sort -k 1,1 -k 2,2n
\Q$ill_file\E.\Q$viral_chr\E.polyA_sites.temp.bed >
\Q$ill_file\E.\Q$viral_chr\E.polyA_sites.bed.noheader");
system("rm \Q$ill_file\E.\Q$viral_chr\E.polyA_sites.temp.bed");

#add header to bed file
open(INF, "<$ill_file.$viral_chr.polyA_sites.bed.noheader") or die
"couldn't open file";
open(OUT, ">$ill_file.$viral_chr.polyA_sites.bed") or die "couldn't
open file";

print OUT "track type=bed name=\"$ill_file.$viral_chr.polyA_sites.bed\"
description=\"consensus polyA sites of Illumina reads with tails of 5
As with 2 mismatches within $distance_between_ill_peaks bp collapsed to
weighted centers from end_finder_sam_to_bed.pl\"\n";

 146

while (my $line = <INF>) {
 print OUT $line;
}
close(OUT);
close(INF);

system("rm \Q$ill_file\E.\Q$viral_chr\E.polyA_sites.bed.noheader");

#####----------SEEKING ILLUMINA SUPPORT FOR SMRT ENDS-------------

open(INF, "<$ill_file.$viral_chr.polyA_sites.bed") or die "couldn't
open file";

print "Extracting Iso-Seq 3' ends with Illumina polyA tails within
$dist_SMRT_ill_d bases downstream or $dist_SMRT_ill_u upstream...\n";

my %features_ill;
my $key_combo_ill;

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);

 if ($cols[5] eq "+") { #for each line in the Illumina polyA reads
bed file, creates a key for the hash combining coordinate and strand.
Selects chrEnd for ends on the plus strand and chrStart for ends on the
minus strand.

$key_combo_ill = "$cols[2]:$cols[5]";
 }
 if ($cols[5] eq "-") {

$key_combo_ill = "$cols[1]:$cols[5]";
 }

$features_ill{$key_combo_ill} = $cols[4]; #enters a count value for
the key into the hash
}

close(INF);

open(INF, "<$SMRT_file.$viral_chr.SMRT_ends.bed") or die "couldn't
open file";
open(OUT, ">$SMRT_file.$viral_chr.ends.bed.illumina_support.bed.temp");

my $ill_coord;
my $match_count;
my $lower_limit;
my $upper_limit;

while(my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my @SMRT_cols = split("\t", $line);

 next if (abs $SMRT_cols[4] < $min_SMRT);
 foreach my $key_combo_ill (keys %features_ill) {

my @ill_cols = split(":", $key_combo_ill);

 147

next if (abs $features_ill{$key_combo_ill} < $min_ill);

if ($SMRT_cols[5] eq "+") { #sets boundaries for plus strand
support

$lower_limit = $SMRT_cols[2]-$dist_SMRT_ill_u;
$upper_limit = $SMRT_cols[2]+$dist_SMRT_ill_d;

}
if ($SMRT_cols[5] eq "-") { #sets boundaries for minus strand

support
$lower_limit = $SMRT_cols[1]-$dist_SMRT_ill_d;
$upper_limit = $SMRT_cols[1]+$dist_SMRT_ill_u;

}
if (($SMRT_cols[5] eq $ill_cols[1]) and ($ill_cols[0] >=

$lower_limit) and ($ill_cols[0] <= $upper_limit)) {

if ($match_count) { #if more than one Illumina end matches
the SMRT end, selects Illumina end with the most reads

if ($features_ill{$key_combo_ill} > $match_count){
$match_count = $features_ill{$key_combo_ill};
$ill_coord = $ill_cols[0];

}
}
else {

$match_count = $features_ill{$key_combo_ill};
$ill_coord = $ill_cols[0];

}
}

 }
 if ($match_count) {

if ($SMRT_cols[5] eq "+") {
my $name = "$SMRT_cols[4].IsoSeq_$match_count.Ill";
my $count = $match_count + $SMRT_cols[4];
print OUT $SMRT_cols[0], "\t", $ill_coord-1, "\t",

$ill_coord, "\t", $name, "\t", $count, "\t", $SMRT_cols[5], "\t",
$SMRT_cols[3], "\n"; #prints to output, adjusting chrStart to 0-based

undef($match_count);
}
if ($SMRT_cols[5] eq "-") {

my $name = "$SMRT_cols[4].IsoSeq_$match_count.Ill";
my $count = $match_count + $SMRT_cols[4];
print OUT $SMRT_cols[0], "\t", $ill_coord, "\t",

$ill_coord+1, "\t", $name, "\t", $count, "\t", $SMRT_cols[5], "\t",
$SMRT_cols[3], "\n"; #prints to output, adujsting chrEnd

undef($match_count);
}

 }
 else {

my @range_cols = split (":", $SMRT_cols[3]); #includes SMRT
ends that are not supported by Illumina in this temporary file

print OUT
"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\t$range_cols[2].IsoSeq\t$r
ange_cols[2]\t$SMRT_cols[5]\t$SMRT_cols[3]\n";
 }
}

 148

close(OUT);
close(INF);

#####----------COMPARING TO ANNOTATED ENDS-------------######
open(INF, "<$ann_file") or die "couldn't open file";

print "Processing annotation file...\n";

#extract 3' ends from the annotation file:
#annotation file must be sorted by chrStart then chrEnd!
my @annotated_ends;
my $plus_prev_coord = 0;
my $minus_prev_coord = 0;

while(my $line = <INF>) {
 chomp($line);
 next if ($line =~ /^track/); #skips the track definition line

my @ann_cols = split("\t", $line);
 next if $ann_cols[0] ne $viral_chr; #skip lines that aren't viral
 if ($ann_cols[5] eq "+") {

if ($ann_cols[2] != $plus_prev_coord) {
push (@annotated_ends, "$ann_cols[2]:$ann_cols[5]");

#creates an array with chrEnd and strand
$plus_prev_coord = $ann_cols[2];

}
 }
 elsif ($ann_cols[5] eq "-"){

if ($ann_cols[1] != $minus_prev_coord) {
push (@annotated_ends, "$ann_cols[1]:$ann_cols[5]");

#creates an array with chrStart and strand
$minus_prev_coord = $ann_cols[1];

}
 }
}

my $annotated = scalar @annotated_ends;

close(INF);

#compare ends in the altered SMRT ends file (that already has info
about Illumina ends) with annotated ends

open(INF, "<$SMRT_file.$viral_chr.ends.bed.illumina_support.bed.temp")
or die "couldn't open file";
open(OUT, ">$SMRT_file.$viral_chr.validated_ends.bed");

print "Comparing Iso-Seq ends to annotated ends...\n";

print OUT "track type=bedDetail
name=\"$SMRT_file.$viral_chr.SMRT_ends.bed.illumina_support.bed\"
description=\"validated ends supported by at least $min_SMRT Iso-Seq
read ends within $distance_between_SMRT_peaks bp, with an Illumina
polyA site within $dist_SMRT_ill_d bp downstream or $dist_SMRT_ill_u bp

 149

upstream, or within $ann_dist bp of an annotated end. Illumina polyA
sites have at least $min_ill reads with $min_As As and $min_softclip
mismatches, within $distance_between_ill_peaks bp of each other. From
end_finder_sam_to_bed.pl\"\n";

my $annotated_found_by_SMRT = 0;
my $novel_found_by_SMRT_ill = 0;
my $SMRT_annotated = 0; #this is different than
$annotated_found_by_SMRT because depending on input parameters two SMRT
ends may correspond to a single annotated end or vice versa.

while(my $line = <INF>) {
 chomp($line);
 my @SMRT_cols = split("\t", $line);
 my $found_flag=0;
 foreach my $ann_end (@annotated_ends) {

my @ann_cols = split(":", $ann_end);
my $lower_limit = $ann_cols[0]-$ann_dist;
my $upper_limit = $ann_cols[0]+$ann_dist;
if ($ann_cols[1] eq "+") {

if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[2]>=$lower_limit) and ($SMRT_cols[2]<=$upper_limit)) {

if ($found_flag == 0) {
print OUT

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tann_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";

$found_flag = 1;
$annotated_found_by_SMRT++;
$SMRT_annotated++;

}
elsif ($found_flag == 1) {

$annotated_found_by_SMRT++;
}

}
}
if ($ann_cols[1] eq "-") {

if (($SMRT_cols[5] eq $ann_cols[1]) and
($SMRT_cols[1]>=$lower_limit) and ($SMRT_cols[1]<=$upper_limit)) {

if ($found_flag == 0) {
print OUT $SMRT_cols[0], "\t", $SMRT_cols[1], "\t",

$SMRT_cols[2], "\tann_", $SMRT_cols[5], "_", $SMRT_cols[3], "\t",
abs($SMRT_cols[4]), "\t", $SMRT_cols[5], "\t", $SMRT_cols[6], "\n";

$found_flag = 1;
$annotated_found_by_SMRT++;
$SMRT_annotated++;

}
elsif ($found_flag == 1) {

$annotated_found_by_SMRT++;
}

}
}

 }
 if ($found_flag == 0) {

if ($SMRT_cols[3] =~ /.+IsoSeq_.+Ill/) {
print OUT

 150

"$SMRT_cols[0]\t$SMRT_cols[1]\t$SMRT_cols[2]\tnov_$SMRT_cols[5]_$SMRT_c
ols[3]\t$SMRT_cols[4]\t$SMRT_cols[5]\t$SMRT_cols[6]\n";

$novel_found_by_SMRT_ill++;
}

 }
}

my $total_found = $SMRT_annotated + $novel_found_by_SMRT_ill;

close(INF);
close(OUT);

print "--\n";

open(OUT, ">${viral_chr}_validated_ends_stats.txt");

if ($total_found > 0) {
 if ($SMRT_annotated != $annotated_found_by_SMRT) {

print "$total_found 3' ends found. $novel_found_by_SMRT_ill are
novel, $SMRT_annotated are annotated. $annotated_found_by_SMRT out of
$annotated total annotated 3' ends are found.\nNote that two annotated
ends may be within $ann_dist bp of a single Iso-Seq end or vice
versa.\n";

print OUT "$viral_chr\n\n$total_found 3'
ends\n\t$novel_found_by_SMRT_ill novel\n\t$SMRT_annotated
annotated\n$annotated 3' ends in annotation\n\t$annotated_found_by_SMRT
detected by Iso-Seq\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
 }
 else {

print "$total_found 3' ends found. $novel_found_by_SMRT_ill are
novel, $SMRT_annotated are annotated (out of a total of $annotated
annotated 3' ends).\n\n";

print OUT "$viral_chr\n\n$total_found 3'
ends\n\t$novel_found_by_SMRT_ill novel\n\t$SMRT_annotated
annotated\n$annotated 3' ends in annotation\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
 }
}
else {
 print "No 3' ends validated\n";
 print OUT "No validated 3' ends found\n\ninput
files:\n\t$SMRT_file\n\t$ill_file\n\t$ann_file\n";
}

close(OUT);

system("rm
\Q$SMRT_file\E.\Q$viral_chr\E.ends.bed.illumina_support.bed.temp");

#########################
sub collapse_bedgraph {
 my ($distance_between_peaks) = shift;
 my $prev_coord_plus = 0;
 my $prev_coord_minus = 0;

 151

 my $count_sum_plus = 0;
 my $count_sum_minus = 0;
 my $weighted_coordinate_sum_plus = 0;
 my $weighted_coordinate_sum_minus = 0;
 my $weighted_average_plus;
 my $weighted_average_minus;
 my $first_plus = 1;
 my $first_minus = 1;
 my @coords_plus;
 my @coords_minus;
 my $chrStart_plus;
 my $chrEnd_plus;
 my $chrStart_minus;
 my $chrEnd_minus;

 while (my $line = <INF>) {
chomp($line);
next if ($line =~ /^track/); #skips the track definition line
my @cols = split("\t", $line);
if ($cols[3] > 0) { #if this coordinate has a positive count...

if ($cols[2] <= $prev_coord_plus +
($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate

$count_sum_plus = $count_sum_plus + $cols[3]; #adds to
the sums to eventually calculate the weighted average

$weighted_coordinate_sum_plus =
$weighted_coordinate_sum_plus + ($cols[2]*$cols[3]);

push (@coords_plus, $cols[2]);
$prev_coord_plus = $cols[2]; #sets the current

coordinate as the "previous coordinate" before moving on
}
else { #if the present coordinate is not within the

specified number of bp of the previous coordinate, need to print out a
feature

if ($first_plus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)

$count_sum_plus = $cols[3];
$weighted_coordinate_sum_plus = $cols[2]*$cols[3];
$prev_coord_plus = $cols[2];
push (@coords_plus, $cols[2]);
$first_plus = 0;

}
else {

$weighted_average_plus = sprintf("%1.0f",
($weighted_coordinate_sum_plus/$count_sum_plus)); #calculates weighted
average

$chrStart_plus = $coords_plus[0];
$chrEnd_plus = pop(@coords_plus);
print OUT $viral_chr, "\t", $weighted_average_plus-

1, "\t", $weighted_average_plus, "\t", $chrStart_plus, ":",
$chrEnd_plus, ":", $count_sum_plus, "\t", $count_sum_plus, "\t+\n";
#prints out weighted average for plus strand features. Use printf to
round the weighted average.

@coords_plus = ($cols[2]);

 152

$count_sum_plus = $cols[3]; #sets "previous
coordinate", count and sum of counts for the current coordinate

$weighted_coordinate_sum_plus = $cols[2]*$cols[3];
$prev_coord_plus = $cols[2];

}
}

}
elsif ($cols[3] < 0) { #if this coordinate has a negative

count...
if ($cols[1] <= $prev_coord_minus +

($distance_between_peaks)) { #if the coordinate is within the specified
number of bp of the previous coordinate

$count_sum_minus = $count_sum_minus + $cols[3]; #adds
to the sums to eventually calculate the weighted average

$weighted_coordinate_sum_minus =
$weighted_coordinate_sum_minus + ($cols[1]*$cols[3]);

push (@coords_minus, $cols[1]);
$prev_coord_minus = $cols[1]; #sets the current

coordinate as the "previous coordinate" before moving on
}
else { #if the present coordinate is not within the

specified number of bp of the previous coordinate, need to print out a
feature

if ($first_minus == 1) { #"first" flag avoids wonkiness
if the first coordinate is far from coordinate 1 (don't need to print
out a feature yet)

$count_sum_minus = $cols[3];
$weighted_coordinate_sum_minus = $cols[1]*$cols[3];
$prev_coord_minus = $cols[1];
push (@coords_minus, $cols[1]);
$first_minus = 0;

}
else {

$weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/$count_sum_minus)); #calculates
weighted average

$chrStart_minus = $coords_minus[0];
$chrEnd_minus = pop(@coords_minus);
print OUT $viral_chr, "\t",

$weighted_average_minus, "\t", $weighted_average_minus+1, "\t",
$chrStart_minus, ":", $chrEnd_minus, ":", $count_sum_minus, "\t",
abs($count_sum_minus), "\t-\n";

@coords_minus = ($cols[1]);
$count_sum_minus = $cols[3]; #sets "previous

coordinate", count and sum of counts for the current coordinate
$weighted_coordinate_sum_minus = $cols[1]*$cols[3];
$prev_coord_minus = $cols[1];

}
}

}
 }

 if ($count_sum_plus > 0) {#calculates and prints out weighted
average for the last feature (plus strand)

$weighted_average_plus = sprintf("%1.0f",

 153

($weighted_coordinate_sum_plus/$count_sum_plus));
$chrStart_plus = $coords_plus[0];
$chrEnd_plus = pop(@coords_plus);
print OUT $viral_chr, "\t", $weighted_average_plus-1, "\t",

$weighted_average_plus, "\t", $chrStart_plus, ":", $chrEnd_plus, ":",
$count_sum_plus, "\t", $count_sum_plus, "\t+\n";
 }

 if ($count_sum_minus < 0) {#calculates and prints out weighted
average for the last feature (minus strand)

$weighted_average_minus = sprintf("%1.0f",
($weighted_coordinate_sum_minus/$count_sum_minus));

$chrStart_minus = $coords_minus[0];
$chrEnd_minus = pop(@coords_minus);
print OUT $viral_chr, "\t", $weighted_average_minus, "\t",

$weighted_average_minus+1, "\t", $chrStart_minus, ":", $chrEnd_minus,
":", $count_sum_minus, "\t", abs($count_sum_minus), "\t-\n";
 }
}

APPENDIX 4

TRIMD_structure_validator.pl

 155

#!usr/bin/perl
#Takes a sam file of Iso-Seq fl isoforms and compares them to a list of
validated 5' ends, 3' ends and introns to create a list of validated
transcript structures, which are compared to an annotation file.

use warnings;
use strict;

die "USAGE: 'perl <PATH/TRIMD_transcript_validator.pl> </PATH/Iso-
Seq_sam_file> </PATH/validated_starts_file> </PATH/validated_ends_file>
</PATH/validated_introns_file> </PATH/Annotation_bed_file>'" unless
@ARGV == 5;

my ($test_file, $valid_starts_file, $valid_ends_file,
$valid_introns_file, $ann_file) = (@ARGV);

print "Enter maximum distance from an annotated 5' start to be called
annotated (e.g. 10): ";
my $start_dist = <STDIN>;
chomp $start_dist;

print "Enter maximum distance from an annotated 3' end to be called
annotated (e.g. 10): ";
my $end_dist = <STDIN>;
chomp $end_dist;

#Convert SMRT sam file to bed:

print "--\nReformatting
Iso-Seq file...\n";

open(INF, "<$test_file") or die "couldn't open input file";
open(OUT, ">$test_file.bed") or die "couldn't open output file";

while (my $line = <INF>) {
 $line =~ s/\r//g;
 chomp($line);
 next if ($line =~ m/\@/); #skips SAM header lines
 my @cols = split("\t", $line);
 my @split_id = split("\/", $cols[0]);
 my $strand;
 my $chr = $cols[2];
 my $chr_start = $cols[3] - 1;
 my $chr_end = 0;
 my $feature_name = $cols[0];
 my $score = $split_id[1];
 my $color = "133,0,33";
 if ($cols[1] == 0) {

$strand = "+";

 156

 }
 elsif ($cols[1] == 16) {

$strand = "-";
 }
 else {

next; #skips isoforms that aren't mapped
 }
 my @split_CIGAR_temp = split(/(\d+\D)/, $cols[5]); #splits CIGAR
code into segments and puts segments into an array (but also the empty
values between them)
 my @split_CIGAR;
 foreach my $temporary(@split_CIGAR_temp) { #removes empty values
from the array

if ($temporary =~ m/\d+\D/) {
push(@split_CIGAR, $temporary);

}
 }
 my $exon_sum = 0;
 my @exon_lengths = ();
 my @block_starts = (0);
 my $count = 0;
 foreach my $split_CIGAR(@split_CIGAR) {

$count++;
if (($count == 1) && (my ($five_prime_clipped_bases) =

$split_CIGAR =~ m/(\d+)S$/)) { #ignores soft clipping at the beginning
}

elsif (($count > 1) && (my ($three_prime_clipped_bases) =
$split_CIGAR =~ m/(\d+)S$/)) { #ignores soft clipping at the end

}
elsif ($split_CIGAR =~ m/N$/) { #if element is an intron...

push(@exon_lengths, $exon_sum); #...adds the last value to
the exon sum...

my ($intron_length) = $split_CIGAR =~ m/(\d+)/;#...gets
intron length...

my $new_block_start = $exon_lengths[-1] + $block_starts[-1]
+ $intron_length;#...calculates new blockStart...

push(@block_starts, $new_block_start);#...adds new
blockStart to array...

$exon_sum = 0;#...and resets the exon sum
}
else {

my ($value) = $split_CIGAR =~ m/(\d+)/;
if ($split_CIGAR =~ m/I$/) {#ignores insertions

$exon_sum = $exon_sum - 0;
}
else {#adds matches, mismatches and deletions to the exon

sum
$exon_sum = $exon_sum + $value;

}
}

 }
 push(@exon_lengths, $exon_sum); #at the end of the CIGAR array,

push the last exon sum into the exon_lengths array
 $chr_end = $chr_start + $block_starts[-1] + $exon_lengths[-1];

 157

 my $exon_number = @exon_lengths;
 print OUT $chr, "\t", $chr_start, "\t", $chr_end, "\t",
$feature_name, "\t", $score, "\t", $strand, "\t", $chr_start, "\t",
$chr_end, "\t", $color, "\t", $exon_number, "\t", join("\,",
@exon_lengths), "\t", join("\,", @block_starts), "\n";
}
close(INF);
close(OUT);

#Create an array of validated start sites from the start sites input
file:
open(INF, "<$valid_starts_file") or die "couldn't open file";

my @valid_start;

while (my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
push (@valid_start, $line); #puts each line of the start sites file

into an array to be checked later
}
close(INF);

#Check each start site in the SMRT reads file against the array of
validated start sites:
open(INF, "<$test_file.bed") or die "couldn't open file";
#open(OUT, ">$test_file.valid_start.bed.temp"); #uncomment to print out
file of isoforms with validated starts

print "Checking start sites...\n";

my @good_start;
my $new_start_line;

while (my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
my ($chrom, $chromStart, $chromEnd, $name, $score, $strand,

$thickStart, $thickEnd, $itemRgb, $blockCount, $blockSizes,
$blockStarts) = split("\t", $line);

if ($strand eq "+") {
 foreach my $valid_start (@valid_start) { #checks to see if the 5'

end of the (plus strand) SMRT transcript matches a range of possible
start site values from the list of validated start sites

my @start_cols = split("\t", $valid_start);
my ($range_start, $range_end, $SMRT_depth) = split(":",

$start_cols[6]);
if (($chrom eq $start_cols[0]) and ($strand eq

$start_cols[5]) and ($chromStart >= $range_start) and ($chromStart <=
$range_end)) {

$new_start_line = "$line\t$start_cols[1]"; #creates a
line for the read, changing the start site to the consensus start site
and adding an extra field with the original start site

push (@good_start, $new_start_line); #if the start
site matches, pushes the line into a new array of SMRT transcripts with

 158

validated 5' ends
#print OUT $new_start_line, "\n"; #uncomment to print

out file of isoforms with validated starts
last;

}
}

}
elsif ($strand eq "-"){
 foreach my $valid_start (@valid_start) { #checks to see if the 5'

end of the (minus strand) SMRT transcript matches a range of possible
start site values from the list of validated start sites

my @start_cols = split("\t", $valid_start);
my ($range_start, $range_end, $SMRT_depth) = split(":",

$start_cols[6]);
if (($chrom eq $start_cols[0]) and ($strand eq

$start_cols[5]) and ($chromEnd >= $range_start) and ($chromEnd <=
$range_end)) {

$new_start_line = "$line\t$start_cols[2]"; #creates a
line for the read, changing the start site to the consensus start site
and adding an extra field with the original start site

push (@good_start, $new_start_line); #if the start
site matches, pushes the line into a new array of SMRT transcripts with
validated 5' ends

#print OUT $new_start_line, "\n"; #uncomment to print
out file of isoforms with validated starts

last;
}

}
}

}

my $good_start_number = scalar @good_start;

#close(OUT); #uncomment to print out file of isoforms with validated
starts and ends
close(INF); #have an array in memory of reads that have validated 5'
ends, and their newly estimated 5' ends. Can uncomment lines to have an
output a file of reads (in their original form) that have validated 5'
ends.

#Create an array of validated end sites from the end sites input file:
open(INF, "<$valid_ends_file") or die "couldn't open file";

my @valid_end;

while (my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
push (@valid_end, $line); #puts each line of the end sites file

into an array to be checked later
}

close(INF);

#open(OUT, ">$test_file.valid_start_and_end.bed.temp"); #uncomment to

 159

print out file of isoforms with validated starts and ends

print "Checking end sites...\n";

my @good_start_and_end;
my $new_end_line;

foreach my $good_start (@good_start) { #starts with the array of SMRT
transcripts with validated 5' ends

my ($chrom, $chromStart, $chromEnd, $name, $score, $strand,
$thickStart, $thickEnd, $itemRgb, $blockCount, $blockSizes,
$blockStarts, $new_coord) = split("\t", $good_start);

if ($strand eq "+") { #determines 3' end of the SMRT transcript
 foreach my $valid_end (@valid_end) { #checks to see if the 3' end

of the SMRT transcript matches a range of possible 3' end values from
the list of validated start sites

my @end_cols = split("\t", $valid_end);
my ($range_start, $range_end, $SMRT_depth) = split(":",

$end_cols[6]);
if (($chrom eq $end_cols[0]) and ($strand eq $end_cols[5])

and ($chromEnd >= $range_start) and ($chromEnd <= $range_end)) {
$new_end_line = "$good_start\t$end_cols[2]";
push (@good_start_and_end, $new_end_line);
#print OUT $new_end_line, "\n"; #uncomment to print out

file of isoforms with validated starts and ends
last;

}
}

 }
elsif ($strand eq "-") {

foreach my $valid_end (@valid_end) { #checks to see if the 3'
end of the SMRT transcript matches a range of possible 3' end values
from the list of validated start sites

my @end_cols = split("\t", $valid_end);
my ($range_start, $range_end, $SMRT_depth) = split(":",

$end_cols[6]);
if (($chrom eq $end_cols[0]) and ($strand eq $end_cols[5])

and ($chromStart >= $range_start) and ($chromStart <= $range_end)) {
$new_end_line =

"$chrom\t$chromStart\t$chromEnd\t$name\t$score\t$strand\t$thickStart\t$
thickEnd\t$itemRgb\t$blockCount\t$blockSizes\t$blockStarts\t$end_cols[1
]\t$new_coord";

push (@good_start_and_end, $new_end_line);
#print OUT $new_end_line, "\n"; #uncomment to print out

file of isoforms with validated starts and ends
last;

}
}

 }
}

my $good_start_end_number = scalar @good_start_and_end;

#close(OUT); #uncomment to print out file of isoforms with validated
starts and ends

 160

open(INF, "<$valid_introns_file") or die "couldn't open file";

my @valid_intron;

while (my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
push (@valid_intron, $line); #creates an array of valid splice

junctions
}

close(INF);

open(OUT, ">$test_file.validated_unrefined.bed.temp");

print "Checking splice junctions...\n";

my $start;
my $end;
my @intron_start;
my @intron_end;
my @intron_coord_pair;
my @good_intron_counter;

foreach my $good_start_and_end (@good_start_and_end) { #starts with the
array of SMRT transcripts with validated 5' and 3' ends

my @cols = split("\t", $good_start_and_end);
my $intron_strand = $cols[5];
my $intron_number = $cols[9] - 1;
if ($intron_number == 0) { #if a SMRT transcript has validated 5'

and 3' ends and no introns, it is fully validated
print OUT $good_start_and_end, "\n";

}
else {
my @block_sizes = split(",", $cols[10]);
my @block_starts = split(",", $cols[11]);
for (my $i = 0; $i < $intron_number; $i = $i + 1) { #for the

transcript currently in the "while" loop, creates an array of intron
start sites relative to the genome

$start = $cols[1] + $block_sizes[$i] + $block_starts[$i];
push(@intron_start, $start);

}
 for (my $i2 = 1; $i2 < $cols[9]; $i2 = $i2 + 1) { #for the

transcript currently in the "while" loop, creates an array of intron
end sites relative to the genome

$end = $cols[1] + $block_starts[$i2];
push(@intron_end, $end);

}
 for (my $i3 = 0; $i3 < $intron_number; $i3 = $i3 + 1) { #for the

transcript currently in the "while" loop, matches up intron start and
end sites to create an array of complete intron coordinates relative to
the genome

my $intron_coords = "$intron_start[$i3]:$intron_end[$i3]";
push (@intron_coord_pair, $intron_coords);

 161

}
@intron_start = ();
@intron_end = (); #intron starts and ends have been assigned to

the @intron_coords array; empty them for the next transcript
 foreach my $intron_coord_pair (@intron_coord_pair) { #goes

through each intron in the SMRT transcript
my @coords = split(":", $intron_coord_pair); #allows

extraction of the start and end coordinates from each intron in the
SMRT transcript

foreach my $valid_intron (@valid_intron) { #goes through
each intron in the array of validated introns

my @valid_coords = split("\t", $valid_intron);
#allows extraction of the start and end coordinates from each validated
intron

next if $cols[0] ne $valid_coords[0]; #enforces
chromosome matching

next if $intron_strand ne $valid_coords[5]; #enforces
strand matching

if (($coords[0] == $valid_coords[1]) and ($coords[1]
== $valid_coords[2])) {

push(@good_intron_counter, $intron_coord_pair);
#puts introns that are validated for this transcript into an array

(this really just functions as a counter)
}

}
}

 @intron_coord_pair = (); #once each intron in the SMRT transcript
has been examined, empty the array for the next transcript

if (@good_intron_counter == $intron_number) { #check to see if
all of the introns in the transcript are validated

print OUT $good_start_and_end, "\n";
}

 @good_intron_counter = (); #after checking to see if all the
introns in the transcript are validated, empties this array for the
next transcript

}
}

close(OUT);

#system("sort -k 2,2n -k 3,3n \Q$test_file\E.valid_start.bed.temp >
\Q$test_file\E.valid_start.bed"); #uncomment to print out file of
isoforms with validated starts
#system("rm \Q$test_file\E.valid_start.bed.temp"); #uncomment to print
out file of isoforms with validated starts

#system("sort -k 2,2n -k 3,3n
\Q$test_file\E.valid_start_and_end.bed.temp >
\Q$test_file\E.valid_start_and_end.bed"); #uncomment to print out file
of isoforms with validated starts and ends
#system("rm \Q$test_file\E.valid_start_and_end.bed.temp"); #uncomment
to print out file of isoforms with validated starts and ends

system("sort -k2,2n -k3,3n \Q$test_file\E.validated_unrefined.bed.temp

 162

> \Q$test_file\E.validated_unrefined.bed");
system("rm \Q$test_file\E.validated_unrefined.bed.temp");

open(INF, "<$test_file.validated_unrefined.bed");
open(OUT, ">$test_file.validated_refined.temp");

my $new_block_size;
my @exon_start;
my @exon_end;
my @exon_coord_pair;
my $validated_count = 0;

while (my $line = <INF>) {
 chomp($line);
 my @cols = split("\t", $line);
 my $exon_number = $cols[9];
 if ($exon_number == 1) { #if a SMRT transcript has validated 5' and
3' ends and no introns, it is fully validated. Just adjust the start
and end to the consensus sites and fix the BlockSize accordingly

$new_block_size = $cols[13]-$cols[12];
 print OUT

"$cols[0]\t$cols[12]\t$cols[13]\t$cols[3]\t$cols[4]\t$cols[5]\t$cols[12
]\t$cols[13]\t$cols[8]\t$cols[9]\t$new_block_size\t$cols[11]\n";

$validated_count++;
}

 else { #need to adjust the start and end sites and also the
blockStarts and blockSizes

my @block_sizes = split(",", $cols[10]);
my @block_starts = split(",", $cols[11]);

 for (my $i = 0; $i < $exon_number; $i = $i + 1) { #for the
transcript currently in the "while" loop, creates an array of exon
start sites relative to the genome

$start = $cols[1] + $block_starts[$i];
push(@exon_start, $start);

}
 for (my $i2 = 0; $i2 < $exon_number; $i2 = $i2 + 1) { #for the

transcript currently in the "while" loop, creates an array of intron
end sites relative to the genome

$end = $cols[1] + $block_starts[$i2] + $block_sizes[$i2];
push(@exon_end, $end);

}
shift(@exon_start); #removes the first exon start
unshift(@exon_start, $cols[12]); #replaces the first exon start

with the adjust chrStart value
pop(@exon_end); #removes the last exon end
push(@exon_end, $cols[13]); #replaces the last exon end with

the adjusted chrEnd value
 for (my $i3 = 0; $i3 < $exon_number; $i3 = $i3 + 1) { #for the

transcript currently in the "while" loop, matches up intron start and
end sites to create an array of complete intron coordinates relative to
the genome

my $exon_coords = "$exon_start[$i3]:$exon_end[$i3]";
push (@exon_coord_pair, $exon_coords);

}
@exon_start = ();

 163

 @exon_end = (); #intron starts and ends have been assigned to the
@intron_coords array; empty them for the next transcript

my @new_starts;
my @new_sizes;

#print $cols[3], "\t", @exon_coord_pair, "\n";
 foreach my $exon_coord_pair (@exon_coord_pair) { #goes through

each exon in the SMRT transcript
my @coords = split(":", $exon_coord_pair);
my $blockStart = $coords[0] - $cols[12];
my $blockSize = $coords[1] - $coords[0];
push (@new_starts, $blockStart);
push (@new_sizes, $blockSize);

}
@exon_coord_pair = ();
shift(@new_starts); #removes the first value of the new_starts

array, so we can replace it with 0 (it won't be 0 already if chrStart
has been updated)

my $assembled_starts = join(",", 0, @new_starts);
my $assembled_sizes = join(",", @new_sizes);
print OUT

"$cols[0]\t$cols[12]\t$cols[13]\t$cols[3]\t$cols[4]\t$cols[5]\t$cols[12
]\t$cols[13]\t$cols[8]\t$cols[9]\t$assembled_sizes\t$assembled_starts\n
";

$validated_count++;
 }
}

#then need to add code to collapse the transcripts with identical
structure into a single feature

close(INF);
close(OUT);

system("sort -k 2,2n -k 3,3n -k11,11 -k12,12 -k5,5n
\Q$test_file\E.validated_refined.temp >
\Q$test_file\E.validated_refined.bed");
system("rm \Q$test_file\E.validated_refined.temp");

#Collapsing matching transcripts into single isoforms

open(INF, "<$test_file.validated_refined.bed");
open(OUT, ">$test_file.isoforms.bed");

print "Collapsing matching transcripts into isoforms...\n";

my $prev_chr_plus = "start";
my $prev_chrStart_plus = 0;
my $prev_chrEnd_plus = 0;
my $prev_name_plus;
my $count_plus = 0;
my $prev_rgb_plus;
my $prev_blocks_plus;
my $prev_blockSizes_plus = "1,1";
my $prev_blockStarts_plus = "0,0";
my $prev_chr_minus = "start";

 164

my $prev_chrStart_minus = 0;
my $prev_chrEnd_minus = 0;
my $prev_name_minus;
my $count_minus = 0;
my $prev_rgb_minus;
my $prev_blocks_minus;
my $prev_blockSizes_minus = "1,1";
my $prev_blockStarts_minus = "0,0";
my $iso_count = 0;

while(my $line = <INF>) {
chomp($line);
my @cols = split("\t", $line);

 if ($cols[5] eq "+") {
if (($cols[0] eq $prev_chr_plus) and ($cols[1] ==

$prev_chrStart_plus) and ($cols[2] == $prev_chrEnd_plus) and ($cols[10]
eq $prev_blockSizes_plus) and ($cols[11] eq $prev_blockStarts_plus)) {

$count_plus = $count_plus + $cols[4];
$prev_chr_plus = $cols[0];
$prev_name_plus = $cols[3];
$prev_rgb_plus = $cols[8];
$prev_blocks_plus = $cols[9];

}
else {
 if ($count_plus == 0) {

$prev_chrStart_plus = $cols[1];
$prev_chrEnd_plus = $cols[2];
$prev_blockSizes_plus = $cols[10];
$prev_blockStarts_plus = $cols[11];
$count_plus = $cols[4];
$prev_chr_plus = $cols[0];
$prev_name_plus = $cols[3];
$prev_rgb_plus = $cols[8];
$prev_blocks_plus = $cols[9];

}
else {

print OUT
"$prev_chr_plus\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_name_plu
s\t$count_plus\t\+\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_rgb_p
lus\t$prev_blocks_plus\t$prev_blockSizes_plus\t$prev_blockStarts_plus\n
";

$iso_count++;
$prev_chrStart_plus = $cols[1];
$prev_chrEnd_plus = $cols[2];
$prev_blockSizes_plus = $cols[10];
$prev_blockStarts_plus = $cols[11];
$count_plus = $cols[4];
$prev_chr_plus = $cols[0];
$prev_name_plus = $cols[3];
$prev_rgb_plus = $cols[8];
$prev_blocks_plus = $cols[9];

}
}

 }

 165

 elsif ($cols[5] eq "-") {
if (($cols[0] eq $prev_chr_minus) and ($cols[1] ==

$prev_chrStart_minus) and ($cols[2] == $prev_chrEnd_minus) and
($cols[10] eq $prev_blockSizes_minus) and ($cols[11] eq
$prev_blockStarts_minus)) {

$count_minus = $count_minus + $cols[4];
$prev_chr_minus = $cols[0];
$prev_name_minus = $cols[3];
$prev_rgb_minus = $cols[8];
$prev_blocks_minus = $cols[9];

}
else {

if ($count_minus == 0) {
$prev_chrStart_minus = $cols[1];
$prev_chrEnd_minus = $cols[2];
$prev_blockSizes_minus = $cols[10];
$prev_blockStarts_minus = $cols[11];
$count_minus = $cols[4];
$prev_chr_minus = $cols[0];
$prev_name_minus = $cols[3];
$prev_rgb_minus = $cols[8];
$prev_blocks_minus = $cols[9];

}
else {

print OUT
"$prev_chr_minus\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_name_
minus\t$count_minus\t\-
\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_rgb_minus\t$prev_bloc
ks_minus\t$prev_blockSizes_minus\t$prev_blockStarts_minus\n";

$iso_count++;
$prev_chrStart_minus = $cols[1];
$prev_chrEnd_minus = $cols[2];
$prev_blockSizes_minus = $cols[10];
$prev_blockStarts_minus = $cols[11];
$count_minus = $cols[4];
$prev_chr_minus = $cols[0];
$prev_name_minus = $cols[3];
$prev_rgb_minus = $cols[8];
$prev_blocks_minus = $cols[9];

}
}

 }
}
if ($count_plus > 0) {#prints out the last feature (plus strand)
 print OUT
"$prev_chr_plus\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_name_plu
s\t$count_plus\t\+\t$prev_chrStart_plus\t$prev_chrEnd_plus\t$prev_rgb_p
lus\t$prev_blocks_plus\t$prev_blockSizes_plus\t$prev_blockStarts_plus\n
";
 $iso_count++;
}

if ($count_minus > 0) {#prints out the last feature (minus strand)
 print OUT

 166

"$prev_chr_minus\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_name_
minus\t$count_minus\t\-
\t$prev_chrStart_minus\t$prev_chrEnd_minus\t$prev_rgb_minus\t$prev_bloc
ks_minus\t$prev_blockSizes_minus\t$prev_blockStarts_minus\n";
 $iso_count++;
}

close(INF);
close(OUT);

my @ann;

open(INF, "<$ann_file") or die "couldn't open file";
while (my $line = <INF>) {

chomp($line);
 next if ($line =~ /^track/); #skips the track definition line

push (@ann, $line); #puts each line of the annotation file into an
array to be checked later
}
close(INF);

open(INF, "<$test_file.isoforms.bed") or die "couldn't open file";
open(OUT, ">$test_file.validated_transcripts.bed");

print "Checking for annotated isoforms...\n";

my $upper_limit_s;
my $lower_limit_s;
my $upper_limit_e;
my $lower_limit_e;
my $ann_count = 0;

print OUT "track type=bed name=\"$test_file.validated_transcripts.bed\"
description=\"validated transcript structures from
transcript_structure_validator.pl\"\n";

while (my $line = <INF>) {
chomp($line);

 next if ($line =~ /^track/); #skips the track definition line
 my @val_cols = split("\t", $line);
 my $found_flag=0;
 foreach my $ann (@ann) {

my $val_introns = 0;
my $ann_introns = 0;
my @ann_cols = split("\t", $ann);
next if ($val_cols[5] ne $ann_cols[5]);
next if ($val_cols[9] ne $ann_cols[9]);
if ($val_cols[5] eq "+") {

$upper_limit_s = $ann_cols[1] + $start_dist;
$lower_limit_s = $ann_cols[1] - $start_dist;
$upper_limit_e = $ann_cols[2] + $end_dist;
$lower_limit_e = $ann_cols[2] - $end_dist;

}
if ($val_cols[5] eq "-") {

$upper_limit_s = $ann_cols[1] + $end_dist;

 167

$lower_limit_s = $ann_cols[1] - $end_dist;
$upper_limit_e = $ann_cols[2] + $start_dist;
$lower_limit_e = $ann_cols[2] - $start_dist;

}
if (($val_cols[1] >= $lower_limit_s) and ($val_cols[1] <=

$upper_limit_s)) {
if (($val_cols[2] >= $lower_limit_e) and ($val_cols[2] <=

$upper_limit_e)) {
if ($val_cols[9] == 1) {

print OUT $val_cols[0], "\t", $val_cols[1], "\t",
$val_cols[2], "\t", $ann_cols[3], "_", $val_cols[3], "\t",
$val_cols[4], "\t", $val_cols[5], "\t", $val_cols[6], "\t",
$val_cols[7], "\t", $ann_cols[8], "\t", $val_cols[9], "\t",
$val_cols[10], "\t", $val_cols[11], "\n";

$ann_count++;
$found_flag=1;

}
else {

my $val_intron_number = $val_cols[9] - 1;
my @val_block_sizes = split(",", $val_cols[10]);
my @val_block_starts = split(",", $val_cols[11]);
for (my $i = 0; $i < $val_intron_number; $i = $i +

1) { #for the transcript currently in the "while" loop, creates an
array of intron start sites relative to the genome

$start = $val_cols[1] + $val_block_sizes[$i] +
$val_block_starts[$i];

$val_introns = "$val_introns:$start";
}
for (my $i2 = 1; $i2 < $val_cols[9]; $i2 = $i2 + 1)

{ #for the transcript currently in the "while" loop, creates an array
of intron end sites relative to the genome

$end = $val_cols[1] + $val_block_starts[$i2];
$val_introns = "$val_introns:$end";

}
my $ann_intron_number = $ann_cols[9] - 1;
my @ann_block_sizes = split(",", $ann_cols[10]);
my @ann_block_starts = split(",", $ann_cols[11]);
for (my $i = 0; $i < $ann_intron_number; $i = $i +

1) { #for the annotation currently in the "foreach" loop, creates an
array of intron start sites relative to the genome

$start = $ann_cols[1] + $ann_block_sizes[$i] +
$ann_block_starts[$i];

$ann_introns = "$ann_introns:$start";
}
for (my $i2 = 1; $i2 < $ann_cols[9]; $i2 = $i2 + 1)

{ #for the annotation currently in the "foreach" loop, creates an array
of intron end sites relative to the genome

$end = $ann_cols[1] + $ann_block_starts[$i2];
$ann_introns = "$ann_introns:$end";

}
if ($val_introns eq $ann_introns) {

print OUT $val_cols[0], "\t", $val_cols[1],
"\t", $val_cols[2], "\t", $ann_cols[3], "_", $val_cols[3], "\t",
$val_cols[4], "\t", $val_cols[5], "\t", $val_cols[6], "\t",
$val_cols[7], "\t", $ann_cols[8], "\t", $val_cols[9], "\t",

 168

$val_cols[10], "\t", $val_cols[11], "\n";
$ann_count++;
$found_flag=1;

}
}

}
}

 }
 if ($found_flag == 0){

print OUT $line, "\n";
 }
}

close(INF);
close(OUT);

open(OUT, ">validated_isoforms_stats.txt");

my $novel_count = $iso_count - $ann_count;
print OUT "$iso_count validated transcripts\n\t$novel_count
novel\n\t$ann_count annotated\n";

close(OUT);

print "--
\n$good_start_number sequences have validated start sites.\n";
print "$good_start_end_number sequences have validated start and end
sites.\n";
print "$validated_count fully validated sequences collapse into
$iso_count distinct isoforms.\n";
print "$ann_count isoforms match annotated transcripts.\n";

system("rm \Q$test_file\E.validated_refined.bed");
system("rm \Q$test_file\E.validated_unrefined.bed");
system("rm \Q$test_file\E.isoforms.bed");
system("rm \Q$test_file\E.bed");

APPENDIX 5

TRIMD_README.txt

 170

TRIMD
Transcriptome Resolution by Integration of Multi-platform Data
==

Scripts included:
TRIMD_start_finder.pl
TRIMD_junction_matcher.pl
TRIMD_end_finder.pl
TRIMD_isoform_validator.pl

==

Notes for all scripts:

Defaults are set using the Epstein-Barr virus Akata strain as a model.

Annotation file should contain only features for polyadenylated transcripts.

Fasta files of Iso-Seq data must have names formatted as
putative_isoform_id/number_of_SMRT_reads/length, as from the Iso-Seq pipeline.

==

TRIMD_start_finder.pl

USAGE: perl /PATH/TRIMD_start_finder.pl </PATH/SMRT_sam_file> </PATH/CAGE_file>
</PATH/Annotation_bed_file>

Accepts a SAM file of Iso-Seq fl data, a SAM file of CAGE data, and a bed file of annotated polyadenylated
transcripts. Counts the number of non-clipped SMRT reads with 5' starts at each genomic position and
estimates consensus locations of clusters of 5' starts. Uses Paraclu to identify clusters of 5' starts in the CAGE
data. Output includes BEDGRAPH files of all 5' starts, BED files of the weighted centers of start clusters and
a BED file of Iso-Seq 5' starts supported by either the annotation or the CAGE data.
Paraclu was written by Martin C Frith 2006, Genome Exploration Research Group, RIKEN GSC and Institute
for Molecular Bioscience, University of Queensland and distributed under the GNU General Public License.

INPUT

1. SAM file of Iso-Seq fl isoforms: this script was developed using data aligned with GMAP (-f samse option).
Other aligners may also be appropriate.

2. SAM file of CAGE reads: this script was developed using data aligned with STAR. Other aligners may also
be appropriate.

3. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then
chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions,
promoters) these should be removed to avoid false positives.

 171

PARAMETERS

1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between
both SAM files (field 3) and the BED annotation file (field 1). Does not have to be viral, but for organisms
with multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt

2. Window for collapsing Iso-Seq 5' starts: Iso-Seq 5' starts within this number of bases of each other will be
considered to represent the same transcription start site. The consensus transcription start site is determined by
calculating an average of the coordinates in the cluster, weighted by read depth at each coordinate.
Default: 8

3. Minimum tags per CAGE cluster: the minimum number of CAGE tags in a cluster to be considered a
potential transcription start site.
Default: 15

4. Minimum relative density for CAGE clusters: a measure of change in tag density between the cluster and its
surroundings. Higher number = bigger change. For more information, see the Paraclu paper referenced
Default: 2

5. Minimum CAGE cluster length: the minimum cluster length, in base pairs, to be considered a potential
transcription start site.
Default: 1

6. Maximum CAGE cluster length: the maximum cluster length, in base pairs, to be considered a potential
transcription start site.
Default: 20

7. Maximum allowable distance between Iso-Seq and CAGE 5' starts: Maximum distance of a CAGE
consensus start site from an Iso-Seq consensus start site to consider the start site validated.
Default: 3

8. Minimum number of SMRT reads to report a 5' start: the minimum number of Iso-Seq 5' starts in a cluster
to be considered a potential transcription start site
Default: 1

9. Maximum distance in bp from an annotated start site to be called as "annotated"
Default: 10

OUTPUT

1. A BED file of validated 5' starts: this file is in bedDetail format, using the first 6 standard bed fields and an
additional field that is necessary for the TRIMD_isoform_validator.pl script. The coordinates are those of the
Iso-Seq consensus 5' start. The name field is in the format [nov|ann]_[+|-]_123.IsoSeq_456.CAGE and
indicates whether the start site is novel or annotated, strand, the number of SMRT reads supporting it and the
number of CAGE tags supporting it. The score is the number of SMRT reads and CAGE tags added together.
The additional field indicates the range of the SMRT start cluster and number of supporting SMRT reads. Note
that the validated starts file includes Iso-Seq starts that are supported by CAGE and/or annotation data. You
may wish to filter the results to contain only starts that are supported by CAGE.

2. A text file with the number of total, novel and annotated 5' start sites validated, and a record of the input
files.

3. BED file of Iso-Seq consensus 5' starts

4. BEDGRAPH file of all nonclipped Iso-Seq 5' starts

 172

5. BED file of CAGE consensus 5' starts

6. BEDGRAPH file of all nonclipped CAGE 5' starts

==

TRIMD_junction_matcher.pl

USAGE: perl /PATH/TRIMD_junction_matcher.pl </PATH/SMRT_introns_file>
</PATH/Illumina_SJ.out.tab_file> </PATH/transcript_annotation_bed_file>
<coordinates_to_ignore_bed_file(optional)>

Accepts a junctions files from GMAP/SMRT (generated with the -f introns argument) and an SJ.out.tab files
from STAR/Illumina.
Returns 3 bed files: one of SMRT splice junctions, one of Illumina splice junctions and one of junctions
detected by both methods. The coordinates in the output bed files correspond to the first and last bases of the
introns. Optionally, splice junctions in repeat regions can be ignored by providing a bed file with the
coordinates of those junctions.

INPUT

1. A file of Iso-Seq splice junctions data generated by GMAP (-f introns argument)

2. A file of Illumina splice junctions data generated by STAR (SJ.out.tab file in default STAR output).

3. BED file of annotated polyadenylated transcripts

4. (optional) BED file of genomic regions to ignore (e.g. repeat regions)

PARAMETERS

1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between
both junction files and the BED annotation file (field 1). Does not have to be viral, but for organisms with
multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt

2. Minimum SMRT read depth to report a splice junction

3. Minimum Illumina RNA-seq read depth to report a splice junction

OUTPUT

1. BED file of validated splice junctions: this file is in BED format, using the first 6 standard bed fields. The
coordinates correspond to the first and last base of the excised intron. The name field is in the format
[nov|ann]_123.IsoSeq_456.CAGE and indicates whether the junction is novel or annotated, the number of
SMRT reads supporting it and the number of Illumina reads supporting it. The score is the number of SMRT
reads and Illumina reads added together.

2. A text file with the number of total, novel and annotated splice junctions validated, and a record of the input
files.

 173

3. BED file of splice junctions detected on the specified chromosome in the Iso-Seq data

4. BED file of splice junctions detected on the specified chromosome in the Illumina data

==

TRIMD_end_finder.pl

USAGE: perl /PATH/TRIMD_end_finder.pl </PATH/SMRT_sam_file> </PATH/Illumina_sam_file>
</PATH/Annotation_bed_file>

Accepts a SAM file using Iso-Seq fl data, a SAM file using Illumina data, and a BED file of annotated
polyadenylated transcripts. Counts the number of non-clipped SMRT reads with 3' ends at each genomic
position and estimates consensus locations of clusters of 3' ends. Extracts Illumina reads containing apparent
poly(A) tails and estimates consensus locations of clusters of polyadenylation sites. Output includes
BEDGRAPH files of all 3' ends, BED files of the weighted centers of end clusters, a sam file of reads with
polyA tails and a BED file of Iso-Seq 3' ends supported by either the annotation or the Illumina data.

SMRT fl read names must be formatted as putative_isoform_id/number_of_SMRT_reads/length.

INPUT

1. SAM file of Iso-Seq fl isoforms: this script was developed using data aligned with GMAP (-f samse option).
Other aligners may also be appropriate.

2. SAM file of Illumina RNA-seq data: Illumina libraries should have been prepared with stranded TruSeq or a
similar protocol. Sequence data can be paired-end or single-end. This script was developed using data aligned
with STAR. Other aligners may also be appropriate.

3. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then
chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions,
promoters) these should be removed to avoid false positives.

PARAMETERS

1. (Viral) chromosome name: the name of the chromosome under investigation. This must match between
both SAM files (field 3) and the BED annotation file (field 1). Does not have to be viral, but for organisms
with multiple chromosomes only one chromosome can be examined at a time.
No default: must be entered at prompt

2. Window for collapsing Iso-Seq 3' ends: Iso-Seq 3' ends within this number of bases of each other will be
considered to represent the same polyadenlyation site. The consensus Iso-Seq polyadenylation site is
determined by calculating an average of the coordinates in the cluster, weighted by read depth at each
coordinate.
Default: 8

3. Minimum number of As for Illumina poly(A) tails: the number of As (or Ts, as appropriate) required in a
read to indicate the presence of a poly(A) tail.
Default: 5

4. Minimum number of mismatches for Illumina poly(A) tails: the number of terminal mismatches in a read
relative to the genome sequence to indicate the presence of a poly(A) tail.
Default: 2

 174

5. Window for collapsing Illumina 3' ends: Illumina reads containing poly(A) tails within this number of bases
of each other will be considered to represent the same polyadenylation site. The consensus Illumina
polyadenylation site is determined by calculating an average of the coordinates in the cluster, weighted by read
depth at each coordinate.
Default: 8

6. Number of bases downstream of Iso-Seq consensus 3' ends to look for Illumina support
Default: 10

7. Number of bases upstream of Iso-Seq consensus 3' ends to look for Illumina support
Default: 4

8. Minimum number of SMRT reads to report a 3' end
Default: 5

9. Minimum number of Illumina poly(A) tail reads to report a 3' end
Default: 1

10. Maximum distance in bp from an annotated end to be called as "annotated"
Default: 25

OUTPUT

1. BED file of validated 3' ends
This file is in bedDetail format, using the first 6 standard bed fields and an additional field that is necessary for
the TRIMD_isoform_validator.pl script. The coordinates are those of the Illumina consensus 3' end. The name
field is in the format [nov|ann]_[+|-]_123.IsoSeq_456.CAGE and indicates whether the end is novel or
annotated, strand, the number of SMRT reads supporting it and the number of Illumina poly(A) reads
supporting it. The score is the number of SMRT reads and Illumina poly(A) reads added together. The
additional field indicates the range of the SMRT end cluster and number of supporting SMRT reads. Note that
the validated starts file includes SMRT ends that are supported by Illumina and/or annotation data. You may
wish to filter the results to contain only starts that are supported by Illumina.

2. A text file with the number of total, novel and annotated 3' end sites validated, and a record of the input
files.

3. BED file of Iso-Seq consensus 3' ends

4. BEDGRAPH file of nonclipped Iso-Seq 3' ends

5. BED file of Illumina consensus 3' ends

6. BEDGRAPH file of nonclipped Illumina 3' ends

7. SAM file of Illumina reads containing putative poly(A) tails

==

TRIMD_isoform_validator.pl

USAGE: perl /PATH/TRIMD_isoform_validator.pl </PATH/SMRT_sam_file>
</PATH/validated_starts_file> </PATH/validated_ends_file> </PATH/validated_introns_file>
</PATH/Annotation_bed_file>

 175

Takes a SAM file of Iso-Seq fl isoforms and compares them to a list of validated 5' ends, 3' ends and introns to
create a list of validated isoform structures, which are compared to an annotation file.

INPUT

1. SAM file of Iso-Seq fl isoforms

2. BedDetail file of validated starts: the output file from TRIMD_start_finder.pl that ends
".validated_starts.bed"

3. BedDetail file of validated ends: the output file from TRIMD_end_finder.pl that ends ".validated_ends.bed"

4. BedDetail file of validated splice junctions: the output file from TRIMD_junction_matcher.pl that ends
".validated_introns.bed"

5. BED file of annotated polyadenylated transcripts: the annotation file MUST be sorted by chrStart, then
chrEnd. If your annotation file contains non-polyadenylated transcripts or other features (e.g. repeat regions,
promoters) these should be removed to avoid false positives.

Note that the chromosome names must match exactly between all of the input files.

PARAMETERS

1. Maximum distance from an annotated 5' start to be called annotated
Default: 10

2. Maximum distance from an annotated 3' end to be called annotated
Default: 10

Note that if there are overlapping transcripts, more than one may be called as the same "annotated" transcript,
depending on how the distance parameters are set.

OUTPUT

1. BED file of validated isoform structures: this file is in bed format, using all 12 standard fields. The
coordinate for the 5' start is taken from the Iso-Seq consensus 5' start site and the coordinate for the 3' end is
taken from the Illumina poly(A) read consensus 3' end. The name is that of one of the Iso-Seq isoforms
representing that transcript, prefixed by any matching annotated transcript. The score is the number of SMRT
reads that support that transcript. ThickStart and thickEnd (fields 7 and 8) match chrStart and chrEnd (fields 2
and 3): no information about ORFs is inferred. If the transcript is called as annotated, the color (field 9) is
imported from the annotation file.

2. A text file with the number of total, novel and annotated isoforms validated, and a record of the input files.

==

LICENSE

Distributed under the GNU General Public License. For more, see License.txt

==

 176

PLEASE CITE

tba
and
Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A (2008) A code for transcription initiation
in mammalian genomes" Genome Research 18(1):1-12.

==

CONTACT

Erik Flemington (erik@tulane.edu)
Tina O'Grady (tmogrady@gmail.com)

APPENDIX 6

Validated EBV transcription start sites

 178

chrStart chrEnd ID Read depth Strand

599 600 nov_+_18.SMRT_369.CAGE 387 +

610 611 ann_-_43.SMRT_9828.CAGE 9871 -

1734 1735 nov_-_48.SMRT_765.CAGE 813 -

2567 2568 nov_-_11.SMRT_128.CAGE 139 -

3178 3179 nov_-_11.SMRT_1937.CAGE 1948 -

3193 3194 nov_-_21.SMRT_59.CAGE 80 -

3397 3398 ann_-_24.SMRT_3205.CAGE 3229 -

3500 3501 nov_-_1.SMRT_100.CAGE 101 -

3850 3851 nov_+_16.SMRT_320.CAGE 336 +

4383 4384 nov_+_19.SMRT_192.CAGE 211 +

4391 4392 ann_-_12.SMRT_231.CAGE 243 -

4450 4451 ann_-_3.SMRT_165.CAGE 168 -

5148 5149 nov_-_2.SMRT_154.CAGE 156 -

5174 5175 nov_-_1.SMRT_105.CAGE 106 -

6208 6209 ann_-_2550.SMRT_24906.CAGE 27456 -

7705 7706 ann_-_73.SMRT_1894.CAGE 1967 -

7765 7766 nov_+_51.SMRT_434.CAGE 485 +

8655 8656 nov_-_2.SMRT_2089.CAGE 2091 -

10381 10382 ann_-_1899.SMRT_20750.CAGE 22649 -

10648 10649 nov_-_5.SMRT_320.CAGE 325 -

10888 10889 nov_-_1.SMRT_178.CAGE 179 -

11441 11442 nov_-_18.SMRT_282.CAGE 300 -

11491 11492 nov_-_2.SMRT_224.CAGE 226 -

11606 11607 nov_+_1.SMRT_107.CAGE 108 +

11639 11640 nov_-_2.SMRT_59.CAGE 61 -

11753 11754 ann_-_431.SMRT_22227.CAGE 22658 -

12629 12630 nov_-_67.SMRT_41153.CAGE 41220 -

12659 12660 ann_-_340.SMRT_423.CAGE 763 -

13796 13797 nov_+_1.SMRT_96.CAGE 97 +

14503 14504 nov_-_17.SMRT_127.CAGE 144 -

14696 14697 nov_-_11.SMRT_113.CAGE 124 -

15102 15103 nov_-_36.SMRT_423.CAGE 459 -

15945 15946 nov_-_2.SMRT_70.CAGE 72 -

16557 16558 nov_+_3.SMRT_907.CAGE 910 +

16984 16985 ann_-_28.SMRT_15038.CAGE 15066 -

18317 18318 nov_+_6.SMRT_155.CAGE 161 +

19392 19393 nov_+_419.SMRT_762.CAGE 1181 +

20624 20625 nov_+_3.SMRT_212.CAGE 215 +

 179

22563 22564 nov_-_858.SMRT_7056.CAGE 7914 -

22587 22588 ann_-_40.SMRT_970.CAGE 1010 -

22695 22696 nov_-_4.SMRT_211.CAGE 215 -

23149 23150 nov_-_10.SMRT_227.CAGE 237 -

23521 23522 nov_+_6.SMRT_275.CAGE 281 +

23919 23920 nov_+_151.SMRT_9868.CAGE 10019 +

24396 24397 nov_+_52.SMRT_113.CAGE 165 +

24424 24425 ann_-_5.SMRT_2217.CAGE 2222 -

24470 24471 nov_+_39.SMRT_349.CAGE 388 +

24642 24643 ann_+_12.SMRT_1546.CAGE 1558 +

25612 25613 nov_+_2.SMRT_62.CAGE 64 +

27060 27061 ann_+_45.SMRT_10982.CAGE 11027 +

27459 27460 nov_-_13.SMRT_224.CAGE 237 -

27960 27961 ann_+_80.SMRT_10972.CAGE 11052 +

28287 28288 nov_+_20.SMRT_74.CAGE 94 +

28508 28509 nov_+_4.SMRT_241.CAGE 245 +

28682 28683 nov_+_1.SMRT_698.CAGE 699 +

29574 29575 nov_-_5.SMRT_237.CAGE 242 -

29614 29615 nov_-_3.SMRT_265.CAGE 268 -

29845 29846 ann_-_555.SMRT_42730.CAGE 43285 -

29880 29881 ann_-_2.SMRT_141.CAGE 143 -

30286 30287 nov_-_21.SMRT_813.CAGE 834 -

30587 30588 nov_-_3.SMRT_72.CAGE 75 -

30679 30680 nov_-_41.SMRT_1350.CAGE 1391 -

30818 30819 nov_-_10.SMRT_282.CAGE 292 -

31049 31050 nov_-_29.SMRT_59.CAGE 88 -

32615 32616 nov_-_1.SMRT_1117.CAGE 1118 -

32701 32702 nov_-_1.SMRT_182.CAGE 183 -

32930 32931 nov_-_1.SMRT_307.CAGE 308 -

32957 32958 nov_-_1.SMRT_179.CAGE 180 -

33059 33060 nov_-_1.SMRT_260.CAGE 261 -

33097 33098 nov_-_1.SMRT_2115.CAGE 2116 -

33117 33118 nov_-_1.SMRT_138.CAGE 139 -

33204 33205 nov_-_1.SMRT_3133.CAGE 3134 -

33324 33325 nov_-_1.SMRT_174.CAGE 175 -

33569 33570 nov_-_1.SMRT_272.CAGE 273 -

34833 34834 nov_-_1.SMRT_2336.CAGE 2337 -

35009 35010 nov_-_26.SMRT_48315.CAGE 48341 -

36316 36317 nov_+_2.SMRT_830.CAGE 832 +

 180

36715 36716 nov_+_1.SMRT_69.CAGE 70 +

39251 39252 nov_-_1.SMRT_59.CAGE 60 -

40390 40391 nov_+_3.SMRT_304.CAGE 307 +

41344 41345 nov_-_7.SMRT_275.CAGE 282 -

41597 41598 nov_-_41.SMRT_458.CAGE 499 -

41972 41973 ann_-_278.SMRT_258.CAGE 536 -

42093 42094 nov_-_37.SMRT_130.CAGE 167 -

42913 42914 nov_-_9.SMRT_510.CAGE 519 -

42960 42961 nov_-_95.SMRT_1776.CAGE 1871 -

43338 43339 nov_-_11.SMRT_2121.CAGE 2132 -

43362 43363 nov_-_4.SMRT_292.CAGE 296 -

43541 43542 nov_+_1.SMRT_128.CAGE 129 +

43592 43593 nov_+_7.SMRT_12372.CAGE 12379 +

48118 48119 nov_+_25.SMRT_365.CAGE 390 +

49310 49311 nov_-_46.SMRT_4758.CAGE 4804 -

49367 49368 nov_+_43.SMRT_187.CAGE 230 +

50466 50467 ann_-_1397.SMRT_11863.CAGE 13260 -

52764 52765 nov_-_13.SMRT_1011.CAGE 1024 -

53956 53957 nov_-_5.SMRT_158.CAGE 163 -

55122 55123 nov_+_5.SMRT_91.CAGE 96 +

55911 55912 ann_-_7.SMRT_8241.CAGE 8248 -

55967 55968 nov_+_32.SMRT_150.CAGE 182 +

56540 56541 ann_-_35.SMRT_1777.CAGE 1812 -

56600 56601 ann_+_47.SMRT_183.CAGE 230 +

56626 56627 ann_+_41.SMRT_1250.CAGE 1291 +

56870 56871 nov_-_26.SMRT_760.CAGE 786 -

58622 58623 ann_-_742.SMRT_36211.CAGE 36953 -

58730 58731 nov_-_22.SMRT_992.CAGE 1014 -

59835 59836 nov_-_8.SMRT_430.CAGE 438 -

59909 59910 nov_-_59.SMRT_96.CAGE 155 -

60067 60068 nov_-_12.SMRT_377.CAGE 389 -

60251 60252 nov_-_243.SMRT_8593.CAGE 8836 -

60600 60601 ann_-_2.SMRT_636.CAGE 638 -

63743 63744 nov_-_5.SMRT_173.CAGE 178 -

63852 63853 nov_+_2.SMRT_224.CAGE 226 +

63931 63932 nov_+_1.SMRT_133.CAGE 134 +

65094 65095 ann_+_47.SMRT_18054.CAGE 18101 +

71970 71971 nov_+_18.SMRT_166.CAGE 184 +

72926 72927 ann_+_27.SMRT_369.CAGE 396 +

 181

74051 74052 nov_-_2.SMRT_61.CAGE 63 -

74831 74832 nov_-_15.SMRT_145.CAGE 160 -

75175 75176 nov_-_35.SMRT_192.CAGE 227 -

77648 77649 ann_+_2.SMRT_356.CAGE 358 +

80720 80721 nov_+_1.SMRT_356.CAGE 357 +

98915 98916 nov_+_1.SMRT_83.CAGE 84 +

100357 100358 nov_+_9.SMRT_214.CAGE 223 +

101661 101662 nov_-_1.SMRT_1113.CAGE 1114 -

101677 101678 nov_-_1.SMRT_128.CAGE 129 -

101764 101765 nov_-_1.SMRT_350.CAGE 351 -

101786 101787 nov_-_1.SMRT_1114.CAGE 1115 -

103581 103582 nov_-_1.SMRT_275.CAGE 276 -

103684 103685 nov_-_1.SMRT_123.CAGE 124 -

103765 103766 ann_-_126.SMRT_48592.CAGE 48718 -

104766 104767 ann_+_102.SMRT_42958.CAGE 43060 +

104920 104921 nov_+_36.SMRT_14276.CAGE 14312 +

105143 105144 nov_+_8.SMRT_379.CAGE 387 +

105294 105295 nov_-_1.SMRT_126.CAGE 127 -

105392 105393 nov_+_21.SMRT_997.CAGE 1018 +

105562 105563 nov_+_6.SMRT_87.CAGE 93 +

105598 105599 nov_+_7.SMRT_113.CAGE 120 +

105633 105634 nov_+_2.SMRT_66.CAGE 68 +

105654 105655 nov_+_4.SMRT_205.CAGE 209 +

105841 105842 nov_+_3.SMRT_244.CAGE 247 +

105936 105937 nov_+_9.SMRT_250.CAGE 259 +

106064 106065 nov_+_1.SMRT_165.CAGE 166 +

106348 106349 nov_+_4.SMRT_1786.CAGE 1790 +

108104 108105 nov_-_35.SMRT_652.CAGE 687 -

108606 108607 nov_-_22.SMRT_307.CAGE 329 -

108646 108647 nov_-_42.SMRT_106.CAGE 148 -

109041 109042 nov_-_2.SMRT_64.CAGE 66 -

109095 109096 nov_+_21.SMRT_10416.CAGE 10437 +

109184 109185 nov_-_1.SMRT_99.CAGE 100 -

109516 109517 ann_-_155.SMRT_2355.CAGE 2510 -

109554 109555 nov_+_1.SMRT_122.CAGE 123 +

109573 109574 nov_+_10.SMRT_5977.CAGE 5987 +

109727 109728 nov_-_17.SMRT_110.CAGE 127 -

109842 109843 ann_+_172.SMRT_18237.CAGE 18409 +

110486 110487 nov_+_5.SMRT_114.CAGE 119 +

 182

112360 112361 nov_+_1813.SMRT_50392.CAGE 52205 +

113215 113216 nov_+_6.SMRT_6960.CAGE 6966 +

123054 123055 nov_-_3.SMRT_1507.CAGE 1510 -

125948 125949 ann_+_20.SMRT_16318.CAGE 16338 +

127102 127103 ann_+_336.SMRT_5770.CAGE 6106 +

128963 128964 nov_+_2.SMRT_88.CAGE 90 +

129735 129736 ann_+_74.SMRT_7531.CAGE 7605 +

130772 130773 ann_+_720.SMRT_6507.CAGE 7227 +

131714 131715 ann_+_92.SMRT_2103.CAGE 2195 +

131763 131764 nov_+_14.SMRT_1080.CAGE 1094 +

135227 135228 ann_-_28.SMRT_2944.CAGE 2972 -

135743 135744 nov_-_13.SMRT_99.CAGE 112 -

135865 135866 nov_-_3.SMRT_72.CAGE 75 -

136009 136010 nov_-_8.SMRT_61.CAGE 69 -

136283 136284 nov_-_58.SMRT_698.CAGE 756 -

136346 136347 nov_+_14.SMRT_297.CAGE 311 +

137815 137816 ann_+_34.SMRT_2374.CAGE 2408 +

138538 138539 nov_+_14.SMRT_77.CAGE 91 +

138807 138808 nov_-_1.SMRT_258.CAGE 259 -

139385 139386 ann_-_70.SMRT_3140.CAGE 3210 -

139443 139444 ann_+_593.SMRT_10469.CAGE 11062 +

139716 139717 nov_+_93.SMRT_498.CAGE 591 +

139796 139797 ann_+_162.SMRT_53017.CAGE 53179 +

140922 140923 ann_-_20.SMRT_2943.CAGE 2963 -

141133 141134 nov_-_1.SMRT_56.CAGE 57 -

141590 141591 nov_+_2.SMRT_51.CAGE 53 +

141643 141644 nov_-_3.SMRT_95.CAGE 98 -

141674 141675 nov_-_2.SMRT_81.CAGE 83 -

141799 141800 nov_+_1.SMRT_422.CAGE 423 +

142237 142238 nov_-_6.SMRT_62.CAGE 68 -

142908 142909 ann_-_1301.SMRT_39016.CAGE 40317 -

143363 143364 nov_-_12.SMRT_131.CAGE 143 -

143437 143438 nov_-_5.SMRT_323.CAGE 328 -

143867 143868 nov_+_2.SMRT_60.CAGE 62 +

144154 144155 nov_-_4.SMRT_535.CAGE 539 -

144255 144256 nov_+_58.SMRT_725.CAGE 783 +

145374 145375 nov_+_2.SMRT_101.CAGE 103 +

146927 146928 nov_-_4.SMRT_365.CAGE 369 -

147032 147033 nov_-_97.SMRT_1094.CAGE 1191 -

 183

150164 150165 nov_+_2.SMRT_107.CAGE 109 +

152491 152492 nov_-_1.SMRT_857.CAGE 858 -

152867 152868 ann_-_203.SMRT_59254.CAGE 59457 -

153639 153640 nov_-_2.SMRT_305.CAGE 307 -

153968 153969 ann_-_7.SMRT_265.CAGE 272 -

154024 154025 nov_-_9.SMRT_297.CAGE 306 -

154100 154101 nov_-_1.SMRT_390.CAGE 391 -

154144 154145 nov_-_14.SMRT_522.CAGE 536 -

155814 155815 ann_+_43.SMRT_1311.CAGE 1354 +

156011 156012 nov_+_28.SMRT_1262.CAGE 1290 +

156860 156861 nov_+_11.SMRT_265.CAGE 276 +

156949 156950 ann_-_2.SMRT_287.CAGE 289 -

157036 157037 nov_-_5.SMRT_130.CAGE 135 -

157040 157041 ann_+_2078.SMRT_16853.CAGE 18931 +

157697 157698 nov_-_4.SMRT_315.CAGE 319 -

159860 159861 nov_+_1.SMRT_56.CAGE 57 +

160213 160214 nov_+_201.SMRT_13429.CAGE 13630 +

160263 160264 nov_-_2.SMRT_411.CAGE 413 -

160298 160299 nov_+_41.SMRT_50.CAGE 91 +

160572 160573 ann_+_297.SMRT_5954.CAGE 6251 +

160811 160812 nov_+_54.SMRT_2042.CAGE 2096 +

161000 161001 ann_+_3.SMRT_729.CAGE 732 +

161265 161266 nov_+_3503.SMRT_25085.CAGE 28588 +

161561 161562 nov_+_173.SMRT_4140.CAGE 4313 +

161726 161727 nov_+_4.SMRT_252.CAGE 256 +

161762 161763 ann_+_6.SMRT_167.CAGE 173 +

161795 161796 ann_+_6.SMRT_148.CAGE 154 +

161835 161836 nov_+_1.SMRT_341.CAGE 342 +

163056 163057 nov_-_3.SMRT_82.CAGE 85 -

163079 163080 nov_-_24.SMRT_2100.CAGE 2124 -

163333 163334 nov_-_7.SMRT_104.CAGE 111 -

164547 164548 nov_+_17.SMRT_5300.CAGE 5317 +

165000 165001 nov_-_7.SMRT_901.CAGE 908 -

165920 165921 nov_+_21.SMRT_232.CAGE 253 +

166431 166432 nov_+_22.SMRT_4923.CAGE 4945 +

166520 166521 nov_-_1.SMRT_123.CAGE 124 -

169341 169342 nov_-_35.SMRT_828.CAGE 863 -

169395 169396 nov_+_8.SMRT_62.CAGE 70 +

169527 169528 nov_-_7.SMRT_181.CAGE 188 -

 184

169648 169649 ann_+_1852.SMRT_7176.CAGE 9028 +

169676 169677 ann_-_26.SMRT_2365.CAGE 2391 -

169713 169714 nov_-_5.SMRT_149.CAGE 154 -

169766 169767 nov_+_1959.SMRT_15063.CAGE 17022 +

171265 171266 nov_+_3.SMRT_155.CAGE 158 +

APPENDIX 7

Validated EBV splice junctions

 186

chrStart chrEnd ID Read Depth Strand

833 1498 nov_8SMRT_278Ill 286 +

833 4820 nov_8SMRT_57Ill 65 +

833 4932 nov_1SMRT_1Ill 2 +

833 8523 nov_3SMRT_41Ill 44 +

1838 3856 nov_2SMRT_116Ill 118 +

1838 4820 nov_1SMRT_34Ill 35 +

1838 5006 nov_1SMRT_2Ill 3 +

1838 8523 nov_8SMRT_36Ill 44 +

1905 2004 nov_2SMRT_42Ill 44 -

1905 3569 nov_1SMRT_5Ill 6 -

1905 5020 nov_7SMRT_19Ill 26 -

3799 4535 nov_1SMRT_3Ill 4 +

5169 5685 nov_1SMRT_3Ill 4 -

5172 11224 nov_1SMRT_4Ill 5 -

5185 8523 ann_120SMRT_2331Ill 2451 +

5802 8523 nov_2SMRT_16Ill 18 +

6217 8523 nov_1SMRT_19Ill 20 +

6531 8523 nov_2SMRT_35Ill 37 +

7335 8523 nov_5SMRT_49Ill 54 +

7623 8523 nov_1SMRT_2Ill 3 +

7973 8523 nov_3SMRT_5Ill 8 +

8106 8523 nov_4SMRT_38Ill 42 +

8221 8523 nov_35SMRT_298Ill 333 +

8446 8523 nov_4SMRT_83Ill 87 +

9768 11217 nov_1SMRT_2Ill 3 -

9768 11224 nov_1SMRT_182Ill 183 -

10295 11224 nov_1SMRT_11Ill 12 -

11894 12392 nov_1SMRT_43Ill 44 -

12366 15626 nov_1SMRT_54Ill 55 +

15751 16548 nov_1SMRT_267Ill 268 +

16783 18577 nov_1SMRT_7Ill 8 +

16783 22834 nov_1SMRT_22Ill 23 +

19705 22834 nov_1SMRT_4Ill 5 +

20577 21444 nov_3SMRT_9Ill 12 -

20577 22381 nov_2SMRT_46Ill 48 -

20577 22702 nov_3SMRT_107Ill 110 -

20915 22182 nov_1SMRT_14Ill 15 +

21111 22702 nov_1SMRT_5Ill 6 -

 187

21444 22381 nov_1SMRT_7Ill 8 -

21444 22702 nov_1SMRT_13Ill 14 -

21603 22381 nov_110SMRT_653Ill 763 -

21603 22702 nov_13SMRT_1490Ill 1503 -

22467 22834 nov_2SMRT_209Ill 211 +

22485 22702 nov_1SMRT_35Ill 36 -

22890 23119 nov_1SMRT_1Ill 2 -

22890 23541 nov_2SMRT_240Ill 242 -

22890 29078 nov_2SMRT_49Ill 51 -

23045 24077 nov_1SMRT_1Ill 2 +

23045 24099 nov_5SMRT_282Ill 287 +

23298 29078 nov_1SMRT_24Ill 25 -

23789 24099 nov_5SMRT_88Ill 93 +

24042 24266 nov_1SMRT_2Ill 3 -

24252 25247 nov_1SMRT_6Ill 7 +

24252 25455 nov_1SMRT_1Ill 2 +

26474 27513 nov_1SMRT_24Ill 25 +

26474 27601 nov_1SMRT_45Ill 46 +

29502 31025 nov_1SMRT_1Ill 2 -

36381 37821 nov_2SMRT_20Ill 22 +

36775 37821 nov_8SMRT_216Ill 224 +

36775 41171 nov_4SMRT_20Ill 24 +

37923 41171 ann_13SMRT_581Ill 594 +

40259 41171 nov_1SMRT_7Ill 8 +

40494 41171 nov_2SMRT_15Ill 17 +

40494 41513 nov_1SMRT_3Ill 4 +

40494 41827 nov_1SMRT_3Ill 4 +

40750 41171 nov_1SMRT_10Ill 11 +

40750 41513 nov_1SMRT_3Ill 4 +

40898 41141 nov_4SMRT_70Ill 74 -

40898 41585 nov_1SMRT_9Ill 10 -

41303 41513 nov_19SMRT_647Ill 666 +

41303 41827 nov_2SMRT_44Ill 46 +

41668 41827 nov_16SMRT_531Ill 547 +

41939 46854 ann_21SMRT_253Ill 274 +

41939 48114 nov_1SMRT_16Ill 17 +

41939 50212 nov_1SMRT_10Ill 11 +

41939 51368 nov_6SMRT_5Ill 11 +

41939 57650 nov_1SMRT_7Ill 8 +

 188

43753 46854 nov_1SMRT_3Ill 4 +

43806 46854 nov_6SMRT_87Ill 93 +

43806 51368 nov_1SMRT_23Ill 24 +

44550 48114 nov_1SMRT_7Ill 8 +

45116 46854 nov_8SMRT_325Ill 333 +

45116 48114 nov_1SMRT_31Ill 32 +

46769 46854 nov_1SMRT_16Ill 17 +

46937 47908 nov_7SMRT_54Ill 61 +

46937 48114 nov_22SMRT_431Ill 453 +

46937 48433 nov_1SMRT_7Ill 8 +

46937 51368 nov_2SMRT_10Ill 12 +

47136 47908 nov_3SMRT_8Ill 11 +

47136 48114 nov_4SMRT_85Ill 89 +

47801 48114 nov_1SMRT_6Ill 7 +

48325 48433 ann_73SMRT_1665Ill 1738 +

48325 50212 nov_8SMRT_315Ill 323 +

48325 51368 nov_6SMRT_43Ill 49 +

48516 50212 ann_79SMRT_2081Ill 2160 +

48516 51368 nov_2SMRT_12Ill 14 +

48959 50212 nov_5SMRT_22Ill 27 +

49484 50212 nov_1SMRT_12Ill 13 +

49506 50212 nov_3SMRT_37Ill 40 +

49606 49748 nov_2SMRT_15Ill 17 +

49606 50212 nov_1SMRT_34Ill 35 +

49648 50212 nov_1SMRT_3Ill 4 +

49822 50212 nov_2SMRT_24Ill 26 +

49858 50212 nov_3SMRT_29Ill 32 +

50339 51368 ann_72SMRT_673Ill 745 +

50471 51368 nov_31SMRT_143Ill 174 +

50963 51368 nov_3SMRT_12Ill 15 +

51197 51368 nov_1SMRT_3Ill 4 +

51506 57650 nov_4SMRT_155Ill 159 +

56155 57650 nov_3SMRT_6Ill 9 +

56431 57650 nov_1SMRT_5Ill 6 +

58045 63426 ann_6SMRT_464Ill 470 +

58045 63728 nov_2SMRT_69Ill 71 +

58045 64648 nov_3SMRT_163Ill 166 +

58045 64942 nov_2SMRT_34Ill 36 +

58646 60126 nov_1SMRT_3Ill 4 -

 189

58944 63426 nov_1SMRT_22Ill 23 +

59677 60126 nov_1SMRT_1Ill 2 -

60049 60126 ann_101SMRT_1818Ill 1919 -

60049 60291 nov_3SMRT_35Ill 38 -

60049 63466 nov_1SMRT_7Ill 8 -

60049 63767 nov_1SMRT_6Ill 7 -

60213 60291 ann_9SMRT_684Ill 693 -

60213 63466 nov_1SMRT_22Ill 23 -

60213 63657 nov_1SMRT_1Ill 2 -

60213 65533 nov_1SMRT_3Ill 4 -

63641 63728 ann_5SMRT_603Ill 608 +

63641 64394 nov_4SMRT_105Ill 109 +

63827 63908 ann_4SMRT_394Ill 398 +

63827 64394 nov_3SMRT_213Ill 216 +

64157 64239 ann_5SMRT_379Ill 384 +

64320 64394 ann_5SMRT_831Ill 836 +

64320 64648 nov_3SMRT_130Ill 133 +

64565 64648 ann_14SMRT_1630Ill 1644 +

64565 64840 nov_1SMRT_57Ill 58 +

64864 64942 ann_21SMRT_1283Ill 1304 +

64864 68776 nov_2SMRT_125Ill 127 +

65051 66638 nov_3SMRT_287Ill 290 +

65051 68776 ann_23SMRT_952Ill 975 +

65167 66638 nov_1SMRT_11Ill 12 +

65167 68776 nov_2SMRT_58Ill 60 +

65529 68776 nov_2SMRT_9Ill 11 +

66264 66638 nov_2SMRT_11Ill 13 +

66264 68776 nov_3SMRT_15Ill 18 +

66871 68776 nov_1SMRT_4Ill 5 +

67045 68776 nov_1SMRT_56Ill 57 +

67211 68776 nov_18SMRT_329Ill 347 +

67591 68776 nov_12SMRT_213Ill 225 +

68320 68776 nov_2SMRT_110Ill 112 +

103462 104870 nov_1SMRT_257Ill 258 -

104875 105314 nov_95SMRT_21300Ill 21395 +

104896 105314 ann_1SMRT_312Ill 313 +

104974 105314 nov_3SMRT_95Ill 98 +

105058 105314 nov_20SMRT_1234Ill 1254 +

113441 118460 ann_6SMRT_3455Ill 3461 +

 190

118632 127509 nov_1SMRT_2Ill 3 +

118632 129072 nov_1SMRT_2Ill 3 +

118632 142986 ann_1SMRT_30Ill 31 +

135023 135129 ann_213SMRT_17391Ill 17604 -

135023 142536 nov_11SMRT_97Ill 108 -

135023 146657 nov_1SMRT_8Ill 9 -

135023 152589 nov_4SMRT_10Ill 14 -

135023 152631 nov_17SMRT_48Ill 65 -

135023 152838 nov_10SMRT_246Ill 256 -

135023 153422 nov_1SMRT_24Ill 25 -

135050 135129 nov_1SMRT_51Ill 52 -

135276 152631 nov_2SMRT_1Ill 3 -

135356 152838 nov_1SMRT_1Ill 2 -

136811 137844 nov_1SMRT_7Ill 8 +

140729 141401 nov_1SMRT_53Ill 54 -

140729 142536 nov_1SMRT_26Ill 27 -

140943 141401 nov_1SMRT_2Ill 3 -

140943 142536 nov_1SMRT_1Ill 2 -

140963 141401 ann_449SMRT_9735Ill 10184 -

140963 141930 nov_2SMRT_7Ill 9 -

140963 142060 nov_1SMRT_7Ill 8 -

140963 142536 nov_120SMRT_1821Ill 1941 -

140963 152403 nov_1SMRT_1Ill 2 -

140963 152589 nov_4SMRT_30Ill 34 -

140963 152631 nov_28SMRT_144Ill 172 -

140963 152766 nov_1SMRT_10Ill 11 -

140963 152838 nov_58SMRT_411Ill 469 -

141563 152631 nov_2SMRT_1Ill 3 -

141978 142536 nov_1SMRT_10Ill 11 -

141978 152838 nov_1SMRT_2Ill 3 -

142029 142536 nov_1SMRT_12Ill 13 -

142029 152631 nov_1SMRT_5Ill 6 -

142029 152838 nov_3SMRT_5Ill 8 -

142197 143852 nov_1SMRT_77Ill 78 +

142204 152631 nov_1SMRT_4Ill 5 -

142210 142986 nov_1SMRT_114Ill 115 +

142769 152838 nov_2SMRT_20Ill 22 -

143330 143418 ann_1SMRT_351Ill 352 +

143330 143920 nov_1SMRT_126Ill 127 +

 191

143390 143920 nov_1SMRT_36Ill 37 +

146731 152589 nov_1SMRT_1Ill 2 -

146731 152631 nov_1SMRT_5Ill 6 -

146995 152403 nov_1SMRT_1Ill 2 -

146995 152589 nov_1SMRT_5Ill 6 -

146995 152631 nov_1SMRT_5Ill 6 -

146995 152838 nov_1SMRT_6Ill 7 -

147236 152631 nov_1SMRT_1Ill 2 -

147814 150084 nov_1SMRT_2Ill 3 -

147814 152403 nov_1SMRT_6Ill 7 -

147814 152589 nov_1SMRT_19Ill 20 -

147814 152631 nov_2SMRT_35Ill 37 -

147814 152838 nov_1SMRT_24Ill 25 -

149419 157904 nov_1SMRT_1Ill 2 +

150367 152589 nov_4SMRT_62Ill 66 -

150367 152631 nov_1SMRT_99Ill 100 -

150367 152838 nov_2SMRT_127Ill 129 -

153081 153166 ann_59SMRT_6716Ill 6775 -

153081 153422 nov_59SMRT_2462Ill 2521 -

153271 153422 ann_60SMRT_9985Ill 10045 -

153686 156893 nov_2SMRT_12Ill 14 -

153721 154690 nov_2SMRT_48Ill 50 -

153721 155693 nov_7SMRT_87Ill 94 -

153721 156893 nov_4SMRT_70Ill 74 -

154212 155303 nov_1SMRT_16Ill 17 +

155694 156893 nov_1SMRT_4Ill 5 -

155953 156893 ann_9SMRT_2566Ill 2575 -

157376 157748 nov_9SMRT_49Ill 58 +

157376 158709 nov_1SMRT_511Ill 512 +

160743 160875 nov_2SMRT_78Ill 80 +

161718 161810 nov_1SMRT_42Ill 43 +

168022 168150 ann_139SMRT_9112Ill 9251 -

APPENDIX 8

Validated EBV polyadenylation sites

 193

chrStart chrEnd ID Read Depth Strand

58 59 ann_-_150.SMRT_115.Ill 265 -

1466 1467 nov_-_222.SMRT_40.Ill 262 -

4775 4776 ann_-_2806.SMRT_60.Ill 2866 -

9646 9647 ann_-_3383.SMRT_411.Ill 3794 -

9674 9675 ann_+_216.SMRT_7.Ill 223 +

12599 12600 ann_-_422.SMRT_185.Ill 607 -

20188 20189 ann_-_1089.SMRT_225.Ill 1314 -

20304 20305 ann_+_495.SMRT_10.Ill 505 +

26205 26206 ann_-_69.SMRT_3.Ill 72 -

26496 26497 ann_+_300.SMRT_26.Ill 326 +

29046 29047 ann_-_918.SMRT_63.Ill 981 -

29058 29059 ann_+_467.SMRT_380.Ill 847 +

32284 32285 nov_-_35.SMRT_2219.Ill 2254 -

40597 40598 ann_-_775.SMRT_77.Ill 852 -

42963 42964 ann_-_33.SMRT_36.Ill 69 -

47810 47811 ann_-_1578.SMRT_48.Ill 1626 -

52124 52125 ann_+_170.SMRT_12.Ill 182 +

52118 52119 ann_-_126.SMRT_253.Ill 379 -

55952 55953 ann_-_90.SMRT_6.Ill 96 -

57315 57316 ann_+_140.SMRT_39.Ill 179 +

58049 58050 ann_-_1228.SMRT_143.Ill 1371 -

69232 69233 ann_+_217.SMRT_21.Ill 238 +

73394 73395 nov_-_126.SMRT_16.Ill 142 -

73545 73546 ann_+_79.SMRT_15.Ill 94 +

101010 101011 ann_+_11.SMRT_5.Ill 16 +

101276 101277 ann_-_110.SMRT_4492.Ill 4602 -

103134 103135 nov_-_6.SMRT_5.Ill 11 -

106523 106524 ann_+_325.SMRT_346.Ill 671 +

106943 106944 ann_-_470.SMRT_168.Ill 638 -

111702 111703 nov_+_174.SMRT_6.Ill 180 +

113031 113032 ann_-_45.SMRT_17.Ill 62 -

113074 113075 ann_+_1967.SMRT_60.Ill 2027 +

129779 129780 nov_-_5.SMRT_1.Ill 6 -

129808 129809 ann_+_659.SMRT_195.Ill 854 +

132677 132678 nov_+_5.SMRT_1.Ill 6 +

133100 133101 ann_+_1071.SMRT_459.Ill 1530 +

133630 133631 ann_-_373.SMRT_222.Ill 595 -

138492 138493 ann_-_125.SMRT_11.Ill 136 -

 194

138524 138525 ann_+_58.SMRT_2.Ill 60 +

140304 140305 ann_-_1620.SMRT_115.Ill 1735 -

140333 140334 ann_+_917.SMRT_286.Ill 1203 +

145994 145995 ann_+_83.SMRT_13.Ill 96 +

146001 146002 nov_-_150.SMRT_8.Ill 158 -

150127 150128 nov_-_14.SMRT_5.Ill 19 -

150159 150160 nov_-_36.SMRT_10.Ill 46 -

152531 152532 ann_+_8.SMRT_4.Ill 12 +

152866 152867 ann_-_111.SMRT_196.Ill 307 -

156897 156898 ann_+_106.SMRT_33.Ill 139 +

158702 158703 ann_+_2160.SMRT_5.Ill 2165 +

162442 162443 ann_+_4736.SMRT_239.Ill 4975 +

162444 162445 ann_-_94.SMRT_15.Ill 109 -

167304 167305 ann_-_142.SMRT_108.Ill 250 -

167444 167445 ann_+_175.SMRT_10.Ill 185 +

171013 171014 ann_+_3878.SMRT_67.Ill 3945 +

APPENDIX 9

Validated novel EBV transcripts

 196

chrStart chrEnd ID Strand
Block
Count BlockSize BlockStart

599 9675 BBRT4 + 3 234,253,1152 0,4333,7924

599 9675 BBRT5 + 2 234,1152 0,7924

599 9675 BBRT6 + 3 234,365,1152 0,4221,7924

599 9675 BBRT7 + 4
234,340,179,

1152
0,899,4407,79

24

599 9675 BBRT8 + 3 234,340,1152 0,899,7924

599 9675 BBRT9 + 4
234,340,365,

1152
0,899,4221,79

24

4383 9675 BGRT2 + 2 802,1152 0,4140

7765 9675 BGRT3 + 2 681,1152 0,758

7765 9675 BGRT4 + 2 456,1152 0,758

7765 9675 BGRT5 + 2 208,1152 0,758

7765 9675 BGRT6 + 1 1910 0

7765 9675 BGRT7 + 2 341,1152 0,758

16557 20305 BcRT2 + 2 226,1728 0,2020

16557 26497 BcRT3 + 3 226,211,2398 0,6277,7542

19392 20305 BTRT2 + 1 913 0

20624 26497 BTRT3 + 5
291,285,211,

153,1042
0,1558,2210,3

475,4831

23521 26497 BXRT2 + 2 268,2398 0,578

23521 26497 BXRT3 + 1 2976 0

24396 26497 BVRT3 + 1 2101 0

24470 26497 BVRT4 + 1 2027 0

25612 26497 BVRT5 + 1 885 0

28287 29059 BdRT2 + 1 772 0

28508 29059 BIRT1 + 1 551 0

28682 29059 BIRT2 + 1 377 0

36316 52125 BIRT3 + 6
65,102,132,4
26,127,757

0,1505,4855,5
197,13896,150

52

36316 52125 BIRT4 + 5
65,102,132,4

26,757
0,1505,4855,5

197,15052

36715 52125 BIRT5 + 9

60,102,132,1
55,112,83,21

1,83,1913

0,1106,4456,4
798,5112,1013
9,11399,11718

,13497

40390 52125 BIRT6 + 3 104,112,757 0,1437,10978

40390 69233 BIRT7 + 8

104,132,426,
138,395,216,

109,457

0,781,1123,10
978,17260,242
58,24552,2838

6

40390 69233 BIRT8 + 10

104,426,138,
395,215,99,1
71,216,109,4

0,1123,10978,
17260,23036,2
3338,24004,24

 197

57 258,24552,283
86

43541 52125 BIRT9 + 6
265,83,417,8

3,127,757
0,3313,4367,4
892,6671,7827

43592 52125 BIRT10 + 3 161,1471,757 0,3262,7776

43592 52125 BIRT11 + 6
214,282,417,
83,127,757

0,3262,4316,4
841,6620,7776

43592 52125 BIRT12 + 4
214,83,211,7

57
0,3262,4522,7

776

43592 52125 BIRT13 + 5
214,282,211,

259,757
0,3262,4522,6

620,7776

43592 52125 BIRT14 + 4
214,1471,259

,757
0,3262,6620,7

776

43592 52125 BIRT15 + 5
214,83,211,2

59,757
0,3262,4522,6

620,7776

43592 52125 BIRT16 + 2 214,757 0,7776

48118 52125 BART2 + 4
207,83,259,7

57
0,315,2094,32

50

48118 52125 BART3 + 3 398,127,757 0,2094,3250

48118 52125 BART4 + 4
207,83,127,7

57
0,315,2094,32

50

49367 52125 BART5 + 1 2758 0

49367 52125 BART6 + 3 117,259,757 0,845,2001

49367 52125 BART7 + 4
239,110,259,

757
0,381,845,200

1

49367 52125 BART8 + 4
239,74,259,7

57
0,381,845,200

1

49367 52125 BART9 + 3 139,259,757 0,845,2001

55122 57316 BART10 + 1 2194 0

55967 57316 BART11 + 1 1349 0

55967 69233 BART12 + 3 2078,109,457 0,8975,12809

55967 69233 BART13 + 8

188,395,215,
171,216,109,

573,457

0,1683,7459,8
427,8681,8975
,10671,12809

56600 57316 BART14 + 1 716 0

56626 69233 BART15 + 3 1419,109,457 0,8316,12150

63852 69233 BNRT2 + 4
468,216,109,

457
0,796,1090,49

24

63931 69233 BNRT3 + 6
226,81,171,2
16,109,457

0,308,463,717,
1011,4845

65094 69233 BNRT4 + 2 2117,457 0,3682

65094 69233 BNRT5 + 2 1170,457 0,3682

65094 69233 BNRT6 + 3 1170,573,457 0,1544,3682

65094 69233 BNRT7 + 2 2497,457 0,3682

65094 69233 BNRT8 + 2 1951,457 0,3682

65094 69233 BNRT9 + 2 435,457 0,3682

65094 69233 BNRT10 + 2 73,457 0,3682

71970 73546 BCRT3 + 1 1576 0

 198

72926 106524 BCRT4 + 7
522,66,66,66,
66,66,1210

0,4893,7966,1
1039,14112,23

331,32388

77648 106524 BWRT2 + 4
237,66,66,12

10
0,9390,18609,

27666

77648 106524 BWRT3 + 7
237,66,66,66,
66,66,1210

0,3244,6317,9
390,12463,186

09,27666

96086 106524 BWRT4 + 2 237,1210 0,9229

98915 101011 BYRT1 + 1 2096 0

100357 101011 BHRT2 + 1 654 0

104766 106524 BHRT3 + 2 109,1210 0,548

104920 106524 BHRT4 + 2 54,1210 0,394

104920 106524 BHRT5 + 1 1604 0

104920 106524 BHRT6 + 2 138,1210 0,394

105143 106524 BHRT7 + 1 1381 0

105392 106524 BHRT8 + 1 1132 0

105562 106524 BHRT9 + 1 962 0

105598 106524 BHRT10 + 1 926 0

105633 106524 BHRT11 + 1 891 0

105654 106524 BHRT12 + 1 870 0

105841 106524 BFRT4 + 1 683 0

105936 106524 BFRT5 + 1 588 0

106064 106524 BFRT6 + 1 460 0

109573 111703 BFRT7 + 1 2130 0

109842 111703 BFRT8 + 1 1861 0

110486 111703 BFRT9 + 1 1217 0

113215 129809 BFRT10 + 3 226,172,2300 0,5245,14294

128963 129809 BaRT2 + 1 846 0

130772 132678 BMRT3 + 1 1906 0

131763 133101 BMRT4 + 1 1338 0

136346 138525 BSRT2 + 1 2179 0

137815 140334 BSRT3 + 1 2519 0

138538 140334 BSRT4 + 1 1796 0

139716 140334 BLRT3 + 1 618 0

141590 145995 BLRT4 + 3 620,344,2075 0,1396,2330

141799 145995 BLRT5 + 2 398,2143 0,2053

143867 145995 BERT1 + 1 2128 0

144255 145995 BERT2 + 1 1740 0

145374 145995 BERT3 + 1 621 0

150164 152532 BERT4 + 1 2368 0

 199

156011 156898 BRRT3 + 1 887 0

156011 158703 BRRT4 + 1 2692 0

156860 158703 BRRT5 + 1 1843 0

157040 158703 BRRT6 + 2 336,955 0,708

159860 162443 BKRT5 + 1 2583 0

160213 162443 BKRT6 + 2 530,1568 0,662

160213 162443 BKRT7 + 1 2230 0

160298 162443 BKRT8 + 1 2145 0

161000 162443 BKRT9 + 1 1443 0

161265 162443 BKRT10 + 1 1178 0

161561 162443 BKRT11 + 2 157,633 0,249

161561 162443 BKRT12 + 1 882 0

161726 162443 BKRT13 + 1 717 0

161795 162443 BKRT14 + 1 648 0

161835 162443 BKRT15 + 1 608 0

165920 167445 BBRT10 + 1 1525 0

169395 171014 BBRT11 + 1 1619 0

169766 171014 BBRT12 + 1 1248 0

167304 169714 BBLT5 - 2 718,1564 0,846

167304 169528 BBLT6 - 2 718,1378 0,846

167304 169528 BBLT7 - 1 2224 0

167304 169342 BBLT8 - 1 2038 0

167304 169342 BBLT9 - 2 718,1192 0,846

162444 163334 BBLT10 - 1 890 0

162444 163080 BKLT1 - 1 636 0

162444 163057 BKLT2 - 1 613 0

152866 157698 BRLT2 - 3 215,264,805 0,556,4027

152866 157698 BRLT3 - 5
215,105,299,

260,805
0,300,556,282

7,4027

152866 157037 BRLT4 - 3 215,2272,144 0,556,4027

152866 157037 BRLT5 - 4
215,105,299,

144
0,300,556,402

7

152866 156950 BRLT6 - 4
215,105,299,

57
0,300,556,402

7

133630 156950 BRLT7 - 4
1393,243,264

,57
0,19208,19792

,23263

152866 154145 BZLT3 - 3 215,105,723 0,300,556

152866 154145 BZLT4 - 2 215,723 0,556

152866 154101 BZLT5 - 2 215,679 0,556

152866 154025 BZLT6 - 3 215,105,603 0,300,556

152866 153969 BZLT7 - 2 215,547 0,556

 200

152866 153640 BZLT8 - 3 215,105,218 0,300,556

150159 152868 BZLT9 - 2 208,279 0,2430

150127 152868 BZLT10 - 1 2741 0

150127 152868 BZLT11 - 2 240,279 0,2462

146001 152868 BZLT12 - 2 994,465 0,6402

146001 152868 BZLT13 - 2 1813,279 0,6588

146001 152868 BZLT14 - 3 1813,283,30 0,4083,6837

146001 152868 BZLT15 - 2 1813,237 0,6630

146001 152868 BZLT16 - 2 1813,30 0,6837

146001 152868 BZLT17 - 2 730,279 0,6588

146001 152868 BZLT18 - 2 994,30 0,6837

146001 152868 BZLT19 - 2 994,279 0,6588

146001 152868 BZLT20 - 2 1235,237 0,6630

146001 152868 BZLT21 - 2 994,237 0,6630

146001 152868 BZLT22 - 2 730,237 0,6630

140304 152868 BZLT23 - 2 659,30 0,12534

140304 152868 BZLT24 - 2 659,237 0,12327

140304 152868 BZLT25 - 3 659,577,30 0,1097,12534

140304 152868 BZLT26 - 2 659,465 0,12099

140304 152868 BZLT27 - 3 659,628,237 0,1097,12327

140304 152868 BZLT28 - 2 659,102 0,12462

140304 152868 BZLT29 - 2 659,279 0,12285

140304 152868 BZLT30 - 3 659,803,237 0,1097,12327

140304 152868 BZLT31 - 3 659,162,237 0,1097,12327

140304 152868 BZLT32 - 3 659,1368,30 0,1097,12534

140304 152868 BZLT33 - 3 659,628,30 0,1097,12534

133630 152868 BZLT34 - 2 1393,237 0,19001

133630 152868 BZLT35 - 2 1393,279 0,18959

133630 152868 BZLT36 - 3 1393,227,30 0,1499,19208

133630 152868 BZLT37 - 2 1393,30 0,19208

133630 152868 BZLT38 - 3 1393,147,237 0,1499,19001

150159 152492 Be3LT1 - 1 2333 0

146001 147033 BELT1 - 1 1032 0

133630 147033 BELT2 - 2 1393,376 0,13027

146001 146928 BELT3 - 1 927 0

140304 144155 BELT4 - 2 659,1619 0,2232

140304 143438 BLLT4 - 2 659,2037 0,1097

140304 143438 BLLT5 - 2 659,902 0,2232

140304 143364 BLLT6 - 1 3060 0

 201

140304 143364 BLLT7 - 2 659,828 0,2232

140304 143364 BLLT8 - 2 425,828 0,2232

140304 143364 BLLT9 - 2 659,1963 0,1097

140304 142909 BLLT10 - 2 659,373 0,2232

140304 142909 BLLT11 - 2 659,979 0,1626

140304 142909 BLLT12 - 2 639,1508 0,1097

140304 142909 BLLT13 - 2 659,849 0,1756

140304 142909 BLLT14 - 2 425,1508 0,1097

140304 142909 BLLT15 - 3 659,628,373 0,1097,2232

140304 142909 BLLT16 - 2 639,373 0,2232

133630 142909 BLLT17 - 2 1393,373 0,8906

140304 142238 BLLT18 - 2 659,837 0,1097

140304 142238 BLLT19 - 1 1934 0

140304 141675 BLLT20 - 2 659,274 0,1097

140304 141644 BLLT21 - 1 1340 0

140304 141644 BLLT22 - 2 659,243 0,1097

140304 141134 BLLT23 - 1 830 0

133630 136284 BSLT3 - 2 1393,1155 0,1499

133630 136284 BSLT4 - 1 2654 0

133630 136010 BSLT5 - 2 1420,881 0,1499

133630 136010 BSLT6 - 2 1393,881 0,1499

133630 136010 BSLT7 - 1 2380 0

133630 135866 BSLT8 - 2 1393,737 0,1499

133630 135744 BSLT9 - 1 2114 0

133630 135744 BSLT10 - 2 1393,615 0,1499

133630 135228 BSLT11 - 1 1598 0

106943 109728 BFLT3 - 1 2785 0

106943 109185 BFLT4 - 1 2242 0

106943 109042 BFLT5 - 1 2099 0

106943 108647 BFLT6 - 1 1704 0

106943 108607 BFLT7 - 1 1664 0

103134 103766 BHLT2 - 1 632 0

101276 101787 BHLT3 - 1 511 0

101276 101765 BHLT4 - 1 489 0

101276 101678 BHLT5 - 1 402 0

101276 101662 BHLT6 - 1 386 0

73394 75176 BCLT2 - 1 1782 0

73394 74832 BCLT3 - 1 1438 0

73394 74052 BCLT4 - 1 658 0

 202

58049 63744 BNLT3 - 2 2000,278 0,5417

58049 63744 BNLT4 - 3 1628,87,87 0,2077,5608

58049 63744 BNLT5 - 2 2164,278 0,5417

58049 60252 BNLT6 - 2 2000,126 0,2077

58049 60252 BNLT7 - 1 2203 0

58049 60068 BNLT8 - 1 2019 0

58049 59910 BNLT9 - 1 1861 0

58049 59836 BNLT10 - 1 1787 0

58049 58731 BNLT11 - 1 682 0

55952 58623 BNLT12 - 1 2671 0

55952 56871 BALT6 - 1 919 0

52118 53957 BALT7 - 1 1839 0

52118 52765 BALT8 - 1 647 0

47810 49311 BALT9 - 1 1501 0

40597 43363 BILT3 - 1 2766 0

40597 43339 BILT4 - 2 301,2198 0,544

40597 42961 BILT5 - 1 2364 0

40597 42961 BILT6 - 2 301,1376 0,988

40597 42914 BILT7 - 1 2317 0

40597 42094 BILT8 - 1 1497 0

40597 41598 BILT9 - 2 301,457 0,544

40597 41598 BILT10 - 1 1001 0

40597 41345 BILT11 - 2 301,204 0,544

40597 41345 BILT12 - 1 748 0

32284 33570 BILT13 - 1 1286 0

32284 33325 BILT14 - 1 1041 0

32284 33205 BILT15 - 1 921 0

32284 33118 BILT16 - 1 834 0

32284 33098 BILT17 - 1 814 0

32284 33060 BILT18 - 1 776 0

32284 32958 BILT19 - 1 674 0

32284 32931 BILT20 - 1 647 0

32284 32702 BILT21 - 1 418 0

32284 32616 BILT22 - 1 332 0

29046 31050 BILT23 - 1 2004 0

29046 30819 BILT24 - 1 1773 0

29046 30680 BILT25 - 1 1634 0

29046 30588 BILT26 - 1 1542 0

29046 30287 BILT27 - 1 1241 0

 203

29046 29881 BILT28 - 1 835 0

20188 29846 BILT29 - 3 1415,596,768 0,2514,8890

20188 29846 BILT30 - 3 923,188,768 0,2514,8890

20188 29846 BILT31 - 3 389,188,768 0,2514,8890

29046 29615 BILT32 - 1 569 0

29046 29575 BILT33 - 1 529 0

20188 24425 BVLT2 - 3 1256,188,884 0,2514,3353

20188 24425 BVLT3 - 2 389,2044 0,2193

20188 23150 BXLT3 - 4
389,159,188,

31
0,1256,2514,2

931

20188 23150 BXLT4 - 1 2962 0

20188 23150 BXLT5 - 2 1415,448 0,2514

20188 22696 BXLT6 - 2 1415,315 0,2193

20188 22696 BXLT7 - 1 2508 0

20188 22588 BXLT8 - 2 1415,207 0,2193

20188 22588 BXLT9 - 2 1256,207 0,2193

20188 22564 BXLT10 - 2 1415,183 0,2193

20188 22564 BXLT11 - 2 389,183 0,2193

20188 22564 BXLT12 - 2 389,1120 0,1256

20188 22564 BXLT13 - 3 389,159,183 0,1256,2193

12599 15103 BDLT5 - 1 2504 0

12599 14697 BDLT6 - 1 2098 0

12599 14504 BDLT7 - 1 1905 0

9646 12630 BDLT8 - 1 2984 0

9646 12630 BDLT9 - 2 649,1406 0,1578

9646 12630 BDLT10 - 2 122,1406 0,1578

9646 12630 BDLT11 - 2 2248,238 0,2746

9646 12630 BDLT12 - 2 122,1413 0,1571

4775 12630 BDLT13 - 2 397,1406 0,6449

9646 11492 BDLT14 - 1 1846 0

9646 11442 BDLT15 - 1 1796 0

9646 10889 BDLT16 - 1 1243 0

9646 10649 BDLT17 - 1 1003 0

1466 6209 BGLT6 - 2 439,1189 0,3554

1466 6209 BGLT7 - 3 439,149,524 0,3554,4219

4775 5175 BGLT8 - 1 400 0

4775 5149 BGLT9 - 1 374 0

1466 4451 BGLT10 - 2 439,882 0,2103

1466 4451 BGLT11 - 1 2985 0

 204

1466 3194 BGLT12 - 1 1728 0

1466 2568 BGLT13 - 2 439,564 0,538

1466 2568 BGLT14 - 1 1102 0

58 2568 BGLT15 - 1 2510 0

APPENDIX 10

Updated EBV-Akata annotation

 206

chrStart chrEnd ID Strand
block
Count blockStart blockSize

58 611 BBLF1 - 1 553 0

58 1735 BGLF5 - 1 1677 0

1466 3179 BGLF4 - 1 1713 0

1466 3398 BGLF3.5 - 1 1932 0

1466 4392 BGLF3 - 1 2926 0

3850 9675 BGRF1/BDRF1 + 2 1335,1152 0,4673

4775 6209 BGLF2 - 1 1434 0

4775 7706 BGLF1 - 1 2931 0

4775 8363 BDLF4 - 1 3588 0

4775 8613 BDLF3.5 - 1 3838 0

9646 10382 BDLF3 - 1 736 0

9646 11754 BDLF2 - 1 2108 0

9646 12660 BDLF1 - 1 3014 0

12599 17019 BcLF1 - 1 4420 0

16669 20283 BcRF1 + 1 3614 0

18317 20305 BTRF1 + 1 1988 0

20188 22564 BXLF2 - 1 2376 0

20188 24443 BXLF1 - 1 4255 0

23919 26497 BXRF1 + 1 2578 0

24642 26497 BVRF1 + 1 1855 0

26205 27460 BVLF1 - 1 1255 0

27060 29059 BVRF2 + 1 1999 0

27960 29059 BdRF1 + 1 1099 0

29046 29846 BILF2 - 1 800 0

29953 52119 RPMS1 + 10

124,106,134,102,
132,155,112,147

1,83,1907

0,1085,2196,7868,1
1218,11561,11874,
16901,18480,20259

30543 30921 Repeat_region + 1 378 0

30683 30704 ebv-miR-BART3* + 1 21 0

30720 30742 ebv-miR-BART3 + 1 22 0

30819 30841 ebv-miR-BART4 + 1 22 0

30857 30880 ebv-miR-BART4* + 1 23 0

30942 30966
ebv-miR-BART1-

5p + 1 24 0

30978 31000
ebv-miR-BART1-

3p + 1 22 0

31144 31166 ebv-miR-BART15 + 1 22 0

31267 31291 ebv-miR-BART5 + 1 24 0

31309 31327 ebv-miR-BART5* + 1 18 0

 207

31387 31411 ebv-miR-BART16 + 1 24 0

31507 31529
ebv-miR-

BART17-5p + 1 22 0

31545 31568
ebv-miR-

BART17-3p + 1 23 0

31625 31647
ebv-miR-BART6-

5p + 1 22 0

31663 31685
ebv-miR-BART6-

3p + 1 22 0

32161 35304 LF3 - 1 3143 0

32356 34874 Repeat_IR4_PstI + 1 2518 0

34799 36037 oriLyt + 1 1238 0

34864 35921
DRright_similar_t
o_40265..41308 + 1 1057 0

37106 37127
ebv-miR-

BART21-5p + 1 21 0

37140 37162
ebv-miR-

BART21-3p + 1 22 0

37590 37612
ebv-miR-

BART18-3p + 1 22 0

38027 38049 ebv-miR-BART7* + 1 22 0

38063 38085 ebv-miR-BART7 + 1 22 0

38360 38382 ebv-miR-BART8 + 1 22 0

38395 38418 ebv-miR-BART8* + 1 23 0

38547 38569 ebv-miR-BART9* + 1 22 0

38585 38608 ebv-miR-BART9 + 1 23 0

38792 38815 ebv-miR-BART22 + 1 23 0

38910 38932
ebv-miR-
BART10* + 1 22 0

38945 38968 ebv-miR-BART10 + 1 23 0

39126 39150
ebv-miR-

BART11-5p + 1 24 0

39164 39185
ebv-miR-

BART11-3p + 1 21 0

39526 39548 ebv-miR-BART12 + 1 22 0

39805 39828
ebv-miR-

BART19-5p + 1 23 0

39844 39865
ebv-miR-

BART19-3p + 1 21 0

39929 39950
ebv-miR-

BART20-5p + 1 21 0

39964 39986
ebv-miR-

BART20-3p + 1 22 0

40116 40138
ebv-miR-
BART13* + 1 22 0

40153 40176 ebv-miR-BART13 + 1 23 0

40334 40356
ebv-miR-
BART14* + 1 22 0

40368 40390 ebv-miR-BART14 + 1 22 0

 208

40597 41973 LF2 - 1 1376 0

40597 43339 LF1 - 1 2742 0

40597 44232 BILF1 - 1 3635 0

42962 47876 BALF5 - 1 4914 0

44337 44359
ebv-miR-BART2-

5p + 1 22 0

44337 44397
ebv-miR-BART2-

3p + 1 24 0

47136 52119 A73 + 4 1189,83,127,751 0,1297,3076,4232

47810 50467 BALF4 - 1 2657 0

47810 52496 BALF3 - 1 4686 0

50708 52124 BARF0 + 1 1416 0

52118 55944 BALF2 - 1 3826 0

55952 56541 BALF1 - 1 589 0

56626 57316 BARF1 + 1 690 0

57626 69233 LMP-2A + 9

419,215,99,249,8
1,171,216,109,45

7

0,5800,6102,6282,6
613,6768,7022,731

6,11150

58049 58623 BNLF2a - 1 574 0

58049 60601 LMP-1 - 3 2000,87,310 0,2077,2242

58049 58423 BNLF2b - 1 374 0

59496 59658
Repeat_unit_range
_167452..167484 + 1 162 0

60836 69233 LMP-2B + 9

155,215,99,249,8
1,171,216,109,45

7

0,2590,2892,3072,3
403,3558,3812,410

6,7940

61183 63319

TR_repeat-
unit_range_16913

8..169671 + 1 2136 0

65059 69233 BNRF1 + 1 4174 0

70004 70171 EBER1 + 1 167 0

70331 70505 EBER2 + 1 174 0

70691 72577 OriP + 1 1886 0

70797 71307

FR_Repeats_EBN
A1_Binding_sites_

I + 1 510 0

72285 72400

Dyad_Symmetry_
EBNA1_Binding_

site_II 72285 115 0
 72926 73546 BCRF1/IL10 + 1 620 0

74600 74601 Cp_Promoter + 1 1 0

74600 101011 Cp-EBNA2 + 19

144,32,66,132,66
,132,66,132,66,1
32,66,132,66,132
,66,132,33,122,1

641

0,290,3219,3366,62
92,6439,9365,9512,
12438,12585,15511
,15658,18584,1873
1,21657,21804,241

45,24262,24770

 209

74600 145995 Cp-EBNA3A + 21

144,32,66,132,66
,132,66,132,66,1
32,66,132,66,132
,66,132,33,122,1

72,344,2577

0,290,3219,3366,62
92,6439,9365,9512,
12438,12585,15511
,15658,18584,1873
1,21657,21804,241
45,24262,43860,68

386,68818

74600 152532 Cp-EBNA3B + 21

144,32,66,132,66
,132,66,132,66,1
32,66,132,66,132
,66,132,33,122,1

72,402,5996

0,290,3219,3366,62
92,6439,9365,9512,
12438,12585,15511
,15658,18584,1873
1,21657,21804,241
45,24262,43860,71

456,71936

74600 152532 Cp-EBNA3C + 21

144,32,66,132,66
,132,66,132,66,1
32,66,132,66,132
,66,132,33,122,1

72,367,3039

0,290,3219,3366,62
92,6439,9365,9512,
12438,12585,15511
,15658,18584,1873
1,21657,21804,241
45,24262,43860,74

452,74893

74600 160578 Cp-EBNA1 + 21

144,32,66,132,66
,132,66,132,66,1
32,66,132,66,132
,66,132,33,122,1

72,367,1869

0,290,3219,3366,62
92,6439,9365,9512,
12438,12585,15511
,15658,18584,1873
1,21657,21804,241
45,24262,43860,74

452,84109

75265 98628 IR1_W_repeats + 1 23363 0

75805 76957 BWRF1 + 1 1152 0

77648 101011 EBNA-LP + 19

27,61,132,66,132
,66,132,66,132,6
6,132,66,132,66,
132,33,122,59,88

0,176,318,3244,339
1,6317,6464,9390,9
537,12463,12610,1
5536,15683,18609,
18756,21097,21214

,21722,23275

99662 99782
Repeat_unit_range

-36294..36302 + 1 120 0

100506 100560
Repeat_unit_range

-37138..37143 + 1 54 0

101276 103797 BHLF1 - 1 2521 0

101558 103096 IR2/NotI_repeats + 1 1538 0

103568 104561 OriLyt + 1 993 0

103633 104677
DRleft_similar_to
_142819..143875 + 1 1044 0

104741 104763
ebv-miR-BHRF1-

1 + 1 22 0

104766 106524 BHRF1 + 1 1758 0

104766 106524
BHRF1_latent_spl

ice_variant + 2 130,1210 0,548

106120 106142
ebv-miR-BHRF1-

2* + 1 22 0

106155 106177
ebv-miR-BHRF1-

2 + 1 22 0

 210

106235 106257
ebv-miR-BHRF1-

3 + 1 22 0

106943 108105 BFLF2 - 1 1162 0

106943 109517 BFLF1 - 1 2574 0

109095 111703 BFRF1A + 1 2608 0

109842 113075 BFRF1 + 1 3233 0

110486 113075 BFRF2 + 1 2589 0

112360 113075 BFRF3 + 1 715 0

113031 123091 BPLF1 - 1 10060 0

113031 126224 BOLF1 - 1 13195 0

113404 160578 Qp-EBNA1 + 3 37,172,1869 0,5056,45305

113412 113460
EBNA_1_Binding

_site_III + 1 48 0

120666 120913
Repeat_unit_range

-57298..57348 + 1 247 0

121369 121414
Repeat_unit_range

-58001..58015 + 1 45 0

125918 129809 BORF1 + 1 3891 0

127102 129809 BORF2 + 1 2707 0

129705 133101 BaRF1 + 1 3396 0

130772 133101 BMRF1 + 1 2329 0

131714 133101 BMRF2 + 1 1387 0

133220 133363
Repeat_unit_range

-69852..69922 + 1 143 0

133630 135228 BSLF2/BMLF1 - 2 1393,99 0,1499

133630 137783 BSLF1 - 1 4153 0

134541 134631
Repeat_unit_range

-71173..71181 + 1 90 0

137815 138525 BSRF1 + 1 710 0

138492 139386 BLLF3 - 1 894 0

139443 140334 BLRF1 + 1 891 0

139796 140334 BLRF2 + 1 538 0

140304 140923 BLLF2 - 1 619 0

140304 142909
BLLF1-

splice_variant - 2 659,1508 0,1097

140304 142909 BLLF1 - 1 2605 0

141051 141388
Repeat_unit_range

-77683..77713 + 1 337 0

144956 145026
Repeat_family_typ

e_A + 1 70 0

145029 145055
Repeat_family_typ

e_B + 1 26 0

145055 145130
Repeat_family_typ

e_C + 1 75 0

145134 145160
Repeat_family_typ

e_B + 1 26 0

 211

145160 145238
Repeat_family_typ

e_C + 1 78 0

145238 145309
Repeat_family_typ

e_A + 1 71 0

145319 145397
Repeat_family_typ

e_C + 1 78 0

145397 145468
Repeat_family_typ

e_A + 1 71 0

145644 145731
Repeat_family_typ

e_D + 1 87 0

145731 145818
Repeat_family_typ

e_D + 1 87 0

148270 148387
Repeat_unit_range

-84902..84961 + 1 117 0

150159 152868 BZLF2 - 1 2709 0

150810 150993
Repeat_unit_range

-87442..87456 + 1 183 0

151248 151521
Repeat_unit_range

-87880..87918 + 1 273 0

152866 153969 BZLF1 - 3 215,105,547 0,300,556

152866 157037 BRLF1 - 3 215,2531,144 0,556,4027

153321 153420 Repeat_region + 1 99 0

155814 156898 BRRF1 + 1 1084 0

157040 158703 BRRF2 + 1 1663 0

158984 159620 Repeat_family-IR3 + 1 636 0

160572 162443 BKRF2 + 1 1871 0

160811 162443 BKRF3 + 1 1632 0

161762 162443 BKRF4 + 1 681 0

162444 165001 BBLF4 - 1 2557 0

164547 167445 BBRF1 + 1 2898 0

166431 167445 BBRF2 + 1 1014 0

167304 169677 BBLF2/BBLF3 - 2 718,1527 0,846

169648 171014 BBRF3 + 1 1366 0

 212

BIOGRAPHY

Christina (Tina) O’Grady was born and raised in Kimberley, British Columbia. She attended

the University of British Columbia in Vancouver to earn her Bachelor of Science in Biology.

She then enrolled at The Catholic University of America in Washington, DC, where she

completed a dual Master’s program in Cell & Microbial Biology and Library & Information

Science. She worked as a librarian for several years at the University of New Orleans and at

Mount Sinai School of Medicine in New York, NY, all the while becoming increasingly

interested in biological information and its potential to answer important questions. In 2011

she was admitted to the Biomedical Sciences program at Tulane University School of

Medicine and soon received a Ruth L. Kirschstein NRSA F31 predoctoral fellowship to

work in the lab of Dr. Erik Flemington. Upon completion of her PhD she will relocate to

Belgium for a postdoctoral fellowship with Drs. Ingrid Struman and Franck Dequiedt at the

University of Liège.

