


AN ABSTRACT 

 

Despite the development of a vaccine and several antibiotics, tuberculosis continues to be 

one of the leading causes in mortality in the world. The pathogenesis of the main 

causative agent, Mycobacterium tuberculosis, has puzzled many researchers for over a 

century. Research on the origin of M. tuberculosis can provide new knowledge on how 

the organism has evolved into the dangerous pathogen it is today. This thesis reviews 

recent literature on how the evolution of tuberculosis has contributed to the genetic 

diversity and positive control of select genes in the tuberculosis genome and how this can 

impact future development of therapeutic agents.	
  



 

 

 

 

 

 

 

 

 

 

 

 
© Copyright by Alexandra Yuen-Lin Soare, 2014 

All Rights Reserved 



	
   ii	
  

TABLE OF CONTENTS 

 

LIST OF TABLES ............................................................................................................. iii 

LIST OF FIGURES ........................................................................................................... iii 

 

Chapter 

1. INTRODUCTION .......................................................................................................... 1 

2. CAUSATIVE AGENT OF TUBERCULOSIS .............................................................. 2 

3. HISTORY OF TUBERCULOSIS .................................................................................. 5 

4. ORIGIN AND EVOLUTION OF TUBERCULOSIS .................................................... 8 

5. GENETIC DIVERSITY IN M. TUBERULOSIS STRAINS ........................................ 13 

6. ROLE OF EVOLUTION IN THE GRANULOMA FORMATION ............................ 17 

7. IMPLICATIONS FOR PRODUCT DEVELOPMENT ............................................... 20 

8. CONCLUSION ............................................................................................................. 23 

 

REFERENCES CITED ..................................................................................................... 25 

 

 

 

 

 

 

 



	
   iii	
  

LIST OF TABLES 

 

1. Lineages of Human Adapted MTBC ............................................................................ 11 

 

 

 

 

LIST OF FIGURES 

1. Paintings depicting tuberculosis in the 19th century ....................................................... 6 

2. Maximum Parsimony Phylogeny of MTBC Using 89 Concatenated Gene Sequences in 

108 Strains.  (Hershberg et al., 2008) ............................................................................... 10 

3. “Out Of-And-Back-To-Africa” Scenario for the Evolutionary History of Human-

Adapted MTBC.(Hershberg et al, 2008)  .......................................................................... 12 

 

 

 

 

 

 

 

 

	
  



	
  

Introduction 

Tuberculosis is one of the leading causes of disease burden and death in the 

world, causing an estimated 1.7 million deaths each year (Lawn and Zumla 2011). After 

the development of the Bacille Calmette Guerin (BCG) vaccine in 1906 and the rise of 

antibiotics in the 1940s, tuberculosis was believed to be a disease of the past. But with the 

emergence of the HIV/AIDS pandemic in the 1980s, tuberculosis came back with a 

vengeance. Resistance to primary-line drugs, isoniazid and rifampicin, lead to 

development of multi-drug resistant tuberculosis (MDR-TB). In 1993, the World Health 

Organization (WHO) declared a global health emergency due to rapidly rising infection 

rates (Gagneux 2012). But even with new public health initiatives, tuberculosis has 

persisted and continues to acquire resistance to almost every antibiotic available 

(Calligaro and Dheda 2013). During this time, many studies began to show that BCD-

vaccinated provided limited protection, with waning immunity and varied efficacy, 

leaving many vaccinated populations susceptible with few treatments available to combat 

drug-resistance (Colditz et al., 1994).  

 Despite increased awareness and funding, there is still much to be learned about 

Mycobacterium tuberculosis, the main causative agent of tuberculosis. Only within the 

past decade have scientists begun to examine and appreciate the origin of M. tuberculosis 

and the genetic variety within the strains. Understanding of the evolutionary tract of M. 

tuberculosis can give insight the biology of tuberculosis and how to ultimately eliminate 

it. This thesis study will review published literature on how M. tuberculosis has evolved 

over time and remained a serious threat to global health. First, I will start by 

characterizing M. tuberculosis and its role in human history. Then I will discuss the 
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bacterial origin and evolution over the time. Finally, this study will examine how this 

information impacts the development of therapeutic agents targeting tuberculosis. 

 

Causative Agent of Tuberculosis 

 M. tuberculosis is a rod-shaped aerobic intracellular bacterium responsible for 

80% of the tuberculosis cases around the world. It is not classified as Gram-positive or 

Gram-negative due to its unique waxy cell wall composition, which consists mainly of 

mycolic acids that make it impervious to Gram staining and many antibiotics (Smith 

2003). Transmission of M. tuberculosis occurs through the inhalation of aerosol droplets 

containing the bacilli. Once inside a new host, M. tuberculosis migrates to the lung where 

they are taken up by alveolar macrophages. In most cases, uptake by macrophages would 

result in phagosomal maturation, with the macrophage delivering the pathogen to the 

lysosome where it is destroyed. However, in the case of tuberculosis infections, the 

macrophage is unable to mature due to bacterial interference with the phagosome 

endolytic pathway and overall maturation process (Jayachandan et al., 2013). 

Tuberculosis bacteria employ a number of mechanisms to prevent fusion with the 

lysosome, such as blocking the recruitment of the vesicular proton ATPase pump which 

prevents the macrophage from acidifying (Sturgill-Koszychki et al., 1994) or disrupting 

the phosphoinositide composition of the phagosome membrane to prevent acquisition of 

lysosomal constituents (Vergne et al., 2004).  

 Although the macrophage is unable to kill the bacteria, it does create an 

inflammatory response by recruiting cells involved in innate immune responses (i.e. 

natural killer cells, dendritic cells, T-cells, monocyte-derived macrophages, etc.) to the 
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lungs through secretion of chemokines. Once they arrive to the site of infection, the cells 

surround the infected macrophage and begin to form the granuloma, which create 

extreme environmental conditions (low oxygen, depletion of nutrients, acidic pH, etc.) to 

kill the pathogen (Ehlers and Schaaible 2013; Lugo-Villarino et al., 2013). However, M. 

tuberculosis has many virulence factors that allow it to survive in the harsh conditions of 

the granuloma. The DosR regulon has been identified as a set of genes within 

mycobacterium that allow for it to survive in anaerobic conditions (Bartek et al., Ehlers 

and Schaible 2013) and many studies have characterized the ability of mycobacteria to 

survive in highly acidic in vitro and in vivo conditions (Vandal et al., 2009).  

Since it is a highly aerobic pathogen, infection with M. tuberculosis results in 

pulmonary tuberculosis in 80-85% of cases, which presents with fever, bloody sputum, 

night sweats, chills, fatigue, and scarring of the lungs (Murray et al., 2013). The 

remaining 15-20% of cases results in the dissemination of M. tuberculosis to other 

organs. This manifestation is often seen in immunocompromised individuals when the 

granulomas are unable to encase the bacteria, allowing M. tuberculosis to escape the 

lungs and spread to other organs like the spine (Pott’s disease), lymph nodes (“King’s 

evil”) or, as is the case of military tuberculosis, multiple organs at once (Sharma and 

Mohan 2012). Meningeal tuberculosis is an extra-pulmonary dissemination of 

tuberculosis, where the bacteria manage to escape the lung and enter the blood stream to 

spread to the meninges membrane that surrounds the central nervous system. Although it 

is not as common as pulmonary tuberculosis, meningeal tuberculosis is still very 

widespread and is often referred to as the most deadly dissemination of tuberculosis 

infection. Meningeal tuberculosis causes intracerebral inflammation that results in 
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clinical symptoms, including headache, fever, vomiting, convulsions, coma, and in many 

cases, death (Marais, et al., 2010). 

There are a number of risk factors associated with M. tuberculosis infection. 

Areas that are endemic to M. tuberculosis are often endemic to other pathogens that could 

impact the host resistance.  Human immunodeficiency virus (HIV) has a strong 

correlation with M. tuberculosis infection and increases the chance of reactivating latent 

disease (Pawlowski et al., 2012). Certain parasites have also been shown to have an effect 

on M. tuberculosis infection (Li and Zhaou 2013). Helminths (worms) infections induce 

Th2 responses, which impair host resistance to M. tuberculosis (Wasiulla et al, 2012; 

Rook 2007). Additionally, innate immunity to Plasmodium berghei (causative agent of 

malaria) can also induce a chronic tuberculosis infection (Mueller et al., 2012). 

Interestingly, infection with Helicobacter pylori is associated with protection against M. 

tuberculosis (Perry et al., 2010). 

 Areas that suffer from M. tuberculosis and other pathogenic infection also suffer 

from large amounts of malnutrition within the population. Low levels of Vitamin A and 

Vitamin D have been associated with higher risk to tuberculosis infections (Fox and 

Manzies 2013). Recently, Vitamin C has been shown to kill drug-resistant strains of M. 

tuberculosis when observed in vitro (Vilcheze et al., 2013). Other identified risk factors 

to M. tuberculosis include diabetes, alcoholism, chronic kidney disease and aging (Fox 

and Menzies 2013).  

M. tuberculosis is part of the Mycobacterium tuberculosis complex (MTBC), a 

group of genetically related slow-growing mycobacteria responsible for causing 

tuberculosis in humans and animals. MTBC excludes mycobacteria that are pathogenic in 
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humans but do not cause tuberculosis, such as M. leprae or the M. avium complex 

(Murray et al., 2013). Pathogens included in the MTBC include animal-adapted strains 

such as M. bovis (cows), M. microti (voles), M. pinnipedii (seals), and M. caprae (goat). 

However, the animal-adapted strains of MTBC are opportunistic pathogens and rarely 

cause tuberculosis in humans (Smith et al., 2005). Areas without routine milk 

pasteurization is not routine see occasional cases of tuberculosis caused by M. bovis. 

However, the two main human-adapted strains of MTBC are M. tuberculosis and 

Mycobacterium africanum (Burgos 2013).  

M. africanum is a phylogenetic variation of M. tuberculosis and is geographically 

exclusive to West Africa (Hershberg et al., 2008). First discovered in 1968 in Senegal, M. 

africanum was noted for its biochemical characteristics that distinguished it from M. 

tuberculosis (de Jong et al., 2010). Two subtypes of M. africanum have been identified 

by geographic and molecular characteristics: M. africanum type I, West African 1 

(MAF1) is mainly found around the Gulf of Guinea while M. africanum type II, West 

African 2 (MAF2) is found in the far west of Africa. The genetic differences, as well as 

epidemiological occurrences, of M. africanum are extensively reviewed in de Jong et al., 

2010. Although M. africanum is responsible for about 50% of tuberculosis cases in West 

Africa, there has been considerably less research done on it.  For the purposes of this 

paper, MTBC will be used to describe M. tuberculosis and M. africanum. 

 

History of Tuberculosis 

 Robert Koch was the first person to identify M. tuberculosis in 1882 when he 

managed to visualize M. tuberculosis in Bismarck Brown and then successfully infect 
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rabbits with M. tuberculosis colonies he grew from cattle-blood serum solid media. He 

presented his results to the Physiological Society of Berlin on March 24, which thereafter 

became celebrated as World Tuberculosis Day (Sakula 1983). Koch’s findings came on 

the tail of experiments done by Jean-Antoine Villemin. In 1865, Villemin proved that an 

infectious agent caused tuberculosis when he inoculated rabbits with tissue from a 

cadaver that died from tuberculosis, thereby disproving previous theories that 

tuberculosis had a supernatural or hereditary cause (Smith 2013). 

 Koch’s and Willemin’s studies came after a 

large tuberculosis epidemic in Europe during the first 

half of the nineteenth century. The Industrial 

Revolution had caused a continental urbanization 

movement that had led to drastically increased 

population-density in many cities. It is estimated that 

one in every four Europeans died from tuberculosis 

during this time. Before the identification of M. 

tuberculosis, tuberculosis was referred to as the 

“White Plague” or “consumption”, due to the 

dramatic weight loss often seen in infected 

individuals (Smith 2003). 

Tuberculosis had already been plaguing the continent for several centuries, but by 

the 19th century, it had become so widespread that it became integrated into European 

culture, mainly through literature and art. The main characters in the operas La Traviata 

(1853) and La Boehme (1896) tragically die from tuberculosis in their lover’s arms and 

Figure 1: Paintings depicting 
tuberculosis in the 19th Century. “La 
Miseria” by Cristobal Rojas (top); 
“The Doctor” by Sir Luke Fildes 
(bottom) 
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the paintings La Miseria by Cristobal Rojas (1886) and The Doctor by Sir Luke Fildes 

(1981) depict the subjects slowly dying from the disease (Figure 1). In Les Misérables 

(1862), Victor Hugo depicts the character of Fantine slowly succumbing to tuberculosis 

after she loses her jobs and falls into poverty (translation by Charles Wilbour):  

“Physical suffering had completed the work of moral suffering. This 
creature of twenty-five years had a wrinkled forehead, flabby cheeks, 
pinched nostrils, shriveled gums, a leaden complexion, a bony neck, 
protruding collar-bones, skinny limbs, an earthly skin, and her fair hair 
was mixed with grey.” 
“Her conditions seemed to become worse from week to week. The handful 
of snow applied to the naked skin between shoulder blades, had caused as 
sudden check perspiration, in consequence of which the disease, which 
had been forming for some years, at last attacked her violently.” 
“She had a strange brilliancy in her eyes and a constant pain in her 
shoulder near the top of her left shoulder blade. She coughed a great deal.” 

 
 Documentation of tuberculosis cases has been written long before the 19th 

century. Hippocrates (400 B.C.) described the symptoms of tuberculosis, which was 

called phthisis, in Of the Epidemics as “the most considerable of diseases which then 

prevailed, and the only one proved fatal to many persons” which caused “fevers 

accompanied with rigors” and “sputa small, dense, concocted but brought up rarely and 

with difficulty” (translation by Frances Adams). The oldest documentations of 

tuberculosis-like-symptoms are found in the Rigveda scripts from ancient India (1500 

B.C.) which details a charm used to drive a disease called “yaksma” away. 

 The development of new genomic techniques has allowed us to design PCR 

primers that recognize conserved polymorphisms and target sequences, such as insertion 

sequence IS6110, in the MTBC to confirm many of these cases in ancient DNA (aDNA) 

(Donoghue 2004). A study of 263 corpses found in a Hungarian sealed crypt used for 

middle-class families between 1731-1859 showed that 55% of the individuals were 
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positive for tuberculosis infection (Fletcher et al., 2008). However, skeletons found in 

Neolithic sites in Italy, Denmark, and the Middle-East dating back to 4,000 years ago 

show that tuberculosis has been around longer than historical documents have implied. In 

2003, tissue samples from 85 ancient Egyptian mummies buried during the Middle 

Kingdom (2050-1650 B.C.) were analyzed for signs of tuberculosis. Of those 85 

mummies, 25 had a positive signal for the amplification of the IS6110 sequence. Further 

analysis by spoligotyping showed four of the skeletons were infected with M. africanum 

(Zink et al, 2003). 

 Some of these findings have been more open to interpretation than others. One 

study describes a 500,000-year-old fossil of Homo erectus with lesions characteristic of 

tuberculosis (Roberts et al., 2009). This study has been extremely controversial, as it 

suggests that M. tuberculosis is older than modern humans (Wilbur et al., 2009). 

Although Roberts’s findings were ultimately inconclusive, they beg the question: how old 

is M. tuberculosis and where did it come from? How long has it been plaguing the earth 

and how did it become one of the most persistent diseases?  

 

Origin and Evolution of Tuberculosis 

The origin and age of a pathogen can give important insight into its pathogenesis 

and how to ultimately control it. Infectious diseases can be broadly classified into two 

categories: occurring before or after the Neolithic Demographic Transition (NDT). The 

NDT occurred almost 11,000 years ago when the development of agriculture lead from 

the switch of hunter-gatherer migratory patterns to human settlement and domestication 

of animals (Wolfe et al., 2007).  
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Post-NDT diseases are usually referred to as “crowd diseases”, due to their high 

virulence in populations of high numbers and density. To maximize transmission, these 

diseases usually manifest as an acute infection, which is easily passed to surrounding 

individuals. The host is either left with protective immunity or dies from the infection. 

The large and dense crowds needed to sustain the transmission of these pathogens did not 

exist until the NDT, when the development of agricultu re lead to rapid increases in 

population density. Therefore, the pathogens for most crowd diseases, such as smallpox, 

pertussis or measles, are believed to be no older than 11,000 years old (Wolfe et al., 

2007; Comas et al., 2013).  

 In contrast, pre-NDT diseases are adapted to the low host population densities that 

resulted from nomadic patterns seen in small hunter-gatherer groups. These diseases, 

which include malaria, yellow fever, and Chagas’ disease, often result in chronic 

progression, which leaves the host contagious for months or years rather than mere 

weeks. While post-NDT diseases may present symptoms days after infection, pre-NDT 

diseases progress more slowly and do not present symptoms for several weeks. 

Additionally, the host is left with incomplete or non-last immunity, making them 

susceptible to future infections to the same pathogen (Wolfe et al., 2007). 

 Since M. tuberculosis has a unique dichotomy of characteristics found in both 

pre-NDT and post-NDT diseases, there has been a lot of deliberation to its origination. Its 

transmission by aerosol droplets allows tuberculosis to thrive in high-density populations. 

In 2010, it was projected that more than a third of worldwide tuberculosis cases would 

occur in India and China, the two most populous countries in the world (Dye and 

Williams 2010). However, M. tuberculosis is able to establish a latent infection that 
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won’t progress into a disease until 

months later, which is often 

characteristic of pre-NDT diseases 

(Comas et al., 2013). Originally, it 

was believed that M. tuberculosis 

was a zoonotic crowd disease that 

derived from M. bovis after the 

domestication of cattle during the 

NDT (Donoghue et al., 2004; Smith 

et al., 2009). However, comparative 

genomic sequencing of M. bovis and 

M. tuberculosis has shown a smaller 

chromosome in M. bovis with clear 

genetic markers where genes were 

deleted from the M. tuberculosis 

genome. Therefore, it is far more likely that M. bovis is derived from M. tuberculosis 

rather than the other way around (Smith et al., 2009; Mostowy and Behr 2005; Gagneux 

2012).  

 Even after the M. bovis theory was disproven, the role of populations dynamics in 

tuberculosis infection lead many to believe that M. tuberculosis arose 10,000 years ago at 

the beginning of the NDT. However, a phylogenetic analysis of 108 MTBC strains 

introduced the “Out of Africa” theory where M. tuberculosis originated in Africa and was 

introduced to the rest of the world when the first anatomically modern humans migrated 

Figure 2: Maximum Parsimony Phylogeny of MTBC Using 89 
Concatenated Gene Sequences in 108 Strains. Adapted from 
Hershman et al., 2008 
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out of Africa ~50,000 years ago (Hershberg et al., 2008). The migrations of modern 

humans out of Africa lead to the development of six distinct M. tuberculosis lineages 

(Table 1; Figure 2), which is extensively reviewed in Hershberg et al., 2008.  

 Origin (Hershberg 
et al., 2006) 

Geographical association 
(Gagneux and Small 2007) 

SNP marker (Gagneux 
and Small 2007) 

Indo-Oceanic 
(Lineage 1) 

Ancient East Africa, southeast Asia, 
south India 

OxyR C371 

East Asia 
(Lineage 2) 

Modern East Asia, Russia, South Africa Rv3815c G81A 

Central Asia 
(Lineage 3) 

Modern East Africa, north India, Pakistan RpoB T2646G 

Euro-American 
(Lineage 4) 

Modern Americas, Europe, north Africa, 
Middle-East 

KatG T1388G 
RpoB C32431 

West African 1 
(Lineage 5) 

Ancient Ghana, Benin, Nigeria, 
Cameroon 

N/A 

West African 2 
(Lineage 6)  

Ancient Senegal, Guinea-Bissau, The 
Gambia 

N/A 

Table 1: Lineages of Human Adapted MTBC 

 

To summarize, three separate lineages became seeded with populations that 

migrated to Western Europe, Northern India, and East Asia (Figure 3b). Within the last 

millennia, civilizations in these areas experienced massive population growth and 

expansion due to increased travel and trade. The expansions of these three civilizations 

lead to the dispersion of three “modern” lineages of M. tuberculosis around the world 

(Figure 3c). The other three lineages remained more geographically isolated, leading to 

their classification as “ancient” lineages. The ancient lineages of M. tuberculosis include 

two subtypes of M. africanum that remained almost exclusive to West Africa and the 

Indo-Oceanic lineage, which corresponds with the earliest spread of humans out of Africa 

around 50,000 years ago. The populations associated with this lineage were believed to 

have settled in the Philippines where they remained isolated to the Indian Ocean 

(Hershberg et al., 2008). 
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Figure 3: “Out Of-And-Back-To-Africa” Scenario for the Evolutionary History of Human-Adapted MTBC. Adapted 
from Hershberg et al., 2008 (A) Global human population size during the last 50,000 years. The letters above the graph 
indicate the time periods corresponding to (B), (C), and (D), respectively (B) Hypothesized migration out of Africa of 
ancient lineages of MTBC. (C) Recent increase of global human population. Each dark grey dot corresponds to 1 
million people. These three geographic regions are each associated with one of the three modern MTBC lineages (red, 
purple, and blue). (D) The human population has reached 6 billion. The distribution of the six main human-adapted 
MTBC lineages we observe today is shown. 
 

Other human migratory patterns can explain the presence of different lineages 

around the world. The presence of the Euro-American lineage in regions of Middle East, 

Africa and Asia correspond with European colonization in the 16th century. Additionally, 

the presence of the East-Asian lineage in South Africa can be traced to the import of 

slaves from Southeast Asia by Dutch colonists in the 17th and 18th century as well as the 

influx of almost 50,000 Chinese workers at the beginning of the 20th century to work in 

South African gold mines (Mokrousov et al., 2005).  

The “Out of Africa” theory was more or less proven when an international team 

analyzed 34,167 single nucleotide polymorphic sites (SNPs) across 259 MTBC strains to 
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give more insight into the genetic diversity and evolutionary history of M. tuberculosis. 

Their findings not only supported Hershberg et al’s theory but suggested that MTBC 

emerged about 70,000 years ago, implying that M. tuberculosis has been co-evolving 

with modern humans and has been readily able to adapt to numerous demographic 

changes (Comas et al., 2013).  

 

Genetic Diversity in M. tuberculosis Strains 

In addition to offering insight into the age and role of population dynamics in the 

spread of M. tuberculosis, Hershberg et al. provided convincing proof that M. 

tuberculosis was more genetically diverse than previously implied. In the past, it was 

believed that all strains of M. tuberculosis, were genetically similar and the few 

differences that distinguished the strains from each other had no effect on disease 

dissemination (Sreevastan et al., 1997; Musser et al., 2000). However, in Hershberg’s 

study, the human-adapted strains of MTBC (M. tuberculosis and M. africanum) were 

shown to be as genetically diverse as the animal-adapted strains, even though the animal-

adapted strains were adapted to four separate ecotypes (Hersheberg et al., 2008). Over the 

years, more studies have documented distinct genetic differences in different strains of M. 

tuberculosis and on occasion, M. africanum (Coscolla and Gagneux 2010).  

One of the most notable variances is the difference in virulence between ancient 

and modern strains. Human monocyte-derived macrophages (MDMs) infected with 28 

different M. tuberculosis strains produced distinctly different inflammatory responses to 

ancient and modern linages. Modern strains produced significantly less pro-inflammatory 

cytokines and chemokines, such as interleukin-6 (IL-6) and interferon-α (IFN-α), 
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compared to ancient strains. Furthermore, these results were reproducible across eight 

different human donors (Portevin et al., 2011). A previous study in Gambia showed 

similar results when strains of modern origin had a significantly higher chance of rapidly 

progressing to active disease than those of ancient lineages (de Jong et al., 2008). The 

population expansion experienced by the modern strains through travel and expansion 

allowed them to adapt to higher virulence and shorter latency periods (Burgos 2013). The 

lower virulence of M. africanum in comparison to M. tuberculosis can explain why there 

is no M. africanum in the Americas despite the large number of West Africans that 

migrated to the Americas through slave trade. It is possible that the Euro-American 

lineage of M. tuberculosis outcompeted M. africanum, which prevented M. africanum 

from being established in the United States (de Jong et al., 2010).  

Several studies have documented the variety in clinical presentation and immune 

response of animal models infected with M. tuberculosis. Strains isolated from British 

patients with pulmonary tuberculosis were more virulent when injected into guinea pigs 

than strains isolated from Indian patients (Mitchison et al., 1960). The same results were 

shown when the guinea pigs were infected through the respiratory route by aerosol 

(Williams et al., 2005). Rabbits infected with East Asian strains suffered from more 

severe meningitis and higher bacterial load in their system than rabbits infected with 

Euro-American strains (Tsenova et al., 2005). A review published by Coscolla and 

Gagneux reviews 67 studies that report phenotypic differences seen in vitro or in animal 

models between different MTBC strains (Coscolla and Gagneux 2010). 

Coscolla and Gagneux also identified 33 studies that have described clinical 

differences seen in different strains of MTBC. In a study testing 187 Vietnamese adults 
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with meningeal tuberculosis and 237 Vietnamese adults with pulmonary tuberculosis, the 

Euro-American linage was shown to have caused significantly less cases of meningeal 

tuberculosis than the Indo-Oceanic or East-Asia lineages as well as lower mortality from 

meningeal tuberculosis (Caws et al., 2008). Another study in Tuscany, Italy found a 

significant association with extrapulmonary tuberculosis and infection from the Central 

Asia lineage and M. bovis (Lary et al., 2009).  

Due to its virulence, most studies on tuberculosis pathogenesis have been centered 

on the East-Asia lineage. Out of the 33 studies reviewed by Coscolla and Gagneux, 22 of 

the studies focused on the East-Asia lineage (Coscolla and Gagneux 2010). The W 

genotype, a particularly virulent strain of the East-Asia lineage, is responsible for the 

outbreaks among HIV-infected individuals in New York City during the 1990s (Bifani et 

al., 1999). The persistence of the East Asia can be traced back to a phenolic glycolipid 

(PGL) produced by pks 15/1 gene. PGL is believed to inhibit innate immunity by 

increasing production of macrophage deactivating cytokines, such as interleukin-11 (IL-

11) and interleukin-13 (IL-13), while suppressing proinflammatory cytokines such as 

tumor necrosis factor- α (TNF-α) and the p40 subunit of interleukin 12 (IL-12p40). The 

reduced expression of TNF-α is important for the formation of the granuloma, which 

keeps the M. tuberculosis at bay and prevents the infection from becoming systemic 

(Reed et al., 2004; Caws et al., 2008).). The ability of the East Asia genotype to inhibit 

granuloma formation explains its association with extrapulmonary tuberculosis and 

meningeal tuberculosis (Kong et al., 2007; Thwaites et al, 2008). The virulence of the 

Beijing genotype family, a subgroup within the East Asia lineage, are extensively 

reviewed in Parwati et al., 2010.  
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Despite causing 50% of tuberculosis in West Africa, less research has been done 

on the immunogenic variations of M. africanum.  The genetic distance between MAF1 

and MAF2 suggest that there are phenotypic differences between the two lineages (Figure 

2). However, there have been very few studies that have examined genetic differences 

between strains of M. africanum. However, phenotypic differences between M. 

tuberculosis have been investigated, particularly with MAF2. One study in Gambia 

showed that the prevalence of HIV co-infection is higher for MAF2 than M. tuberculosis 

or MAF1. However, in Ghana, there was no difference in HIV co-infection or disease 

severity between M. tuberculosis and M. africanum (de Jong et al., 2010). As mentioned, 

these studies are preliminary and lack the robust analysis needed to properly characterize 

the immunogenic profile of M. africanum.  

In order to decipher the cause behind the differences in innate immune responses, 

one study focused on the contents of the cell wall to see if the lipid content was 

responsible for the different immune responses. Stimulation of lipids isolated from the 

cell wall of different M. tuberculosis lineages with murine bone-marrow-derived 

macrophages showed significant differences in cytokine expression. Specifically, East 

Asian and Indo-Oceanic strains induced higher concentrations of TNF-α than the Euro-

American strains. When the lipids were fractioned and compared through thin layer 

chromatography, distinct differences in lipid-profiles were observed. Euro-American 

strains were characterized by large amounts of phthiocerol dimycocerosate (DIM A) and 

small amounts of phthiodiolone dimycococerosate (DIM B) and Indo-Oceanic strains 

were characterized by a novel lipid that has been named “Lipid Y” (Krishnan et al., 

2011). Along with PGL, East Asian strains were characterized by phthiotriol 



	
  

	
  

17	
  

dimycocerosate, an important virulence factor in preventing phagocytosis and protecting 

M. tuberculosis from reactive nitrogen intermediates in macrophages (Rousseau et al., 

2004; Astarie-Dequeker et al., 2009). Evading phagocytosis allows the bacteria to escape 

the lung and disseminate into the blood stream, which can explain the association 

between the East Asia lineage and meningeal tuberculosis (Caws et al., 2008).  

 

Role of Evolution in the Granuloma Formation 

It has been established that there is a large amount of genetic diversity within the 

MTBC with large implications for phenotypic differences, but has not been well studied. 

However, host genetic factors, such as low β-defensins production or production of 

Foxp3+CD4+ cells, have been identified as having an impact on disease outcome as well 

(Hernandex-Pando et al., 2009; Paula et al., 2011). One cohort study in South Africa 

performed whole-blood microarray gene expression analysis on tuberculosis patients, 

healthy donors with a latent M. tuberculosis infection and non-infected donors to 

determine gene expressions associated with susceptibility and resistance in tuberculosis 

infections (Martzdorf et al., 2011). 

In a study comparing individuals suffering from pulmonary tuberculosis, patients 

with similar demographics and disease phenotype exhibited different inflammatory 

profiles that are linked to an individual’s ethnic background (Coussens et al., 2013). 

Furthermore, certain genetic polymorphisms associated with those inflammatory profiles 

make them more susceptible to certain lineages of M. tuberculosis over others. Patients in 

Ghana with autophage gene variant IRGM-261T were able to confer protection against 

the Euro-American lineage of M. tuberculosis but not the M. africanum lineages 
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(Intermann et al., 2009). In the previously mentioned study that examined the association 

between the East-Asia lineage and meningeal tuberculosis, individuals with a certain 

polymorphism in the Toll-like receptor-2 (TLR-2) gene were more likely to have 

tuberculosis caused by the East-Asian lineage (Caws et al., 2008). 

The influence of host and bacterial genotype on the manifestation of tuberculosis 

and the adaption of different lineages to different populations suggests that over the past 

70,000 years, MTBC and humans have engaged in an “evolutionary arms-race” where the 

pathogen and host try to outwit each other through immune pressure by the host and 

immune evasion by the pathogen. This phenomenon is indicative of a host-pathogen 

coevolution, which is defined as “the process of reciprocal, adaptive genetic change in 

two or more species” (Woolhouse et al., 2002).  

Many pathogens have undergone selection for genes encoding antigens as method 

to evade host immunity in this “evolutionary arms-race”. To determine if co-evolution 

between humans and MTBC has led antigenic variation in tuberculosis infections, an 

international team compared the genome of 21 strains that were selected to best represent 

the global diversity of MTBC. The authors divided the genes into “essential genes”, 

“nonessential genes” and “antigens”. Before the study, the authors hypothesized that they 

would find evidence of antigenic variation in MTBC by measuring the ratio of rates of 

non-synonymous and synonymous changes (dN/dS), of epitope regions that interact with 

T-cells. If the antigenic regions were genetically diverse, there would be a high dN/dS, 

signifying a decrease in purifying selection across M. tuberculosis strains. To the surprise 

of the authors, the dN/dS of epitope regions was measured to be 0.5, which is lower than 

the dN/dS of non-essential genes (0.65) and even lower than the dN/dS than essential 
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genes (0.53). Furthermore, out of the 491 epitopes tested, 95% showed no amino acid 

change across the strains and only five epitopes had more than one variable position. 

When those variable antigens were excluded from the analysis, the dN/dS of the epitopes 

decreased down to 0.25. Contrary to the author’s original hypothesis, the T-cell epitopes 

of MBTC are evolutionarily hyperconserved (Comas et al., 2010). 

This new revelation raised several questions about the pathogenesis of MBTC, 

particularly in the formation of the granuloma. It was always assumed that the creation of 

the granuloma after M. tuberculosis infection was for host protection. Findings of “healed 

fibrotic and calcified tuberculosis granulomas in healthy individuals” suggest that without 

the granuloma, the pathogen would continue to replicate and cause a more severe 

systemic disease such as TBM (Ramakrishnan 2012). However, this study by Comas and 

his team suggests that bacterial recognition by macrophages and the resulting formation 

of the granuloma might be part of the tuberculosis pathogenesis. By allowing MBTC 

strains to be recognized when it infects the host, the bacteria can create cavities in the 

lung to increase transmission and cause tissue damage (Comas et al., 2010).  

 Other studies have hinted that T cell immunity may play dual role of protection 

and pathogenic in tuberculosis infections. HIV-positive tuberculosis patients with low 

CD4 T cell counts are less likely to present with cavities than HIV-positive patients with 

higher CD4 T cell counts (Kwan and Ernst 2011). In a zebrafish model infected with M. 

marinum, 6 kDa early secretory antigenic target (ESAT-6), one of the hyperconserved 

antigens in Comas’ study, was shown to induce matrix metalloprotease 9 (MM9), an 

enzyme which recruits more macrophages to the site of infection to help with granulomas 
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maturation. When MM9 production was disrupted, bacterial growth and granuloma 

formation was stalled (Volkman et al., 2010). 

Although the study disproved the authors’ original hypothesis, it still offers proof 

of coevolution between humans and MTBC through more dualistic role of the granuloma 

during tuberculosis infections. Although the granuloma prevents the dissemination of the 

bacteria to other parts of the body, unresolved granulomas can eventually develop into 

lung cavities, which causes necrosis of lung tissue similar to those found in cancer cases 

(Hunter 2011). Additionally, the bacteria continue to grow in these cavities, making them 

a breeding ground of highly infectious organisms. Eventually, the center necrotic area can 

burst open and release high levels of bacteria into the lung and create an active infection 

in a previously unaffected patient (Krishman et al., 2010). Comas’ study is fairly recent 

and more research needs to be done to further validate his findings. However, if we are to 

follow the coevolution trajectory between MTBC and humans, it is possible that these 

epitope regions became conserved after the NDT, when higher rates of population density 

allowed for increased transmission of MBTC. The recognition of T-cells and the 

formation of the granuloma may have been MBTC’s method of evolving with humans 

after the NDT. 

 

Implications for Product Development 

Information on the genetic diversity in M. tuberculosis strains as well as the 

conservation of T cell epitopes has many implications for developing new diagnostic 

tools, antibiotics and vaccine for tuberculosis. Comas’s study has great potential for 

developing a more accurate diagnostic test for tuberculosis. The slow growing nature of 
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M. tuberculosis makes it difficult to grow in culture and the efficacy of the tuberculin 

skin test has drawn criticism due to false positives from individuals who have received 

the BCG vaccine (Gagneux and Small 2008). The creation of a more precise test that 

could identify the lineage of the causative agent would significantly improve treatment 

protocols and decrease the spread of drug-resistant strains. Different strains of M. 

tuberculosis are intrinsically more resistant to antibiotics than others or are more prone to 

conserve certain mutations that lead to acquired resistance. In isoniazid-resistant M. 

tuberculosis strains, the Euro-American lineage is more likely to conserve the katG 

(Rv1908c) S315 mutation, while the Indo-Oceanic linage naturally selects the inhA 

(Rv1484) mutation (Gagneux et al., 2006). Although both mutations lead to isoniazid 

resistance, each gene has a different function that, when lost, leads to the resistance and 

thus a different “level” of resistance. The katG mutation corresponds with a higher level 

of resistance than inhA, which further supports the higher virulence seen in modern 

lineages than ancient lineages (Fenner et al., 2012). As well as its increased virulence, the 

Beijing subgroup has been heavily associated with increased rates of drug resistant 

tuberculosis (McGrath et al., 2014). Several studies have investigated the association 

between MBTC genotype and drug resistant tuberculosis (Warner and Mizrahi 2013; 

Borrell and Gagneux 2011; Smith et al., 2013).  

 The creation of a diagnostic tool that would be able to differentiate between 

different linages of MBTC as well as drug-resistant strains is daunting but foreseeable. 

But the most daunting task in light of the genetic diversity within MBTC is the creation 

of a new vaccine for a pathogen that has created many setbacks in vaccinology.  This 

should come as no surprise as there have been extremely varied results in the efficacy of 
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BCG, despite its global use (Zwerling et al., 2011). A study comparing the efficacy of 

BCG between populations in Malawi and populations in the UK showed that IFN-γ 

responses to M. tuberculosis purified protein derivative (PPD) were ten times higher in 

the UK than in Malawi (Black et al., 2002). BCG has also been shown to induce less 

protection in the more virulent strains of M. tuberculosis, especially against the 

progression of TBM (Tsenova et al., 2007) 

In light of the new results on hyperconserved antigens across the MBTC genome, 

the antigen in any vaccine would have to be carefully considered to make sure we are not 

merely inducing the reaction that M. tuberculosis wants to increase transmission (Comas 

et al., 2010; Achkar and Casadvall 2013). One method of bypassing this is to mimic 

vaccine development for Neisseria meningitides and create a multivalent vaccine to 

protect against as many strains as possible or to create a vaccine targeted to certain areas 

where the molecular epidemiology of M. tuberculosis is well defined. However, these are 

extremely expensive methods and would require copious amounts of funding.  

 Most vaccines that have been developed against tuberculosis (and are continuing 

to be tested to this day) have been focused on creating cell-mediated immunity and 

harnessing the right cytokines to elicit protection (Cooper and Khader 2008). However, 

given the cytokine responses for different strains, it may be necessary to consider other 

forms of immunity in vaccine development for M. tuberculosis. Since M. tuberculosis 

and other members of the MBTC are intracellular pathogens, vaccines that induce 

antibody-mediated immunity have not been extensively explored or even considered 

(Nunes-Alves et al., 2014).  
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 However, many researchers are calling for antibody-mediated immunity to be 

included in vaccine development for tuberculosis due to research showing evidence of 

protective antibodies against mycobacteria (Achkar and Casadevall 2012). Since M. 

tuberculosis is able to survive in a host that can mount a disease-preventing immunity, 

the immune response elicited by a vaccine against tuberculosis must be stronger than one 

created during natural infection. While cell-mediated immunity is necessary to combat 

tuberculosis, humoral immunity can help mount a stronger response needed to combat M. 

tuberculosis (Kozakiewicz et al., 2013) 

 Another way to prevent a pathological outcome from the innate immune response 

to M. tuberculosis is to create a vaccine that induces mucosal immunity, especially since 

M. tuberculosis infects the host through mucosal tissue in the respiratory tract. This could 

prevent the bacteria from entering the lungs in the first place and completely bypass the 

formation of the granuloma (Li et al., 2013). Immunization by the respiratory tract has 

already been shown to be highly effective in several animal models including mice, 

guinea pigs, cattle, and primates (Beverley et al., 2014). However, there has not been a 

robust or conclusive analysis on the mucosal response to different strains of M. 

tuberculosis.  

 

Conclusion 

 Despite advances in molecular epidemiology and genome sequencing, there is 

still much to be learned regarding the complexity of M. tuberculosis. Examination of the 

evolution of M. tuberculosis can lead to important discoveries, such as differing levels of 

virulence within lineages or hyperconservation of T-cell epitopes, which can have a large 
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influence on the development of products to combat tuberculosis. Due to advances in 

genome sequencing, groundbreaking research in this area has only occurred within the 

past seven years. Naturally, some of this research is still speculative. However, it is clear 

that further examination into the evolution of M. tuberculosis should be done to fully 

understand this dangerous pathogen that continues to be a leading cause of morbidity and 

morality after 70,000 years.  
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