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ABSTRACT 

 

 Next generation sequencing (NGS) is a relatively new technology that has 

revolutionized the way scientists discover and investigate pathogens. It has been 

estimated that a staggering one in every five cancers worldwide is linked to an 

infectious agent. An understanding of the pathogen biology as well as the 

interactions with the host will lead to better therapies and outcomes for patients 

suffering from pathogen-associated malignancies. Despite the promise for this 

phenomenon through NGS-based approaches, we are still in the infancy of 

sequence analysis and are unable to fully appreciate the potential of NGS. 

  To facilitate data mining, an automated computational pipeline for the 

simultaneous analysis of pathogen and host transcripts called RNA CoMPASS 

was developed. Using RNA CoMPASS to investigate a variety of sequencing 

datasets over the years, substantial bacterial contamination have been routinely 

identified in human-derived RNA-seq datasets that likely arose from 

environmental sources. Based on this analysis, a need for more stringent 

sequencing and analysis protocols to investigate sequence-based microbial 

signatures in clinical samples is crucial. 

NGS-based approaches were utilized to investigate the role of Epstein-

Barr virus (EBV) in the pathogenesis of gastric carcinoma. A comprehensive 



	
  

assessment of the virome of various brain tissue samples was also performed, 

with the notion that an NGS-based detection method would be unbiased, 

sensitive, specific, and accurate. Taken together, these studies provide a 

framework for using NGS technology to study oncogenic pathogens and bring 

awareness to contamination issues within sequencing datasets. 
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Chapter 1: Introduction 

 

1.1 Oncogenic Pathogens 

It has been estimated that a staggering one in five cancers worldwide 

(20%) is linked to an infectious agent [1]. There are currently eleven pathogens 

that are known to be oncogenic and associated with human malignancies, 

including seven viruses, hepatitis B (HBV) and C (HCV) (linked to hepatocellular 

carcinoma), human papillomavirus (HPV) (linked to cervical carcinoma), Epstein-

Barr virus (EBV) or human herpesvirus 4 (associated with B- and T-cell 

lymphomas, post-transplant lymphoproliferative disease, leiomyosarcoma, 

nasopharyngeal carcinoma, and gastric carcinoma), human T-cell lymphoma 

virus 1 (HTLV-1) (linked to T-cell leukemia), Merkel cell polyomavirus (MCPyV) 

(linked to Merkel cell carcinoma), Kaposi’s sarcoma virus (KSVH) or human 

herpesvirus 8 (associated with Kaposi’s sarcoma). There are also three parasites 

including Schistosoma haematobium (linked to squamous cell carcinoma of the 

bladder), Opisthorchis viverrini (linked to cholangiocarcinoma), and Opisthorchis 

viverrini (linked to cholangiocarcinoma) and one bacterium, Helicobacter pylori 

(associated with gastric carcinoma) [2] (Table 1). 

Among the eleven known oncogenic pathogens, five viruses (HPV, HTLV-

1, EBV, MCPyV, and KSVH) have direct links with oncogenesis modulating the 
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host gene expression through the expression of viral genes. For instance, HPV 

encodes oncoproteins E6 and E7, which bind to and inhibit p53 and pRB, 

respectively [3-5]. Disrupting these vital tumor suppressor proteins leads to the 

inhibition of apoptotic signaling pathways and the increase in cellular 

proliferation. EBV encodes an oncoprotein, latent membrane protein 1 (LMP1), 

which mimics a constitutively active cellular receptor, CD40 [6, 7]. As a result of 

this ligand-independent activation, multiple signaling pathways are activated 

including NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), 

JNK (c-Jun N-terminal kinase), and STAT (Signal Transducer and Activator of 

Transcription) [8-10]. In contrast, the other six pathogens (HBV, HCV, H. pylori, 

Schistosoma haematobium, Opisthorchis viverrini, Opisthorchis viverrini) have all 

been indirectly linked to oncogenesis, whereby a persistent infection results in a 

chronic inflammatory state that promotes tumorigenesis. 

 

1.2 History of DNA Sequencing 

1.2.1 Sanger Sequencing 

When Frederick Sanger first described a technique in 1977, in which the 

exchange of the 3’ hydroxyl group of nucleotides with a hydrogen atom (termed 

dideoxynucleotides; ddNTP) led to the termination of nucleotide chain elongation, 

this was the birth of what would be referred to as Sanger sequencing and 

essentially pioneered the ear of modern genomics. Sanger sequencing is based 

on a chain-termination approach that incorporates ddNTPs during DNA synthesis 

and effectively prevents nucleotide elongation by DNA polymerase because the 



	
  
	
  

	
  

3 

Table 1. Oncogenic pathogens and their associated malignancies 
Oncogenic Pathogen Associated Malignancy 
Viruses  
Hepatitis B Hepatocellular carcinoma 
Hepatitis C Hepatocellular carcinoma 
Human papillomavirus Cervical carcinoma 

Epstein-Barr virus  
(Human herpesvirus 4) 

B- and T-cell lymphomas, post-
transplant lymphoproliferative disease, 
leiomyosarcoma, nasopharyngeal 
carcinoma, and gastric carcinoma 

Human T-cell lymphoma virus 1 T-cell leukemia 
Merkel cell polyomavirus Merkel cell carcinoma 
Kaposi’s sarcoma virus  
(Human herpesvirus 8) Kaposi’s sarcoma 

Parasites  

Schistosoma haematobium Squamous cell carcinoma of the 
bladder 

Opisthorchis viverrini Cholangiocarcinoma 
Opisthorchis viverrini Cholangiocarcinoma 
Bacteria  
Helicobacter pylori Gastric carcinoma 
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hydrogen atom is fundamentally unable to participate in the elongation reaction 

with the incoming nucleotide [11]. During this process, a radiolabeled dATP, 

which is supplied in the sequence reaction, is incorporated and serves as a 

visual to determine fragment position on a polyacrylamide gel when exposed to 

X-ray. Despite transforming the field of genomics, Sanger sequencing at this 

current state was laborious, slow, and not scalable with X-ray visualized gel-

separated fragments, requiring manual entry of the corresponding nucleotide 

sequences (Figure 1) [12]. 

 

1.2.2 First Generation Sequencing 

In the pursuing years, several advancements to the standard Sanger 

sequencing were introduced. First, the transition from using radiolabeled dATP to 

fluorescent-labeled dATP (different fluorochromes for each nucleotide) replaced 

the need for X-ray, manual visualization, and entry of the sequence reaction [13]. 

Improvements to sequencing enzymology were also introduced including the use 

of thermostable DNA polymerases, which were first applied to polymerase chain 

reaction (PCR) by Mullis and colleagues [14]. Cycled sequencing reactions or 

amplification, catalyzed by these thermostable DNA polymerases, enabled the 

use of lower input template DNA. Finally, using capillaries for separation through 

a process known as electrokinetic injection, instead of the traditional 

polyacrylamide gel, eliminated several previously lengthy steps including gel 

imaging, visualization, and manual entry of corresponding nucleotides. These 

advances were realized with the introduction of the first automated DNA  
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Figure 1. Overview of Sanger sequencing. (Adopted from Mardis, 2013). 
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sequencer from Applied Biosystems (AB370), which incorporated Sanger 

sequencing with capillary electrophoresis. For the first time, DNA sequencing 

was faster and more accurate than previous methods and marked the beginning 

of the “first generation” of DNA sequencing. Automated Sanger sequencing using 

capillary sequencing machines were the mainstay for the completion of the 

human genome project in 2001 [15]. 

 

1.3 Second Generation Sequencing 

The advent of “second generation” or next generation sequencing (NGS) 

technology launched with the introduction of three new sequencing systems, all 

providing cost effective and accurate sequencing at high throughput capacity 

compared to Sanger sequencing [16]. In stark contrast to Sanger sequencing, 

NGS technology do not require a cloning step but rather DNA is sequenced 

through the use of fragment libraries. These libraries are constructed by adding 

universal adapters to the end of fragmented DNA with subsequent anchorage to 

a solid surface (e.g. glass slide or bead). A clonal amplification step (e.g. 

emulsion PCR or solid-phase) is required for all second generation sequencing 

systems due to the limitation of detecting single fluorescent events. The 

advantage of anchoring hundreds of millions of fragments on a solid surface is 

the ability to sequence each of these fragments simultaneously (often referred to 

as massively parallel sequencing). The great improvement of these NGS 

systems is their ability to sequence and detect incorporated nucleotides 

simultaneously without the need for additional steps. 
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1.3.1 Roche 454 

Launched first in 2005, 454, later purchased by Roche, was the first to 

successfully commercialize a NGS-based sequencing system. The Roche 454 

sequencer uses pyrosequencing technology, which detects the pyrophosphate 

released during nucleotide incorporation [17]. Fragments are anchored to 

agarose beads and amplified using emulsion PCR relying on an oil-aqueous 

emulsion to capture bead-DNA complexes into single aqueous droplets where 

several thousand copies of the same template DNA is produced [18]. (Figure 2) 

 

1.3.2 Illumina 

One year later Solexa, later purchased by Illumina, introduced their 

sequencer. The Illumina sequencer relies on a solid-phase amplification method, 

which involves clonal amplification of the fragmented DNA on a glass slide, often 

referred to as bridging amplification [19]. Universal adapters are ligated to 

randomly fragmented DNA and bound to the surface of a glass slide called a flow 

cell. (Figure 3) 
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Figure 2. Workflow for Roche 454 sequencing. The top panels illustrate 
sequence library preparation including emulsion PCR to amplify fragments prior 
to sequencing. The DNA fragments coupled to beads are loaded into the picotiter 
plate (PTP). The bottom panel shows the pyrosequencing reaction. (Adopted 
from Mardis, 2008) [20]. 
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Figure 3. Workflow for Illumina sequencing. (A) Sequence library preparation 
steps including ligating adapters. (B) Clonal amplification of DNA fragments by 
bridge amplification. (C) Sequencing of DNA fragments. (Adopted from Mardis, 
2013). 
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1.3.3 SOLiD 

The SOLiD (Sequencing by Oligonucleotide Ligation and Detection) 

sequencing platform introduced by Applied Biosystems uses an emulsion PCR to 

amplify adapter-ligated fragments bound to magnetic beads. Using a ligase-

mediated sequencing approach, whereby each nucleotide is called twice, the 

SOLiD platform is unique from the other NGS platforms and theoretically reduces 

base-calling errors with this two base encoding sequence strategy. (Figure 4) 

 

1.3.4 Ion Torrent 

In 2010, Ion Torrent, later purchased by Life Technologies, developed and 

introduced their DNA sequencer, a NGS system completely different from the 

other sequencers on the market. Using a semiconductor sensor, the Ion Torrent, 

detects changes in pH from the release of hydrogen ions as a byproduct of 

nucleotide incorporation to determine the fragment sequence (Figure 5) [21]. 

Similar to other platforms, the Ion Torrent relies on emulsion PCR for fragment 

amplification. 
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Figure 4. Overview of SOLiD sequencing. (A) Universal sequence primer is 
ligated to end of DNA fragment. The fragment then goes through subsequent 
ligation cycles of the appropriate labeled 8 mer. (B) Schematic of the two base 
encoding approach. (Adopted from Mardis, 2008). 
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Figure 5. Overview of Ion Torrent sequencing. Sequencing takes place within 
silicon wells and changes in pH are detected using a semiconductor pH sensor 
device. (Modified from Rothberg et al., 2011) [21]. 
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1.4 Third Generation Sequencing 

The concept of single-molecule sequencing has paved the way for the 

third generation of DNA sequencing. Pacific Biosystems (SMRT Cell) and Oxford 

Nanopore Technologies are among the companies utilizing third generation 

sequencing. The commonality between these third generation sequencing 

platforms is the elimination of a PCR amplification step, capturing the detection 

signal in real time and utilizing nanotechnology. Although Pacific Biosystems and 

Oxford Nanopore Technologies both provide single-molecule sequencing, their 

approaches are very different. Pacific Biosystems utilizes fluorophores to detect 

incoming nucleotides during DNA synthesis, while Oxford Nanopore does not 

rely on DNA polymerase but rather detects alterations in electrical current from 

nucleotides pass through the nanopore.  

 

1.4.1 Pacific Biosystems 

The nanotechnology utilized by Pacific Biosystems is the zero-mode 

waveguide (ZMW) [22-24]. Within the ZMW, a single polymerase molecule is 

attached to which a primed template molecule is bound and synthesis and 

detection takes place in real-time. There are thousands of ZMW spatially 

distributed on the surface of a silicon wafer called the SMRT Cell. (Figure 6) 

 

1.4.2 Oxford Nanopore Technologies 

In contrast, Oxford Nanopore Technologies utilizes an α-hemolysin 

nanopore [25, 26] inserted into a lipid bilayer that allows only single stranded 
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DNA or RNA to traverse through. At the same time, a current is passed through 

the lipid bilayer and alterations in the electrical current are monitored as the 

nucleotides pass through the nanopore [27, 28]. (Figure 7) 
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Figure 6. Overview of Pacific Biosystems sequencing. Real-time single-
molecule sequencing is accomplished using zero-mode wavelength (ZMW) 
nanostructures. (A) One DNA polymerase is anchored at the bottom of the ZMW 
and adds fluorescently tagged nucleotides to a primed DNA template (depicted in 
black). (B) As the phospholinked nucleotides enter the region below the red 
broken line, multiple lasers excite the fluorophores and excitation and emission 
wavelengths are detected. (Adopted from Metzker, 2009, with permission) [29]. 
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Figure 7.  Overview of Oxford Nanopore sequencing. (A) Single-stranded 
DNA (ssDNA) is fed through a nanopore that possesses a constriction within the 
channel (dark blue diamonds), which facilitates the reading of the ssDNA. (B) A 
current is applied across the membrane and as a nucleotide passes through, 
changes in current are detected corresponding to the various nucleotides. 
(Adopted from Steinbock and Radenovic, 2015) [30]. 
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1.5 RNA Sequencing 

Prior to RNA sequencing (RNA-seq), transcriptomic studies were 

accomplished using microarray technology [31, 32]. Although transformative at 

the time, microarray technology has been met with several limitations that have 

been overcome with RNA-seq technology. Instead of relying on a set of DNA 

probes hybridizing to cDNA libraries and measuring changes in fluorescence to 

infer relative abundance of transcripts, RNA-seq massively parallelizes 

sequencing of fragmented RNA resulting in a readout of sequence stretches 

(referred to as a read). The move from a probe-dependent to a probe-

independent approach essentially transformed gene expression analysis from an 

analogue methodology of relying on fluorescent changes to a digital methodology 

that directly counts the sequenced reads. By directly counting the sequenced 

reads, the dynamic range of detection and quantification is theoretically infinite 

and greatly enhances the ability to detect very low abundant gene expression. 

The other advantage of using a probe-independent approach is the potential to 

discover novel transcripts, alternative splicing events, and gene fusion events. 

Finally, the ability to retain the direction of transcripts through directional 

sequencing protocols greatly enhances the ability to interrogate transcriptomes. 

This capacity is especially important given the recent discoveries of noncoding 

and antisense transcripts throughout human and pathogen genomes [33-38]. For 

example, directional sequencing approaches have been applied to study the EBV 

genome during viral reactivation. The extensive bidirectional transcription 

extending across nearly the entire EBV genome with the discovery of hundreds 
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of more viral transcripts than was previously known. Most newly identified 

transcribed regions do not encode proteins but instead likely function as 

noncoding RNA molecules which could participate in regulating gene expression, 

gene splicing or even activities such as viral genome processing [38]. 

 

1.6 Using RNA Sequencing to Study Pathogen Transcriptome and Host-

Pathogen Interaction 

The detection/discovery of etiological agents associated with cancers or 

other diseases is not always an easy task due in part to the broad spectrum of 

candidate infectious agents that exist. However, through its capacity to delve 

deeply into the genetic composition of a biological specimen, next generation 

sequencing (NGS) technology presents an unprecedented approach to pathogen 

discovery in the context of human disease [39]. This unbiased, sensitive and 

accurate approach to identify potential causal pathogens has shown promise, 

resulting in the discovery of a novel Merkel cell polyomavirus in Merkel cell 

carcinoma [40]. More recently, the discovery of an association between 

Fusobacterium and colorectal carcinoma was made using two different NGS 

approaches [41, 42]. These discoveries were facilitated by the use of 

computational subtraction approaches where reads aligning to reference 

genomes were subtracted from the sequence file, leaving behind sequences 

from undiscovered organisms. 

The genome of an organism contains all the programming information 

necessary to manufacture the organism and facilitate its life cycle. This genomic 
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information thereby specifies the organism’s identity. Sequencing the genomic 

content of a clinical sample should be a means to accurately identify exogenous 

agents with potential etiology in the disease. Nevertheless, because the human 

genome is larger and has a sparser coding density than most microbial and viral 

genomes, transcriptome analysis of mixed human/microbial/viral communities 

has become a more sensitive and cost efficient means to detect ectopic 

organisms than whole genome analysis. This issue is well illustrated in Figure 8. 

Analysis of genome sequence data from a follicular lymphoma sample in the 

Cancer Genome Characterization Initiative (CGCI) revealed 1.2 x 10-5 bacterial 

and 6.7 x 10-6 Acinetobacter reads per human mapped reads using genome 

sequencing data (DNA-seq), whereas 0.018 bacterial and 0.0045 Acinetobacter 

reads per human mapped reads were observed in the corresponding RNA-seq 

data. This corresponds to a 1,515 fold higher sensitivity of RNA-seq compared to 

DNA-seq for detecting bacteria in mixed community specimens. RNA level 

analysis therefore has the potential to be more sensitive than genome 

sequencing in the identification of ectopic organisms. 

 An added benefit of RNA-seq analysis of tissue samples is the ability to 

simultaneously assess both pathogen and host transcriptomes [43]. This dual 

RNA-seq approach was applied to the study of the fungus C. albicans and the 

interaction with mouse dendritic cells. Although the authors did not full utilize the 

potential of this approach (e.g. perform an in-depth characterization of the global 

response to infection), this study represents a successful application of the 

concept of analyzing the host and pathogen transcriptomes in parallel [44]. 
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Figure 8. RNA-seq is more sensitive than DNA-seq for the identification of 
exogenous organisms within human specimens. Bacterial to human and 
Acinetobacter to human read ratios were calculated. The available RNA-seq and 
DNA-seq data from the single CGCI FL sample were analyzed. RNA-seq 
analysis shows significantly greater concentrations of both bacterial and 
Acinetobacter reads than DNA-seq analysis. 
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 With rapid advancements in technological approaches in the field of 

genomics, we now have the capacity to understand and begin to unravel the 

complexity of pathogens and the intimate interplay with their host organisms. 

Although the promise of undiscovered possibilities is infinite, our current ability to 

analyze and fully appreciate the depth to which we now are able to analyze 

genomic data is still in its infancy. Our ability to efficiently sequence organisms 

has greatly surpassed our capability of analyzing all of this sequence data. 

Automated computational pipelines designed to sift through millions of lines of 

sequence data are being developed in order to assist scientist in analyzing what 

has been referred to as Big Data. With a seemingly endless supply of data and 

connects to be discovered, the next formidable task for scientists studying human 

pathogens is to piece everything together and garner information on the 

pathogen-host interaction. 
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2.1 Abstract 

High-throughput RNA sequencing (RNA-seq) has become an instrumental 

assay for the analysis of multiple aspects of an organism’s transcriptome. 

Further, the analysis of a biological specimen’s associated microbiome can also 
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be performed using RNA-seq data and this application is gaining interest in the 

scientific community. There are many existing bioinformatics tools designed for 

analysis and visualization of transcriptome data. Despite the availability of an 

array of next generation sequencing (NGS) analysis tools, the analysis of RNA-

seq data sets poses a challenge for many biomedical researchers who are not 

familiar with command-line tools. Here we present RNA CoMPASS, a 

comprehensive RNA-seq analysis pipeline for the simultaneous analysis of 

transcriptomes and metatranscriptomes from diverse biological specimens. RNA 

CoMPASS leverages existing tools and parallel computing technology to facilitate 

the analysis of even very large datasets. RNA CoMPASS has a web-based 

graphical user interface with intrinsic queuing to control a distributed 

computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq 

data sets from 45 B-cell samples. Twenty-two of these samples were derived 

from lymphoblastoid cell lines (LCLs) generated by the infection of naïve B-cells 

with the Epstein Barr virus (EBV), while another 23 samples were derived from 

Burkitt’s lymphomas (BL), some of which arose in part through infection with 

EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction 

of the BLs. Cluster analysis of the human transcriptome component of the RNA 

CoMPASS output clearly separated the BLs (which have a germinal center-like 

phenotype) from the LCLs (which have a blast-like phenotype) with evidence of 

activated MYC signaling and lower interferon and NF-kB signaling in the BLs. 

Together, this analysis illustrates the utility of RNA CoMPASS in the 
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simultaneous analysis of transcriptome and metatranscriptome data. RNA 

CoMPASS is freely available at http://rnacompass.sourceforge.net/. 

 

2.2 Introduction 

Through its capacity to delve deeply into the genetic composition of a 

biological specimen, next generation sequencing (NGS) technology presents an 

unprecedented approach to pathogen discovery in the context of human disease. 

This unbiased approach to identify undiscovered human disease causing 

pathogens has already shown promise, resulting in the discovery of a novel 

Merkel cell polyomavirus in Merkel cell carcinoma [40], for example. More 

recently, the discovery of an association between Fusobacterium and colorectal 

carcinoma was made using two different NGS approaches [41, 42]. These 

discoveries were facilitated by the use of computational subtraction approaches 

where reads aligning to reference genomes were subtracted from the sequence 

file leaving behind sequences from undiscovered organisms. Using this general 

approach, several groups, including ours, have previously reported 

computational pipelines for the analysis of exogenous sequences and for 

pathogen discovery [39, 41, 45-48].     

While current sequence-based computational subtraction pipelines are 

used solely for pathogen discovery, RNA CoMPASS, takes advantage of the 

richness of RNA-seq data to provide host transcript expression data in addition to 

pathogen analysis. This concept, recently coined “dual RNA-seq’ by Westermann 

and colleagues [43] allows the user to simultaneously investigate cellular 
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signaling pathways. It also allows the user to investigate associations between 

differences in cellular signaling pathways and the presence or absence of 

discovered pathogens. RNA CoMPASS leverages some of the most useful freely 

available tools and automates distribution of the computational burden over the 

available computing resources. It is designed to be deployable on either a local 

cluster or a grid environment managed by Portable Batch System (PBS) 

submission. RNA CoMPASS provides a web-based graphical user interface, 

making the program accessible to most biological researchers.  Here we present 

RNA CoMPASS and demonstrate its utility in dual analysis of RNA-seq data sets 

from different B-cell types with different EBV infection status. 

 

2.3 Materials and Methods 

2.3.1 Sequence data acquisition 

RNA-seq data sets from 22 Human B-Cell samples (lymphoblastoid cell 

lines [LCLs]) immortalized with Epstein-Barr Virus (EBV) were downloaded from 

the NCBI Sequence Read Archive (SRA010302). Samples were sequenced 

using an Illumina Genome Analyzer II machine running single end 50 base 

sequencing reactions. Similarly, 22 Human Burkitt’s Lymphoma (BL) samples 

were obtained from the NCBI Sequence Read Archive (SRA048058). Samples 

were sequenced using an Illumina Genome Analyzer II machine running paired 

end 107 and 102 base sequencing reactions. The Akata RNA-seq data set was 

generated previously in our lab (SRA047981) [49]. The Akata sample was 
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sequenced using an Illumina HiSeq instrument running paired end 100 base 

sequencing reactions. 

 

2.3.2 RNA CoMPASS 

RNA CoMPASS (RNA comprehensive multi-processor analysis system for 

sequencing) is a graphical user interface (GUI) based parallel computation 

pipeline for the analysis of both exogenous and human sequences from RNA-seq 

data. Several open source programs and a single commercial program are 

utilized in this automated pipeline. For the deduplication steps, an in-house de-

duplication algorithm is used. Alignments to the reference genome are carried 

out using Novoalign V2.07.18 (www.novocraft.com) [-o SAM, default options] 

with a reference genome (e.g. human (hg19; UCSC)), splice junctions (which is 

generated using the make transcriptome application from Useq [50]; splice 

junction radius is set to the read length minus 4), and abundant sequences 

(which include sequence adapters, mitochondrial, ribosomal, enterobacteria 

phage phiX174, poly-A, and poly-C sequences). Human mapped reads are 

analyzed using SAMMate [51] to quantify gene expression and to generate 

genome coverage information. Nonmapped reads are separated following this 

alignment and subjected to consecutive BLAST V2.2.27 searches against the 

Human RefSeq RNA database (a final filtering step) and then to the NCBI NT 

database to identify reads corresponding to known exogenous organisms [52]. 

Results from the NT BLAST searches are filtered to eliminate matches with an E-
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value of greater than 10e-6. The results are fed into MEGAN 4 V4.62.3 [53] for 

convenient visualization and taxonomic classification of BLAST search results.  

 

2.3.3 Statistics and Cluster analysis 

Human transcript counts were imported into the R software environment 

and analyzed using the edgeR package [54]. Genes with low transcript counts 

(less than 1 CPM (count per million)) in the majority of samples were filtered out. 

The Manhattan (L-1) distance matrix for the samples was computed using the 

remaining transcript counts, and this was taken as input for hierarchical 

clustering using the Ward algorithm. After assigning each sample to one of two 

groups identified by hierarchical clustering (Human B-Cell or Burkitt’s 

Lymphoma), the glmFit function was used to fit the mean log(CPM) for each 

group and likelihood ratio tests were used to identify those genes that were 

differentially expressed, with adjusted P<0.05 following the Benjamini-Hochberg 

correction for multiple testing. The fitted log(CPM) values for the subset of genes 

that were differentially expressed in the LCL samples relative to the BL samples 

were then clustered using the Euclidean distance and complete linkage algorithm 

to detect groups of co-expressed genes.           

 

2.4 Results 

2.4.1 RNA CoMPASS Architecture 

RNA CoMPASS facilitates the analysis of small and large RNA 

sequencing studies through an automated dataflow management and 
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acceleration of processing via distributed computing over a cluster (Figure 1). It 

has the capability to analyze fastq sequence files generated from single-end, 

paired-end, and/or directional sequencing strategies. After an initial deduplication 

step, the first phase of RNA CoMPASS is to perform the alignment of millions of 

short reads against the host genome using an accurate aligner, Novoalign 

(http://www.novocraft.com/) [-o SAM, default options]. Any host genome can be 

uploaded to RNA CoMPASS. In our case, we used the human reference 

genome, hg19 (UCSC), plus splice junctions (which is generated using the make 

transcriptome application from Useq [50]; splice junction radius is set to the read 

length minus 4), and abundant sequences (which include sequence adapters, 

mitochondrial, ribosomal, enterobacteria phage phiX174, poly-A, and poly-C 

sequences). After alignment, Novoalign categorizes reads into four classes: 

uniquely mapped reads, repeat mapped reads, unmapped reads and quality 

controlled reads. Further processing is bifurcated into the analysis of 

endogenous sequences (uniquely mapped reads and repeat mapped reads) and 

the investigation of exogenous reads (unmapped reads) (Figure 1). 

Endogenous sequence analysis is performed via the SAMMate transcript 

analysis software (Figure 1) [51]. A gene annotation file of interest is uploaded to 

facilitate the calculation of expression abundance scores for annotated genes 

and transcripts using the uniquely mapped reads (this includes spliced reads) 

and the best hits of repeat mapped reads from Novoalign. Gene expression is 

calculated using Reads/Fragments Per Kilobase of exon model per million 

Mapped reads (RPKM/FPKM) [55]. Isoform quantification is also computed via 
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the RAEM algorithm [56] or the iQuant procedure [57] to estimate the relative 

isoform proportions and abundance scores. RNA CoMPASS also generates 

useful files for visualization of RNA-seq data. Read coverage files are produced 

in Wiggle format for coverage viewing in a genome browser and signal map files 

are produced with single base pair resolution which can be used with peak 

detection algorithms [51]. 

Exogenous sequence analysis proceeds concurrently with the 

endogenous analysis (Figure 1). Utilizing BLAST [58], unmapped reads are 

searched against the NCBI NT database for identification using an E-value of 

better than 10e-6. This process is extremely computationally intensive and is 

distributed across the computing cluster to minimize processing time and 

memory requirements. BLAST run time and memory requirements depend not 

only on the size of the database being searched but also on the number of input 

reads. The filtering of reads originating from the human genome prior to 

searching against the NCBI NT database is the first major step in managing this 

burden. Despite this step, we have discovered that many host reads remain 

unmapped and are subsequently identified by BLAST (since BLAST is 

substantially more permissive). To further reduce the computational burden 

incurred by BLASTing these unmapped host reads, RNA CoMPASS offers an 

optional stage prior to NT database BLASTing where the user can BLAST 

against a host transcript database. Because host transcript databases are much 

smaller than the NT database, host reads not aligned by Novoalign can be  
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Figure 1. Schematic of RNA CoMPASS (RNA comprehensive multi-
processor analysis system for sequencing) architecture. RNA CoMPASS is 
a graphical user interface (GUI) based parallel computation pipeline for the 
analysis of both exogenous and human sequences from RNA-seq data. It 
employs a commercial and several open-source programs to analyze RNA-seq 
data sets including Novoalign, SAMMate, BLAST, and MEGAN. Each step 
results in the subtraction of reads in order to further analyze the unmapped reads 
for pathogen discovery. The mapped reads are analyzed separately. The end 
result from this pipeline is pathogen discovery and host transcriptome analysis.  
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filtered out at lower computational cost than would otherwise be incurred by 

BLASTing these reads against the NT database. 

After BLASTing against the NT database, taxonomic analysis is performed  

by importing the BLAST results into MEGAN [53]. To allow MEGAN to determine 

the taxon associated with each match, the NCBI taxon id number is appended to 

each BLAST hit. This is accomplished by looking up the GI accession number in 

the GI to TaxID file using a custom script. MEGAN then determines the taxon 

associated with matches based on the hit table using a lowest common ancestor 

algorithm. MEGAN categorizes the exogenous sequences and outputs an NCBI 

taxonomy tree. Each node of the output tree is labeled by a taxon and the size of 

a given node represents the number of reads assigned to that taxon. This 

provides the researcher with an overview of reads of possible exogenous origin. 

The researcher can then evaluate the exogenous sequence content in the 

context of their own biological knowledge of the experiment at hand. The 

researcher can also formulate hypotheses to test given the taxonomic 

classification displayed by MEGAN and then export all reads that were assigned 

to a specific taxon for further analysis. For example, the reads can be assembled 

into longer transcripts [59] using a de novo parallel sequence assembler. This 

provides the researcher with a broader view of the particular transcripts that were 

found within a given taxon. De novo assembly can be repeated for each taxon of 

interest and the researcher can search the longer assembled transcripts against 

the databases again to get more precise hits. 
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In RNA CoMPASS, we have implemented both the Java Parallel 

Processing Framework (JPPF) API and Portable Batch System (PBS) API in 

order to deploy it on either a small local cluster or a grid system managed by 

PBS submission. Our testing of RNA CoMPASS in both environments (data not 

shown for grid system) showed that our pipeline could efficiently analyze RNA-

seq data sets achieving a significant speedup over analysis on a single machine. 

This will allow other investigators to use RNA CoMPASS on whichever type of 

computational environment they have access to. In our case, we employed RNA 

CoMPASS on a local 4-node cluster environment (Intel Xeon Mac Pros with 64-

96GB RAM). 

 

2.4.2 RNA CoMPASS performance 

To evaluate the performance of RNA CoMPASS on a cluster environment 

versus a single node environment, we benchmarked 6 RNA-seq data sets with 

incrementally varied file sizes on both a single machine and on a local cluster 

with 4 nodes. The 6 files used for this analysis were extracted from a previously 

generated RNA-seq data set from a BL cell line (1 sequence pair from the Akata 

RNA-seq data set) [49] and the file sizes varied from 1.4 to 51 million reads. All 6 

samples, run on the single node or the 4-node cluster, were processed using 

identical parameters. As expected, run time increased with file size with the 51 

million read file taking approximately 1,400 minutes on a single machine but only 

400 minutes on the cluster (Figure 2).  Speedup increased with file size (up to 

3.4, Figure 2) supporting a benefit of a cluster environment for large-scale 
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projects. Overall speedup was attributed primarily to the parallelization of the two 

more computationally intensive steps, Novoalign and BLAST (Figure 3). 

 

2.4.3 Pathogen Discovery and Analysis 

To test the utility of RNA CoMPASS to identify pathogens within biological 

specimens we used RNA-seq data sets from two distinct B-cell types, 

lymphoblastoid cell lines (LCLs) and Burkitt’s lymphoma (BL) samples. LCLs are 

not tumor cells but have instead been immortalized by infection with EBV. In 

contrast, the Burkitt’s lymphoma cells lines are tumor cell lines, some of which 

underwent tumorigenesis in part through natural infection with EBV. Notably, 

however, although some Burkitt’s lymphoma cell lines are infected with EBV, the 

EBV gene expression pattern and the cell phenotype of Burkitt’s lymphomas and 

LCLs are distinct. 

Single-end RNA-seq data sets from 45 B-cell lines (22-Lymphoblastoid 

cell lines, 23-Burkitt’s lymphomas) were analyzed using RNA CoMPASS. Most 

samples contained relatively low numbers of non-human viral reads (e.g. 

enterobacteria phage) that most likely represent environmental contamination 

(Figure 4A). EBV was the primary mammalian virus detected in these samples 

(displayed as Human herpesvirus 4 in examples shown in Figure 4A). 

Nevertheless, related viruses were sometimes displayed in the MEGAN output 

such as that for sample SRR032270 where 88 reads were classified as Macacine 

herpesvirus 4 reads and 32 were classified as Papiline herpesvirus 1 (Figure 4A). 

Further analysis of these reads using manual BLAST revealed that EBV ranked 
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Figure 2. Performance Analysis of RNA CoMPASS. RNA CoMPASS was 
deployed on a local cluster and benchmarking was performed. An Akata RNA-
seq data set was split into six files of varying sizes: 1 – 393.4 MB, 1,397,139 
reads, 2 – 757 MB, 2,685,149 reads, 3 – 1.44 GB, 5,120,805 reads, 4 – 2.72 GB, 
9,651,466 reads, 5 – 5.01 GB, 25,465,406 reads, sample 6 – 8.99 GB, 
50,930,812 reads. Overall time was calculated for each file on a single machine 
(blue column) and on the local 4-node cluster (red column). Speedup time is 
represented as a green line. 
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Figure 3. Performance of RNA CoMPASS based on individual tasks. The six 
Akata RNA-seq data set files used previously were benchmarked on completion 
of individual tasks and represented in the graphs. Runs on a single node are 
represented using blue columns while runs on a 4-node cluster are represented 
using red columns. The green line represents speedup time between the single 
node and 4-node environment. Note in particular that speedup of the BLAST 
portion of RNA CoMPASS and overall speedup approaches the theoretical limit 
of 4 as the data size is increased. 
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Figure 4. Detection of EBV in Human B-Cells using RNA CoMPASS. Analysis 
of all 45 single-end RNA-seq data sets (22-Lymphoblastoid cell lines, 23-Burkitt’s 
lymphomas) was performed using RNA CoMPASS. (A) The virome branch of the 
taxonomy trees for two representative LCLs and Burkitt’s lymphomas were 
generated using the metagenome analysis tool, MEGAN 4. (B) EBV reads were 
quantified in all 45 RNA-seq data sets and are represented as per 5,000,000 total 
sequence reads. 
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among the top 2 hits suggesting that these reads are likely EBV but were 

misclassified. Most importantly, RNA CoMPASS identified all 22 LCLs and 7 of 

the 23 Burkitt’s lymphoma samples as being positive for EBV (Figure 4B). 

As expected, EBV gene expression in LCLs is generally more robust and 

shows the expression profile expected in this cell type with all the latent proteins 

including EBNA 1,2, and 3 and LMP 1 and 2 being expressed (Figure 5). In 

contrast, the BL samples showed the expected more restricted gene expression 

pattern (referred to as type 1 latency) with regions in the BamHI A and the EBNA 

1 loci showing coverage (Figure 5). 

 

2.4.4 Host Transcriptome Analysis 

The host transcriptome analysis component of RNA CoMPASS generates 

gene expression output files that can be used for cluster and pathway analysis. 

Gene expression output from RNA CoMPASS analysis of the 22 LCL and 23 BL 

samples was subjected to hierarchical clustering and differential gene expression 

analysis. Using the Ward criterion, the samples separated in two well defined 

clusters with one cluster representing the LCL phenotype and the other 

representing the BL phenotype (Figure 6). Furthermore, within the BL cluster, 

biopsies separated from the cell lines, possibly caused by the contribution of 

stromal signals in the biopsies ads/or by genetic drift in the cell lines. 

To investigate differences in LCLs compared to BLs, Ingenuity Pathway 

Analysis software (IPA: Ingenuity Systems) was used to assist in the analysis of 

signaling pathways and molecular functions associated with the differentially 



	
  
	
  

	
  

38 

expressed cellular genes. Upstream regulator analysis within IPA predicted 

activation of MYC (z-score: 3.375), MYCN (z-score: 2.813), MAPK9 (z-score: 

2.414), and MAPK1 (z-score: 2.138) pathways with an inhibition of Interferon 

alpha (z-score: -2.916), interferon gamma (z-score: -2.788), NF-kB (z-score: -

2.746), interferon alpha-2 (z-score: -2.723), and interferon lambda (z-score: -

2.000) pathways in BL relative to LCL samples (Figures 7-8). TCF3 (5.4-fold) and 

TOP2A (9.0-fold) were both increased in BLs relative to LCLs. 
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Figure 5. Circos plot of two EBV samples shows distinct gene expression. 
An annotated Circos plot depicts the EBV read coverage across the EBV 
genome of two samples. The graph displays the number of reads mapped to 
each nucleotide position of the genome and are depicted in log scale. Blue 
features represent lytic genes, red features represent latency genes, green 
features represent potential non-coding genes, and black features represent non-
gene features (e.g. repeat regions and origins of replication). 
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Figure 6. Heat Map representing Human B-Cells analyzed using RNA 
CoMPASS. Human transcript counts from the 45 B-cell samples were imported 
into the R software environment and analyzed using the edgeR package [54]. 
Genes with low transcript counts (less than 1 CPM (count per million)) in the 
majority of samples were filtered out. The Manhattan (L-1) distance matrix for the 
samples was computed using the remaining transcript counts, and this was taken 
as input for hierarchical clustering using the Ward algorithm. After assigning each 
sample to one of two groups identified by hierarchical clustering (Human B-Cell 
or Burkitt’s Lymphoma), the glmFit function was used to fit the mean log(CPM) 
for each group and likelihood ratio tests were used to identify those genes that 
were differentially expressed, with adjusted P<0.05 following the Benjamini-
Hochberg correction for multiple testing. The fitted log(CPM) values for the 
subset of genes that were differentially expressed in the LCL samples relative to 
the Burkitt’s lymphoma samples were then clustered using the Euclidean 
distance and complete linkage algorithm to detect groups of co-expressed genes. 
The expression heat map displays the top 250 differentially expressed genes.       
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Figure 7. Predicted top activated upstream pathway of top 250 differentially 
expressed genes 
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Figure 8. Predicted top inhibited upstream pathway of top 250 differentially 
expressed genes 
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2.5 Discussion 

RNA CoMPASS is designed to take advantage of several open source 

programs in order to streamline and accelerate RNA-seq data analysis. RNA 

CoMPASS helps the researcher to manage the computational burden of 

processing large sets of RNA-Seq data by parallelizing the most compute 

intensive steps of the process and automatically managing files through each 

step of the pipeline. The simultaneous analysis of the host transcriptome along 

with the discovery of pathogens allows investigators to not only detect pathogens 

but also study the relationship between the pathogen and host transcription.  

In RNA CoMPASS, we have implemented both the Java Parallel 

Processing Framework (JPPF) API and Portable Batch System (PBS) API in 

order to deploy it on either a small local cluster or a grid system managed by 

PBS submission. Our testing of RNA CoMPASS in both environments showed 

that our pipeline could efficiently analyze RNA-seq data sets achieving a 

significant speedup over analysis on a single machine. This will allow other 

investigators to use RNA CoMPASS on whichever type of computational 

environment they have access to. In our case, we employed RNA CoMPASS on 

a local 4-node cluster environment (Intel Xeon Mac Pros with 64-96GB RAM) 

which achieves a speedup approaching the theoretical limit of 4 by splitting the 

computational tasks over 4 machines as the file size increases. This speedup of 

a 4 node cluster serves as a proof of principle that an even greater speedup 

could be obtained using a significant computational cluster involving hundreds of 

nodes. A recently published study [60] also outlines a different approach using 
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the Bowtie aligner (which is significantly faster than novoalign) to align against 

the human plus virus genomes. As an alternative approach, they use BLASTing 

of de novo assembled reads instead of all unaligned reads. These are 

computationally more efficient approaches but the first method is constrained by 

index size limitations, which preclude the inclusion of a broad array of organisms 

such as bacteria and fungi, for example. In contrast, the BLAST approach of 

RNA CoMPASS surveys the entire NT database. The blasting of only de novo 

assembled reads would also significantly speed up our approach, however, 

BLASTing raw reads allows us to quantify relative levels of each exogenous 

agent found, which is an important read-out for these studies. 

Though the BLASTing step of RNA CoMPASS incurs moderate limits on 

the size of input file that can be processed (depending on access to a large 

computational cluster), it allows for a more comprehensive analysis. In previous 

work, we would that sampling 10 million reads from an RNA sequencing 

experiment is likely to be well beyond the number needed to detect meaningful 

levels of exogenous agents [61]. A future enhancement of RNA CoMPASS will 

be to leverage this result and first align all reads from a sample for analysis of 

human reads, but then to carry forward only an adequately sized sample of 

unmapped reads through the more computationally burdensome analysis of 

exogenous agents (BLASTing). Future implementations of RNA CoMPASS are 

also under development which will leverage large computing clouds (like Amazon 

EC2) and will also provide the option of using alternative aligners such as Bowtie 

or STAR to significantly speed up the alignment process. 
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We used LCLs and BL samples to evaluate the pathogen and host 

transcriptome analysis arms of RNA CoMPASS because of their differences in 

phenotypes. The LCLs were generated by infecting human B-cells with EBV, 

which typically display an activated B-cell like phenotype (type III latency – 

expressing all 9 EBV latency genes (LMP1, LMP2A, LMP2B, EBNA1, EBNA-LP, 

EBNA2, EBNA3A, EBNA3B, and EBNA3C) and BART transcripts). The BL 

samples typically display a germinal center-like phenotype (type I latency – 

expressing EBNA1 and BART transcripts). The entire sequence file for all 

samples was used as input for RNA CoMPASS. Although the BL samples were 

sequenced using a paired-end approach, only one of the reads from each pair 

was analyzed in order to remain consistent among all samples and because a 

single-end read should provide sufficient evidence for pathogen discovery. 

RNA CoMPASS discovered a significantly larger proportion of EBV 

(Human Herpesvirus 4) reads within the LCLs as compared to the BLs. This is an 

anticipated result, which validates the usage of RNA CoMPASS to interrogate 

genetic material of exogenous origin. 

One of the most highly active pathways within BLs is the MYC pathway. In 

our study, the MYC and MYCN pathways were predicted to be the top two 

activated pathways in BLs relative to LCLs according to IPA’s upstream regulator 

analysis. Several MYC targets have been reported in the literature [62-66] and 

we see many of these targets regulated in our study including the MYC-induced 

genes, BUB1, CENPF, CCNB1, PLK1, PCNA, AURKB; and the MYC-repressed 

genes: STAT1, IL10RA, and HLA-DRA. In addition, the MYC pathway has 
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emerged as one of the central regulators of cell growth and ribosome biogenesis 

by inducing several genes encoding ribosomal proteins [67]. In our study, we 

observe that the top differentially expressed gene targets of MYC and MYCN are 

related to ribosomal protein synthesis (NCL, RPL30, RPL37, RPS20, and RPL3).  

Transcriptome analysis has shown that the MYC signature is the hallmark 

signaling difference between Burkitt’s lymphomas and diffuse large B-cell 

lymphomas with: upregulation of MYC-target genes and downregulation of genes 

involved in the NF-kB and interferon responses [62, 63, 66]. This hallmark 

signaling is recapitulated in our study using transcriptome analysis of BL and LCL 

samples. Taken together, the results presented here as well as from others 

indicate that a single master transcriptional pathway, MYC, mainly governs the 

growth potential of BLs with the help of other oncogenes as cofactors [66]. 

On the other hand, the most highly inhibited pathways within BLs 

compared to LCLs were the interferon response pathway and the NF-kB 

pathway. The NF-kB pathway has been shown to play a vital role in EBV’s ability 

to transform naïve B-cells as the EBV transforming latency protein, LMP1 

continuously activates NF-kB [68, 69]. Among other genes, we observe an 

increased expression of antigen presentation molecules in LCLs relative to BLs, 

possibly through the LMP1/NF-kB pathway [68]. The inhibition of the interferon 

response pathways seen in BLs lends to the overexpression of MYC contributing 

to immune escape through repression of the interferon response [70]. 

A few other noteworthy genes that were observed as being differentially 

expressed include TCF3 and TOP2A, both of which have increased expression 
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in BLs relative to LCLs. In a recent study using RNA-seq with RNA interference 

screening of BLs, Schmitz et al was able to identify mutations affecting the 

transcription factor TCF3 [71]. TCF3 has been shown to activate the pro-survival 

phosphatidylinositol-3-OH (PI(3)) kinase in part by augmenting B-cell receptor 

signaling [71]. The authors suggest that the MYC and PI(3) kinase pathways may 

act synergistically in BL oncogenesis, and that the PI(3) kinase pathway may be 

a new target for drug development [71]. 

The other molecule, TOP2A has been shown to determine anthracycline-

based drug (e.g. doxorubicin) response in vitro and in vivo [72]. Dose intensity of 

doxorubicin was evaluated by Kwak and colleagues in a retrospective analysis of 

115 patients with diffuse large B-cell lymphoma [73]. The outcome of this study 

determined that doxorubicin should be used for the treatment of aggressive non-

Hodgkin’s lymphomas and dose intensity of doxorubicin was a key factor in 

predicting patient survival. Further, a meta-analysis of published randomized 

controlled trials comparing chemotherapy regimens incorporating doxorubicin at 

a high dose with standard CHOP therapy was conducted and their conclusions 

were consistent with the Kwak and colleagues study [74]. Altogether, levels of 

TOP2A in BLs are elevated relative to immortalized B cells and that high dose 

doxorubicin in addition to standard CHOP therapy may improve Burkitt’s 

lymphoma patient outcome through TOP2A mediated doxorubicin response. 
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2.6 Conclusion 

In summary, our results demonstrate the utility of RNA CoMPASS in 

analyzing large sequence datasets for the discovery of pathogens and host 

transcriptome analysis. The use of this pipeline is expected to enable more 

researchers to enter the filed of RNA Sequencing and to yield novel associations 

between pathogens and human diseases with important medical implications. 

This study shows the disparate expression profiles between Lymphoblastoid cell 

lines and the Burkitt’s lymphoma samples thereby exhibiting the ability of RNA 

CoMPASS to analyze endogenous sequencing. RNA CoMPASS is publically 

available under the GPL: http://rnacompass.sourceforge.net.   

  We are planning to implement the Circos plot capability for discovered 

pathogens as well as clustering analysis for host gene expression in later 

versions of RNA CoMPASS. These improvements will further streamline and 

complement the analysis of RNA-seq data in the discovery and analysis of 

pathogens associated with malignancies. In addition, we are investigating ways 

to further improve the speedup of the pipeline.    
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Evaluating Human Pathogens Associated With Disease 

 

Epstein-Barr Virus and Human Herpesvirus 6 Detection in a non-Hodgkin’s 

Diffuse Large B-Cell Lymphoma Cohort using RNA-Seq 
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Parsons, Kun Zhang, Christopher M. Taylor, and Erik K. Flemington 
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3.1 Abstract 

Comprehensive virome analysis of RNA-seq data sets from 118 non-

Hodgkin’s B-cell lymphomas revealed a small subset that are positive for 

Epstein-Barr virus (EBV) or human herpesvirus-6B (HHV-6B), with one co-

infection. EBV transcriptome analysis revealed expression of the latency genes 

RPMS1, LMP1 and LMP2, with one sample additionally showing high early lytic 

expression and another sample showing high EBNA2 expression. HHV-6B 

transcriptome analysis revealed that the majority of genes were transcribed.     
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3.2 Introduction 

Herpesviridae is a large family of DNA viruses that can infect and cause 

disease in humans. Epstein-Barr Virus (EBV) and Human Herpesvirus-6 (HHV-6) 

are two members of this family that are highly ubiquitous and have been 

associated with mononucleosis and exanthema subitum (roseola), respectively. 

In addition, EBV is a well-known oncovirus that is associated with several 

malignancies including nasopharyngeal carcinoma, gastric carcinoma, and 

lymphomas. HHV-6 is an emerging pathogen that has not been defined as an 

oncogenic pathogen but has been variably associated with lymphomas using 

traditional detection methods (e.g. polymerase chain reaction (PCR), southern 

blot, and immunohistochemistry (IHC)) [75]. 

For many years, associations between cancers and infectious agents 

have been made through epidemiological approaches and methods such as IHC 

and PCR. Although IHC and PCR approaches have been important for the 

detection of infectious agents in cancers, they have also led to false discovery 

and/or controversy. Several groups, including ours, have utilized RNA-seq for the 

discovery and investigation of infectious agents; for example, Merkel cell virus 

linked to Merkel cell carcinoma [40], Fusobacterium associated with colorectal 

carcinoma [41, 42], EBV associated with gastric carcinoma [61], MuLV in human 

B-cell lines [76], and the screening of large sequencing databases for 

oncoviruses [77]. Next generation sequencing (NGS) approaches have several 

advantages over previous detection methods for this type of study. In addition to 

high sensitivity, NGS is highly specific since the sequence for each read 
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represents a fingerprint for a particular organism. Another key advantage is that a 

broad relatively unbiased assessment of all known organisms can be performed 

in a single assay. Not only does this technology help better identify etiological 

agents, but it can also better define cancers/specimens that are truly not 

associated with any known viruses. 

Previous associations between EBV and non-Hodgkin’s lymphomas [78-

81], prompted us to explore the links between diffuse large B-cell lymphomas 

(DLBCLs) and human viruses using next generation sequencing. Using this 

approach, we comprehensively assessed the virome of a large non-AIDS non-

Hodgkin’s lymphoma (NHL) RNA-seq cohort from the Cancer Genome 

Characterization Initiative (CGCI). 

 

3.3 Results and Discussion 

3.3.1 EBV and HHV-6B are detected in a small percentage of diffuse large B-

cell lymphomas 

RNA-seq data sets from 118 NHLs (105 diffuse large B-cell lymphomas 

(DLBCLs) and 13 follicular lymphomas (FL)) [82] were downloaded from the NIH 

database of Genotypes and Phenotypes (dbGap; 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap) using accession 

phs000235.v2.p1 (additional details pertaining to the samples can be obtained 

through controlled access). Virome analysis of these polyA-selected RNA-seq 

data sets was performed by running roughly 27 million reads from each sample 

through our automated RNA-seq exogenous organism analysis software, RNA 
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CoMPASS [83]. Within RNA CoMPASS, reads were aligned to the human 

reference genome, hg19 (UCSC), plus a splice junction database (which was 

generated using the make transcriptome application from Useq [50]; splice 

junction radius set to the read length minus 4) using Novoalign V3.00.05 

(www.novocraft.com) [-o SAM, default options]. Nonmapped reads were isolated 

and subjected to consecutive BLAST V2.2.27 searches against the Human 

RefSeq RNA database (an additional “pre-clearing” step) and then to the NCBI 

NT database to identify reads corresponding to known exogenous organisms 

[52]. Results from the NT BLAST searches are filtered to eliminate matches with 

an E-value of greater than 10e-6. The results are then fed into MEGAN 4 V4.70.4 

[53] for visualization of taxonomic classifications. 

Most of the samples analyzed contained low levels of bacteriophage 

sequences, which likely represent either environmental contamination or quality 

control spike-ins (Figure 1A). Of the 118 samples analyzed, 113 of them showed 

no evidence of eukaryotic viral polyadenylated RNA expression suggesting a 

different mechanism for tumor progression in these cases. Nevertheless, five 

DLBCL samples were positive for EBV (4 samples (3.4%)) or HHV-6B (2 

samples (1.7%)) with one of these samples, SRS405443, being co-infected 

(Figure 1A). 

The findings in virus positive samples were further analyzed by combining 

all sequencing runs for each EBV and/or HHV-6B positive tumor and aligning 

them directly to the human reference genome (hg19; UCSC) plus the Akata 

strain of the EBV genome (Genbank accession number KC207813) [84] and the 
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HHV-6B genome (Genbank accession number NC000898). Alignments were 

performed using Spliced Transcripts Alignment to a Reference (STAR) aligner V 

2.3.0 [default options] [85]. From this analysis, samples SRS405439 and 

SRS405443 were found to have the highest EBV read numbers (432 and 37 

reads per million human mapped reads, respectively), while samples 

SRS405392 and SRS405456 had relatively low EBV read numbers (3 and 0.5 

reads per million human mapped reads, respectively) (Figure 1B). Samples 

SRS405408 and SRS405443 showed 19 and 99 HHV-6B reads per million 

human mapped reads, respectively (Figure 1B). 

 

3.3.2 Viral transcriptome analysis 

In a recent study we showed that gastric carcinomas with high EBV read 

numbers exhibited unique signaling effects on cellular and microenvironmental 

pathways compared to samples with either low or no EBV gene expression [61]. 

Cluster analysis of these EBV positive samples based on EBV gene expression 

alone showed unique clustering of the samples with high versus low EBV read 

counts. The distinct EBV gene expression patterns in these two groups 

suggested distinct infection types, which may partly explain differences in 

signaling effects. To similarly assess global differences in EBV gene expression 

patterns in the EBV positive DLBCL samples, we performed cluster analysis. 

Transcript quantification of EBV genes was performed using Sammate [51]. 

Transcript counts and RPKMs (reads per kilobase per million mapped reads) 

were imported into MeV [86] for hierarchical clustering analysis. The Manhattan  
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Figure 1. EBV and HHV-6B detection in diffuse large B-cell lymphomas. (A) 
Virus branch of the taxonomy trees for the five virus positive DLBCL samples. (B) 
Number of viral reads per million human mapped reads. (C) Cluster analysis of 
EBV transcripts along with a bar graph representing the ratio of EBV lytic to 
latent gene expression for each positive sample. (Adapted from Strong et al., 
2013). 
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distance matrix was computed for the samples and used as input for 

hierarchical clustering using the complete linkage-clustering algorithm. The 

samples with low EBV read counts, SRS405392 and SRS405456, were found to 

cluster together (Figure 1C). Visualization of reads across the EBV genome 

using the Integrative Genomics Viewer (IGV) [87] showed latency gene peaks in 

the two samples with high EBV read counts (Figure 2A). In contrast, only 

scattered reads were observed across the entire genome in the two samples with 

low EBV read counts (data not shown). This observation is illustrated by the 

finding of high lytic to latent read ratios in the samples with low EBV versus high 

EBV read counts (bottom of Figure 1C). The lack of distinct latency gene 

expression along with the observed overall low EBV transcript levels for the 

samples with low EBV read numbers raises the possibility that the finding of EBV 

in these samples is less consequential than it is in samples SRS405439 and 

SRS405443, possibly reflecting low level reactivation in infiltrating latent B-cells. 

Detailed analysis of gene expression in the two EBV positive samples with 

higher read counts showed expression of the EBV latency genes, RPMS1, LMP1 

and LMP2 genes in both cases (Figure 2A). In contrast to these similarities, 

EBNA2 was found to be expressed in sample SRS405443 but not in sample 

SRS405439 (Figure 2A). On the other hand, sample SRS405439 was unique in 

the detection of lytic transcripts with a disproportionately high level of the 

immediate early/early genes BZLF1 and BMLF1 relative to the bulk of other lytic 

genes (Figure 2A). This predominant expression of early genes without other lytic 

genes is suggestive of an abortive lytic cycle, which has previously been linked to 
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tumor progression [61, 88, 89]. In contrast to the hallmark distinctive expression 

of EBV latency genes in samples SRS405439 and SRS405443, HHV-6B gene 

expression showed a more broad expression profile across the entire genome, 

consistent with lytic transcription (Figure 2B). 

In conclusion, based on the samples tested here, most non-AIDS NHLs 

are free of known eukaryotic viruses expressing polyadenylated RNAs. In the two 

EBV positive DLBCL samples, SRS405439 and SRS405443, the high read 

numbers in conjunction with the finding of clear expression of oncogenic latency 

genes [90-93] is consistent with an etiological role for EBV in these cases. In 

contrast, it is much less clear whether EBV contributes to the tumor phenotype in 

the two samples with lower read numbers where there is a lack of pronounced 

oncogenic latent gene expression. Similarly, the general observation of broad 

lytic HHV-6B gene expression in the two HHV-6B positive samples rather than 

expression of any particular potentially oncogenic latency gene suggests that at a 

minimum, any contribution of HHV-6B to tumor progression likely occurs through 

a different mechanism (e.g. through a mechanism involving persistent smoldering 

stimulation of an inflammatory response to HHV-6B lytic antigens). 

It is possible that moderate disease related immunosuppression could 

lead to HHV-6B reactivation in HHV-6B positive tumors, which may or may not 

contribute to the tumor phenotype. The finding of EBV and HHV-6 co-infection in 

one case raises the possibility that this patient may in fact have some level of 

immunosuppression. The expression of the highly immunogenic EBNA2 gene in 

this case further supports the suspicion of immunosuppression. 
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Figure 2. Viral transcriptome. (A) EBV genome coverage data for EBV positive 
DLBCLs. The y-axis represents the number of reads at each nucleotide position. 
The modified EBV Akata genome was split between the BBLF2/3 and the 
BGLF3.5 lytic genes rather than at the terminal repeats to accommodate 
coverage of splice junctions for the latency membrane protein, LMP2. The scale 
for sample SRS405439 is set to a max read level of 2000 reads with the inset 
displays set to a max read level of 100 and 300 reads. The scale for sample 
SRS405443 is set to a max read level of 100 reads. Blue features represent lytic 
genes, red features represent latent genes, green features represent potential 
non-coding genes, aquamarine features represent microRNAs, and black 
features represent non-gene features (e.g. repeat regions). (B) HHV-6B genome 
coverage data for HHV-6B positive DLBCLs. The scale for sample SRS405408 is 
set to a max read level of 15 reads, while SRS405443 is set to 50 reads. 
(Adapted from Strong et al., 2013). 
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Despite this possibility, it seems likely that EBV latency genes contribute to tumor 

progression [90-93] in this patient. Whether HHV-6B plays a role in tumor 

progression or whether expression is just a bystander effect of possible 

immunosuppression is unclear and will require further investigation. Regardless, 

HHV-6B is a component of the tumor microenvironment and it is appropriate to 

consider its presence in potential tailored future therapeutic design. 
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4.1 Abstract 

The high level of accuracy and sensitivity of next generation sequencing 

for quantifying genetic material across organismal boundaries gives it 

tremendous potential for pathogen discovery and diagnosis in human disease. 

Despite this promise, substantial bacterial contamination is routinely found in 

existing human-derived RNA-seq datasets that likely arises from environmental 

sources. This raises the need for stringent sequencing and analysis protocols for 

studies investigating sequence-based microbial signatures in clinical samples. 

 

 



	
  
	
  

	
  

62 

4.2 Introduction 

The advent of next generation sequencing (NGS) technology has 

revolutionized the way pathogens can be detected, studied, and discovered. 

NGS lends itself to highly sensitive, relatively unbiased, global assessments of all 

known exogenous agents within biological specimens, including human biopsies. 

Several laboratories, including ours, have successfully utilized NGS for the 

discovery and investigation of exogenous agents associated with several human 

diseases such as the recent association of fusiform bacteria with colorectal 

carcinoma [40, 42, 61, 76, 94-96]. NGS-based approaches also have great 

potential in the clinic for the diagnosis of symptomatic infections. Early studies 

examined microbial sequence-based signatures in feces from patients with 

diarrheal disease and in urine from patients suspected of having a urinary tract 

infection to identify the infectious cause [97, 98]. In a recent case report, NGS 

was used to diagnose a patient with a rare but treatable bacterial 

meningoencephalitis caused by leptospirosis, a condition which was 

undetectable using current clinical assays [99]. 

With the great potential of NGS for pathogen analysis of clinical samples, 

opportunities are being discussed and bioinformatics challenges are being 

addressed [100, 101]. While the discussion of opportunities and bioinformatics 

challenges is highly appropriate, data reliability and contamination, issues that 

are especially relevant to the inquisitive nature of this application, are scarcely 

discussed. For some of the current mainstream applications of NGS, such as 

host transcriptome quantification, reproducibility studies across sequencing 
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centers are being performed to assess data veracity [102]. At a minimum, data 

reliability in pathogen sleuthing also needs to be thoroughly tested and analyzed, 

and potential obstacles need to be addressed.  

 

4.3 Results and Discussion 

4.3.1 Bacterial reads in multiple human derived RNA-seq datasets 

During the course of DNA and RNA sequencing experiments performed in 

our laboratory over the past several years we invariably noted surprising levels of 

bacterial reads whether the genetic material was derived from human clinical 

specimens, tissue culture cells, or animal tissues. The extent and pervasiveness 

of this observation led us to investigate this issue using data from a variety of 

other publically available data sources. As a first line of investigation, we 

downloaded RNA-seq datasets from 93 invasive breast carcinomas [103], 15 

kidney renal papillary cell carcinomas, 18 lung adenocarcinomas [104], 38 lung 

squamous cell carcinomas, and 50 rectum adenocarcinomas [105] from the 

TCGA cohort which (originally made available from the database of Genotypes 

and Phenotypes (dbGaP) (phs000178)). Colorectal carcinoma (CRC) RNA-seq 

datasets from Castellarin et al. were downloaded from the NCBI Sequence Read 

Archive (accession number SRP007584) [42]. We also downloaded RNA-seq 

datasets from normal human tissue samples from the Illumina Human Body Map 

2.0 project (from the NCBI Gene Expression Omnibus database (GEO accession 

number: GSE30611)). In total, we analyzed RNA-seq datasets from 244 different 

specimens from different sources and from different specimen types (Table 1). 
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Ten specimens were identified as outliers based on poor alignment percentages 

to the human genome (using the ROUT outlier test in GraphPad Prism (version 6 

Mac, www.graphpad.com)) and excluded from the analysis. 

Metatranscriptome analysis was performed using our computational 

pathogen detection pipeline, RNA CoMPASS [83]. Briefly, reads ranging from 42-

101 nucleotides long were aligned to the human reference genome, hg19 

(UCSC), plus a splice junction database (which was generated using the make 

transcriptome application from Useq [50]; splice junction radius set to the read 

length minus 4), and abundant sequences (which include sequence adapters, 

mitochondrial, ribosomal, enterobacteria phage phiX174, poly-A, and poly-C 

sequences) using Novoalign V3 (www.novocraft.com) [-o SAM, default options]. 

Nonmapped reads were isolated and subjected to consecutive BLAST V2.2.28 

searches against the Human RefSeq RNA database and then to the NCBI NT 

database to identify reads corresponding to known exogenous organisms [52, 

58]. Results from the NT BLAST searches were filtered to eliminate matches with 

an E-value greater than 10e-6. The results were then fed into MEGAN 4 V4 [53] 

for visualization of taxonomic classifications. 

RNA CoMPASS, analysis revealed fairly extensive levels of bacterial 

reads across all RNA-seq studies analyzed, with average numbers ranging from 

1,406 reads per million human mapped reads (RPMHs) in the TCGA datasets to 

11,106 RPMHs in the normal tissue from the CRC dataset (Table 2 and Figure 

1). Despite the widespread presence of bacteria across groups, different taxa 

displayed substantial heterogeneity across studies with high levels of Paracoccus 
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denitrificans SD1 in the TCGA and BodyMap datasets but not in the CRC 

dataset, and Pseudomonas showing generally high levels in the CRC but not the 

TCGA or BodyMap studies (Table 2 and Figure 2). The substantial bacterial read 

numbers for each of these diverse datasets suggest a fairly ubiquitous nature to 

these findings, and taxa specific differences across centers raises the possibility 

of multiple center specific issues. 

 

4.3.2 Identical cell lines analyzed in separate studies show differences in 

bacterial read profiles 

To shed light on possible contamination sources we analyzed bacterial 

reads in cell lines, which we presumed to be free from microbial contamination. 

RNA-seq data from 7 different diffuse large B-cell lymphoma (DLBCL) cell lines 

that were analyzed independently in the Cancer Genome Characterization 

Initiative (CGCI) and the Cancer Cell Line Encyclopedia (CCLE) studies were 

analyzed. CGCI and CCLE RNA-seq datasets were downloaded from dpGaP 

(phs000235) and the Cancer Genomics Hub (managed by the University of 

California, Santa Cruz), respectively. 

 

 

 

 

 

 



	
  
	
  

	
  

66 

                                 Table 1. List of Databases 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Databases 
Number of 
samples 
analyzed 

TCGA  
    BRCA 88 
    KIRP 15 
    LUAD 18 
    LUSC 38 
    READ 48 
  
BodyMap 13 
    Adipose  
    Adrenal  
    Breast  
    Colon  
    Heart  
    Kidney  
    Lymph Node  
    Ovary  
    Prostate  
    Skeletal Muscle  
    Thyroid  
    Testes  
    White Blood Cells  
COAD  
    Normal 12 
    Tumor 12 
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Table 2. Bacterial profile among various human RNA-seq datasets 

The average of five RNA-seq datasets represent values for TCGA.  Similarly, the 
average of thirteen RNA-seq datasets represent values for BodyMap. Colorectal 
(CRC) RNA-seq datasets were obtained from Castellarin et al. accession number 
SRP007584. All values shown as mean±s.e.m. 
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Figure 1. Bacterial reads across RNA-seq datasets. Data displayed in linear 
and log scales. 
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Figure 2. Various bacterial species reads across RNA-seq datasets. Data 
displayed in linear and log scales. 
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Based on averaging RPMHs across all cell lines for each study, bacterial 

reads were found in all datasets, with a considerably greater number in the CGCI 

study (Figure 3A). Acinetobacter was found to contribute to the bulk of bacterial 

reads in the CGCI data and Paracoccus denitrificans SD1 made up the majority 

of bacterial reads in the CCLE study (Figure 3A). Higher bacterial reads were 

consistently found in all of the CGCI cell lines except for NU-DUL-1 (Figure 3B). 

In CCLE data, all cell lines were found to be enriched for Paracoccus 

denitrificans SD1 reads relative to the CGCI data, whereas the converse was 

true for Acinetobacter (Figure 3C).  

The discovery of bacterial reads in cell line data and the finding of different 

bacterial taxa in data from different sequencing initiatives supports the idea that a 

good portion of bacterial reads are not derived from the specimens themselves. It 

is noteworthy that most of these datasets were derived from RNA samples that 

were polyA selected, a process that selects against most bacterial transcripts 

(which are typically poorly polyadenylated) [106-109]. Contamination that occurs 

upstream from the polyA selection step, then, is expected to be removed during 

this purification step. Nevertheless, inefficiencies in polyA selection can result in 

carry-through of non-polyadenylated bacterial RNAs. If inefficient polyA selection 

accounted for the majority of bacterial read findings then we would expect that 

differences in levels of bacterial reads would relate to differences in polyA 

selection efficiencies between samples. We assessed polyA selection 

efficiencies by determining the number of ribosomal RNA reads for each sample 

and we found little correlation between the numbers of bacterial reads and the 
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levels of human ribosomal reads (Figure 3A and B) supporting the contention 

that downstream contamination is likely a key source of bacterial reads in these 

datasets. 

 

4.3.3 Different bacterial read profiles across sequencing centers using identical 

RNA samples and library preparation kits 

To more directly address whether downstream contamination can occur, 

we took advantage of a well-controlled study performed by the GEUVADIS 

consortium [102, 110]. In their pilot study, ERP000177, RNA from five Epstein 

Barr virus (EBV) positive lymphoblastoid cell line samples was delivered to seven 

different sequencing laboratories across Europe to evaluate the reproducibility of 

sequencing data across various centers. We restricted our analysis to the six 

laboratories that used Illumina sequencing. For these datasets, library 

construction at all institutes was performed utilizing identical library preparation 

kits. Across these labs the level of bacterial RPMHs differed by as much as 30-

fold, with Lab 5 showing an average of 18 bacterial RPMHs while Labs 1 and 6 

showed an average of 542 and 570 bacterial RPMHs, respectively (Figure 4A). 

Also noteworthy is the tight clustering of bacterial read numbers in different 

samples within each lab, suggesting the attribution of bacterial contamination to 

laboratory practices and/or the environment. Similar to our findings in the DLBCL 

data, the levels of bacterial reads across centers did not correlate with the levels 

of human ribosomal RNA contamination, indicating that these differences were 

not due to polyA-selection disparities. Finally, differences in read levels for 
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Figure 3. Seven RNA-seq DLBCL cell line datasets sequenced in two 
different studies (CCLE and CGCI) were analyzed using RNA CoMPASS. (A) 
Bacterial reads per human mapped reads. For insets, human and ribosomal 
reads are normalized to total reads. Green columns represent the average RNA-
seq reads from the CCLE dataset, while red columns represent the average 
RNA-seq reads from the CGCI dataset. (B) Mean bacterial RPMHs for each cell 
line analyzed in the CCLE (green) and CGCI (red) studies with the corresponding 
mean ribosomal reads (upper graph). (C) Mean RPMHs of various taxa for each 
cell line analyzed in the CCLE (green) and CGCI (red) studies. *, P < 0.05. 
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different bacterial taxa were found across labs (Figure 4B-E and Figure 5) 

including the presence of high Xanthomonadaceae read numbers in all five cell 

line datasets from Lab 1 (Figure 4E (inset)). In contrast, the read levels for 

endogenously expressed Epstein Barr virus transcripts were similar across labs 

for each cell line (Figure 4F). 

 

4.3.4 Contamination levels 

Based on our own observations as well as the observations of others [111, 

112] we think that bacterial contamination is a relevant issue that needs to be 

extensively addressed for NGS-based pathogen detection and diagnostic 

approaches. The amplitudes of contaminating bacterial reads in RNA-seq 

datasets are likely high enough to be a confounding factor. For example, our 

analysis of the data from the CRC study which previously reported the 

association between Fusobacterium and colorectal cancer [42] showed an 

average of 861 Fusobacterium RPMHs in the tumor samples (Table 2). This is 

comparable to the levels of Paracoccus denitrificans SD1 and 

Enterobacteriaceae found in the Human BodyMap study (859 and 689 RPMHs, 

respectively) (Table 2). This observation is more notable considering the fact that 

the data from the BodyMap study was derived from polyA-selected RNAs, 

whereas the data from the CRC data was generated using ribodepleted RNA 

(which does not select against bacterial reads). 

 

 



	
  
	
  

	
  

74 

Figure 4. Metatranscriptomic profiles of five RNA sequencing datasets vary 
across laboratories. Five LCL RNA-seq datasets, sequenced at six sequencing 
centers across Europe, were analyzed using RNA CoMPASS. Various 
classification groups within the bacteria domain for each sample were compared 
across sequencing centers (A) bacteria (B) Actinobacteria (C) Firmicutes (D) 
environmental samples and (E) Proteobacteria. (F) As a control, EBV read 
numbers were also analyzed. All reads are normalized to million mapped human 
reads. The five LCL RNA samples are represented by unique respective colors. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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Figure 5. Major bacterial contributors to Proteobacteria taxa. 
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4.3.5 Is contamination a threat to all microbial sequencing studies?  

There are several different approaches to sequencing-based microbial 

examination which vary based on the starting material; for example, RNA versus 

DNA, or the investigation of relatively pure microbial samples versus the 

assessment of heterogeneous samples where the microbial genetic material is a 

minor component (such as much of the clinical human tissue-based work). The 

impact of contamination on data interpretation varies depending on the approach 

because different methodologies inherently traject different signal to noise ratios. 

Contamination is less relevant for studies utilizing relatively homogeneous 

microbial communities but it can be a confounding factor in the assessment of 

samples where the predominant genetic material is human (for example, tumor 

biopsies) or where the offending microbe is in the minority. 

A somewhat less obvious effect on signal to noise ratio is the difference 

between sequencing RNA versus DNA. Assuming contamination that occurs 

downstream from the nucleic acid preparation step, there is a larger impact of 

contaminating microbial DNA on RNA sequencing relative to DNA sequencing 

approaches. This difference arises due to the inefficiencies in converting RNA to 

cDNA. Since contaminating DNA does not require this step, the signal to noise 

ratio for RNA-seq is lower than for DNA-seq. 

So why not just sequence DNA? There are certainly advantages to 

sequencing DNA including its greater stability and the ability to retrieve genetic 

material from archived samples. Nevertheless, there are also advantages to 

sequencing RNA for some applications. There is an abundance of publicly 
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available RNA-seq datasets that are potentially useful for future pathogen 

studies. Another advantage is relevant to the study of human biopsies where the 

microbial material is a minor component of the sample. The bacterial to human 

transcriptome size ratio is typically greater than the bacterial to human genome 

size ratio because of the abundance of extra human DNA that is poorly or not 

expressed. In these cases, it is more cost effective to assess the microbial 

component through RNA sequencing. An added benefit of RNA-seq for clinical 

diagnosis is the ability to simultaneously obtain information on expressed 

pathogenic and resistance markers that can inform treatment options. 

In the end, when it makes sense for a particular study, one way to obviate 

the impact of potential contamination is to use a viable approach that maximizes 

the signal to noise ratio. On the other hand, when methods are required that 

have inherently lower expected signal to noise ratios, alternative approaches are 

necessary to combat this issue.   

 

4.3.6 Dealing with contamination issues 

For some cases, contamination can potentially be dealt with 

bioinformatically. One approach would be to utilize a repository of common 

contaminating organisms (although this could potentially result in oversight of a 

relevant organism that happens to be a common contaminant). Alternatively, for 

investigations where negative controls are available (and/or suitable), statistics 

can be used to prove an association (although contamination could result in the 

requirement for larger sample sets than would otherwise be necessary to attain 
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statistical significance). Despite the utility of informatics approaches to alleviate 

contamination issues in some cases, minimizing contamination sources is more 

cost effective and will minimize the chances of data misinterpretation. 

Interestingly, contamination has already had an impact on the very 

databases that are used for bioinformatics work. Laurence et al. identified 

Bradyrhizobium sequences in assembled genomes in the NCBI Genome 

database [111]. Bradyrhizobium species along with other microbes, have been 

reported in ultrapure water systems and may help explain the presence of this 

microbe in several deposited genome assemblies. Another group found 

Leucobacter sp. sequences in assembled genomes of Caenorhabditis sp. [112]. 

These two cases exemplify the need to sequence contaminant genomes in order 

to exclude them from the host genome assembly. 

Furthermore, in a recent study, Xu et al. discovered National Institutes of 

Health-Chongqing virus (NIH-CQV) in patients with seronegative hepatitis using 

NGS [113]. However, two later studies demonstrated that the presence of parvo-

like hybrid virus (PHV) and NIH-CQV was actually contamination from silica 

column-based nucleic acid extraction kits and not bona fide viral infection, 

indicating that contamination is not restricted to bacterial sequences [114-116]. 

Subsequently, in a follow up study, the authors of the initial report confirmed that 

the finding of NIH-CQV in human plasma was due to contamination from the 

columns [117]. This example underscores the importance of rigorously validating 

novel pathogen discoveries, and when possible, identifying any potential 

contaminating sources. 



	
  
	
  

	
  

79 

The route between clinical specimen collection to the sequencing reaction 

is complex with many candidate points of contamination ranging from specimen 

contamination in the operating room to storage, sample processing, RNA 

preparation, library preparation, etc. Another key consideration is the purity of 

library preparation reagents, many of which (e.g. ligases, polymerases, 

nucleotides) are purified from bacteria during their manufacture. Depending on 

the level of purity for these reagents, there is the potential for different levels of 

bacterial genetic material to be present. Nevertheless, the analysis of the data 

from the highly controlled GEUVADIS study suggests that laboratory SOPs 

specific to different sequencing centers is also a critical consideration. 

The relative contribution of this panorama of potential contamination 

sources needs to be parsed in future expressly designed studies. Until these 

sources are better understood, we propose the following recommendations: 

 

1) Detection studies, especially with a diagnostic focus, should incorporate 

stringent SOPs across the entire experimental pipeline from sample 

collection to sequencing. 

2) Highly purified metabolic enzymes and other reagents used in sequence 

library preparation should be used whenever possible. 

3) Establishment of standards for the curation of microbial sequences 

submitted to Genbank and other large-scale databases in order to assess 

completeness and quality of the assembled genomes. 
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4) Contamination controls such as mock sequence library preparations 

should be used to help guide the development of appropriate and effective 

SOPs for metagenomic and metatranscriptomic studies. 
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PART II 

THE ROLE OF EPSTEIN-BARR VIRUS (EBV) IN GASTRIC CARCINOMA 

 

Chapter 5: EBV Transcriptomics Reveal Distinct Molecular Pathways in the 

Pathogenesis of EBV Associated Gastric Carcinoma 

 

Differences in gastric carcinoma microenvironment stratify according to 

EBV infection intensity; implications for possible immune adjuvant therapy. 

Michael J. Strong, Guorong Xu, Joseph Coco, Carl Baribault, Dass S. Vinay, 

Michelle R. Lacey, Amy L. Strong, Teresa A. Lehman, Michael B. Seddon, Zhen 
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Deborah E. Sullivan, Matthew E. Burow, Christopher M. Taylor, and Erik K. 

Flemington 

Published in PLoS Pathog 9(5):e1003341. doi: 10.1371/journal.ppat.1003341. 

Epub 2013 May 9. 

 

5.1 Abstract 

Epstein-Barr virus (EBV) is associated with roughly 10% of gastric 

carcinomas worldwide (EBVaGC). Although previous investigations provide a 

strong link between EBV and gastric carcinomas, these studies were performed 
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using selected EBV gene probes. Using a cohort of gastric carcinoma RNA-seq 

data sets from The Cancer Genome Atlas (TCGA), we performed a quantitative 

and global assessment of EBV gene expression in gastric carcinomas and 

assessed EBV associated cellular pathway alterations. EBV transcripts were 

detected in 17% of samples but these samples varied significantly in EBV 

coverage depth.  In four samples with the highest EBV coverage (hiEBVaGC – 

high EBV associated gastric carcinoma), transcripts from the BamHI A region 

comprised the majority of EBV reads. Expression of LMP2, and to a lesser 

extent, LMP1 were also observed as was evidence of abortive lytic replication.  

Analysis of cellular gene expression indicated significant immune cell infiltration 

and a predominant IFNG response in samples expressing high levels of EBV 

transcripts relative to samples expressing low or no EBV transcripts. Despite the 

apparent immune cell infiltration, high levels of the cytotoxic T-cell (CTL) and 

natural killer (NK) cell inhibitor, IDO1, was observed in the hiEBVaGCs samples 

suggesting an active tolerance inducing pathway in this subgroup. These results 

were confirmed in a separate cohort of 21 Vietnamese gastric carcinoma 

samples using qRT-PCR and on tissue samples using in situ hybridization and 

immunohistochemistry. Lastly, a panel of tumor suppressors and candidate 

oncogenes were expressed at lower levels in hiEBVaGC versus EBV-low and 

EBV-negative gastric cancers suggesting the direct regulation of tumor pathways 

by EBV. 

 

 



	
  
	
  

	
  

83 

5.2 Introduction 

Epstein-Barr virus (EBV) is a herpes virus that infects most humans by 

adulthood.  EBV is associated with several human malignancies, including 

malignancies of epithelial origin. The first report showing EBV’s association with 

lymphoepithelioma-like carcinomas of the stomach was in 1990 by Burke and 

colleagues using polymerase chain reaction (PCR) [118]. Since that time, several 

studies have investigated the association between EBV and gastric carcinomas 

using a variety of methods (PCR, Southern blotting, and in situ hybridization 

(ISH)). In 1992, Shibata and Weiss reported EBV infection in 16% of gastric 

adenocarcinomas using PCR primers to the EBNA 1 gene and by ISH using 

probes against the EBV encoded small RNAs, EBERs [119]. Another report from 

Japan detected EBV in 6.9% of gastric carcinoma cases using EBER ISH [120]. 

Attributed to regional/country differences, the highest incidence of EBV-

associated gastric carcinoma (EBVaGC) (16%) has been reported from the 

United States [119] while the lowest incidence (1.3%) is from Papua New Guinea 

[121]. Despite these landmark studies showing the association between gastric 

carcinomas and EBV, the mechanisms of EBV pathogenesis in gastric carcinoma 

are unclear. 

Previous studies have shown the sensitivity of high throughout sequencing 

for detecting infectious agents [39, 41, 76] and for the new discovery of 

exogenous agents associating with human cancer [40, 41]. Merkel cell virus has 

been linked to Merkel carcinoma [40] and Fusobacterium has recently been 

associated with colorectal carcinoma [41]. In line with other reported methods for 
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investigating pathogen associations in human cancers, we have previously 

developed a computational pipeline for the identification of exogenous 

sequences in RNA-seq data called PARSES [45]. Using PARSES, we examined 

two B-cell lines, Akata and JY, which are commonly used as model systems for 

EBV studies. Analysis of these cell lines revealed the presence of EBV in both 

cell lines as expected, but it also revealed the presence of the murine leukemia 

virus, MuLV in the JY but not Akata cell lines [76].   

We have improved PARSES to include the utilization of parallel computing 

either on a local cluster or large-scale clusters, and we have included features 

that allow the user to simultaneously analyze the human cellular genes in 

addition to pathogen discovery (recently coined as ‘dual RNA-seq’ by 

Westermann and colleagues [43]).  Here we utilized this pipeline, RNA 

CoMPASS (RNA comprehensive multi-processor analysis system for 

sequencing) [83], for the detection of viral pathogens in clinical tumor samples by 

analyzing a cohort of gastric carcinomas generated by the Cancer Genome Atlas 

initiative (SRA035410). EBV was detected in 12 out of 71 gastric carcinoma 

samples and the depth of coverage was sufficient to assess overall transcriptome 

structure in four cases. To our knowledge, this is the first study to globally assess 

both the EBV and host transcriptomes in gastric carcinomas using RNA-seq 

(although a recent paper has shed light onto this EBV specific host cell changes 

using a real time RT-PCR approach [122]). Our analysis led to insights into viral-

host interactions and mechanisms through which EBV alters its local tumor 

environment. Further, this analysis revealed significant differences in the degree 
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of host responses depending on the level of EBV gene expression. This raises 

the idea that the magnitude may be a more important clinical indicator than the 

simple detection of EBV in the selection of therapeutic regimens and the 

prediction of therapeutic responses in gastric carcinomas. 

 

5.3 Materials and methods 

5.3.1 Clinical tumor sample and sequence data acquisition 

All human specimens were de-identified prior to acquisition. Total RNA 

from 21 Vietnamese gastric carcinoma samples and 5 normal adjacent samples 

were obtained from Biospecimen Repository at Bioserve (Beltsville, MD). RNA-

seq data from 71 gastric carcinoma samples generated through the National 

Institutes of Health, The Cancer Genome Atlas (TCGA) project were obtained 

from the NCBI Sequence Read Archive (SRA035410, now available through the 

Cancer Genomics Hub managed by the University of California, Santa Cruz 

(UCSC)). Demographic and clinical data for each sample is available through the 

TCGA data portal (http://cancergenome.nih.gov/). Briefly, samples were obtained 

from non-Hispanic White Russians with no previous treatment. The mean age 

was 69 years with a range of 43 to 90 years. Total RNA was isolated from each 

sample using mirVana RNA kit according to TCGA. High quality RNA was polyA 

selected and sequenced using an Illumina Genome Analyzer II machine running 

paired end 51 base sequencing reactions with two lanes of sequence per 

sample. 
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5.3.2 Cell Culture 

SNU-719 gastric adenocarcinoma cells were obtained from the Korean 

Cell Line Bank. They were grown in RPMI 1640 (Thermo Scientific; Waltham, 

MA) plus 10% fetal bovine serum (Invitrogen-Gibco; Grand Island, NY) with 1% 

penicillin-streptomycin (Invitrogen-Gibco; Grand Island, NY). Cells were grown at 

37ºC in a humidified, 5% CO2 incubator. 

 

5.3.3 Sample preparation and next generation DNA sequencing 

Total RNA was extracted from SNU-719 cells using the miRNeasy Mini Kit 

(Qiagen, Hilden, Germany) according to manufacturer’s instructions. Two 

separate cDNA libraries were prepared from polyA selected and from Ribo-Zero 

selected RNAs using the Illumina Truseq Stranded Total RNA Sample Prep Kit 

(RS-122-2101). 101-base paired-end sequencing was performed using an 

Illumina HiSeq 2000 instrument. The SNU-719 RNA-seq data used in this 

publication have been deposited in NCBI's Gene Expression Omnibus [123] and 

are accessible through GEO Series accession number GSE45453 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45453). 

 

5.3.4 RNA CoMPASS 

RNA CoMPASS (RNA comprehensive multi-processor analysis system for 

sequencing) is a graphical user interface (GUI) based parallel computation 

pipeline for the analysis of both exogenous and human sequences from RNA-seq 

data [83] (Figure 1 in Chapter 2). Briefly, for the analysis of both exogenous and 
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human sequences, raw sequence data is first processed through an in house de-

duplication algorithm. Following de-duplication, reads are aligned to a reference 

genome containing human (hg19; UCSC) and abundant sequences (which 

include sequence adapters, mitochondrial, ribosomal, enterobacteria phage 

phiX174, poly-A, and poly-C sequences). Novoalign V2.07.18 

(www.novocraft.com) [-o SAM, default options] is used to map reads to the 

reference genome and to eliminate low-quality reads (QC < 20). TopHat V1.4.0 

[default options] [55] is used to identify and isolate all sequences that map to 

human splice junctions. The results from these programs are compiled and 

separated into mapped reads (used for human transcriptome analysis) and 

unmapped reads (used for exogenous sequence analysis). Human mapped 

reads are analyzed using SAMMate [51] to quantify gene expression and to 

generate genome coverage information. Unmapped reads are subjected to 

consecutive BLAST V2.2.24 searches against the Human RefSeq RNA database 

(an additional “pre-clearing” step) and then to the NCBI NT database to identify 

reads corresponding to known exogenous organisms [52]. Results from the NT 

BLAST searches are filtered to eliminate matches with an E-value of greater than 

10e-6. The results are fed into MEGAN 4 [53] for convenient visualization and 

taxonomic classification of BLAST search results.  

RNA CoMPASS is designed to take advantage of parallel processing at 

several key steps to speed processing times. In our case, we used a four node, 

12 core, Intel Xeon Mac Pro (64GB of memory per node) cluster.  
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5.3.5 Human and EBV Transcriptome quantification 

 Samples containing evidence of EBV were identified using RNA 

CoMPASS.  Since each sample contained sequence data from two runs, data 

from both runs were combined in order to generate a greater sequencing depth 

for transcript quantification. In addition, 20 EBV negative samples were randomly 

chosen for analysis. Samples were aligned to a reference genome containing 

human (hg19) and a modified EBV B95-8 genome that contains Raji genome 

sequences inserted into a deleted region of the B95-8 genome (Genbank 

accession number AJ507799) using Novoalign V2.07.18 (www.novocraft.com) [-

o SAM, default options]. Transcript data from Novoalign was analyzed using 

SAMMate for transcript quantification of human and EBV genes and to generate 

coverage (wiggle) files for visualization of read distributions. Splice junction data 

was generated using the junction aligner, TopHat V1.4.0 [default options]. 

Coverage data was visualized using the Integrative Genomics Viewer (IGV) [87]. 

 

5.3.6 Quantitative RT-PCR 

 Total RNA was reverse-transcribed using the SuperScript III First-Strand 

Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA). Random hexamers 

were used along with 250 ng RNA in a 20µl reaction volume according to 

manufacturer’s instructions. For the incubation steps (25˚C for 10 min followed by 

50˚C for 50 min) a Mastercycler ep (Eppendorf, Hamburg, Germany) was used. 

For real-time PCR, 1µl of the resulting cDNA was used in a 10µl reaction mixture 

that included 5µl of 10x SsoFast EvaGreen supermix (Bio-Rad, Hercules, CA), 
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1µl of 10µM forward and reverse primer mix (Integrated DNA Technologies, 

Coralville, IA), and 3µl of PCR grade water. The IDO1 primers amplified a 112 

base pair product. Forward primer 5'-CAAATCCACGATCATGTGAACC-3' and 

reverse primer 5'-AGAACCCTTCATACACCAGAC-3' were used previously by 

Prachason et al [124]. The RPMS1 primers amplified a 181 base pair product 

consisting of exon 6 and exon 7. Forward primer 5’-

CCAGGTCAAAGACGTTGGAG-3’ and reverse primer 5’-

CACCACGGTGCAGCCTAC-3’ were used. The GAPDH primers amplified a 297 

base pair product. Forward primer 5’- CAATGACCCCTTCATTGACC-3’ and 

reverse primer 5’- GACAAGCTTCCCGTTCTCAG-3’ were used. Each sample 

was performed in triplicates.  No-template controls and no-reverse transcription 

controls were also included in each PCR run. Thermal cycling was performed on 

a CFX96 Real Time System (Bio-Rad, Hercules, CA) and data analysis was 

performed using the CFX Manager 3.0 software. Cycling conditions included an 

initial incubation at 95°C for 30 seconds followed by 40 cycles consisting of 95°C 

for 5 seconds, and 60°C for 5 seconds. Melting curve analysis was performed at 

the end of every qRT-PCR run.  

 

5.3.7 In-situ hybridization 

Chromogenic In Situ Hybridization (CISH) was performed by the Tulane 

Molecular Pathology Lab using the HistoSonda EBER probe kit (American 

Master Tech, Lodi, CA) according to manufacture’s instructions. The tissue array 

was deparaffinized and rehydrated in a graded solution of Xylene and alcohol. 
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Tissue array was deproteinized using Proteinase K and incubated with 

Digoxigenin EBER probe. Tissue array was subsequently washed with water and 

PBS. The tissue array was incubated with Anti-digoxin and anti-mouse 

horseradish peroxidase to form a duplex with the Digoxigenin EBER probe. For 

colorimetric staining, slides were then incubated in 3,3'-Diaminobenzidine (DAB; 

Vector Laboratories), washed with dH2O, counterstained with hematoxylin, and 

rinsed with PBS (pH 7.4). Slides were dehydrated in a graded solution of alcohol 

and Xylene and sealed with Permount Mounting Medium (Sigma). To visualize 

the tissue array, slides were scanned into ScanScope CS2 (Aperio, Vista, CA) 

and images were acquired with ImageScope (Aperio). 

 

5.3.8 Immunohistochemistry 

Formalin-fixed, paraffin-embedded (FFPE) gastric tumor tissue array 

(ST2901) was purchased from U.S. BioMax (Rockville, MD). Demographic and 

clinical data can be found on the U.S. BioMax website 

(http://www.biomax.us/tissue-arrays/Stomach/ST2091). The tissue array was 

deparaffinized, and rehydrated in a graded solution of Sub-X clearing medium 

(Leica Biosystems, Buffalo Grove, IL). Antigen retrieval was performed with Tris-

EDTA Buffer, consisting of 10mM Tris Base, 1mM EDTA Solution, and 0.5% 

Tween 20 (pH 9.0), for 30 minutes. The tissue array was then quenched with 3% 

H2O2 (Sigma), rinsed with TNT washing buffer made of 0.1M Tris-HCl, 0.15M 

NaCl, and 0.5% Tween-20 (pH 7.5), blocked with blocking reagent purchased 

from Perkin Elmer (Waltham, MA) and stained with goat-anti-human IDO 
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(Abcam, Cambridge, MA) overnight at 4oC. Tumor sections were subsequently 

washed in TNT, incubated with donkey-anti-goat HRP conjugated secondary 

antibody (Santa Cruz, Dallas, TX) for 1 hour at room temperature, and washed 

with TNT. For colorimetric staining, slides were then incubated in 3,3'-

Diaminobenzidine (DAB; Vector Laboratories), washed with dH2O, 

counterstained with hematoxylin, and rinsed with PBS (pH 7.4). Slides were 

dehydrated in a graded solution of Sub-X clearing medium and sealed with 

Permount Mounting Medium (Sigma). To visualize the tissue array, slides were 

scanned into ScanScope CS2 (Aperio, Vista, CA) and images were acquired with 

ImageScope (Aperio). 

 

5.3.9 Statistics and Cluster analysis 

Transcript counts were imported into the R software environment and 

analyzed using the edgeR package [54]. Genes with low transcript counts (less 

than 1 CPM (count per million)) in the majority of samples were filtered. The 

Manhattan (L-1) distance matrix for the samples was computed using the 

remaining transcript counts, and this was taken as input for hierarchical 

clustering using the Ward algorithm. The well separated cluster of four EBV 

positive samples was found to be those with the highest numbers of EBV reads 

and was classified as “high EBV”. The remaining samples were then classified as 

“EBV-negative” or “low EBV”. The glmFit function was then used to fit the mean 

log(CPM) for each group and likelihood ratio tests were used to identify those 

genes that were differentially expressed in any of the three possible 
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comparisons, with adjusted p<0.05 following the Benjamini-Hochberg correction 

for multiple testing. The fitted log(CPM) values for the subset of genes that were 

differentially expressed in the high EBV samples relative to both the low EBV and 

EBV-negative samples were then clustered using the Euclidean distance and 

complete linkage algorithm to detect groups of co-expressed genes. The EBV 

transcript counts from all positive samples were imported in MeV [86] for 

hierarchical clustering using the Manhattan distance matrix and average linkage 

clustering algorithm.           

 

5.4 Results 

5.4.1 Detection of EBV in gastric adenocarcinoma samples using RNA 

CoMPASS 

RNA-seq data from The Cancer Genome Atlas (TCGA) gastric 

adenocarcinoma cohort (SRA035410) was first analyzed using RNA CoMPASS 

[83] to assess the virome for each of the 71 data sets. This initial screening was 

performed using a single lane of sequencing data from each patient. Most 

samples contained relatively low numbers of reads matching non-human viral 

sources (e.g. enterobacteria phage T4T) that possibly represent environmental 

contamination (Figure 1A-B). Of the known human viruses detected, one sample 

(BR-4298, Figure 1A) contained 6 reads attributed to Hepatitis C virus. Further 

inspection of these reads showed high homology to the human immunoglobulin 

light chain variable region. These reads likely represent human sequences rather 

than reads derived from Hepatitis C virus. Twelve samples showed evidence of 
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human cytomegalovirus (HCMV) with read numbers ranging from 5 to 132. 

Individual BLASTing of selected HCMV reads showed high homology to HCMV 

genomes but not to human sequences indicating that these are bona fide HCMV 

derived reads. The relatively low numbers of HCMV reads in these samples 

(relative to the numbers of EBV in some samples, see below) suggests that 

these reads are derived from a low number of HCMV infected cells or that the 

virus is not expressing substantial numbers of polyadenylated RNAs in these 

tumor samples. 

EBV was detected in 12 out of the 71 (17%) gastric carcinoma cases with 

varying levels of reads. To further analyze the EBV-associated gastric carcinoma 

(EBVaGC) samples, the two lanes of sequence per sample were combined to 

attain greater sequencing depth. These sequence files were aligned against a 

modified EBV B95-8 genome that contains Raji genome sequences inserted into 

a deleted region of the B95-8 genome (Genbank accession number AJ507799) 

plus the hg19 assembly of the human genome. Alignments were carried out 

using Novoalign V2.07.18 [-o SAM, paired-end, default options]. Based on the 

assembly to the human genome, sample quality and throughput was found to be 

consistent across all samples with the numbers of human mapped reads ranging 

from 128 to 159 million. Eight of the 12 EBV positive samples were found to have 

less than 200 reads per sample (inset of Figure 1C), three were found to contain 

more than 30,000 reads and one sample was found to contain 1,194 reads 

(Figure 1C). We tentatively considered the 8 cases with less than 200 reads to 

represent nominal infections similar to that observed with CMV (above). The 4 
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samples with higher read numbers, BR-4253, BR-4271, BR-4376, and BR-4298, 

were taken for more in depth transcriptome analysis.   

Notably, while three of the four EBV positive samples with high numbers 

of EBV reads were classified as the more common Type I strain of EBV, one of 

these samples, BR-4253, was classified as the type II strain (Figure 1A). Since 

the strain defining regions of EBV, EBNA2 and EBNA3A/3B/3C [125] are largely 

not expressed in EBVaGC, we were concerned that the reads from sample BR-

4253 could be misclassified as type II. We analyzed a few of the reads defined 

by MEGAN as type II from sample BR-4253 using manual BLAST and the 

majority of reads aligned to both type I (B95-8/Raji) and type II strains (AG876 

(Genbank accession number DQ279927)) with some of these showing better 

homology to AG876 (data not shown). Despite this, the small number of reads 

derived from the EBNA2 and EBNA3A/3B/3C loci were more homologous to the 

type I than the type II strain. Therefore, this sample was likely misclassified as 

the type II strain because of greater similarity to the AG876 genome at highly 

expressed regions outside of the EBNA2 and EBNA3A/3B/3C loci. 

 

5.4.2 EBV gene expression in gastric carcinomas  

EBV transcript quantification and genome coverage information was 

generated for samples, BR-4253, BR-4271, BR-4376, and BR-4298 using the 

transcriptome analysis software, SAMMate (note that the sequencing libraries 

were generated from polyA selected RNA which precludes the sequencing of 

EBER genes) [51]. Genome coverage information was first visualized by  
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Figure 1.  Detection of EBV in gastric carcinoma samples. Four gigabytes of 
deduplicated RNA-seq read data from each of the seventy-one gastric carcinoma 
samples were analyzed using RNA CoMPASS. The virome branch of the 
taxonomy trees for the four samples with the highest number of EBV reads (A) 
and two EBV-negative samples (B) were generated using the metagenome 
analysis tool, MEGAN 4. (C) For a more in depth analysis of EBV reads, the 
combined sequence read files for each sample were aligned to the EBV genome 
and the hg19 human genome assembly using the genome aligner, Novoalign. Of 
the EBV-positive samples, four samples were identified as having high numbers 
of EBV reads while eight were found to have low but detectable numbers of EBV 
reads. 
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displaying the number of reads across each genomic position in the Circos plot 

shown in Figure 2A. Because of disparate coverage intensities, the Circos graph 

in Figure 2A is plotted in log scale to allow simultaneous visualization of the less 

abundantly expressed regions of the genome. Notably, coverage across the 

BamHI A region was high relative to other parts of the genome with greater than 

96% of total reads corresponding to the BamHI A region in each case (Figure 

2B).   

Evidence for transcription of the essential episomal replication factor, 

EBNA1 is observed in samples BR-4253, BR-4271 and BR-4376 (Figure 2A 

(upper left region of the figure) and Figure 2B). No EBNA1 reads were detected 

in BR-4298 most likely owing to the significantly lower read numbers in this 

sample (Figures 2A-B). 

Evidence for transcription of the immediate early genes, BZLF1 and 

BRLF1, is similarly seen in BR-4253, BR-4271 and BR-4376 but not in BR-4298 

(again, possibly due to the low overall read numbers). Despite the detection of 

BZLF1 and BRLF1 reads in samples BR-4253, BR-4271 and BR-4376, there is a 

remarkable absence of reads for most other downstream lytic genes in these 

samples. In Figure 3, we plotted the ratio of lytic gene transcripts (sans lytic 

genes in the BamHI A region) relative to the level of BZLF1 RNAs in BR-4253, 

BR-4271 and BR-4376 and compared this to the corresponding relative levels of 

these gene transcripts in reactivating Akata cells [49]. This comparison indicates 

that while the BZLF1 and BRLF1 immediate early genes are expressed in these  
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Figure 2. Genome wide analysis of EBV gene expression. (A) An annotated 
Circos plot depicting EBV read coverage across the EBV genome. Coverage 
graphs display the number of reads mapping to each nucleotide position of the 
genome and are depicted in log scale. Note that alignments were performed 
using a genome that was split between the BBLF2/3 and the BGLF3.5 lytic genes 
rather than at the terminal repeats to accommodate coverage of splice junctions 
for the latency membrane protein, LMP2. The natural termini of the linear 
genome, the terminal repeats, are shown in the lower right quadrant of the graph. 
Coverage data is plotted relative to the modified B95-8 genome containing Raji 
genome sequences (Genbank accession number AJ507799). Blue features 
represent lytic genes, red features represent latency genes, green features 
represent potential non-coding genes, aquamarine features represent 
microRNAs, and black features represent non-gene features (repeat regions and 
origins of replication, for example). (B) Pie charts displaying read counts across 
EBV gene features. Because the BNLF2a/b region is contained within the LMP1 
gene, total LMP1 read counts were inferred by determining the counts within the 
unique LMP1 sequences, multiplying by the total length of LMP1, and dividing by 
the length of the unique region. BNLF2a/b counts were calculated by determining 
the number of reads within the BNLF2a/b locus and subtracting the inferred 
number of LMP1 reads derived from within the BNLF2a/b coordinates (i.e. 
number of LMP1 reads within the unique region times the length of the overlap 
region divided by the length of the unique region). Leftward oriented genes within 
the BamHI A region are shown in grey. This representation indicates uncertainty 
due to the finding of primarily rightward transcription across these genes in the 
gastric carcinoma cell line SNU-719 using directional sequencing methods. 
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Figure 3. Abortive lytic gene expression. EBV lytic gene expression in 
EBVaGC samples. Lytic gene expression relative to BZLF1 represents RPKMs 
(reads per kilobase of exon model per million mapped reads) for each indicated 
gene divided by the RPKMs of BZLF1 for the respective biological sample. For 
reference to a productive replication setting, samples were compared to the lytic 
gene expression profile in reactivated Akata cells. 
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tumors, there is a clear lack of lytic cycle progression; reflecting abortive lytic 

replication in this in vivo setting. 

Consistent with previous reports of LMP2 expression in gastric 

carcinomas [126, 127], we similarly see evidence of LMP2 transcription in 

samples BR-4253, BR-4271 and BR-4376 (Figures 2A-B and Figure 4A). LMP1 

has been previously reported to be expressed at low levels or to be not 

expressed in gastric carcinomas [128-130]. We similarly find low albeit detectable 

levels of LMP1 in BR-4253, BR-4271 and BR-4376 (Figures 2B and 4A). 

Strikingly, however, sample BR-4253 has a very high number of reads 

corresponding to the early BNLF2A/B locus, which overlaps the LMP1 3’ 

untranslated region (Figures 2B, 3 and 4A). No BNLF2A/B reads are detected in 

BR-4271, BR-4376, and BR-4298 (Figure 2B) suggesting that this is unique to 

BR-4253.  The high expression level of the early BNLF2A/B genes in BR-4253 is 

surprising because it occurs in the absence of most other early genes. This 

suggests the possibility that BNLF2A/B is expressed in this patient through an 

alternative mechanism possibly mediated through a viral genetic alteration. 

 

5.4.3 Analysis of the highly expressed BamHI A region 

The most actively polyA transcribed region of the EBV genome, the 

BamHI A region (Figures 2A-B), shows excellent coverage across most of the 

RPMS1/A73 exons with apparent additional coverage observed for the regions 

spanning the leftward transcribed genes, BALF5, BALF3, and BALF4 (Figure 

4B). Coverage across these leftward genes is unexpected because they are  
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Figure 4. EBV gene expression analysis. Detailed read coverage data for the 
LMP2a, LMP1, and BNLF2a/b genes (A) and the RPMS1/BamHI A regions (B) of 
the EBV genome. Data was displayed using the Integrative Genomics Viewer 
(IGV) using the modified B95-8 genome containing Raji genome sequences 
(Genbank accession number AJ507799). The y-axis represents the number of 
reads at each nucleotide position of the genome. Blue features represent lytic 
genes, red features represent latency genes, green features represent potential 
non-coding genes, aquamarine features represent microRNAs, and black 
features represent non-gene features (repeat regions and origins of replication, 
for example). In panel (A), coverage graphs for BR-4253 is scaled to a maximum 
read level of 250 reads (the BR-4253 inset displays the data with a max read 
level of 25), the BR-4271 and BR-4376 graphs are scaled to a max read level of 
25, while the max read level for BR-4298 is 1. For coverage across the 
RPMS1/BamHI A region (B), BR-4253, BR-4271, and BR-4376 are scaled to 
1,000 reads, while BR-4298 is scaled to 100. Strand specific sequencing from 
SNU-719 cells of the RPMS1/BamHI A region is also displayed. The top 2 tracks 
are from poly(A) selected RNA and the bottom 2 tracks are from Ribo-Zero 
depleted RNA. The read coverage for the sense strand is displayed in blue with 
positive values while the antisense strand is displayed in red with negative 
values. The scale is + or - 1,445 reads for the sense and antisense strands. 
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thought to be lytic genes and not expressed during latency. We therefore 

performed directional sequencing of a naturally occurring EBV positive gastric 

carcinoma cell line, SNU-719, to allow us to determine the orientation of 

transcripts across this region. EBV read coverage for SNU-719 was remarkably 

similar to that observed for the tumor specimens (Figure 4B). Outside of a small 

blip of leftward transcription noted near the RPMS1 exon 1b, there is little 

leftward transcription across this region. This indicates that the transcription 

observed across this region in the tumor specimens are likely rightward oriented 

and to a large extent related to RPMS1 and/or A73 but not BALF5, BALF3, 

BALF4, BILF1, LF1, or LF2. 

Also notable in Figure 4B is rightward coverage across the introns 

between exons 4 and 5 and exons 6 and 7 of the RPMS1 gene (boxed regions in 

SNU-719 tracks). This coverage likely does not represent intron fragments 

generated after transcript splicing because this coverage is observed in 

sequencing libraries generated from polyA selected RNA (upper SNU-719 

tracks). In contrast, there is no coverage of the first 4 RPMS1 introns on the 

polyA track whereas there is substantial coverage across these regions when 

ribo-depleted RNA was used for sequencing (Figure 4B). Therefore, the 

rightward coverage between exons 4 and 5 and between exons 6 and 7 likely 

represent bona fide previously unannotated rightward exons/transcripts. The 

read coverage between exons 6 and 7 may arise from mature RPMS1 isoforms 

that retain this intron (forming a unique RPMS1 isoform). The coverage between 

exons 4 and 5 starts near the middle of this intron suggesting that this is a site of 
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transcription initiation or a that it is a splice acceptor site. Since splice mapping 

(see below) did not identify candidate splicing events near the beginning of this 

intron coverage, it is possible that this coverage arises from transcription initiation 

from an unknown upstream promoter. 

As mentioned above, more than 96% of all EBV reads align to the BamHI 

A region. Further, RPMS1 exon coverage ranks within the top seven percent of 

expressed cellular genes in samples BR-4253, BR-4271, and BR-4376 with 

expression that is more than five times the median cellular gene expression level 

(Figure 5). We conclude that not only is expression of this region high relative to 

other EBV encoded genes, but the expression is also high relative to cellular 

genes. In contrast, it is notable that the LF3 gene which is within the BamHI A 

locus and which has been found to be expressed at very high levels in other 

systems [131], shows no evidence of expression in these in vivo gastric 

carcinoma tumor datasets.  

To assess splicing events in this region, alignments were performed using 

the junction mapper, TopHat [55]. Consideration of the most abundant splice 

junction reads indicates the predominance of sequential splicing from exons 1-2-

3-4-5-6-7 (Figure 6). Nevertheless, there is significant evidence of intra-exonal 

splicing at exons 3 (3a to 3b), 5 (5a to 5b), and 7 (7a to 7b) (Figure 6). Although 

splicing from exons 1 to 2 is the most predominant 5’ region splicing order, there 

is also good evidence of alternative splicing to exon 1a (i.e. splicing of exon 1 to 

exon 1a to exon 2) (Figure 6). In samples BR-4253 (Figure 6) and SNU-719 

(data not shown), we also noted evidence of splicing initiating from the middle of  
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Figure 5. EBV transcripts from RPMS1 are among the highest expressed 
genes in EBVaGCs. RPKM values calculated using reads across all RPMS1 
exons are shown with respect to the median expression of all expressed cellular 
genes (expressed genes defined as cellular genes with greater than 1 RPKM). 
The percentage values above each RPMS1 bar represents the rank of RPMS1 
expression in the respective sample among all expressed cellular genes in that 
sample.  
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Figure 6. Alternative splicing in the EBV BamH1 A region in EBVaGCs. 
RNA-seq data from BR-4271, BR-4376, and BR-4298 and BR-4253 was 
analyzed using the TopHat aligner to obtain splice junction information. Samples 
with the type I strain of EBV, BR-4271, BR-4376, BR-4298, and BR-4253 were 
aligned to the type I genome, B95-8/Raji (Genbank accession number 
AJ507799). Junctions were visualized using Integrative Genomic Viewer (IGV) 
[87]. Thickness of red junction features correlates with the number of reads for 
the respective junction. The number of junction spanning reads for each junction 
is indicated below each olive green junction feature.   
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the newly identified coverage in the intron between exons 4 to 5 to the start of 

exon 5. This indicates additional complexity in this new region whereby some of 

these transcripts splice to exon 5 while some read through to exon 5. 

 

5.4.4 Differential cellular gene expression patterns in EBV associated and EBV 

low/negative gastric adenocarcinomas  

EBV likely contributes to gastric carcinoma through the subversion of at 

least some of the oncogenic pathways required for the development of gastric 

carcinoma.  However, the way that EBV subverts these pathways is likely distinct 

from the mechanism of pathway disruption in the absence of EBV (e.g. through 

genetic alterations). Since cellular gene expression is typically responsive to 

altered signaling mechanisms, differences in gene expression profiles can be 

used to not only classify cell populations but also infer upstream signaling events 

within certain cell populations.   

To investigate influences of EBV dependent alterations in tumor signaling 

pathways, we analyzed global cellular gene expression in all 12 EBV positive 

specimens plus an additional 20 randomly selected EBV negative samples. EBV 

gene expression data was not included in this analysis to ensure that clustering 

occurred based only on differences in cellular gene expression (i.e. that it 

occurred independently of biases incurred by the presence of EBV gene 

expression signatures). Strikingly, when the set of samples were analyzed using 

hierarchical clustering, the four gastric carcinoma samples with higher numbers 

of EBV reads (BR-4253, BR-4271, BR-4376, and BR-4298) formed its own well-



	
  
	
  

	
  

108 

separated group (Figure 7A). One of the EBV negative samples, BR-4294, 

clustered independently of the others and subsequent analysis revealed that this 

sample was likely an outlier. Nevertheless, this sample was retained in the 

subsequent differential expression analysis as a conservative measure.  

Human transcript counts from the EBVaGCs with high EBV read levels were 

compared to the EBVaGCs with low EBV read numbers and with the EBVnGCs. 

Using this approach, 490 genes were found to have statistically significant 

differential expression in the “high” EBVaGC (hiEBVaGC) samples relative to 

both EBVnGC and “low” EBVaGCs (loEBVaGC) samples (Figure 7A-B). These 

genes separated into five distinct clusters with clusters 1, 3, and 5 showing 

genes that were predominately expressed at higher levels in hiEBVaGCs and 

clusters 2 and 4 containing genes that were predominantly expressed at lower 

levels in hiEBVaGCs (Figure 7A). We also performed an additional clustering 

analysis using only the EBV genes across the 12 EBVaGC. This analysis 

revealed that the 4 hiEBVaGC samples cluster distinctly from the other EBVaGC 

samples (Figure 8). This apparently distinct gene expression pattern observed in 

the 4 hiEBVaGC samples raises the possibility that these samples represent 

infection of a unique cell type relative to the other samples (possibly tumor cells 

versus stroma or B-cells). 

Ingenuity Pathway Analysis software (IPA: Ingenuity Systems) was used 

to assist the analysis of pathways and known molecular functions associated with 

differentially expressed genes. Twenty four percent (116) of the 490 genes with 

statistically significant differential expression were found to be immunologically  
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Figure 7. Cluster analysis of EBV-associated gastric carcinoma samples. 
(A) A representative cohort of 32 gastric carcinoma samples (12 EBV-positive 
and 20 EBV-negative) were grouped using hierarchical clustering and are 
displayed with an expression heat map of the 490 genes that were found to be 
significantly differentially expressed in high EBV. (B) The cohort of 32 gastric 
carcinoma samples was divided into three categories (high EBV, low EBV, and 
negative). These categories were subjected to differential gene expression 
analysis using edgeR. The Venn diagram displays the numbers of all statistically 
significant differentially expressed genes. Statistical significance was determined 
by an adjusted P value < 0.05.    
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related genes (Figure 9A). The vast majority of these genes were expressed at 

higher levels in hiEBVaGCs with IDO1 and IFNG ranking among the top (38-fold 

and 16-fold, high v. negative). The differentiation and other cell surface marker 

profiles are consistent with the presence of cytotoxic T-cells (CTLs) and/or 

natural killer (NK) cells in hiEBVaGC. Further, CTLs and NK cells are key 

producers of granzymes and perforin, which are found to be elevated in the 

hiEBVaGC (Figure 9A). 

The interferon gamma (IFNG) pathway was analyzed further using IPA to 

determine the extent of IFNG pathway involvement in hiEBVaGC. We observed 

marked involvement of the IFNG pathway with 156 of the 490 differentially 

expressed genes associated with the IFNG pathway, the majority of which were 

elevated (Figure 9B). 

The analysis of IDO1 levels for each of the 32 gastric carcinomas showed 

that the samples with the highest number of EBV reads had the highest levels of 

IDO1 expression (Figure 10A). To further explore the link between EBV and 

IDO1, we analyzed a separate cohort of Vietnamese gastric carcinoma samples 

by real time RT-PCR. RPMS1 was detected in two of these samples 

(CZRDPREA and WZQ1TALM) (Figure 10B) and these samples ranked among 

the highest for expression of IDO1 (27 and 17 fold relative to the average of the 5 

normal adjacent tissue samples). Further, in these samples, normal adjacent 

tissue showed lower RPMS1 expression and lower IDO1 expression compared 

to their tumor counterparts. Notably, one of the EBV negative samples, 

W31AB410, showed the highest level of IDO1 (43 fold). Nevertheless, this  
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Figure 8. Cluster analysis of EBV genes from EBV-associated gastric 
carcinoma samples. The EBV genes from the 12 EBVaGC samples were 
subjected to hierarchical clustering and displayed with an expression heat map of 
all EBV genes.  
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Figure 9. High numbers of infiltrating immune cellular genes are detected in 
EBVaGC. (A) Significant immunologically related genes differentially expressed 
in EBVaGC are represented in a heat map. The log2 fold change intensities are 
represented by the color gradient with red corresponding to the highest intensity 
and green corresponding to the lowest. (B) Interferon-gamma (IFNG) associated 
genes differentially expressed in EBVaGC are displayed in a diagram.   
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sample was notable in that like the two EBV positive samples, the pathology 

report for this sample similarly noted high levels of immune cell infiltration which 

may result from the presence of another infectious agent. 

In Situ Hybridization for EBER was performed on a gastric carcinoma 

tissue array (ST2091; US Biomax) in order to assess the presence of EBV. In the 

strongly EBV positive cases, EBV was detected in the epithelial cells (e.g. F8 in 

Figure 10C).  A high level of immune cell infiltration is observed in EBV positive 

(e.g. F8, Figure 10C) but not the tumor grade matched EBV negative sample, 

A15 (Figure 10C) with a high proportion of the immune cells in F8 showing 

intense IDO1 staining. 

Analysis of the 178 down regulated genes showed that 19 tumor 

suppressor genes and 13 candidate oncogenes were found to be expressed at 

lower levels in hiEBVaGC (Table 1). Furthermore, we observed several inhibitors 

of the hedgehog and Wnt pathways to be expressed at lower levels in 

hiEBVaGCs suggesting additional components to the complex interactions 

involved in EBVaGC pathogenesis. 
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Figure 10. High levels of IDO1 in high EBV positive gastric carcinomas (A) 
Gene expression profile of the cohort of 32 gastric carcinoma samples (12 EBV-
positive and 20 EBV-negative). Both total EBV reads and IDO1 expression 
(RPKM-reads per kilobase of exon model per million mapped reads) are 
represented as red and blue columns, respectively. (B) Gene expression profile 
of the cohort of 21 Vietnamese gastric carcinomas and 5 normal adjacent 
samples. Both relative RPMS1 expression (-fold) and relative IDO1 expression (-
fold) are represented as red and blue columns and are the fold difference 
compared to the average of normal adjacent control values. (C) Images of 
paraffin-embedded human gastric carcinoma probed for EBER using in situ 
hybridization or IDO1 staining with immunohistochemistry. F8 and A15 each 
represent a specific gastric carcinoma on the tissue array selected to be closely 
matched with respect to age, tumor grade and stage. Scale bar represents 50µm. 
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Table 1 Representative genes with decreased expression in EBVaGC 
relative to EBVnGC 
 

Gene Log 
Fold 

P-
value Function Refs. 

Tumor Suppressors 
GKN2 -8.1 4.70E-

02 
Down regulated in gastric carcinoma [132] 

TFF2 -6.9 2.91E-
02 

Hyper-methylated in gastric carcinoma [133] 

EFNA2 -4.8 1.31E-
04 

Tumor suppressor in gastrointestinal 
cancers 

[134] 

CLDN3 -3.9 1.40E-
02 

Down regulated in gastric carcinoma leads 
to proliferative potential  

[135] 

HOXA10 -3.4 1.31E-
02 

Up regulation in gastric carcinoma results in 
favorable prognosis 

[136] 

PTCH1
  

-2.6 1.94E-
02 

Tumor suppressor in medulloblastoma [137] 

CNTNAP2 -4.1 6.90E-
04 

Acts as tumor suppressor in glioma [138] 

SCARA3 -2.9 3.14E-
02 

Tumor suppressor in prostate cancer [139] 

WNK2 -3.5 4.51E-
03 

Tumor suppressor [140] 

VIPR1  -2.9 5.19E-
03 

Candidate tumor suppressor [141] 

REEP6 -2.5 2.38E-
02 

Tumor suppressor [142] 

B3GALT5 -6.5 9.86E-
04 

Down regulated in colon cancer [143] 

RBP4  -5.1 3.83E-
03 

Hyper-methylated in esophageal carcinoma [144] 

SORBS2 -2.7 2.44E-
02 

Down regulated in pancreatic cancer [145] 

HOXA9
  

-4.9 1.51E-
02 

Hyper-methylated in lung cancer [146] 

LRRN1
  

-4.5 3.09E-
03 

Hyper-methylated in non-small cell lung 
cancer 

[147] 

FOXA2 -2.8 1.45E-
03 

Tumor suppressor in lung cancer [148] 

HNF4A
  

-1.9 1.67E-
03 

Candidate tumor suppressor [149] 

RAP1GAP -2.7 1.88E-
02 

Hyper-methylated in thyroid cancer [150] 

(Table continues) 
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Gene Log 
Fold 

P-
value Function Refs. 

Oncogenes 
CDH17
  

-3.7 2.23E-
02 

Up regulated in gastric carcinoma [151] 

CDX1  -7.3 1.21E-
03 

Up regulated in gastric carcinoma [152] 

     
ETV4 -1.9 1.32E-

02 
Up regulated in gastric carcinoma [153] 

PPP1R1B -4.6 5.07E-
03 

Up regulated in gastrointestinal cancers [154] 

TM4SF5 -3.9 1.29E-
02 

Candidate oncogene [155] 

GPC3  -3.8 2.52E-
04 

Up regulated in hepatocellular carcinoma [156] 

TLX1 -3.7 1.79E-
02 

Oncogene [157] 

PEG10 -3.7 2.32E-
02 

Up regulated in hepatocellular carcinoma [158] 

WNT4 -3.4 2.66E-
02 

Candidate oncogene [159] 

CA8  -4.6 2.04E-
03 

Promotes colon cancer cell growth [160] 

BCAS1 -3.7 4.33E-
02 

Oncogene [161] 

FAM84A -3.4 2.29E-
03 

Promotes colon cancer [162] 

USP2  -2.6 1.19E-
02 

Candidate oncogene – negative regulator of 
p53 

[163] 

     
Miscellaneous 
HHIP -5.3 6.06E-

03 
Inhibits Hedgehog signaling  [164] 

SHISA3 -3.9 1.70E-
02 

Inhibits Wnt and FGF signaling [165] 

NKD2 -3.1 1.02E-
02 

Antagonist of Wnt signaling [166] 

LRP4 -3.5 4.25E-
04 

Negative regulator of Wnt signaling [167] 

DUSP8 -1.6 2.51E-
02 

Inhibits JNK pathway [168] 

SLC26A3 -4.9 3.24E-
02 

Expression inhibited by IFNG [169] 

TNFSF11 -3.0 2.29E-
02 

Regulator of T cells and dendritic cells [170] 
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5.5 Discussion 

Consistent with the Shibata and Weiss study for the incidence of EBVaGC 

in the United States using ISH against EBERs [119], we detected EBV in 12 of 

the 71 (17%) gastric carcinoma samples from The Cancer Genome Atlas (TCGA) 

cohort using RNA CoMPASS. The detection of EBV using EBER ISH is widely 

used and the similar detection levels between the Shibata and Weiss study [119] 

and our work suggest that both methods are accurate for determining the 

presence of EBV in biological specimens. Importantly, however, the use of RNA-

seq data allowed us to also infer the magnitude of local environmental signaling 

influences for different levels of EBV infection/viral gene expression. While the 

four samples with higher levels of EBV transcripts formed a clearly distinct 

cellular gene expression cluster, the eight samples with low numbers of EBV 

reads clustered in a mixed fashion among the EBV negative specimens. We 

propose that these two classes of EBV infection should be considered 

functionally distinct with possible implications in therapeutic intervention 

decisions and/or therapeutic response predictions. 

RNA CoMPASS has the potential to simultaneously allow for the 

investigation of all pathogens present in tumor samples. In addition to EBV, we 

detected low levels of enterobacteria phage T4T, HCMV, Hepatitis C virus, and 

Helicobacter pylori (data not shown). The detection of enterobacteria phage T4T 

and Hepatitis C virus transcripts should be met with caution due to the likely 

possibility of environmental contamination and misclassification of these reads, 

respectively. While the HCMV reads likely represent true HCMV infection of cells 
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within the tumor sample, the low read levels suggest either low numbers of 

HCMV infected cells or limited expression of polyadenylated viral RNAs. Finally, 

we detected H. pylori in three of the gastric carcinoma samples but the number of 

reads was very low in each case. Since bacterial RNAs are typically not 

polyadenylated or have limited numbers of polyadenylated RNAs [106-109], this 

low detection level probably results from the sequencing libraries being prepared 

from polyA selected RNA rather than an absence of H. pylori in these samples. 

Of the 12 EBVaGCs, there was sufficient EBV read coverage in four of the 

samples to carry out more detailed transcriptomic analysis. LMP2, EBNA1, and 

LMP1 expression was detected in three of the EBVaGCs and these results are 

generally consistent with the findings of other groups [126-129]. The magnitude 

of expression from the BamHI A region relative to the transcription levels of other 

EBV genes is striking, however. This result is consistent with a previous report 

using a naturally infected EBV positive gastric carcinoma cell line [171]. 

Nevertheless, our analysis makes this observation in the natural in vivo setting of 

the tumor, and the use of RNA-seq facilitated the evaluation of transcript 

structures and the magnitudes of BamHI A region gene expression relative to 

other viral and cellular genes.   

Although others have been unable to detect protein from naturally 

expressed BamHI A rightward transcripts [172, 173], the high expression level of 

these transcripts in hiEBVaGC samples suggests a functional role in gastric 

adenocarcinomas; possibly as long non-coding RNAs (lncRNA). These rightward 

BamHI A transcripts also encode as many as 44 intronic microRNAs (miRNAs) 
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[174, 175]. The function of the BART miRNAs in the EBV life cycle and in EBV 

associated malignancies is currently unclear but a recent study by Raab-Traub’s 

group provided evidence that the BART miRNAs contribute to the tumor 

phenotype in EBVaGC [176]. In Raab-Traub’s study, several lines of evidence 

supported this contention. First, very little EBV latent protein expression was 

detected and inhibition of the small amount of LMP1 expressed did not affect the 

cell’s phenotype. Second, they observed that the majority of the significant 

cellular gene expression changes following infection of AGS (a gastric carcinoma 

cell line) cells with EBV were down regulated, many of which were significantly 

enriched in both experimentally and bioinformatically predicted BART miRNA 

targets [176, 177]. Based on this evidence and the fact that the BamHI A 

rightward transcripts are expressed at high levels in gastric carcinomas, it seems 

likely that the BART miRNAs play an important role in modulating the cellular 

phenotype in this tumor type. Nevertheless, many lncRNAs are involved in 

repressive complexes raising the possibility that the high levels of spliced 

rightward BamHI A transcripts that we detect in vivo may function as lncRNAs 

which similarly contribute to repression of cellular gene expression in 

hiEBVaGCs. Our strand specific RNA-seq analysis of SNU-719 cells further 

support our contention of high level expression of the rightward RPMS1 and A73 

related transcripts in gastric carcinomas. This analysis also demonstrated the 

presence of additional rightward exons/genes within this region that may similarly 

play a role in lncRNA mediated regulation of viral and/or cellular signaling. 
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Although EBV primarily exhibits latent gene expression patterns in EBV 

associated tumors, recent studies using EBV associated lymphoma models 

suggest that a small portion of tumor cells express lytic transcripts that promote 

tumor growth [88, 89, 178, 179]. The Kenney lab showed that B cells harboring 

an EBV BZLF1 knock out mutant grew slower than wild type infected cells in a 

SCID mouse xenograft model [88]. In a separate study, they showed that a 

mutant EBV over expressing BZLF1 induces lymphomas with abortive lytic EBV 

infection in a humanized mouse model [89]. By assessing global EBV gene 

expression, we provide evidence for an abortive lytic phase in vivo; in the context 

of the natural setting of a human tumor. This supports the lymphoma animal 

studies from the Kenney group and raises the possibility that an abortive lytic 

phase may also play a role in EBV associated epithelial tumors. 

One EBVaGC sample (BR-4253) was found to express high levels of 

BNLF2A/B.  In the absence of significant expression of other lytic genes, the 

detection of BNLF2A/B expression in this sample was unexpected. One of the 

simplest models to explain this observation is a possible viral genetic alteration 

that juxtaposes this gene with an active viral promoter; in a manner reminiscent 

of the previously identified hetDNA (BZLF1 gene recombined to an active latency 

promoter) [180-182]. Alternatively, this could result from a rare viral integration 

event positioning the BNLF2A/B gene downstream from an active cellular 

promoter. Just as advantageous genetic alterations evolve in the cellular genome 

during cancer progression, a genetic event that resulted in the activation of 

BNLF2A/B may be an example of an advantageous viral genetic alteration that 
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was selected during tumor evolution. BNLF2A was shown previously to function 

as an immune evasion protein through HLA class I down regulation (via blocking 

of TAP activity) [183]. This anti-immune function may have been selected for 

during tumor evolution and may support viral/tumor survival in this patient. 

Cellular RNA expression profiling provided strong evidence for immune 

cell infiltration in hiEBVaGCs. This can be seen in tissue sections from EBV 

positive specimens (e.g. see Figure 10C) and is further supported by the 

pathology reports from the two EBV positive gastric carcinoma samples from the 

Vietnamese cohort which indicate high levels of immune cells. This observation 

is in line with previous studies using standard hematoxylin and eosin staining of 

tumor sections [120, 184] where lymphocyte infiltration was found to be 

predominately CD8+ T cells [185, 186]. Notably, however, despite this apparent 

robust immune response in hiEBVaGC, EBV and the infected tumor cells are 

able to persist in these patients. This suggests that these tumors may have 

compensatory immune evasion strategies that allow virus/tumor survival in this 

setting [187]. First, the limited expression of viral protein coding genes in 

EBVaGC likely contributes to the avoidance of viral antigen targeting [188]. 

Second, although the EBV encoded protein, EBNA1 is required for viral episomal 

replication/maintenance and therefore must be expressed in proliferating cells, it 

encodes a glycine-alanine repeat domain that blocks its proteasomal processing 

for CTL presentation [189, 190]. Third, here we found that expression of the 

interferon-gamma (IFNG) inducible CTL and NK inhibitor, indoleamine 2,3-

dioxygenase (IDO1) is high in hiEBVaGC. IDO1 is a rate-limiting enzyme 
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involved in the catabolism of tryptophan (Trp) [191]. CTLs and NK cells are 

uniquely sensitive to Trp depletion leading to the induction of stress responses 

and the inhibition of proliferation and activation [192, 193]. IDO1 functions to 

cause local tryptophan depletion under physiological and pathogenic immune 

tolerance settings such as during placentation and cancer [194, 195] where it is 

considered to be critical for establishing local immune tolerance. Among other 

candidate effectors, increased IFNG has been shown to induce IDO1 expression 

[196, 197]. Therefore, despite the apparent increase in CTL and NK cells in 

hiEBVaGCs, the activated IFNG signaling may counteract this response through 

IDO1 mediated Trp depletion (Figure 11); allowing tumor survival. 

The findings of high IDO1 levels in several cancers and studies showing 

that IDO1 is critical for tumor survival has led to intense interest in the potential of 

anti-IDO1 based immunomodulatory therapeutics [198-201]. IDO1 inhibitors, 

such as the small molecule inhibitor, 1MT, have shown anti-tumor potential in 

combination with conventional chemotherapeutic drugs [200, 201]. This raises 

the important possibility that the therapeutic response for at least the subset of 

hiEBVaGCs may similarly be enhanced by the addition of IDO1 targeting 

therapeutics. 

In our study, 156 of the genes found to be differentially expressed in 

EBVaGCs are linked to the IFNG pathway. The EBV encoded small RNAs, 

EBERs, have been shown to induce the expression of IFNG [202], and they likely 

play a significant role in the active IFNG response observed here. Despite this, 

the extensive level of secondary structure guiding the processing of the BamHI A  
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Figure 11. Model for EBV modulation of cytotoxic T-cell and natural killer 
cell function in tumor microenvironment. EBV infected gastric carcinoma cells 
recruit cytolytic immune cells such as T-cell and natural killer cells via unclear 
mechanisms. In addition, these cells induce an increase in interferon-gamma 
(IFNG) via EBERs and possibly BamHI A transcripts. Increased IFNG results in 
increased IDO1 resulting in depleted tryptophan. Depleted tryptophan results in 
T-cell and natural killer cell inhibition. 
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rightward introns during the miRNA processing steps may similarly contribute to 

the IFNG response in EBVaGCs observed here (Figure 9). 

EBVaGCs exhibit extensive nonrandom DNA methylation at the promoter 

regions of various cancer-related genes [203, 204] and has been classified as 

having the CpG island methylator phenotype (CIMP) [205]. Several studies have 

investigated possible mechanisms of promoter hypermethylation of host genes in 

association with EBV infection. LMP1 mediated activation of DNA 

methyltransferase 1 (DNMT1), through either activation of c-Jun NH2-terminal 

kinase (JNK)-activator protein-1 (AP-1) signaling [206] or through RB-E2F 

pathway activation [207], have been proposed as mechanisms in some systems. 

However, EBVaGCs do not typically express significant levels of LMP1. A study 

by Hino et al. demonstrated DNMT1 activation via LMP2A [208] raising the 

possibility that a LMP2A/DNMT1 mechanism could be involved. Nevertheless, a 

study by Chong et al. showed that DNMT expression was suppressed in 

EBVaGC and that the methylation of specific genes occurs through a mechanism 

independent of DNMT1 activation [209]. Based on this observation and on our 

findings of relatively low levels of LMP1 and LMP2A expression in EBVaGCs, we 

propose that methylation/imprinting may be downstream of more direct EBV 

inhibitory mechanisms.  The robust expression levels of the BamHI A transcripts 

in EBVaGCs put them high on the radar as candidates for this type of regulation, 

possibly through lncRNA mediated chromatin imprinting based mechanisms.  

Multiple tumor suppressors were expressed at lower levels in EBVaGCs 

including five (TFF2, RBP4, HOXA9, LRRN1, and RAP1GAP) that are known to 
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be hypermethylated in cancers [133, 144, 146, 147, 150]. Another gene 

expressed at lower levels in EBVaGCs was HNF4A, a cell-specific transcription 

factor known to regulate a large number of genes in liver, intestine, pancreas, 

and stomach [149]. Decreased expression of HNF4A has been shown in renal 

cell carcinoma [210] and has recently been shown to regulate key genes involved 

in cellular proliferation [149]. A recent study by Lucas and colleagues suggest 

that HNF4A acts as a tumor suppressor [149]. 

In addition to tumor suppressors, we also observed several candidate 

oncogenes to be expressed at lower levels in EBVaGCs including 4 (CDH17, 

CDX1, ETV4, and PPP1R1B) known to be over expressed in gastric carcinoma 

and gastrointestinal cancers [151-154]. Although EBV clearly contributes to 

cancers, its oncogenic properties are a byproduct of its life cycle rather than an 

evolved tumor promoting function. In line with this concept, the lower levels of 

these oncogenes in EBVaGCs may be a byproduct of EBV’s life cycle. 

Conversely, it is possible that the non-EBV mediated gastric carcinoma 

oncogenic pathway occurs through the up-regulation of these genes whereas the 

EBV assisted oncogenic path does not. Regardless of which of these principles 

may explain this observation, the lower levels of oncogenes in EBVaGC may 

partly explain the more favorable prognosis that is often observed in EBVaGC. 

Similarly, the lower levels of USP2, a negative regulator of p53, may help explain 

the normal to elevated levels of p53 found in EBVaGC [211, 212] and possibly 

the better responses to chemotherapeutics. 
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An increase in sonic hedgehog (SHH) expression and its activation in 

gastric carcinoma, especially H. pylori associated gastric carcinomas has been 

well established [213]. In our study, several inhibitors of both the SHH and Wnt 

pathways were found to be lower in hiEBVaGC including HHIP (SHH) and 

SHISA3, NKD2 and LRP4 (Wnt). The decrease in SSH inhibitor, HHIP, [164] 

suggests that Hedgehog activity may be higher in hiEBVaGC. Down regulation of 

HHIP in pancreatic cancer has been shown to be mediated through epigenetic 

CpG hypermethylation within the promoter region [214]. This raises the possibility 

of a specific methylation process by EBV, since we observe a significantly lower 

level of HHIP reads in the hiEBVaGC compared to loEBVaGC and EBVnGC. 

Hypermethylation of the promoter region of NKD2 has been established in 

malignant astrocytic gliomas [215], and a CpG island within the SHISA3 and 

LRP4 promoter regions have been identified [216]. This suggests that epigenetic 

silencing of these Wnt pathway inhibitors may also occur through an EBV 

mediated mechanism. 
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sequencing suggests no virus and tumor association 
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6.1 Abstract 

The intent of this study was to further investigate the reported association 

between GBM and HCMV using next generation sequencing technology. A large-

scale comprehensive virome assessment of publicly available brain tissue 

sequencing datasets from several sources including the Cancer Genome Atlas 

(TCGA) was performed. Sequence datasets from low-grade gliomas and 

meningiomas were also analyzed. Although a low abundance of viral reads were 
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detected in some samples, further analysis determined that these reads were 

likely artifacts or incidental infections. For instance, human herpesvirus (HHV) 6 

and 7 aligned viral reads were found in all WGS and some RNA-seq datasets 

but, further analysis demonstrated that these were probably derived from the 

homologous human chromosomal telomeric-like repeats, TAACCC. In addition, 

despite detection of low level EBV viral reads, these reads were likely from 

infiltrating B-cells. Finally, low level HCMV reads were detected but were 

determined to likely originate from laboratory expression vector contamination. 

No viruses were associated with meningiomas. This analysis raises the 

possibility that viruses may not be associated with GBM. 

 

6.2 Introduction 

Glioblastoma multiforme (GBM) is the most common malignant primary 

brain tumor in adults. An estimated 68,470 new cases of primary CNS tumors are 

expected to be diagnosed in the United States in 2015 [217]. Of these, 23,180 

will be diagnosed as malignant [217]. Although the incidence of primary brain 

tumors is low compared to other cancer types, primary brain tumors give rise to a 

disproportionate amount of morbidity and mortality, often robbing patients of 

basic and critical functions such as movement and speech [218, 219]. The 

median survival of newly diagnosed patients is only 12-15 months, making it one 

of the most devastating types of cancers [220]. In fact, the five-year survival rate 

for primary malignant brain and central nervous system tumors is the sixth lowest 

among all types of cancers after pancreatic, liver & intrahepatic bile duct, lung, 
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esophageal, and stomach [218]. Unfortunately, despite increasing knowledge of 

the disease mechanisms and advances in currently available treatment options, 

outcomes for GBM patients remain dismal [220]. 

Although an association of human cytomegalovirus (HCMV) and GBM 

was first observed in 2002 [221], there is still a high degree of discordance in the 

literature regarding the detection of viral agents in CNS tumors [60, 77, 221-243]. 

These discrepancies have been attributed to a number of issues including the 

use of different cohorts, differences in sensitivities of different PCR assays for 

low levels of viral gene expression, and the exquisite sensitivities of assays such 

as IHC to slight differences in experimental conditions. 

In an attempt to remedy the high degree of discordance in the literature 

regarding the detection of HCMV in CNS tumors, an HCMV and glioma 

symposium was convened in Washington, DC on April 17, 2011. At the 

conclusion of this workshop, a summary paper was published reporting the 

consensus position in 4 major areas: 1) existence of HCMV in gliomas, 2) role of 

HCMV in gliomas, 3) HCMV as a therapeutic target, and 4) key future 

investigative directions [244]. Based on the evidence presented at the workshop, 

it was concluded that HCMV sequences and viral gene expression exist in many 

malignant gliomas and that in vitro studies support the idea that HCMV can 

modulate key signaling pathways in glioblastomas [244]. 

Next generation sequencing (NGS) technology has the ability to globally 

interrogate the genetic composition of biological samples in an unbiased manner 

and with relatively high sensitivity. Applying this technology to pathogen 
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discovery has already shown promise, resulting in the discovery of a novel 

Merkel cell polyomavirus in Merkel cell carcinoma [40], for example. In our 

laboratory, we have utilized NGS technology in the interrogation of Epstein-Barr 

virus in diffuse large B-cell lymphomas [95] and gastric carcinoma [61]. The goal 

for the study presented here was to help resolve the lingering controversy 

pertaining to the presence of HCMV in GBM while at the same time providing a 

comprehensive and unbiased assessment of the viral genetic composition of 

brain tumor biopsies. This analysis failed to find convincing evidence for an 

association between HCMV or other known viruses and GBM, low-grade gliomas 

or meningiomas. In addition, we expand on our previous reporting of potential 

contamination and/or interpretational artifacts in next generation sequencing 

approaches that need to be considered in next generation sequencing based 

metagenomic and metatranscriptomic studies [245-247]. 

 

6.3 Materials and Methods 

6.3.1 Clinical tumor sample and sequence data acquisition 

All human specimens were de-identified prior to acquisition. Fresh frozen tissue 

from 2 GBM samples was obtained from the Louisiana Cancer Research 

Consortium (LCRC) Biospecimen Core. In addition, total RNA from 4 GBM 

samples was obtained from the Biospecimen Repository at Bioserve (Beltsville, 

MD). Next generation sequencing datasets from The Cancer Genome Atlas 

(TCGA) initiative were downloaded from the Cancer Genomics Hub (CGHub; 

https://cghub.ucsc.edu) and included RNA-seq datasets (unaligned fastq files) 
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from primary GBM tumors (n=157), recurrent GBM tumors (n=13), low grade 

gliomas (LGG; n=514), recurrent low grade gliomas (n=17), and normal brain 

(n=5), and TCGA whole genome sequencing datasets (aligned bam files) from 

primary GBM tumors (n=51), recurrent GBM tumors (n=10), and normal matched 

blood samples (n=20). The aligned bam files were converted to fastq files using 

bam2fastq (http://www.hudsonalpha.org/gsl/information/software/bam2fastq, 

default parameters). 

Additional brain tissue sequencing datasets were obtained from the NCBI 

Sequence Read Archive. A cohort of RNA-seq datasets from MRI-localized 

biopsies of the tumor core and margins from multiple glioma patients and non-

neoplastic brain tissue specimens were downloaded using accession number 

SRP044668. Non-neoplastic brain tissue samples were obtained from multiple 

patients undergoing procedures to alleviate epilepsy symptoms or to place 

shunts to treat normal pressure hydrocephalus. In total, RNA-seq datasets from 

39 contrast-enhancing glioma core samples, 36 non-enhancing FLAIR glioma 

margin samples, and 17 non-neoplastic brain tissue samples were 

analyzed.[248] RNA-seq datasets from tumor and peripheral brain tissue of a 

GBM patient were obtained using accession number SRP009144 [249]. Normal 

brain tissue RNA-seq dataset from the Illumina Human Body Map 2.0 project was 

obtained using (NCBI GEO accession GE30611). RNA-seq datasets from a 

cohort of short-term cultures of glioma stem-like cells freshly isolated from nine 

patients diagnosed with primary GBM were downloaded using accession number 

SRP016798. Two reference RNA samples (Universal Human Reference RNA; 
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UHRR and Human Brain Reference RNA; HBRR) established by the US FDA-led 

MicroArray Quality Control (MAQC) project [250] were sequenced by Chen et al 

and downloaded using accession number SRP007351 [251]. The UHRR sample 

consists of total RNA from 10 human cell lines including B lymphocytes, T-

lymphocytes, brain, breast, cervix, liposarcoma, liver, macrophage, skin, and 

testis. The HBRR sample consists of total RNA from several regions of the brain 

from 23 adult donors. In addition, six HBRR RNA-seq datasets from three lanes 

of sequencing from other study by Au et al was obtained using accession number 

SRP002274 [252]. RNA-seq datasets from four biological replicates from a 

common GBM cell line, U87MG, was obtained using accession number 

SRP006970 [253]. Six RNA-seq datasets from an Alzheimer’s disease (AD) 

study (3 normal brain and 3 AD samples) were obtained using accession number 

SRP004879 [254]. In addition, to serve as a positive control, RNA-seq datasets 

from human foreskin fibroblasts infected with human cytomegalovirus (HCMV) 

(n=16) were obtained from SRP016143 [255]. Finally, 64 whole genome 

sequencing datasets from 11 Grade I meningiomas and 11 matched blood 

samples were obtained using accession number SRP016129 [256]. 

 

6.3.2 Sample preparation and next generation RNA sequencing 

Total RNA was extracted from 3 primary GBM biopsies (00RTS3 – from 

LCRC; and CAURPRVE and H8CPFRSJ – from Bioserve) using Trizol 

(Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. Furthermore, 

total RNA was isolated from a lymphoblastoid cell line immortalized with EBV, 
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JY. Total RNA from sample 00RTS3 was subjected to polyadenylation selection 

and a cDNA library was prepared using the Epicenter ScriptSeq Protocol and 

subjected to 2x101 base paired-end sequencing on an Illumina Hi-seq 2000 

machine. Total RNA from samples CAURPRVE, H8CPFRSJ, and JY were 

subjected to a ribosomal RNA depletion using the Ribo-Zero kit (Epicentre, 

Madison, WI) and cDNA libraries were prepared using the Illumina Truseq 

Stranded Total RNA Sample Prep Kit and subjected to 1x101 base single-end 

multiplexed sequencing on an Illumina Hi-seq 2000 machine. 

 

6.3.3 Metatranscriptomic Analysis using RNA CoMPASS 

Metatranscriptomic analysis was performed by running a single-end or 

one pair of the paired-end sequencing data through our automated RNA-seq 

exogenous organism analysis software, RNA CoMPASS [83]. Within RNA 

CoMPASS, reads were aligned to the human reference genome, hg19 (UCSC), 

plus a splice junction database (which was generated using the make 

transcriptome application from Useq [50]; splice junction radius set to the read 

length minus 4) using Novoalign V3.00.05 (www.novocraft.com) [-o SAM, default 

options]. Non-mapped reads were subjected to a BLAST V2.2.30 search against 

the Human RefSeq RNA database to identify and remove human reads that fail 

to be identified through the Novoalignment. Remaining non-human reads were 

then subjected to a BLAST V2.2.30 search against the NCBI NT database to 

identify reads corresponding to known exogenous organisms [52]. Results from 

the NT BLAST searches are filtered to eliminate matches with an E-value of 
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greater than 10e-6. The results are then fed into MEGAN 4 V4.70.4 for 

visualization of taxonomic classifications [53]. RNA CoMPASS was run in parallel 

on three 2x2.66 GHz 12 core Intel Xeon Mac Pro computers with 64-96GBs of 

memory each. 

 

6.3.4 Viral Transcriptome Analysis 

Raw sequence data from RNA-seq and DNA-seq were aligned to a 

reference genome containing a human genome (hg19; Genome Reference 

Consortium GRCH37) plus a library of 740 virus sequences (including sequences 

from all known human viruses documented by NCBI) [257]. The alignments were 

performed using Spliced Transcripts Alignment to a Reference (STAR) aligner 

version 2.3.0 [--clip5pNbases 6 (only used if reads were longer than 36 base 

pairs), default options] [85]. Uniquely mapped viral and human reads were 

quantified using in-house computational pipelines. Signal maps (i.e. the total 

number of reads covering each nucleotide position) from viruses of interest were 

generated using IGV tools and were subjected to manual visual inspection using 

the IGV genome browser [87]. 

 

6.4 Results 

6.4.1 No Viruses detected in The Cancer Genome Atlas GBM RNA-seq 

datasets  

To determine the metatranscriptomic profile of brain tumors, we analyzed 

multiple brain tissue sequencing datasets, including the robust cohort of high-
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grade gliomas from The Cancer Genome Atlas (TCGA) using the Spliced 

Transcripts Alignment to a Reference (STAR) aligner. As expected, our analysis 

of the RNA-seq datasets from primary high-grade gliomas demonstrated no 

known exogenous viruses present in these samples (Figure 1). Although low 

levels of viral reads were detected in these datasets, a liberal threshold of greater 

than 1 viral read per million human mapped reads (RPMH) was used to call a 

sample positive in order to minimize false negatives. Based on this criterion, out 

of the 157 primary high-grade glioma RNA-seq datasets analyzed, no virus within 

a given sample, reached our 1 RPMH threshold in these samples (Figure 1). 

Extremely low abundance of HCMV (1 viral read; 0.02 RPMH), Epstein-Barr virus 

(EBV) (1-6 viral reads; 0.02 – 0.13 RPMH), and simian virus 40 (SV40) (1 viral 

read; 0.02 RPMH) were detected in 1, 3, and 3 samples, respectively. Despite 

not meeting our viral detection threshold, due to the historical significance of 

these viruses with GBM, manual Blast inspection of these viral reads was 

performed. This analysis showed that the both HCMV and EBV reads identified 

were homologous to their respective viral isolates, while the SV40 reads were 

likely from laboratory expression vector contamination. Even with the addition of 

RNA-seq datasets derived from recurrent high-grade gliomas, no detected 

viruses were considered true infections. Although one sample exhibited human 

herpesvirus (HHV) 6 and 7 reads measuring 2.1 RPMH, manual inspection of the 

raw sequence reads consisted of human chromosomal telomeric-like repeats, 

TAACCC (data not shown). Similarly, no detected viruses were considered true 

infections in normal brain tissue derived RNA-seq datasets. 
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Figure 1. Virome analysis of brain tumor RNA-seq datasets.  
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6.4.2 Virome analysis of GBM whole genome sequencing reveals no true viral 

association  

To explore the possibility that viruses infecting brain tissue become 

transcriptionally dormant, resulting in the lack of virus detection in RNA-seq 

datasets, we subjected TCGA GBM whole genome sequencing (WGS) datasets 

to our virome analysis pipeline. Analysis of viruses at the DNA level was 

relatively unremarkable with the highest reads in the GBM WGS datasets derived 

from Human Adenovirus C (HAdV-C) (TCGA-14-1401 = 38 and TCGA-06-0214 = 

36) (Figure 2). The highest viral reads identified in the GBM recurrent WGS 

datasets were derived from EBV (TCGA-19-1389 = 1,454 and TCGA-06-0171 = 

80) (Figure 2). Similar to observations at the RNA level, low abundance of 

viruses were detected at the DNA level. Since we analyzed 51 primary GBM 

WGS datasets, from which 20 matching blood control samples were analyzed, 

we were able to compare virus levels from the tumor and corresponding blood to 

infer tumor specific or generalized infection. For instance, 2 HCMV viral reads 

were present in 1 GBM WGS dataset (TCGA-14-1823) but not the corresponding 

blood matched control. In contrast, one HCMV viral read was present in 1 blood 

matched control dataset (TCGA-41-5651) but not the corresponding tumor 

dataset. Manual blast of these HCMV reads from the tumor demonstrated 

homology to HCMV laboratory expression vector sequences, as demonstrated by 

Tang et et al [237]. The Blast data from the single HCMV read derived from the 

blood matched control showed homology to HCMV Merlin strain and may in fact 

exemplify a bona fide infection,  
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Figure 2. Virome analysis of brain tumor whole genome sequencing 
datasets. 
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however, with only 1 viral read detected and without access to tissue for 

validation studies, it is impossible to determine the origin. EBV reads were 

detected in 9 GBM WGS datasets (TCGA-14-1401 = 39, TCGA-06-0145 = 3, 

TCGA-14-1823 = 3, TCGA-02-2483 = 1, TCGA-06-0185 = 1, TCGA-06-0214 = 1, 

TCGA-06-0152 = 1, TCGA-06-0210 = 1, TCGA-26-1438 = 1) for which 6 out of 9 

samples analyzed had corresponding blood matched samples (TCGA-14-1401 = 

2, TCGA-06-0145 = 1, TCGA-14-1823 = 0, TCGA-02-2483 = 0, TCGA-06-0185 = 

0, TCGA-06-0214 = 0). Four additional normal blood samples (TCGA-06-2557 = 

5, TCGA-41-5651 = 1, TCGA-27-1831 =1, and TCGA-32-1970 = 1) were EBV 

positive. Upon further analysis of the raw EBV reads, the 39 viral reads from 

sample TCGA-14-1401 consisted of repeats and when blasted, no significant 

similarity was found to any sequences in the nt database. EBV reads from the 

other samples, although low in abundance, were determined to be true infections 

based on blasting analysis and likely originated from infiltrating B-cells. EBV read 

coverage analysis for the two positive GBM recurrent samples (TCGA-19-1389 

and TCGA-06-0171) displayed viral genome coverage across the entire genome 

consistent with true infection (Figure 3). Despite EBV presence in the GBM 

recurrent samples, EBV was not identified in the WGS datasets from the primary 

GBM samples taken from the same patient. Finally, 1 EBV read was identified in 

the WGS primary GBM and recurrent GBM datasets for sample TCGA-06-0152. 

Torque Teno Viruses were identified in three normal blood samples (TCGA-06-

2557 = 63, TCGA-27-2485 = 3, and TCGA-27-1831 = 2). Finally, although a high 

level of HHV- 6 and 7 reads were detected in all WGS samples, manual 
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Figure 3. EBV gene coverage for recurrent GBM samples. Data was 
displayed using the Integrative Genomics Viewer (IGV) using the (A) EBV Akata 
genome (GenBank accession number KC207813). The y axis represents the 
number of reads at each nucleotide position in the genome. 
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inspection of the raw sequence reads consisted of human chromosomal 

telomeric-like repeats, TAACCC (data not shown). 

 

6.4.3 Assessment of sequence library preparation strategies 

To rule out limitations in sequence library preparation strategies (e.g. poly-

A selected RNA vs. ribosomal depleted RNA) or use of different cohorts, we 

procured several publicly available sequencing studies relating to GBM. Since 

virome analysis was not previously performed on these publicly available 

datasets, we implemented a two-part virus detection approach in which we 

analyzed all the samples through our custom pathogen detection pipeline, 

RNACoMPASS [83], which analyzed the entire metatranscriptome. We also 

implemented the STAR aligner [85] approach, as previously utilized for the 

analysis of the TCGA datasets, for a more focused virome analysis. 

Although viral mRNAs can be polyadenylated, to confirm we were not 

disregarding viral reads that may be present in the sample, we compared virus 

detection levels between poly-A selected and ribosomal depleted RNAs. To 

supplement this analysis, we sequenced ribosomal depleted RNA from 2 of our 

own GBM samples. Based on our analysis of this cohort, we show that there was 

no association with any known viruses in the polyA selected RNA samples 

(00RTS3 and SRR359291-tumor) (Figure 1) using either RNA CoMPASS or 

STAR. Preliminary virus detection of ribosomal depleted RNA samples 

(CAUPRVE and H8CPFRSJ) revealed reads from the murine leukemia virus 

(MuLV) family (2.4 and 4.3 RPMH, respectively) and low abundance of EBV (0.8 
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and 1.9 RPMH, respectively). Visual inspection of MuLV reads showed active 

infection, while EBV read coverage demonstrated a typical type III latency profile 

(Figure 4). Intrigued by the EBV latency profile in these samples, we performed 

further analysis which uncovered that both the MuLV and EBV reads originated 

from another sample (JY – an EBV-immortalized B cell lymphoblastoid cell line, 

which has been shown to be infected with MuLV [76]) that was sequenced in the 

same sequencing lane as these two samples (Figure 4). Two poly-A selected 

RNA datasets (SRR359291-normal and normal brain-BodyMap) derived from 

normal brain also exhibited no association with any known virus (Figure 1). 

 

6.4.4 Analysis of tumor tissue sampling 

Since GBM are very heterogeneous solid tumors, sampling of the tumor 

mass may result in different outcomes. To investigate this issue, we took 

advantage of a well-designed study in which the authors sequenced MRI-

localized biopsies of the tumor core and margins from multiple GBM patients. 

The authors also sequenced several non-neoplastic brain tissue samples [248]. 

Virome assessment of this cohort using RNA CoMPASS detected no viruses with 

confirmed associations. However, preliminary assessment of this cohort using 

STAR detected Human Immunodeficiency virus type 1 (HIV-1) at levels greater 

than 1 viral RPHM in 2 glioma samples (SRR1521376 – 5.5 RPHM and 

SRR1521377 – 5.3 RPHM) taken from the non-enhancing FLAIR portion 

(margins) of the tumor and 2 glioma samples (SRR1521406 – 4.2 RPHM,  
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Figure 4. Viral gene analysis. Data was displayed using the Integrative 
Genomics Viewer (IGV) using the (A) EBV Akata genome (GenBank accession 
number KC207813) and (B) MuLV Abelson genome (GenBank accession 
number NC_001499). The y axis represents the number of reads at each 
nucleotide position in the genome. 
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SRR1521404 – 3.1 RPHM) taken from the contrast enhancing portion (core) of 

the tumor. For completeness, 1 non-neoplastic sample (SRR1521437 – 0.37 

RPHM) and 2 additional contrast enhancing core samples (SRR1521401 – 0.16 

RPHM, and SRR1521414 – 0.04 RPHM) were included in the HIV-1 positive 

cohort for further analysis. Visual inspection of the HIV-1 reads revealed the 

majority of HIV-1 reads aligned to the long terminal repeat (LTR) regions and 

homologous regions of the expression vector pH1TO, as demonstrated in Figure 

5. MuLV reads were also detected in 33 out of the 36 glioma samples (0.03 – 

5.74 RPHM) taken from the non-enhancing FLAIR portion of the tumor, 35 out of 

the 39 glioma samples (0.03 – 12.72 RPHM) taken from the contrast enhancing 

portion of the tumor, and 15 out of the 17 non-neoplastic samples (0.03 – 3.33 

RPHM). Similar to the origin of the HIV-1 reads, visual inspection of the MuLV 

reads demonstrated sparse coverage, as demonstrated in Figures 6-8. Finally, 

although the level of HCMV reads did not exceed 1 viral RPHM in any given 

sample, for completeness, all detected HCMV reads including 14 glioma samples 

from non-enhancing FLAIR portions (0.03 – 0.21 RPHM) and 12 glioma samples 

from contrast enhancing portions (0.04 – 0.25) were analyzed further. Based on 

visual inspection of the HCMV reads, all reads aligned to the HCMV immediate 

early promoter (Figures 9-10). Therefore, after final validation analysis, the 

virome analysis of this cohort demonstrated no association with any known 

viruses (Figure 1). 
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Figure 5. HIV gene coverage analysis for MRI-localized biopsies. Data was 
displayed using the Integrative Genomics Viewer (IGV) using the HIV-1 genome 
(GenBank accession number NC_001802). The y axis represents the number of 
reads at each nucleotide position in the genome. Samples SRR1521376, 
SRR1521377, SRR1521406, and SRR1521404 are displayed with a max read 
level of 20, while the max read level for the other samples is 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  
	
  

	
  

151 

 



	
  
	
  

	
  

152 

Figure 6. MuLV gene coverage analysis for MRI-localized non-enhancing 
biopsies. Data was displayed using the Integrative Genomics Viewer (IGV) 
using the MuLV Abelson genome (GenBank accession number NC_001499). 
The y axis represents the number of reads at each nucleotide position in the 
genome. Samples SRR1521374 and SRR1521378 are displayed with a max 
read level of 20, while the max read level for the other samples is 10. 
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Figure 7. MuLV gene coverage analysis for MRI-localized contrast biopsies. 
Data was displayed using the Integrative Genomics Viewer (IGV) using the MuLV 
Abelson genome (GenBank accession number NC_001499). The y axis 
represents the number of reads at each nucleotide position in the genome. 
Sample SRR1521391 is displayed with a max read level of 40, while the max 
read level for the other samples is 10. 
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Figure 8. MuLV gene coverage analysis for MRI-localized non-neoplasm 
biopsies. Data was displayed using the Integrative Genomics Viewer (IGV) 
using the MuLV Abelson genome (GenBank accession number NC_001499). 
The y axis represents the number of reads at each nucleotide position in the 
genome. Samples SRR1521374 and SRR1521378 are displayed with a max 
read level of 20, while the max read level for the other samples is 10. 
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Figure 9. HCMV gene coverage analysis for MRI-localized non-enhancing 
biopsies. Data was displayed using the Integrative Genomics Viewer (IGV) 
using the HCMV genome (GenBank accession number NC_006273). The y axis 
represents the number of reads at each nucleotide position in the genome. 
Samples are displayed with a max read level of 5. 
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Figure 10. HCMV gene coverage analysis for MRI-localized contrast 
biopsies. Data was displayed using the Integrative Genomics Viewer (IGV) 
using the HCMV genome (GenBank accession number NC_006273). The y axis 
represents the number of reads at each nucleotide position in the genome. 
Samples are displayed with a max read level of 3. 
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6.4.5 Virome analysis of TCGA low-grade gliomas 

To study if low-grade gliomas may be associated with viruses, RNA-seq 

datasets from 514 primary low-grade gliomas and 17 recurrent low-grade 

gliomas from the TCGA were subjected to comprehensive virome analysis. Due 

to the magnitude of samples and the accurate, yet fast, approach of our STAR 

analysis, we decided to only use this approach and not perform our RNA 

CoMPASS analysis on this cohort. Based on our analysis, Human Papillomavirus 

(HPV) 16 was detected in 25 out of 514 samples (0.01 – 2.43 RPHM). However, 

HPV-16 coverage analysis showed only 3 samples with gene coverage within 

both the HPV-16 oncogenic genes E6 and E7 (TCGA-S9-A6WD, TCGA-FG-

A711, TCGA-VV-A829) (Figure 11).  In addition, HPV-58 was detected in 3 

samples (0.01 – 1.90 RPHM) and Hepatitis B reads were detected in 3 samples 

(0.02 – 13.01 RPHM). Viral read coverage analysis of samples positive for HPV-

58 demonstrated 1 sample with gene coverage within HPV-58 genes E6, E7, and 

the E2/E4/E5 region (TCGA-DU-A7TA), although the read coverage is low and 

sequence artifact cannot be ruled out (Figure 12). Finally, viral read coverage 

analysis of samples positive for hepatitis B (HBV) reads displayed 1 sample with 

adequate HBV read coverage within the HBVgp1/HBVgp2/HBVgp3 region where 

coverage abruptly stops. Furthermore, the majority of HBV reads align to the 

HBVgp3 gene, which encodes the HBx protein (TCGA-QH-A6CS) (Figure 13). 

There were no viruses associated with the 17 recurrent low-grade gliomas 

(Figure 1). 
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Figure 11. HPV-16 gene coverage analysis for low grade gliomas. Data was 
displayed using the Integrative Genomics Viewer (IGV) using the HPV-16 
genome (GenBank accession number NC_001526). The y axis represents the 
number of reads at each nucleotide position in the genome. Samples TCGA-S9-
A6WD, TCGA-FG-A711, and TCGA-VV-A829 are displayed with a max read 
level of 20, while the max read level for the other samples is 10. 
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Figure 12. HPV-58 gene coverage analysis for low grade gliomas. Data was 
displayed using the Integrative Genomics Viewer (IGV) using the HPV-58 
genome (GenBank accession number NC_00). The y axis represents the number 
of reads at each nucleotide position in the genome. Samples are displayed with a 
max read level of 20. 
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Figure 13. Hepatitis B gene coverage analysis for low grade gliomas. Data 
was displayed using the Integrative Genomics Viewer (IGV) using the Hepatitis B 
genome (GenBank accession number NC_003977). The y axis represents the 
number of reads at each nucleotide position in the genome. Sample TCGA-QH-
A6CS is displayed with a max read level of 100, while the max read level for the 
other samples is 10. 
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6.4.6 Investigation of other brain tissue sequence datasets 

To evaluate other sources of brain tissue samples, two reference RNA 

samples (Universal Human Reference RNA; UHRR and Human Brain Reference 

RNA; HBRR) established by the US FDA-led MicroArray Quality Control (MAQC) 

project [250] were obtained from Au et al [252] and Chen et al [251] and 

analyzed using our two-step virus detection approach. Also analyzed was RNA-

seq datasets from a cohort of short-term cultures of glioma stem-like cells freshly 

isolated from nine patients diagnosed with primary GBM and a common GBM 

cell line, U87MG. STAR analysis of the HBRR samples from Au et al indicated 

the only viruses approaching greater than 1 viral RPHM were Shamonda virus, 

Simbu virus, and MuLV. However, this observation was not validated in the RNA 

CoMPASS analysis. Interestingly, the Star virome analysis of the two HBRR and 

two UHRR samples from Chen et al demonstrated human herpesvirus (HHV) 1, 

HHV-2, HHV-8, Torque Teno Virus, MuLV, Shamonda virus, and Simbu virus. 

Again, the RNA CoMPASS analysis did not verify these observations. The UHRR 

samples served as positive controls with the following viruses detected using 

STAR, HHV-1, HHV-2, HHV-8, MuLV, Shamonda virus, Simbu virus, HPV-18, 

and HPV-45. However, the only virus that was validated using RNA CoMPASS 

analysis was HPV-18. Furthermore, differences in viral reads detected were 

observed between the 2 UHRR samples sequenced (data not shown). Manual 

blasting of the Shamonda and Simbu viral reads showed similar homology with 

human ribosomal subunits, indicating that these reads were likely human in origin 

(data not shown). Furthermore, MuLV read coverage analysis demonstrated 
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spare genome coverage (Figure 14). Therefore, based on our analysis, no 

confirmed viruses were associated with the HBRR samples (Figure 1). 

HAdV-C was detected in all 24 glioma stem-like cell cultures (0.04 RPHM 

– 3.17 RPHM), of which 9 samples had HAdV-C reads greater than 1 RPHM 

(SRR608893 – 3.2 RPHM, SRR608895 – 3.0, SRR608898 – 2.8, SRR608894 – 

2.4, SRR608900 – 2.2 RPHM, SRR608896 – 1.8 RPHM, SRR608901 – 1.5 

RPHM, SRR608899 – 1.5 RPHM, SRR608897 – 1.2 RPHM). HAdV-C reads 

were also detected using RNA CoMPASS in these samples. However, HAdV-C 

read coverage analysis showed sparse read coverage with common regions 

represented in the majority of samples (Figure 15). Further manual blast analysis 

of the HAdV-C reads demonstrated homology with laboratory vectors (data not 

shown). Low level HCMV reads were detected in 3 gliomas stem-like cell culture 

samples (0.03 – 0.1 RPHM). Visual analysis of the HCMV reads confirmed that 

all reads aligned with the HCMV IE1 promoter (Figure 16). In addition, RNA 

CoMPASS analysis did not show HCMV in these samples. The only virus to 

reach our 1 RPHM threshold in the U87MG cell line data was Simbu virus, 

however, this observation was not seen in the RNACoMPASS analysis. Based 

on our assessment, no confirmed viruses are associated with these two cohorts 

(Figure 1). 

To determine if other brain pathologies are associated with viruses, we 

analyzed RNA-seq datasets from 3 Alzheimer’s patients and 64 WGS datasets 

from 11 patients with grade I meningiomas and their matched blood control  
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Figure 14. MuLV gene coverage analysis for cell line samples. Data was 
displayed using the Integrative Genomics Viewer (IGV) using the MuLV Abelson 
genome (GenBank accession number NC_001499). The y axis represents the 
number of reads at each nucleotide position in the genome. Samples are 
displayed with a max read level of 35. 
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Figure 15. Human Adenovirus C gene coverage analysis for gliomas stem 
cell samples. Data was displayed using the Integrative Genomics Viewer (IGV) 
using the Human Adenovirus C genome (GenBank accession number 
NC_001405). The y axis represents the number of reads at each nucleotide 
position in the genome. Samples are displayed with a max read level of 30. 
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Figure 16. HCMV gene coverage analysis for gliomas stem cell samples. 
Data was displayed using the Integrative Genomics Viewer (IGV) using the 
HCMV genome (GenBank accession number NC_006273). The y axis 
represents the number of reads at each nucleotide position in the genome. 
Samples are displayed with a max read level of 10. 
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samples. No confirmed viruses were associated with Alzheimer’s disease (Figure 

1). Initially, Shamonda and Simbu viruses were detected using STAR, however, 

since all 3 Alzheimer’s samples along with the 3 normal control samples were 

positive, it is unlikely that these viruses are associated with Alzheimer’s disease. 

Furthermore, RNA CoMPASS analysis did not validate the presence of these 

viruses in any of the samples. Low level HCMV reads were detected in 3 

Alzheimer’s disease samples (0.07 – 0.15 RPHM). Visual analysis of the HCMV 

reads displayed reads aligning to the HCMV IE1 promoter in samples 

SRR085473 and SRR087416. In addition there was a HCMV read in sample 

SRR085473 that did not match HCMV using Blast. Blast analysis of the HCMV 

read in sample SRR085726 revealed homology to HCMV (data not shown). 

Finally, RNA CoMPASS analysis did not show HCMV in these samples.  

Analysis of the WGS datasets from the meningioma samples 

demonstrated no confirmed association with viruses as shown in Figure 2. 

Similar to our analysis of the GBM WGS datasets, low abundance of EBV reads 

were detected in 3 tumor samples and 4 normal blood samples, suggesting these 

reads came from B-cells. Furthermore, the HHV-6 and HHV-7 reads detected in 

all 22 samples consisted of human chromosomal telomeric-like repeats, 

TAACCC (data not shown). 

 

6.5 Discussion  

Although there was a consensus reached from the HCMV/GBM 

symposium in 2011, emerging studies using NGS to assess the viral association 
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with GBM has been unable to recapitulate this association [60, 77, 237-239]. In 

line with these previous studies, our data further supports no direct viral 

association with high-grade gliomas. There may be a possible association of 

HPV-16, HPV-58, and Hepatitis B with low-grade gliomas however, additional 

validation studies are required before any conclusions can be drawn from our 

initial assessment. Furthermore, based on the low abundance of viral reads that 

were identified, the chances that these viruses are truly associated and not 

derived from sequence artifact are relatively low. Finally, although the viral 

detection threshold for RNA-seq datasets is relatively low with 1 RPHM, this 

minimized any potential false negative results, especially given the fact that 

positive reports of HCMV in GBM have reported relatively low abundance of the 

virus [244]. Potential positive results were analyzed further to determine if the 

result was a true positives or a false positive. 

The hallmark of herpesviruses, and their key to persistence within their 

host, is their ability to switch to a highly restricted gene expression pattern that 

allows avoidance of attacks from the immune system.  Similarly, other viruses 

that contribute to cancer typically exist in a manner that allows a more limited 

pattern of gene expression. To overcome this potential viral adaptation, WGS 

datasets were analyzed. Based on our analysis, we did not identify any validated 

viruses present in the analyzed samples. This is in contrast to a report by Amirian 

et al. in which they identified HHV-6A and HHV-6B in the WGS datasets from 

TCGA [243]. Another study conducted by Cimino et al. also identified HHV-6 and 

EBV DNA when they analyzed unmapped reads from a NGS-based 
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comprehensive oncology panel [238]. Although our initial investigation detected 

the presence of HHV-6 and HHV-7 viruses, further analysis of these viral reads 

revealed all reads consisted of human chromosomal telomeric-like repeats, 

TAACCC. Although HHV 6 and 7 have sequences homologous to this region, no 

other regions of the viral genome were represented. Therefore, our data 

suggests these reads originated from the telomeric region of human 

chromosomes and does not represent bon a fide HHV6 or HHV7 infection. 

EBV DNA reads were identified in a number of the TCGA datasets 

analyzed including 9 GBM WGS samples, 6 normal matched blood WGS 

samples with 4 additional normal blood WGS samples, and 3 GBM recurrent 

WGS samples. In addition, we identified EBV DNA reads in 3 grade I 

meningioma samples and 4 normal blood samples. All EBV DNA reads identified 

were low in abundance with 1 – 39 reads detected in GBM, 1-5 reads detected in 

normal blood samples, and 1 – 15 reads detected in grade 1 meningiomas, 

which are similar to the finds of Cimino et al in which they identified EBV in 5 

GBM samples with a range of 1 – 18 reads [238]. In addition, we identified 3 

GBM recurrent samples using WGS datasets that were EBV positive with 1 

sample with moderate EBV levels (1454 viral reads) and another sample with 80 

viral reads. Although these two GBM recurrent WGS datasets were positive for 

EBV, the corresponding RNA-seq datasets failed to validate these findings. 

Therefore, without tissue to validate these findings, it is impossible to determine 

the origin of these viral reads and we do not feel confident in calling these 

recurrent GBM samples EBV positive. In addition, based on our past experience 
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in the field of EBV, if EBV was truly associated, we would likely see greater than 

100 viral RPHM for RNA-seq and thousands of viral reads for DNA-seq. Finally, 

given the ubiquitous nature of EBV, our extensive experience into EBV’s biology, 

the low viral count, and presence of EBV in both tumor and blood samples in 

relatively equal proportions, we postulate that the EBV reads detected are likely 

from B-cells previously infected with EBV. 

Although initially it appeared as though ribosomal depleted RNA may 

provide additional clues into a viral association with GBM, these observations 

were later negated upon further assessment. Based on our analysis it was 

concluded that the EBV and MuLV positivity demonstrated in our two ribosomal 

depleted RNA-seq samples was a result of sequence lane contamination with 

another sample that was also sequenced in the same lane. Our group recently 

encountered this issue of sequence lane contamination in another study in which 

we were analyzing the virome of several publically available lymphoma cell lines 

and found several samples containing reads originating from one of the 

sequenced samples [245]. 

Due to the nature of GBM, there is a possibility for a preponderance of 

necrotic tissue within the tumor bulk sample. However, given the large number of 

samples analyzed and the careful procurement of samples by TCGA, it is unlikely 

that the majority of samples fall within this scenario. Furthermore, our analysis of 

the MRI-localized GBM biopsies from Gill et al did not detect any known viruses 

and there were no differences between samples obtained from the core 



	
  
	
  

	
  

180 

(presumably more necrotic) and those samples obtained from the tumor margin 

(presumably less necrotic, with active tumor growth and neoangiogenesis) [248]. 

The identification of HPV-16, HPV-58 and HBV in a small portion of LGG 

RNA-seq datasets is an interesting finding. Both HPV-16 and HPV-58 are 

considered high-risk HPV types, which are causative agents in the development 

of cervical carcinoma. The likely mechanism of action for both HPV-16 and HPV-

58 is viral integration into the host genome [258, 259]. Visual analysis of the HPV 

positive LGG datasets indicate that some of the samples demonstrate potential 

evidence of integration with disruption of the viral E1 gene, although the read 

depth is low, as shown in Figures 11-12. All potential positive HPV samples show 

the majority of read coverage aligning to viral genes E6 and E7. Due to the low 

viral read numbers detected in our study additional validation experiments are 

warranted to determine if there is an association between low-grade gliomas and 

HPV. Interestingly, the mechanism of action for HBV is also integration into the 

host genome. Visual analysis of the HBV positive LGG datasets demonstrated 

robust gene coverage within the HBVgp1/HBVgp2/HBVgp3 region with an abrupt 

termination of gene coverage after HBVgp3, as shown in Figure 13. Interestingly, 

the majority for reads align within the HBVgp3 gene, which encodes for the HBx 

protein. It has been shown that HBx protein plays a critical role in pathogenesis 

of hepatocellular carcinoma [260-262]. While this observation is interesting, given 

the fact that adequate HBV reads were detected in only 1 sample out of 544 LGG 

datasets, further analysis is necessary to validate this observation. 
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Although several viruses were identified in 1 UHRR sample from the Chen 

et al [251] cohort, the other UHRR sample from the same cohort did not 

recapitulate the viral reads detected. The only viral reads that were consistent 

between the two UHRR samples was HPV-18, which was also confirmed using 

RNA CoMPASS. In addition, differences in viral reads detected in the HBRR 

samples between the Au et al [252] cohort and the Chen et al [251] cohort were 

observed despite both sequencing HBRR. Furthermore, similar to the 

discrepancy in viral read detection between the 2 UHRR samples from the Chen 

et al [251] cohort, there is also discrepancies in viral read detection between the 

2 HBRR samples from the same cohort. One explanation for these differences in 

viral read detection is likely sequence contamination issues. Recent work has 

shown that contaminating reads in sequence datasets are prevalent and a real 

concern especially in pathogen detection studies [245-247]. Without taking into 

account potential contaminating reads, misidentification and invalid conclusions 

will likely ensue. 

The RNA CoMPASS analysis of the auxiliary brain tissue sequence 

datasets provided a full metatranscriptomic profile including bacterial, fungal, and 

viral reads. Although we only presented data on the virome in this study, a 

complete metatranscriptomic analysis was performed. Although several bacterial 

reads were identified in the datasets, it has been our experience that the source 

of many of these reads are from environmental contamination [245-247] and do 

not represent true associations. 
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Currently, HCMV is not considered to be a classic oncogenic virus since it 

has not been demonstrated to possess acute transforming activity [263]. Instead, 

it is believed that HCMV contributes to GBM pathogenesis through 

oncomodulation of host cellular pathways. Of the estimated 173 open reading 

frames present in the HCMV genome [264], only a few of the gene products, 

including IE1, US28, pp65, pp28, HCMV IL-10, and gB have been detected in 

GBM [244]. Forced expression of IE1 was shown to increase proliferation of 

GBM cell lines and primary explant cells [265]. Follow-up studies demonstrated 

that IE1 promotes the tumor phenotype in these settings through inactivation of 

the p53 and Rb tumor suppressor proteins and through activation of the PI3-

K/AKT signaling pathway [265]. Another key HCMV product that is implicated in 

GBM development is the chemokine receptor US28. HCMV US28 regulates 

STAT3 signaling which promotes GBM pathogenesis by regulating angiogenesis, 

invasion, and immune evasion [228]. While these experiments show that these 

viral genes have the potential to be oncogenic, their relevance to GBM requires 

an irrefutable association between HCMV and GBM. 

Immunotherapy treatments against HCMV are a potential next logical step 

as an exhilarating new avenue for cancer therapy. Due to the fatal consequence 

of a GBM diagnosis and little in the way of progress in the development of 

effective therapeutics, proposed clinical trials for GBM are often granted special 

FDA designations (e.g. fast-track, accelerated approval, and breakthrough 

therapy). There are several clinical trials in the United States in various stages of 

completion focused on targeted HCMV therapy in GBM patients. While we await 
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the results of these clinical trials, the results from the valganciclovir treatment of 

glioblastoma patients in Sweden (VIGAS) study, a randomized, double-blinded, 

placebo-controlled trial was recently published showing trends but no significant 

differences in tumor volumes between the valganciclovir (an anti-CMV drug) and 

placebo groups at 3 and 6 months [266]. However, in a retrospective analysis of 

the same cohort with additional patients taking valganciclovir for compassionate 

reasons, the rate of survival of treated patients at 2 years was 62% as compared 

with 18% of contemporary controls with a similar disease stage, surgical-

resection grade, and baseline treatment [267]. Although these are remarkable 

results, questions have been raised as to the interpretation of the data and 

whether this survival rate is misleading [268]. 

Several recent publications have highlighted the lack of association 

between viruses, specifically HCMV, and GBM [60, 77, 222, 224, 237, 239, 240, 

242]. Based on our comprehensive analysis, we substantiate these claims. Given 

the austerity of recent evidence against a HCMV etiology for GBM, moving 

forward, we caution the use of anti-CMV therapy for GBM patients until this issue 

is completely resolved.   
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Chapter 7: Discussion 

 

7.1  NGS technology in deciphering oncogenic pathogens in the context 

of human malignancies 

 NGS is revolutionizing the way scientists discover and investigate 

oncogenic pathogens. Through the analysis of Big Data, several recent 

discoveries have validated the potential that NGS technology has on 

investigating oncogenic pathogens: the discovery of a novel Merkel cell 

polyomavirus in Merkel cell carcinoma [40] and the discovery of an association 

between Fusobacterium and colorectal carcinoma was made possible with two 

different NGS approaches [41, 42]. Both of these approaches were facilitated by 

the use of computational subtraction approaches, whereby reads aligning to 

reference genomes were subtracted from the sequence file, resulting in 

sequences from undiscovered organisms. By applying an automated 

computational pipeline to pathogen sleuthing, scientists are able to assess 

hundreds to thousands of biological samples relatively quickly. Several 

automated computational pipelines have been designed, including the work 

conducted in Chapter 2 on RNA CoMPASS, for the analysis of exogenous 

sequences and for pathogen discovery [39, 41, 46-48]. 
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Although several sequence-based computational subtraction pipelines are 

used mainly for pathogen discovery, RNA CoMPASS takes advantage of the 

richness of RNA-seq data to provide host transcript expression data in addition to 

pathogen analysis. This simultaneous dual assessment of host and pathogen 

transcripts leverages the unique characteristics of RNA-seq technology. In 

designing RNA CoMPASS, its capability was evaluated by analyzing a cohort of 

Burkitt’s lymphoma samples and human B-cells infected with EBV. In this study, 

we were able to demonstrate the gene coverage of EBV and determine the 

differentially expressed human genes between the two cohorts clearly 

representing the lymphoblastoid and Burkitt’s phenotypes. 

Another example of the utility of RNA CoMPASS is presented in Chapter 3 

in which we analyzed 118 non-AIDS non-Hodgkin’s lymphoma samples (NHLs) 

and 13 follicular lymphomas samples from the Cancer Genome Characterization 

Initiative (CGCI) using RNA CoMPASS. As expected, we detected EBV in 4/118 

NHLs (3.4%), which is relatively consistent with previously published reports 

[269-271]. In addition, we identified 2 samples with HHV-6B infections with one of 

these samples being co-infected with EBV. Serendipitously, cluster analysis of 

these EBV positive samples based on EBV gene expression alone showed 

unique clustering of the samples with high versus low EBV read counts. Further 

analysis demonstrated a high lytic to latent read ratio in the samples with low 

EBV versus high EBV read counts (Figure 1C in Chapter 3), suggesting these 

reads possibly reflect low level reactivation in infiltrating latent B-cells. The ability 
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to use NGS-based technology to determine level of viral infection will be 

discussed further in section 7.3.  

 

7.2 Contamination Issues in Sequence Datasets 

During the course of metatranscriptomic studies performed over the past 

several years, we invariably noted surprising levels of bacterial reads whether the 

genetic material was derived from human clinical specimens, tissue culture cells, 

or animal tissues. The extent and pervasiveness of this observation led to the 

work conducted in Chapter 4. We identified fairly extensive levels of bacterial 

reads across a variety of RNA-seq datasets analyzed with Paracoccus 

denitrificans SD1 and Acinetobacter among the most prevalent bacteria. 

Interestingly, when the same RNA was prepared and sequenced at six different 

laboratories, the metatranscriptomic profile varies with bacterial reads differing as 

much as 30-fold [247]. Based on this analysis, we concluded that the bacterial 

reads were not derived from the specimens themselves but likely associated with 

environmental contamination in the operating room, during sample storage, 

sample processing, RNA preparation, or sequence library preparation.  

Contamination issues have already had an impact on the very databases 

that are used for bioinformatics work. For example, Laurence et al. identified 

Bradyrhizobium sequences in assembled genomes in the NCBI Genome 

database [111]. Interestingly, Bradyrhizobium species along with other microbes, 

have been reported in ultrapure water systems and may help explain the 

presence of this microbe in several deposited genome assemblies. Another 
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group found Leucobacter sp. sequences in assembled genomes of 

Caenorhabditis sp. [112]. Still another source of contaminating reads was 

discovered from silica column-based nucleic acid extraction kits, which harbored 

the NIH-CQV virus [113-117]. 

Due to the sensitive nature of NGS, microbial reads derived from 

sample/sequencing procedures have the potential to lead to data 

misinterpretations and false positive findings. Therefore, microbial contamination 

issues are relevant in sequencing experiments and warrant steps to minimize the 

source of this contamination. As outlined in Chapter 4, we proposed the following 

recommendations to combat potential sources of contamination: 

 

1) Detection studies, especially with a diagnostic focus, should incorporate 

stringent SOPs across the entire experimental pipeline from sample 

collection to sequencing. 

2) Highly purified metabolic enzymes and other reagents used in sequence 

library preparation should be used whenever possible. 

3) Establishment of standards for the curation of microbial sequences 

submitted to Genbank and other large-scale databases in order to assess 

completeness and quality of the assembled genomes. 

4) Contamination controls such as mock sequence library preparations 

should be used to help guide the development of appropriate and effective 

SOPs for metagenomic and metatranscriptomic studies. 
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7.3 Dual assessment of pathogen and host transcripts 

As mentioned previously, the power of RNA-seq is the ability to 

simultaneously assess host and pathogen transcripts. This principle is 

exemplified well in the work conducted in Chapter 5. Using RNA CoMPASS, we 

investigated the role of EBV in the pathogenesis of gastric carcinoma using the 

TCGA gastric carcinoma cohort. Several important observations were garnered 

from this work that included both viral and host changes. EBV transcripts were 

detected in 17% of gastric carcinoma (EBVaGC) samples, but these samples 

varied significantly in EBV coverage depth. EBV transcript analysis demonstrated 

that transcripts from the BamHI A region of the EBV genome comprised the 

majority of EBV reads. Expression of LMP2 and LMP1, to a lesser extent, were 

also observed as was EBNA1 and evidence of abortive lytic replication. Although 

transcripts from the BamHI region of EBV were reported previously in a naturally 

infected EBV positive gastric carcinoma cell line [171], our analysis identified this 

observation in the setting of solid tumors. Based on our analysis, we were able to 

measure the magnitude of BamHI A region gene expression relative to other viral 

and cellular genes, which demonstrated strikingly high expression levels. 

Although others have been unable to detect protein from naturally expressed 

BamHI A rightward transcripts [172, 173], the high expression level of these 

transcripts in EBVaGC samples suggests a functional role in gastric 

adenocarcinomas, possibly as long non-coding RNAs (lncRNA). 

In addition to EBV transcriptome analysis, host cellular RNA expression 

analysis was performed to determine EBV/host pathway interactions. The cellular 
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analysis indicated high levels of immune cells, which has been reported 

previously using standard hematoxylin and eosin staining of tumor sections [120, 

184]. These histological analyses confirmed the lymphocyte infiltration was 

predominately CD8+ T cells [185, 186]. Despite the high level of immune cell 

infiltrate observed in EBVaGCs, EBV and tumor cells are able to survive. Based 

on previous data and the work from Chapter 5, we proposed four separate 

compensatory immune evasion strategies employed by EBV infected tumor cells 

that allow the tumor cells to survive in the setting of high immune infiltrate. First, 

the limited expression of viral protein coding genes in EBVaGC may contribute to 

the avoidance of viral antigen processing and targeting [188]. Second, although 

the EBV encoded protein, EBNA1 is required for viral episomal 

replication/maintenance and therefore must be expressed in proliferating cells, it 

encodes a glycine-alanine repeat domain that blocks its proteasomal processing 

for CTL presentation [189, 190]. Third, in Chapter 5, we found that the levels of 

expression of the interferon-gamma (IFNG) inducible cytotoxic T-cell (CTL) and 

natural killer (NK) cell inhibitor, indoleamine 2,3-dioxygenase (IDO1) are high in 

EBVaGC. This is an important finding because IDO1 is a rate-limiting enzyme 

involved in the catabolism of tryptophan (Trp) [191]. CTLs and NK cells are 

uniquely sensitive to Trp depletion leading to the induction of stress responses 

and the inhibition of proliferation and activation [192, 193].  IDO1 functions to 

cause local tryptophan depletion under physiological and pathogenic immune 

tolerance settings such as during placentation and cancer [194, 195], where it is 

considered to be critical for establishing local immune tolerance. Among other 
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candidate effectors, increased IFNG has been shown to induce IDO1 expression 

[196, 197].   

As mentioned in Section 7.1, using RNA-seq, we are able to not only 

detect viral infections but also measure the magnitude of the infection. This is 

particularly important for EBV due to it unique latency gene profiles and 

ubiquitous nature. As previously mentioned, we were able to distinguish between 

tumors infected with EBV (demonstrating an EBV latency profile) and those 

samples that were EBV positive due to reactivated infiltrating B-cells harboring 

EBV (demonstrating a more lytic gene profile) (Figure 1C in Chapter 3). Using 

the same approach, we performed clustering analysis using only the EBV genes 

across the EBVaGC samples. This analysis revealed 4 samples clustering 

separately from the other EBVaGC samples (Figure 7 in Chapter 5). This 

apparently distinct gene expression profile observed in the 4 EBVaGC samples 

raises the possibility that these samples represent infection of a unique cell type 

relative to the other samples (possibly tumor cells versus stroma or reactivated 

B-cells). This new insight into determining the magnitude and type of EBV 

infection may provide clinical clues into treating and monitoring EBV association 

malignancies. EBV associated malignancies are typically diagnosed using 

traditional detection methods (e.g., IHC and PCR) relying mostly on the detection 

of the EBV gene EBER. Although EBER is highly expressed by EBV, resulting in 

easy detection, one limitation of this approach is the lack of viral tropism 

information regarding which cell types are infected with EBV. Since EBER is 

expressed regardless of cell type or latency gene expression, it is impossible to 
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determine if the tumor and/or stroma harbor EBV. Using NGS-based approaches 

we are now able to glean this information that may lead to improved clinical 

outcomes for these patients. 

 

7.4 Unbiased nature of NGS has potential to resolve controversies 

RNA-seq also has the potential to resolve controversies surrounding 

previous findings in an unbiased manner. For example, the association between 

human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM) was first 

reported in 2002 [221]. Since that time, there have been a lot of discrepancies in 

the literature surrounding this issue [60, 77, 221-243]. The work conducted in 

Chapter 6 revolved around the concept that a NGS-based analysis of brain 

tumors, including GBM, would facilitate resolution of this lingering controversy. 

Based on our comprehensive analysis of several different brain tumor 

sequencing datasets, we conclude that there is no viral association with GBM. 

This is in line with several recent publications that also report the lack of 

association between viruses, specifically HCMV, and GBM [60, 77, 222, 224, 

237, 239, 240, 242]. 
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