UNUSUAL CROWDED ORGANIC ARCHITECTURES

AN ABSTRACT

SUBMITTED ON THE FIRST DAY OF OCTOBER 2015 TO THE DEPARTMENT OF CHEMISTRY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE SCHOOL OF SCIENCE AND ENGINEERING
OF TULANE UNIVERSITY
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
BY

IE KONG
APPROVED BY:

CHAIR OF DISSERTATION COMMITTEE

BRUCE C. FIB, PH.D.

$$
\begin{aligned}
& \text { JANARTHANAN } \\
& \text { JAYAWICKRAMARAJAH, PH.D. }
\end{aligned}
$$

Abstract

Molecules with unusual steric crowding are always interesting in chemistry. They give the opportunity to explore the limits of stable molecular structures and the synthesis of unnatural products. They also provide points of calibration for modern computational methods. This dissertation describes the design, synthesis and characterization of two types of crowded complex aromatic compounds.

The goal of the first project was to synthesize in-keto cyclophanes, that is, molecules with ketone oxygens pressed toward the centers of benzene rings. Several likely precursors were synthesized and fully characterized, but attempts to make the in-keto cyclophanes themselves were unsuccessful. The nonbonded interaction between the ketone oxygen and basal benzene ring may be so close in the target structures as to prevent the formation of an in-keto cyclophane.

The second project describes the design, synthesis and characterization of several macrobicyclic, bis(triarylelement)-containing cyclophanes with various bridgehead heteroatoms. Computational studies accurately predicted that when the bridgehead substituents are small (lone pairs or protons), an in, in bridgehead stereochemistry is strongly favored, but larger bridgehead substituents favor the formation of in,out stereoisomers. The NMR spectra of several of these compounds show unusual through-space spin-spin coupling between atoms along the central axis. Most importantly, one of these compounds, an in,in-bis(hydrosilane), possesses a

hydrogen-hydrogen nonbonded contact distance of approximately $1.56 \AA$, a new "world record" for such a contact in any crystallographically characterized compound.

UNUSUAL CROWDED ORGANIC ARCHITECTURES

A DISSERTATION

SUBMITTED ON THE FIRST DAY OF OCTOBER 2015
TO THE DEPARTMENT OF CHEMISTRY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE SCHOOL OF SCIENCE AND ENGINEERING
OF TULANE UNIVERSITY
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
BY

APPROVED BY:

BRUCE C. GIBB, PH.D.

```
J.JN
```

JANARTHANAN JAYAWICKRAMARAJAH, PH.D.

Acknowledgement

This dissertation would not have been possible without the help and support of the kind people around me. It is only possible to give particular mention to some of them.

First and foremost, I would like to express my sincere gratitude to my advisor Dr. Robert Pascal. Being his first Asian graduate student in Tulane, I was inspired by Bob's unsurpassed knowledge and enthusiasm of science. It is hard to imagine how much more difficult it would be without his tireless guidance, encouragement and support. I would like also thank the members of the Pascal group, who taught me many laboratory techniques, and helped me integrate into this group in the shortest possible time.

I owe great thanks to my dissertation committee members. Dr. Janarthanan Jayawickramarajah who taught my first organic course in Tulane, gave me many helpful suggestions, and helped me have a better understanding of physical organic chemistry. Dr. James P. Donahue, has always been very nice and helped me to have a better understanding of organometallic chemistry, which helped in some of my later projects. Dr. Bruce C. Gibb brought many interesting and useful apparatus to Tulane, and it always helped to stop by their lab and to see how they work.

I would like to offer my special thanks to Dr. Joel T. Mague. He was always happy to teach me crystallography techniques, and the advice given by Joel has been very helpful. Also, I am deeply grateful to Dr. Qi Zhao, with whom discussions of NMR have been
illuminating. I also thank Dr. Christina M. Kraml for her expertise in chiral chromatography at Lotus Separations LLC.

I was very lucky to have my family in New Orleans during my time in Tulane. I owe my deepest gratitude to my wife, Wei Guo. Without her support and encouragement, I could not possibly have finished my Ph.D. studies. Also, I would like to express the appreciation to my parents, Chengtai Zong and Taili Li, especially for spending a great deal of time with us and taking care of Allen and Jason. Without their help, I could not imagine how I could possibly arrange my time between lab and home. I also want to thank the boys for all the happiness they have brought to the family.

Lastly, I offer my regards and blessings to all of those who supported me in any way during the completion of my graduate study.

Table of Contents

Chapter 1: In-Keto Cyclophanes 1
1.1 Introduction 1
1.2 Results and Discussion 21
1.2.1 First Attempted Synthesis of in-Keto Cyclophane 21
1.2.2 Second Attempted Synthesis of in-Keto Cyclophane 28
1.2.3 Third Attempted Synthesis of in-Keto Cyclophane 32
1.2.4 Fourth Attempted Synthesis of in-Keto Cyclophane 38
1.3 Conclusion 41
Chapter 2: Sterically Congested Macrobicycles 42
2.1 Introduction. 42
2.2 Results and Discussion 56
2.2.1 In,in-Diphosphine 56
2.2.2 In, in-Aminophosphine. 71
2.2.3 In, in-Phosphinosilane 80
2.2.4 In,in-Bis(hydrosilane) 85
2.2.5 In,out-Phosphinomethylsilane 94
2.3 Conclusion 96
Chapter 3: Experimental Procedures and Selected Spectras. 99
Appendix: Selected Crystallographic Data 222
References 263

List of Schemes

Scheme 1. Synthesis of cyclophane 4 2
Scheme 2. Synthesis of cyclophane 5 in different approaches 2
Scheme 3. Synthesis of metaparacyclophane 8 3
Scheme 4. Synthesis of cyclophanes 17 and 19. 5
Scheme 5. Synthesis of cappedophanes 6
Scheme 6. Synthesis of cyclophanes 25 and 26. 7
Scheme 7. Synthesis of adamantanophane 29 8
Scheme 8. Synthesis of adamantanophane 32 9
Scheme 9. Synthesis of in-silane 39 and in-phosphine 40 10
Scheme 10. Reactions of cyclophane 40 11
Scheme 11. Synthesis of derivatives of 40 12
Scheme 12. Synthesis of in-aminophane 54 and attempted protonation reaction 13
Scheme 13. Synthesis of pyridinophane 62 15
Scheme 14. Reactions of cyclophanes 59 and 62 15
Scheme 15. Synthesis of in-fluorosilaphane 72 16
Scheme 16. Synthesis of metacyclophane 76 17
Scheme 17. Synthesis of in-methylcyclophanes 18
Scheme 18. Synthesis of in-keto cyclophane 93 19
Scheme 19. Synthesis of furanophane 96 20
Scheme 20. Proposed synthesis of in-keto cyclophane 108 22
Scheme 21. Benzannulation reaction of compound 100 24
Scheme 22. Optimized benzannulation reaction and attempted transmetallation 25
Scheme 23. Synthesis of ketone 105 26
Scheme 24. Bromination reactions of ketone 105 27
Scheme 25. Attempted cyclization reaction 28
Scheme 26. Proposed synthesis of in-keto cyclophane $\mathbf{1 2 3}$ 29
Scheme 27. Attempted cyclization reactions 30
Scheme 28. Attempted reactions to make dithiol 126 31
Scheme 29. Proposed synthesis of in-keto cyclophane 108 33
Scheme 30. Demercuration reaction of compound 128 34
Scheme 31. Reduction of compound 129 to 130 34
Scheme 32. Attempted oxidation reaction of compound 132 36
Scheme 33. Attempted synthesis of ketone 133 37
Scheme 34. Proposed synthesis of in-keto cyclophane $\mathbf{1 2 3}$ 39
Scheme 35. Reaction of compound 143 with diethyl carbonate 39
Scheme 36. Reaction of compound 143 with compound 144 and 145 39
Scheme 37. Reaction of compound 143 with carbonyldiimidazole 41
Scheme 38. Macrocyclic diammonium ions prepared by Simmons and Park 43
Scheme 39. Preparation of compound 161 and its reactions 44
Scheme 40. Synthesis of in,out- and in,in- bicyclo[8.8.8]hexacosane 44
Scheme 41. Synthesis of cryptand 173 45
Scheme 42. Protonation and deprotonation of cryptand 173 and its derivatives. 46
Scheme 43. Synthesis of in, in diamine 182 and its reactions 47
Scheme 44. Synthesis of triphenylamine double decker 190 49
Scheme 45. Synthesis of out,out-diphosphine 203 50
Scheme 46. Synthesis of in,out isomers 223, 224 and 225 52
Scheme 47. Oxidation of in, in-diphosphite 223 53
Scheme 48. Synthesis of in,out isomers 229, 230 and 231 54
Scheme 49. Oxidation of in, in-diphosphite 223 55
Scheme 50. Synthesis of in,in-diphosphine 235 57
Scheme 51. Protonation reactions of cyclophane 40 and 235 62
Scheme 52. Oxidation reaction of in,in-diphosphine 235 65
Scheme 53. Sulfuration reaction of compound 234 67
Scheme 54. Sulfuration reaction of in,in-diphosphine 235 68
Scheme 55. Other attempted in-functionalization experiments 69
Scheme 56. Attempted experiments with compound 235 and divalent metals 70
Scheme 57. Synthesis of in,in-P,N cyclophane 256 72
Scheme 58. Reactions of compound 261 in the actual experiment 73
Scheme 59. Synthesis of in,in-P,N cyclophane 257 74
Scheme 60. Protonation reaction of compound 257 78
Scheme 61. Attempted oxidation reaction of compound 257. 79
Scheme 62. Attempted complexation experiments of compound 257 with divalent metals 80
Scheme 63. Proposed protonation reactions 81
Scheme 64. Synthesis of in,in-phosphinosilane 275 82
Scheme 65. Synthesis of in,out-P, EtOSi cyclophane 277 84
Scheme 66. Synthesis of bis(hydrosilane) 278 87
Scheme 67. Synthesis of bisadamantyl-containing cyclophane 287. 90
Scheme 68. Synthesis of cyclophane 289 92
Scheme 69. Synthesis of in,out-phosphinosilane 291 95
Scheme 70. Proposed protonation of cyclophane 291 96

List of Tables

Table 1. Conversions of $\mathbf{1 1 0}$ to $\mathbf{1 0 3}$ 24
Table 2. P-P coupling constants in in,out-adducts 51
Table 3. Calculated relative energies of in/out isomers of bis(hydrosilane) 86
Table 4. Experimental and calculated interatomic distances for the core atoms of
compound 278 90
Table 5. Calculated relative energies of in/out isomers of bis(triarylelement) cyclophanes97
Table 6. Crystallographic data for compounds 105, 116 and 122 222
Table 7. Crystallographic data for compounds 132, 140 and 141 223
Table 8. Crystallographic data for compounds 146, 148 and 235 224
Table 9. Crystallographic data for compounds $240 \cdot \mathbf{2 (\mathbf { C H C l } _ { 3 })} \cdot \mathbf{H}_{2} \mathbf{O}, 241 \cdot \mathbf{1 . 5 (\mathbf { C } _ { 2 } \mathbf { H } _ { 6 } \mathbf { O S })}$
and 257 225
Table 10. Crystallographic data for compounds 275 and $\left.\mathbf{2 7 7} \cdot \mathbf{0 . 1 2 5 (} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right)$ 226
Table 11. Crystallographic data for compounds $\mathbf{2 7 8} \cdot \mathbf{0 . 5 (\mathbf { C } _ { \mathbf { 6 } } \mathbf { H } _ { \mathbf { 6 } }) \cdot \mathbf { C H C l } _ { \mathbf { 3 } } \text { and } \mathbf { 2 9 1 } \cdot \mathbf { C } _ { \mathbf { 6 } } \mathbf { H } _ { \mathbf { 6 } } 2 2 7}$
Table 12. Atomic coordinates and equivalent isotropic displacement parameters for
compound 105 228
Table 13. Atomic coordinates and equivalent isotropic displacement parameters forcompound 116 .. 230230

Table 14. Atomic coordinates and equivalent isotropic displacement parameters for compound 122 .232

Table 15. Atomic coordinates and equivalent isotropic displacement parameters for compound 132 .233

Table 16. Atomic coordinates and equivalent isotropic displacement parameters for compound 140 .235

Table 17. Atomic coordinates and equivalent isotropic displacement parameters for compound 141 .238

Table 18. Atomic coordinates and equivalent isotropic displacement parameters for compound 146 240

Table 19. Atomic coordinates and equivalent isotropic displacement parameters for compound 148 .242

Table 20. Atomic coordinates and equivalent isotropic displacement parameters for compound 235 .243

Table 21. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{2 4 0} \cdot \mathbf{2 (\mathbf { C H C l } _ { 3 }) \cdot \mathbf { H } _ { 2 } \mathrm { O }}$245

Table 22. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{2 4 1} \cdot \mathbf{1 . 5 (\mathbf { C } _ { 2 } \mathbf { H } _ { 6 } \mathrm { OS })}$.248

Table 23. Atomic coordinates and equivalent isotropic displacement parameters for compound 257 .251

Table 24. Atomic coordinates and equivalent isotropic displacement parameters for

Table 25. Atomic coordinates and equivalent isotropic displacement parameters for compound $\left.\mathbf{2 7 7} \bullet \mathbf{0 . 1 2 5 (} \mathbf{C H}_{2} \mathbf{C l}_{2}\right)$254

Table 26. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{2 7 8} \cdot \mathbf{0 . 5 (\mathbf { C } _ { 6 } \mathbf { H } _ { 6 }) \cdot \mathbf { C H C l } _ { 3 } ~}$259

Table 27. Atomic coordinates and equivalent isotropic displacement parameters for compound $291 \cdot \mathbf{C}_{6} \mathbf{H}_{6}$260

List of Figures

Figure 1. Molecular structure of compound 105; thermal ellipsoids have been drawn at the 50% probability level. 26

Figure 2. Molecular structure of compound 116; thermal ellipsoids have been drawn at the 50% probability level. .27

Figure 3. Molecular structure of compound 122; thermal ellipsoids have been drawn at the 50% probability level. 30

Figure 4. Molecular structure of compound 132; thermal ellipsoids have been drawn at the 50% probability level. .35

Figure 5. Molecular structure of compound 140; thermal ellipsoids have been drawn at the 50% probability level. .37

Figure 6. Molecular structure of compound 141; thermal ellipsoids have been drawn at the 50% probability level. .37

Figure 7. Molecular structure of compound 146 (top) and compound 148 (bottom); thermal ellipsoids have been drawn at the 50% probability level.40
Figure 8. Examples of bicyclic molecules 42
Figure 9. Other in, in diamines. 48

Figure 10. Diphosphines, protonated diphosphines and diphosphonium dications made
by Alder et al.

Figure 11. Cyclophanes previously made in Pascal's lab $(\mathbf{4 0}, \mathbf{2 3 3}, 234)$ and the proposed
\qquad
Figure 12. Molecular structure of in,in-diphosphine 235; 50% thermal ellipsoids have been employed. .58

Figure 13. Proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of compound 235 60

Figure 14. Resolution of Compound 235 by Chiral Supercritical Fluid Chromatography. (1) Chiralpak IA ($15 \mathrm{~cm} \times 0.46 \mathrm{~cm}$), 40% ethanol $\left(0.1 \%\right.$ diethylamine) $/ \mathrm{CO}_{2}, 3$ $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}$ (Top); (2) Chiralpak IA, $(15 \mathrm{~cm} \times 0.46 \mathrm{~cm}), 40 \%$ isopropanol (0.1% diethylamine) $/ \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ (Bottom).60
Figure 15. Low-field region of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 240 63
Figure 16. Proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of compound 240 63

Figure 17. Molecular structure of compound 240; thermal ellipsoids have been drawn at the 50% probability level.64

Figure 18. Molecular structure of hexaoxide 241, 50% thermal ellipsoids have been employed in the left image; the right image is a space-filling model.66

Figure 19. Cyclophanes previsously made in Pascal's lab $(\mathbf{4 0}, 56)$ and proposed in, in-P,N cyclophanes71

Figure 20. Molecular structure of compound 257; 50% thermal ellipsoids has been employed.75

Figure 21. Resolution of Compound 257 by Chiral Supercritical Fluid Chromatography

Figure 22. Molecular structure of compound 275; thermal ellipsoids have been drawn at the 50% probability level.83

Figure 23. Molecular structure of compound 277; thermal ellipsoids have been drawn at the 50% probability level.85

Figure 24. Molecular structure of compound 278; thermal ellipsoids have been drawn at the 50% probability level.89
Figure 25. Decoupling experiment of compound 278 93
Figure 26. Low-field region of the COSY spectrum of compound 278 93

Figure 27. Molecular structure of compound 291; thermal ellipsoids have been drawn at the 50% probability level.95

Chapter 1: In-Keto Cyclophanes

1.1 Introduction

A cyclophane is a molecule consisting of an aromatic unit (often a benzene ring) and a chain of atoms that forms a bridge between two non-adjacent positions of the aromatic ring. Some simple cyclophane types are [n]metacyclophanes (1), $[n]$ paracyclophanes (2) and $[n, n$ ']paracyclophanes (3). The prefixes meta and para correspond to the usual arene substitution patterns and n refers to the number of atoms making up the bridge. More complex derivatives with multiple aromatic units and bridges forming cagelike structures are also known.

1

2

3

Cyclophanes are well-studied in organic chemistry because they may adopt unusual conformations due to strain. These bridged aromatic compounds often exhibit extraordinary physical and chemical properties that can be attributed to their unusual molecular architecture and the strain present in their cyclic frameworks.

At the end of the 19th century, [2.2]metacyclophane (4), was synthesized by Pellegrin using the Wurtz-Fittig reaction (Scheme 1). ${ }^{[1]}$ This was the first cyclophane to

Scheme 1. Synthesis of cyclophane 4

Scheme 2. Synthesis of cyclophane 5 in different approaches

be reported.

In 1949, Brown and Farthing made [2.2]paracyclophane (5) by low pressure pyrolysis of p-xylene. ${ }^{[2]}$ Two years later, Cram and Steinberg synthesized 5 directly by intramolecular Wurtz reaction of dibromide 7, and they prepared many derivatives of $\mathbf{5}$ (Scheme 2). ${ }^{[3]}$

This latter work laid the basis for entry of a new group of aromatic compounds onto the stage of chemistry, and it helped to evolve them from chemical curiosities to an attractive and intensively studied class of molecules in modern organic chemistry. Since then, a large number of cyclophanes with enormously varied functionalities has been synthesized for both theoretical interest and practical applications. ${ }^{[4][5][6][7][8][9]}$

One favorite theme in cyclophane chemistry is the enforcement of close contacts between unreactive functional groups and aromatic rings. Specifically, our research group has asked, "How closely can functional group X approach the center of a benzene ring?"

For this discussion, the distance from X to the center of the ring is called the $\mathrm{X}--\mathrm{Ar}$ contact, and the nonbonded distance from X to a specific carbon atom is designated an X---C contact. Triple hyphens indicate nonbonded contacts between groups (e.g. H---Ar, O---C), and short hyphens are used for covalent bonds (e.g. C-H, C-O). ${ }^{[10]}$

Scheme 3. Synthesis of metaparacyclophane 8

1) $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$
$\xrightarrow{\text { 2) } \mathrm{KOC}_{4} \mathrm{H}_{9}, \mathrm{THF}}$

11
10

12

13

8

The smallest X is hydrogen. What is the "world record" for close hydrogen-arene nonbonded contacts? The X-ray structures of cyclophanes were exhaustively reviewed in

1983, and at that time the shortest H---Ar distance was $2.11 \AA$ in Boekelheide's metaparacyclophane 8. ${ }^{[11][12]}$ It was made by cyclization of 1,3-bis(mercaptomethyl)benzene (9) and 1,4-bis(bromomethyl)benzene (10) to give thioether 11, followed by Stevens rearrangement and Hofmann elimination (Scheme 3).

However, as the upper benzene ring is not perpendicular to the lower one, the hydrogen atom is neither directly above nor pointed directly at the center of the basal benzene ring. Could some molecule have the C - H bond point directly at the center of the benzene ring? How could it be made?

The answer could not be more suprising: such a molecule had already been synthesized by Ricci et al. by condensation of tribromide 14 and trithiol $\mathbf{1 5}$ in 1976 (Scheme 4), ${ }^{[13]}$ but its unique geometry was not recognized at the time. When Pascal et al. reproduced synthesis of compound 16, they could not find any peak in its ${ }^{1} \mathrm{H}$ NMR spectrum that corresponded to the apical proton in the region from 0 to 8 ppm . They immediately suspected that it must have been shifted far upfield, but if so, then the cyclophane had to be the in isomer 17, rather than the out isomer 16. They proved that the product was indeed the in isomer 17, as shown by a septet at $\delta-1.68$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, a heavily shielded proton resonance. They then made the trisulfone derivative 18 by boiling 17 in hydrogen peroxide and acetic acid, and X-ray analysis showed an $\mathrm{H}---\mathrm{Ar}$ distance of $2.13 \AA$. The distance was close, but brief pyrolysis ${ }^{[14]}$ of $\mathbf{1 8}$ at $500-600{ }^{\circ} \mathrm{C}$ gave the even smaller in-cyclophane 19 in 11% yield. ${ }^{[15]}$

In compound 19 , the chemical shift of the $i n-H$ is $\delta-4.03$, which is exceptionally
shielded due to the diamagnetic anisotropy of the benzene ring. Additionally, the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling $\left(J_{\mathrm{CH}}\right)$ of 120 Hz showed that the apical carbon is flattened, and the IR stretch at $3325 \mathrm{~cm}^{-1}$ (frequency enhancement of $400 \mathrm{~cm}^{-1}$ from a normal C-H stretch) also indicated that the $\mathrm{H}---\mathrm{Ar}$ contact must be extremely tight. However, no X-ray structure has been obtained for this waxy solid.

Scheme 4. Synthesis of cyclophanes 17 and 19

14

$$
+
$$

15

16
or

17

17

18

19

In an entirely different approach, Hart et al. synthesized the equally tight in-cyclophanes 20 and 21 (Scheme 5), which are called "cappedophanes". [16][17] Cyclophane 20 was made by condensation of tetrabromide 23 with tetrathiol 22.

Hydrocarbon 21 was made by oxidation to tetrasulfone 24 followed by flash vacuum pyrolysis (FVP). In the X-ray structure of compound 20, it was seen that the $\mathrm{H}--\mathrm{Ar}$ distance is $2.00 \AA$, which was the shortest observed up to that time, but no crystal structure of the more crowded 21 was achieved.

Scheme 5. Synthesis of cappedophanes

22

23

20

21

Although FVP methods had been used to form the very tight cyclophanes 19 and 21, molecular mechanics calculations [MM2(85)] clearly indicated that in-cyclophanes even
as tight as $\mathbf{1 9}$ are more stable than their out isomers. In 1989, Pascal et al. made cyclophanes 25 and 26 in 15% and 3% yields, respectively, by direct condensation of smaller tribromides $(\mathbf{2 7}, \mathbf{2 8})$ and trithiol 15 (Scheme 6). ${ }^{[18]}$

Scheme 6. Synthesis of cyclophanes 25 and 26

$+27 \xrightarrow[15 \%]{27}$

15

28

15

Their X-ray structures placed the in-hydrogen atoms much closer to the benzene ring than previously observed, with $\mathrm{H}---\mathrm{Ar}$ distances of $1.86 \AA$ and $1.68 \AA$, respectively. In
addition, many of the spectral phenomena displayed by cyclophane 26, such as $\delta_{i n-\mathrm{H}}=$ $2.84 \mathrm{ppm}, J_{\mathrm{CH}}=128 \mathrm{~Hz}$, and $v_{\mathrm{CH}}=3260 \mathrm{~cm}^{-1}$, also showed that the $\mathrm{H}--\mathrm{Ar}$ contact was extremely close.

Scheme 7. Synthesis of adamantanophane 29

30
$+$

10

31

29

Today's "world record" for an H---Ar nonbonding contact belongs to the so-called "adamantanophane" 29 made by Vögtle and coworkers in 1993 (Scheme 7). ${ }^{[19]}$ The synthesis of 29 involved cyclization of 1,3-bis(mercaptomethyl)adamantane (30) and dihalide $\mathbf{1 0}$ to give cyclophane $\mathbf{3 1}$, followed by oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ and sulfone pyrolysis. It was found that one of the hydrogens $\left(\mathrm{H}_{\mathrm{a}}\right)$ displayed an ${ }^{1} \mathrm{H}$ NMR resonance at $\delta-4.08$ and points directly toward the center of the basal ring, while the equatorial hydrogen $\left(\mathrm{H}_{\mathrm{e}}\right)$, showing an ${ }^{1} \mathrm{H}$ NMR resonance at $\delta-1.01$, is less shielded. The X-ray
structure of 29 reveals that its benzene ring is boat shaped, which indicates that the molecule has high strain. The H---Ar distance is only $1.64 \AA$ and it remains the closest such contact observed so far.

Vögtle and coworkers also made adamantanophane 32 by similar methods (Scheme 8). ${ }^{[20]}$ In its X-ray structure, the axial hydrogen $\left(\mathrm{H}_{\mathrm{a}}\right)$ is moved toward one side of the benzene ring. The $\mathrm{H}---\mathrm{Ar}$ distance is $2.02 \AA$, longer than in 29 but the $\mathrm{H}--\mathrm{C}$ contact is only $1.98 \AA$, which is the closest $\mathrm{H}---\mathrm{C}$ contact observed so far.

Scheme 8. Synthesis of adamantanophane 32

Although it seems hard to break the records of these adamantanophanes, Pascal and coworkers found that their C_{3} symmetric frameworks permitted them to include functional groups other than alkanes. They used the dilithium derivative of thiophenol (35) for the synthesis of the triarylelement trithiols $\mathbf{3 6}$ and $37,{ }^{[21][22]}$ which were then subjected
to cyclization reactions with tribromide 38 to give the in-silane 39 and the in-phosphine 40 (Scheme 9). ${ }^{[23][24]}$

Scheme 9. Synthesis of in-silane 39 and in-phosphine 40

The spectroscopic data for cyclophane 39 show that it has an ultrashort nonbonding contact between the H_{Si} and the basal benzene ring: $\delta_{i n-\mathrm{H}}=1.04 \mathrm{ppm}$ (5 ppm upfield from an acyclic model) and $v_{\mathrm{SiH}}=2457 \mathrm{~cm}^{-1}\left(280 \mathrm{~cm}^{-1}\right.$ higher than an acyclic model). The crystal structure shows that it has an $\mathrm{H}_{\mathrm{Si}^{--}}-\mathrm{Ar}$ contact of $1.86 \AA$ and an $\mathrm{H}_{\mathrm{Si}^{---}} \mathrm{C}$ contact of $2.32 \AA$, which remain the closest such contacts so far observed.

Scheme 10. Reactions of cyclophane 40

43

The spectroscopic data for cyclophane $\mathbf{4 0}$ show that there is strong spin-spin coupling between the phosphorus atom and the basal aromatic ring $\left[J_{\mathrm{P}, \mathrm{C}(\text { methine })}=7.5 \mathrm{~Hz}\right.$ and $J_{\mathrm{P}, \mathrm{C}(\text { quaternary })}=3.5 \mathrm{~Hz}$. The phosphorus atom of $\mathbf{4 0}$ is extremely unreactive. It cannot be protonated by anhydrous HBr to form compound 41, and even in refluxing hydrogen peroxide and acetic acid, only the corresponding trisulfone $\mathbf{4 2}$ formed without formation of phosphine oxide $\mathbf{4 3}$ (Scheme 10). All these features indicate that the contact between
the phosphorus atom and the basal aromatic ring is very close. The crystal structure of $\mathbf{4 0}$ shows a P---Ar contact of $2.90 \AA$ and a P---C contact of about $3.2 \AA$, the former of which is the closest $\mathrm{P}---\mathrm{Ar}$ contact so far beheld.

Scheme 11. Synthesis of derivatives of 40

48

49

Several derivatives of $\mathbf{4 0}$ with basal rings bearing nitro, halogen, and amino substituents (47-50) have also been prepared and crystallographically characterized (Scheme 11). ${ }^{[25]}$ The mononitro compound 47 and dinitro compound 48 are brightly colored, due to strong charge-transfer absorptions in their UV spectra, and the nitro derivative was resolved into stable enantiomers, which exhibit extremely high ellipticities

Scheme 12. Synthesis of in-aminophane 54 and attempted protonation reaction

51

54

56

57
in their circular dichroism spectra.

With the closest $\mathrm{P}---\mathrm{Ar}$ contact achieved, one may wonder whether the substitution of nitrogen for phosphorus in the triaryl-element-capped cyclophane will result in the closest N---Ar contact. Block's one-step synthesis is not applicable to amines, but Pascal and coworkers were able to make the nitrogen containing trithiol 55 by Ullmann reaction of thioether $\mathbf{5 2}$ and $\mathbf{5 3}$ to give trithioether $\mathbf{5 4}$, followed by cleavage with $\mathrm{Na} / \mathrm{NH}_{3}$.

Thioethers 52 and 53 were made by reacting sodium isopropylthiolate with the corresponding halogenated precursors. Condensation of trithiol $\mathbf{5 5}$ with 1,3,5-tris(bromomethyl)benzene (38) gave cyclophane 56 in an only 0.7% yield, but the product was easily isolated by chromatography (Scheme 12). ${ }^{[26]}$ The crystal structures showed N---Ar contacts of $3.419 \AA$ and $3.398 \AA$ in two independent molecules, which are nearly $0.5 \AA$ greater than the $\mathrm{P}---\mathrm{Ar}$ contacts $(2.90 \AA-2.98 \AA)$. Protonation was attempted with cyclophane $\mathbf{5 6}$, but there was no evidence of a protonated cyclophane 57. Insufficient material was available for other reactions, such as oxidation.

The tightest $\mathrm{N}---\mathrm{Ar}$ contact is found in Boekelheide's pyridinophane 62, which was made by condensation of 2,6-bis(mercaptomethyl)pyridine (58) with p-xylylene dibromide (10), followed by Stevens rearrangement and Hofmann elimination (Scheme 13). ${ }^{[27][28]}$ The crystal structure showed that the heterocycle is perpendicular to the basal benzene ring. It also indicated an $\mathrm{N}---\mathrm{Ar}$ contact of only $2.44 \AA$, and two $\mathrm{N}---\mathrm{C}$ contacts of only $2.67 \AA$, almost $0.6 \AA$ less than the sum of the van der Waals radii of nitrogen and carbon. Unlike the "molecular iron maiden" 40 and its relatives, the nitrogen in 62 and its derivatives is still reactive: it forms salts with ordinary acids and a complex with boron trifluoride, and it can be converted into the N -oxide (Scheme 14). This reactivity probably results from the two armed structure of $\mathbf{6 2}$ and its derivatives, which retains considerable flexibility.

Scheme 13. Synthesis of pyridinophane 62

Scheme 14. Reactions of cyclophanes 59 and 62

Scheme 15. Synthesis of in-fluorosilaphane 72

As stated above, cyclophane 39 has the closest $\mathrm{H}_{\mathrm{Si}^{-}--\mathrm{Ar}}$ contact and $\mathrm{H}_{\mathrm{Si}^{-}--\mathrm{C}}$ contact. It would be interesting to substitute $\mathrm{Si}-\mathrm{H}$ with $\mathrm{Si}-\mathrm{F}$ and to see if it gives the closest $\mathrm{F}--\mathrm{-Ar}$ contact or F---C contact. Pascal and coworkers answered this question with in-fluorosilaphane 72, prepared by the condensation of the corresponding trithiol 15 with a tribromide 71 in only 0.4% yield (Scheme 15). The in-fluorosilaphane $\mathbf{7 2}$ has an $\mathrm{F}--\mathrm{Ar}$ distance of $2.81 \AA$, and at the time it was the "molecular iron maiden" with the biggest in atom so far. However, the extremely low yield impeded any serious attempt to extrude the sulfur atoms, which might give a closer F---Ar contact. ${ }^{[29][30]}$

The tightest F---Ar and F---C distances, both $2.70 \AA$, were found in Boekelheide's
metacyclophane 76, prepared by condensation of 2,6-bis(bromomethy1)fluorobenzene 73, followed by Stevens rearrangement and Hofmann elimination (Scheme 16), although the fluorine atom is not pointed directly to the benzene ring. ${ }^{[31][32]}$

Scheme 16. Synthesis of metacyclophane 76

The "molecular iron maidens" with the biggest functional group pointing in so far are the in-methylcyclophanes $\mathbf{8 4}$ and $\mathbf{8 5}$ made in Pascal's group by Song et al. in 2005. ${ }^{[33]}$ Cyclophane 84 was made by condensation of 1,3,5-tris(mercaptomethyl)benzene (15) with a mixture of the anti and syn isomers of tris(bromomethyl)-9-methyltriptycene (82 and 83 respectively), which was made by addition of 3-methylbenzyne to 1,8,9-trimethylanthracene (78) followed by NBS bromination (Scheme 17).

Scheme 17. Synthesis of in-methylcyclophanes

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 4}$ exhibits an in-methyl resonance at $\delta 2.52$, about 1 ppm upfield from the 9-methyl resonances of $\mathbf{8 1}(\delta 3.16)$ and $\mathbf{8 3}(\delta 3.85)$. The in-methyl ${ }^{13} \mathrm{C}$ NMR resonance in $\mathbf{8 4}$ appears at $\delta 14.8$, significantly upfield from any of the methyl resonances in precursors $\mathbf{8 0}, \mathbf{8 1}, \mathbf{8 2}$, or $\mathbf{8 3}\left(\delta_{\mathrm{C}} \geq 18.4\right)$. Large crystals of $\mathbf{8 4}$ were difficult to obtain, so 84 was oxidized to the trisulfone $\mathbf{8 5}$ by boiling in $\mathrm{H}_{2} \mathrm{O}_{2}$ and acetic acid. The two independent structures of $\mathbf{8 5}$ showed that the $\mathrm{C}_{\text {methyl }}$-ring centroid distances are $2.896(5) \AA$ and $2.869(5) \AA$, respectively, which remains the new "world record" for such a contact.

Scheme 18. Synthesis of in-keto cyclophane 93

The first in-keto cyclophane 93, which does not have a C_{3} framework, was synthesized by Pascal's group in 2010. ${ }^{[34]}$ The ketone group projected directly toward an aromatic ring. It was made by condensation of $2,2^{\prime}$-bis(bromomethyl)benzophenone (90) with 1,4-bis(mercaptomethyl)benzene (91), followed by oxidization with excess oxone (Scheme 18). The crystal structure showed that the molecule has C_{2} symmetry and the C---Ar contact distance is $2.91 \AA$. The electron cloud of the ketone oxygen is projected into the π-cloud of the benzene ring. The closest contacts fall exactly at the sum of the van der Waals radii of carbon and oxygen ($3.2 \AA$), so there is no great steric compression of the carbonyl group.

Scheme 19. Synthesis of furanophane 96

94

96

95

The shortest $\mathrm{O}---\mathrm{Ar}$ distance known at present is found in furanophane 96 made by Keehn and coworkers. It was made by pyrolysis of an equimolar mixture of $\mathbf{9 4}$ and 95
(Scheme 19). The O---Ar contact is observed to be $2.55 \AA$ in the crystal structure. ${ }^{[35][36]}$

1.2 Results and Discussion

Will any structural relative of $\mathbf{9 3}$ contain a more highly congested ketone or even a new world record for a C---O nonbonded contact distance? If so, will the ketone still point directly at the basal benzene ring, or it will point sideways as in 92? DFT calculations have shown that, with bulky substituents and short linking arms to a basal aromatic ring, the ketone may be prevented from lying parallel to the basal ring, and ultimately may be forced to point directly at it. This was exactly how Qin et al. made the in-keto cyclophane 93. In order to design a new kind of $i n$-keto cyclophane which is more congested, the linking arms have to be shorter and bulkier.

1.2.1 First Attempted Synthesis of in-Keto Cyclophane

Computational studies (B3PW91/6-31G*) show that the C---O distance in cyclophane 108 is $2.60 \AA$, which is very close to the world record of $2.55 \AA$, and the ketone group is pointing directly at the basal benzene ring. There is no doubt that cyclophane $\mathbf{1 0 8}$ is a good candidate to be the most congested in-keto cyclophane.

108

Scheme 20. Proposed synthesis of in-keto cyclophane $\mathbf{1 0 8}$

100

104

$\xrightarrow[\mathrm{KOH}]{107} 108$

In order to synthesize cyclophane 108, the above route was designed (Scheme 20). Compound 99 can be prepared by alkylation of o-cresol (97) to give ether 98, followed by Claisen rearrangement. After acylation with trichloroacetyl chloride, compound $\mathbf{1 0 0}$ can undergo benzannulation, catalyzed by compound 102 and CuCl , to give the key intermediate naphthalene 103. ${ }^{[37]}$ Transmetallation with $n-\mathrm{BuLi}$ followed by a double addition to ethyl formate will give alcohol 104. After oxidation with pyridinium chlorochromate (PCC) and bromination with N -bromosuccinimide (NBS), the doubly brominated ketone $\mathbf{1 0 6}$ may be made. The last step is simply the standard cyclization of 106 with 1,4-benzenedithiol (107) in benzene, ethanol and KOH to give in-keto cyclophane 108.

The proposed route seems long but easy, but problems were encountered in practice. 1-(Allyloxy)-2-methylbenzene (98) was made from o-cresol (97) in 73\% yield. When $\mathbf{9 8}$ was subjected to Claisen rearrangement, alcohol 99 was the major product, but much alcohol 109 was also present in the reaction mixture, which gave trouble during purification. Finally, alcohol 99 was separated using vacuum distillation in 40% yield. Acylation was easy and compound $\mathbf{1 0 0}$ was formed in $\mathbf{9 0 \%}$ yield.

For the cyclization, some byproduct $\mathbf{1 1 0}$ formed after reflux for 14 h , but after 86 h , about half of compound $\mathbf{1 1 0}$ was converted to $\mathbf{1 0 3}$, and after 110 h , conversion to $\mathbf{1 0 3}$ was complete (Scheme 21). The yields of the conversions of $\mathbf{1 1 0}$ to $\mathbf{1 0 3}$ are shown in Table 1.

Scheme 21. Benzannulation reaction of compound 100

Table 1. Conversions of $\mathbf{1 1 0}$ to $\mathbf{1 0 3}$

Reaction Time	\% of $\mathbf{1 0 3}$ in the mixture of $\mathbf{1 0 3}$ and $\mathbf{1 1 0}$
14 h	0
86 h	50
110 h	100

In order to avoid such a long reaction time, the solvent was changed from dichloroethane to toluene and catalyst from CuCl to CuI . The reaction time was reduced to 19 h , with an isolated yield of 30%. However, compound $\mathbf{1 0 3}$ did not react with either n-BuLi or Mg to form the anion $\mathbf{1 1 1}$ or $\mathbf{1 1 2}$ (Scheme 22), so alcohol $\mathbf{1 0 4}$ could not be made in this way.

Scheme 22. Optimized benzannulation reaction and attempted transmetallation

112

In order to increase the reactivity of the halogen atom on the naphthalene ring, the brominated derivative 114 was made in a similar way (Scheme 23). Acylation with tribromoacetylchloride gave compound $\mathbf{1 1 3}$ in 81% yield, which was then subjected to benzannulation to make 1-bromo-8-methylnaphthalene (114) in 34\% yield. Transmetallation of $\mathbf{1 1 4}$ with n-BuLi gave the anion, which then reacted with ethyl formate to give alcohol $\mathbf{1 0 4}$ in $\mathbf{4 8 \%}$ yield. In some preparations, aldehyde $\mathbf{1 1 5}$ formed in the reaction, which was reacted with the anion again to obtain alcohol 104. Alcohol 104
was oxidized with PCC to obtain ketone 105 in 84% yield, for which ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, X-ray and IR data were collected. The crystal structure is shown in Figure 1.

Scheme 23. Synthesis of ketone 105

113

Figure 1. Molecular structure of compound 105; thermal ellipsoids have been drawn at the 50% probability level.

Scheme 24. Bromination reactions of ketone 105

Figure 2. Molecular structure of compound 116; thermal ellipsoids have been drawn at the 50% probability level.

Bromination of $\mathbf{1 0 5}$ with NBS is problematic, and various conditions were tried as shown in Scheme 24. The reaction with bromine in CCl_{4} with illumination by a tungsten lamp gave the desired compound $\mathbf{1 0 6}$ in very low yield, and the pentacyclic compound $\mathbf{1 1 6}$ was also found among the products. The crystal structure of compound $\mathbf{1 1 6}$ is shown in Figure 2. The whole reaction mixture was subjected to the cyclization conditions, but no cyclophane 108 was isolated from the reaction (Scheme 25).

Scheme 25. Attempted cyclization reaction

107
$106+116$

108

1.2.2 Second Attempted Synthesis of in-Keto Cyclophane

In order to make a highly congested ketone, the synthesis of an alternative in-keto cyclophane 123 was designed (Scheme 26). 1-Bromo-8-aminonaphthalene (119) can be made by diazotisation of 1,8-diaminonaphthalene (117) followed by treatment with hydrobromic acid and copper. Compound $\mathbf{1 1 9}$ may be subjected to Sandmeyer conditions to form 1-bromo-8-chloronaphthalene (120), which can be carried through a route similar to that in Scheme 18 to form alcohol 121 and ketone 122. 1,4-Bis(mercaptomethyl)benzene (91) could then be used for nucleophilic aromatic

Scheme 26. Proposed synthesis of in-keto cyclophane $\mathbf{1 2 3}$

117
 reflux
119

121

91

123
substitution on ketone $\mathbf{1 2 2}$ to form cyclophane $\mathbf{1 2 3}$.

In the actual experiments, the triazine $\mathbf{1 1 8}$ was carried on without purification, and the yield from $\mathbf{1 1 7}$ to $\mathbf{1 1 9}$ was 16%. Sandmeyer reaction of $\mathbf{1 1 9}$ gave $\mathbf{1 2 0}$ in 92% yield. As the reactivity of the chlorine is less than bromine, the monoanion was formed with chlorine remaining on the naphthalene ring. This was added twice to ethyl formate to
form alcohol 121 in 55\% yield. Oxidation was not complete, with either PCC or PDC, but starting material can be recycled, and the combined yield was 79%. The ketone $\mathbf{1 2 2}$ was characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS and X-ray analysis. The crystal structure of compound $\mathbf{1 2 2}$ is shown in Figure 3.

Figure 3. Molecular structure of compound 122; thermal ellipsoids have been drawn at the 50% probability level.

Scheme 27. Attempted cyclization reactions

122
$+$

91 Conditions:

1) $91, \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{DMF}$
2) $\mathbf{9 1}, \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{DMA}$
3) $\mathbf{1 2 4}$, DMF
4) $\mathbf{1 2 4}$, DMA

123

124

Condensation of ketone $\mathbf{1 2 2}$ and dithiol $\mathbf{9 1}$ is not a facile step. Various solvents were tried, such as DMF and DMA, with $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ as base, but the reactions all failed. The disodium salt $\mathbf{1 2 4}$ was also made so as to increase its nucleophilicity, but this did not help either (Scheme 27).

Scheme 28. Attempted reactions to make dithiol 126

122

126

Another attempt was the reaction of ketone $\mathbf{1 2 2}$ with sodium isopropylthiolate to make dithioether $\mathbf{1 2 5}$, followed by elimination of the isopropyl group with sodium and liquid ammonia to achieve dithiol 126. However, dithioether $\mathbf{1 2 5}$ was not formed. Other attempts to substitute chlorine with sulfur were unsuccessful, including the use of sodium sulfide in DMA and in ethanol (Scheme 28). The steric crowding in ketone $\mathbf{1 2 2}$ might be a problem.

1.2.3 Third Attempted Synthesis of in-Keto Cyclophane

The previous failure led to the design of another route for the synthesis of in-keto cyclophane $\mathbf{1 0 8}$ that would avoid the need for a free radical bromination (Scheme 29). Mercuration of 1,8-naphthalic anhydride (127) will give anhydro-8-(hydroxymercuri)-1-naphthoic acid (128), which can then be subjected to demercuration to form 8-bromo-1-naphthoic acid (129). Compound 129 can be reduced by LiAlH_{4} to give alcohol $\mathbf{1 3 0}$. Methylation of alcohol $\mathbf{1 3 0}$ with methyl iodide gives the key intermediate 1-bromo-8-(methoxymethyl)- naphthalene (131), which can then be converted to alcohol $\mathbf{1 3 2}$ and ketone $\mathbf{1 3 3}$ through a route similar to that in Scheme 1. The methoxy group could be replaced by reaction with boron trichloride to form the dichloro derivative 134. In the last step, ketone 134 can be subjected to the cyclization conditions described before to give in-keto cyclophane 108.

In the actual experiments, the first step worked well, and the mercury compound $\mathbf{1 2 8}$ was made in 84% yield. Demercuration did not work well at first, with a large amount of
the overbrominated product 135 and the decarboxylation product $\mathbf{1 3 6}$ formed as by-products (Scheme 30). The reaction conditions were optimized with less bromine added to the reaction mixture and ultimately 8 -bromo-1-naphthoic acid (129) was formed in 69% yield.

Scheme 29. Proposed synthesis of in-keto cyclophane 108

127

129
130

131
132

Scheme 30. Demercuration reaction of compound 128

Scheme 31. Reduction of compound 129 to 130

With compound $\mathbf{1 2 9}$ in hand, the initial attempt was to treat it directly with LiAlH_{4} to make (8-bromonaphthalen-1-yl)methanol (130). However, this reaction also led to some loss of bromine, and a large amount of naphthalen-1-ylmethanol (137) was detected in the reaction mixture, which was difficult to separate. Esterification with ethanol to make ester $\mathbf{1 3 8}$ followed by reduction with LiAlH_{4} did not work well either. Finally, treatment
with thionyl chloride $\left(\mathrm{SOCl}_{2}\right)$ and reduction with LiAlH_{4} gave the acyl chloride $\mathbf{1 3 9}$ and alcohol 130 in high yields, 94% and 86%, respectively (Scheme 31). Methylation with MeI and NaH was quantitative. The lithiation of $\mathbf{1 3 1}$ and formation of $\mathbf{1 3 2}$ proceeded in 15% yield, probably due to the steric hinderance of the compound. Alcohol 132 was characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS and X-ray analysis.

Figure 4. Molecular structure of compound 132; thermal ellipsoids have been drawn at the 50% probability level.

Scheme 32. Attempted oxidation reaction of compound 132

Oxidation of alcohol $\mathbf{1 3 2}$ is problematic. The oxidation with PCC did not give the desired ketone 133, but the rearranged aldehyde 140 instead. The crystal structure of compound 140 is shown in Figure 5. Changing the oxidizing agent to PDC did not succeed either, and the reaction mixture contained both the rearranged aldehyde $\mathbf{1 4 0}$ and ester 141 (Scheme 32). The crystal structure of compound 141 is shown in Figure 6.

Figure 5. Molecular structure of compound 140; thermal ellipsoids have been drawn at the 50% probability level.

Figure 6. Molecular structure of compound 141; thermal ellipsoids have been drawn at the 50% probability level.

Scheme 33. Attempted synthesis of ketone 133

In order to avoid preparing alcohol 132 first, followed by oxidation to ketone 133, another route was proposed. However, transmetallation of compound $\mathbf{1 3 1}$ followed by direct addition to diethyl carbonate still gave no desired product 133 (Scheme 33).

1.2.4 Fourth Attempted Synthesis of in-Keto Cyclophane

All these routes are tedious and problematic, but is there some other possible short synthesis of congested in-keto cyclophanes $\mathbf{1 0 8}$ or $\mathbf{1 2 3}$? Inspired by Block's method to make the dilithium derivative of thiophenol (35), a dilithium derivative of 1-thionaphthol (143) might be made in similar way. Dilithium salt $\mathbf{1 4 3}$ could be added twice to diethyl carbonate to form the dithiol 126, which could cyclize with 1,4-bis(bromomethyl)benzene (10) to make in-keto cyclophane $\mathbf{1 2 3}$ (Scheme 34). This route has the great advantage that it needs only three steps to yield the target molecule.

Scheme 34. Proposed synthesis of in-keto cyclophane 123

Scheme 35. Reaction of compound 143 with diethyl carbonate

Scheme 36. Reaction of compound 143 with compound 144 and 145

In the actual experiment, dilithium salt $\mathbf{1 4 3}$ was made and carried on without purification. In the addition reaction, ethyl 8-mercapto-1-naphthoate (144) and thiolactone $\mathbf{1 4 5}$ were formed, instead of ketone $\mathbf{1 2 6}$ (Scheme 35). The dilithium salt 143 was once again added to the mixture of 144 and 145 , which formed a mysterious compound that was revealed by X-ray crystallography to be the dimer 146 (Scheme 36). The crystal structure of compound $\mathbf{1 4 6}$ is shown in Figure 7.

Figure 7. Molecular structure of compound 146 (top) and compound 148 (bottom); thermal ellipsoids have been drawn at the 50% probability level.

Scheme 37. Reaction of compound 143 with carbonyldiimidazole

Similarly, by making the dilithium salt $\mathbf{1 4 3}$ first, followed by reaction with carbonyldiimidazole (147), it might be possible to make dithiol 126, which might cyclize with 1,4-bis(bromomethyl)benzene (10) to make in-keto cyclophane 123. In the actual experiment, a mixture of compound 148 and 145 was separated, instead of ketone 126 (Scheme 37). The crystal structure of compound $\mathbf{1 4 8}$ is shown in Figure 7.

1.3 Conclusion

Many attempts to synthesize in-keto cyclophanes $\mathbf{1 0 8}$ and $\mathbf{1 2 3}$ were made. Several important precursors were synthesized and fully characterized. However, none of the cyclization reactions gave either $\mathbf{1 0 8}$ or $\mathbf{1 2 3}$. The nonbonded interaction between the ketone oxygen and basal benzene ring may be so close as to prevent the formation of an in-keto cyclophane.

Chapter 2: Sterically Congested Macrobicycles

2.1 Introduction

A bicyclic molecule is a molecule that features two fused rings. There are three kinds of ring fusions. They can be fused across a bond between two atoms, as in decalin (150), which has a C-C bond shared between two cyclohexane rings. They can also be fused across a sequence of atoms, as in norbornane (151), which can be viewed as a pair of cyclopentane rings that share three of the five carbon atoms. Fusion can also happen at a single atom to form spiro compounds, such as spiro[5.5]undecane (152), which has a carbon atom shared between two cyclohexane rings (Figure 8).

150

151

152

153

154

Figure 8. Examples of bicyclic molecules

Usually bridgehead substituents point outward in common, small, bridged bicyclic compounds. Representative examples are bicyclo[1.1.1]pentane (153) and camphor (154).

This was thought to be always true until macrocyclic diammonium ions were prepared by Simmons and Park in 1968. ${ }^{[38][39][40][41]}$ The bridgehead nitrogen atoms show in and out configurations and nitrogen inversion appeared to occur in [8.8.8]-157, with an activation energy of $7.7 \mathrm{kcal} / \mathrm{mol}$ and $k=1.4 \times 10^{7} \mathrm{sec}^{-1}$ at $25^{\circ} \mathrm{C}($ Scheme 38$)$.

Scheme 38. Macrocyclic diammonium ions prepared by Simmons and Park

The earliest compounds with in-CH bridgeheads were reported simultaneously by Gassman and Thummel, ${ }^{[42][43]}$ and by Park and Simmons, ${ }^{[44]}$ using different approaches. Gassman and Thummel made compound 161 by Diels-Alder reaction of cis,trans-1,3-cyclodecadiene (162) and the powerful dienophile hexafluoro-2-butyne (163). Intramolecular $2+2$ cycloaddition of 161 gave compound 164. Catalytic hydrogenation of $\mathbf{1 6 1}$ yielded compound $\mathbf{1 6 5}$, in which the disubstituted double bond was reduced with the tetrasubstituted double bond unchanged (Scheme 39).

Scheme 39. Preparation of compound 161 and its reactions

Scheme 40. Synthesis of in,out- and in, in- bicyclo[8.8.8]hexacosane

In quite a different approach, Park and Simmons used the acyloin condensation of cis- and trans- isomers of $\mathbf{1 6 6}$ to obtain in,out- and in,in- bicyclo[8.8.8]hexacosane (167 and 168, respectively) (Scheme 40).

Scheme 41. Synthesis of cryptand 173

The first small molecule with both nitrogen lone pairs pointing in is cryptand $\mathbf{1 7 3}$ made by Cheney et al. in 1978. ${ }^{[45]}$ It was made by condensation of cyclic diamine 169 with diglycolic acid dichloride (170), followed by reduction with diborane and treatment with KOH (Scheme 41). Cryptand $\mathbf{1 7 3}$ presents very unusual proton transfer properties; it was the thermodynamically strongest and kinetically slowest base known at that time. ${ }^{[46]}$

The structure of the cryptand $\mathbf{1 7 3}$ and its inside protonated species $\mathbf{1 7 7}$ and $\mathbf{1 7 8}$ have been determined by X-ray analysis. ${ }^{[47]}$ The N-H bond lengths in $\mathbf{1 7 7}$ and $\mathbf{1 7 8}$ are 0.916
and $0.844 \AA$ respectively, which suggested that $\mathrm{N}-\mathrm{H}$ in $\mathbf{1 7 8}$ is stronger than 177. Also, 178 possesses a highly symmetrical structure and leaves no possibilities for the attack of nucleophiles and electrophiles, which makes it suitable for the fixation of tritium (Scheme 42).

Scheme 42. Protonation and deprotonation of cryptand $\mathbf{1 7 3}$ and its derivatives

The smaller in, in diamine $\mathbf{1 8 2}$ was made by Alder and coworkers at 1979. ${ }^{[48][49]}$ It was made by alkylation of 1,6-diazabicyclo[4.4.0]decane (179) with 1,4-dibromobutane, followed by cyclization with AgBF_{4} in 40% aqueous HBF_{4} and reduction with $\mathrm{Na} / \mathrm{NH}_{3}$ solution. Diamine 182 and dication salt 181 react stoichiometrically in $\mathrm{CH}_{3} \mathrm{CN}$ to give

183, which is stable for months in organic or aqueous solution without base. Inside protonation of $\mathbf{1 8 2}$ is thermodynamically favorable but kinetically difficult; in-monoprotonated ion 184 was formed in moderately strongly acidic media for more than a week. The inside protonated ion 184 is extraordinarily inert to deprotonation or further protonation (Scheme 43).

Scheme 43. Synthesis of in, in diamine 182 and its reactions

Diamines (185-190) with even shorter linkers were also made. ${ }^{[50][51][52][53][54][55][56]}$ However, the nitrogen atoms in these molecules point barely in (Figure 9).

185

188

186

189

187

190

Figure 9. Other in, in diamines.

The most interesting molecule is the triphenylamine double decker 190 made by Neugebauer and Kuhnhaeuser in 1985. The reaction of the dilithium salt of 197 with 198 gave precursor 199. Catalytic hydrogenation with Raney nickel and H_{2} gave 200, which was immediately diazotized in phosphinic acid to give the triphenylamine double decker 190 (Scheme 44). ${ }^{1} \mathrm{H}$ NMR showed that the aromatic protons were shielded and the nitrogen is nearly planar. The $\mathrm{N}---\mathrm{N}$ nonbonded contact in this propeller molecule is about $2.5 \AA$.

Scheme 44. Synthesis of triphenylamine double decker 190

A very limited number of interactions involving phosphorus have been studied. Most
of these molecules contain out-P. ${ }^{[57]}$ Alder et al. made out,out-diphosphine 203 by mixing solutions of 201 and $\mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{OTf}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by debenzylation with LiAlH_{4} (Scheme 45). ${ }^{[58]}$

Scheme 45. Synthesis of out,out-diphosphine 203

203

207

211

204

208

209

210

214

Figure 10. Diphosphines, protonated diphosphines and diphosphonium dications made by Alder et al.

Table 2. P-P coupling constants in in,out-adducts

Adduct	$J_{\text {PP/ }} / \mathrm{Hz}$	Adduct	$J_{\text {PP/ }} / \mathrm{Hz}$
 210	178		46
	198	 219	46
 216	139		57
 217	108		67

They also made various other diphosphines (203-206), all of which display out, out-isomers and are extremely strong bases. ${ }^{[59][60][61][62]}$ The protonation of medium-ring out,out-bisphosphines can give remarkable out-protonated in,out-isomers (207-210). They also made a series of diphosphonium dications (211-214) in which phosphrous atoms are bonded to each other and exhibit an in, in conformation (Figure 10).

These diphosphonium dications undergo addition reactions with a range of nucleophiles, and these adducts may retain some P-P interactions. Examples are shown in Table 2.

Scheme 46. Synthesis of in,out isomers 223, 224 and 225

Is there any bicyclic molecule with two phosphorous bridgehead atoms both pointing in? The answer is yes. There exist two examples of very large, macrobicyclic in,indiphosphites made by Bauer et al. ${ }^{[63][64]}$ The in, in-diphosphite $\mathbf{2 2 3}$ was made by a one-pot
tripod capping method starting from bisphenol 222 and PCl_{3} in 2.9% yield, while out,out-diphosphite 224 and in,out-diphosphite $\mathbf{2 2 5}$ formed at the same time in 5\% and 4.4% yield, respectively (Scheme 46). ${ }^{31} \mathrm{P}$ NMR showed that the in- and out- P atoms are remarkably different in chemical shift [223: $\delta 142.7$ (in); 224: $\delta 121.6$ (out); 225: $\delta 143.1$ (in), 121.6 (out)]. The crystal structures of $\mathbf{2 2 3}$ and $\mathbf{2 2 4}$ revealed that compound $\mathbf{2 2 3}$ does not have C_{3} symmetry in solid state. The $\mathrm{P}---\mathrm{P}$ contact distances of in, in-isomer $\mathbf{2 2 3}$ are $8.5 \AA$ and $8.3 \AA$ in the two independent molecules, both are shorter than that of the out,out-isomer 224 ($10.5 \AA$).

Scheme 47. Oxidation of in, in-diphosphite 223

The in-P atoms have a decreased reactivity, and they are more slowly oxidized by cumene hydroperoxide than out-P atoms (Scheme 47). The in,in-isomer 223 was most slowly oxidized, when compared with out,out-isomer 224 and in,out-isomer 225. ${ }^{31} \mathrm{P}$ NMR of 226 showed two peaks at $\delta 141.9$ and -12.3, while 227 showed only one peak at $\delta-12.7$, about 7 ppm downfield from the out-phosphate oxide.

Scheme 48. Synthesis of in,out isomers 229, 230 and 231

The other in, in-diphosphite 229 was made by a similar method starting from bisphenol 228 and PCl_{3} in 3% yield, while out,out-diphosphite 230 and in,out-diphosphite 231 formed at the same time in 6\% and 10% yield, respectively (Scheme 48). ${ }^{31} \mathrm{P}$ NMR resonances are in the same range as in 223-225. The crystal structure showed that the P---P contact distances of the in,in-isomer 229 are $4.47 \AA$ and $5.33 \AA$ in the two independent molecules, whereas the distance in out,out-isomer $\mathbf{2 3 0}$ is only $4.94 \AA$ due to distortion. Oxidation of in, in-isomer 229 with cumene hydroperoxide is faster than 223, which means that the lone pairs can point more or less out of the cavity (Scheme 49).

Scheme 49. Oxidation of in, in-diphosphite 223

2.2 Results and Discussion

2.2.1 In,in-Diphosphine

Can the lone pair of two phosphorous atoms point into each other in a smaller molecule? If so, how close will the P---P nonbonding contact distance be? How reactive will they be compared with cyclophanes $\mathbf{4 0},{ }^{[65]} \mathbf{2 2 3}^{[66]}$ and $\mathbf{2 3 4}{ }^{[67]}$ previously made in our lab (Figure 11)?

40

234

233

235

Figure 11. Cyclophanes previously made in Pascal's lab $(\mathbf{4 0}, \mathbf{2 3 3}, 234)$ and the proposed target molecule (235)

B3PW91/6-31G(d) calculations showed that diphosphine 235 would likely possess only high-energy out,out- and in,out-isomers, thus permitting the study of face-to-face,
interacting phosphines. The in,in-diphosphine $\mathbf{2 3 5}$ is more than $18 \mathrm{kcal} / \mathrm{mol}$ lower in energy than either in,out-isomer, and fully $30 \mathrm{kcal} / \mathrm{mol}$ lower than the out,out-isomer, therefore the in, in-isomer is the expected product of synthesis.

Scheme 50. Synthesis of in,in-diphosphine 235

236
237

238

239

KOH

The synthesis of in,in-diphosphine 235 is shown in Scheme 50. 2-Bromobenzyl bromide (236) was reacted with sodium methoxide to get 1-bromo-2-(methoxymethyl)benzene (237). Compound 237 was treated with n - BuLi to form the anion and then reacted with phosphorus trichloride to give tris[2-(methoxymethyl)phenyl]phosphine (238), which was then treated with boron trichloride to form tris[2-(chloromethyl)- phenyl]phosphine (239). ${ }^{[} \quad 68$] Tris(2-mercaptophenyl)phosphine (37) was made by treating thiophenol with two equivalents of n-BuLi to form the dianion, followed by reaction with phosphorus trichloride. ${ }^{[69][70]}$ Trichloride 239 and trithiol $\mathbf{3 7}$ was subjected to base induced cyclization at high dilution to provide in, in-diphosphine 235 in 10% yield.

Figure 12. Molecular structure of in,in-diphosphine 235; 50% thermal ellipsoids have been employed.

Single crystals of compound 235 suitable for X-ray analysis were obtained from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The structure contains two independent molecules, each with crystallographic C_{3} symmetry. The molecular structure of one of these is illustrated in Figure 12. As expected, the diphosphine adopts an in,in-conformation, with P---P nonbonding contact distances of $3.72 \AA$ and $3.58 \AA$ in the two independent molecules, both somewhat shorter than the calculated distance of $3.79 \AA$ at the B3PW91/6-31G(d) level, as DFT methods commonly overestimate the contact distances in stained cyclophanes. ${ }^{[71]}$

Are there any interactions between the two phosphorus atoms pointing to each other? The answer is yes! The ${ }^{31} \mathrm{P}$ NMR spectrum shows a pair of doublets with $J_{\mathrm{PP}}=175 \mathrm{~Hz}$ (Figure 13), comparable to the $J_{\mathrm{PP}}=178 \mathrm{~Hz}$ for compound 210, where the P---P contact distance is only $2.58 \AA$. Spectroscopic data reveal strong spin-spin coupling between the phosphorus atoms and the diastereotopic methylene protons ($J_{\mathrm{PH}}=3 \mathrm{~Hz}$ at $\delta 4.06$ and J_{PH} $=5 \mathrm{~Hz}$ at $\delta 5.16$, respectively $)$ and the methylene carbons $\left(J_{\mathrm{PC}}=32 \mathrm{~Hz}, 2 \mathrm{~Hz}\right.$ at $\left.\delta 43.4\right)$.

Figure 13. Proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of compound 235.

Figure 14. Resolution of Compound 235 by Chiral Supercritical Fluid Chromatography. (1) Chiralpak IA ($15 \mathrm{~cm} \times 0.46 \mathrm{~cm}$), 40% ethanol (0.1% diethylamine) $/ \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}$, 220 nm (Top); (2) Chiralpak IA, $(15 \mathrm{~cm} \times 0.46 \mathrm{~cm}), 40 \%$ isopropanol (0.1% diethylamine) $/ \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ (Bottom).

Compound 235 is a chiral molecule with twin molecular propellers. The barrier to racemization of diphosphine $\mathbf{2 3 5}$ can not be determined by dynamic NMR methods as a result of the high barrier, which was indicated by no coalescence or even broadening of its diastereotopic methylene resonances at $\delta 4.06$ and $\delta 5.16$ in high temperature ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{[72][73]}$ The enantiomers were resolved by using supercritical fluid chromatography (SFC) on a Chiralpak IA column with both $\mathrm{EtOH} / \mathrm{CO}_{2}$ and $i \mathrm{PrOH} / \mathrm{CO}_{2}$ as mobile phases. However, both chromatograms show a "bridge" between the two enantiomer peaks (Figure 14), indicating that significant racemization occurs during the separation. Using the dynamic chromatography method of Trapp, ${ }^{[74]}$ the barrier is calculated to be 20.7 $\mathrm{kcal} / \mathrm{mol}$ from a resolution in $\mathrm{EtOH} / \mathrm{CO}_{2}$ and $20.6 \mathrm{kcal} / \mathrm{mol}$ from a resolution in $i \mathrm{PrOH} / \mathrm{CO}_{2}$ at $22{ }^{\circ} \mathrm{C}$, which corresponds to a half-life of about 7 min . Therefore, it is impossible to do a preparative resolution of diphosphine $\mathbf{2 3 5}$ at this temperature.

Scheme 51. Protonation reactions of cyclophane $\mathbf{4 0}$ and 235

The phosphorus atom of 40 is extremely unreactive. It can not be protonated by anhydrous HBr to form compound 41. However, when HCl gas was bubbled into chloroform solutions of compound 235, protonation occurred and in,in-diphosphine hydrochloride 240 was obtained, as indicated by the new proton resonance (δ 14.08) in the ${ }^{1} \mathrm{H}$ NMR spectrum (Scheme 51). The protonation is a first-order process with half-life of 26 min , as monitored by ${ }^{1} \mathrm{H}$ NMR.

Figure 15. Low-field region of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 240

Figure 16. Proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of compound 240

There are some interactions between the atoms on the central axis in 240, similar to those in compound 235. The new proton resonance at $\delta 14.08$ is a doublet of doublets, with a coupling of $J_{\mathrm{PH}}=584 \mathrm{~Hz}$ between the in-proton and the protonated phosphorous atom and a through space coupling of $J_{\mathrm{PH}}=13 \mathrm{~Hz}$ between the the in-proton and the opposite phosphorous atom (Figure 15). This clearly indicated an asymmetric protonation of the diphosphine. The coupling between the two phosphorous atoms (J_{PP}) increased to 304 Hz (Figure 16), which is nearly double that in compounds $235\left(J_{\mathrm{PP}}=175 \mathrm{~Hz}\right)$ and $210\left(J_{\mathrm{PP}}=178 \mathrm{~Hz}\right)$.

Figure 17. Molecular structure of compound 240; thermal ellipsoids have been drawn at the 50% probability level.

Single crystals of compound $\mathbf{2 4 0}$ suitable for X-ray analysis were obtained by slow evaporation of a solution in $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The X -ray structure showed protonation on the sulfur-substituted triaryl phosphine, which is more basic due to the electron donating effect of sulfur. The proton's position was refined in the X-ray structure, with P-H bond distance of $1.29 \AA$ and P---H nonbonding distance of $2.59 \AA$, which is a reasonable hydrogen bond distance. However, the P-H bond distance is likely to be underestimated, because the peak of the hydrogen electron density is displaced slightly toward the phosphorus as a result of there being no core electrons on hydrogen. ${ }^{[75]}$ The actual P-H distance is probably about $1.4 \AA$.

Scheme 52. Oxidation reaction of in,in-diphosphine 235

When compound 40 was treated with refluxing hydrogen peroxide and acetic acid, only the corresponding trisulfone $\mathbf{4 2}$ formed, without formation of phosphine oxide 43 (Scheme 10). As compound 235 shows higher reactivity in protonation, it would be interesting to know if it can react with hydrogen peroxide, which would insert a larger atom into the cavity.

Compound 235 was heated in a refluxing solution of acetic acid and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. Hexaoxide 241 was detected by MALDI-TOF mass spectrometric analysis without evidence of either heptaoxide $\mathbf{2 4 2}$ or $\mathbf{2 4 3}$. Compound $\mathbf{2 3 5}$ was also heated in a refluxing
solution of THF and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, followed by a refluxing solution of acetic acid and 30% $\mathrm{H}_{2} \mathrm{O}_{2}$, but there was still no evidence of formation of a phosphine oxide (Scheme 52).

Figure 18. Molecular structure of hexaoxide 241, 50% thermal ellipsoids have been employed in the left image; the right image is a space-filling model.

Hexaoxide 241 is a relatively insoluble compound. It was dissolved in hot DMSO and upon cooling crystals suitable for X-ray analysis was obtained. X-ray analysis confirmed that it is the trisulfone $\mathbf{2 4 1}$. The crystal structure of compound $\mathbf{2 4 1}$ is shown in Figure 18. The distance between the inner sulfone oxygen and the nearest methylene proton is about 2.2-2.5 \AA in X-ray structure. Thus, the interior phosphorous lone pairs are sterically shielded from further reactions.

Scheme 53. Sulfuration reaction of compound 234

234

245

244
$\mathrm{S}_{8} /$ heat

246

Phosphine 234 was made by Chen et al. in Pascal's group in 1999. ${ }^{[67]}$ When it was heated at $200{ }^{\circ} \mathrm{C}$ for several days, which would overcome even a $40 \mathrm{kcal} / \mathrm{mol}$ barrier to inversion, no out-isomer $\mathbf{2 4 4}$ was produced. HF/STO-3G calculations showed that $\mathbf{2 3 4}$ is $28.0 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{2 4 4}$, so it is impossible to produce significant amounts of 244 in a simple thermal isomerization. However, when phosphine 234 was heated with sulfur in CS_{2} at $185^{\circ} \mathrm{C}$ in a sealed tube, out-phosphine sulfide 246 was formed rather than in-phosphine sulfide 245 (Scheme 53). This means that the in-phosphine 234 can be inverted under these conditions, and when out-phosphine 244 formed it reacted with sulfur to yield out-phosphine sulfide 246.

Scheme 54. Sulfuration reaction of in,in-diphosphine 235

247
$\downarrow S_{8} /$ heat

250

235
$\neq \mathrm{S}_{8} /$ heat

249

248

251

Similar in,out-isomerism might happen in diphosphine 235 upon heating, and compound 235 has two in,out-isomers (247 and 248). However, when 235 was heated with sulfur in CS_{2} at about $180{ }^{\circ} \mathrm{C}$, neither the in-phosphine sulfide 249 nor the out-phosphine sulfides $\mathbf{2 5 0}$ or $\mathbf{2 5 1}$ were detected by mass spectrometric analysis. Benzene and toluene were also used as solvents for this reaction, but there was no evidence of addition of sulfur (Scheme 54). The transition states for inversion of
in,in-235 to give each of the in,out-isomers was located at the B3PW91/6-31G(d) level, and the $\Delta \mathrm{G}^{\neq i n v}$ for these processes were calculated to be 26.2 and $28.8 \mathrm{kcal} / \mathrm{mol}$. This means that the formation of out-atom adducts would be very slow at best, and the existence of the in,out-isomers, which have barriers of only $8-10 \mathrm{kcal} / \mathrm{mol}$ to return to the in, in ground state, would be fleeting.

Scheme 55. Other attempted in-functionalization experiments

Other in-functionalization experiments were also attempted (Scheme 55). Compound 235 was dissolved in chloroform, to which sulfur monochloride was added, but phosphine chloride 252 was not obtained. In another attempt, compound 235 was heated with boron trifluoride diethyl etherate in chloroform, but complex $\mathbf{2 5 3}$ was not formed either.

Scheme 56. Attempted experiments with compound 235 and divalent metals

235

254

235

255

Divalent metals, such as Ag^{I} or Au^{I}, might be captured between the phosphines to form linear metal complexes 254 and 255 (Scheme 56). Compound 235 and gold(I) chloride were mixed in acetone stirred at room temperature overnight under protection of argon, but mass spectrometric analysis showed no evidence of gold addition. A similar reaction was carried out with compound 235 and $\operatorname{silver}(\mathrm{I}) p$-toluenesulfonate but it was also unsuccessful. It appears that the cavity is too tight for these big groups or atoms to fit inside.

2.2.2 In,in-Aminophosphine

The in-aminophane 56 was recently synthesized in the group. ${ }^{[76]}$ The substitution of nitrogen for phosphorus in a triaryl-element-capped cyclophane results in reduced inward pyramidalization of the apical nitrogen, but it is just as unreactive as phosphine 40. Interestingly, while phosphine 40 possesses distinct in- and out-conformations, aminophane 56 has only a single, low-energy conformation. This suggested the idea of making the mixed in,in-P,N cyclophanes 256 or 257 (Figure 19). They have both nitrogen and phosphorus pointing inward towards each other, which may result in some interesting properties.

40

256

56

257

Figure 19. Cyclophanes previsously made in Pascal's lab (40, 56) and proposed in, in-P,N cyclophanes

Scheme 57. Synthesis of in, in-P,N cyclophane 256

256

The initially designed synthesis of in,in-P,N cyclophane $\mathbf{2 5 6}$ is shown in Scheme 57.

Triester 260 can be made by Ullmann reaction of methyl anthranilate (258) and methyl 2-iodobenzoate (259). ${ }^{[77]}$ Reduction with LiAlH_{4} followed by chlorination would give trichloride 262, which may cyclize with trithiol 37 to provide in,in-P,N cyclophane 256.

Scheme 58. Reactions of compound 261 in the actual experiment

The Ullmann reaction and reduction with LiAlH_{4} succeeded and triol 261 was obtained. When 261 was heated with SOCl_{2}, trichloride 262 was made along with substantial amounts of tetrachloride 263 and pentachloride 264. This mixture and trithiol $\mathbf{3 7}$ was subjected to base induced cyclization at high dilution, and a mixture of 256, 265 and 266 was obtained (Scheme 58). Single crystals formed by slow evaporation of a solution in $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The X-ray structure is end-to-end disordered, but there is no
doubt that the in,in-P,N cyclophane $\mathbf{2 5 6}$ is present in the reaction mixture, which was supported by NMR and MALDI-TOF mass spectrometric analysis.

Scheme 59. Synthesis of in, in-P,N cyclophane 257

The other in, in-P,N cyclophane 257 was made by the method shown in Scheme 59. The triphenylamine trithiol $\mathbf{5 5}$ was made by Ullmann reaction of thioethers $\mathbf{5 2}$ and $\mathbf{5 3}$ to achieve trithioether 54, followed by Birch reduction. Thioethers $\mathbf{5 2}$ and $\mathbf{5 3}$ were made by
reacting sodium isopropylthiolate with the corresponding halogenated precursors. Condensation of trithiol $\mathbf{5 5}$ with trichloride $\mathbf{2 3 9}$ gave in,in-P,N cyclophane $\mathbf{2 5 7}$ in 15.5\% yield and the product was easily isolated by chromatography. ${ }^{[76]}$

Figure 20. Molecular structure of compound 257; 50% thermal ellipsoids has been employed.

Single crystals of compound 257 suitable for X-ray analysis were obtained from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The molecular structure is illustrated in Figure 20. Compound 257 possesses C_{3} symmetry in gas phase calculations, and it adopts an in,in-conformation with approximate C_{3} symmetry in the solid state. The amine is more nearly planar than
the highly pyramidalized phosphine. The P---N nonbonding contact distance is $4.17 \AA$, substantially longer than the P---P nonbonding contact distance ($3.58 \AA$ and $3.72 \AA$ in two independent molecules) observed in the structures of diphosphine 235. It would be interesting to know if there is any coupling between the nitrogen and phosphorous atoms, but a highly concentrated solution of $\mathbf{2 5 7}$ is not easy to make.

Compound 257 is a propeller-like chiral molecule similar to diphosphine 235, and it can be easily resolved by supercritical fluid chromatography (SFC) on Chiralpak 1A with $40 \% \mathrm{EtOH} / \mathrm{CO}_{2}$ as mobile phase (Figure 18). 25 mg of 257 were resolved into pure enantiomers, and these samples yielded specific rotations $\left([\alpha]_{D}{ }^{25}\right)$ of +132 and -122 for the faster and slower eluting components, respectively.

When diphosphine 235 was resolved, significant racemization occured during the separation. However, there is no "bridge" between the two enantiomer peaks during resolution of $\mathbf{2 5 7}$ (Figure 21). Also, no racemization of enantiomerically pure (-)-257 was observed upon heating for 24 h at $100^{\circ} \mathrm{C}$ in toluene, which indicates that the barrier to racemization is at least $31 \mathrm{kcal} / \mathrm{mol}$. Heating for 24 h at $180{ }^{\circ} \mathrm{C}$ in DMSO showed complete decomposition to unknown products. This barrier is much higher than the 20.7 $\mathrm{kcal} / \mathrm{mol}$ barrier estimated for diphosphine 235. The reason for this difference is not at all obvious, and racemization pathways for both molecules have yet to be defined computationally, despite numerous attempts and the expenditure of an enormous amount of computer time.

Figure 21. Resolution of Compound 257 by Chiral Supercritical Fluid Chromatography (Chiralpak 1A, 40\% EtOH/CO2, 100 bar) (Top); Analytical Chiral SFC of (+)-257 (Middle); Analytical Chiral SFC of (-)-257 (Bottom).

When HCl was added to cyclophane $\mathbf{5 6}$, there was no evidence of a protonated cyclophane 57 (Scheme 12). No materials were available for other reactions, such as oxidation, due to the low yield formation of compound 56. Protonation of compound 235
is first order at a first-order process with half-life of 26 min , and it would be interesting to see if the larger cavity will increase the protonation rate. When HCl gas was bubbled into chloroform solutions of compound 257, protonation occurred on the phosphorous atom to form in, in-P,N hydrochloride 267 (Scheme 60), as indicated by the new proton resonance at $\delta 11.97$ with a coupling constant of 532 Hz in the ${ }^{1} \mathrm{H}$ NMR spectrum. The protonation is a first-order process with half-life of 26 min, which means the larger cavity did not increase the protonation rate. Single crystals formed by slow evaporation of a solution in $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. However, the proton position was not defined due to poor diffraction in the X-ray experiments.

Scheme 60. Protonation reaction of compound 257

An oxidation reaction was also carried out. Compound 257 was heated in refluxing solution of acetic acid and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. Neither hexaoxide 268 nor heptaoxides 269 and 270 were detected by MALDI-TOF mass spectrometric analysis (Scheme 61). Instead, it showed only low molecular weight peaks which indicated decomposition of compound
257. Reaction of compound 257 with gold(I) chloride or silver(I) tosylate under conditions similar to those used for diphosphine $\mathbf{2 3 5}$ did not give metal adducts (Scheme 62). The relatively flat, non-basic amine might cause problems in these reactions even though it increases the size of the cavity.

Scheme 61. Attempted oxidation reaction of compound 257

Scheme 62. Attempted complexation experiments of compound 257 with divalent metals

2.2.3 In,in-Phosphinosilane

As stated above, protonation of compounds 235 and 257 gave monoprotonated hydrochloride salts 240 and 267, respectively. Further protonation might produce the more congested cyclophanes 273 and 274, which necessitates very close $\mathrm{H}--\mathrm{H}$ nonbonding contacts (Scheme 63). However, a second protonation was not detected in either $\mathbf{2 4 0}$ or 267. One must admit that the monoprotonated versions of the cyclophanes are more congested, leaving less room for the second proton to attach. Also, the positive charge on phosphorous is repulsive to protons, which makes the second protonation even more difficult.

Silicon is similar in size to phosphorous, and it would be interesting to see if in, in-phosphinosilane 275 could be made. Since there is no charge on 275, it might be a better candidate than $\mathbf{2 4 0}$ for the internal protonation reaction.

Scheme 63. Proposed protonation reactions

240

267

274

275

276

The precursor trithiol $\mathbf{3 6}$ was made by converting thiophenol to its dilithium salt 35, followed by reaction with SiHCl_{3}. Condensation of trithiol $\mathbf{3 6}$ with trichloride 239 gave
in,in- P, HSi cyclophane 275 in 0.7% yield, and the product was isolated by chromatography (Scheme 64).

Scheme 64. Synthesis of in,in-phosphinosilane 275

35

239

Single crystals of compound 275 suitable for X-ray analysis were obtained from $\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$. The molecular structure is illustrated in Figure 22. Compound 275 adopts an in,in-conformation with crystallographic C_{3} symmetry, and it is similar as the hydrochloride salt 240. The P---Si distance in compound 275 is $4.08 \AA$, longer than the P---P distance in hydrochloride salt $\mathbf{2 4 0}$, which is only $3.88 \AA$. One reason is that Si-H bonds are slightly longer than $\mathrm{P}-\mathrm{H}$ bonds. Also, the $\mathrm{P}^{+}-\mathrm{H}---\mathrm{P}$ interaction in 240 is an attractive hydrogen bond, but the $\mathrm{Si}-\mathrm{H}---\mathrm{P}$ interaction in 275 is essentially repulsive.

Figure 22. Molecular structure of compound 275; thermal ellipsoids have been drawn at the 50% probability level.

Spin-spin coupling among the central atoms (P, H, and Si) in compound 275 is observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7 5}$ showed a doublet ($\delta 9.31, J_{\mathrm{PH}}=25 \mathrm{~Hz}$) for the central proton resonance due to coupling with the phosphorus. In addition, the easily visible ${ }^{29} \mathrm{Si}$ side bands indicated a coupling of $J_{\mathrm{SiH}}=248 \mathrm{~Hz}$ between silicon and the central hydrogen. Most interesting is the proton-decoupled ${ }^{29} \mathrm{Si}$ NMR spectrum of 275, consisting of a lone doublet with strong coupling to phosphorus $\left(J_{\mathrm{SiP}}=76 \mathrm{~Hz}\right)$.

Despite of the low yield of compound 275, there was enough to attempt protonation. Compound 275 was treated with HCl gas in chloroform solution at room temperature,
and protonation did eventually occur. However, no X-ray structure of the desired product was obtained. What happened upon protonation is still a mystery.

Scheme 65. Synthesis of in,out-P, EtOSi cyclophane 277

239

The $\mathrm{Si}-\mathrm{H}$ functional group is not completely stable, since a byproduct 277 was detected in the cyclization reaction of trithiol $\mathbf{3 6}$ with trichloride $\mathbf{2 3 9}$ (Scheme 65). Single crystals of compound 277 suitable for X-ray analysis were obtained from $\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$. The in,out- macrobicycle is 'screwed together' more tightly than the in, in-isomers. The P---Si distance in 277 is $4.90 \AA$, longer than the in,in-isomers.

Figure 23. Molecular structure of compound 277; thermal ellipsoids have been drawn at the 50% probability level.

2.2.4 In,in-Bis(hydrosilane)

Since the stability of hydrosilanes is a potential problem, fewer steps are helpful in the formation of hydrosilane-containing cyclophanes. Most interesting is the in, in-bis(hydrosilane) 278. The B3PW91/6-31G(d) calculations in Table 3 show that the in, in geometry of 278 is only about $6 \mathrm{kcal} / \mathrm{mol}$ more favorable than the possible in,out-isomers and $10.4 \mathrm{kcal} / \mathrm{mol}$ more favorable than the out,out-isomer. Can the in, in-isomer be made and how close is the $\mathrm{H}---\mathrm{H}$ nonbonded contact?

Table 3. Calculated relative energies of in/out isomers of bis(hydrosilane)

${ }^{a}$ All calculations were performed at the B3PW91/6-31G(d) level; all compounds possessed C_{3} symmetry and displayed zero imaginary frequencies.

Scheme 66. Synthesis of bis(hydrosilane) 278

283

278

284

285

Tris[2-(methoxymethyl)phenyl]silane (282) was made by transmetallation of compound $\mathbf{2 3 7}$ followed by addition to SiHCl_{3} three times in 66% yield. Chlorination of 282 with boron trichloride gave the trichloride precursor 283 in 17\% yield. Cyclization of
trichloride 283 with trithiol 36 at high dilution in benzene/ethanol in the presence of KOH gave a very complex mixture, which was composed of oligomeric and polymeric products and other cyclophanes, such as the in,out-isomers of cyclophanes with mixed hydrosilane and ethoxysilane bridgehead functionality and the out,out-bis(ethoxysilane) 284. However, the $i n, i n$-bis(hydrosilane) 278 was present in the mixture and was separated by chromatography in 0.4% yield (Scheme 66).

The in,in-bis(hydrosilane) 278 is exceptional sterically congested. First, the ${ }^{1} \mathrm{H}$ NMR spectrum showed steric deshielding of the $\mathrm{Si}-\mathrm{H}$ resonances, which were shifted approximately 2 ppm downfield (to $\delta 8.24$ and $\delta 8.57$) from the silane proton resonance in the nonmacrocyclic model compound 285 ($\delta 6.21$). Second, the IR spectrum of 278 shows one strong band in the $\mathrm{Si}-\mathrm{H}$ region ($2325 \mathrm{~cm}^{-1}$), roughly $150 \mathrm{~cm}^{-1}$ higher in frequency than the Si-H stretch in model $285\left(2177 \mathrm{~cm}^{-1}\right)$. This is a clear case of compressional frequency enhancement.

Single crystals of compound 278 suitable for X-ray analysis were obtained from benzene- $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The molecule possesses crystallographic C_{3} symmetry (Figure 24), in agreement with the calculated structure. The in, in geometry is confirmed, as is the unique "head-on collision" of the two in-hydrogen atoms. The hydrogen atom positions were refined and the distance between the two hydrogen atoms in X-ray structure is 1.89 A. However, due to the foreshortening of the Si-H distances, the actual $\mathrm{H}---\mathrm{H}$ distance ($d_{\mathrm{H}-\mathrm{H}}$) is shorter. The distance of between silicon atoms is $4.43 \AA$, about $0.8 \AA$ greater than the distance between phosphorus atoms in 235 ($3.58 \AA$ and $3.71 \AA$ in two
independent molecules), which is another indication of steric congestion. If a standard Si-H bond distance of $1.48 \AA$ were employed, ${ }^{[78]}$ then $d_{\text {H-H }}$ would be only $1.47 \AA$, but there must be some compression of the $\mathrm{Si}-\mathrm{H}$ bond in this environment.

Figure 24. Molecular structure of compound 278; thermal ellipsoids have been drawn at the 50% probability level.

The computational methods listed in Table 4 gave Si-H bond distances ranging from $1.44 \AA$ to $1.46 \AA$ and $d_{\mathrm{H}-\mathrm{H}}$ values ranging from $1.56 \AA$ to $1.62 \AA$. However, all of these methods significantly overestimated $d_{\mathrm{Si}-\mathrm{Si}},{ }^{[79]}$ so the actual $d_{\mathrm{H}-\mathrm{H}}$ or the Si-H bond distances must be shorter still.

Table 4. Experimental and calculated interatomic distances for the core atoms of compound 278

Method	$\boldsymbol{d}_{\mathrm{Si}-\mathrm{Si}}(\AA)$	$\boldsymbol{d}_{\mathrm{H}-\mathrm{H}}(\AA)$
X-ray	$4.433(2)$	$1.89(10)$
B3LYP/6-31G(d)	4.535	1.623
B3LYP/6-311+G(2d,p)	4.518	1.618
B3PW91/6-31G(d)	4.501	1.576
B3PW91/6-311+G(2d,p)	4.484	1.570
M062X/6-31G(d)	4.474	1.568
M062X/6-311+G(2d,p)	4.449	1.560
MP2(FC)/6-31G(d)	4.458	1.556

Scheme 67. Synthesis of bisadamantyl-containing cyclophane 287

Extensive searches of the Cambridge Structural Database (CSD) found several compounds with very short $\mathrm{H}---\mathrm{H}$ nonbonded contact. One of these compounds is the bisadamantyl-containing cyclophane 287 made by Vögtle and coworkers in 1994 (Scheme 67). ${ }^{[80]}$ A B3PW91/6-31G(d) calculation gave an H---H contact of $1.637 \AA$.

The "world record" for the shortest experimentally determined $\mathrm{H}---\mathrm{H}$ nonbonded contact is $1.617(3) \AA$ via neutron diffraction for a cage pentacyclododecane 288. ${ }^{[81]}$ This distance is in almost perfect agreement with the results of modern calculations [e.g., B3PW91/6-31G(d), $1.616 \AA$ § MP2/6-31G(d), $1.622 \AA$ A].

288

There can be little doubt that $d_{\mathrm{H}-\mathrm{H}}$ in compound $\mathbf{2 7 8}$ is significantly shorter, on the order of $1.56 \AA$, but direct experimental confirmation awaits a large enough crystal for a neutron diffraction experiment.

Since the two hydrogens on the central axis of $\mathbf{2 7 8}$ are so close, one reaction that might happen is loss of hydrogen gas under some conditions. The bond energy of Si-H is $393 \mathrm{~kJ} / \mathrm{mol}$, compared with Si-Si $340 \mathrm{~kJ} / \mathrm{mol}$ and H-H $432 \mathrm{~kJ} / \mathrm{mol}$, thus the formation of compound 289 is favored by $14 \mathrm{~kJ} / \mathrm{mol}$ (in the absence of any added strain). Cyclization of $\mathbf{3 6}$ and $\mathbf{2 8 3}$ in THF at the presence of $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ appeared to give compound $\mathbf{2 8 9}$ based on ${ }^{1} \mathrm{H}$ NMR analysis (Scheme 68), but the confirmation of this structure awaits a single crystal suitable for X-ray analysis.

Scheme 68. Synthesis of cyclophane 289

283

In compounds 235 and 275, there is through space spin-spin coupling among the atoms on the central axes of the molecules. However, the Si-H resonances of 278 are singlets. Still, there might be a small coupling of the two atoms, and an NMR experiment was carried out to measure the possible coupling. First, in a good quality spectrum where the chloroform peak width was 0.4 Hz , the hydrogen signals at $\delta 8.57$ and $\delta 8.24$ are singlets with line widths of 2.4 Hz and 2.7 Hz respectively. Second, irradiation of the peak at $\delta 8.57$ did not change the peak width of the $\delta 8.24$ resonance (Figure 25). A COSY experiment did show slight coupling between these two hydrogens (Figure 26), but the coupling constant could not be determined. It seems that even if these two hydrogens are coupled to each other, the coupling constant is sertainly less than 0.5 Hz .

Figure 25. Decoupling experiment of compound 278

Figure 26. Low-field region of the COSY spectrum of compound 278

2.2.5 In,out-Phosphinomethylsilane

Another interesting question for this kind of molecular cage is: what is the largest functional group to fit into the cavity? In order to explore this, Block's synthesis was used to synthesize the methylsilane trithiol 290, which was utilized in a cyclization with trichloride 239. Compound 291 was isolated in 2.2% yield, and single crystals suitable for X-ray analysis were obtained from benzene- $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (Scheme 69). In contrast with the results obtained before with lone pairs and protons as bridgehead substituents, compound 291 gave an in, out conformation. B3PW91/6-31G(d) calculations showed that the observed out,in-MeSi, $\mathrm{P}(\mathbf{2 9 1})$ is about $35 \mathrm{kcal} / \mathrm{mol}$ more stable than $i n, i n-\mathrm{MeSi}, \mathrm{P}$ and in,out-MeSi,P cyclophanes.

Since the bridgehead silicon adopts an out conformation, the cavity is larger than those in the in,in-isomers. The P---Si distance is measured to be $4.90 \AA$, about $0.7 \AA$ longer than in,in- $\mathrm{N}, \mathrm{P}(\mathbf{2 5 7})$ and $1.3 \AA$ longer than in, in-P,P(235). It was expected that this will allow higher reactivity of the phosphorous atom, but it is not the case. Protonation of 291 is even slower than $\mathbf{2 3 5}$ and $\mathbf{2 5 7}$, and eventually gave more than three new methyl resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum. No good-quality crystals were obtained from this mixture, and the characterization of these products, which must result in part from ring fragmentation at silicon, was not pursued (Scheme 70).

Scheme 69. Synthesis of in,out-phosphinosilane 291

239

Figure 27. Molecular structure of compound 291; thermal ellipsoids have been drawn at the 50% probability level.

Scheme 70. Proposed protonation of cyclophane 291

2.3 Conclusion

The calculated relative energies of the various cyclophanes are summarized in Table
5. In this kind of cage molecule, only lone pair and protons bridgehead substituents have a low enough energy to form in,in-isomers, and larger substitutions, such as methyl group, only permit formation of the in,out-isomers. In order to put methyl or larger groups inside, some different synthetic methods must be developed.

Table 5. Calculated relative energies of in/out isomers of bis(triarylelement) cyclophanes

Compound	$\mathbf{E}+\mathbf{Z P E}(\mathbf{a u})^{a}$	$\triangle \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$
in,in-P, P (1)	-3380.091662	0.0
in,out-P, P-A	-3380.062618	+18.2
in,out-P, P-B	-3380.061870	+18.7
out,out-P, P	-3380.043331	+30.3
in,in-N,P(2)	-3093.505473	0.0
in,out-N, P	-3093.481031	+15.3
out, in- N, P	not a potential	imum
out,out-N, P	not a potential	imum
in, in-HSi, P (3)	-3328.848381	0.0
in,out-HSi, P	-3328.817926	+19.1
out,in-HSi, P	-3328.832399	+10.0
out,out-HSi, P	-3328.813156	+22.1
in,in-MeSi, P	-3368.054971	+35.7
in,out $-\mathrm{MeSi}, \mathrm{P}$	-3368.056685	+34.6
out,in-MeSi, P (4)	-3368.111798	0.0
out,out-MeSi, P	-3368.092861	+11.9
in, in- $\mathrm{HSi}, \mathrm{HSi}$ (5)	-3277.599416	0.0
in,out-HSi,HSi-A	-3277.589307	+6.3
in,out-HSi,HSi-B	-3277.590474	+5.6
out,out-HSi,HSi	-3277.582801	+10.4

${ }^{a}$ All calculations were performed at the B3PW91/6-31G(d) level; all compounds possessed C_{3} symmetry and displayed zero imaginary frequencies.
${ }^{b}$ For isomer A, the carbon-substituted triarylelement is out; for isomer B, the sulfur-substituted triarylelement is out.

In conclusion, several macrobicyclic, bis(triarylelement)-containing cyclophanes have been synthesized and fully characterized, each bearing two different bridgehead heteroatoms. Computational studies accurately predicted that when the bridgehead substituents are small (lone pairs or protons), an in, in bridgehead stereochemistry is strongly favored, but larger bridgehead substituents favor the formation of in,out stereoisomers. Besides, compound 235, 240 and 275 show through-space spin-spin coupling between atoms along the central axis. Even compound $\mathbf{2 7 8}$ only shows small through-space spin-spin coupling between the two hydrogens, a combination of crystallographic and computational data indicate that the hydrogen-hydrogen nonbonded contact distance is approximately $1.56 \AA$, a new "world record" for such contact in any crystallographically characterized compound.

Chapter 3: Experimental Procedures and Selected Spectras

Synthesis of allyl o-tolyl ether (98)

To a solution of $\mathrm{NaOH}(0.40 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, o-cresol ($1.08 \mathrm{~g}, 10$ mmol) was added dropwise. After 2 h , allyl chloride ($0.92 \mathrm{~g}, 12 \mathrm{mmol}$) was added and the mixture was heated to reflux for 4 h . Upon cooling, water was added and the mixture was extracted with chloroform 3 times. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under vacuum gave a residue, which was chromatographed on silica gel. Elution with hexanes yielded compound $\mathbf{9 8}$ as a light yellow liquid ($1.08 \mathrm{~g}, 7.3 \mathrm{mmol}, 73 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 16.5,68.8,111.4$, 117.1, 120.6, 126.9, 127.1, 130.9, 133.8, 156.9 (10 of 10 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{9 8}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 98

Synthesis of 2-allyl-6-methylphenol (99)

Allyl o-tolyl ether (98, $9.14 \mathrm{~g}, 61.7 \mathrm{mmol})$ was placed in a round bottom flask and heated at $200^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was subjected to vacuum distillation. The desired product 99 distilled from 80 to $85^{\circ} \mathrm{C}$ under vacuum as a colorless liquid (3.66 g , $24.7 \mathrm{mmol}, 40 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 16.1,35.8,116.8,120.6,124.4,124.7,128.2,129.5$, 136.7, 152.7 (10 of 10 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 99

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 99

[^0]
Synthesis of 2-allyl-6-methylphenyl trichloroacetate (100)

To a solution of compound 99 ($3.55 \mathrm{~g}, 24.0 \mathrm{mmol}$) in ether (100 mL), trichloroacetyl chloride ($4.36 \mathrm{~g}, 24.0 \mathrm{mmol}$) was added. The mixture was stirred at room temperature overnight. Water was added to the reaction mixture, which was extracted with ether three times. The organic layer was combined and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, compound $\mathbf{1 0 0}$ was obtained as light yellow liquid ($6.33 \mathrm{~g}, 21.6 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.3,34.4,117.0,127.4,128.5,129.8,130.4,132.1,135.6,147.5$, 160.0 (11 of 11 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 0 0}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 0 0}$

Synthesis of 1,3-di(2-picolyl)imidazolium chloride (102)

Compound 102 was prepared by the method of Alison et al. ${ }^{82}$ Picolylchloride hydrochloride (101, $1.18 \mathrm{~g}, 7.2 \mathrm{mmol})$, imidazole $(0.25 \mathrm{~g}, 3.6 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.91$ $\mathrm{g}, 11.2 \mathrm{mmol})$ were taken up in ethanol $(10 \mathrm{~mL})$ and heated at reflux for 2 days. The solvent was removed in vacuo, and the residue was taken up in dichloromethane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the DCM in vacuo gave an oil that was triturated with 4 mL THF to give a powder, which was further washed with THF (20 mL) twice and dried in vacuo. Yield: $687 \mathrm{mg}(66 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.66(\mathrm{~s}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~m}, 6 \mathrm{H}), 8.44(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 10.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 54.2,122.6$, 124.1, 137.8, 149.9, 152.6 (6 of 8 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 102

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 102

Synthesis of 1-chloro-8-methylnaphthalene (103)

A solution of the trichloroacetate $\mathbf{1 0 0}(119 \mathrm{mg}, 0.40 \mathrm{mmol})$ in degassed toluene (1 $\mathrm{mL})$ containing $\mathrm{CuCl}(1.8 \mathrm{mg}, 0.018 \mathrm{mmol})$ and the ligand $102(5.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ was sealed under nitrogen in a screw capped tube and heated at $160^{\circ} \mathrm{C}$ for 19 h . On cooling the reaction to ambient temperature the solvent was removed in vacuo and the black residue fractionated by column chromatography (silica gel; eluent: hexanes) to afford 1-chloro-8-methylnaphthalene (103) (21 mg, $0.12 \mathrm{mmol}, 30 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.16(\mathrm{~s}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.1$, $125.3,126.2,127.8,128.7,129.2,130.4,130.9,131.9,135.2,136.6$ (11 of 11 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 0 3}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 0 3}$

[^1]
Synthesis of 2-allyl-6-methylphenyl tribromoacetate (133)

The preparation of compound $\mathbf{1 1 3}$ is adapted from the method of Strazzolini et al., ${ }^{83}$ who prepared the corresponding trichloroacetate. Tribromoacetyl chloride ($4.49 \mathrm{~g}, 14.2$ mmol) was added to a solution of compound $99(2.11 \mathrm{~g}, 14.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. $\mathrm{Et}_{3} \mathrm{~N}(1.98 \mathrm{~mL}, 14.2 \mathrm{mmol})$ was added afterwards and the mixture was stirred at room temperature for 16 h . Water was added to the reaction mixture, which was then extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford compound $\mathbf{1 1 3}$ as yellow liquid ($4.92 \mathrm{~g}, 11.5 \mathrm{mmol}, 81 \%$).

Synthesis of 1-bromo-8-methylnaphthalene (114)

The preparation of compound $\mathbf{1 1 4}$ is adapted from the method of Bull et al., ${ }^{4}$ who prepared 1-chloro-8-methylnaphthalene. $\mathrm{CuI}(30 \mathrm{mg}, 0.158 \mathrm{mmol})$ was added to a solution of compound $\mathbf{1 1 3}(1.50 \mathrm{~g}, 3.51 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$, and the mixture was heated at reflux for 18 h . The solvent was removed and the resulting material was fractionated by silica gel column chromatography (solvent, hexanes) to give compound 113 as white crystals $(0.26 \mathrm{~g}, 1.18 \mathrm{mmol}, 34 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.14(\mathrm{~s}, 3 \mathrm{H}), 7.21$ (m, 1 H), $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{ddd}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.4,120.1,125.8,126.2,128.3$, $128.4,129.5,131.2,133.6,135.5,136.7$ (11 of 11 expected resonances); MS (EI) $\mathrm{m} / \mathrm{z} 220$ $\left(\mathrm{M}^{+}, 75\right), 141(\mathrm{M}-\mathrm{Br}, 100)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 114

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 1 4}$

[^2]
Synthesis of 8-methyl-1-naphthaldehyde (115)

Compound 114 ($55 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in THF (3 mL) and the solution was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 M$ in THF, $0.5 \mathrm{~mL}, 1.25 \mathrm{mmol}$) was added, and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . DMF $(0.20 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature for 4 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, and the resulting mixture was extracted with ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was stripped off. The resulting material was purified by silica gel column chromatography (solvent, hexanes then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 115 as a yellow liquid ($9 \mathrm{mg}, 0.053 \mathrm{mmol}, 21 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.82(\mathrm{~s}, 3 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.53 (t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8 \mathrm{~Hz}$, $1 \mathrm{~Hz}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.1,124.8,126.5,127.8,130.0,131.2$, 131.3, 133.8, 135.0, 135.1, 136.4, 194.3 (12 of 12 expected resonances); MS (EI) $\mathrm{m} / \mathrm{z} 170$ ($\left.\mathrm{M}^{+}, 100\right), 141$ (M - CHO, 70).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 115

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 1 5}$

[^3]
Synthesis of bis(8-methylnaphthalen-1-yl)methanol (104)

Compound $114(1.10 \mathrm{~g}, 4.97 \mathrm{mmol})$ was dissolved in THF (4 mL) and the solution was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 M$ in THF, $2.0 \mathrm{~mL}, 5 \mathrm{mmol}$) was added, and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Ethyl formate ($0.20 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 4 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, and the resulting mixture was extracted with ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was stripped off. The resulting material was purified by silica gel column chromatography (solvent, $3: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 104 as a yellow liquid $(0.753 \mathrm{~g}, 2.41 \mathrm{mmol}, 48 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.10(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{~m}, 7 \mathrm{H}), 7.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 72.4,125.0,125.5$, 127.7, 128.5, 130.4, 131.0, 131.6, 134.2, 136.0, 140.9 (11 of 12 expected resonances); MS (EI) $m / z 312\left(\mathrm{M}^{+}, 60\right), 294\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 104

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 104

[^4]
Synthesis of bis(8-methylnaphthalen-1-yl)methanone (105)

Compound 104 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and PCC ($70 \mathrm{mg}, 0.32 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at room temperature for 4 h . Ether and celite were added, and the mixture was filtered through a short column of silica gel. The filtrate was concentrated to yield compound $\mathbf{1 0 5}$ as white solid ($84 \mathrm{mg}, 0.27 \mathrm{mmol}, 88 \%$). Single crystals, suitable for X-ray analysis, were obtained from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{~s}, 6 \mathrm{H})$, $7.43(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=7$ $\mathrm{Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}) ; 8.05(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.2,123.4$, 126.7, $127.4,130.7,130.8,131.4,133.8,135.1,135.3,139.6,198.1$ (12 of 12 expected resonances); MS (EI) $m / z 310\left(\mathrm{M}^{+}, 50\right), 292\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 0 5}$

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 105

[^5]Synthesis of bis[8-(bromomethyl)naphthalen-1-yl]methanone (106) and

13-bromo-1,12-bis(bromomethyl)-13H-dibenzo[a,i]fluorene (116)

To a refluxing solution of ketone $105(30 \mathrm{mg}, 0.097 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{~mL})$ under illumination with a tungsten lamp, in the presence of a small amount of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, a solution of bromine ($0.015 \mathrm{~mL} \mathrm{Br}_{2}$ in $5 \mathrm{~mL} \mathrm{CCl}_{4}$) was added dropwise. After complete addition of Br_{2}, the mixture was heated at reflux for another 20 min with light. The mixture was then poured into dilute NaHCO_{3}, and the aqueous layer was extracted
with $\mathrm{CHCl}_{3}(3 \mathrm{X})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on preparative TLC with $1: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluate to yield ketone $\mathbf{1 0 6}(1 \mathrm{mg}, 2 \mu \mathrm{~mol}, 2.1 \%)$ and pentacyclic compound 116. For 106: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.09(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=7$ $\mathrm{Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8 \mathrm{~Hz}, 7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J$ $=8 \mathrm{~Hz}, 7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 62.6,120.7,125.0,125.7,125.8,126.9,127.1,128.6,131.4,132.9,133.6$, 202.8 (12 of 12 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 106

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 106

Synthesis of 1-amino-8-bromonaphthalene (119)

Compound $\mathbf{1 1 9}$ was prepared by the method of Jurok et al. ${ }^{84}$ A solution of NaNO_{2} $(9.12 \mathrm{~g}, 132 \mathrm{mmol})$ in water $(53 \mathrm{~mL})$ was added to a solution of naphthalene-1,8-diamine $(20.00 \mathrm{~g}, 126 \mathrm{mmol})$ in a mixture of acetic acid $(240 \mathrm{~mL})$ and water $(175 \mathrm{~mL})$ at $-6{ }^{\circ} \mathrm{C}$. Then the reaction mixture was diluted with water $(40 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$ for 45 min . The brown precipitate was filtered off, washed with water and dried at room temperature to give compound $\mathbf{1 1 8}$ as brown powder, which was sufficiently pure for the next synthesis.

Copper powder ($6.00 \mathrm{~g}, 94 \mathrm{mmol}$), activated by iodine, was added to a vigorously stirring solution of compound 118 in aqueous $\mathrm{HBr}(48 \%, 140 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. When the intense evolution of nitrogen had finished, the mixture was heated at reflux. The mixture was diluted with water (300 mL), heated to boiling and filtered. The residue was washed with boiling water $(150 \mathrm{~mL})$. The combined filtrates were neutralised with ammonia and
extracted with diethyl ether. The ethereal solution was washed with water, filtered to remove suspended solid, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product obtained after solvent evaporation was purified by column chromatography with 3:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes as elute to afford $119(4.59 \mathrm{~g} ; 20.7 \mathrm{mmol}, 16 \%)$ as a pink solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 2 \mathrm{H})$, $6.74(\mathrm{dd}, J=6 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8 \mathrm{~Hz}$, $1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 112.6,117.6$, 119.4, $121.0,125.9,127.2,129.3,131.8,137.6,143.7$ (10 of 10 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 1 9}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 119

[^6]
Synthesis of 1-bromo-8-chloronaphthalene (120)

A solution of $\mathrm{NaNO}_{2}(1.15 \mathrm{~g}, 16.7 \mathrm{mmol})$ in water $(4 \mathrm{~mL})$ was added to a cold solution (kept between -6 and $0{ }^{\circ} \mathrm{C}$) of 1-amino-8-bromonaphthalene (119, $1.5 \mathrm{~g}, 6.75$ $\mathrm{mmol})$ in conc. $\mathrm{HCl}(10 \mathrm{~mL})$ and water $(8.5 \mathrm{~mL}) . \mathrm{CuCl}(4.62 \mathrm{~g}, 46.7 \mathrm{mmol})$ was dissolved in conc. $\mathrm{HCl}(20 \mathrm{~mL})$, and it was added to the reaction mixture. The reaction was brought to room temperature and stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h . EtOAc (200 mL) was added, and the organic layer was separated. This solution was washed with water, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and brine, and it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was stripped away to afford compound $\mathbf{1 2 0}(1.5 \mathrm{~g}, 6.2 \mathrm{mmol}, 92 \%)$ as a dark brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1$ H), $7.76(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 118.4,126.3,126.8,128.4,129.0,129.5,131.1,131.3,135.5,137.4$ (10 of 10 expected resonances); MS (EI) $m / z 242\left(\mathrm{M}^{+}, 100\right), 161(\mathrm{M}-\mathrm{Br}, 50)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 120

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 2 0}$

Synthesis of bis(8-chloronaphthalen-1-yl)methanol (121)

Compound $\mathbf{1 2 0}$ ($120 \mathrm{mg}, 0.497 \mathrm{mmol}$) was dissolved in 1 mL THF and cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$ in THF, $0.2 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Ethyl formate $(0.020 \mathrm{~mL}, 0.25 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature for a further 4 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, and the resulting mixture was extracted with ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was stripped away to leave compound $\mathbf{1 2 1}$ as yellow liquid (97 mg, $0.275 \mathrm{mmol}, 55 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.21(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.40$ (br s, 2 H), $7.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 69.9,125.5,126.0,128.4,128.8,129.3,129.6,130.0,130.2,136.8,140.1$ (11 of 11 expected resonances); MS (EI) $m / z 352\left(\mathrm{M}^{+}, 20\right), 317(\mathrm{M}-\mathrm{Cl}, 30), 282(\mathrm{M}-2 \mathrm{Cl}$, 20), 189 (100).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 2 1}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 121

Synthesis of bis(8-chloronaphthalen-1-yl)methanone (122)

Compound $121(1.51 \mathrm{~g}, 4.27 \mathrm{mmol})$ and PDC $(0.965 \mathrm{~g}, 2.56 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at room temperature for 4 h . Ether and celite were added, and the mixture was filtered through a short column of silica gel. The filtrate was concentrated to dryness and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound $\mathbf{1 2 2}$ as white solid ($1.18 \mathrm{~g}, 3.36 \mathrm{mmol}, 79 \%$). Single crystals, suitable for X-ray analysis, were obtained from hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97$ $(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $124.9,126.9,128.2,128.7,130.4,131.2,131.3,132.7,136.2,138.7,195.6$ (11 of 11 expected resonances); MS (EI) $m / z 315(\mathrm{M}-\mathrm{Cl}, 100)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 2 2}$

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 122

[^7]
Synthesis of 1,4-bis(mercaptomethyl)benzene (91)

A solution of 1,4-bis(chloromethyl)benzene ($1.75 \mathrm{~g}, 10 \mathrm{mmol}$) and thiourea (1.52 g , 20 mmol) in ethanol was heated at reflux overnight. After cooling, the solvent was removed. To the remaining white salt was added aqueous $\mathrm{KOH}(4.4 \mathrm{~g}, 70 \mathrm{~mL}$ water $)$ under argon. This solution was heated at reflux for 5 h , cooled to room temperature, acidified with 1 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the desired dithiol 91 (1.50 g, 8.8 $\mathrm{mmol}, 88 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.75(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.8,128.6,140.2$ (3 of 3 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 91

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 91

[^8]
Synthesis of anhydro-8-(hydroxymercuri)-1-naphthoic acid (128)

Compound 128 was prepared by the method of Bailey et al. ${ }^{85} 1,8$-Naphthalic anhydride (127, $19.8 \mathrm{~g}, 0.10 \mathrm{~mol}$) was suspended in aqueous sodium hydroxide (14.0 g , 0.35 mol , in 600 mL of water) and refluxed until the solid material dissolved. The excess base was neutralized with glacial acetic acid (10 mL), and a solution of mercuric acetate, prepared by dissolving mercuric oxide ($22.0 \mathrm{~g}, 0.10 \mathrm{~mol}$) in hot glacial acetic acid (50 $\mathrm{mL})$ and diluting with water $(100 \mathrm{~mL})$, was added in one portion. After the mixture had been heated at reflux for 30 min , additional glacial acetic acid $(18 \mathrm{~mL})$ was added to the white slurry, resulting in the slow evolution of carbon dioxide. The slurry was heated at reflux for 48 h , cooled, and filtered. The highly insoluble solid was washed with water and then dried to give compound $\mathbf{1 2 8}$ as a tan powder ($31.1 \mathrm{~g}, 0.10 \mathrm{~mol}, 84 \%$), which was used without further purification.

Synthesis of 8-bromo-1-naphthoic acid (129)

Compound $\mathbf{1 2 9}$ was prepared by the method of Bailey et al. ${ }^{85}$ Compound $\mathbf{1 2 8}$ (31.12 $\mathrm{g}, 84 \mathrm{mmol})$ suspended in glacial acetic acid (123 mL) and water (20 mL), and the mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$. Sodium bromide ($55.82 \mathrm{~g}, 0.54 \mathrm{~mol}$) in water $(100 \mathrm{~mL})$ and bromine $(4.09 \mathrm{~g}, 79 \mathrm{mmol})$ were added slowly all together while the reaction temperature was maintained at $0-5^{\circ} \mathrm{C}$. The resulting slurry was then slowly heated to $100{ }^{\circ} \mathrm{C}$ and poured on ice. The precipitate was washed with water, dissolved in hot aqueous sodium hydroxide (19.6 g , in 40 mL of water), and filtered through Celite. When the filtrate was acidified with concentrated hydrochloric acid (40 mL) and cooled, it was extracted with ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give compound $\mathbf{1 2 9}$ as white solid ($14.5 \mathrm{~g}, 57.8 \mathrm{mmol}, 69 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.38(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 119.8,125.4,127.2,128.5,128.8,128.9,131.4,132.1,133.7,135.8$, 176.5 (11 of 11 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 129

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 129

[^9]
Synthesis of 8-bromo-1-naphthoyl chloride (139)

8-Bromonaphthoic acid $(\mathbf{1 2 9}, 14.5 \mathrm{~g}, 58 \mathrm{mmol})$ was placed in a round bottom flask to which thionyl chloride ($12.5 \mathrm{~mL}, 172 \mathrm{mmol}$) was added. The mixture was heated under refluxed for 3 h . After the mixture had cooled to room temperature, it was concentrated under reduced pressure to yield 8-bromo-1-naphthoyl chloride (139) as a yellow solid $(15.43 \mathrm{~g}, 57 \mathrm{mmol}, 98 \%)$. The crude product was used without further purification.

Synthesis of (8-bromonaphthalen-1-yl)methanol (130)

8-Bromo-1-naphthoyl chloride (139, $15.43 \mathrm{~g}, 57 \mathrm{mmol}$) was dissolved in ether (150 $\mathrm{mL})$ to which $\mathrm{LiAlH}_{4}(1.65 \mathrm{~g}, 44 \mathrm{mmol})$ was added. The reaction mixture was heated to reflux for 2 h . After the reaction mixture had cooled to room temperature, water was added and the mixture was filtered. The filtrate was extracted with ether and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and compound $\mathbf{1 3 0}$ was obtained as a light yellow solid $(11.67 \mathrm{~g}, 49 \mathrm{mmol}, 86 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.46(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}$, $2 \mathrm{H}), 7.27(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 65.2,118.2,126.1,126.3,129.9,130.3,130.4,133.9,136.9$, 137.0 (10 of 11 expected resonances); MS (EI) $m / z 236\left(\mathrm{M}^{+}, 20\right), 219(\mathrm{M}-\mathrm{OH}, 15), 156$ ($\mathrm{M}-\mathrm{HBr}, 50$), 128 (100).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 130

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 130

Synthesis of 1-bromo-8-(methoxymethyl)naphthalene (131)

(8-Bromonaphthalen-1-yl)methanol (130, $11.67 \mathrm{~g}, 49 \mathrm{mmol})$ was dissolved in THF (300 mL), to which $\mathrm{NaH}(57 \%-63 \%)$ powder $(2.51 \mathrm{~g}, 60-66 \mathrm{mmol})$ was added. The reaction mixture was heated at reflux for 2 h . Iodomethane ($3.62 \mathrm{~g}, 58 \mathrm{mmol}$) was added to the cooled solution at $0^{\circ} \mathrm{C}$ and the reaction mixture was heated at reflux for 2 h . Water was added to the reaction mixture, and it was extracted with ether, and the extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and compound $\mathbf{1 3 1}$ was obtained as a brown oily liquid ($12.24 \mathrm{~g}, 49 \mathrm{mmol}, 99 \%$), which solidified in the refrigerator. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.53(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1$ H), $7.46(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 58.3,74.5,118.7,125.8,125.9,129.0,129.5$, $129.8,130.4,133.9,134.5,136.7$ (12 of 12 expected resonances); MS (EI) $m / z 250\left(\mathrm{M}^{+}\right.$, 10), 219 (M - OMe, 20), 171 ($\mathrm{M}-\mathrm{Br}, 100$).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 3 1}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 131

Synthesis of bis[8-(methoxymethyl)naphthalen-1-yl]methanol (132)

Compound 131 ($126 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in 1 mL THF and cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$ in THF, $0.2 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Ethyl formate $(0.020 \mathrm{~mL}, 0.25 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature overnight. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, and the resulting mixture was extracted with ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was stripped away to leave compound $\mathbf{1 3 2}$ as a yellow liquid (14 mg , $0.038 \mathrm{mmol}, 15 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.31$ (br, 6 H), 4.45 (br, 2 H), 5.66 (br, 2 H), 5.93 $(\mathrm{d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{br}, 3 \mathrm{H}), 7.83(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 57.5,71.1,76.5,124.8,125.5$ (double intensity), 128.3, 130.1, 130.9, $131.4,132.3,132.8,136.2$ (13 of 13 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 132

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 132

Synthesis of compound 140

Compound 132 ($125 \mathrm{mg}, 0.34 \mathrm{mmol}$) was dissolved in dichloromethane (10 mL), to which PCC ($80 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight. Precipitated solid was filtered away and the solvent was removed under reduced pressure. The product was purified by preparative TLC (silica gel, dichloromethane) to give compound 140 as a yellow solid. Crystallization from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ yielded compound $\mathbf{1 4 0}$ as crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.26(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{br}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{dd}, J=8$ $\mathrm{Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 43.4,57.7,76.1,125.1,125.2,125.6,126.7,128.4,129.2,130.2,131.0,131.1$, $131.2,131.9,133.6,135.2,136.6,137.7,194.8$ (19 of 24 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 140

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 140

Synthesis of compound 140 and compound 141

Compound 132 ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in dichloromethane (10 mL), to which PDC ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$) and celite was added. The reaction mixture was stirred at room temperature overnight. Precipitated solid was filtered away, and the solvent was removed under reduced pressure. The product was purified by preparative TLC (silica gel, dichloromethane) to give compound 140 and compound 141 as yellow solids. Crystallization from CHCl_{3} yielded compound $\mathbf{1 4 1}$ as crystals suitable for X-ray analysis.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.97(\mathrm{br}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.25(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 5 \mathrm{H}), 7.66(\mathrm{dd}, J=7 \mathrm{~Hz}$, $2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8 \mathrm{~Hz}, 2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 141

Synthesis of ethyl 8-mercapto-1-naphthoate (144) and 2H-naphtho[1,8-bc]-thiophen-2-one (141)

145
$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{OS}$
Exact Mass: 186.01
Molecular Weight: 186.23
C, 70.94; H, 3.25; O, 8.59; S, 17.22

Through an addition funnel, a three-necked flask was charged with cyclohexane (14 mL), TMEDA (2 mL) and $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $5.4 \mathrm{~mL}, 13.5 \mathrm{mmol}$). (The $n-\mathrm{BuLi}$ was added dropwise to the reaction flask in an ice bath.) 1-Thionaphthol ($1 \mathrm{~g}, 6.24 \mathrm{mmol}$) in cyclohexane (3 mL) was added to the flask at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred overnight. Cyclohexane was removed from the reaction flask, and the precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. Freshly distilled THF (6 mL) was added to the precipitate and the
reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Diethyl carbonate ($0.34 \mathrm{~mL}, 2.8 \mathrm{mmol}$) diluted with THF (1 mL) was added and the mixture was warmed to room temperature for 20 hours. The reaction mixture was acidified with hydrochloric acid and extracted with dichloromethane. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield yellow oil. The product was purified by silica gel column chromatography (solvent, 4:1 hexanes-dichloromethane) to give compound $\mathbf{1 4 4}$ as greenish needles ($86 \mathrm{mg}, 0.37$ $\mathrm{mmol}, 6 \%$) and compound 145 as yellow needles ($180 \mathrm{mg}, 0.97 \mathrm{mmol}, 15 \%$). For compound 144: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ $(\mathrm{m}, 3 \mathrm{H}), 7.81(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.5,61.8,124.4,126.0,126.9,127.0,128.5,128.6,131.9,134.9,139.7,169.0$ (12 of 13 expected resonances). For compound 145: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.77(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}{ }^{3} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 122.7,125.2,125.7,128.1,128.5,131.2,132.2,133.4,133.5,134.0$, 193.6 (11 of 11 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1 4 4}$

| 1.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 1 |
| :--- |

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 144

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 145

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 145

Synthesis of dimer 146

Through an addition funnel, a three-necked flask was charged with cyclohexane (14 mL), TMEDA (2 mL) and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $5.4 \mathrm{~mL}, 13.5 \mathrm{mmol}$). (The $n-\mathrm{BuLi}$ was added dropwise to the reaction flask in an ice bath.) 1-Thionaphthol ($1 \mathrm{~g}, 6.24 \mathrm{mmol}$) in cyclohexane (3 mL) was added to the flask at $0{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred overnight. Cyclohexane was removed from the reaction flask, and the precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. Freshly distilled THF (6 mL) was added to the precipitate and the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Diethyl carbonate ($0.34 \mathrm{~mL}, 2.8 \mathrm{mmol}$) diluted with THF (1 mL) was added and the mixture was warmed to room temperature for 20 hours. The reaction mixture was acidified with hydrochloric acid and extracted with dichloromethane. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a yellow oil. The product was purified by preparative TLC (silica gel, dichloromethane) to give compound 146 as a yellow solid. Crystallization from
$\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ yielded compound $\mathbf{1 4 6}$ as crystals suitable for X-ray analysis. The
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 4 6}$ are illustrated on the next page.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 146

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 146

Synthesis of carbonodithioate 148

Through an addition funnel, a flask was charged with cyclohexane (28 mL), TMEDA $(4 \mathrm{~mL})$ and $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $10.8 \mathrm{~mL}, 13.5 \mathrm{mmol}$). (The $n-\mathrm{BuLi}$ was added dropwise to the reaction flask in an ice bath.) 1-Thionaphthol ($2 \mathrm{~g}, 12.5 \mathrm{mmol}$) in cyclohexane (6 mL) was added to the flask at $0{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred overnight. Cyclohexane was removed from the reaction flask, and the precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. Freshly distilled THF (6 mL) was added to the precipitate and the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $1,1^{\prime}$-carbonyldiimidazole (908 mg , 5.6 mmol) in THF was added and the mixture was warmed to room temperature overnight. The reaction mixture was acidified with hydrochloric acid and extracted with dichloromethane. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was purified by silica gel column chromatography then by preparative TLC
to give compound $\mathbf{1 4 8}$ as a yellow solid $(95 \mathrm{mg}, 0.27 \mathrm{mmol}, 2.2 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.48(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}$, $J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ $(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.30$ $(\mathrm{dd}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 125.0,125.6,125.8,126.8,127.7,128.9$, $131.9,134.5,134.7,136.2,188.1$ (11 of 11 expected resonances); MS (EI) $\mathrm{m} / \mathrm{z} 346\left(\mathrm{M}^{+}\right.$, 5), 159 (M - OCNpSH, 95), 115 (100).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 148

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 148

Synthesis of \boldsymbol{o}-bromobenzyl methyl ether (237)

After sodium ($2.0 \mathrm{~g}, 87 \mathrm{mmol}$) was dissolved in methanol (40 mL), 2-bromobenzyl bromide, diluted in methanol (20 mL), was added. The resulting solution was stirred in an ice bath for 10 minutes and then heated to reflux for 1 h . After cooling the solution, conc. HCl was added until the bubbling ceased. The methanol was evaporated under reduced pressure. Water was added to the residue, and the aqueous layer was extracted twice with chloroform. The combined chloroform layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a yellow liquid. The product was distilled under vacuum to give 237 as a clear liquid $(11.0 \mathrm{~g}, 55 \mathrm{mmol}, 96 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.48(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{~s}, 2$ H), $7.15(\mathrm{td}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 237

Synthesis of tris[2-(methoxymethyl)phenyl]phosphine (238).

n-BuLi (2.5 M in hexane, $10.5 \mathrm{~mL}, 26 \mathrm{mmol}$) was added dropwise to a stirred solution of o-bromobenzyl methyl ether (237, $4.8 \mathrm{~g}, 24 \mathrm{mmol})$ in THF $(18 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After the solution was stirred for 2 hours, phosphrous trichloride (0.69 mL , $8 \mathrm{mmol})$ diluted with THF (2 mL) was added dropwise. The reaction was stirred at room temperature for 20 hours and refluxed for 1 hour. The reaction mixure was cooled and then saturated with $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water layer was again extracted with ether. The combined ether extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave beige crystals. Recrystallization from ethanol gave 238 as a white solid (1.8 g, $4.6 \mathrm{mmol}, 57 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.27(\mathrm{~s}, 9 \mathrm{H}), 4.60(\mathrm{~s}, 6 \mathrm{H}), 6.79(\mathrm{dd}, J$ $=8 \mathrm{~Hz}, 5 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.53(\mathrm{dd}, J=8 \mathrm{~Hz}, 5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 58.4(\mathrm{~s}), 72.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=25 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=6 \mathrm{~Hz}\right), 127.9$ $(\mathrm{s}), 129.2(\mathrm{~s}), 133.9(\mathrm{~s}), 134.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=13 \mathrm{~Hz}\right), 142.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=23 \mathrm{~Hz}\right)(8$ of 8 expected resonances); MS (EI) $m / z 394\left(\mathrm{M}^{+}, 20\right), 379\left(\mathrm{M}-\mathrm{CH}_{3}\right), 347(75), 178(100)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{2 3 8}$

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 238

[^10]
Synthesis of tris[2-(chloromethyl)phenyl]phosphine (239).

Boron trichloride ($1 \quad M$ in heptane, $10 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to tris[2-(methoxymethyl)phenyl]phosphine (238, $176 \mathrm{mg}, 0.45 \mathrm{mmol})$ in round bottom flask under argon. The reaction mixture was stirred at room temperature for 1 hour and then heated at reflux for 3 hours. When the mixture was cooled to room temperature, chloroform and water were added. The organic layer was separated and the water layer was again extracted with chloroform. The combined chloroform extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The lime-colored crystals were chromatographed on silica gel (solvent, chloroform) to give $\mathbf{2 3 9}$ as a light yellow solid ($82 \mathrm{mg}, 0.20 \mathrm{mmol}$, $45 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 6 \mathrm{H}), 6.87(\mathrm{ddd}, J=8 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H})$, 7.24 (ddd, $J=8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}$), 7.41 (ddd, $J=8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}$), 7.54 (ddd, J $=5 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 44.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=28 \mathrm{~Hz}\right), 128.9(\mathrm{~s}), 130.1(\mathrm{~s})$, $130.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=12 \mathrm{~Hz}\right), 134.7(\mathrm{~s}), 141.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=26 \mathrm{~Hz}\right)(7$ of 7 expected resonances); MS (EI) $m / z 406\left(\mathrm{M}^{+}, 100\right), 357\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Cl}, 30\right), 178(100)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 239

$\begin{array}{lll}12.5 & 12.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 1 & 1.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1.0 & -1.5 & -2.0\end{array}$
${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 239

Synthesis of tris(2-mercaptophenyl)phosphine (37)

Through an addition funnel, a flask was charged with cyclohexane (55 mL), TMEDA (7.9 mL) and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $21 \mathrm{~mL}, 52.5 \mathrm{mmol}$). Thiophenol ($2.5 \mathrm{~mL}, 24.4$ $\mathrm{mmol})$ in cyclohexane (20 mL) was added to the flask at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature over the next two days. Cyclohexane was removed from the reaction flask and the precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. THF (24 mL) was added to the precipitate, to which $\mathrm{PCl}_{3}(0.5 \mathrm{~mL})$ diluted with THF (5 mL) was added dropwise. The mixture was warmed to room temperature for 20 hours and then acidified with 10% sulfuric acid (100 mL). The mixture was concentrated in vacuo to remove THF, and the water solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a yellow oil. Recrystallization from ethanol gave 37 as a white solid (830 $\mathrm{mg}, 2.3 \mathrm{mmol}, 28 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.10(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{ddd}, J=8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{~Hz}$, $3 \mathrm{H}), 7.10(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.27$ (ddd, $J=8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=8 \mathrm{~Hz}, 5$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 126.5(\mathrm{~s}), 130.1(\mathrm{~s}), 131.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=4 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=4\right.$ $\mathrm{Hz}), 134.3(\mathrm{~s}), 138.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=32 \mathrm{~Hz}\right)(6$ of 6 expected resonances); MS (EI) m/z $324(\mathrm{M}$ $\left.-\mathrm{H}_{2} \mathrm{~S}, 25\right), 215$ (100).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 37

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 37

Synthesis of in,in-diphosphine 235

Tris[2-(chloromethyl)phenyl]phosphine (239, $101.9 \mathrm{mg}, \quad 0.250 \mathrm{mmol})$ and tris(2-mercaptophenyl)phosphine (37, $89.6 \mathrm{mg}, 0.250 \mathrm{mmol})$ were mixed in $2: 1$ benzene-ethanol (220 mL), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(67 \mathrm{mg}, 1.2 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ was added slowly over 3 hours. After 20 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 2:1 hexane-benzene) to yield phosphaphane 235 as a white solid ($16.6 \mathrm{mg}, 0.0253 \mathrm{mmol}, 10.1 \%$). Crystals suitable for X-ray analysis were obtained from $\mathrm{CHCl}_{3}-\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{dd}, J=10 \mathrm{~Hz}, 3 \mathrm{~Hz}, 3 \mathrm{H})$,
$5.16(\mathrm{dd}, J=10 \mathrm{~Hz}, 5 \mathrm{~Hz}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H})$, 7.17 (ddd, $J=8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~m}, 9 \mathrm{H}), 7.46(\mathrm{dd}, J=6 \mathrm{~Hz}, 6 \mathrm{~Hz}, 3 \mathrm{H}), 7.78$ $(\mathrm{ddd}, J=7 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 43.4\left(\mathrm{dd}, J_{\mathrm{PC}}=32 \mathrm{~Hz}, 2 \mathrm{~Hz}\right)$, $128.0(\mathrm{~s}), 129.3\left(\mathrm{~s}\right.$, double intensity), $129.9\left(\mathrm{~d}, J_{\mathrm{PC}}=1 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right), 134.8$ $(\mathrm{s}), 135.3(\mathrm{~s}), 136.6\left(\mathrm{dd}, J_{\mathrm{PC}}=21 \mathrm{~Hz}, 1 \mathrm{~Hz}\right), 137.3\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right), 139.9\left(\mathrm{~d}, J_{\mathrm{PC}}=37 \mathrm{~Hz}\right)$, $141.4\left(\mathrm{~d}, J_{\mathrm{PC}}=34 \mathrm{~Hz}\right), 146.8\left(\mathrm{~d}, J_{\mathrm{PC}}=18 \mathrm{~Hz}\right)(13$ of 13 expected resonances $) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-49.6(\mathrm{~d}, J=175 \mathrm{~Hz}),-31.2(\mathrm{~d}, J=175 \mathrm{~Hz}) ; \mathrm{MS}($ MALDI-TOF $) \mathrm{m} / \mathrm{z} 657(\mathrm{M}+$ $\mathrm{H}, 100)$; HRMS (ESI) $m / z 657.1061(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{~S}_{3} 657.1058$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 235

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 235

${ }^{31}$ P NMR Spectrum ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 235

Synthesis of in,in-diphosphine hydrochloride 240

A stream of HCl gas was bubbled into a solution of diphosphine $235(11 \mathrm{mg}, 0.017$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ for 20 seconds. The resulting solution was left in a capped 5 mm NMR tube for 100 h at room temperature; at this time, ${ }^{1} \mathrm{H}$ NMR analysis indicated that protonation was complete. (Subsequent studies showed that protonation is complete in under 6 h.) Crystals of the hydrochloride 240 suitable for X-ray analysis were obtained by slow evaporation of a solution in $\mathrm{CHCl}_{3}-\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $4.37(\mathrm{dd}, J=10 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 4.44(\mathrm{dd}, J=10 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 6.77(\mathrm{dd}, J=6 \mathrm{~Hz}, 6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.09(\mathrm{dd}, J=12 \mathrm{~Hz}, 8 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{dd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{dd}, J=7 \mathrm{~Hz}$, $7 \mathrm{~Hz}, 3 \mathrm{H}), 7.57(\mathrm{dd}, J=6 \mathrm{~Hz}, 6 \mathrm{~Hz}, 3 \mathrm{H}), 7.68(\mathrm{dd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}, 3 \mathrm{H}), 7.88(\mathrm{dd}, J=8$ $\mathrm{Hz}, 8 \mathrm{~Hz}, 3 \mathrm{H}), 8.14(\mathrm{dd}, J=7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 3 \mathrm{H}), 14.08(\mathrm{dd}, J=584 \mathrm{~Hz}, 13 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 44.2\left(\mathrm{~d}, J_{\mathrm{PC}}=25 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{PC}}=93 \mathrm{~Hz}\right), 129.7(\mathrm{~s}), 131.4(\mathrm{~s}), 131.9$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}\right), 132.0(\mathrm{~s}), 132.6(\mathrm{~s}), 135.0(\mathrm{~s}), 135.9\left(\mathrm{~d}, J_{\mathrm{PC}}=9 \mathrm{~Hz}\right), 136.2\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right)$,
$138.5\left(\mathrm{~d}, J_{\mathrm{PC}}=25 \mathrm{~Hz}\right), 138.6\left(\mathrm{~d}, J_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 139.0\left(\mathrm{~d}, J_{\mathrm{PC}}=7 \mathrm{~Hz}\right)(13$ of 13 expected resonances); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-16.7(\mathrm{~d}, J=303 \mathrm{~Hz}),-40.1(\mathrm{~d}, J=303 \mathrm{~Hz}) ;$ HRMS (ESI) $m / z 657.1056(\mathrm{M}-\mathrm{Cl})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{~S}_{3}$ 657.1058.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 240

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 240

${ }^{31}$ P NMR Spectrum ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 240

Synthesis of in,in-diphosphine hexaoxide 241

Diphosphine ($\mathbf{2 3 5}, 11 \mathrm{mg}, 0.017 \mathrm{mmol})$, acetic acid (2 mL), and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ were heated at reflux for 20 h . Evaporation of the solvent left the relatively insoluble trisulfone 241 ($\sim 12 \mathrm{mg}$). Recrystallization of this material from hot DMSO gave crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) \delta 4.48(\mathrm{~d}, J=13 \mathrm{~Hz}, 3 \mathrm{H}), 6.31$ $(\mathrm{dd}, J=13 \mathrm{~Hz}, 6 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~m}, 6 \mathrm{H}), 7.60(\mathrm{~m}, 3 \mathrm{H})$, 7.75 (m, 6 H$), 8.18(\mathrm{~m}, 3 \mathrm{H})$; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 753$ (M + H, 100); HRMS (ESI) $m / z 753.0753(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{3} 753.0753$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 241

Synthesis of tris[2-(methoxycarbonyl)phenyl]amine (260)

A mixture of methyl anthranilate (258, 9 ml), methyl 2-iodobenoate $(\mathbf{2 5 9}, 30 \mathrm{ml})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(22 \mathrm{~g}), \mathrm{Cu}(0.9 \mathrm{~g})$ and $\mathrm{CuI}(1.3 \mathrm{~g})$ in diphenyl ether $(80 \mathrm{ml})$ was heated at $190{ }^{\circ} \mathrm{C}$ under Ar for 48 hours. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel using 4:1 hexane/ethyl acetate as eluent to yield compound 260 as a yellow solid $(22.1 \mathrm{~g}, 75 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.37(\mathrm{~s}, 9 \mathrm{H}), 7.08(\mathrm{~m}$, $6 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 51.9,123.7$, 126.3, 127.6, 131.2, 132.4, 147.1, 167.9, 171.9 (8 of 8 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 260

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 260

Synthesis of tris[2-(hydroxymethyl)phenyl]amine (261)

A solution of tris[2-(methoxycarbonyl)phenyl]amine (260, $2.67 \mathrm{~g}, 6.4 \mathrm{mmol})$ in 75 ml of THF was added dropwise to a suspension of lithium aluminum hydride (1.28 g, 34 mmol) in 15 mL of tetrahydrofuran with stirring. The mixture was heated at a gentle reflux for 3 hours, and then water was added to the reaction mixture, followed by addition of dilute hydrochloric acid. The organic phase was extracted three times with chloroform. The combined organic phase was dried with sodium sulfate and the solvent was removed under vacuum. The crude solid was recrystallized with $1: 1$ acetone-ethanol to give compound 261 as light yellow crystals $(1.43 \mathrm{~g}, 4.3 \mathrm{mmol}, 67 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.20(\mathrm{br}, 3 \mathrm{H}), 4.16(\mathrm{br}, 6 \mathrm{H}), 6.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{ddd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3$ H), $7.19(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $62.4,124.6,125.7,129.2,131.7,135.2,146.6$ (7 of 7 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 261

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 261

Synthesis of tris[2-(chloromethyl)phenyl]amine (262)

To a solution of compound $261(606 \mathrm{mg}, 1.8 \mathrm{mmol})$ in chloroform $(25 \mathrm{~mL})$, thionyl chloride (0.4 mL) was added dropwise. The reaction mixture was refluxed overnight. After the reaction mixture was cooled to room temperature, water was added and the mixture was extracted with chloroform three times. The combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to yield compound $\mathbf{2 6 2}$ as a yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.37(\mathrm{br}, 6 \mathrm{H}), 6.80(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 6 \mathrm{H}), 7.50(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 262

Synthesis of in,in-P,N cyclophane 256

Tris[2-(chloromethyl)phenyl]amine (262, $170 \quad \mathrm{mg}, \quad 0.44 \mathrm{mmol})$ and tris(2-mercaptophenyl)phosphine (37, $156 \mathrm{mg}, \quad 0.44 \mathrm{mmol})$ were mixed in $2: 1$ benzene-ethanol (400 mL), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(117 \mathrm{mg}, 2.1 \mathrm{mmol})$ in ethanol $(50 \mathrm{~mL})$ was added slowly over 6 hours. After 18 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 2:1 hexanes-benzene) to yield compound $\mathbf{2 5 6}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.71(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 5.19(\mathrm{dd}, J=10 \mathrm{~Hz}, 5 \mathrm{~Hz}, 3$ H), $6.51(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{ddd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{td}, J=8$
$\mathrm{Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{ddd}, J=8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{ddd}, J=$ $7 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 36.5\left(\mathrm{~d}, J_{\mathrm{PC}}=14 \mathrm{~Hz}\right), 124.8,125.8,128.1$, $129.5,130.1,132.0\left(\mathrm{~d}, J_{\mathrm{PC}}=12 \mathrm{~Hz}\right), 134.0,136.8,138.3,138.6,145.6\left(\mathrm{~d}, J_{\mathrm{PC}}=7 \mathrm{~Hz}\right)$, 148.8 (13 of 13 expected resonances); MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 640(\mathrm{M}+\mathrm{H}, 100)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{2 5 6}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 256

Synthesis of 1-iodo-2-(isopropylthio)benzene (53)

1,2-Diiodobenzene ($11.8 \mathrm{~mL}, 90 \mathrm{mmol}$) and sodium 2-propanethiolate $(9.0 \mathrm{~g}, 92$ mmol) were dissolved in argon-saturated NMP $(70 \mathrm{~mL})$ and heated to $110^{\circ} \mathrm{C}$ under argon. After 24 h , the solution was cooled to room temperature, diluted with water, and extracted three times with hexanes. The combined organics were washed twice with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was stripped off, and the resulting material was fractionated on a silica gel column (solvent: hexanes) to yield compound $\mathbf{5 3}$ as a colorless oil ($8.19 \mathrm{~g}, 29.4 \mathrm{mmol}, 32 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 3.46$ (septet, J $=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.0,38.5$, 102.7, 127.6, 128.8, 130.2, 139.9, 141.2 (8 of 8 expected resonances); MS (EI) $\mathrm{m} / \mathrm{z} 278$ $\left(\mathrm{M}^{+}, 75\right), 236(\mathrm{M}-$ propene, 100).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 53

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{5 3}$

Synthesis of bis(2-isopropylthiophenyl)amine (52)

Bis(2-chlorophenyl)amine (51, $10.0 \mathrm{~g}, 42 \mathrm{mmol}$) and sodium 2-propanethiolate (8.4 $\mathrm{g}, 86 \mathrm{mmol}$) were dissolved in argon-saturated NMP (50 mL) and heated to $120^{\circ} \mathrm{C}$ under argon. After 24 h , the solution was cooled to room temperature, diluted with water, and extracted three times with hexanes. The combined organics were washed twice with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was stripped off, and the resulting material was fractionated on a silica gel column (solvent: hexanes) to yield compound $\mathbf{5 2}$ as a yellow oil $(4.00 \mathrm{~g}, 12.6 \mathrm{mmol}, 30 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~d}, J=7 \mathrm{~Hz}, 12 \mathrm{H}), 3.24$ (septet, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.6,39.2,115.7,120.8,122.5$, 129.7, 137.5, 144.6 (8 of 8 expected resonances); MS (EI) $m / z 317\left(\mathrm{M}^{+}, 50\right), 242(\mathrm{M}-$ $\left.\mathrm{Me}_{2} \mathrm{CHS}, 45\right), 199\left(\mathrm{M}-\mathrm{Me}_{2} \mathrm{CHS}-\mathrm{Me}_{2} \mathrm{CH}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 52

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 52

[^11]
Synthesis of tris(2-isopropylthiophenyl)amine (54)

Bis(2-isopropylthiophenyl)amine (52, $4.00 \quad \mathrm{~g}, \quad 12.6 \quad \mathrm{mmol}$), 1-iodo-2-(isopropylthio)benzene (53, $3.56 \mathrm{~g}, 12.8 \mathrm{mmol}$), Cu powder ($0.83 \mathrm{~g}, 13 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g}, 13 \mathrm{mmol})$ were mixed in DMF $(20 \mathrm{~mL})$ and heated at reflux for 60 h . After cooling to room temperature, the mixture was diluted with water and extracted three times with hexanes. The combined organics were washed twice with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was stripped off, and the resulting oil was fractionated on a silica gel column (solvent: hexanes, then 3:1 hexanes-benzene). Concentration of the appropriate fractions gave compound $\mathbf{5 4}$ as colorless crystals $(0.850 \mathrm{~g}, 1.82 \mathrm{mmol}$, 14.4%), mp 91-94 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16$ (br, 18 H), 3.48 (septet, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$), $6.71(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.4,36.6,124.1,126.5$, 128.6, 132.3, 148.5 (7 of 8 expected resonances); MS (EI) $m / z 467\left(\mathrm{M}^{+}, 7.5\right), 392(\mathrm{M}-$ $\left.\mathrm{Me}_{2} \mathrm{CHS}, 35\right), 349\left(\mathrm{M}-\mathrm{Me}_{2} \mathrm{CHS}-\mathrm{Me}_{2} \mathrm{CH}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 54

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 54

[^12]
Synthesis of tris(2-mercaptophenyl)amine (55)

A three-necked flask equipped with a dry ice condenser was charged with $\operatorname{tris}(2$-isopropylthiophenyl)amine $(\mathbf{5 4}, 0.77 \mathrm{~g}, 1.7 \mathrm{mmol})$ in hexanes $(10 \mathrm{~mL})$. Liquid ammonia was added until the total volume of solution was approximately 50 mL . Sodium $(0.49 \mathrm{~g}, 21 \mathrm{mmol})$ was added, almost immediately yielding a dark blue solution. After six hours, the reaction was quenched with ammonium chloride ($1.2 \mathrm{~g}, 22 \mathrm{mmol}$), and the ammonia was allowed to evaporate overnight. Aqueous HCl was then added, and the mixture was extracted three times with chloroform. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentration of this solution gave compound $\mathbf{5 5}$ as a white solid (0.47 $\mathrm{g}, 1.4 \mathrm{mmol}, 84 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.62(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~m}, 6 \mathrm{H}), 7.35$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 125.7,126.4,126.6,130.2,131.3,143.8$ (6 of 6 expected resonances); MS (EI) $m / z 307\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{~S}, 100\right), 273\left(\mathrm{M}-2 \mathrm{H}_{2} \mathrm{~S}, 50\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 55

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 55

[^13]
Synthesis of in,in-N,P cyclophane 257

Tris[2-(chloromethyl)phenyl]phosphine (239, $561 \mathrm{mg}, \quad 1.38 \mathrm{mmol})$ and $\operatorname{tris}(2$-mercaptophenyl)amine $(\mathbf{5 5}, \quad 470 \mathrm{mg}, \quad 1.38 \mathrm{mmol})$ were mixed in $2: 1$ benzene-ethanol (1.2 L), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(372 \mathrm{mg}, 6.62 \mathrm{mmol})$ in ethanol $(55 \mathrm{~mL})$ was added slowly over 5.5 hours. After 17 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 2:1 hexane-benzene) and the fractions containing compound $\mathbf{2 5 7}$ were combined and further purified by preparative TLC (silica
gel, $1: 1$ hexanes-benzene) to give cyclophane 257 as a white solid ($136.8 \mathrm{mg}, 0.21 \mathrm{mmol}$, 15.5%). Single crystals, suitable for X-ray analysis, were obtained from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.14(\mathrm{dd}, J=10 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 4.23(\mathrm{dd}, J=10 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 6.73$ $(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 6.76(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{td}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 3$ H), $7.10(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{td}, J=8 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{dd}, J=8 \mathrm{~Hz}, J$ $=2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 42.3\left(\mathrm{~d}, J_{\mathrm{PC}}=25 \mathrm{~Hz}\right), 124.0,124.4,128.4,128.7$, $129.3,130.7\left(\mathrm{~d}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right), 131.8,134.4,136.9,137.0\left(\mathrm{~d}, J_{\mathrm{PC}}=28 \mathrm{~Hz}\right), 140.8\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $29 \mathrm{~Hz}), 151.9$ (13 of 13 expected resonances); HRMS (ESI) $m / z 640.1350(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NPS}_{3} 640.1351$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 257

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 257

Synthesis of in,in-N,P cyclophane hydrochloride 267

A stream of HCl gas was bubbled into an NMR tube containing a CDCl_{3} solution of cyclophane 257 for 5 s , and then the ${ }^{1} \mathrm{H}$ NMR spectra were recorded at intervals. Protonation was a slow process $\left(t_{1 / 2}=26 \mathrm{~min}\right)$, but it was essentially complete in 6 h . Crystals of the hydrochloride 267 suitable for X-ray analysis were obtained by slow evaporation of a solution in $\mathrm{CHCl}_{3}-\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.91(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H})$, $4.52(\mathrm{br} \mathrm{d}, ~ J=10 \mathrm{~Hz}, 3 \mathrm{H}), 6.73(\mathrm{brd}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{~m}, 9 \mathrm{H}), 7.65(\mathrm{br} \mathrm{d}, J=7 \mathrm{~Hz}$, 6 H), 7.73 (br s, 3 H), $7.84(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 11.99(\mathrm{~d}, J=532 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $40.4\left(\mathrm{~d}, J_{\mathrm{PC}}=8 \mathrm{~Hz}\right), 114.9\left(\mathrm{~d}, J_{\mathrm{PC}}=84 \mathrm{~Hz}\right), 125.0,125.6,129.7,129.8,131.2(\mathrm{~d}, J=13$ $\mathrm{Hz}), 133.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 135.4,136.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 137.1,140.3(\mathrm{~d}, J=9 \mathrm{~Hz}), 150.7$ (13 of 13 expected resonances); HRMS (ESI) $m / z 640.1352$ (M - Cl), calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NPS}_{3}$ 640.1351.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 267

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 267

Synthesis of tris(2-mercaptophenyl)silane (36)

Through an addition funnel, a flask was charged with cyclohexane (55 mL), TMEDA (7.9 mL) and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $21 \mathrm{~mL}, 52.5 \mathrm{mmol}$). Thiophenol ($2.5 \mathrm{~mL}, 24.4$ $\mathrm{mmol})$ in cyclohexane (20 mL) was added to the flask at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature over the next two days. Cyclohexane was removed from the reaction flask and precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. THF (24 mL) was added to the precipitate, in which $\mathrm{SiHCl}_{3}(0.6 \mathrm{~mL})$ diluted with THF (5 mL) was added dropwise. The mixture was warmed to room temperature for 20 hours and then acidified with 10% sulfuric acid (100 mL). The mixture was concentrated in vacuo to remove THF, and the water solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a yellow oil. Recrystallization from ethanol gave 36 as a white solid ($880 \mathrm{mg}, 2.5 \mathrm{mmol}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.58(\mathrm{~s}, 3 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H})$, 7.17 (td, $J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.26(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{td}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3$
H), $7.42(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 126.1,131.2,131.9,133.0,137.9,138.7$ (6 of 6 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{3 6}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 36

Synthesis of in,in-HSi,P cyclophane 257 and out,in-EtOSi,P cyclophane 277

275
$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{PS}_{3} \mathrm{Si}$
Exact Mass: 654.11
Molecular Weight: 654.92
C, 71.52; H, 4.77; P, 4.73; S, 14.69; Si, 4.29

36

KOH
$+$

277
$\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{OPS}_{3} \mathrm{Si}$
Exact Mass: 714.17
Molecular Weight: 715.01
C, 70.55; H, 5.50; O, 2.24; P, 4.33; S, 13.45; Si, 3.93

Tris[2-(chloromethyl)phenyl]phosphine (239, $563 \mathrm{mg}, \quad 1.38 \mathrm{mmol})$ and tris(2-mercaptophenyl)silane (36, $493 \mathrm{mg}, \quad 1.38 \mathrm{mmol})$ were mixed in $2: 1$ benzene-ethanol (1.2 L), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(376 \mathrm{mg}, 6.70 \mathrm{mmol})$ in ethanol $(55 \mathrm{~mL})$ was added slowly over 6 hours.

After 18 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 1:1 hexane-benzene) and the fractions containing compound 275 were combined and further purified by preparative TLC (silica gel, 1:1 hexanes-benzene) to give cyclophane 275 as a white solid. This material exhibited a single component by TLC, but the ${ }^{1} \mathrm{H}$ NMR spectrum clearly indicated the presence of significant impurities. Further chromatographic purification was unsuccessful, but careful crystallization from $\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave cyclophane 275 ($6 \mathrm{mg}, 9.2 \mu \mathrm{~mol}, 0.66 \%$) as crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.04(\mathrm{dd}, J=10 \mathrm{~Hz}, 3 \mathrm{~Hz}, 3$ H), $5.09(\mathrm{dd}, J=10 \mathrm{~Hz}, 5 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=8 \mathrm{~Hz}, 3 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~m}, 6 \mathrm{H}), 7.29$ (m, 6 H$), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 9.31(\mathrm{~d}, J=25 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 43.7\left(\mathrm{~d}, J_{\mathrm{PC}}=29 \mathrm{~Hz}\right), 128.0,128.6,129.6,130.6,131.7\left(\mathrm{~d}, J_{\mathrm{PC}}=6\right.$ $\mathrm{Hz}), 135.36,135.40\left(\mathrm{~d}, J_{\mathrm{PC}}=17 \mathrm{~Hz}\right), 137.4,137.6,141.7\left(\mathrm{~d}, J_{\mathrm{PC}}=34 \mathrm{~Hz}\right), 141.8,143.6$ $\left(\mathrm{d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right)(13$ of 13 expected resonances $) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-48.9 ;{ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-35.8\left(\mathrm{~d}, J_{\mathrm{PSi}}=76 \mathrm{~Hz}\right) ;$ HRMS $(\mathrm{ESI}) \mathrm{m} / z 655.1173(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{PS}_{3} \mathrm{Si}$ 655.1168.

A second component proved to be the out, in compound 277. Crystallization from $\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ yielded cyclophane $277(15 \mathrm{mg}, 21 \mu \mathrm{~mol}, 1.6 \%)$ as crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=11 \mathrm{~Hz}$, $3 \mathrm{H}), 3.84(\mathrm{dq}, J=10 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dq}, J=10 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11 \mathrm{~Hz}$,
$3 \mathrm{H}), 6.68(\mathrm{dd}, J=7 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{td}, J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{td}, J=7 \mathrm{~Hz}$, $2 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 12 \mathrm{H}), 7.65(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.8$, $41.6\left(\mathrm{~d}, J_{\mathrm{PC}}=18 \mathrm{~Hz}\right), 60.3,125.2,128.6,129.1,130.4,130.6,130.9\left(\mathrm{~d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}\right)$, $133.2,135.9,136.9\left(\mathrm{~d}, J_{\mathrm{PC}}=26 \mathrm{~Hz}\right), 139.7,140.2\left(\mathrm{~d}, J_{\mathrm{PC}}=27 \mathrm{~Hz}\right), 145.5(15$ of 15 expected resonances); HRMS (ESI) $\mathrm{m} / \mathrm{z} 699.1430(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{OPS}_{3} \mathrm{Si}$ 699.1435.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 275

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 275

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 277

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 277

Synthesis of tris[2-(methoxymethyl)phenyl]silane (282)

n-BuLi (2.5 M in hexane, $11 \mathrm{~mL}, 27.5 \mathrm{mmol}$) was added dropwise to a stirred solution of o-bromobenzyl methyl ether $(5.33 \mathrm{~g}, 26.5 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After the solution was stirred for 2 hours, trichlorosilane ($0.89 \mathrm{~mL}, 8.8$ mmol) diluted with THF (5 mL) was added dropwise. The reaction was stirred at room temperature for 24 hours and refluxed for 1 hour. The reaction mixure was cooled and then saturated with $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water layer was again extracted with ether. The combined ether extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave 3.40 g white solid. Recrystallization from ethanol gave $\mathbf{2 8 2}$ as a white solid ($2.29 \mathrm{~g}, 5.8 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.10(\mathrm{~s}, 9 \mathrm{H}), 4.46(\mathrm{~s}, 6 \mathrm{H}), 5.73$ (s, 1 H$), 7.20(\mathrm{td}, J=7 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{dd}, J=6 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{td}, J=8 \mathrm{~Hz}$, $2 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 58.0,74.7,127.2,127.7,129.9$, 133.1, 137.3, 144.5 (8 of 8 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 282

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 282

Synthesis of tris[2-(chloromethyl)phenyl]silane (283)

Boron trichloride ($1 M$ in heptane, $100 \mathrm{~mL}, 100 \mathrm{mmol}$) was added to tris[2-(methoxymethyl)phenyl]silane (282, $1.76 \mathrm{~g}, 4.5 \mathrm{mmol})$ in round bottom flask under argon. The reaction mixture was stirred at room temperature for 2 hour and then heated at reflux for 3 hours. When the mixture had cooled to room temperature, chloroform and water were added. The organic layer was separated and the water layer was again extracted with chloroform. The combined chloroform extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The white solid was chromatographed on silica gel (solvent, chloroform) to give 283 as a white solid ($306 \mathrm{mg}, 0.75 \mathrm{mmol}, 16.7 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.64(\mathrm{~s}, 6 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 6 \mathrm{H}), 7.48(\mathrm{td}, J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 46.6,128.3,130.3,131.3,131.8,137.6,143.9$ (7 of 7 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{2 8 3}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 283

Synthesis of in,in-bis(hydrosilane) 278

Tris[2-(chloromethyl)phenyl]silane (283, $300 \mathrm{mg}, \quad 0.74 \mathrm{mmol})$ and tris(2-mercaptophenyl)silane (36, $264 \mathrm{mg}, \quad 0.74 \mathrm{mmol}$) were mixed in $2: 1$ benzene-ethanol (700 mL), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(200 \mathrm{mg}, 3.56 \mathrm{mmol})$ in ethanol (60 mL) was added slowly over 10 hours. After 12 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 1:1 hexane-benzene) and the fractions containing compound $\mathbf{2 7 8}$ were combined and further purified by preparative TLC (silica gel, 1:1 hexanes-benzene) to give cyclophane $\mathbf{2 7 8}$ as a light yellow solid. This material
exhibited a single component by TLC, but its ${ }^{1} \mathrm{H}$ NMR spectrum indicated that some impurities were present. Crystallization from benzene- $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ yielded cyclophane 278 as crystals suitable for X-ray analysis, and after the structure determination, the crystals were combined and again subjected to preparative TLC (silica gel, 2:1 hexanes-benzene) to give cyclophane 278 as a white solid ($2.0 \mathrm{mg}, 3.1 \mu \mathrm{~mol}, 0.41 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.11(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 4.83(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{td}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{~Hz}, 3 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 12 \mathrm{H}), 7.46(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3$ H), $7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 45.5,127.1$, $128.6,130.5,130.8,132.0,133.5,137.2,137.5,137.8,142.1,142.3,143.0$ (13 of 13 expected resonances); ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-32.3,-40.4$; MS (MALDI-TOF) $m / z 653$ (M $+\mathrm{H}, 20), 652\left(\mathrm{M}^{+}, 40\right), 651(\mathrm{M}-\mathrm{H}, 100)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z} 653.12767(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~S}_{3} \mathrm{Si}_{2} 653.12774$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 278

${ }^{13} \mathrm{C}$ NMR Spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 278

[^14]
Synthesis of compound 289

Tris[2-(chloromethyl)phenyl]silane (283, $101 \mathrm{mg}, \quad 0.25 \mathrm{mmol})$ and $\operatorname{tris}(2-$ mercaptophenyl $)$ silane $(\mathbf{3 6}, 89 \mathrm{mg}, 0.25 \mathrm{mmol})$ were mixed in THF $(250 \mathrm{~mL})$, and the solution was heated to reflux. An argon-saturated solution of $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](2.5 \mathrm{M}$ in THF, $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in THF (30 mL) was added slowly over 6 hours. After 16 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 1:1 hexane-benzene) and the fractions containing compound $\mathbf{2 8 9}$ were combined and further purified by preparative TLC (silica gel, 1:1 hexanes-benzene) to
give cyclophane 289 as a white solid ($10 \mathrm{mg}, 15 \mu \mathrm{~mol}, 6 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.13(\mathrm{~d}$, $J=10 \mathrm{~Hz}, 3 \mathrm{H}), 4.42(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 6.74(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=8 \mathrm{~Hz}, 1$ $\mathrm{Hz}, 3 \mathrm{H}), 7.06(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{td}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~m}, 9 \mathrm{H}), 7.73(\mathrm{dd}, J=8 \mathrm{~Hz}$, $1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 46.3,127.2,128.8,129.5,130.7,130.9,135.3,136.9$, $137.0,138.1,141.7,144.3,144.5$ (13 of 13 expected resonances).
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 289

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 289

[^15]
Synthesis of tris(2-mercaptophenyl)methylsilane (290)

Through an addition funnel, a flask was charged with cyclohexane (110 mL), TMEDA (15.7 mL) and $n-\mathrm{BuLi}$ (2.5 M in hexane, 40.7 mL , 101.8 mmol). Thiophenol (5 $\mathrm{mL}, 48.9 \mathrm{mmol})$ in cyclohexane $(20 \mathrm{~mL})$ was added to the flask at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature over the next two days. Cyclohexane was removed from the reaction flask and the precipitate was washed with cyclohexane. When the precipitate settled, cyclohexane was removed again. THF (55 mL) was added to the precipitate, in which $\mathrm{MeSiCl}_{3}(1.35 \mathrm{~mL})$ diluted with THF (15 mL) was added dropwise. The mixture was warmed to room temperature for 20 hours and then acidified with 10% sulfuric acid $(100 \mathrm{~mL})$. The mixture was concentrated in vacuo to remove THF and the water solution was extracted with CHCl_{3} three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield yellow oil. This was purified by column chromatography on silica gel (3:1, then 1:1, hexanes-benzene) to give compound 290 as gummy yellow oil
$(0.39 \mathrm{~g}, 1.1 \mathrm{mmol}, 6.7 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=8$ $\mathrm{Hz}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.68,125.9,130.7$, 132.3, 135.5, 138.1, 138.5 (7 of 7 expected resonances); MS (EI) $m / z 336\left(M-\mathrm{H}_{2} \mathrm{~S}, 24\right)$, $321\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{3}, 12\right), 227\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{~S}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SH}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 290

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 290

Synthesis of out,in-MeSi,P cyclophane 291

Tris[2-(chloromethyl)phenyl]phosphine (239, $413 \mathrm{mg}, \quad 1.01 \mathrm{mmol})$ and tris(2-mercaptophenyl)methylsilane (290, $376 \mathrm{mg}, 1.01 \mathrm{mmol}$) were mixed in $2: 1$ benzene-ethanol (900 mL), and the solution was heated to reflux. An argon-saturated solution of $\mathrm{KOH}(280 \mathrm{mg}, 4.99 \mathrm{mmol})$ in ethanol (100 mL) was added slowly over 9 hours. After another 15 hours, the solution was cooled, and the solvent was evaporated under reduced pressure to leave a white precipitate. The precipitate was extracted twice with chloroform. The combined extracts were concentrated and the resulting light yellow liquid was chromatographed on silica gel (solvent, 1:1 hexane-benzene) and the fractions containing compound 291 were combined and further purified by preparative TLC (silica
gel, 1:1 hexanes-benzene) to give cyclophane 291 as a white solid ($15 \mathrm{mg}, 0.022 \mathrm{mmol}$, 2.2%). Single crystals, suitable for X-ray analysis, were obtained from benzene- $\mathrm{CHCl}_{3}-\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 4.22$ $(\mathrm{d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}), 6.70(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~m}, 12 \mathrm{H}), 7.47(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.3,41.5\left(\mathrm{~d}, J_{\mathrm{PC}}=18 \mathrm{~Hz}\right), 125.1,128.6,129.0,130.0$, $130.1,130.9\left(\mathrm{~d}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right), 133.1,135.7,136.9\left(\mathrm{~d}, J_{\mathrm{PC}}=26 \mathrm{~Hz}\right), 140.2\left(\mathrm{~d}, J_{\mathrm{PC}}=27 \mathrm{~Hz}\right)$, 140.5, 146.4 (14 of 14 expected resonances); HRMS (ESI) $m / z 669.1324(\mathrm{M}+\mathrm{H}$), calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{PS}_{3} \mathrm{Si}$ 669.1324.
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 291

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of Compound 291

Appendix: Selected Crystallographic Data

Table 6. Crystallographic data for compounds 105, 116 and 122

	$\mathbf{1 0 5}$	$\mathbf{1 1 6}$	$\mathbf{1 2 2}$
Chemical Formula	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}$	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{Br}_{3}$	$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{C}_{12} \mathrm{O}$
Formula Weight	310.37	531.08	351.21
Crystal Color	colourless	yellow	colourless
Crystal Size	$0.33 \times 0.16 \times 0.12$	$0.23 \times 0.16 \times 0.04$	$0.33 \times 0.24 \times 0.12$
Crystal System	Triclinic	Orthorhombic	Monoclinic
Space Group	$P \overline{1}$	$P b c a$	$C 2 / c$
a, \AA	$8.266(2)$	$16.3574(12)$	$14.5661(19)$
b, \AA	$8.448(2)$	$7.9047(6)$	$7.9339(10)$
c, \AA	$13.400(3)$	$28.285(2)$	$14.7343(19)$
α, deg	$95.512(4)$	90.000	90.000
β, deg	$97.575(3)$	90.000	$117.006(2)$
γ, deg	$119.437(3)$	90.000	90.000
V, \AA^{3}	$793.7(3)$	$3657.2(5)$	$1517.1(3)$
Z	2	8	4
$\rho_{\text {calcd }}$, g/cm ${ }^{3}$	1.299	1.929	1.538
μ, mm ${ }^{-1}$	0.078	6.622	0.432
$T, \mathrm{~K}$	$100(2)$	$100(2)$	$100(2)$
λ, \AA	0.71073	0.71073	0.71073
Reflections		56967	
total	25945	4206	12746
unique	7503	3543	1976
observed $^{R(F)(\text { obs. })^{a}}$	6398	0.0351	1880
$w R\left(F^{2}\right)(\text { obs. })^{b}$	0.0501	0.0839	0.0306
$R(F)(\text { all })^{a}$	0.1350	0.0455	0.0833
$w R\left(F^{2}\right)(\text { all })^{b}$	0.0584	0.0884	0.0317
$S(\text { all })^{c}$	0.1460	1.077	0.0844
	1.016		1.096

Table 7. Crystallographic data for compounds 132, 140 and 141

	132	140	141
Chemical Formula	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3}$
Formula Weight	372.44	340.40	370.43
Crystal Color	colourless	colourless	colourless
Crystal Size	$0.25 \times 0.22 \times 0.17$	$0.40 \times 0.27 \times 0.07$	$0.23 \times 0.13 \times 0.13$
Crystal System	Orthorhombic	Monoclinic	Monoclinic
Space Group	P2 $2^{2}{ }_{1} 2_{1}$	P2 $1 / \mathrm{c}$	P2 $1 / \mathrm{c}$
a, \AA	8.2015(13)	21.013(3)	8.242(3)
b, Å	10.0526(16)	8.1467(12)	11.029(4)
$c, ~ \AA$	23.091(4)	21.507(3)	21.340(7)
α, deg	90.000	90.000	90.000
β, deg	90.000	105.097(2)	99.449(4)
$\gamma, \operatorname{deg}$	90.000	90.000	90.000
V, \AA^{3}	1903.8(5)	3554.6(9)	1913.4(11)
Z	4	8	4
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.299	1.272	1.286
μ, mm^{-1}	0.084	0.080	0.083
$T, \mathrm{~K}$	100(2)	100(2)	100(2)
λ, \AA	0.71073	0.71073	0.71073
Reflections			
total	33677	56735	32115
unique	4814	8142	4591
observed	4548	6434	3795
$R(F)\left(\right.$ obs.) ${ }^{a}$	0.0348	0.0659	0.0444
$w R\left(F^{2}\right)(\text { obs. })^{b}$	0.0860	0.1522	0.1151
$R(F)(\mathrm{all})^{a}$	0.0376	0.0835	0.0550
$w R\left(F^{2}\right)(\mathrm{all})^{b}$	0.0882	0.1616	0.1233
$S(\mathrm{all})^{\text {c }}$	1.040	1.107	1.063

Table 8. Crystallographic data for compounds 146, 148 and 235

	$\mathbf{1 4 6}$	$\mathbf{1 4 8}$	$\mathbf{2 3 5}$
Chemical Formula	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{OS}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{P}_{2} \mathrm{~S}_{3}$
Formula Weight	372.44	346.44	656.75
Crystal Color	yellow	light yellow	colourless
Crystal Size	$0.14 \times 0.10 \times 0.03$	$0.219 \times 0.132 \times 0.057$	$0.21 \times 0.10 \times 0.06$
Crystal System	Monoclinic	Monoclinic	Trigonal
Space Group	$P 2_{l} / c$	$C 2 / c$	$P 321$
a, \AA	$6.8452(3)$	$15.817(2)$	$14.810(5)$
b, \AA	$9.0996(4)$	$11.6854(15)$	$14.810(5)$
c, \AA	$25.8139(12)$	$8.9861(12)$	$21.949(8)$
α, deg	90.000	90.000	90.000
β, deg	$95.864(2)$	$98.861(2)$	90.000
γ, deg	90.000	90.000	120.000
$V, \AA \AA^{3}$	$1599.50(12)$	$1641.1(4)$	$4169(3)$
Z	4	4	4
$\rho_{\text {calcd }}, \mathrm{g} /$ cm ${ }^{3}$	1.547	1.402	1.046
μ, mm		0.328	0.277
$T, \mathrm{~K}$	3.134	$150(2)$	$100(2)$
λ, \AA	$100(2)$	0.71073	0.71073
Reflections	1.54178		
total	4490	14773	36419
unique	4490	2130	6414
observed	4048	1686	5455
$R(F)(\text { obs. })^{a}$	0.0463	0.0401	0.0603
$w R\left(F^{2}\right)(\text { obs. })^{b}$	0.1036	0.0912	0.1726
$R(F)(\text { all })^{a}$	0.0541	0.0553	0.0683
$w R\left(F^{2}\right)(\text { all })^{b}$	0.1067	0.1024	0.1779
$S{\text { (all) })^{c}}^{1.152}$	1.039	1.068	

Table 9. Crystallographic data for compounds $\left.\mathbf{2 4 0} \cdot \mathbf{2 (} \mathbf{C H C l}_{3}\right) \cdot \mathbf{H}_{2} \mathbf{O}, 241 \cdot \mathbf{1 . 5 (\mathbf { C } _ { 2 } \mathbf { H } _ { 6 } \mathbf { O S })}$ and 257

	$\begin{gathered} 240 \cdot \\ 2\left(\mathrm{CHCl}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} 241 \cdot \\ 1.5\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right) \\ \hline \end{gathered}$	257
Chemical Formula	$\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{Cl}_{7} \mathrm{OP}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{O}_{7.5} \mathrm{P}_{2} \mathrm{~S}_{4.5}$	$\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{NPS}_{3}$
Formula Weight	949.96	869.94	639.79
Crystal Color	colourless	clear colourless	colourless
Crystal Size	$0.38 \times 0.16 \times 0.15$	$0.12 \times 0.12 \times 0.06$	$0.20 \times 0.19 \times 0.16$
Crystal System	Monoclinic	Orthorhombic	Tetragonal
Space Group	P2 $1_{1} / n$	Pna2 ${ }_{1}$	P4/n
$a, ~ \AA$	13.157(2)	17.7602(7)	18.6366(14)
b, \AA	19.846(4)	10.5542(4)	18.6366(14)
c, \AA	16.443(3)	21.7285(8)	19.3600(16)
α, deg	90.000	90.000	90.000
β, deg	94.875(3)	90.000	90.000
$\gamma, \operatorname{deg}$	90.000	90.000	90.000
V, \AA^{3}	4277.9(13)	4072.9(3)	6724.2(9)
Z	4	4	8
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.475	1.419	1.264
μ, mm^{-1}	0.719	3.556	2.676
$T, \mathrm{~K}$	100(2)	100(2)	100(2)
λ, \AA	0.71073	1.54178	1.54178
Reflections total unique observed	$\begin{aligned} & 75153 \\ & 11199 \\ & 9721 \end{aligned}$	$\begin{aligned} & 60991 \\ & 6947 \\ & 5756 \end{aligned}$	$\begin{aligned} & 60690 \\ & 4993 \\ & 4306 \end{aligned}$
$R(F)$ (obs.) ${ }^{\text {a }}$	0.0344	0.0843	0.0623
$w R\left(F^{2}\right)$ (obs. $)^{b}$	0.0850	0.2269	0.1858
$R(F)(\text { all })^{a}$	0.0412	0.1015	0.0705
$w R\left(F^{2}\right)(\mathrm{all})^{b}$	0.0900	0.2412	0.1919
$S(\mathrm{all})^{c}$	1.042	1.071	1.088

Table 10. Crystallographic data for compounds 275 and $\left.\mathbf{2 7 7} \bullet \mathbf{0 . 1 2 5 (} \mathbf{C H}_{2} \mathbf{C l}_{2}\right)$

	$\mathbf{2 7 5}$	$\mathbf{2 7 7} \bullet \mathbf{0 . 1 2 5 (\mathbf { C H } _ { 2 } \mathbf { C l } _ { 2 })}$
Chemical Formula	$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{PS}_{3} \mathrm{Si}$	$\mathrm{C}_{41.12} \mathrm{H}_{35.25} \mathrm{Cl}_{0.25} \mathrm{OPS}_{3} \mathrm{Si}$
Formula Weight	654.88	709.54
Crystal Color	colourless	colourless
Crystal Size	$0.17 \times 0.16 \times 0.11$	$0.18 \times 0.18 \times 0.06$
Crystal System	Trigonal	Triclinic
Space Group	$P \overline{3}$	$P 1$
a, \AA	$13.8326(3)$	$12.9706(5)$
b, \AA	$13.8326(3)$	$13.2671(5)$
c, \AA	$11.3205(3)$	$13.8130(5)$
α, deg	90.000	$64.212(2)$
β, deg	90.000	$64.706(2)$
γ, deg	120.000	$62.734(2)$
V, \AA^{3}	$1875.87(8)$	$1823.65(13)$
Z	2	2
$\left.\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}\right)^{3}$	1.159	1.292
μ, mm	2.999	
$T, \mathrm{~K}$	0.297	$100(2)$
λ, \AA	$200(2)$	1.54178
Reflections	0.71073	
total		16294
unique	17748	16294
observed	2577	13264
$R(F)(\text { obs. })^{a}$	2188	0.0846
$w R\left(F^{2}\right)(\text { obs. })^{b}$	0.0351	0.2158
$R(F)(\text { all })^{a}$	0.0947	0.1035
$w R\left(F^{2}\right)(\text { all })^{b}$	0.0415	0.2364
$S(\text { all })^{c}$	0.0975	1.039

		$291 \cdot \mathrm{C}_{6} \mathrm{H}_{6}$
Chemical Formula	$\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{~S}_{3} \mathrm{Si}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{PS}_{3} \mathrm{Si}$
Formula Weight	811.43	747.01
Crystal Color	colourless	colourless
Crystal Size	$0.25 \times 0.14 \times 0.02$	$0.22 \times 0.15 \times 0.10$
Crystal System	Trigonal	Triclinic
Space Group	$P \overline{3}$	$P \overline{1}$
$a, ~ \AA$	14.0183(5)	11.4759(4)
b, \AA	14.0183(5)	13.1277(5)
c, \AA	11.3948(5)	13.7216(5)
α, deg	90.000	88.006(1)
β, deg	90.000	70.561(1)
$\gamma, \operatorname{deg}$	120.000	79.884(1)
V, \AA^{3}	1939.22(16)	1918.42(12)
Z	2	2
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.39	1.293
μ, mm^{-1}	4.482	2.702
$T, \mathrm{~K}$	100(2)	100(2)
λ, \AA	1.54178	1.54178
Reflections		
total	4981	21842
unique	4981	6870
observed	4366	6544
$R(F)$ (obs.) ${ }^{a}$	0.0822	0.0294
$w R\left(F^{2}\right)(\text { obs. })^{b}$	0.2456	0.0757
$R(F)(\text { all })^{a}$	0.0905	0.0307
$w R\left(F^{2}\right)(\mathrm{all})^{b}$	0.2544	0.0766
$S(\mathrm{all})^{c}$	1.109	1.030

${ }^{a} R(F)=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right| ;{ }^{b} w R\left(F^{2}\right)=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) / \Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+\right.$
$\left.(x P)^{2}\right]$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 ;{ }^{c} S=$ goodness-of-fit on $F^{2}=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$,
where n is the number of reflections and p is the number of parameters refined.

Table 12. Atomic coordinates and equivalent isotropic displacement parameters for compound 105

Atom	X	Y	Z	$U_{\text {equiv }}$
O1	$0.62191(10)$	$-0.11389(9)$	$0.26417(5)$	0.0261
C1	$0.91980(13)$	$0.02557(12)$	$0.21308(7)$	0.0195
C2	$0.89365(13)$	$-0.10387(12)$	$0.12579(7)$	0.0183
C3	$0.72433(13)$	$-0.20653(12)$	$0.04734(7)$	0.0202
C4	$0.71649(14)$	$-0.32932(13)$	$-0.03124(7)$	0.0233
H4	0.60340	-0.39830	-0.08240	0.0280
C5	$0.86961(15)$	$-0.35649(13)$	$-0.03857(8)$	0.0259
H5	0.85760	-0.44600	-0.09230	0.0310
C6	$1.03568(14)$	$-0.25323(13)$	$0.03213(8)$	0.0248
H6	1.14040	-0.26900	0.02630	0.0300
C7	$1.05328(13)$	$-0.12305(13)$	$0.11393(7)$	0.0207
C8	$1.23038(14)$	$-0.01091(14)$	$0.18371(7)$	0.0250
H8	1.33360	-0.02860	0.17670	0.0300
C9	$1.25418(14)$	$0.12127(14)$	$0.26029(7)$	0.0263
H9	1.37520	0.20080	0.30390	0.0320
C10	$1.09784(14)$	$0.13905(13)$	$0.27431(7)$	0.0232
H10	1.11540	0.23210	0.32760	0.0280
C11	$0.78839(13)$	$0.21499(12)$	$0.29413(7)$	0.0197
C12	$0.81431(14)$	$0.32143(13)$	$0.21909(7)$	0.0227
H12	0.84220	0.28580	0.15720	0.0270
C13	$0.80039(14)$	$0.48170(13)$	$0.23188(7)$	0.0256
H13	0.81680	0.55180	0.17880	0.0310
C14	$0.76332(14)$	$0.53499(13)$	$0.32079(8)$	0.0245
H14	0.75000	0.64070	0.32870	0.0290
C15	$0.74416(13)$	$0.43504(12)$	$0.40220(7)$	0.0207
C16	$0.70643(14)$	$0.49431(14)$	$0.49425(8)$	0.0261
H16	0.69340	0.60020	0.50090	0.0310
C17	$0.68864(15)$	$0.40095(15)$	$0.57346(8)$	0.0287
H17	0.65700	0.43790	0.63360	0.0340
C18	$0.71734(14)$	$0.24962(14)$	$0.56576(7)$	0.0263
H18	0.71070	0.18960	0.62280	0.0320
C19	$0.75462(13)$	$0.18569(13)$	$0.47867(7)$	0.0215
C20	$0.76009(12)$	$0.27294(12)$	$0.39131(7)$	0.0188
C21	$0.76306(13)$	$0.02816(13)$	$0.25741(7)$	0.0201
C22	$0.55780(14)$	$-0.17787(13)$	$0.04244(8)$	0.0257
H22A	0.48020	-0.22590	-0.02720	0.0380
H22B	0.60380	-0.04550	0.06060	0.0380

H22C	0.48090	-0.24350	0.09070	0.0380
C23	$0.79896(16)$	$0.03320(15)$	$0.48198(8)$	0.0279
H23A	0.83200	0.02470	0.55340	0.0420
H23B	0.90610	0.06010	0.44870	0.0420
H23C	0.68760	-0.08450	0.44590	0.0420

Table 13. Atomic coordinates and equivalent isotropic displacement parameters for compound 116

Atom	X	Y	Z	$U_{\text {equiv }}$
Br1	$0.12378(2)$	$0.17571(4)$	$0.666895(12)$	0.0210
Br2	$0.11622(3)$	$-0.38363(5)$	$0.602935(14)$	0.0318
Br3	$-0.07426(2)$	$-0.26073(4)$	$0.688098(14)$	0.0257
C1	$0.0343(2)$	$0.0751(4)$	$0.62741(11)$	0.0157
H1	0.03650	-0.03480	0.63550	0.0190
C2	$0.0505(2)$	$0.1123(4)$	$0.57601(11)$	0.0157
C3	$0.1084(2)$	$0.0416(4)$	$0.54326(12)$	0.0170
C4	$0.1677(2)$	$-0.0867(4)$	$0.55205(12)$	0.0192
C5	$0.1803(2)$	$-0.1726(5)$	$0.59870(13)$	0.0250
H5A	0.16370	-0.09520	0.62450	0.0300
H5B	0.23900	-0.19870	0.60280	0.0300
C6	$0.2172(2)$	$-0.1429(5)$	$0.51594(13)$	0.0233
H6	0.25670	-0.22800	0.52260	0.0280
C7	$0.2117(2)$	$-0.0795(5)$	$0.46985(13)$	0.0240
H7	0.24650	-0.12180	0.44570	0.0290
C8	$0.1559(2)$	$0.0431(5)$	$0.45990(13)$	0.0221
H8	0.15230	0.08690	0.42870	0.0270
C9	$0.1034(2)$	$0.1063(4)$	$0.49544(12)$	0.0187
C10	$0.0451(2)$	$0.2300(4)$	$0.48317(13)$	0.0208
H10	0.04390	0.27100	0.45160	0.0250
C11	$-0.0095(2)$	$0.2927(4)$	$0.51485(12)$	0.0190
H11	-0.04870	0.37530	0.50580	0.0230
C12	$-0.0060(2)$	$0.2311(4)$	$0.56136(12)$	0.0178
C13	$-0.0611(2)$	$0.2710(4)$	$0.60039(12)$	0.0187
C14	$-0.1261(2)$	$0.3882(4)$	$0.60054(13)$	0.0239
H14	-0.13910	0.45230	0.57310	0.0290
C15	$-0.1696(2)$	$0.4065(5)$	$0.64127(14)$	0.0248
H15	-0.21240	0.48770	0.64230	0.0300
C16	$-0.1533(2)$	$0.3084(4)$	$0.68215(13)$	0.0216
C17	$-0.1991(2)$	$0.3365(5)$	$0.72373(14)$	0.0263
H17	-0.24020	0.42130	0.72410	0.0310
C18	$-0.1849(2)$	$0.2433(5)$	$0.76328(14)$	0.0277
H18	-0.21410	0.26700	0.79150	0.0330
C19	$-0.1272(2)$	$0.1122(5)$	$0.76244(13)$	0.0236
H19	-0.11980	0.04470	0.78990	0.0280
C20	$-0.0809(2)$	$0.0788(4)$	$0.72277(13)$	0.0200
C21	$-0.0264(2)$	$-0.0728(4)$	$0.72508(13)$	0.0215

H21A	-0.01950	-0.10820	0.75840	0.0260
H21B	0.02810	-0.04380	0.71220	0.0260
C22	$-0.0896(2)$	$0.1825(4)$	$0.68160(12)$	0.0173
C23	$-0.0426(2)$	$0.1728(4)$	$0.63919(12)$	0.0169

Table 14. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{1 2 2}$

Atom	X	Y	Z	$U_{\text {equiv }}$
Cl1	$1.136682(19)$	$0.33081(3)$	$0.475485(19)$	0.0171
O1	1.00000	$0.42006(14)$	0.25000	0.0175
C1	1.00000	$0.2667(2)$	0.25000	0.0138
C2	$0.93996(8)$	$0.16683(13)$	$0.29254(8)$	0.0136
C3	$0.86563(9)$	$0.06404(14)$	$0.22153(8)$	0.0176
H3	0.86770	0.04210	0.15910	0.0210
C4	$0.78668(9)$	$-0.00953(15)$	$0.23861(9)$	0.0196
H4	0.73680	-0.08030	0.18840	0.0240
C5	$0.78252(8)$	$0.02185(14)$	$0.32792(9)$	0.0179
H5	0.72740	-0.02660	0.33810	0.0210
C6	$0.86005(8)$	$0.12055(14)$	$0.40574(8)$	0.0145
C7	$0.85513(9)$	$0.14866(14)$	$0.49856(9)$	0.0174
H7	0.79890	0.10440	0.50710	0.0210
C8	$0.93012(9)$	$0.23864(15)$	$0.57600(9)$	0.0189
H8	0.92420	0.26120	0.63640	0.0230
C9	$1.01608(9)$	$0.29760(15)$	$0.56582(8)$	0.0170
H9	1.07010	0.35470	0.62090	0.0200
C10	$1.02192(8)$	$0.27268(13)$	$0.47633(8)$	0.0138
C11	$0.94248(8)$	$0.19078(13)$	$0.39038(8)$	0.0127

Table 15. Atomic coordinates and equivalent isotropic displacement parameters for compound 132

Atom	X	Y	Z	$U_{\text {equiv }}$
O1	$0.10309(11)$	$0.22263(9)$	$0.11632(4)$	0.0178
H1	0.02260	0.20960	0.08790	0.0210
O2	$0.36420(13)$	$-0.08059(9)$	$0.02152(4)$	0.0254
O3	$0.41052(12)$	$0.33930(9)$	$-0.02058(4)$	0.0194
C1	$0.3513(2)$	$-0.18978(14)$	$-0.01761(6)$	0.0302
H1A	0.45760	-0.23350	-0.02130	0.0450
H1B	0.31620	-0.15730	-0.05560	0.0450
H1C	0.27110	-0.25360	-0.00280	0.0450
C2	$0.41955(16)$	$-0.12099(13)$	$0.07781(6)$	0.0203
H2A	0.44610	-0.04080	0.10080	0.0240
H2B	0.52080	-0.17360	0.07350	0.0240
C3	$0.29509(15)$	$-0.20309(12)$	$0.11051(5)$	0.0160
C4	$0.32658(17)$	$-0.33812(13)$	$0.11182(5)$	0.0203
H4	0.42450	-0.36960	0.09460	0.0240
C5	$0.22078(19)$	$-0.43126(13)$	$0.13738(6)$	0.0237
H5	0.24630	-0.52340	0.13720	0.0280
C6	$0.08134(18)$	$-0.38638(13)$	$0.16238(6)$	0.0226
H6	0.00850	-0.44830	0.17960	0.0270
C7	$0.04216(16)$	$-0.24883(13)$	$0.16336(5)$	0.0184
C8	$-0.10344(17)$	$-0.20919(15)$	$0.19157(6)$	0.0252
H8	-0.17320	-0.27480	0.20780	0.0300
C9	$-0.14457(17)$	$-0.07862(15)$	$0.19571(6)$	0.0262
H9	-0.24240	-0.05290	0.21470	0.0310
C10	$-0.04060(16)$	$0.01813(14)$	$0.17159(6)$	0.0208
H10	-0.06950	0.10920	0.17530	0.0250
C11	$0.10132(15)$	$-0.01376(12)$	$0.14280(5)$	0.0148
C12	$0.14886(15)$	$-0.15189(12)$	$0.13740(5)$	0.0149
C13	$0.20005(15)$	$0.10398(11)$	$0.11881(5)$	0.0141
H13	0.23840	0.08160	0.07890	0.0170
C14	$0.34759(15)$	$0.14070(11)$	$0.15608(5)$	0.0136
C15	$0.35424(15)$	$0.08851(12)$	$0.21111(5)$	0.0164
H15	0.27200	0.02740	0.22250	0.0200
C16	$0.47671(16)$	$0.12108(13)$	$0.25132(6)$	0.0193
H16	0.47690	0.08260	0.28890	0.0230
C17	$0.59493(16)$	$0.20880(13)$	$0.23538(5)$	0.0191
H17	0.67670	0.23330	0.26250	0.0230
C18	$0.59779(15)$	$0.26421(12)$	$0.17877(5)$	0.0156

C19	$0.72936(16)$	$0.34919(13)$	$0.16424(6)$	0.0189
H19	0.81120	0.36770	0.19220	0.0230
C20	$0.73955(16)$	$0.40459(13)$	$0.11061(6)$	0.0201
H20	0.82760	0.46200	0.10120	0.0240
C21	$0.61869(16)$	$0.37604(12)$	$0.06931(5)$	0.0180
H21	0.62580	0.41680	0.03230	0.0220
C22	$0.49021(14)$	$0.29127(12)$	$0.08031(5)$	0.0149
C23	$0.47399(14)$	$0.23153(12)$	$0.13709(5)$	0.0137
C24	$0.37965(15)$	$0.25814(12)$	$0.02910(5)$	0.0171
H24A	0.39530	0.16360	0.01840	0.0200
H24B	0.26460	0.26970	0.04100	0.0200
C25	$0.30518(19)$	$0.45162(13)$	$-0.02356(6)$	0.0250
H25A	0.19260	0.42150	-0.02900	0.0380
H25B	0.33730	0.50810	-0.05620	0.0380
H25C	0.31310	0.50260	0.01250	0.0380

Table 16. Atomic coordinates and equivalent isotropic displacement parameters for compound 140

Atom	X	Y	Z	$U_{\text {equiv }}$
O1	$0.29918(11)$	$0.8177(3)$	$0.53325(11)$	0.0606
O2	$0.28820(8)$	$0.8994(2)$	$0.35518(11)$	0.0519
C1	$0.41400(12)$	$0.5705(3)$	$0.43036(11)$	0.0324
C2	$0.44821(14)$	$0.4826(3)$	$0.39543(13)$	0.0443
H2	0.47930	0.53790	0.37780	0.0530
C3	$0.43862(16)$	$0.3121(3)$	$0.38484(14)$	0.0508
H3	0.46360	0.25380	0.36100	0.0610
C4	$0.39373(14)$	$0.2321(3)$	$0.40884(13)$	0.0464
H4	0.38570	0.11870	0.39980	0.0560
C5	$0.35876(12)$	$0.3151(3)$	$0.44715(12)$	0.0370
C6	$0.31317(13)$	$0.2277(3)$	$0.47256(14)$	0.0466
H6	0.30710	0.11360	0.46390	0.0560
C7	$0.27798(13)$	$0.3027(4)$	$0.50891(14)$	0.0491
H7	0.24710	0.24210	0.52510	0.0590
C8	$0.28746(13)$	$0.4702(4)$	$0.52239(13)$	0.0428
H8	0.26230	0.52300	0.54740	0.0510
C9	$0.33273(12)$	$0.5606(3)$	$0.50015(11)$	0.0357
C10	$0.36965(11)$	$0.4866(3)$	$0.46009(11)$	0.0313
C11	$0.34362(14)$	$0.7295(3)$	$0.52692(13)$	0.0448
H11	0.38740	0.77040	0.53970	0.0540
C12	$0.42297(11)$	$0.7574(3)$	$0.43463(12)$	0.0322
H12A	0.37880	0.80860	0.42550	0.0390
H12B	0.44650	0.78580	0.47950	0.0390
C13	$0.46007(11)$	$0.8336(3)$	$0.38997(12)$	0.0317
C14	$0.52585(12)$	$0.8590(3)$	$0.41704(13)$	0.0423
H14	0.54390	0.82430	0.46020	0.0510
C15	$0.56802(13)$	$0.9331(4)$	$0.38465(15)$	0.0498
H15	0.61360	0.94550	0.40520	0.0600
C16	$0.54291(13)$	$0.9871(3)$	$0.32352(14)$	0.0450
H16	0.57110	1.03880	0.30130	0.0540
C17	$0.47519(13)$	$0.9675(3)$	$0.29240(12)$	0.0400
C18	$0.45049(18)$	$1.0342(4)$	$0.23027(14)$	0.0578
H18	0.47960	1.09040	0.21030	0.0690
C19	$0.3862(2)$	$1.0196(5)$	$0.19867(16)$	0.0804
H19	0.37010	1.06460	0.15680	0.0960
C20	$0.34378(18)$	$0.9376(5)$	$0.22828(16)$	0.0672
H20	0.29880	0.92680	0.20530	0.0800

C21	$0.36388(13)$	$0.8712(3)$	$0.28929(13)$	0.0414
C22	$0.43170(11)$	$0.8862(3)$	$0.32464(11)$	0.0314
C23	$0.31100(12)$	$0.7895(3)$	$0.31367(14)$	0.0452
H23A	0.27380	0.75810	0.27690	0.0540
H23B	0.32870	0.68850	0.33760	0.0540
C24	$0.22992(14)$	$0.8377(5)$	$0.3696(2)$	0.0702
H24A	0.19410	0.83260	0.32990	0.1060
H24B	0.21720	0.91080	0.40050	0.1060
H24C	0.23850	0.72750	0.38810	0.1060
O3	$1.09982(9)$	$0.0934(2)$	$0.47725(9)$	0.0432
C25	$0.92259(11)$	$0.3406(3)$	$0.38833(10)$	0.0285
C26	$0.86860(12)$	$0.4311(3)$	$0.35643(12)$	0.0366
H26	0.82780	0.37640	0.33980	0.0440
C27	$0.87182(14)$	$0.6023(3)$	$0.34752(12)$	0.0410
H27	0.83330	0.66140	0.32620	0.0490
C28	$0.92977(13)$	$0.6821(3)$	$0.36942(11)$	0.0374
H28	0.93200	0.79670	0.36210	0.0450
C29	$0.98718(12)$	$0.5973(3)$	$0.40304(10)$	0.0301
C30	$1.04697(12)$	$0.6843(3)$	$0.42542(11)$	0.0344
H30	1.04780	0.79880	0.41720	0.0410
C31	$1.10311(13)$	$0.6088(3)$	$0.45830(11)$	0.0349
H31	1.14290	0.66920	0.47290	0.0420
C32	$1.10154(12)$	$0.4392(3)$	$0.47045(11)$	0.0315
H32	1.14090	0.38570	0.49320	0.0380
C33	$1.04456(11)$	$0.3488(3)$	$0.45023(10)$	0.0274
C34	$0.98407(11)$	$0.4242(3)$	$0.41456(9)$	0.0265
C35	$1.05128(11)$	$0.1758(3)$	$0.47422(10)$	0.0303
H35	1.01580	0.12840	0.48770	0.0360
C36	$0.91486(11)$	$0.1563(3)$	$0.39398(10)$	0.0274
H36A	0.95280	0.10230	0.38310	0.0330
H36B	0.91750	0.13030	0.43950	0.0330
C37	$0.85203(11)$	$0.0809(3)$	$0.35250(10)$	0.0280
C38	$0.80126(12)$	$0.0615(3)$	$0.38135(12)$	0.0353
H38	0.80730	0.09960	0.42420	0.0420
C39	$0.74100(12)$	$-0.0119(3)$	$0.35036(13)$	0.0402
H39	0.70660	-0.01920	0.37150	0.0480
C40	$0.73224(11)$	$-0.0723(3)$	$0.28989(12)$	0.0374
H40	0.69190	-0.12470	0.26910	0.0450
C41	$-0.1262(4)$	$0.19542(12)$	0.0323	
C42	-0.18140	0.17690	0.0540	
H42	$0.78276(11)$	$-0.0578(3)$	$0.25751(11)$	0.0323
	0.7310			0

C43	$0.81769(15)$	$-0.1142(4)$	$0.16200(13)$	0.0536
H 43	0.81010	-0.16140	0.12030	0.0640
C 44	$0.87673(14)$	$-0.0312(4)$	$0.18950(12)$	0.0446
H 44	0.90840	-0.02140	0.16520	0.0530
C 45	$0.89086(11)$	$0.0363(3)$	$0.24987(10)$	0.0321
C46	$0.84336(10)$	$0.0242(3)$	$0.28729(10)$	0.0265
O4	$1.00256(9)$	$-0.0017(3)$	$0.30780(9)$	0.0335
C47	$0.95716(12)$	$0.1164(3)$	$0.27085(11)$	0.0371
H47A	0.97190	0.15160	0.23280	0.0450
H47B	0.95490	0.21440	0.29740	0.0450
C48	$1.06858(15)$	$0.0508(5)$	$0.31680(16)$	0.0462
H48A	1.09850	-0.03130	0.34210	0.0690
H48B	1.07500	0.15590	0.33970	0.0690
H48C	1.07800	0.06420	0.27480	0.0690
O4A	$1.0088(5)$	$0.0959(16)$	$0.3180(5)$	0.0335
C47A	$0.95716(12)$	$0.1164(3)$	$0.27085(11)$	0.0371
H47C	0.97440	0.10790	0.23230	0.0450
H47D	0.94650	0.23400	0.27390	0.0450
C48A	$1.0459(8)$	$-0.025(2)$	$0.2890(9)$	0.0462
H48D	1.08610	-0.05730	0.32120	0.0690
H48E	1.05760	0.02570	0.25210	0.0690
H48F	1.01830	-0.12150	0.27470	0.0690

Table 17. Atomic coordinates and equivalent isotropic displacement parameters for compound 141

Atom	X	Y	Z	$U_{\text {equiv }}$
O1	$0.16814(12)$	$0.32517(10)$	$0.53675(4)$	0.0363
O2	$0.22060(12)$	$0.15313(9)$	$0.48760(5)$	0.0352
O3	$0.24310(11)$	$0.17628(8)$	$0.31974(4)$	0.0305
C1	$-0.05703(15)$	$0.22505(12)$	$0.47687(6)$	0.0255
C2	$-0.13773(17)$	$0.14049(13)$	$0.50806(7)$	0.0329
H2	-0.07600	0.08970	0.53920	0.0390
C3	$-0.30997(18)$	$0.12797(14)$	$0.49461(7)$	0.0357
H3	-0.36390	0.06970	0.51670	0.0430
C4	$-0.39810(16)$	$0.19947(13)$	$0.44995(7)$	0.0331
H4	-0.51450	0.19220	0.44170	0.0400
C5	$-0.32031(15)$	$0.28519(12)$	$0.41509(6)$	0.0282
C6	$-0.41632(16)$	$0.35229(13)$	$0.36578(7)$	0.0340
H6	-0.53240	0.34230	0.35790	0.0410
C7	$-0.34420(16)$	$0.43090(14)$	$0.32964(7)$	0.0357
H7	-0.40940	0.47530	0.29660	0.0430
C8	$-0.17196(16)$	$0.44603(12)$	$0.34155(7)$	0.0306
H8	-0.12320	0.50180	0.31630	0.0370
C9	$-0.07169(14)$	$0.38293(12)$	$0.38847(6)$	0.0248
C10	$-0.14481(14)$	$0.29981(11)$	$0.42777(6)$	0.0244
C11	$0.12500(15)$	$0.22929(12)$	$0.49919(6)$	0.0253
C12	$0.11410(14)$	$0.39893(12)$	$0.39632(6)$	0.0243
H12A	0.15460	0.42430	0.44060	0.0290
H12B	0.16390	0.31910	0.39000	0.0290
C13	$0.17548(14)$	$0.48940(11)$	$0.35217(6)$	0.0237
C14	$0.21000(16)$	$0.60373(12)$	$0.37699(7)$	0.0308
H14	0.18970	0.62020	0.41870	0.0370
C15	$0.27388(18)$	$0.69706(13)$	$0.34331(7)$	0.0360
H15	0.29500	0.77480	0.36200	0.0430
C16	$0.30510(17)$	$0.67518(13)$	$0.28378(7)$	0.0351
H16	0.35100	0.73730	0.26130	0.0420
C17	$0.26960(16)$	$0.56017(12)$	$0.25491(6)$	0.0293
C18	$0.3001(2)$	$0.54239(15)$	$0.19221(7)$	0.0416
H18	0.34650	0.60650	0.17120	0.0500
C19	$0.2645(2)$	$0.43551(16)$	$0.16144(7)$	0.0480
H19	0.28330	0.42540	0.11900	0.0580
C20	$0.1995(2)$	$0.34039(14)$	$0.19312(7)$	0.0391
H20	0.17460	0.26590	0.17130	0.0470

C21	$0.17030(16)$	$0.35042(12)$	$0.25478(6)$	0.0268
C22	$0.20273(14)$	$0.46403(11)$	$0.28839(6)$	0.0234
C23	$0.10852(15)$	$0.23602(12)$	$0.28147(6)$	0.0270
H23A	0.02300	0.25600	0.30740	0.0320
H23B	0.05900	0.18210	0.24640	0.0320
C24	$0.1957(2)$	$0.06020(13)$	$0.33973(7)$	0.0407
H24A	0.10690	0.06970	0.36480	0.0610
H24B	0.29030	0.02110	0.36580	0.0610
H24C	0.15720	0.00990	0.30240	0.0610
C25	$0.34387(18)$	$0.34016(18)$	$0.55712(7)$	0.0467
H25A	0.38770	0.26960	0.58220	0.0700
H25B	0.36420	0.41360	0.58310	0.0700
H25C	0.39830	0.34750	0.51980	0.0700

Table 18. Atomic coordinates and equivalent isotropic displacement parameters for compound 146

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	0.37484(14)	0.52056(10)	0.39416(3)	0.0179
S2	0.24690 (14)	0.76533(10)	0.56860(3)	0.0172
O1	-0.0189(4)	0.5598(3)	$0.40043(10)$	0.0185
O2	0.1945(4)	0.5505(3)	0.49926 (9)	0.0198
C1	0.4126(5)	0.5185(4)	0.32782(13)	0.0174
C2	0.5656(5)	0.4582(4)	0.30490 (14)	0.0209
H2	0.67120	0.41130	0.32520	0.0250
C3	0.5622(6)	0.4677(4)	0.25042(14)	0.0239
H3	0.66800	0.42640	0.23420	0.0290
C4	0.4127(6)	0.5340(4)	0.21978(14)	0.0240
H4	0.41680	0.53870	0.18310	0.0290
C5	0.2512(5)	0.5959(4)	0.24261(13)	0.0184
C6	0.0857(6)	0.6651(4)	0.21549(14)	0.0227
H6	0.07800	0.67480	0.17870	0.0270
C7	-0.0636(6)	0.7181(4)	0.24190(14)	0.0223
H7	-0.17470	0.76210	0.22290	0.0270
C8	-0.0554(5)	0.7087(4)	0.29661(14)	0.0203
H8	-0.16050	0.74540	0.31420	0.0240
C9	0.1050(5)	0.6462(4)	0.32416(13)	0.0174
C10	0.2556(5)	0.5879(4)	0.29696(13)	0.0153
C11	0.1423(5)	0.6326(4)	0.38300(13)	0.0156
C12	0.1839(5)	0.7809(4)	0.41047(13)	0.0140
C13	0.1988(5)	0.9113(4)	0.38082(13)	0.0161
H13	0.18680	0.90380	0.34390	0.0190
C14	0.2297(5)	1.0481(4)	0.40302(13)	0.0160
H14	0.23920	1.13140	0.38120	0.0190
C15	0.2475(5)	1.0665(4)	0.45734(13)	0.0141
C16	0.2748(5)	1.2021(4)	0.48440(14)	0.0172
H16	0.28280	1.29100	0.46540	0.0210
C17	0.2896(5)	1.2053(4)	0.53746(14)	0.0172
H17	0.30550	1.29720	0.55490	0.0210
C18	0.2818(5)	$1.0746(4)$	0.56750(13)	0.0172
H18	0.29320	1.07870	0.60450	0.0210
C19	0.2575(5)	0.9422(4)	0.54179(13)	0.0146
C20	0.2382(5)	0.9373(4)	0.48727(13)	0.0138
C21	0.2089(5)	0.7974(4)	0.46435(13)	0.0136

C22	$0.2113(5)$	$0.6823(4)$	$0.50513(13)$	0.0160
H1	$0.004(6)$	$0.545(5)$	$0.4332(18)$	0.0300

Table 19. Atomic coordinates and equivalent isotropic displacement parameters for compound 148

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	$0.42980(3)$	$0.79414(4)$	$0.33605(5)$	0.0293
O1	0.50000	$0.60228(15)$	0.25000	0.0331
C1	0.50000	$0.7042(2)$	0.25000	0.0232
C2	$0.35902(10)$	$0.69137(14)$	$0.39613(18)$	0.0236
C3	$0.38838(11)$	$0.62200(16)$	$0.5151(2)$	0.0302
H3	0.44610	0.62820	0.56280	0.0360
C4	$0.33381(12)$	$0.54115(16)$	$0.5678(2)$	0.0333
H4	0.35480	0.49320	0.65070	0.0400
C5	$0.25082(12)$	$0.53176(14)$	$0.4997(2)$	0.0302
H5	0.21440	0.47730	0.53600	0.0360
C6	$0.21830(11)$	$0.60202(14)$	$0.37586(18)$	0.0245
C7	$0.13210(11)$	$0.59291(16)$	$0.3035(2)$	0.0310
H7	0.09540	0.53810	0.33850	0.0370
C8	$0.10120(12)$	$0.66159(18)$	$0.1849(2)$	0.0347
H8	0.04350	0.65380	0.13730	0.0420
C9	$0.15449(12)$	$0.74375(18)$	$0.1329(2)$	0.0331
H9	0.13240	0.79190	0.05090	0.0400
C10	$0.23798(11)$	$0.75517(15)$	$0.19933(19)$	0.0268
H10	0.27310	0.81120	0.16280	0.0320
C11	$0.27253(10)$	$0.68471(13)$	$0.32145(18)$	0.0224

Table 20. Atomic coordinates and equivalent isotropic displacement parameters for compound 235

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	$0.4891(4)$	$0.1246(2)$	$0.77193(14)$	0.0462
C7	$0.5527(7)$	$0.0945(9)$	$0.7040(3)$	0.0391
H7A	0.62970	0.13610	0.70650	0.0470
H7B	0.53120	0.01960	0.70290	0.0470
P1	0.66670	0.33330	$0.65886(6)$	0.0378
P2	0.66670	0.33330	$0.82214(6)$	0.0302
C1	$0.5527(3)$	$0.2217(3)$	$0.62243(16)$	0.0454
C2	$0.5045(3)$	$0.2341(4)$	$0.57236(17)$	0.0548
H2	0.53170	0.30000	0.55290	0.0660
C3	$0.4109(4)$	$0.1439(5)$	$0.5501(2)$	0.0831
H3	0.37520	0.15120	0.51620	0.1000
C4	$0.3745(5)$	$0.0532(5)$	$0.5756(2)$	0.0934
H4	0.31250	-0.00520	0.56090	0.1120
C5	$0.4272(6)$	$0.0424(4)$	$0.6245(2)$	0.0889
H5	0.40200	-0.02490	0.64160	0.1070
C6	$0.5136(4)$	$0.1243(3)$	$0.64902(17)$	0.0534
C8	$0.5612(3)$	$0.1189(3)$	$0.83332(15)$	0.0394
C9	$0.5358(3)$	$0.0227(3)$	$0.85936(18)$	0.0481
H9	0.48150	-0.04000	0.84220	0.0580
C10	$0.5884(4)$	$0.0185(3)$	$0.9091(2)$	0.0570
H10	0.56990	-0.04720	0.92660	0.0680
C11	$0.6683(4)$	$0.1082(3)$	$0.93426(19)$	0.0526
H11	0.70800	0.10480	0.96730	0.0630
C12	$0.6898(3)$	$0.2048(3)$	$0.90994(16)$	0.0428
H12	0.74120	0.26710	0.92900	0.0510
C13	$0.6392(3)$	$0.2120(3)$	$0.85970(14)$	0.0322
S2	$0.55584(8)$	$0.72898(8)$	$0.73240(4)$	0.0446
C20	$0.5475(2)$	$0.8154(3)$	$0.78980(15)$	0.0351
H20A	0.60710	0.88730	0.78560	0.0420
H20B	0.48190	0.81710	0.78490	0.0420
P3	0.33330	0.66670	$0.67837(6)$	0.0384
P4	0.33330	0.66670	$0.84769(6)$	0.0318
C14	$0.4524(4)$	$0.7670(3)$	$0.63940(17)$	0.0507
C15	$0.4519(5)$	$0.8202(4)$	$0.5879(2)$	0.0704
H15	0.38750	0.80580	0.57030	0.0840
C16	$0.5442(5)$	$0.8940(5)$	$0.5620(3)$	0.0776
H16	0.54220	0.92520	0.52460	0.0930

C17	$0.6370(6)$	$0.9234(5)$	$0.5879(3)$	0.1001
H17	0.69920	0.97960	0.57160	0.1200
C18	$0.6401(4)$	$0.8686(4)$	$0.6399(2)$	0.0631
H18	0.70510	0.88350	0.65690	0.0760
C19	$0.5502(3)$	$0.7951(3)$	$0.66527(18)$	0.0496
C21	$0.5504(3)$	$0.7698(3)$	$0.85229(15)$	0.0363
C22	$0.6462(3)$	$0.7978(3)$	$0.87759(18)$	0.0471
H22	0.70810	0.84430	0.85620	0.0560
C23	$0.6535(3)$	$0.7583(4)$	$0.9346(2)$	0.0543
H23	0.71960	0.77770	0.95170	0.0650
C24	$0.5623(3)$	$0.6903(3)$	$0.96556(16)$	0.0441
H24	0.56600	0.66170	1.00360	0.0530
C25	$0.4667(3)$	$0.6646(3)$	$0.94127(15)$	0.0379
H25	0.40520	0.61960	0.96340	0.0460
C26	$0.4577(3)$	$0.7034(2)$	$0.88412(15)$	0.0338
S1A	$0.5835(3)$	$0.1094(4)$	$0.71048(17)$	0.0462
C7A	$0.4948(19)$	$0.1037(14)$	$0.7751(8)$	0.0391
H7AA	0.47760	0.16000	0.77120	0.0470
H7AB	0.42930	0.03560	0.77590	0.0470

Table 21. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{2 4 0} \cdot \mathbf{2 (\mathbf { C H C l } _ { 3 }) \cdot \mathbf { H } _ { 2 } \mathbf { O }}$

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	0.36486(3)	0.222212(19)	0.28046(2)	0.0148
S2	0.33992(3)	$0.436643(18)$	$0.12635(2)$	0.0148
S3	0.66815(3)	0.325490(19)	0.19626(2)	0.0147
P1	0.44324(3)	0.293131(19)	0.12577(2)	0.0123
H1P	0.4557(14)	0.3263 (10)	0.1936(12)	0.0190
P2	0.47911(3)	$0.399897(19)$	0.32407(2)	0.0117
C1	0.47085(11)	0.20544(7)	0.14449(9)	0.0141
C2	0.52389(12)	0.16783(8)	0.08975(10)	0.0173
H2	0.54370	0.18790	0.04110	0.0210
C3	0.54726(12)	0.10071(8)	0.10748(11)	0.0206
H3	0.58200	0.07460	0.07010	0.0250
C4	0.52010(12)	0.07170(8)	0.17928(11)	0.0205
H4	0.53830	0.02630	0.19160	0.0250
C5	0.46634(12)	0.10871(8)	0.23346(10)	0.0179
H5	0.44740	0.08840	0.28230	0.0210
C6	0.44037(11)	0.17546(7)	0.21586(9)	0.0143
C7	0.31238(11)	0.30251(7)	$0.08626(9)$	0.0133
C8	0.25390(12)	0.24673(8)	0.05932(9)	0.0165
H8	0.28540	0.20410	0.05390	0.0200
C9	0.14927(12)	0.25404(8)	0.04050(10)	0.0188
H9	0.10920	0.21630	0.02220	0.0220
C10	0.10352(12)	$0.31634(9)$	0.04836(10)	0.0202
H10	0.03170	0.32060	0.03750	0.0240
C11	0.16119(12)	0.37256(8)	0.07184(10)	0.0187
H11	0.12960	0.41550	0.07440	0.0230
C12	0.26589(11)	0.36587(8)	0.09164(9)	0.0146
C13	0.53184(11)	0.32513(7)	0.05828(9)	0.0146
C14	0.50369(13)	0.33533(9)	-0.02451(10)	0.0198
H14	0.43710	0.32360	-0.04690	0.0240
C15	0.57333(13)	0.36273(9)	-0.07411(10)	0.0233
H15	0.55460	0.36920	-0.13060	0.0280
C16	0.67048(13)	0.38071(9)	-0.04118(10)	0.0221
H16	0.71720	0.40050	-0.07510	0.0270
C17	0.69947(12)	0.36987(8)	0.04099(10)	0.0179
H17	0.76620	0.38180	0.06290	0.0220
C18	0.63100(11)	0.34152(7)	0.09132(9)	0.0141
C19	0.46055(11)	0.24626(8)	0.36335(9)	0.0147

H19A	0.48550	0.20590	0.39440	0.0180
H19B	0.51940	0.26860	0.34090	0.0180
C20	$0.28322(11)$	$0.45009(8)$	$0.22367(9)$	0.0161
H20A	0.21130	0.46460	0.21340	0.0190
H20B	0.28500	0.40780	0.25570	0.0190
C21	$0.67635(12)$	$0.41352(8)$	$0.23154(9)$	0.0156
H21A	0.73430	0.43620	0.20820	0.0190
H21B	0.61300	0.43780	0.21250	0.0190
C22	$0.40842(11)$	$0.29413(7)$	$0.41808(9)$	0.0137
C23	$0.35447(12)$	$0.26682(8)$	$0.47994(10)$	0.0179
H23	0.35360	0.21940	0.48740	0.0210
C24	$0.30212(12)$	$0.30795(9)$	$0.53069(10)$	0.0208
H24	0.26610	0.28880	0.57270	0.0250
C25	$0.30286(12)$	$0.37729(9)$	$0.51944(10)$	0.0191
H25	0.26700	0.40570	0.55360	0.0230
C26	$0.35627(12)$	$0.40522(8)$	$0.45799(9)$	0.0162
H26	0.35600	0.45270	0.45060	0.0190
C27	$0.41023(11)$	$0.36458(7)$	$0.40708(9)$	0.0128
C28	$0.34495(11)$	$0.50388(8)$	$0.26973(9)$	0.0140
C29	$0.31354(12)$	$0.57080(8)$	$0.26159(9)$	0.0171
H29	0.25200	0.58120	0.22960	0.0210
C30	$0.37075(12)$	$0.62248(8)$	$0.29958(9)$	0.0182
H30	0.34840	0.66790	0.29360	0.0220
C31	$0.46073(12)$	$0.60745(8)$	$0.34636(10)$	0.0174
H31	0.50060	0.64260	0.37200	0.0210
C32	$0.49245(12)$	$0.54080(8)$	$0.35566(9)$	0.0150
H32	0.55380	0.53090	0.38810	0.0180
C33	$0.43566(11)$	$0.48814(7)$	$0.31814(9)$	0.0130
C34	$0.69119(11)$	$0.41580(7)$	$0.32350(9)$	0.0143
C35	$0.78962(12)$	$0.42606(8)$	$0.36033(10)$	0.0177
H35	0.84510	0.43030	0.32720	0.0210
C36	$0.80756(12)$	$0.43019(8)$	$0.44484(10)$	0.0188
H36	0.87490	0.43730	0.46900	0.0220
C37	$0.72721(12)$	$0.42398(8)$	$0.49387(10)$	0.0171
H37	0.73930	0.42660	0.55160	0.0210
C38	$0.62877(12)$	$0.41384(7)$	$0.45787(9)$	0.0148
H38	0.57390	0.40970	0.49160	0.0180
C39	$0.60898(11)$	$0.40966(7)$	$0.37311(9)$	0.0128
C11	$0.46103(2)$	$0.14743(2)$	0.0223	
H1A	$0.57292(7)$	$0.05188(9)$	0.0354	
	0.54570	0.07680	0.0420	
C1				

H1B	0.07490	0.56190	0.00080	0.0420
C40	$0.75977(13)$	$0.58810(9)$	$0.16681(10)$	0.0211
H40	0.82580	0.56360	0.17840	0.0250
Cl2	$0.68867(4)$	$0.54766(2)$	$0.08585(3)$	0.0311
Cl3	$0.78629(4)$	$0.67227(2)$	$0.14101(3)$	0.0324
Cl4	$0.69371(5)$	$0.58718(3)$	$0.25530(3)$	0.0423
C41	$0.03605(13)$	$0.34297(9)$	$0.29244(11)$	0.0236
H41	0.01720	0.37110	0.24300	0.0280
Cl5	$0.14794(3)$	$0.29758(2)$	$0.27733(3)$	0.0319
Cl6	$0.06073(4)$	$0.39666(3)$	$0.37784(3)$	0.0331
Cl7	$-0.06483(4)$	$0.28719(3)$	$0.30697(5)$	0.0497

Table 22. Atomic coordinates and equivalent isotropic displacement parameters for compound $241 \cdot \mathbf{1 . 5 (\mathrm { C } _ { 2 } \mathrm { H } _ { 6 } \mathrm { OS })}$

Atom	X	Y	Z	$U_{\text {equi }}$
S1	$0.33343(10)$	$0.66572(17)$	$0.25323(10)$	0.0270
S2	$0.04387(10)$	$0.55636(17)$	$0.24581(10)$	0.0271
S3	$0.12172(11)$	$1.04417(18)$	$0.25161(11)$	0.0316
P1	$0.16782(11)$	$0.76133(18)$	$0.30979(10)$	0.0252
P2	$0.17709(11)$	$0.75532(19)$	$0.13342(10)$	0.0249
O1	$0.2668(3)$	$0.5874(5)$	$0.2460(3)$	0.0297
O2	$0.4056(3)$	$0.6042(5)$	$0.2506(3)$	0.0330
O3	$0.0302(3)$	$0.6916(5)$	$0.2413(3)$	0.0347
O4	$-0.0212(3)$	$0.4740(5)$	$0.2404(3)$	0.0347
O5	$0.1035(3)$	$1.1757(5)$	$0.2462(3)$	0.0390
O6	$0.1998(3)$	$1.0105(5)$	$0.2502(3)$	0.0337
C1	$0.2593(4)$	$0.7896(7)$	$0.3493(4)$	0.0243
C2	$0.3280(5)$	$0.7473(8)$	$0.3241(4)$	0.0263
C3	$0.3958(5)$	$0.7704(8)$	$0.3527(4)$	0.0313
H3	0.44130	0.74100	0.33470	0.0380
C4	$0.3977(5)$	$0.8379(8)$	$0.4087(4)$	0.0337
H4	0.44440	0.85290	0.42870	0.0400
C5	$0.3327(5)$	$0.8814(7)$	$0.4341(4)$	0.0290
H5	0.33420	0.92850	0.47130	0.0340
C6	$0.2636(5)$	$0.8571(8)$	$0.4055(4)$	0.0293
H6	0.21850	0.88650	0.42420	0.0350
C7	$0.1393(5)$	$0.6095(7)$	$0.3465(4)$	0.0280
C8	$0.0886(4)$	$0.5243(7)$	$0.3184(4)$	0.0263
C9	$0.0724(5)$	$0.4059(8)$	$0.3437(4)$	0.0317
H9	0.03950	0.34930	0.32290	0.0380
C10	$0.1037(5)$	$0.3723(9)$	$0.3981(5)$	0.0380
H10	0.09260	0.29190	0.41550	0.0460
C11	$0.1515(5)$	$0.4537(8)$	$0.4283(4)$	0.0327
H11	0.17290	0.42910	0.46650	0.0390
C12	$0.1690(5)$	$0.5724(8)$	$0.4034(4)$	0.0277
H12	0.20130	0.62820	0.42520	0.0330
C13	$0.1043(5)$	$0.8746(7)$	$0.3507(4)$	0.0297
C14	$0.0820(5)$	$0.9880(8)$	$0.3217(4)$	0.0297
C15	$0.0257(5)$	$1.0637(8)$	$0.3473(4)$	0.0343
H15	0.00860	1.13710	0.32630	0.0410
C16	$-0.0050(5)$	$1.0310(9)$	$0.4038(5)$	0.0393
H16	1.04410	1.08110	0.42110	0.0470

C17	$0.0209(5)$	$0.9262(8)$	$0.4348(4)$	0.0350
H17	0.00280	0.90740	0.47490	0.0420
C18	$0.0730(4)$	$0.8492(8)$	$0.4074(4)$	0.0283
H18	0.08830	0.77470	0.42840	0.0340
C19	$0.3313(4)$	$0.7950(8)$	$0.1985(4)$	0.0247
H19A	0.28450	0.84490	0.20380	0.0300
H19B	0.37480	0.85180	0.20530	0.0300
C20	$0.1137(5)$	$0.5074(8)$	$0.1901(4)$	0.0273
H20A	0.16190	0.55130	0.19830	0.0330
H20B	0.12230	0.41500	0.19340	0.0330
C21	$0.0731(5)$	$0.9579(8)$	$0.1942(4)$	0.0310
H21A	0.07910	0.86580	0.20150	0.0370
H21B	0.01880	0.97840	0.19570	0.0370
C22	$0.3345(4)$	$0.7396(7)$	$0.1336(4)$	0.0247
C23	$0.4043(5)$	$0.7119(8)$	$0.1087(4)$	0.0350
H23	0.44830	0.73240	0.13150	0.0420
C24	$0.4120(5)$	$0.6553(9)$	$0.0518(4)$	0.0363
H24	0.46020	0.63190	0.03680	0.0430
C25	$0.3467(5)$	$0.6329(7)$	$0.0163(4)$	0.0287
H25	0.35100	0.59760	-0.02370	0.0350
C26	$0.2774(5)$	$0.6621(8)$	$0.0398(4)$	0.0320
H26	0.23370	0.64470	0.01600	0.0390
C27	$0.2695(5)$	$0.7172(7)$	$0.0982(4)$	0.0287
C28	$0.1136(4)$	$0.6465(8)$	$0.0944(4)$	0.0283
C29	$0.0855(5)$	$0.6669(8)$	$0.0338(4)$	0.0290
H29	0.10270	0.73850	0.01130	0.0350
C30	$0.0340(5)$	$0.5862(9)$	$0.0063(5)$	0.0387
H30	0.01700	0.60210	-0.03440	0.0470
C31	$0.0072(5)$	$0.4817(9)$	$0.0387(4)$	0.0350
H31	-0.02870	0.42650	0.02050	0.0420
C32	$0.0336(5)$	$0.4589(8)$	$0.0980(5)$	0.0377
H32	0.01560	0.38700	0.11970	0.0450
C33	$0.0864(5)$	$0.5395(7)$	$0.1268(4)$	0.0270
C34	$0.1056(5)$	$0.9933(8)$	$0.1307(4)$	0.0280
C35	$0.0878(5)$	$1.1096(8)$	$0.1052(5)$	0.0357
H35	0.05540	1.16500	0.12720	0.0430
C36	$0.1159(5)$	$1.1480(8)$	$0.0484(4)$	0.0343
H36	0.10440	1.22960	0.03250	0.0410
C37	$0.1614(5)$	$1.0638(9)$	$0.0153(5)$	0.0380
H37	1.08750	-0.02400	0.0460	
C38	$0.9461(8)$	$0.0396(4)$	0.0317	

H38	0.21090	0.89070	0.01670	0.0380
C39	$0.1523(5)$	$0.9072(8)$	$0.0965(4)$	0.0310
S4	$0.79017(15)$	$0.2869(2)$	$0.36527(12)$	0.0461
O7	$0.8352(6)$	$0.2201(8)$	$0.4115(4)$	0.0740
C40	$0.8550(6)$	$0.3733(11)$	$0.3203(6)$	0.0547
H40A	0.88330	0.43150	0.34670	0.0820
H40B	0.82780	0.42180	0.28890	0.0820
H40C	0.89000	0.31450	0.30020	0.0820
C41	$0.7690(6)$	$0.1752(10)$	$0.3060(5)$	0.0487
H41A	0.81380	0.12380	0.29740	0.0730
H41B	0.75390	0.22040	0.26860	0.0730
H41C	0.72790	0.11990	0.31950	0.0730
S5	$0.8299(4)$	$0.2404(5)$	$0.0827(3)$	0.0550
O8	$0.8927(9)$	$0.2416(12)$	$0.0473(7)$	0.0520
C42	$0.8237(8)$	$0.3814(14)$	$0.1288(7)$	0.0210
H42A	0.83720	0.45520	0.10380	0.0310
H42B	0.85840	0.37470	0.16370	0.0310
H42C	0.77210	0.39110	0.14410	0.0310
C43	$0.7942(15)$	$0.136(2)$	$0.1274(12)$	0.0627
H43A	0.79550	0.05310	0.10720	0.0940
H43B	0.74190	0.15860	0.13670	0.0940
H43C	0.82330	0.13250	0.16570	0.0940

Table 23. Atomic coordinates and equivalent isotropic displacement parameters for compound 257

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	0.50544(5)	0.56151(5)	0.33257(5)	0.0240
S2	0.32145(4)	0.66905(5)	0.24085(5)	0.0205
S3	$0.31328(5)$	0.43471(5)	0.27361(5)	0.0231
P1	$0.43138(5)$	0.53739(5)	0.16926 (5)	0.0186
N1	0.34332(16)	$0.56807(17)$	0.36492(16)	0.0225
C1	0.52762(19)	0.51489 (19)	0.16544(18)	0.0206
C2	0.5556(2)	0.4599(2)	0.12403(19)	0.0223
H2	0.52450	0.43340	0.09480	0.0270
C3	0.6283(2)	0.4435(2)	0.1252(2)	0.0253
H3	0.64630	0.40590	0.09700	0.0300
C4	0.6744(2)	0.4816(2)	0.1671(2)	0.0278
H4	0.72430	0.47100	0.16710	0.0330
C5	0.6472(2)	0.5361(2)	0.2095(2)	0.0266
H5	0.67890	0.56210	0.23870	0.0320
C6	0.5743(2)	0.55275 (19)	0.20958(19)	0.0221
C7	0.5456(2)	0.6087(2)	0.2589(2)	0.0262
H7A	0.50910	0.63870	0.23560	0.0310
H7B	0.58500	0.64020	0.27490	0.0310
C8	0.4261(2)	0.61155(19)	0.10748(18)	0.0206
C9	0.48160 (19)	0.62984(19)	0.0621(2)	0.0219
H9	0.52460	0.60240	0.06250	0.0260
C10	0.4755(2)	0.6872(2)	0.0164(2)	0.0238
H10	0.51380	0.69880	-0.01390	0.0290
C11	0.4128(2)	0.72723(19)	0.01585(19)	0.0220
H11	0.40770	0.76630	-0.01520	0.0260
C12	0.35742(19)	0.71004(19)	0.06071(19)	0.0211
H12	0.31470	0.73790	0.05980	0.0250
C13	0.36249(19)	0.65342(19)	0.10689(18)	0.0206
C14	0.30037(19)	0.6360(2)	0.15377(19)	0.0219
H14A	0.29240	0.58350	0.15500	0.0260
H14B	0.25610	0.65930	0.13650	0.0260
C15	0.39307(19)	0.46382(19)	0.11888(19)	0.0205
C16	0.37766(19)	0.46883(19)	0.0479(2)	0.0216
H16	0.38590	0.51270	0.02420	0.0260
C17	0.3504(2)	0.4098(2)	0.0120(2)	0.0250
H17	0.33840	0.41400	-0.03550	0.0300
C18	0.3409(2)	0.3460(2)	0.0455(2)	0.0275

H18	0.32460	0.30530	0.02050	0.0330
C19	$0.3551(2)$	$0.3400(2)$	$0.1165(2)$	0.0254
H19	0.34770	0.29550	0.13930	0.0310
C20	$0.37953(19)$	$0.39842(19)$	$0.1535(2)$	0.0219
C21	$0.3906(2)$	$0.3921(2)$	$0.2307(2)$	0.0252
H21A	0.43570	0.41640	0.24440	0.0300
H21B	0.39390	0.34090	0.24420	0.0300
C22	$0.4583(2)$	$0.6342(2)$	$0.37102(19)$	0.0246
C23	$0.4948(2)$	$0.6963(2)$	$0.3883(2)$	0.0292
H23	0.54540	0.69820	0.38220	0.0350
C24	$0.4593(2)$	$0.7562(2)$	$0.4145(2)$	0.0360
H24	0.48530	0.79850	0.42530	0.0430
C25	$0.3862(2)$	$0.7536(2)$	$0.4248(2)$	0.0350
H25	0.36140	0.79450	0.44170	0.0420
C26	$0.3487(2)$	$0.6903(2)$	$0.4102(2)$	0.0284
H26	0.29860	0.68800	0.41910	0.0340
C27	$0.3839(2)$	$0.6305(2)$	$0.38276(19)$	0.0221
C28	$0.25338(19)$	$0.62412(19)$	$0.28826(18)$	0.0198
C29	$0.1815(2)$	$0.6325(2)$	$0.2700(2)$	0.0240
H29	0.16930	0.66370	0.23300	0.0290
C30	$0.1274(2)$	$0.5961(2)$	$0.3046(2)$	0.0264
H30	0.07880	0.60150	0.29050	0.0320
C31	$0.1443(2)$	$0.5517(2)$	$0.3599(2)$	0.0262
H31	0.10760	0.52640	0.38370	0.0310
C32	$0.2153(2)$	$0.5447(2)$	$0.3801(2)$	0.0256
H32	0.22660	0.51600	0.41920	0.0310
C33	$0.2707(2)$	$0.5789(2)$	$0.34418(19)$	0.0223
C34	$0.3469(2)$	$0.4362(2)$	$0.3595(2)$	0.0246
C35	$0.3607(2)$	$0.3707(2)$	$0.3925(2)$	0.0310
H35	0.34830	0.32710	0.37010	0.0370
C36	$0.3922(2)$	$0.3686(2)$	$0.4579(2)$	0.0347
H36	0.40140	0.32390	0.47980	0.0420
C37	$0.4096(2)$	$0.4316(3)$	$0.4900(2)$	0.0342
H37	0.43280	0.43040	0.53370	0.0410
C38	$0.3938(2)$	$0.4979(2)$	$0.4592(2)$	0.0294
H38	0.40490	0.54120	0.48290	0.0350
C39	$0.36199(19)$	$0.5009(2)$	$0.3943(2)$	0.0241
C3			0	

Table 24. Atomic coordinates and equivalent isotropic displacement parameters for compound 275

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	$0.80843(3)$	$0.57753(3)$	$0.96431(3)$	0.0359
P1	0.66670	0.33330	$0.74234(5)$	0.0299
Si1	0.66670	0.33330	$1.09801(5)$	0.0283
C1	$0.80228(12)$	$0.44989(13)$	$1.15714(12)$	0.0311
C2	$0.84857(14)$	$0.43783(15)$	$1.26263(12)$	0.0381
H2	0.81430	0.36740	1.30110	0.0460
C3	$0.94318(14)$	$0.52636(16)$	$1.31190(14)$	0.0444
H3	0.97260	0.51630	1.38370	0.0530
C4	$0.99453(14)$	$0.62881(16)$	$1.25698(15)$	0.0474
H4	1.05850	0.68990	1.29160	0.0570
C5	$0.95270(14)$	$0.64269(15)$	$1.15107(14)$	0.0424
H5	0.98910	0.71300	1.11230	0.0510
C6	$0.85799(13)$	$0.55447(13)$	$1.10147(12)$	0.0327
C7	$0.87657(13)$	$0.52735(14)$	$0.86168(12)$	0.0346
H7A	0.95820	0.56780	0.87530	0.0410
H7B	0.84780	0.44660	0.87400	0.0410
C8	$0.85112(13)$	$0.54825(13)$	$0.73686(12)$	0.0339
C9	$0.92172(14)$	$0.65249(15)$	$0.68636(15)$	0.0435
H9	0.98490	0.70610	0.72940	0.0520
C10	$0.90118(15)$	$0.67916(15)$	$0.57415(15)$	0.0462
H10	0.95000	0.75040	0.54090	0.0550
C11	$0.80962(14)$	$0.60162(14)$	$0.51160(13)$	0.0406
H11	0.79500	0.61940	0.43500	0.0490
C12	$0.73912(14)$	$0.49821(14)$	$0.56013(12)$	0.0363
H12	0.67580	0.44570	0.51650	0.0440
C13	$0.75876(13)$	$0.46903(13)$	$0.67219(12)$	0.0311
H1	0.66670	0.33330	$0.981(2)$	0.0210

Table 25. Atomic coordinates and equivalent isotropic displacement parameters for compound $\mathbf{2 7 7} \cdot \mathbf{0 . 1 2 5}\left(\mathbf{C H}_{2} \mathbf{C l}_{2}\right)$

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	0.3356(3)	0.1769(3)	0.7932(3)	0.0454
S2	0.6300(3)	0.1611(3)	0.5146(3)	0.0433
S3	0.3412(3)	0.4593(3)	0.5064(3)	0.0442
P1	0.5231(3)	0.3407(3)	0.6828(3)	0.0365
Sil	0.3462(4)	0.1845(4)	0.5365(4)	0.0469
C1	0.4456(12)	0.3500(13)	0.8284(12)	0.0407
C2	0.4170 (14)	0.4496(13)	0.8579(13)	0.0465
H2	0.44890	0.51140	0.80620	0.0550
C3	0.3439(15)	0.4571(14)	0.9604(14)	0.0515
H3	0.32700	0.52510	0.97920	0.0620
C4	0.2920(14)	0.3734(16)	1.0401(13)	0.0529
H4	0.23940	0.38300	1.11110	0.0630
C5	0.3215(13)	0.2711(14)	1.0099(12)	0.0481
H5	0.28850	0.21030	1.06240	0.0570
C6	0.3975(13)	0.2591(12)	0.9057(12)	0.0377
C7	0.4278(16)	0.1481(13)	0.8789(14)	0.0506
H7A	0.41260	0.08410	0.94950	0.0610
H7B	0.51470	0.12130	0.83780	0.0610
C8	0.6826(13)	0.2530(12)	0.6826(12)	0.0399
C9	0.7272(15)	0.2152(13)	0.7737(12)	0.0466
H9	0.67680	0.24180	0.83790	0.0560
C10	0.8433(15)	0.1402(15)	0.7694(13)	0.0514
H10	0.87240	0.11620	0.83120	0.0610
C11	0.9191(13)	0.0983(12)	0.6801(14)	0.0459
H11	0.99890	0.04470	0.67990	0.0550
C12	0.8751(12)	0.1372(11)	0.5884(13)	0.0374
H12	0.92660	0.10970	0.52490	0.0450
C13	0.7600(12)	0.2136(11)	0.5882(11)	0.0356
C14	0.7200(14)	0.2492(15)	0.4866(13)	0.0479
H14A	0.79180	0.23630	0.42140	0.0580
H14B	0.67110	0.33470	0.46840	0.0580
C15	0.5280(13)	0.4917(12)	0.6045(12)	0.0411
C16	0.6300(13)	0.5233(13)	0.5752(13)	0.0454
H16	0.69620	0.46790	0.60460	0.0540
C17	0.6338(15)	0.6340(14)	0.5043(15)	0.0564
H17	0.70220	0.65460	0.48700	0.0680
C18	0.5419(16)	0.7149(13)	0.4582(13)	0.0534

H18	0.54700	0.79020	0.40820	0.0640
C19	$0.4384(15)$	$0.6851(12)$	$0.4860(13)$	0.0477
H19	0.37380	0.74040	0.45430	0.0570
C20	$0.4321(12)$	$0.5745(12)$	$0.5599(11)$	0.0360
C21	$0.3201(14)$	$0.5442(15)$	$0.5943(17)$	0.0568
H21A	0.24980	0.61810	0.58560	0.0690
H21B	0.30350	0.49630	0.67420	0.0690
C22	$0.4131(13)$	$0.0462(13)$	$0.7514(14)$	0.0437
C23	$0.4625(15)$	$-0.0617(14)$	$0.8211(16)$	0.0593
H23	0.44940	-0.06800	0.89640	0.0710
C24	$0.5303(17)$	$-0.1607(16)$	$0.7854(18)$	0.0693
H24	0.57100	-0.23160	0.83330	0.0830
C25	$0.5405(15)$	$-0.1594(16)$	$0.6827(19)$	0.0656
H25	0.58400	-0.22950	0.66000	0.0780
C26	$0.4847(14)$	$-0.0512(15)$	$0.6106(16)$	0.0570
H26	0.49120	-0.04970	0.53890	0.0680
C27	$0.4185(13)$	$0.0567(13)$	$0.6418(14)$	0.0479
C28	$0.5759(14)$	$0.2376(12)$	$0.3942(13)$	0.0407
C29	$0.6451(15)$	$0.2834(14)$	$0.2914(14)$	0.0508
H29	0.72560	0.27350	0.28270	0.0610
C30	$0.6009(19)$	$0.3434(15)$	$0.2004(15)$	0.0629
H30	0.64960	0.37750	0.13000	0.0760
C31	$0.4855(17)$	$0.3547(14)$	$0.2101(16)$	0.0602
H31	0.45450	0.39790	0.14700	0.0730
C32	$0.4169(15)$	$0.3038(13)$	$0.3103(15)$	0.0499
H32	0.33880	0.31080	0.31490	0.0600
C33	$0.4574(14)$	$0.2396(13)$	$0.4098(14)$	0.0468
C34	$0.2087(12)$	$0.4188(12)$	$0.5805(12)$	0.0374
C35	$0.0976(14)$	$0.4991(15)$	$0.6166(15)$	0.0557
H35	0.09190	0.57870	0.59970	0.0670
C36	$-0.0022(15)$	$0.4690(16)$	$0.6745(15)$	0.0592
H36	-0.07490	0.52510	0.70420	0.0720
C37	$-0.0021(14)$	$0.3601(16)$	$0.6919(14)$	0.0548
H37	-0.07470	0.34120	0.73040	0.0650
C38	$0.1046(15)$	$0.2772(14)$	$0.6530(14)$	0.0507
H38	0.10530	0.20040	0.66610	0.0610
C39	$0.2153(13)$	$0.3048(13)$	$0.5925(13)$	0.0460
O40	$0.2756(10)$	$0.1375(10)$	$0.4990(11)$	0.0657
C41	$0.0602(17)$	$0.4373(17)$	0.0687	
H41A	-0.02030	0.48920	0.0820	
H41B	0.05560	0.38830	0.0820	

C42	$0.2344(19)$	$0.101(2)$	$0.3664(19)$	0.0868
H42A	0.26580	0.04620	0.32260	0.1300
H42B	0.23180	0.18090	0.31540	0.1300
H42C	0.15260	0.10230	0.41490	0.1300
S4	$0.1734(3)$	$0.6568(3)$	$0.1562(3)$	0.0316
S5	$-0.0090(3)$	$0.9934(3)$	$0.0019(3)$	0.0320
S6	$-0.1676(3)$	$0.8199(3)$	$0.3255(3)$	0.0329
P2	$0.0820(3)$	$0.9083(3)$	$0.2294(3)$	0.0274
Si2	$-0.0855(3)$	$0.7458(3)$	$0.0814(3)$	0.0270
C43	$0.2488(11)$	$0.8438(11)$	$0.2051(10)$	0.0286
C44	$0.3203(12)$	$0.9133(12)$	$0.1678(11)$	0.0360
H44	0.28420	0.99690	0.15420	0.0430
C45	$0.4464(12)$	$0.8592(12)$	$0.1502(12)$	0.0401
H45	0.49560	0.90590	0.12620	0.0480
C46	$0.4977(14)$	$0.7389(13)$	$0.1680(12)$	0.0446
H46	0.58280	0.70220	0.15480	0.0540
C47	$0.4257(13)$	$0.6704(12)$	$0.2050(12)$	0.0399
H47	0.46190	0.58680	0.21860	0.0480
C48	$0.3023(11)$	$0.7222(11)$	$0.2224(10)$	0.0310
C49	$0.2269(12)$	$0.6422(11)$	$0.2666(11)$	0.0335
H49A	0.15660	0.66400	0.33010	0.0410
H49B	0.27650	0.55850	0.29460	0.0410
C50	$0.0565(10)$	$1.0683(10)$	$0.1709(10)$	0.0261
C51	$0.0186(12)$	$1.1410(12)$	$0.2360(12)$	0.0359
H51	0.00980	1.10650	0.31430	0.0430
C52	$-0.0069(12)$	$1.2631(11)$	$0.1897(12)$	0.0381
H52	-0.02910	1.31090	0.23520	0.0450
C53	$0.0004(12)$	$1.3144(12)$	$0.0772(13)$	0.0408
H53	-0.02040	1.39810	0.04470	0.0490
C54	$0.0384(13)$	$1.2417(12)$	$0.0127(12)$	0.0402
H54	0.04630	1.27660	-0.06530	0.0480
C55	$0.0651(12)$	$1.1217(11)$	$0.0567(11)$	0.0310
C56	$0.1080(13)$	$1.0482(12)$	$-0.0220(11)$	0.0359
H56A	0.18200	0.98020	-0.00900	0.0420
H56B	0.12830	1.09790	-0.10090	0.0420
C57	$0.0282(12)$	$0.8858(10)$	$0.3815(10)$	0.0283
C58	$0.1042(14)$	$0.8551(11)$	$0.4438(12)$	0.0401
H58	0.18680	0.84900	0.40690	0.0480
C59	$0.0601(14)$	$0.8330(12)$	$0.5613(12)$	0.0430
C60	0.81490	0.60330	0.0520	
	$0.8379(12)$	$0.6139(12)$	0.0451	
H59				

H60	-0.08770	0.81960	0.69330	0.0550
C61	-0.1349(14)	0.8695(12)	0.5519(11)	0.0386
H61	-0.21710	0.87410	0.58890	0.0470
C62	-0.0918(12)	0.8941(11)	0.4368(11)	0.0342
C63	-0.1827(12)	0.9358(12)	0.3741(12)	0.0358
H63A	-0.17120	1.00570	0.30860	0.0430
H63B	-0.26550	0.96110	0.42400	0.0430
C64	0.0672(12)	0.5809(10)	0.2358(11)	0.0299
C65	0.0822(12)	0.4856(11)	0.3333(11)	0.0338
H65	0.15110	0.46220	0.35650	0.0410
C66	0.0038(13)	0.4264(12)	0.3951(12)	0.0388
H66	0.01750	0.36230	0.46060	0.0460
C67	-0.0992(13)	0.4593(11)	0.3626(11)	0.0356
H67	-0.15600	0.41840	0.40540	0.0430
C68	-0.1151(12)	0.5525(11)	0.2670(11)	0.0324
H68	-0.18400	0.57410	0.24450	0.0390
C69	-0.0357(12)	0.6172(10)	0.2012(10)	0.0290
C70	0.0715(12)	0.8905(12)	-0.0777(10)	0.0314
C71	$0.1683(12)$	0.9063(13)	-0.1724(11)	0.0378
H71	0.19110	0.97350	-0.19490	0.0460
C72	0.2316(13)	0.8283(14)	-0.2342(12)	0.0418
H72	0.29820	0.84030	-0.29800	0.0510
C73	0.1973(13)	0.7323(13)	-0.2026(12)	0.0427
H73	0.24040	0.67700	-0.24460	0.0500
C74	0.1011(12)	0.7161(12)	-0.1108(11)	0.0374
H74	0.07750	0.65030	-0.09210	0.0440
C75	0.0368(11)	0.7904(11)	-0.0442(10)	0.0310
C76	-0.2504(12)	0.9068(11)	0.2228(11)	0.0305
C77	-0.3520(12)	1.0069(12)	0.2411(12)	0.0386
H77	-0.37780	1.02490	0.30900	0.0460
C78	-0.4153(13)	1.0796(12)	0.1630(13)	0.0428
H78	-0.48570	1.14560	0.17750	0.0510
C79	-0.3741(13)	1.0545(12)	0.0632(13)	0.0414
H79	-0.41350	1.10630	0.00630	0.0500
C80	-0.2758(13)	0.9545(11)	0.0456(12)	0.0368
H80	-0.25080	0.93760	-0.02280	0.0440
C81	-0.2112(11)	0.8763(10)	$0.1257(10)$	0.0274
O82	-0.1428(8)	0.6864(7)	0.0394(7)	0.0319
C83	-0.1867(13)	0.7321(12)	-0.0527(12)	0.0375
H83A	-0.14410	0.78630	-0.11470	0.0460
H83B	-0.27400	0.77820	-0.03210	0.0460

C84	$-0.1682(17)$	$0.6352(14)$	$-0.0899(15)$	0.0587
H84A	-0.19880	0.66850	-0.15500	0.0880
H84B	-0.21170	0.58250	-0.02880	0.0880
H84C	-0.08160	0.59000	-0.11070	0.0880
C85	$0.656(6)$	$0.418(5)$	$0.907(7)$	0.0776
H85A	0.68000	0.43680	0.82400	0.0920
H85B	0.60030	0.37190	0.93780	0.0920
Cl1	$0.7808(15)$	$0.3274(19)$	$0.9492(14)$	0.0681
C12	$0.575(2)$	$0.5469(14)$	$0.9374(18)$	0.0764

Table 26. Atomic coordinates and equivalent isotropic displacement parameters for compound $278 \cdot \mathbf{0 . 5 (\mathbf { C } _ { 6 } \mathbf { H } _ { 6 }) \cdot \mathbf { C H C l } _ { 3 }}$

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	0.80616(10)	0.23620(10)	0.52699(11)	0.0234
Si1	0.66670	0.33330	0.3847(2)	0.0195
H1A	0.66670	0.33330	0.496(9)	0.0230
Si2	0.66670	0.33330	0.7738(2)	0.0211
H2A	0.66670	0.33330	0.661(9)	0.0250
C1	0.8027(4)	0.3541(4)	0.3308(4)	0.0211
C2	0.8511(4)	0.4129(4)	0.2282(5)	0.0262
H2	0.81610	0.44590	0.18690	0.0310
C3	0.9490(4)	0.4247(4)	0.1845(5)	0.0287
H3	0.98010	0.46470	0.11420	0.0340
C4	1.0003(4)	0.3773(4)	0.2448(5)	0.0291
H4	1.06660	0.38390	0.21490	0.0350
C5	0.9564(4)	0.3209(4)	0.3475(5)	0.0260
H5	0.99310	0.28970	0.38890	0.0310
C6	0.8578(4)	0.3093(4)	0.3917(4)	0.0214
C7	0.8775(4)	0.3503(4)	0.6316(4)	0.0234
H7A	0.95760	0.39020	0.61520	0.0280
H7B	0.85010	0.40280	0.62320	0.0280
C8	0.8564(4)	0.3042(4)	0.7561(5)	0.0241
C9	0.9274(4)	0.2697(4)	0.8009(5)	0.0302
H9	0.98540	0.27520	0.75300	0.0360
C10	$0.9146(5)$	0.2281(5)	0.9132(5)	0.0320
H10	0.96480	0.20710	0.94260	0.0390
C11	0.8287(5)	0.2169(4)	0.9831(5)	0.0297
H11	0.81900	0.18750	1.06010	0.0360
C12	0.7570(4)	0.2492(4)	0.9387(5)	0.0258
H12	0.69790	0.24130	0.98650	0.0310
C13	0.7691(4)	0.2935(4)	0.8253(4)	0.0224
C14	0.9494(8)	0.8858(7)	0.5025(12)	0.0868
H14	0.91500	0.80790	0.50940	0.1050
C15	1.00000	1.00000	0.772(2)	0.0931
H15	1.00000	1.00000	0.68460	0.1120
Cl1	0.86847(19)	0.97121(18)	0.8153(3)	0.0894

Table 27. Atomic coordinates and equivalent isotropic displacement parameters for compound $291 \cdot \mathbf{C}_{6} \mathbf{H}_{\mathbf{6}}$

Atom	X	Y	Z	$U_{\text {equiv }}$
S1	$0.20718(3)$	$0.10048(2)$	$0.11729(2)$	0.0187
S2	$-0.04062(3)$	$0.26234(3)$	$0.40241(3)$	0.0224
S3	$0.01252(3)$	$0.40940(2)$	$0.11548(2)$	0.0183
P1	$0.23372(3)$	$0.32817(3)$	$0.22917(2)$	0.0165
Si1	$-0.11931(3)$	$0.18920(3)$	$0.19208(3)$	0.0182
C1	$-0.03091(13)$	$0.08391(10)$	$0.25135(10)$	0.0183
C2	$-0.10937(14)$	$0.03879(11)$	$0.33662(11)$	0.0221
H2	-0.19760	0.05940	0.35450	0.0260
C3	$-0.06331(15)$	$-0.03481(11)$	$0.39602(11)$	0.0247
H3	-0.11910	-0.06250	0.45430	0.0300
C4	$0.06487(15)$	$-0.06719(11)$	$0.36919(11)$	0.0242
H4	0.09770	-0.11670	0.40970	0.0290
C5	$0.14546(14)$	$-0.02735(10)$	$0.28314(11)$	0.0214
H5	0.23320	-0.05190	0.26360	0.0260
C6	$0.09934(13)$	$0.04857(10)$	$0.22459(10)$	0.0183
C7	$-0.19454(13)$	$0.30617(11)$	$0.28162(11)$	0.0224
C8	$-0.29357(15)$	$0.36884(12)$	$0.25864(13)$	0.0317
H8	-0.31820	0.34750	0.20410	0.0380
C9	$-0.35723(17)$	$0.46081(14)$	$0.31226(16)$	0.0443
H9	-0.42360	0.50180	0.29420	0.0530
C10	$-0.32256(18)$	$0.49194(14)$	$0.39247(16)$	0.0461
H10	-0.36470	0.55500	0.42950	0.0550
C11	$-0.22661(16)$	$0.43131(13)$	$0.41873(13)$	0.0350
H11	-0.20420	0.45290	0.47450	0.0420
C12	$-0.16217(13)$	$0.33904(11)$	$0.36476(11)$	0.0236
C13	$-0.02541(13)$	$0.22235(10)$	$0.05704(11)$	0.0192
C14	$-0.01093(14)$	$0.14843(11)$	$-0.01954(12)$	0.0243
H14	-0.05540	0.09220	-0.00090	0.0290
C15	$0.06564(15)$	$0.15401(11)$	$-0.12121(12)$	0.0269
H15	0.07410	0.10210	-0.17080	0.0320
C16	$0.12957(14)$	$0.23646(12)$	$-0.14929(11)$	0.0268
H16	0.18430	0.24010	-0.21820	0.0320
C17	$0.11398(13)$	$0.31358(11)$	$-0.07734(11)$	0.0226
H17	0.15600	0.37100	-0.09790	0.0270
C18	$0.03702(12)$	$0.30773(10)$	$0.02512(10)$	0.0186
C19	$-0.25455(14)$	$0.13397(12)$	$0.17971(13)$	0.0281
H19A	-0.29470	0.17930	0.13750	0.0420

H19B	-0.31570	0.12880	0.24850	0.0420
H19C	-0.22360	0.06500	0.14670	0.0420
C20	$0.38599(12)$	$0.28194(11)$	$0.13097(10)$	0.0184
C21	$0.46391(13)$	$0.34868(12)$	$0.07364(11)$	0.0243
H21	0.44250	0.42070	0.09040	0.0290
C22	$0.57234(14)$	$0.31152(12)$	$-0.00763(12)$	0.0296
H22	0.62270	0.35830	-0.04760	0.0360
C23	$0.60684(14)$	$0.20650(13)$	$-0.03024(12)$	0.0290
H23	0.68180	0.18080	-0.08490	0.0350
C24	$0.53169(13)$	$0.13891(12)$	$0.02710(11)$	0.0236
H24	0.55670	0.06670	0.01210	0.0280
C25	$0.41978(12)$	$0.17503(11)$	$0.10653(10)$	0.0187
C26	$0.33943(13)$	$0.09876(11)$	$0.16493(10)$	0.0194
H26A	0.30730	0.11710	0.23970	0.0230
H26B	0.39030	0.02840	0.15540	0.0230
C27	$0.26403(13)$	$0.30012(10)$	$0.35135(10)$	0.0204
C28	$0.38274(15)$	$0.26012(12)$	$0.35579(11)$	0.0270
H28	0.45320	0.25270	0.29410	0.0320
C29	$0.39956(17)$	$0.23093(13)$	$0.44925(13)$	0.0351
H29	0.48100	0.20360	0.45130	0.0420
C30	$0.29736(18)$	$0.24181(14)$	$0.53921(12)$	0.0371
H30	0.30830	0.22060	0.60300	0.0450
C31	$0.17929(16)$	$0.28356(13)$	$0.53641(11)$	0.0314
H31	0.10990	0.29210	0.59890	0.0380
C32	$0.15985(14)$	$0.31352(11)$	$0.44339(11)$	0.0226
C33	$0.03022(14)$	$0.36073(11)$	$0.44336(11)$	0.0242
H33A	0.03540	0.41930	0.39550	0.0290
H33B	-0.02260	0.38760	0.51360	0.0290
C34	$0.21962(12)$	$0.46955(10)$	$0.22467(10)$	0.0182
C35	$0.23700(13)$	$0.52871(11)$	$0.29990(10)$	0.0217
H35	0.27150	0.49510	0.34910	0.0260
C36	$0.20452(13)$	$0.63617(11)$	$0.30377(11)$	0.0247
H36	0.21490	0.67520	0.35640	0.0300
C37	$0.15715(13)$	$0.68596(11)$	$0.23087(11)$	0.0240
H37	0.13300	0.75910	0.23430	0.0290
C38	$0.14506(12)$	$0.62861(11)$	$0.15280(11)$	0.0215
H38	0.11610	0.66330	0.10110	0.0260
C39	$0.17464(12)$	$0.52106(10)$	$0.14902(10)$	0.0183
C40	$0.15792(13)$	$0.46203(11)$	$0.06356(10)$	0.0195
H40A	0.40510	0.03650	0.0230	
H40B	0.50870	0.00610	0.0230	
	0.23000			
H3			0	0

C41	$0.43867(18)$	$0.10423(18)$	$0.76166(16)$	0.0488
H41	0.37750	0.08030	0.81900	0.0590
C42	$0.46302(19)$	$0.2029(2)$	$0.7629(2)$	0.0666
H42	0.41910	0.24740	0.82160	0.0800
C43	$0.5515(2)$	$0.23751(18)$	$0.6787(3)$	0.0706
H43	0.56670	0.30630	0.67930	0.0850
C44	$0.61805(17)$	$0.17256(16)$	$0.59335(18)$	0.0477
H44	0.67960	0.19590	0.53590	0.0570
C45	$0.59337(16)$	$0.07371(15)$	$0.59347(14)$	0.0389
H45	0.63840	0.02810	0.53590	0.0470
C46	$0.50361(17)$	$0.04081(14)$	$0.67681(15)$	0.0408
H46	0.48630	-0.02720	0.67550	0.0490

References

[1] Pellegrin, M. M. Recl. Trav. Chim. Pays-Bas. 1899, 18, 457-465.
[2] Brown C. J.; Farthing, A. C. Nature 1949, 164, 915-916.
[3] Cram, D. J.; Steinberg, H. J. Am. Chem. Soc. 1951, 73, 5691-5704.
[4] Smith, B. H. Bridged Aromatic Compounds, Academic Press, New York, 1964.
[5] Keehn, P. M.; Rosenfeld, S. M. Cyclophanes, Academic Press, New York, 1983.
[6] Diederich, F. Cyclophanes, Royal Society of Chemistry, Cambridge, 1991.
[7] Vögtle, F. Cyclophane Chemistry, Wiley-VCH, New York, 1993.
[8] Gleiter, R.; Hopf, H. Modern Cyclophane Chemistry, Wiley-VCH, Weinheim, 2004.
[9] Gulder, T.; Baran, P. S. Nat. Prod. Rep., 2012, 29, 899-934.
[10] Pascal, R. A., Jr. Eur. J. Org. Chem. 2004, 3763-3771.
[11] Boekelheide, V.; Anderson, P. H.; Hylton, T. A. J. Am. Chem.

Soc. 1974, 96, 1558-1564.
[12] Hanson, A. W. Acta Crystallogr., Sect. B 1971, 27, 197-202.
[13] Ricci, A.; Danieli, R.; Rossini, S. J. Chem. Soc., Perkin Trans. 1 1976, 1691-1693.
[14] Vögtle, F.; Rossa, L. Angew. Chem. Int. Ed. Eng. 1979, 18, 515-529.
[15] Pascal, R. A., Jr.; Grossman, B.; Van Engen, D. J. Am. Chem. Soc. 1987, 109, 6878-6880.
[16] Vinod, T. K.; Hart, H. J. Am. Chem. Soc. 1988, 110, 6574-6575.
[17] Vinod, T. K.; Hart, H. J. Org. Chem. 1990, 55, 881-890.
[18] Pascal, R. A., Jr.; Winans, C. G.; Van Engen, D. J. Am. Chem.
Soc. 1989, 111, 3007-3010
[19] Lemmerz, L.; Nieger, M.; Vögtle, F. J. Chem. Soc., Chem. Commun. 1993, 14, 1168-1170.
[20] Vögtle, F.; Dohm, J.; Rissanen, K. Angew. Chem. Int. Ed. Eng. 1990, 29, 902-904.
[21] Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C.; Tang, K.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 658-665 .
[22] Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
[23] Pascal, R. A., Jr.; West, A. P., Jr.; Van Engen, D. J. Am. Chem.
Soc. 1990, 112, 6406-6407.
[24] L'Esperance, R. P.; West, A. P., Jr.; Van Engen, D.; Pascal, R. A., Jr. J. Am. Chem.
Soc. 1991, 113, 2672-2676.
[25] West, A. P., Jr.; Smyth, N.; Kraml, C. M.; Ho, D. M.; Pascal, R. A., Jr. J. Org. Chem. 1993, 58, 3502-3506.
[26] Sathyamoorthi, S; Mague, J. T.; Pascal, R. A., Jr. Org. Lett. 2012, 13, 3427-3429.
[27] Boekelheide, V.; Galuszko, K.; Szeto, K. S.; J. Am. Chem.
Soc. 1974, 96, 1578-1581.
[28] Weaver, L. H.; Matthews, B. W. J. Am. Chem. Soc. 1974, 96, 1581-1584.
[29] Dell, S.; Vogelaar, N. J.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem.
Soc. 1998, 120, 6421-6422.
[30] Dell, S.; Ho, D. M.; Pascal, R. A., Jr. J. Org. Chem. 1999, 64, 5626-5633.
[31] Boekelheide, V.; Anderson, P. H. J. Org. Chem. 1973, 38, 3928-3931.
[32] Hanson, A. W. Acta Crystallogr., Sect. B 1975, B31, 2352-2354.
[33] Song, Q.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2005, 127, 11246-11247.
[34] Qin, Q.; Mague, J. T.; Pascal, R. A., Jr. Org. Lett. 2010, 12, 928-930.
[35] Wasserman, H. H.; Keehn, P. M. Tetrahedron Lett. 1969, 38, 3227-3230.
[36] Corson, M.; Foxman, B. M.; Keehn, P. M. Tetrahedron 1978, 34 , 1641-1649
[37] Bull, J. A.; Hutchings, M. G.; Quayle, P. Angew. Chem. Int. Ed. 2007, 46, 1869-1872.
[38] Review: Alder, R. W.; East, S. P. Chem. Rev. 1996, 96, 2097-2111.
[39] Simmons, H. E.; Park, C. H. J. Am. Chem. Soc. 1968, 90, 2428.
[40] Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2429.
[41] Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2431
[42] Gassman, P. G.; Thummel, R. P. J. Am. Chem. Soc. 1972, 94, 7183.
[43] Gassman, P. G.; Korn, S. R.; Thummel, R. P. J. Am. Chem. Soc. 1974, 96, 6948.
[44] Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1972, 94, 7184.
[45] Cheney, J.; Kintzinger, J. P.; Lehn, J. M. Nouu. J. Chim. 2, 1978, 411-418.
[46] Knochel, A.; Breugge, H. J.; Carboo, K.; von Deuten, K.; Kopf, J.; Dressig, W. J. Am. Chem. Soc. 1986, 108, 107.
[47] Metz, B.; Moras, D.; Weiss, R. J. Chem. Soc., Perkin Trans. 2: Physical Organic Chemistry 1976, 4, 423.
[48] Alder, R. W.; Sessions, R. B. J. Am. Chem. Soc. 1979, 101, 3651.
[49] Alder, R.W.; Casson, A.; Sessions, R. B. J. Am. Chem. Soc. 1979, 101, 3652.
[50] Alder, R. W.; Orpen, A. G.; Sessions, R. B. J. Chem. Soc., Chem. Commun. 1983, 999.
[51] Alder, R. W.; Goode, N. G.; King, T. W.; Mellor, J. M.; Miller, B. W. J. Chem. Soc.,

Chem. Commun. 1976, 173.
[52] Destro, R.; Pilati, T.; Simonetta, M.; Vogel, E. J. Am. Chem. Soc. 1985, 107, 3192.
[53] Gerson, F.; Gescheidt, G.; Buser, U.; Vogel, E.; Lex, J.; Zehnder, M.; Riesen, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 902.
[54] Legler, L. Ber. Dtsch. Chem. Ges. 1885, 18, 3343.
[55] Schaefer, W. P.; Fourkas, J. T.; Tiemann, B. G. J. Am. Chem. Soc. 1985, 107, 2461.
[56] Neugebauer, F. A.; Kuhnhäuser, S. Angew. Chem., Int. Ed. Engl. 1985, 24, 596.
[57] Review: Bauer, I.; Habicher, W. D. Collect. Czech. Chem. Commun. 2004, 69, 1195-1230.
[58] Alder, R. W.; Ellis, D. D.; Orpen, A. G.; Taylor, P. N. Chem. Commun. 1996, 539.
[59] Alder, R. W.; Ellis, D. D.; Gleiter, R.; Harris, C. J.; Lange, H.; Orpen, A. G.; Read, D.; Taylor, P. N. J. Chem. Soc., Perkin Trans. 1 1998,1657-1668.
[60] R. W. Alder and D. Read, Angew. Chem., Int. Ed. 2000, 39, 2879.
[61] Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D.; Oliva, J. M. J. Chem. Soc., Perkin Trans. 2 2001, 282-287.
[62] Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D. J. Chem. Soc., Perkin Trans. 2 2001, 288-295.
[63] Bauer, I.; Rademacher, O.; Gruner, M.; Habicher, W. D. Chem. Eur. J. 2000, 6, 3043.
[64] Bauer, I.; Frohlich, R.; Ziganshina, A.; Prosvirkin A., Gruner, M.; Kazakova, E. Kh.;
Habicher, W. D. Chem. Eur. J. 2002, 8, 5622.
[65] Pascal, R. A., Jr.; West, A. P., Jr.; Van Engen, D. J. Am. Chem. Soc. 1990, 112, 6406-6407.
[66] West, A. P., Jr.; Smyth, N.; Kraml, C. M.; Ho, D. M.; Pascal, R. A., Jr. J. Org. Chem.

1993, 58, 3502-3506.
[67] Chen, Y. T.; Baldridge, K. K.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 1999, 121, 12082-12087.
[68] Letsinger, R. L.; Nazy, J. R.; Hussey, A. S. J. Org. Chem. 1958, 23, 1806-1807. [69] Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
[70] L'Esperance, R. P.; West, A. P., Jr.; Van Engen, D.; Pascal, R. A., Jr. J. Am. Chem. Soc. 1991, 113, 2672-2676.
[71] Pascal, R. A., Jr. J. Phys. Chem. A 2001, 105, 9040-9048.
[72] Kurland, R. J.; Rubin, M. B.; Wise, W. B. J. Chem. Phys. 1964, 40, 2426-2427.
[73] Sandstrom, J. Dynamic NMR Spectroscopy; Academic: New York, 1982; pp 77-123.
[74] Trapp, O. Chirality 2005, 18, 489-497.
[75] Churchill, M. R. Inorg. Chem. 1973, 12, 1213-1214.
[76] Sathyamoorthi, S; Mague, J. T.; Pascal, R. A., Jr. Org. Lett. 2012, 13, 3427-3429.
[77] Hellwinkel, D.; Melan, M.; Degel, C. R. Tetrahedron 1973, 29, 1895-1907.
[78] Lukevics, E.; Pudova, O.; Sturkovich, R. Molecular Structure of Organosilicon Compounds; Ellis Horwood: Chichester, U.K., 1989; p12.
[79] Pascal, R. A., Jr. J. Phys. Chem. A 2001, 105, 9040-9048.
[80] Lemmerz, R.; Nieger, M.; Vögtle, F. Chem. Ber 1994, 127, 1147-1156.
[81] Ermer, O.; Mason, S. A.; Anet, F. A. L.; Miura, S. S. J. Am. Chem. Soc. 1985, 107, 2330-2334.
[82] Magill, A. M.; McGuinness, D. S.; Cavell, K. J. et al. Journal of Organometallic Chemistry 2001, 617-618, 546-560.
[83] Strazzolini, P.; Verardo, G.; Giumanini, A. J. Org. Chem. 1988, 53, 3321-3325.
[84] Jurok, R.; Cibulka, R.; Dvorakova, H.; Hampl, F.; Hodacova, J. European Journal of Organic Chemistry 2010, 27, 5217-5224.
[85] Bailey, R. J.; Card, P. J.; Shechter H. J. Am. Chem. Soc. 1983, 105, 6096-6103.

[^0]:

[^1]: | 10 | 1 | |
 | :--- |
 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 |

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \text { f1 }\end{array}$

[^9]:

[^10]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

[^11]:

[^12]:

[^13]:

[^14]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$

[^15]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

