


Abstract

The focus of this research has been devoted to study the interaction between

two or more self-propelled toroidal swimmers in Stokes flow by applying the method

of regularized Stokeslets and also study the e↵ect of a nearby wall to the movement

of a helical ring by using the method of regurlarized Stokeslets with images. In the

study of the interaction between two or more toroidal swimmers, we interpret these

as three-dimensional, zero Reynolds number analogues of finite vortex dipoles in an

ideal fluid. Then, we examine the stability of relative equilibria that can form for

these swimmers when they are initially placed in tandem or abreast. In addition,

we examine the dynamics of the torus when a spherical cell body is placed at its

center. This gives us an insight into the mechanical role of the transverse flagellum of

dinoflagellates. Moreover, we show that the torus with a sphere moves more e�ciently

than one without. Lastly, we model the transverse flagellum of a dinoflagellate as a

helical ring and study the e↵ect of a nearby wall on its movement. The numerical

results show that the wall ba✏es the movement of the helical ring, which is consistent

with the phenomenon of sperm accumulation near surfaces.
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Chapter 1

Introduction

Plankton are divided into three functional groups, phytoplankton, zooplank-

ton and bacterioplankton. These microorganisms move around due to both their

self motilities and the ocean current, and they form an essential part of the oceanic

ecosystem. They provide a crucial source of food to many large aquatic animals.

However, the bloom of some microorganisms in the ocean may be harmful to the

oceanic ecosystem because of toxin production, which kills marine life and also could

be passed on to humans who consume them. Among the plankton, there is one spe-

cial type of phytoplankton called dinoflagellates, which are unicellular micoorganisms

notorious for causing the “red tide” phenomenon in coastal region of the ocean.

Dinoflagellates [1–7] swim due to two flagella, a transverse flagellum and a

longitudinal flagellum. The transverse flagellum emanates from the cell body’s mid-

section, and wraps around the cell like a belt inside a furrow on the body. It beats

counterclockwise when seen from the cell apex, which rotates the cell body but also

acts as a forward-propelling device [3, 6, 7]. The longitudinal flagellum trails behind

the cell body, much like a sperm flagellum. The longitudinal flagellum beats sinu-

soidally and propels the body forward, but also behaves as a rudder [6] to steer the

direction of the dinoflagellate. Although it was observed that dinoflagellates move up-
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wards without a longitudinal flagellum, Gaines & Taylor in [3], Cachon et al. in [4],

and Fenchel in [5] still asserted that the tranverse flagellum only produces torque.

Miyasaka et al. in [6] used resistive force theory and found that ‘The transverse

flagellum works as a propelling device that provides the main driving force or thrust

to move the cell along the longitudinal axis of its helical swimming path’. Recent

research [7] examined the motility of a helical ring as a model of a dinoflagellate

transverse flagellum, and suggested that an even simpler model would be the rotating

torus. This simplication can be easily understood from the fact that as the number

of pitches of the helical ring increases, the helical ring would be more like a torus.

Therefore, the simpler model, a torus whose surface is rotating, will be of interest

in analyzing the function of the transverse flagellum of dinoflagellate, along with its

hydrodynamical interaction of a pair of dinoflagellates.

The cross-sectional rings of a torus are centered about a circle of larger radius.

We imagine that each cross section is rotating along the centerline circle at constant

angular velocity. G. I. Taylor proposed this mechanism as an idealized non-reciprocal

swimmer in Stokes flow [8]. He described this possibility as a rubber ring threaded

on a solid cylinder. Purcell [9] later proposed this toroidal swimmer in his famous

lecture “Life at low Reynolds number” as a mechanism which breaks the time-reversal

symmetry, resulting in net movement. After G.I. Taylor [8] and Purcell [9], an ap-

proximation to the analytical solution to the Stokes equations outside a rotating torus

with constant angular velocity was given by A.T. Chwang and W. Hwang in [10], with

linear order in slenderness, which is defined as the ratio between the radius of the

tube of the torus and the radius of the centerline circle of the torus. The slenderness

ratio sometimes is presented by its reciprocal named aspect ratio. Then the result

in [10] was improved by R.M. Thaokar et al. [11] with quadratic order in slenderness.
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Boundary integral methods are then used to study larger slenderness ratios [11]. Re-

cently, a rigorous theory of propulsion of the toroidal swimmer has been given by L.A.

Leshansky and O. Kenneth [12]. The swimming speed and hydrodynamic e�ciency

were determined from the exact solution of the Stokes equation outside a toroidal

swimmer.

Although it has an idealized geometry, the toroidal swimmer can give insight

to many aspects of microorganism motility. First, a bacterial flagellum, such as E.

Coli, rotates with a rotary motor in or within the cell wall. The study of the motion of

such rotating flagella, tracing out a cylindrical shape, would be similar to the motion

of a rotating torus [10]. Moreover, the rotating torus appoximates the waving action

of a dinoflagellate transverse flagellum. Secondly, the sti↵ and semiflexible polymer

rings such as DNA mini-plasmid, shaped like a torus, should be best modeled as a

torus [13]. Lastly, nanomachines shapped like a torus as an artificial robot [13] could

potentially be inserted into the arteries, digestive system, etc. to transmit images,

deliver microscopic payloads to parts of the body or perform minimally invasive mi-

crosurgeries outside the reach of existing technologies [12].

The presence of nearby surfaces, in both biological settings and microfluidic

devices, a↵ects microorganism motility. In reproductive biology, the phenomenon of

spermatozoa surface accumulation was obseved in 1886 [14]. Then, Rothschild [15]

asserted, through the study of bull spermatozoa, that the accumulation is caused

by hydrodynamic interaction rather than by chemical interaction. From this point

of view, studying the hydrodynamic interaction between microorganisms could shed

light on some phenonomena in biology. Moreover, in order to study the movement

of microorganisms and their e↵ect on the oceanic environment, the hydrodynamic
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interactions between collections of microbes should be examined. Smith [16] applied

finite element methods to illustrate the surface accumulation behavior of spermatozoa.

The hydrodynamic interaction of swimming microorganisms has been an active

area of research [17–19]. Here we focus on the details of the interaction between two

toroidal swimmers. In the past half century, several methods have been used to study

the hydrodynamic interaction of two swimming microorganisms. Stokesian-dynamic

simulations are used to study the particle stress tensor or di↵usion tensor of inert

spheres [20–25]. In Stokesian-dynamics, the motility matrix and the inverted motil-

ity matrix are essential to study the force, torque and stress of interacting objects.

Ishikawa et al. used boundary element methods to study the interactions between

two bottom-heavy squirmers in Stokes flow [18] and the interaction of two swimming

Paramecia [19]. The boundary integral method [26] has been used to study the in-

teraction of two rotating tori in Stokes flow [27]. Analytically, Faxen relations are

used to analyze the far-field flow properties [18], and lubrication theory is applied

to show the near-field flow properties [18]. Here we use the method of regularized

Stokeslets [28], which couples regularized surface forces with the Stokesian fluid. Our

numerical results will be validated by comparison with previous analytic solutions [12].

In order to model the dinoflagellate and to study their hydrodynamic inter-

actions, several assumptions have been made. First, the flow around the swimming

body is taken to be the incompressible Stokes flow. This assumption is reasonable

because of the microorganism’s small size, about 1� 500µm, and slow moving speed,

up to several hundred µm/s. The small Reynold number (10�2) allows us to treat

the flow as the quasi-static, time reversable flow or Stokes flow. Secondly, the body

of the dinoflagellate is assummed to be a sphere. Although its shape might change in
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di↵erent species or in di↵erent stages, this assmuption is made only for mathematical

convenience. Thirdly, in the force free case, mentioned hereafter, the swimming body

is assumed to exert zero net force and zero net torque instantaneously, which implies

that there is no external forces other than force from fluid exerted on the body to

cause the rigid translation and rigid rotation of the object. Lastly, as mentioned

in [18], no gravitational force will be taken into consideraton since its sedimentary

velocity is much less than its translational velocity.

Using our simplified model, we hope to gain insight in the interaction of di-

noflagellates. In [27], the interaction of co- and counter-rotating tori in a viscous

flow have been studied both analytically and numerically. Thaokar gives the approx-

imated analytical solution for the slender torus and far field limit, and then extends

it to the non-slender torus and small separation by implementing a boundary integral

method [26]. However, only axisymmetric arrangements of the two tori are con-

sidered where other configurations, such as two tori kept abreast, or staggered tori

without alignment are not considered. Here, “alignment” means the line connecting

two centers of the tori is parallel to the normal of each torus, which is the unit vector

perpendicular to the plane of the centerline. Here we investigate these arrangements

as well as the interaction of three tori. We also give intuitive explanations for the

dynamics of the observed moving pattern of tori.

In this thesis, we give an overview in Chapter 2 of mathematical and numerical

tools needed to examine the toroidal swimmers. We present notations, the method

of regularized Stokeslets, the method of regularized Stokeslets with images, some

matrices related to rigid rotation and a distance-preserving numerical scheme. We

also discuss the formulation of finite vortex dipole in two dimensional space, since the
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interaction between finite vortex dipoles in a 2D ideal fluid is qualitatively related to

the interaction of toroidal swimmers in a 3D viscous fluid. Chapter 3 will concentrate

on the study of the interaction between two toroidal swimmers and modeling the

motility of dinoflagellate. Moreover, we will also show the similarity of interaction

patterns of 2D finite vortex dipoles and of tori. In Chapter 4, several models of

dinoflagellates will be examined. The e�ciency of each model will be studied and

the e↵ect of a nearby wall on the movement of a helical ring in Stokes flow will be

discussed by applying the method of regularized Stokeslet with images. Lastly, we

summarize our main results in Chapter 5 and discuss the future work in Chapter 6.
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Chapter 2

Model and Methods

2.1 Introduction

The self-propulsion of an idealized toroidal swimmer was first discussed by

G.I. Taylor in his classic paper [8] of 1952. Also, a torus is a simple model of the

transverse flagellum of a dinoflagellate. The shape of a torus resembles a donut, and is

formed by rotating a small circle about an axis, where both the circle and the axis are

coplanar. The radius of the circle, denoted by r
h

, is called the radius of the tube,

the trajectory of the center of the circle after the rotation along the line is called the

centerline of the torus, and the radius of the centerline is denoted by r
c

. On the

surface of each torus, we impose a fixed rotational velocity u0 about the centerline.

The normal vector of the torus n lies in parallel with the axis perpendicular to the

centerline plane. We choose the direciton of the normal vector n by the direction of

the velocity at the inner surface of the torus. An illustration of the torus with surface

tangential velocity u0 is shown in figure 2.1.

Because the length and speed scales at the microscopic level are so small,

the fluid dynamics of microorganisms are governed by the Stokes equations with
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Figure 2.1: A schematic diagram of the rotating torus with radius of the tube
r
h

, radius of the centerline r
c

, normal direction n and surface tangential
velocity u0. The dashed line is the centerline of the torus.

dimensionless formulation (see section 2.3):

�rp+�u+ f = 0

r · u = 0
(2.1)

In general, u is the fluid velocity, p is pressure and f represents the external force.

The force f comes from the surface force of the immersed microorganisms. When the

force is taken to be a point force with direction and magnitude f0 = (f1, f2, f3) at

x0 i.e. f = f0�(x� x0), the velocity field due to the point force in three dimensional

space is:

u
i

(x) =
1

8⇡
S
ij

(x,x0)fj (2.2)

where S
ij

(x,x0) =
�ij

r

+ x̃ix̃j

r

3

, is called the Stokeslet (see [29] or section 2.4), �
ij

is the

Kronecker delta, r = |x�x0| and x̃
i

= x
i

�x0,i. The formula (2.2) is given according
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to the Einstein summation convention (see section 2.2). This Stokeslet S
ij

can be

used to represent the fluid velocity due to forces applied on the surface @D of an

object D using the boundary integral formulation (see [26] and section 2.5):

u
i

(x) =
1

8⇡

Z

@D

S
ij

(x,y)f̃
j

(y)dS(y) (2.3)

where f̃ = (f̃1, f̃2, f̃3) are the di↵erences between the outer surface forces and the inner

surface forces of a rigid body. The integrand of the solution, however, is singular at

the spatial points where the forces are applied. In my research, I choose a regularized

Stokeslet formulation where, rather than Dirac point forces f0�(x � x0), I consider

regularized forces f0 d

(x � x0), where  d

(x � x0) is a blob function centered at x0

with blob size d. A specific blob function from [29] is shown in formula (2.20). The

boundary integral formulation (see section 2.5) of the solution to Stokes equation (2.1)

with these regularized forces is given :

Z

R3

u
j

(y) 
d

(x� y)dy =
1

8⇡

Z

@D

Sd

ij

(x,y)f̃
i

dS(y) (2.4)

where Sd

ij

corresponding to the specific blob function is the reguralized Stokeslet [29].

A specific regularized Stokeslet derived in [29] for a given blob function (shown in

formula 2.20) will be presented in Section 2.4.

Two models of viscous flow around a torus have been studied [12]: The

toroidal glider and the force free torus. The toroidal glider, which is equiva-

lent to the well-known problem of the axisymmetric flow past a rigid body, models

the rigid object immersed in the fluid moving due to the stress from the surrounding

fluid and the external forces. However, the surface force in the force free case, some-

times called propulsion velocity case, is assumed to ensure the conservation of linear
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and angular momentum, which guarantee that no external force is causing the rigid

translation and rotation of the immersed body.

In this thesis, we study the toroidal glider, where the torus is dragged through

the fluid at a specified velocity. Then the drag force will be found. For the force free

case, with prescibed surface tangential velocity, the torus will move and rotate under

the fluid-torus interaction. In a third model, we fix the position of the torus and at

the same time let the surface of the torus rotate along its centerline. We calculate

the force needed to keep it unmoved. We will show that the last model actually is a

combination of the toroidal glider and the force free case in a certain way.

The discretization of the right hand side of the equation (2.4) with N points

and a regularization approximation of its left hand side result in 3N equations simply

expressed as

L(f) = u (2.5)

where L is a linear operator,

f = (f 1
1 , f

1
2 , f

1
3 , · · · , fN

1 , fN

2 , fN

3 )T

and

u = (u1
1, u

1
2, u

1
3, · · · , uN

1 , u
N

2 , u
N

3 )
T .

Here f i

j

and ui

j

are the j-th (j = 1, 2, 3) component of the surface force of the i-th

(i = 1, 2, · · · , N) point and the j-th (j = 1, 2, 3) component of the velocity of the

i-th (i = 1, 2, · · · , N) point respectively. In the case that the velocity on the surface

of the boundary u is known, the surface force f can be obtained immediately from



11

equation (2.5) by applying a linear equation solver, such as Gaussian elimination for

general matrices, or an iterative method such as conjugate gradient, minimal residual

or generalized minimal residual. In the cases of the free swimmer, the veolocity of

the immersed object is given as u = u0 + U + ⌦ ⇥ x, where u0 is a given surface

tangential velocity, U is the induced translational velocity from u0 and ⌦ is the

induced rotational velocity from u0. Here, we have an additional 6 unknowns: 3

unknowns from the translational velocity U and 3 unknowns from the rotational

velocity ⌦. The added six equations come from the constraints that the force free

immersed boundary must exert zero net force and zero net torque instantaneously,

i.e.

Z

@D

f̃(x)dx = 0 and

Z

@D

x⇥ f̃(x)dx = 0 (2.6)

This conservation of linear and angular momentum in equation (2.6) gives 6 more

equations after discretization and we balance the number of equations and the number

of unknowns. The equations (2.5) together with the equations after the discretization

of equation (2.6) can be presented as:

Af̃ = ũ (2.7)

Here, A is a (3N + 6) by (3N + 6) symmetric matrix, and

f̃ = (f 1
1 , f

1
2 , f

1
3 , · · · , fN

1 , fN

2 , fN

3 ,U,⌦)T

ũ = (u1
1, u

1
2, u

1
3, · · · , uN

1 , u
N

2 , u
N

3 , 0, 0, 0, 0, 0, 0)
T

where f i

j

and ui

j

are the j-th (j = 1, 2, 3) components of the surface force of the i-th

(i = 1, 2, · · · , N) point and the j-th (j = 1, 2, 3) components of the velocity of the
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i-th (i = 1, 2, · · · , N) point respectively. This equation will be solved numerically

with an iterative method to find out the translational velocity U and the rotational

velocity ⌦ for specified surface velocities u0. Then, with the translational velocity U

and rotational velocity ⌦, the points x on the torus and the center of the torus x
c

will be updated from the equations,

x0(t) = U(t) +⌦⇥ (x� x
c

)

x
0

c

(t) = U(t)
(2.8)

which will be solved numerically with either Euler’s method or Runge-Kutta methods.

Details of solving equation (2.8) with a distance-preserving numerical scheme will be

discussed in section 2.9.

2.2 Notations

A typical convention is to denote a vector in boldface, otherwise it is a scalar

variable. For example, a vector u contains three components u
i

(i = 1, 2, 3), where

each u
i

is a scalar. Before introducing the product involving vectors and matrices,

several notations are introduced in fluid mechanics to simplify the expressions or to

avoid the use of transpose notation T in matrix calculus. First is the repeated-index

summation convention, usually called Einstein’s summation convention. This

convention asserts that the repeated subscript in a term or a term involving products

implies the summation over the repeated subscript. For example

S
ii

=
X

i

S
ii

= Tr(S)

S
ij

f
j

=
X

j

S
ij

f
j
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Using the convention, if u, v and w are vectors, the inner product is:

u · v = u
i

v
i

,

the outer product is:

(u⇥ v)
i

= "
ijk

u
j

v
k

and the triple product is:

u · (v ⇥w) = "
ijk

u
i

v
j

w
k

Here, "
ijk

is the alternating matrix , where i, j, k = 1, 2, 3, is defined as "
ijk

= 0 if any

two indices are the same; "
ijk

= 1 if (i,j,k) is in cyclic order; Otherwise, "
ijk

= �1.

The vector product

(uv)
ij

= u
i

v
j

is a two dimensional matrix with (i,j) entry equal to u
i

v
j

. For example, if u = (1, 0, 0),

then

uu =

2

66664

1 0 0

0 0 0

0 0 0

3

77775

More notations in fluid mechanics are shown in Appendix A of Pozrikidis’ book [30].

2.3 Stokes equation

Newtonian flow is characterized by the continuity equation, which comes from

the conservation of mass:

⇢
t

+r · (⇢u) = 0 (2.9)
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and the Navier-Stokes equation obtained from the conservation of momentum

⇢ (u
t

+ (u ·r)u) = r · � + f (2.10)

where u represents the flow velocity, ⇢ is the density and f is the external force

respectively. � is the stress tensor, which is a three dimensional symmetric matrix,

and has the form

� = �pI+ �(r · u) + µ(ru+ruT ) (2.11)

where p is the pressure, � is the second coe�cient of viscosity or called dilational

viscosity coe�cient and µ is the first coe�cient of viscosity or called dynamic viscosity.

r · � in equation (2.10) is a vector defined with its i-th component (r · �)
i

= @�ij

@xj
.

Here we assume the density ⇢ to be a constant. Then the continuity equation (2.9)

is:

r · u = 0. (2.12)

This equation is also called the incompressibility condition. The stress tensor is then

� = �pI+ µ(ru+ruT ), (2.13)

which implies that the Navier-Stokes equation (2.10) will have the form

⇢ (u
t

+ (u ·r)u) = �rp+ µ�u+ f (2.14)

We define a characteristic length L related to the size of the torus, a characteristic

velocity U determined by the particular mechanism driving the flow, and a character-
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istic time T that is either imposed by external forcing or simply defined as L/U [26].

Then, we scale the velocity by U , the length by L, the time by T = L/U , the pres-

sure by P and the force by F , i.e. ũ = u
U

, l̃ = l

L

, t̃ = t

T

, p̃ = p

P

and f̃ = f
F

, the

incompressibility condition becomes

r · ũ = 0 (2.15)

and from the Navier-Stokes equation (2.14),

⇢
U2

L
(ũ

t

+ (ũ ·r)ũ) = �P

L
rp̃+ µ

U

L2
�ũ+ F f̃

⇢UL

µ
(ũ

t

+ (ũ ·r)ũ) = �PL

µU
rp̃+�ũ+

FL2

µU
f̃

(2.16)

Let PL

µU

= 1, FL

2

µU

= 1 and Re = ⇢UL

µ

, which is the Reynolds number, then the

Navier-Stokes equation will turn out to be

Re (ũ
t

+ (ũ ·r)ũ) = �rp̃+�ũ+ f̃ (2.17)

The Reynolds number Re expresses the magnitude of inertial convective forces rela-

tive to viscous forces. Instead of adding tilde to each variable, we still use originial

variables for simplicity. As discussed in the introduction, microorganisms are small

in size and also move with slow velocity, so the Reynold number will be small enough

that the left hand side of the equation (2.17) can be set equal to 0. Such flow with

low Reynolds number is referred to as Stokes flow, and the dimensionless equations

to characterize the incompressible Stokes flow in three dimensions are:

�rp+�u+ f(x) = 0

r · u = 0
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where u represents the flow velocity, p is the pressure and f represents the external

force. The advantage of the Stokes equations is that a linear relationship exists

between velocity and forces. If the external force f is taken as a point force located

at x0 i.e. f(x) = f0�(x � x0), where f0 = (f1, f2, f3) is a constant force, the solution

to the Stokes equation (2.1) in three-dimensional space is:

p(x) = �f0 · (x� x0)

4⇡r3

u(x) =
f0
8⇡r

+
(f0 · (x� x0))(x� x0)

8⇡r3

(2.18)

where r = |x� x0|. This velocity field also could be written as in equation (2.2).

u
i

(x) =
1

8⇡
S
ij

(x,x0)fj

where S
ij

(x,x0) =
�ij

r

+ x̃ix̃j

r

3

, is called the Stokeslet, �
ij

is the Kronecker delta, r =

|x � x0| and x̃
i

= x
i

� x0,i. Applying the notation introduced in section 2.2, it can

also be represented as

u =
1

8⇡r
(I+ r̃r̃) f0

where r̃ = r/r, r = x� x0, and r = |r|.

2.4 Method of regularized Stokeslets

The fundamental solution (2.18) to the Stokes equations is singular at the

point x0 where the force is applied. These fundamental solutions will be integrated

over a surface to be a solution to Stokes flow outside the surface. However, to eval-

uate an integral with a sigularity is not an easy task. The idea of the method of

regularized Stokeslets is to replace the point forces by regularized forces concentrated

at a point [28, 29]. Replacing f(x) by f0 d

(x � x0) in equation (2.1), where  
d

(x) is
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referred to as blob function, the solution will be

p(x) = f0 ·rG
d

(|x� x0|)

u
s

(x) = (f0 ·r)rB
d

(|x� x0|)� f0Gd

(|x� x0|)
(2.19)

where u
s

, f and p are velocity, external forces and pressure respectively, G
d

satisfies

�G
d

=  
d

(x) and B
d

satisfies �B
d

= G
d

. The subscript ‘s’ is used to mark that

the solution is related to ‘Stokeslets’, which will be discussed in detail with other

concepts, like doublet, rotlet and stresslet, in section 2.6.

In [28,29], a specific blob function used to derive the pressure and the velocity

formula to the Stokes equation is chosen as:

 
d

=
15d4

8⇡(r2 + d2)7/2
(2.20)

Then, the corresponding Stokeslets with regularized point force will be given as

Sd

ij

(x,x0) = �
ij

r2 + 2d2

(r2 + d2)3/2
+

(x
i

� x0,i)(xj

� x0,j)

(r2 + d2)3/2

in three dimensional space [29]. Consequently, the velocity field will be given as

u
i

=
1

8⇡
Sd

ij

f
j

(2.21)

in three dimensional space.
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2.5 Boundary integral methods

In order to introduce the boundary integral method [26], let D be the region

occupied by the rigid body immersed in the fluid, u(x) is the flow velocity at position

x = (x1, x2, x3) in R3 and f(x) is the surface traction on the boundary @D of the

domain D. Since the flow around the microorganism is characterized by the Stokes

equation (2.1), the velocities u and the stress tensor � to Stokes flow with boundary

D satisfy the reciprocal identity,

r · (u · �0 � u0 · �) = 0 (2.22)

where u0 and �0 are another solutions to Stokes flow. Let u0 be the solution to the

Stokes equation due to point force f0�(x � x0) in 3D, the formula of u0 expressed

in (2.21). Then the corresponding stress tensor �0 is

�0
ij

=
1

8⇡
T
ijk

(x,x0)fk

where T
ijk

= �6x̂ix̂j x̂k

r

5

. Plug u0 and corresponding �0 into the reciprocal iden-

tity (2.22), then integrate it over domain D if the point force is not in the domain

or integrate over domain D excluding the point x0 if it is in the domain, then the

boundary integral formula gives:

u
j

(x) = � 1

8⇡

Z

@D

S
ij

(x,y)f
i

dS(y) +
1

8⇡

Z

@D

u
i

(y)T
ijk

(x,y)n
k

dS(y) if x 2 D

(2.23)

0 = � 1

8⇡

Z

@D

S
ij

(x,y)f
i

dS(y) +
1

8⇡

Z

@D

u
i

(y)T
ijk

(x,y)n
k

dS(y) if x /2 D̄

(2.24)
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where surface force f
i

is defined as �
ik

n
k

. Assume that there is an external flow

outside the domain D with the same boundary velocity as the inside flow and 0 at

infinity, then the velocity in the domain D satisfies

0 =
1

8⇡

Z

@D

S
ij

(x,y)f 0
i

dS(y) +
1

8⇡

Z

@D

u
i

(y)T
ijk

(x,y)n
k

dS(y) if x 2 D (2.25)

since the domain D is located outside of the external flow. Here, n
k

is pointing outward

of domain D. Subtracting the equation (2.25) from equation (2.23), we obtain

u
j

(x) = � 1

8⇡

Z

@D

S
ij

(x,y)f̃
i

dS(y) (2.26)

where f̃
i

are the di↵erences between the internal surface forces and the external surface

forces. The solution (2.26), for an interior point x, can be extended to boundary

points (see section 2.3 in [26]). Take toroidal glider case for example, the velocity of

the flow on the surface of the object is assumed to have the form U + ⌦ ⇥ x̂, and

then the velocity field of the flow inside the domain D is:

u
j

(x) = � 1

8⇡

Z

@D

S
ij

(x,y)f
i

dS(y) (2.27)

where the negative sign indicates f
i

are surface tractions, which relates to the drag

force F = (F1, F2, F3) in the way that (see equation (1.2.7) in [26])

F
i

= �
Z

@D

f
i

(y)dS(y). (2.28)

Moreover, not only is this formula true inside of the domain D, it is true for all points

outside with an opposite sign.

Applying the regularized Stokeslets (see equation (2.21)) and corresponding �d
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as u0 and �0 to the reciprocal equation (see equation (2.22)), and integrating over the

domain D and domain D̄C respectively, we find that we actually solve the following

equations numerically (see [29]):

Z

R3

u
j

(y)�
d

(x� y)dy = � 1

8⇡

Z

@D

Sd

ij

(x,y)f̃
i

dS(y) (2.29)

where f̃ are the di↵erences between interior surface forces and outer surface forces.

The linear equations after discretization and regularization with N points in the

toroidal glider case with given rotational velocity ⌦ and translational velocity U

we solving are

Af = U+⌦⇥ x (2.30)

for surface traction f . In the force free case with boundary velocity u equal u0+U+

⌦ ⇥ x, where u0 is the velocity of a certain prescribed surface motion such as the

surface rotation, we are solving

Af = u0 +U+⌦⇥ x (2.31)

for f , U and ⌦ with two more conditions from the discretiztion of the equations of

the conservation of linear and angular momentum (2.6):

NX

i=1

f
i

= 0 and
NX

i=1

x
i

⇥ f
i

= 0 (2.32)

where f
i

= (f 1
i

, f 2
i

, f 3
i

) is the average surface force at x
i

, and

f = (f1, f2, · · · , fN)T
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Morevoer, for both cases, the accuracy is O( "
2

d

3

) + O(dq) with q = 1 at points

near boundary, or q = 2 at points far away from the boundary [29]. Here, " is the

discretization size and d is the blob size. The velocity, in this paper, we evaluate is on

the boundary, so the error accuracy is O( "
2

d

3

)+O(d). Taking the blob size d = O(
p
"),

the expected order of accuracy in our case will be 1/2.

2.6 Method of regularized Stokeslets with images

Many microorganisms swim near surfaces. Here we include the presence of an

infinite planar wall, where the non-slip condition will be enforced. Assume the wall

is located at x = w, which is a plane parallel to y-z plane. Then the Stokes equation

in the right half space is expressed as follows:

�rp+ µ�u+ F(x) = 0 x 2 R3 \ {x > w}

r · u = 0 x 2 R3 \ {x > w}

u = 0 x on {x = w}

(2.33)

Before showing the solution to the equation (2.33) with point force at x0 with strength

f , i.e. F = f�(x�x0), we introduce several forms of solutions to the Stokes equation:

(point force) Stokeslet, Stokeslet doublet (or called point force dipole) and potential

dipole. Stokeslet is the singular solution to Stokes equation (2.1) with point force,

which is given in the second of equation (2.18) and usually denoted by u
s

(x,x0) or

S[f ,x0] for Stokeslet located at x0 with constant force f . The Stokeslet doublet,

sometimes called point force dipole, is the directional derivative of a Stokeslet,

i.e. (b ·r)u
s

, in the direction of a constant vector b, always denoted by u
sd

(x,x0)

or SD[f ,b,x0]. Here f is the constant force, which is the same as f in Stokeslet.

The potential dipole is obtained by applying the negative Laplacian to u
s

with a
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constant force q; Also, potential dipole can be obtained from the directional derivative

to a potential solution in the direction of constant vector q. It is always denoted by

u
pd

(x,x0) or PD[q,x0], where q is the same as the force f in Stokeslet. Their formulae

are given as follows (see [30] and [31]):

u
s

(x,x0) = S[f ,x0] =
f

8⇡r
+

(f · (x� x0))(x� x0)

8⇡r3

u
pd

(x,x0) = PD[q,x0] =
q

4⇡r
� 3

(q · (x� x0))(x� x0)

4⇡r5

u
sd

(x,x0) = SD[g,b,x0] =
(g · b)(x� x0)

8⇡r3
+

(g · (x� x0))b

8⇡r3
� (b · (x� x0))g

8⇡r3

� 3
(g · (x� x0))(b · (x� x0))(x� x0)

8⇡r5

Then the solution to this system (2.33) with point force f = (f1, f2, f3) at point x0 is:

S[f ,x0]� S[f ,x0,im]� h2PD[f̃ ,x0,im] + 2hSD[e1, f̃ ,x0,im] (2.34)

where x0,im = 2w � x0, f̃ = (f1,�f2,�f3) = 2(f · e1)e1 � f and h = x0,1 � w.

The above shows the singular case when the force is a point force at x0 [32].

When the point force is regularized with a given blob function, i.e. F = f 
d

(x �

x0), the regularized Stokeslet, regularized potential dipole and regularized Stokeslet

doublelet are expressed as

S
d

[f ,x0] = fH1(r) + (f · (x� x0))(x� x0)H2(r)

PD
d

[q,x0] = qD1(r) + (q · (x� x0))(x� x0)D2(r)

SD
d

[g,b,x0] = (g · b)(x� x0)H2(r) + (g · (x� x0))bH2(r)

+ (b · (x� x0))g
H

0
1(r)

r
+ (g · (x� x0))(b · (x� x0))(x� x0)

H
0
2(r)

r
.

Following [31], the final solution to the Stokes equation with velocity 0 on the wall
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x = w is:

S
d

[f ,x0]�S
d

[f ,x0,im]�h2PD
d

[f̃ ,x
im

]+2hSD
d

[e1, f̃ ,xim

]+2h


H

0
1(r)

r
+H2(r)

�
(L⇥x)

(2.35)

where f̃ = (f1,�f2,�f3) and x0 is the position of a point force, and x0,im is the

symmetric point of x0 with respect to wall x = w. The last term in the above

formula is also referred as a rotlet. In summary, the solution to the Stokes equation

with M regularized point forces is represented as follows:

U(x) = ⌃M

k=1 [fkH1(|x⇤
k

|) + (f
k

· x⇤
k

)x⇤
k

H2(|x⇤
k

|)]� [f
k

H1(|xk

|) + (f
k

· x
k

)x
k

H2(|xk

|)]

� h2
k

h
f̃
k

D1(|xk

|) + (f̃
k

· x
k

)x
k

D2(|xk

|)
i

+ 2h
k


(f̃

k

· e1)xk

H2(|xk

|) + (x
k

· e1)f̃kH2(|xk

|) + (f̃
k

· x
k

)e1
H

0
1(|xk

|)
|x

k

|

�

+


(x

k

· e1)(f̃k · xk

)x
k

H
0
2(|xk

|)
|x

k

|

�

+ 2h
k


H

0
1(|xk

|)
|x

k

| +H2(|xk

|)
�
(L

k

⇥ x
k

)

where the dipole strengths are f̃
k

= 2(f
k

·e1)e1�f
k

, L
k

⇥x
k

= (f2y+f3z,�hf2,�hf3)
0

and x⇤
k

= x� x
k

,x
k

= x� x
k,im

. Moreover,

H1(r) =
1

8⇡(r2 + d2)1/2
+

d2

8⇡(r2 + d2)3/2
H

0

1(r) = � r

8⇡(r2 + d2)3/2
� 3d2r

8⇡(r2 + d2)5/2

H2(r) =
1

8⇡(r2 + d2)3/2
H

0

2(r) = � 3r

8⇡(r2 + d2)5/2

D1(r) =
1

4⇡(r2 + d2)3/2
� 3d2

4⇡(r2 + d2)5/2

D2(r) =
3

4⇡(r2 + d2)5/2

For more details of the method of regularized Stokeslets with images, see [31].
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2.7 Finite vortex dipole

When talking about the method of regularized Stokeslets with images, we

mentioned the “dipole” solution to the Stokes equations. We remark that the dipole

is di↵erent from the “finite vortex dipole” that is the subject of this section. This

finite vortex dipole is a pair of counterrotating vortices constrained to be separated

by a fixed distance in 2D inviscid flow [33].

When a point vortex with strength � in two dimensional, incompressible, in-

viscid flow is located at the origin, the velocity field at x = (x, y) is given by

u(x) =
�

2⇡

(�y, x)

r2

where r = |x|. If a group of vortices are introduced to the system, the velocity field at

point x = (x, y) will be obtained from the supersition of the velocity fields produced

by each vortex:

u(x) =
X

j

�
j

2⇡

(y
j

� y, x� x
j

)

r2
j

where r
j

= |x � x
j

|, x
j

= (x
j

, y
j

) and �
j

are the locations of the j-th vortex and

the strength of this vortex respectively [34]. Moreover, the velocity of each vortex

is equal to the velocity induced by all the other vortices. Hence, the equation that

dominates the motion of each vortex is

dx
n

dt
=
X

j 6=n

�
j

2⇡

(y
j

� y
n

, x
n

� x
j

)

r2
j

This vortex system shows that the distance between any two of vortices changes in

time. As a minimal model of a self-propelled swimmer, Tchieu et. al. [33] introduced a

finite vortex dipole with a constraint that the pair of counter-rotating vortices remain
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a fixed distance l apart. In [33], the velocity field is expressd using complex variables.

Let ! = u� iv, where (u, v) is the velocity in two dimensional space,

!(z) =
NX

j=1

�
j

2⇡i

✓
1

z � z
j,l

� 1

z � z
j,r

◆

where �
j

, z
j,l

and z
j,r

are the vortex strengths, the locations of the left vortex and

the locations of the right vortex of the j-th finite vortex dipole respectively. Then,

each vortex in the n-th finite dipole will move with the following velocities:

˙̄z
n,l

= !
n,s

+ !
n,o

(z
n,l

) + i�
n

e�i↵n (2.36)

and

˙̄z
n,r

= !
n,s

+ !
n,o

(z
n,r

)� i�
n

e�i↵n (2.37)

where !
n,s

are the self-induced velocities from the other vortex in the finite vortex

dipole,

!
n,s

=
�
n

e�i↵n

2⇡l
n

.

Here l
n

is the fixed distance between two vortices of the n-th finite vortex dipole and

!
n,o

(z), the velocity induced by the other finite vortex dipoles, is given as

!
n,o

(z) =
NX

j 6=n

�
j

2⇡i

✓
1

z � z
j,l

� 1

z � z
j,r

◆
.

The last term in equation (2.36) and in equation (2.37) comes from the constraint

of fixed distance between two vortices in a finite vortex dipole, where ↵
n

is the an-

gle between the vector from left vortex to right vortex and the x-axis. Here �
n

is
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determined by the fixed length constraint, and is given as:

�
n

=
1

2
Im[(!

n,o

(z
n,l

)� !
n,o

(z
n,r

))ei↵n ].

From this constaint, the evolution of the angle ↵
n

will be determined by

↵̇
n

=
Re[(!

n,o

(z
n,l

)� !
n,o

(z
n,r

)]

l
n

(2.38)

Adding equation (2.36) and (2.37), we obtain

˙̄z
n

=
˙̄z
n,l

+ ˙̄z
n,r

2
= !

n,s

+
!
n,o

(z
n,l

) + !
n,o

(z
n,r

)

2
(2.39)

where z
n

is the center of the finite vortex dipole. The evolution of the finite vortex

dipole system will be determined by equation (2.38) and (2.39).

2.8 Transformation matrix between two vectors

In studying the rigid translation and rotation of an object, expressing the

rotation about a vector is central. Assume the initial normal vector of the plane of a

certain object is parallel to z-axis, i.e. (0, 0, 1). After a certain rotation to the plane,

its normal vector is transferred to a unit vector n = (n1, n2, n3). This rotation is

unique up to a rotation around the vector n, however, it would not change the result

for some object like torus in our case, whose shape is axisymmetric with respect to its

normal. A rotation matrix that rotates the normal of an axisymmetric object from

direction (0, 0, 1) to unit normal n = (n1, n2, n3) is:
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T =

2

666664

n

1

n

3p
n

2

1

+n

2

2

� n

2p
n

2

1

+n

2

2

n1

n

2

n

3p
n

2

1

+n

2

2

n

1p
n

2

1

+n

2

2

n2

�
p

n2
1 + n2

2 0 n3

3

777775

The advantage of treating the problem in this way is to avoid a second rotation

matrix, which does not make any di↵erence to the result because of the axisymmetry

of the object. However, in general, the other rotation matrix should be included. In

our case, we will use this matrix to construct a torus with normal (n1, n2, n3) from a

given torus with unit normal (0, 0, 1). The normal of the torus is the vector that is

perpendicular to the plane containing its circular centerline.

2.9 Movement of rigid object

In this section, we introduce another rotation matrix about a given vector,

and discuss a distance-preserving numerical method. Assume that the unit vector

n is given in the form (n1, n2, n3). We are going to study the matrix describing the

rotation of a given vector a with an angle of ✓ with respect to the line parallel to

normal vector n and passing through the origin: First, if a is perpendicular to n,

then, the vector after rotation is given as : x = a cos ✓� a⇥n sin ✓. Secondly, if they

are not perpendicular, take the perpendicular part of a as x1 = a � (a · n)n, apply

the first case to vector x1 and find that the vector after rotation along n with angle

✓ from x1 is x2 = x1 cos ✓ � x1 ⇥ n sin ✓. Thus, the vector after rotation from a will

be x = (a ·n)n+x2 i.e. x = a cos ✓+ (1� cos ✓)(a ·n)n� (a⇥n) sin ✓ after plugging

the fomula of x2. And the matrix form of this rotation is:
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R(✓) =

2

66664

n2
1 + (n2

2 + n2
3) cos ✓ n1n2(1� cos ✓)� n3 sin ✓ n1n3(1� cos ✓) + n2 sin ✓

n1n2(1� cos ✓) + n3 sin ✓ n2
2 + (n2

1 + n2
3) cos ✓ n2n3(1� cos ✓)� n1 sin ✓

n1n3(1� cos ✓)� n2 sin ✓ n2n3(1� cos ✓) + n1 sin ✓ n2
3 + (n2

1 + n2
2) cos ✓

3

77775

(2.40)

In this thesis, we seek to calculate the trajectory of a swimming torus, given a

computed translational velocity U and rotational velocity ⌦ at each time step. There

are two approaches to update the material points of the torus. One is to update the

position of its centroid and its normal vector. The centroid and its normal vector

will determine the layout of torus since the torus is axisymmetric with respect to its

normal. However, this property is not generally true for non-axisymmetric objects

such as the helical ring. Thus, we try to use a generalized numerical method to update

the positions of a rigid body with the requirement that the distance of any two points

on the surface of the rigid body remains unchanged as the time evolves. This kind

of numerical method is called distance-preserving. In the study of rigid movement, if

the velocity of the rigid body u is given as U+⌦⇥x, then the positons of all points

on the rigid body will satisfy

x0(t) = U+⌦⇥ x

with di↵erent initial conditions. Here the right hand side of the above equation tells

that the rigid body moves with translational velocity equal to U, at the same

time rotates with rotational velocity ⌦. The solution to such system of ODEs is

rewritten in the matrix form,

x0(t) = U+ Ax(t). (2.41)
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Here A is a skew-symmetric matrix, and its relation to ⌦ is

A =

2

66664

0 �⌦3 ⌦2

⌦3 0 �⌦1

�⌦2 ⌦1 0

3

77775

From the physical interpretation, we know that the solution to the system (2.41)

should preserve the distance for any two points on the rigid body. And indeed this can

be validated mathematically (for simplicity, let U = 0 and assume A is independent

of time t): The solution to this system is x(t) = eAtx0, thus for di↵erent initial points

x1 and x2, the distance after time t is

p
< (eAtx1 � eAtx2, eAtx1 � eAtx2 > =

p
< (eAt)T (eAtx1 � eAtx2),x1 � x2 >

=
p

< (eAt)T eAt(x1 � x2),x1 � x2 >

=
p
< x1 � x2,x1 � x2 >

Here, < ·, · > is the inner product with l2 norm and the upperscript T means trans-

pose of the matrix. The last equality is true because A is a skew-symmetric matrix,

i.e. A = �AT , which implies (eAt)T eAt = I.

The question is whether a numerical method that updates points on the surface

of a rigid body will preserve the distance. Take forward Euler method for example to

solve the system (2.41). The answer is no, because this method solves the ODEs in

the way: x
n+1 = x

n

+ A�tx
n

+U�t. Since I + A�t is not an orthogonal matrix, it

does not preserve the distance. One also can show that many common used numerical

methods, such as multi-step methods, are not distance-preserving. Notice that when
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A is independent of t, the exact solution to the system of ODEs (2.41) is given by:

x(t) = eAt

✓Z
t

0

e�A⌧Ud⌧ + x0

◆
= R(|⌦|t)x0 + eAt

Z
t

0

e�A⌧U(⌧)d⌧

or

x(t+�t) = eA�t

✓
eAt

Z
t+�t

t

e�A⌧U(⌧)d⌧ + x(t)

◆
= R(|⌦|�t)x(t)+eA(t+�t)

Z
t+�t

t

e�A⌧U(⌧)d⌧

Where R is the rotation matrix given in formula (2.40). |⌦|�t is the rotation angle

since

�✓ =
2⇡

T
�t =

2⇡

2⇡r/|v|�t =
2⇡

2⇡r/(r · |⌦|)�t = |⌦|�t

If A is not independent of t, then

x(t+�t) = e
R t+�t
t A(⇠)d⇠

✓
e
R t
0

A(⇠)d⇠

Z
t+�t

t

e�
R ⌧
0

A(⇠)d⇠U(⌧)d⌧ + x(t)

◆

Approximating the integrals over [t, t+�t] by using left endpoint multiplied by �t,

we obtain the following numerical scheme

x(t+�t) = eA�t (x(t) +U(t)�t) = R(|⌦|�t) (x(t) +U(t)�t) (2.42)

which is almost the same as the scheme using forwad Euler to the di↵erential equa-

tion (2.41) with a di↵erence of O(�t2). Thus, the accumulated error at time t is

O(�t). Another numerical scheme is

x(t+�t) = R(|⌦|�t)x(t) +U(t)�t (2.43)

which is also first order numerical scheme. Each way has di↵erent physical interpre-

tation. The positions updated with formula (2.42) first translate with translational
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velocity U and then rotate with rotational velocity ⌦ within each time step. That

updated with the other formula (2.43) is performing rotation before translation in

each time step.

The above is the case when the rotational axis is passing through the origin.

There are situations that the rotational axis is moving with the object. For example,

in our model of torus, it translates and rotates along the line passing through its

center:

x0(t) = U+ A(x(t)� x
c

(t))

x0
c

(t) = U

(2.44)

with some initial conditions. Here x(t) is the position of the point on the surface of

the torus, and x
c

(t) is the position of the center of the torus at time t. This algorithm

consists of two steps: First, every point on the rigid body translates in the way char-

acterized by di↵erential equation x0
c

(t) = U and then rotates in the way characterized

by di↵erential equation (x(t)� x
c

(t))0 = A(x(t)� x
c

(t)). Each step is a special case

of the system (2.41), and applying the former theory to each case, we will obtain the

distance-preserving numerical scheme with an accumulated error O(�t).

In summary, we have demonstrated that a modification of the forward Euler

method results in a distance-preserving method with accumulated error O(�t). We

are still investigating distance-preserving numerical schemes that attain higher order

of convergence.
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Chapter 3

Tori

3.1 Introduction

In this chapter, the toroidal swimmer will be used as a simplified model of the

tranverse flagellum of dinoflagellates. The interaction of dinoflagellates in Stokes flow

will be studied through the study of the interaction of tori. Based on the dimension-

less analyis in section 2.3, the Stokes equations are expressed in dimensionless way.

Therefore, all parameters shown here are dimensionless too. The radius of the center-

line r
c

= 0.5 and the surface tangential speed u0 = 100. We take the radius of tube

r
h

= 0.1. Then the rotational velocity about its centerline, which can be obtained

from ⌦ = rh⇥u
0

r

2

h
, has its magnitude equal ⌦ = u

0

rh
= 1000. The center and the normal

of the torus are assumed to be x
c

= (0, 0, 0) and n = (0, 0, 1) respectively. The

aspect ratio s0 is defined as the ratio between the radius of the centerline and the

radius of the tube, i.e. s0 = 5 in our case. When applying the method of regularized

Stokeslets, the surface of each torus will be discretized with M = 12 points on each

cross-sectional circle and N = rc
rh

· M = 60 cross-sectional circles along the center-

line. The total number of points on the surface are N
p

= MN = 720. Then, the

discretization size "0 =
2⇡rh
M

= 0.0524 and the blob size used in regularized Stokeslets

is taken as d =
p
"

0

12.4372 = 0.0184. This choice will be explained below. The table 3.1
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summarizes all parameters.

rc 0.5 rh 0.1
u
0

100 ⌦ 1000
xc (0, 0, 0) n (0, 0, 1)
M 12 N 60
s
0

5 "
0

2⇡r
h

M

d
p
"0

12.4372

Table 3.1: Default parameters for a single torus

In the following section, we validate our method by comparing the results by

Leshansky et el. in [12] that used analytical methods to compute the translational

velocity of a single torus in Stokes flow. We also compare our results with those in [7]

that studied the motion of a waving cylindrical helical tube in a viscous fluid. We

consider the toroidal glider with prescribed translational velocity, a force free toroidal

swimmer and an immobile toroidal swimmer with prescribed surface tangential veloc-

ity. Lastly, in order to study the convergence of our numerical method, we examine

the e↵ects of blob size and the discretization size on the motion of a single torus as

a free swimmer. In section 3.3 and section 3.4, we will show the interaction between

two tori and the interaction of three tori in Stokes flow. In the last section, the in-

teraction of two-dimensional vortex dipoles and those of two tori will be compared

qualitatively to show their similarity in interaction patterns.



34

3.2 Validation and choice of blob size

3.2.1 Single torus

In this sub-section, we introduce a model of a toroidal swimmer. Several cases

are examined using the method of regularized Stokeslets: toroidal glider, a force free

swimmer and an immobile rotating torus. The last case is a combination of a toroidal

glider and a force free swimmer. A torus in the toroidal glider case is pulled with

force F, then will move with a translational velocity U. At the same time, consider

its surface rotated along its centerline in the force free case to produce an opposite

translational velocity �U. Combining with these two actions will result in the torus

staying in place with surface rotating. The force F is the force needed to fix the torus,

which is confirmed in our numerical experiment.

We also examine the convergence of the numerical method. The blob size of

the method of regularized Stokeslets will be chosen from the comparison between the

current theory with the approximation solution in [12] and [13] in the case that the

torus is treated as a free swimmer.

1. Toroidal glider

In the toroidal glider case, a rigid torus is placed in a uniform flow with translational

speed U . Figure 3.1(a) shows that the computed dimensionless drag force F (scaled

with 6⇡µr
h

U) exerted on the torus as a function of aspect ratio s0 =
rc
rh

is in excellent

agreement with the slender body approximation in [12] and [35], where the slender

body approximation is given as follows:

F

6⇡µaU
⇠ 4⇡s0

3(log 8s0 � 1
2)

(3.1)
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The experiment is carried out numerically by imposing the uniform velocity U at

every point on the toroidal surface.

2. Force free swimmer with prescribed surface tangential velocity

In the force free or propulsion velocity case, the torus is treated as a free swimmer

with a prescribed surface rotational speed u0. The conservation of linear and angular

momentum as shown in equation (2.6) is imposed. This restriction results in the rigid

motions of the torus with translational speed U and rotational speed ⌦. From the

axisymmetry of the shape of the torus, the torus will translate but not rotate, i.e.

⌦ = 0. The dimensionless propulsion velocity U

u

0

is plotted as a function of aspect

ratio s0 = rc
rh

in figure 3.1(b). It shows that our results and the asymptotic solution

( [12] and [13])

U ⇠ u0

2s0
(log(8s0)�

1

2
) (3.2)

are in excellent agreement when taking the same discretization size and blob size as

in the toroidal glider case. The number 12.4372 is chosen intentionally to minimize

the di↵erence between current theory with the method of regularized Stokeslets and

asymptotic result in [13] when the aspect ratio is equal to 20. Based on those pa-

rameters, when the aspect ratio is greater than 10, the relative error is less than .4%

in both cases. The overall relative error is less than 3.5% when smaller aspect ratios

(up to s0 � 2) are taken into consideration.

A specific example of a free swimming torus with parameters in Table 3.1 is

studied here too. We find that the torus moves upwards with the translational ve-

locity (2.2149e-15, -8.0597e-15, 3.1338e+01), but no rotation at all. Figure 3.2(a)

shows the velocity field and the streamlines of the flow generated by a single force-free
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Figure 3.1: (a) Toroidal glider case shows the dimensionless force F

6⇡µrhU
exerted on the torus with respect to aspect ratio s0 = rc

rh
. Note that

the current theory (star) is in excellent agreement with the asymptotic
solution (solid line) given in formula (3.1). (b) Propulsion velocity
case shows the dimensionless propulsion velocity U

us
with respect to

aspect ratio s0 =
rc
rh
. Again note that the current theory (star) and the

asymptotic solution (solid line) given in formula (3.2) are in excellent
agreement.
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torus. A single torus with a prescribed surface tangential velocity will move in the

certain direction that we define to be the normal vector of the torus.

3. Immobile torus with prescribed surface tangential velocities

The model introduced here is an immobile torus with a surface rotating speed u0 =

100. As mentioned before, this model is a combination of a toroidal glider and a force

free swimmer in a certain way, which is confirmed numerically: The torus with default

parameters is treated here. On the one hand, we apply the surface tangential velocity

to compute the transaltional velocity U in the force free case. Then we impose the

translational velocity �U in toroidal glider case, and compute the surface forces F1.

On the other hand, we compute the surface forces F2 similar to the glider case by

assigning the velocity to be the surface tangential velocity at each discretization point

on the surface of the torus. The results show that F1 = F2 at each point. Moreover,

we find that the total drag force is (-4.4853e-14, -2.5258e-14, -2.9714e+02). This

means that the necessary drag force is pointing downward, which in turn implies the

torus has a tendency to move upward. The velocity field and the streamlines of the

flow of the fluid on the cross-sectional plane y = 0 are shown in Figure 3.2(b).

4. Study of the convergence of the numerical method

In order to study the convergence of the numerical method, we ran several experi-

ments of the force free torus by varying the discretization size or the blob size or both.

The method of regularized Stokeslets involves two types of errors: the discretization

error coming from the approximation of the surface integral and the regularization

error coming from the replacement of the delta function by a certain blob function.

Thus, to study the convergence of the method of regularized Stokeslets we need to
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(a) Force free torus

(b) Torus with fixed center

Figure 3.2: Streamlines and velocity field in the plane y = 0 around a force-
free torus (figure 3.2(a)) and a torus with fixed center (figure 3.2(b))
are shown with aspect ratio s0 = 5. The solid lines are the streamlines
of the flow around the toroidal swimmer. The vectors indicate the
direction of the flow at that point. Note that the length of the vectors
are set to be uniformly equal regardless of the di↵erent magnitudes of
the velocity at di↵erent points.
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analyze the e↵ect of each error.

Figure 3.3 shows the relative error of the speed, which is defined as |u�ua
ua

|,

is decreasing and then increasing when the blob size d decreasing. Since the error

of the numerical method is O( "
2

0

d

3

) + O(d2), the error will be dominated by O(d2)

when the blob size is large. The error will be dominated by O( "
2

0

d

3

) if the blob size is

small. This figure also shows that the relative error of the speed goes toward 1 with

decreasing blob size. Here, u is the computed translational speed with the method of

regularized Stokeslet and u
a

is the asymptotic speed given in formula (3.2) for four

di↵erent aspect ratios. This phenomenon can be explained in this way: When the

blob size approaches zero, the diagnoal elements of Stokeslet matrix 2
d

is so large with

small blob size d that the matrix A in equation (2.7) would approximately turn into

A =
2

d

2

6666666666666666666666664

0 0 0 0 0 0

I3N⇥3N
...

...
...

...
...

...

0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

0 · · · 0 0 0 0 0 0 0

3

7777777777777777777777775

(3.3)

where I3N⇥3N is a 3N by 3N identity matrix. An iterative method, such as conjugate

gradient, to equation (2.7) with matrix (3.3) would result in the solution f̃ = d

2 ũ,

which means that the translational velocity will be zero (see the structure of ũ in

equation (2.7) for reason). However, the actual translational velocity is not zero if
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the torus is prescribed with a non-zero surface tangential velocity. From this point

of view, the blob size can not be taken too small relative to the discretization size.

In fact, the blob size is usually chosen linearly or quadratically proportional to the

square root of the discretizaion size.
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Figure 3.3: With di↵erent aspect ratios, s0 = 5, 10, 15, 20 and 25, but fixed
discretization size "0 = 2⇡ · 0.1/12 = 5.2360e � 02, the relative error
of the translational velocity (given in absolute value) is shown with

respect to varying blob sizes d. The error is given as O( "
2

0

d

3

) + O(d2).
The relative error in the right branch, when the blob size is large, is
dominated by O(d2). The relative error in the left branch, when the

blob size is relative small, is dominated by O( "
2

0

d

3

). When the blob size
d goes to 0, the relative error has a tendency to 1. Here, u and u

a

are
the computed translational velocity and the asymptotic translational
velocity given in formula (3.2) respectively.

Next, for six di↵erent aspect ratio s0, we fix the blob size d = 1.8398e � 02,

but decrease the discretization size (i.e. increase the number of points, M, on each

cross-sectional circle and the number of points, N, on the transverse section). Fig-

ure 3.4 shows the trend of the convergence of the relative error.
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Figure 3.4: With di↵erent aspect ratio, s0 = 5, 7, 9, 11, 13 and 15, but un-
changed blob size d = 1.8398e�02, the relative error of the translational
velocity (given in absolute value) is plotted against the discretization
size "0. With the decreasing in discretization size, the relative error
shows a tendency of convergence if a finer discretization size is imple-
mented. Here, u and u

a

are the computed translational velocity and the
asymptotic translational velocity given in formula (3.2) respectively.

Lastly, we consider the torus with varying blob size d and varying discretization

size "0 when aspect ratio s0 = 4 with a relation:

d =

p
"0

12.4372
.

Figure 3.5 shows that the relative error given in absolute value |u�ua
ua

| is decreas-

ing when the discretization is small enough. This shows that d ⇡ C
p
"0 would be

an appropriate choice of the blob size when applying method of regularized Stokeslets.

Above all, the blob size can not be taken arbitrary, but should be linearly or

quadratically proportional to the square root of the discretization size. However, the
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Figure 3.5: When aspect ratio s0 = 4, fix blob size � =
p
"0/12.4372. The

relative error between translational velocity u from current theory and
that u

a

from the asymptotic solution given in formula (3.2) is plotted
with respect to the discretization size "0. From the tail close to the
origin, the relative error shows a decreasing tendency.

regularization error could be observed as the discretization size goes to zero.

3.2.2 Waving helical tube

In this section, we reproduce the results in [7] to validate our code of method

of regularized Stokeslets. The free swimmer studied here is the helical tube with

centerline �, which is a closed circular helix described by

8
>>>>>><

>>>>>>:

x(s, t) =
⇥
r �R sin

�
2⇡s
�

� !t
�⇤

cos
�
s

r

�

y(s, t) =
⇥
r �R sin

�
2⇡s
�

� !t
�⇤

sin
�
s

r

�

z(s, t) = R cos
�
2⇡s
�

� !t
�
.

(3.4)

where 0  s  2⇡r = L, and r is the radius of the baseline circle, which is on the

plane that z(s, t) = 0. R and � represent the helical amplitude and the wave length
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respectively. The angular speed is denoted by !. The number of pitches n
p

is defined

as L

�

= 2⇡r
�

. Then, the wave speed denoted by !
s

is !�

2⇡ as time progresses. The radius

of the tube, which is the distance between the surface of the tube to the centerline,

is denoted by r
h

. A figure of helical ring with illustration of parameters is shown in

Figure 3.6.

R

r

Figure 3.6: An illustration of the helical tube. The black circle is the baseline
circle with radius r. The amplitude is R and the number of pitches is
equal to 6.

Using the same parameters of the helical tube as in [7] by choosing the number

of pitches n
p

= 3, amplitude R = 0.09, radius of centerline r = 0.5, angular speed

! = 0.1 and radius of tube r
h

= 0.035, we also study the e↵ect of wave amplitude

on velocities, the e↵ect of number of pitches on velocities, the e↵ect of simultaneous

change of slenderness and amplitude on velocities. The translational velocity and the

rotational velocity are computed by applying the method of regularized Stokeslets.

The helical tube is discretized using M = 6 points on each cross-sectional circle and

N = 110 cross-sectional circles along the centerline. The blob size d for the method
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of regularized Stokeslets is taken as 7
12"0, where "0 is the average distance between

linked points on the discretized surface. Since the helical ring here is treated as a

free swimmer, the rigid motion with translational and rotational velocity will be cal-

culated by equation (2.7).

1. E↵ect of wave amplitude on velocities

In [7], the e↵ect of wave amplitude on velocities was studied under the comparison of

several numerical methods. Here, we are going to reproduce the result by using the

method of regularized Stokeslets. The rotational velocity is defined as the velocity

tangential to the circular axis of the ring’s centerline, and is denoted by VT. The

translational velocity is the velocity in the z-direction, and is denoted by VB. The

resulting VT and VB computed, normalized by the wave speed !
s

as a function

of the amplitude normalized by the wave length �, are shown in Figure 3.7, which

correponds to the figure 6 in [7].

2. E↵ect of number of pitches around ring on velocities

The e↵ect of number of pitches on the velocities of the waving helical tube is studied

here. The number of the pitches is limited as the helical tube has finite thickness.

The result is shown in figure 3.8 with the translational velocity and rotational velocity

normalized by the wave speed !
s

with respect to the number of pitches n
p

, which

ranges from 2 to 8. This figure corresponds to the figure 8 in [7]. They show great

agreement with each other.

3. E↵ect of simultaneous change of slenderness and amplitude on velocities

The e↵ect of slenderness and amplitude of the the waving helical tube to the trans-

lational and rotational velocities is studied here. Non-dimensional helix amplitude
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Figure 3.7: Log-log plot of (upper) normalized rotational velocity with respect
to R/� and (lower) normalized transaltional velocity with respect to
R/�. The dash line is y = (R/�)2 plotted for reference.
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R
�

= R̂/� and non-dimensional tube radius r
�

= r̂

�

are chosen with R̂ = 0.09 and

r̂ = 0.035. The setup is equivalent to keeping the tube radius and helix amplitude

fixed, but varing the radius of the baseline circle. Figure 3.9 shows the transaltional

velocity and rotational velocity normalized by the wave speed !
s

with respect to �,

which takes values 1
3 ,

1
2 , 1 and 5

4 , the figure corresponding to the figure 10 in [7].

Above all, all results compared with those in [7] are in good agreement. The

validation of the code for the method of regularized Stokeslets is evident. However,

to use the method of regularized Stokeslets, the choice of the blob size d is essential

and varied for di↵erent problems. Based on our experience, the blob size is chosen to

be linearly or quadratically proportional to the square root of the discretization size

with a constant less than 1.

3.3 Interaction of two tori

In this section, the interaction of two toroidal free-swimmers will be studied

numerically. The parameters are taken as default values in the introduction of this

chapter. Several initial arrangements of the two tori, including two tori in tandem

or abreast, will be studied. Aside from the axisymmetric arrangement of tori, other

configurations, such as staggered tori without alignment will be considered too. Here,

“alignment” means that the line connecting the two centers of the tori is parallel to

the normal of each torus.

3.3.1 Two tori placed in tandem

We consider two tori placed in tandem that are either co- or counter-rotating.

For counter-rotating tori, there are two situations. One is two normals pointing to-

wards each other, called ‘face-to-face’ in our context. The other one is two normals
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Figure 3.9: (upper) Normalized rotational velocity �V T/!
s

and (lower) nor-
malized translational velocity are plotted against �.
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pointing away from each other, which is called ‘back-to-back’ in our context. It is

important to notice that face-to-face and back-to-back are actually the same mov-

ing mechanism but with time reversed. In the face-to-face case, two tori are moving

toward each other (see Figure 3.10) with decreasing translational velocity(see Fig-

ure 3.12(a)). No rigid rotation is observed. In the back-to-back case, two tori are

moving away from each other (see Figure 3.11) with increasing translational velocity

(see Figure 3.12(a)). Rigid rotation is not observed. When moving away far enough

from each other, they almost attain the maximum translational velocity, which is

equal to the translational velocity of a single torus. This means that two tori are

inhibiting each other when rotating in opposite direction.

When the surfaces of the two tori are moving in the same direction (co-rotating

tori, but let’s call it ‘face-to-back’.), they both are moving with the same velocity,

which is a little larger than that of a single torus in force free case. Their distance

keeps the same as they moves (see figure 3.13). However, di↵erent distances result in

di↵erent translational velocity, and the closer they are, the larger translational speed

they attain (see figure 3.12(b)). Thus, when two tori move with the same direction,

they will boost the movement of each other.

In the far field case, the translational velocity1 of the tori is given [27],

U =
u
o

2s0

✓
log 8s0 �

1

2

◆
± ⇡u

o

s0

 
11 + 2d̃2

2(4 + d̃2)5/2

!
(3.5)

for co- and counter-rotating tori respectively. Here, s0 is the aspect ratio, d̃ is the

normalized distance between the centers of two tori by the radius of centerline r
c

and

1
The formula (31) for the translational velocity in [27] is given with "2, where " = 1

s0
, outside

each parenthesis, however, comparing with formula (12) in [12], this term should be ".
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.014300

Figure 3.10: Two tori are placed face to face. They are approaching each other
without rigid rotation. The closer they are, the smaller translational
velocity they attain (see figure 3.12(a)). The arrows, which are set with
equal length, only imply the direction of the fluid at each point. The
streamlines are shown as solid lines.
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.11: Two tori are placed back to back. They are moving away from
each other without any rotation, and the further they are, the larger
translational velocity they attain (see figure 3.12(a)). The arrows imply
the direction of the fluid at that point, and not the magnitude of the
velocity. The streamlines are shown as solid lines.
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(a) Counter-rotating tori. The translational velocity increases as

the distance increases, and no rotation has been observed. Both

theory show the same tendency when the distance is increasing.
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(b) Co-rotating tori. The translational velocity decreases as the

distance increases, and no rotation velocity has been observed too.

Both theory show the same tendency when the distance is increas-

ing.

Figure 3.12: Two tori in tandem and moving with opposite direction (figure
3.12(a)) or same direction(figure 3.12(b)). The current theory we use is
the method of regurlarized Stokeslets. The far field solution is given in
formula (3.5) for two co- or counter-rotating tori in the far field limit.
Although, both figures show the gap between the current theory and
the far field solution, the relative errors in both cases are less than 2%.
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.13: Two tori are placed face to back. They move in the same
direction and at the same speed, but with no rotation. The distance
between the two tori is the same all the time. However, the magnitude
of translational velocity is larger than that of a single torus in the free
force case (see 3.12(b)). The arrow implies the direction of the fluid
at that location and the length does not mean the magnitude of the
velocity. The streamlines are shown as solid lines. The visual di↵erences
are due to the plotting method used. Theoretically the streamlines and
vector fields are the same at each time.
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u0 is the surface rotational speed. A comparison between this approximation theory

with current theory is shown in figure 3.12(a) and 3.12(b). The distance in graph is

the distance between two tori. In our case, d̃ = d+0.2
0.5 . The same tendency is observed

in both figures. Although the gap between current theory and the far field solution

is observed in both figures, the relative error in both co- and counter-rotating cases

are less 2%.

Furthermore, we also find that the translational velocities of two tori in tandem

obey a bilinear relationship with their surface tangential velocities, i.e.

U1 = a(d)⌦1 + b(d)⌦2 U2 = c(d)⌦1 + e(d)⌦2

where a(d), b(d), c(d) and e(d) are functions of the distance d between two tori.

⌦1 and ⌦2 are the surface rotational speeds of two tori respectively. After switching

the rotational velocities of two tori, their velocities swap. This fact implies that

a(d) = e(d) and b(d) = c(d). So, the formula for translational velocities are

U1 = a(d)⌦1 + b(d)⌦2 U2 = b(d)⌦1 + a(d)⌦2

Moreover, a(d)⌦1 is increasing to U0 and b(d) is decreasing to 0 as d ! +1, where U0

is the translational velocity of a single torus with surface rotational speed ⌦1. These

relations have been validated in our experiments.

3.3.2 Two tori without alignment

In the axisymmetric case of tori placed in tandem, the line connecting the

centers of the tori is co-linear with the normal vector of each torus. We now consider

perturbations of this axi-symmetric case in which we restrict the initial placement
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such that the normal vectors of each tori are parallel. We can assume that the plane

spanned by the line connecting the torus centers and the parallel normal directions

is the plane y=0. The advantage of this assumption is that both tori will yield zero

translational velocity in y-direction and rotate only about the y-axis. All figures with

tori shown below are observed from the negative y axis, which is pointing out of the

page, and the x-axis and the z-axis are pointing to the right and upward respectively.

Before showing the numerical results, a way of predicting the evolution of each

torus in two-tori interaction is presented. The induced velocity for one is determined

by its position in the flow fields caused by the other one. However, the induced ro-

tational velocity comes from the relative positions, which directly a↵ects the force

distributions from the other one. For perturbations to the counter-rotating tori (Fig-

ure 3.14(a) and 3.14(b)), the other-induced velocities of the tori will be opposite to

each other since both of them move upstream but the stream directions are opposite.

Together with opposite self-induced velocity in the direction of the normal vector,

this fact implies that two translational velocities will be opposite. However, since

the relative positions of one tori to the other one are the same, the uneven force

distributions causing the rotation will be the same, which means they will rotate in

the same direction. The same reason can be applied to the perturbation to the co-

rotating tori (Figure 3.14(c)). With the same self-induced translational velocity and

same other-induced translational velocity but opposite relative positions, the two tori

will translate with the same translational velocity but rotate in opposite directions.

These symmetry arguments will be validated with the following numerical results.

Let’s go back to the discussion of the numerical results. First, a small pertur-

bation to the face-to-face case (Figure 3.15) will cause the pair move close to each
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(a) perturbed face-to-face tori (b) perturbed back-to-back tori

(c) perturbed face-to-back tori

Figure 3.14: Illustration of perturbation to the three axisymmetric cases:
face-to-face, back-to-back and face-to-back. The normal direction, n,
is the direction of the self-induced translational velocity, and v1 denote
the induced velocity from the other torus.

other and to rotate clockwise from the view of negative y axis. The closer they are, the

smaller translational velocity is. However, the rotational velocity is increasing as the

distance gets closer (see figure 3.19(a)). Figure 3.18(a) shows the distance between

the normals of two tori with respect to time decreases even though the translational

velocity components in the direction perpendicular to normal direction and y-axis (let

it called perpendicular direction) are pointing away from each other. A tendency

of alignment is observed in this case.

Secondly, we consider a small perturbation to the back-to-back case (Fig-

ure 3.16). Two tori move away from each other in the normal direction and also move

away from in the perpendicular direction (Figure 3.18(b)). Moreover, the pair rotates
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counterclockwise at the same time with the same magnitudes.

Next, we consider a small perturbation to the face-to-back case. Here the pair

does not rotate in unison, but rotate in opposite direction (Figure 3.17). The top one

rotates clockwise and the bottom one rotates counterclockwise. Figure 3.17 shows

the case that two tori rotate in opposite way all the time. The lower one is rotating

faster than the top one that its right end goes into the hole of the top one (see figure

(d), which is shown in figure 3.22(a) from other angle of view). Collision might occur

when two tori are too close.

Furthermore, we plane two tori abreast on the plane z = 0 with both going

upward at the intial time t = 0 (see figure 3.20). At this time, from the symmetry of

their positions, they will move with the same translational velocities. As for rotation,

for the right torus, since its leftmost end is pushed down more than its rightmost end,

it will rotate counterclockwise. The same analysis can be applied to the left torus,

and it will rotate clockwise. Thus, the relative positions of these two tori decides

that they will rotate in opposite direction. As time progesses, since preserving its

symmetry with respect to the y-z plane, these two tori will move with the same speed

but in a symmetric direction with respect to the plane x = 0 and rotate in opposite

way. The combination of transaltion and rotation to each torus results that these two

tori will moving toward each other almost like folding wings of a butterfly with two

wings approaching each other in x-direction (see figure 3.19(b)).

Lastly, one interesting perturbation to the face-to-back case is placing the cen-

ter of one of the torus at (�0.8, 0,�0.1) and that of the other at (0.8, 0, 0.1). The

initial velocities of both tori are upward, but the rotational velocity of the lower one is



58

(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.15: Two tori are placed face to face with a perturbation to the right in
the x direction. They move toward each other with same translational
velocity and same rotational velocity(clockwise). They also show a
tendency to align themselves (see figure 3.18(a)). The arrows imply
the direction of the fluid at each point, and not the magnitude of the
velocity. The streamlines are showed as solid lines.
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.16: Two tori are placed back to back with a perturbation to the
right in the x direction. They move away from each other with opposite
translational velocity but same rotational velocity (counter-clockwise).
Moreover, they show a tendency of getting away from the alignement
(see figure 3.18(b)). This experiment is exactly the same as the experi-
ment in figure 3.15 with time reversed. The arrows imply the direction
of the fluid at that point, and not the magnitude of the velocity. The
streamlines are shown as solid lines.
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.17: Two tori are placed face to back with a perturbation to the right
in the x direction. They move with opposite rotational velocities until
they are far away from each other or they collide. The two tori in figure
(d) do not collide with each other, which is confirmed in figure 3.22(a).
Figure 3.22(a) shows the figure (d) from another view point. The arrows
imply the direction of the fluid at each point, and not the magnitude
of the velocity. The streamlines are shown as solid lines.
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(b) perturbed back-to-back case

Figure 3.18: The distance d between the normals of two tori is shown with
respect to time here. In perturbed face-to-face case (figure 3.18(a)),
the initial distance is 0.3, and as time passes, the distance decreases.
Centers of two tori are approaching to each other in the perpendic-
ular direction. Therefore, alignment is observed in this case. In the
perturbed back-to-back case (figure 3.18(b)), the initial distance is 0.3
too, but as time passes, the distance increases. Centers of two tori are
moving away from each other in the perpendicular direction.
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(b) The horizontal distance between two side by

side tori.

Figure 3.19: (a) The rotational velocity is shown with respect to time in the
perturbed face-to-face case. As time evolves, the rotational velocity
increases. (b) The horizontal distance between two side-by-side tori is
shown with respect to time. It shows that the distance in x direction
is decreasing as the time evolves. This implies that the tori are moving
toward each other in x direction.
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(a) t = 0.00000 (b) t = 0.005000

(c) t = 0.010000 (d) t = 0.015000

Figure 3.20: Two tori are placed side by side. They move toward each other
with translational velocities symmetric w.r.t. y-z plane but with op-
posite rotational velocity. They have a tendency to align themselves,
which means they will turn into the face-to-face case eventually. The
arrows imply the direction of the fluid at each point, and not the mag-
nitude of the velocity. The streamlines are shown as solid lines.
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clockwise, and that of the upper one is counterclockwise (seen from negative y axis).

The tori are folding like the case of two side-by-side tori (see figure 3.21(b) and (c)).

The two tori do not collide in figure 3.21(c). This can be observed from the figure

3.22(b), which is the figure 3.21(c) with camera zoomed in. As they get close, the

upper one and the lower one experience increasing clockwise push and the increasing

counterclockwise push respectively. The upper one and the lower one finally start

rotating clockwise and counterclockwise respectively (see figure 3.21 from (c) to (d)).

Then they move away with decreasing rotational speeds. With the rotational veloci-

ties turn back as their originial directions, the two tori return back to their original

alignment (see figure 3.21 from (g) to (h)). As one can see from figure 3.21, the

trajectory of these two tori are periodic.

3.4 Interaction of three tori

In this section, we consider the interaction between three tori. In figure 3.23(a),

we place the three tori abreast facing upward. From the discussion in previous sec-

tions, any two of them will translate and rotate toward each other. Since the e↵ect

from the rightmost torus to the middle one is neutralized by that from the leftmost

one, the middle one will translate without rigid rotation. The other two tori rotate

toward the middle one. We are expecting the outermost two tori to rotate until the

three of them form an equilateral triangle from the view of the negative y axis. How-

ever, the results with a limited time can be shown in figure 3.23(b) since the tori are

too close that a finer discretization and a smaller time step are required from then on.

Figure 3.24 shows another configuration of the three-tori with their centerline

planes located on the x-y plane and their centers forming an equilateral triangle.
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(a) t = 0.00000 (b) t = 0.13000

(c) t = 0.05000 (d) t = 0.15000

(e) t = 0.10000 (f) t = 0.17000

(g) t = 0.12000 (h) t = 0.22000

Figure 3.21: Two tori are placed in the perturbed face-to-back case. They are
moving with a periodic trajectory in this case. The figures are shown
with a up-moving focus frame of a speed 30. Figure (c) is shown up
close in Figure 3.22(b) to show that no collision happens even though
they seem very close. The arrow implies the direction of the fluid at
that point, and not the magnitude of the velocity. The streamlines are
shown as solid lines.



66

(a) Perturbed face to back case

(b) Periodic case

Figure 3.22: Figure 3.22(a) is another view of the figure 3.17(d). It shows that
the two tori do not collide with each other. Figure 3.22(b) is obtained
from the figure 3.21(c) with camera zoomed in. The gap between two
tori is evident, which means the two tori do not collide with each other.
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(a) t = 0.00000 (b) t = 0.059000

Figure 3.23: Three tori are placed abreast. Figure (a) shows the initial
placement of the three tori with streamlines and flow fields around
them. Figure (b) shows the three tori represented by segments(the
leftmost by dash, the rightmost by dash-dot and the middle one by
solid line), and the trajectories (in solid lines) of the centers of the three
tori within a limited time. The figure is obtained from the numerical
data. It shows that the outer two move and rotate toward the middle
one, which translates upward in between. All the views are seen from
the negative y axis.

Each one of them rotates toward the other two if the interaction of only two tori is

considered. The combination of the e↵ects from the other two tori to one of them

results in the rotation in the direction of the angle bisector of the equilateral triangle

(formed by the centers of the three tori). We are expecting the three tori will rotate

until they form a equilateral triangle from the view of the positive z axis. However,

a finer discretization mesh and a smaller time step are required for them to proceed

in this numerical experiment.

When the three of tori are placed in tandem with all their normals pointing

upward (see figure 3.25), the three co-rotating tori experience zero rigid rotation, but

translate with di↵erent translational velocities. The middle one is boosted from the
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(a) t = 0.00000 (b) t = 0.08700

Figure 3.24: Three tori are placed in x-y plane with centers forming an
equilateral triangle with all normals pointing upward. Figure (a) shows
the streamlines and flow fields in the plane y = 0. Figure (b), which
is obtained from the numerical data, shows that the relative motion of
each torus (represented by a circle) is to rotate to face the direction of
the center of the triangle, and move towards it. The marker ’x’ shows
the center of each torus.

top one and the bottom one and it will move faster than the other two. Between

the top one and the bottom one, when the middle one is located below the middle

point of the segment connecting two centers of the the top one and the bottom one,

the bottom one is moving faster than the top one. Otherwise, the top one is moving

faster than the bottom. However, since the middle one is always faster than the top

one, collision between the top one and the middle one might be expected to happen

in this case.

Lastly, we study the pattern that inserting a rotating torus with normal point-

ing upward between two counter-rotating tori (see figure 3.26). The top one is inhib-

ited from both the bottom and the middle ones. Its speed will be the slowest among

the three. Since the middle is inhibited more from the top than the bottom one, the
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(a) t = 0.00000 (b) t = 0.59900

Figure 3.25: Figure (a) shows the three co-rotating tori placed in tandem with
all normals pointing upward. The streamlines and flow fields are shown
too. In figure (b), the three parallel segments represent the positions of
the three tori at time 0.599. The marker ’x’ shows the initial location
of the center of each torus. The vertical lines are the trajectories of the
centers of the three tori, which are moving upward.

bottom one will have the largest speed. Both the middle and the bottom ones are

moving upward, but the moving direction of the top one is a↵ected by the distances

to the other two tori. Figure 3.26 shows that the top one is moving downward and

the rest are moving upward at the begining. When the top one and the middle one

are becoming close, all three are moving upward. As time evolves, the velocity of

the top is increasing, but that of the middle and that of the bottom are decreasing.

When the top one and the middle are very very close, the three almost attain the

same translational velocities. Finally, collision might occur because the middle one is

always moving faster than the top one.

Above all, we have shown that the interaction of three tori can be roughly

analyzed from the superposition of the interaction of two tori. The same analysis can

give insight on the interaction of four or more tori. For example, having n tori with
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(a) t = 0.00000 (b) t = 0.02900

Figure 3.26: Figure (a) shows three tori placed in tandem with the top one
moving downward and the other two upward at the beginning. The
marker ’x’ in figure (b) shows the initial location of the center of each
torus. The vertical lines are the trajectories of the centers of three tori.
Figure (b) shows that the top one changes moving direction to upward
at some time (the top trajectory has a part below the top marker ‘x’).
Finally, all three tori are moving upward with di↵erent velocities. The
bottom one is the fastest, the middle one second and the top the slowest.
Collision might occur.

all normals pointing upward and centers forming an equilateral polygon on the x-y

plane, we expect that they will rotate toward the direction of the angular bisector,

which behave like a flower folding its petals.

3.5 Comparison between interaction of finite vor-

tex dipoles and that of tori

In this section, we first reproduce the numerical results of the finite vortex

dipole interaction in [33]. Then we argue that between these minimal swimmers in

2D and the 3D toroidal swimmers result in similar trajectories of pairs.
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The numerical results of the dynamic interactions of finite vortex dipoles are

presented here and for parameters, we take them the same as in [33]. Each finite

vortex dipole is specified with a self-induced speed equal to 1 by assigning vortex

strength �
n

= 1 for each n and fixed dipole length l
n

= l = 1/(2⇡) for each n. All

other parameters or placements are taken directly from the paper [33]. For each case

below, we initially place the two finite vortex dipoles a horizontal distance b and

vertical distance h apart, and solve the equations (2.38) and (2.39) numerically by

applying ODE45 in MATLAB with relative and absolute tolerances of 10�6 and 10�8

respectively. The trajectory of the center of each dipole is plotted for a total time

t = 5.

Our results shown in figure 3.27 is exactly the same as the figure 7 in [33].

The only di↵erence is to obtain the figure (e), we set the final time t = 6. In or-

der to show the similarity of interaction between tori and finite vortex dipoles, we

intentionally increase the length of the each finite vortex dipole to l
n

= 1. With a

height h = 1 fixed, figure 3.28(a) shows the changes of the transaltional speed and

the rate of change of the angle ✓̇ of the upper dipole with respect to the horizontal

distance b. The self propelled speed is also plotted for reference. As we can see, the

translational velocity of the finite vortex dipole decreases to a speed less than the

self-propelled speed and then increases and approaches to the self-propelled speed as

the horizontal distance b increases. However, the e↵ect of the distance to the angle

speed of the upper finite vortex dipole is deceasing to the global minimum (nega-

tive), then increasing to a global maximum (positive), and eventually decreasing to

0. Let’s denote the horizontal distance d1 where the translational speed is equal to

the self-propelled speed, and d2 where the angle speed is equal to zero. Then, d1, d2

are di↵erent from di↵erent length l
n

. Moreover, d1 and d2 both are increasing as the
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Figure 3.27: Interaction of two finite vortex dipoles in two dimensional space
aligned with di↵erent vertical distance h and horizontal distance b is
shown. The line is the trajectory of the center of each dipole, and the
bold line segment at the end of each trajectory is used to represent
each dipole at final time t = 5. The final time for (e) is t = 6. The
ends of the line segment in bold are where the vortices are located. (a)
h = 4l, b = 0 (b) h = 4l, b = 2l (c) h = 4l, b = 4l (d) h = 2.25l, b = 4l
(e) h = 1l, b = 4l and (f) h = 0, b = 4l.
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height h is increasing. Similar figure (figure 3.28(b)) can be obtained from the study

of the tori with h = 0.3. The similarity in change of speed and rate of change of the

angle implies the similarity in the interaction patterns would be possible. Figure 3.29

shows six patterns from the interaction of two tori with equal radius of centerline

r
c

= 0.5 and equal radius of tube r
h

= 0.1. Comparing figure 3.27 and figure 3.29,

they are almost the same, but with di↵erent initial placements.

When two finite vortex dipoles are placed in tandem (d = 0), the angle speed

is zero. Thus, the dipoles do not rotate. The “dipole drafting” phenomena, which

means the dipoles help each other in translating forward, happens to both dipoles

(figure 3.27(a)) and so do tori (Figure 3.13 and 3.29(a).). As the horizontal distance

d increases, the angle speed (upper one) is negative. The upper one (torus or dipole)

rotate clockwise and the lower one acts in opposite way. Divergence or eventually

collision (Figure 3.17, 3.29(b), 3.29(c) for tori and 3.27(b), 3.27(c) for finite vortex

dipoles) will be observed. When d increases to d2, they (dipoles or tori) will translate

without rotation (Figure 3.27(d) for dipoles and figure 3.29(d) for tori. When d > d2,

the upper one will rotate counterclockwise and the lower one will rotate clockwise

at first. The dipoles (figure 3.27(e)) or tori (figure 3.21and figure 3.29(e).) begin

to oscillate with periodic trajectories. However, since the translational speed of the

torus is usually much larger (at least 10 times in our cases) than its angular speed, it

is not so immediate to observe this oscillation in most cases. When d goes to infinity,

their interaction is so trivial that the objects will move much like a single object.

This coincides with the tendency of the translational speed and the angular speed in

figure 3.28. When two finite vortex dipoles (figure 3.27(f)) or tori (figure 3.20 and

figure 3.29(f).) are placed abreast (h = 0), they will translate and rotate toward each

other. Same comparison can also be observed from the study of three dipoles and
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Figure 3.28: The translational speed and angular speed of (a) a pair of dipoles
with height h = 1 and (b) tori with height h = 0.3 are plotted against
the horizontal distance b.The translational speed increases, decreases,
and then again increases. However, here the angular speed is decreas-
ing, then increasing and finally decreasing. The distance, d1, is the
distance where the translational velocity is equal to the self-propelled
speed and d2 is the distance where no rotation happens to each torus.
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three tori.
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Figure 3.29: Interaction of two tori in three dimensional space aligned with
di↵erent vertical distance h and horizontal distance b. The line is the
trajectory of the center of each dipole, and the bold line segment at the
beginning or the end of each trajectory is used to represent each torus.
The tori here have equal radius of centerline r

c

= 0.5 and radius of tube
r
h

= 0.1. (a) h = 1, b = 0 with final time t = 0.2. (b) h = 1, b = 0.5
with final time t = 0.25. (c) h = 1, b = 0.8 with final time t = 0.243.
(d) h = 0.3, b = 1.13796 with final time t = 0.199. (e) h = 0.2, b = 1.6
with final time t = 0.4 and (f) h = 0, b = 1.6 with final time t = 0.083.
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Chapter 4

Models of dinoflagellate

4.1 Motion of dinoflagellate

In this section, we choose an idealized model of a dinoflagellate to be a sphere

surrounded by a thin torus (see Figure 4.1(a) and 4.1(b)) with a prescribed surface

tangential velocity on the surface of the torus. The radius of the sphere is repre-

sented by r
s

with default value equal to 0.4. The number of points on the sphere is

N
s

= 1600. The radius of the centerline of torus is r
c

= 0.5 and the radius of the tube

is r
h

= 5.7498e� 02. The number points in each cross-sectional circle is M = 12 and

the number of cross-sections along the centerline is N = d12rc
rh

e = 105. The numerical

result shows that the new model still moves in its normal direction, which is defined

in last section as the moving direction of the inner part of the torus. However, its

translational speed, which is 1.7228e+01, is larger than that of a single torus, which

is 1.3280e+01, with the same surface tangential velocity. Thus, the existence of the

sphere boosts the translational speed of the torus. Moreover, the streamlines and the

flow field around the torus-sphere object in the plane y = 0 are shown in figure 4.1(c)

and figure 4.1(d).

Let s0 = rc
rh
, which is the aspect ratio, � = rs

rh
, and ratio U = Uts

Ut
, where U

ts
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(a) model of dinoflagellate (b) the model viewed from the top

(c) streamlines and flow field around the model

of dinoflagellate in the plane y = 0

(d) streamline and flow field around the model

of dinoflagellate in the plane y = 0 viewed from

another angle

Figure 4.1: Model of dinoflagellate ((a) and (b)) are shown here from di↵erent
view angles. Streamlines are shown with solid lines in (c) and (d) from
two di↵erent view points. The arrows show the flow field not with the
magnitude but the direction only.
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and U
t

are the translational velocities of the torus-sphere and the torus respectively.

From the geometry of the model, s0 > 1 and 0 < � < s0 � 1. The choice of s0 and

� are shown in colors in figure 4.2. The di↵erent color corresponds that di↵erent

magnitude of the ratio U (see color bar). The closer the point (s0,�) is to the line

� = s0 � 1, the larger the ratio U is. In other words, if the sphere filled in the whole

hole of the torus, i.e. � = s0� 1, the translational velocity of the torus-sphere will be

the largest with fixed aspect ratio s0. Independently, � has a positive e↵ect on the

translational speed (see the right one in figure 4.3(c)), but s0 shows a negative e↵ect

(see the left one in figure 4.3(c)). These facts imply that the increase in translational

velocity depends on how narrow the gap between the torus and the sphere is. In

figure 4.3(a) and 4.3(b), the ratio U is plotted with respect to s0 or 1
s

0

in x-axis and

� in y-axis respectively.
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Figure 4.2: The restriction of s0 and � is that the points should be contained
in the region 0 <= � < s0�1. And our choice of s0 and � are shown in
the color area. The color shows the magnitude of the ratio U between
translational velocity of torus-sphere and torus.
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Figure 4.3: Note that the larger the sphere is, the larger � and the larger
the boost in translational velocity to the torus-sphere when the aspect
ratio is fixed. The e↵ect decreases when the aspect ratio increases with
fixed �.
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4.2 Swimming e�ciency

Although the translational velocity is increased when a spherical body is placed

inside the torus, we do not know whether the power needed to rotate the surface is

increased or not. Thus, we would like to determine how e�cient each swimmer is. In

this part, the e�ciency of a swimmer (see [12]) will be defined by the ratio between

the power P
t

expended by dragging the rigid body at velocity U and rotating it with

a rotational velocity ⌦ and the power P dissipated by the fluid viscosity, which is

given by the integral over the boundary surface S:

P =

Z

S

(� · n) · udS

where u is the surface tangential velocity and � are the surface stress tensor. And

the other power P
t

is given as follows:

P
t

=

Z

S

(�t · n) · (U+⌦⇥ (x� x
c

))dS

where U and ⌦ are the translational velocity and the rotational velocity respetively,

and �t are the surface stress tensor when the object moves with a translational velocity

U and rotational velocity ⌦. Let the swimming e�ciency be �, then

� =
P
t

P

If the object has only constant rigid translation motion, then

� =
P
t

P
=

R
S

(�t · n) ·UdS

P
=

R
S

(�t · n)dS ·U
P

=
F (g) ·U

P
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which is the definition of Lighthill’s swimming e�ciency � (see [12]). Here F (g) is

the external force used to drag the glider with translational velocity U. Thus, the

swimming e�ciency defined here is a generalized formula which can be applied not

only to the glider case but also to any body with rigid translation and rigid rotation.

From the definition, the power e�ciency is a dimensionless scalar. The higher

� is, the more e�ciency the swimmer is. With the definition of e�ciency, we compare

several models by their e�ciencies: single torus, co-rotating tori, torus with sphere

located at its center and helical ring. Figure 4.4 shows that although the translational

velocity for each torus in co-rotating tori is larger than that of a single torus (see fig-

ure 4.4(a)), the total power expanded (see figure 4.4(b)) is more than twice as much

as that of the single torus. Thus the e�ciency of co-rotating tori is always less than

that of a single torus, and the further the distance between two tori in co-rotating tori

is, the closer the e�ciency is to a single torus (see figure 4.4(c)). Therefore, although

the co-rotating tori increase the swimming speed, the power dissipated by the fluid

viscosity is increased even more, which results in less e�ciency.

When comparing the e�ciency of the single torus with that of the torus with

a sphere at its center, the torus with a sphere placed at its center shows more e�cient

than a single torus (figure 4.5(a)). The larger � is, the more e�cient the torus-sphere

swimmer is (figure 4.5(b)). This implies that the hole in the torus decreases the ef-

ficiency of the torus. When the torus were blocked by the sphere (� = s0 � 1), the

swimmer will attain the maximum e�ciency.

All in all, comparing between single torus, co-rotating tori and torus with

sphere, the model of torus with sphere is superior over the other two cases. In fact,
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(c) aspect ratio v.s. e�ciency

Figure 4.4: These figures show the translational velocity (figure 4.4(a)), power
dissipated by the fluid viscosity (figure 4.4(b)) and the e�ciency (fig-
ure 4.4(c)) v.s. aspect ratio s0 of two co-rotating tori placed in tandem.
Figure 4.4(a) and 4.4(b) shows the boost of the translational velocity for
them and also the increase of the power dissipated by the fluid viscos-
ity respectively. This results in the lower e�ciency for the co-rotating
tori (figure 4.4(c)). The dashed line in figure 4.4(c) is the asymptotic
result of e�ciency of a single torus, which was presented in formula
(23) in [12].
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(b) Comparison of e�ciency between a single

torus and a torus with a sphere. The curve in
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with respect to di↵erent aspect ratios (x-axis).

The rest of the curves are the e�ciencies of the

torus with a sphere under several di↵erent �.

Figure 4.5: The swimming e�ciency decreases as the aspect ratio increases.
For the torus with a sphere located at its center the e�ciency is always
larger than that of the torus without a sphere. The larger � is, the
more e�cient the swimmer is.

[12] shows that the torus swimming with extensible surface tank treading obtains

the largest e�ciency when compared with the torus with constant surface rotation

velocity (model used in this thesis), the torus with tank treading of incompressible

membrane, the rotating helical flagellum [36], beating flexible filament [37], the Pur-

cell’s three-link swimmer [38, 39], locomotion by virtue of shape strokes [40, 41] and

others. Taking our comparison into consideration, we expect to see that the torus

with extensible surface tank treading and a rigid body inside will be superior to all

mentioned above.

4.3 Helical tube near wall

4.3.1 Introduction

In the section, we return to the model of a dinoflagellate to study the e↵ect

of a nearby wall to the movement of its flagellum as a helical tube. The helical tube
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has been introduced in section 3.2.2 and the equations for its centerline are given in

equation (3.4). Here, we are going to study the helical tube with the baseline located

at the y-z plane

8
>>>>>><

>>>>>>:

x(s, t) = R cos
�
2⇡s
�

� !t
�

y(s, t) =
⇥
r �R sin

�
2⇡s
�

� !t
�⇤

cos
�
s

r

�

z(s, t) =
⇥
r �R sin

�
2⇡s
�

� !t
�⇤

sin
�
s

r

�
.

The helical tube is a cylindrical tube along its centerline with a radius r
h

. The

movement of the helical tube under the e↵ect of the wave amplitude, the number of

pitches and slenderness had been studied in [7] and is also presented in section 3.2.2.

However, the e↵ect of the nearby wall to the motion of the dinoflagellate is also of

importance from the view of their living enviroment. We are going to study the e↵ect

of the wall from two models: toroidal glider and force free swimmer. Sometimes, an

object with symmetric shape will be used to isolate di↵erent types of e↵ects from the

total e↵ect. Following the parameters in [7], number of pitches is n
p

= 3, amplitude

is R = 0.09, radius of centerline is r = 0.5, angular speed is ! = 0.1 and radius of

tube is r
h

= 0.035. The velocity on the centerline u = (u, v, w) is computed from

the derivative of the equations of the centeline with respect to time t.

u(s, t) = R! sin

✓
2⇡s

�
� !t

◆

v(s, t) = R! cos

✓
2⇡s

�
� !t

◆
cos
⇣s
r

⌘

w(s, t) = R! cos

✓
2⇡s

�
� !t

◆
sin
⇣s
r

⌘
.
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Then, we introduce the three vectors {t,n,b} which form a right-handed orthonormal

triad at position s along the curve at time t. First, let ↵(s, t) = (x
s

, y
s

, z
s

), where

x
s

(s, t) = �2⇡R

�
sin

✓
2⇡s

�
� !t

◆

y
s

(s, t) = �
✓
r �R sin

✓
2⇡s

�
� !t

◆◆
sin
⇣s
r

⌘
/r � 2⇡R

�
cos

✓
2⇡s

�
� !t

◆
cos
⇣s
r

⌘

z
s

(s, t) =

✓
r �R sin

✓
2⇡s

�
� !t

◆◆
cos
⇣s
r

⌘
/r � 2⇡R

�
cos

✓
2⇡s

�
� !t

◆
sin
⇣s
r

⌘
.

Then, we define the triad (t, n, b) as

t = (t1, t2, t3) =
↵(s)

|↵(s)|

n = (0,
t3p
t23 + t22

,� t2p
t23 + t22

)

b = t⇥ n

Note that the tangent t would never be (1, 0, 0) or (�1, 0, 0) that the above definition

of n is well-defined. Under the triad (t, n, b), the points x on the helical tube can

be represented as:

x = (x(s, t), y(s, t), z(s, t)) + r
h

n · cos(�) + r
h

b · sin(�) (4.1)

where (x, y, z) is the point on the centerline and � is the angle in the cross-sectional

plane. Here, t is the tangential vector. We remark that these definitions are di↵erent

from the actual“normal” and the actual “binormal”

ñ =
t
0
(s)

|t0(s)|

b̃ = t⇥ n
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Although di↵erent set of sample points are obtained, they just represent the surface

the helical ring in di↵erent way. However, we do not know whether they will make a

di↵erence in the results. Then the velocity at the point x on the surface of the helical

tube will be

u =
dx

dt
= (x

t

, y
t

, z
t

) + r
h

cos(�)
dn

dt
+ r

h

sin(�)
db

dt
(4.2)

The method of regularized Stokeslets with images will be implemented here and the

blob size will be chosen as 7
12"0, where "0 is the average distance between linked points

on the discretized surface, the blob size validated as the closest agreement between

velocities computed using the slender body theory and those computed using the

method of regularized Stokeslet in [7]. The number of points in each cross-sectional

plane is M = 6 and the number of cross-sections is N = 110. The total points on the

surface of the helical ring is N
p

= 660.

Before starting the validation of our numerical method, first we examine how

a point on the helical tube moves in time. Figure 4.6 and 4.7 show that each point in

the centerline moves along a circle and the trajectory of the centerline forms a torus.

Also, the points on the surface are not rotating along the normal to the centerline

plane, but are moving along the centerline of the helical ring (see figure 4.6).

4.3.2 Validation

The strength of the image method has been introduced in [31] by studying

several examples. One of the examples in that paper that we are going to present

here is a ball moving parallel and perpendicular to an infinite wall in Stokes flow

with velocity 0 on the wall. We examine how the wall a↵ects the drag force on the

ball. In [42], a non-dimensionalized force F ⇤ is computed with analytic formula ob-
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(a) t = 0 (b) t = 10 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 63

Figure 4.6: The particle line (dot plot) of a point on the surface of the helical
tube is plotted with comparison to the trajectory of the centerline point
(circle plot), which is on the same cross-sectional plane as the point on
the surface. The trajectory of the centerline point is a circle. The
trajectory of the surface point is an ellipse.

(a) t = 0 (b) t = 10 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 63

Figure 4.7: The non-hydrodynamic trajectory of the points on the centerline
is plotted against the time. All trajectories form a torus over the course
of one period.
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tained by employing the bispherical coordinates when studying the fluid motion in

highly viscous flow generated by the rigid sphere of radius a. In [43, 44], The ex-

act solution to the slow viscous flow with a rigid sphere moving perpendicular to

the infinite wall is obtained by applying bipolar coordinates. The analytical formula

of non-dimensional force F ⇤ will be computed with the analytical formula provided

in [43] (for d/a � 1.02) and [44] (for d/a < 1.02). A comparison between the an-

alytical solution and numerical result will be presented in both cases. In [31], the

authors used the blob size � = 0.22h0.9 and � = 0.4h0.9 for the ball moving parallel to

a wall and the ball moving perpendicular to the wall respectively, where h =
q

4⇡a2

N

and N is the number of points on the sphere. Here [31], it was mentioned that these

choices may not be the best, but we still expect to see our answer approches the

exact answer as the finer discretization is applied. In [31], the authors used spherical

coordinates to sample the points on the sphere, which are relatively even, and found

that it turns out to be fine. However, the distribution of points on the sphere a↵ects

the results. Since an area with a cluster of points will result in over regularization in

this area and the gap between clusters will be less represented by the sample points.

Both cases will lead to the increase of the error in the result. Thus theoretically, a

relatively evenly distributed points is preferred, so Spherical Centroidal Voronoi

Tessalation (SCVT) [45,46] is applied under this situation.

In free space, the draging force needed to move the ball with translatonal ve-

locity U in the Stokes flow is F = 6⇡µUa, where µ is the fluid dynamic viscosity

(µ = 1 in our case) and a is the radius of the ball. However, with the existence of the

wall, the dragging force will change. Following [31], a dimensionless force F⇤ = F
6⇡µUa

will be used to analyze results.
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Ball moving parallel to the wall

Table 4.2 and table 4.4 show the results from the method of regularized

Stokeslet with images incoporated with SCVT, and table 4.1 and table 4.3 are the

results taken from paper [31]. The gap size d is the distance from the center of the ball

to the wall. Comparing table 4.1 with table 4.2, we can see that the results are almost

the same. Thus, those two distributions of the points on the sphere make little dif-

ference in the results. Moreover, in order to make it convergent, a finer discretization

is required especially when the ball is quite close to the wall.

d/a Gap size F⇤
from polar coordinate F⇤

[42]

S = 468(h = 0.0161) S = 812(h = 0.0124) S = 1486 (h = 0.00920) S = 2718 (h = 0.0068)

11013.2 1101.22 0.9933 0.9960 0.9980 0.9991 1.0000

10.0677 0.90677 1.0515 1.0545 1.0567 1.0580 1.0591

3.7622 0.27622 1.1644 1.1681 1.1708 1.1725 1.1738

1.5431 0.05431 1.5459 1.5537 1.5595 1.5632 1.5675

1.1276 0.01276 2.0614 2.0851 2.1056 2.1205 2.1515

1.0453 0.00453 2.4226 2.4621 2.5007 2.5007 2.6475

1.0050 0.00050 3.6581 3.4548 3.3999 3.3945 3.7863

Table 4.1: Non-dimensional forces of sphere moving along the wall with radius
a = 0.1. S is the number of points on the sphere.

d/a Gap size F⇤
from Spherical Centroidal Voronoi Tessalation F⇤

[42]

S = 468(h = 0.0161) S = 812(h = 0.0124) S = 1486 (h = 0.00920) S = 2718 (h = 0.0068)

11013.2 1101.22 0.9935 0.9962 0.9981 0.9992 1.0000

10.0677 0.90677 1.0518 1.0547 1.0568 1.0581 1.0591

3.7622 0.27622 1.1647 1.1684 1.1710 1.1726 1.1738

1.5431 0.05431 1.5461 1.5540 1.5598 1.5635 1.5675

1.1276 0.01276 2.0581 2.0843 2.1057 2.1208 2.1515

1.0453 0.00453 2.4103 2.4566 2.4991 2.5322 2.6475

1.0050 0.00050 3.2826 3.2998 3.3373 3.3593 3.7863

Table 4.2: Non-dimensional forces of sphere moving along the wall with radius
a = 0.1. S is the number of points on the sphere.

Ball moving perpendicular to the wall

Table 4.3 shows the results by using the spherical coodinate [31], and table 4.4

shows the results from the Spherical Centroidal Voronoi Tessalation. Althogh the

results in both ways do not appear to be close to the asymptotic value F ⇤ when

the distance between the ball and the infinite wall is too close (Gap size equal to

d = 0.00050), both results are reasonable since the gap size is smaller than the blob

size �. To obtain a closer result, a finer discretization is necessary.
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d/a Gap size F⇤
from polar coordinate F⇤

[43, 44]

S = 468(h = 0.0161) S = 812(h = 0.0124) S = 1486 (h = 0.00920) S = 2718 (h = 0.0068)

11013.2 1101.22 1.0240 1.0187 1.0142 1.0108 1.0000

10.0677 0.90677 1.1556 1.1488 1.1431 1.1388 1.1253

3.7622 0.27622 1.4605 1.4497 1.4408 1.4341 1.4129

1.5431 0.05431 3.2441 3.1952 3.1557 3.1266 3.0361

1.1276 0.01276 10.2872 10.0943 9.9413 9.8021 9.2518

1.0453 0.00453 19.7071 19.4680 20.2478 21.2626 23.6605

1.0050 0.00050 2010.4400 736.6270 326.6780 180.3810 201.8640

Table 4.3: Non-dimensional forces of sphere moving perpendicular to the wall
with radius a = 0.1. S is the number of points on the sphere.

d/a Gap size F⇤
from Spherical Centroidal Voronoi Tessalation F⇤

[43, 44]

S = 468(h = 0.0161) S = 812(h = 0.0124) S = 1486 (h = 0.00920) S = 2718 (h = 0.0068)

11013.2 1101.22 1.0240 1.0187 1.0142 1.0108 1.0000

10.0677 0.90677 1.1556 1.1487 1.1431 1.1388 1.1253

3.7622 0.27622 1.4604 1.4496 1.4408 1.4308 1.4129

1.5431 0.05431 3.2409 3.1938 3.1552 3.1264 3.0361

1.1276 0.01276 9.9416 9.9421 9.8914 9.7859 9.2518

1.0453 0.00453 17.9657 18.3139 19.5678 20.8616 23.6605

1.0050 0.00050 496.8323 353.3202 236.4403 146.7698 201.8640

Table 4.4: Non-dimensional forces of sphere moving perpendicular to the wall
with radius a = 0.1. S is the number of points on the sphere.

4.3.3 Numerical results

In this section, we use the cylindrical helical tube to study the e↵ect of the

nearby wall by applying the method of regularized Stokeslets with images. The base-

line circle of the helical tube here is located on the y-z plane as introduced at the

beginning of this section. Models such as helical ring (a helical tube with tube radius

r
h

= 0) or circle (a helical tube with tube radius r
h

= 0 and amplitude R = 0)

are used to distinguish di↵erent types of e↵ects. The distance d is the distance be-

tween the center of the helical ring and the infinite wall. The e↵ect of the infinite wall

on the motion of the helical ring, treated as a free swimmer, will be shown numerically.

E↵ects from the wall

The helical ring, which is the helical tube with the tube radius r
h

= 0, is forced to

move in the x-direction with an uniform translational velocity U = 1. Without the

wall, the helical ring will experience a total dragging force F ⇤ = 6.3358 and a total

torque ⌧ ⇤ = �7.7906e � 02 in x direction and zero in the other two directions for

both force and torque. With the wall from di↵erent distances, the total force F and
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the total torque ⌧ in y and z diretions are still zeros. Figure 4.8 shows that both the

relative change of the total force with respect to F ⇤ in x-direction, which is defined

as F�F

⇤

F

⇤ and the relative change of the total torque in x direction, which is defined as

⌧�⌧

⇤

⌧

⇤ , decrease to zero as the distance between the helical ring and the wall increases.

If the helical ring moves in the negative x direction, the absolute value of the relative

change of the dragging force and of the total torque will be shown the same as the

figure 4.8(a) and the figure 4.8(b). Thus, the existence of the wall increases not only

the magnitude of the dragging force, but also the torque magnitude. In other words,

the wall shows a ba✏ing e↵ect on the moving helical ring whether going toward or

away from the wall. Applying the non-linear regression fit to both cases with the

model function y = 1
ax+b

by using nlinfit in MATLAB, â = 2.3077 and b̂ = �0.0123

for the relative dragging force, and â = 2.2670 and b̂ = 0.2833 for the relative total

torque. All their variances are less than 4e�4 and mean square error (mse) is approx-

imately 1e� 5 in both cases. Figure 4.8(a) and figure 4.8(b) show that the model fits

both data very well, which imply that the total force and the total torque in toroidal

glider case are decreasing with respect to the distance at a rate approximately equal

to -1. When the model function y = 1
ax

c+b

is selected, then under the best fit, the

estimate of the power ĉ is around 1.1, which is close to 1. The decreasing rate found

in this case is di↵erent from the quadratically decreasing to the distance between the

center of the sphere to the wall when studying the sphere moving near the wall [31].

For easily reference in the future, we call the increased drag force and torque here as

“self-induced force” and ”self-induced torque”.

In parallel motion of the helical ring, say in z direction (normal is in the z

direction too), without the infinite wall, the forces on the helical ring perform not

only the role of dragging it with drag F ⇤ but also of preventing it from rotation with
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(a) The relative total force,

F�F

⇤

F

⇤ , is plotted

with respect to the distance d.
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(b) The relative total torque,

⌧�⌧

⇤

⌧

⇤ , is plotted

against the distance d.

Figure 4.8: The helical ring is in perpendicular motion to the wall. The
relative total force and the relative total torque are shown with respect
to the distance between the helical ring and the infinite wall. Both
decrease when the distance increases. The values with marker ‘x’ are
obtained by the non-linear regression fit with model y = 1

ax+b

.

torque ⌧ ⇤ in the z direction. With the existence of the wall, the dragging force (z

component) needed to maintain the uniform translation increases in a way similar to

the figure 4.8(a) reciprocally corresponding to the distance d, and the torque required

to prevent the rotation of the helical ring (only with z component) increases the same

as shown in figure 4.8(b). This is easy to explain that the drag and the torque here are

the self-induced drag and self-induced torque. One interesting thing is the total force

and the torque are not pointing to z-direction exactly. This phenomemon implies the

existence of the wall will produce the translation and the rotation if the helical ring

moves in a direction parallel to the wall. In order to understand the force preventing

the translation and the torque preventing the rotation, both of which are produced

by the exsistence of the wall, we consider a more symmetric idealized helical ring

with amplitude R = 0 and radius of centerline r
c

= 1. This idealized helical ring is

actually a circle.
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In perpendicular motion of a circle, the total torque is zero everywhere, and

the dragging force F in x direction is decreasing approximately reciprocally with re-

spect to the distance, which is the same as the conclusion to the self-induced force. In

the motion with the circle plane parallel to the wall, the torque in the y direction is

produced (see figure 4.9(a)). Figure 4.9(b) shows the excellent match of the numerical

datum and the non-linear regression approximation with model y = a

x

2+bx+c

. This

implies that the magnitude of the torque is decreasing at the rate of -2 with respect

to the distance between the center of the circle and the wall. From the setting of

the experiment, the existence of the wall does not change the symmetry of the object

with respect to the y axis. The torque in the y-direction is created only because

of the movement of the circle in the z-direction with the existence of the wall. It

is because of the di↵erent gap distance to the wall and to infinity, which we call it

“Gap toruqe”. In the other way around, the rotation in y-axis will produce a drag

force in the z-direction, and this drag force will be quadratically proprotional to the

distance between the center of the object and the wall. In the same manner, let’s

called it “Gap drag”. Thus, “Gap drag” and “gap torque” are formed because of

the introduction of the infinite wall into the system. They usually are perpendicular

to the rotation and the translaton in the wall plane. Their magnitudes are a↵ected

by the distance between the wall in a quadratic way.

What we know now is the existence of the wall ba✏es the translation of the

swimmer in any direction 4.8(a) at the rate close to -1. The closer the swimmer

to the wall, the more impediment the wall exerts. This impediment reflects in the

reduction of the magnitude of the velocity. If the swimmer has a tendency to rotate

in a certain direction 4.8(b), the wall intensifies the rotational tendency at a rate

close to -1, which makes it harder to keep the object unrotated. Moreover, the wall
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(a) The force profile. The x direction is plotted

pointing upward, and the black arrow shows the

moving direction of the circle, which is the z

axis. The blue arrow represents the force.
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(b) The numerical data (solid line) is plotted
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Figure 4.9: Parallel motion of a circle in the z direction. From the symmetry
of the force profile (a), the circle has a tendency to rotate about the
y-direction. The figure (b) shows that the magnitude of the torque is
inverserly proportional to the square of the distance d from the center
of the circle to the wall.

produces a torque on the plane parallel to the wall and in the direction perpendicular

to the moving direction parallel to the wall (see figure 4.9(a)). This created torque

is proportional to the magnitude of the translational velocity on that plane, but in-

versely proportional to the square of the distance from the center of the object to the

wall (see figure 4.9(b)). So is the drag force created by a torque in the plane parallel

to the wall. The self-induced force from the wall and the self-induced torque

are reciprocally proportional to the distance between the wall and the centere of the

object. However, the gap torque and the gap drag are quadratically proportional

to the reciprocal of the distance.

Let’s go back to the discussion of the motion of the helical ring. If the helical

ring is pulled in x direction (its normal vector is in the x-direction, and remember

that the given wall is perpendicular to the x-axis), the helical ring will translate only
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in x direction and rotate only about the x-axis. However, if pulled in the z-direction

(normal vector is in the z-direction), it not only translates in z-direction, rotates

about the z-axis, but also translates and rotates about y axis. The translation in y-

axis comes from the rotation in z-axis. The rotation along the y-axis is generated by

the translation in z direction resulting from the e↵ect of the wall. Interestingly, there

are net force and net torque in x-direction observed in the numerical results. These

changes purely come from the shape of the immersed object because no observation

of these forces and torques for a symmetric objects were observed. Let’s call them

“form drag” and “form torque” respectively. Apply the non-linear regression fit

with the model

y =
a

x3 + bx2 + cx+ d
,

we find that this model fits extremely well with MSE less than 10�15. The compari-

son between the numerical results in form drag and form torque with the non-linear

regression fits are shown in figure 4.10. The inverse of the form drag and the inverse

of the form torque are related to the distance between the center of the object and

the wall in a cubic way. In fact, in each direction, the drag (self-induced, gap) and

the torque (self-induced or gap) will more or less be a↵ected by the form drag and

the from torque, however, they are much smaller than the other two in magnitude.

Therefore, in the non-linear regression fit, no cubic term is observed in the given

models.

Above all, we find that the wall a↵ects the motion of an immersed object

in several ways: self-induced force, self-induced torque, gap force, gap torque, even

form drag and from torque. All of them increase in magnitude as the object gets

closer to the wall. The increase of the self-induced force implies it is harder to drag

the object with constant translational velocity. The increase in all others means a
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(a) The form drag (solid line) is plotted with

respect to the distance between the center of

the helical ring and the wall. The stars show

the values from the non-linear regression fit.
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(b) The form torque (solid line) is plotted with

respect to the distance between the center of

the helical ring to the wall. The stars show the

values from the non-linear regression fit.

Figure 4.10: Parallel motion of a helical ring in the z direction. The form drag
(a) and form torque (b) in the x direction are shown here. Non-linear
regression with a model of y = a

x

3+bx

2+cx+d

is used here to estimate the
rate of decreasing. Both figures show that their magnitude are inversely
proportional to the cubic of the distance d from the center of the circle
to the wall.

larger tendency to rotate or translate in certain directions. The self-induced force or

torque does not change the moving direction. The direction of the gap force and the

direction of the gap torque are easily predicted since they are parallel to the wall and

perpendicular to the rotation axis and the translation direction on the wall respec-

tively. However, the form drag and torque are di�cult to predict because it comes

from the change of its shape.

Motion of the helical tube

From the conclusion in the toroidal glider part, if the free swimmer is moving in a

certain direction, we expect to see the reduction in magnitude of the translational

velocity since the wall has ba✏ing e↵ect on the translational velocity. We also expect

an increment of the rotational velocity in magnitude or the creation of the rotational

velocity and translational velocity when comparing to the case without the wall. Fig-
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ure 4.11 shows that the transaltional velocity and the rotational velocity change with

respect to the distance between the center of the helical tube and the wall when the

helical tube is moving in the positive x direction. Only translational velocity and

rotational velocity in the x-direction are observed. In figure 4.11(a), the translational

velocity is proportional to the reciprocal of the distance. Figure 4.11(b) shows that

the rotational velocity is decreasing reciprocally with respect to the distance.
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(a) The translational velocity, U , of the free

swimmer with a wall is plotted compared with

the velocity, U⇤
, of the swimmer without a wall.
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(b) The rotational velocity, ⌦, of the free swim-

mer with a wall is plotted compared with the

rotational velocity ⌦

⇤
of the swimmer without

a wall

Figure 4.11: The x-axis prepesents the distance between the center of the
helical ring and the wall. The transaltional velocity U increases as
the free swimmer moves away from the wall, but the magnitude of the
rotational velocity ⌦ deceases.

When the helical ring moves in the z-direction with the wall parallel to the

y-z plane, then from the discussion in toroidal swimmer, this movement will produce

forces and torques in both x and z directions. Thus, as a force free swimmer, the he-

lical tube will experience translations and rotations in both x and z direction besides

in y direction.
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Chapter 5

Summary

In this thesis we consider the hydrodynamic interaction between two toroidal

swimmers with surface tangential velocity by applying the method of regularized

Stokeslets. The torus as a toroidal swimmer was first introduced by G. I. Taylor in

1952 and then was discussed by Purcell in 1977 with a swimming mechanism with

prescribed surface tangential velocity. The underlying mechanism of propulsion comes

from the momentum squeezing the fluid through a hole. As a free swimmer, the torus

must exert zero net force and zero net torque instantaneously. This results in a rigid

translation and rotation of the toroidal swimmer in Stokes flow. Note that, because

of symmetry, a single torus in an infinite three-dimensional domain would experience

zero rotation, which is confirmed in our results. Moreover, we have validated our

numerical method by comparing our results to the analytical solution in [12] and

reproduce the numerical results in [7].

It is demonstrated that two tori, initially placed in tandem, stay in tandem.

The perturbation of two counter-rotating tori, face to face in tandem, will rotate in

the same direction and moves towards each other with a tendency of alignment. How-

ever, the perturbation of two co-rotating in tandem tori poses di↵erent results: moving

apart, translation without rotation, periodic movement or even collision. When two
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tori are initially placed abreast, we find that they rotate with opposite rotational ve-

locities and move towards each other with mirror-symmetric translational velocities.

It also has been shown that pairs of tori in 3D experience trajectories similar to pairs

of finite vortex dipoles in 2D. Moreover, we have examined the overall swimming

velocity of a single torus and the torus coupled with a sphere placed at its center.

We find that a torus coupled with a sphere inside moves forward faster than a single

torus model, and no rotional velocities were observed in either model. The e�ciency

of a torus with sphere is larger than that of a single torus with no centered sphere.

In the study of the e↵ect of the nearby wall, we used a model of waving cylindri-

cal ring introduced in [7]. Several simple experiments have been studied numerically

and we show that three types of drag forces and torques are introduced to the motion

of the immersed object: self-induced drag and torque, gap drag and torque, and form

drag and torque. They depend on the distance between the immersed object to the

wall in di↵erent rates. The inverse of the self-induced drag and torque is linearly

dependent on the distance. The inverse of the gap drag and torque is quadratically

proportional to the distance. However, the form drag and torque decrease at a cubic

rate with respect to the distance. All these show that the wall has a ba✏ing e↵ect

on the motion of the immersed object.
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Chapter 6

Future work

Interaction between multiple microorganisms and surface interactions

One natural extension of the work I have done is to examine the interaction between

multiple tori and boundaries. Spermatozoa cells have showed a preference for swim-

ming near surfaces [47]. Surface accumulation behavior and colonial dynamics of

multiple microorganism [48] will be studied with multiple tori.

Nutrient uptake by swimming tori

I propose to couple the fluid dynamic model of a swimming tori to the advection,

di↵usion and uptake of a chemical species. Within the context of the method of reg-

ularized Stokeslets, we will choose a particle strength exchange approach to model

the scalar chemical equation [49]. The concentration of nutrient will be considered as

“particles”, the movement of which will be governed by the advection-di↵usion-reation

equation. We may also apply a torque to the tori to have their motion directed, the

phenomenon of which is called chemotaxis, and will also be pushed by the flow of the

fluid [50].

Inclusion of ‘sensory’ feedback

Our current model of toroidal swimming imposes a tangential velocity that does not
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depend upon the state of the coupled system. For instance, as two tori approach each

other, or as a torus approaches a wall, the input tangential velocities are not altered.

We propose to develop a model whereby the actuation of the torus depends upon its

proximity to other objects or on its current power expenditure. In this manner, we

can choose feedback models that optimize swimming in some way.

Interaction of toridal swimmers in non-zero Reynolds number flow

From a purely fluid dynamic point of view, I propose to examine how the inclusion

of inertia would a↵ect the dynamics of a toroidal swimmer. An immersed bound-

ary method [51] will be applied to study them, and the simulation under di↵erent

Reynolds number will be analyzed.

Model of dinoflagellate

A real dinoflagellate has two flagella, a transverse helical shape wrapping around a

notched sphere and a longitudinal one shaped like a tail. One goal of our collabora-

tion with Hoa Nguyen is to develop a whole model of the dinoflagelalte, that employs

realistic geometry. The movement and e�ciency of the new model will be studied.
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