


Abstract

A spatiotemporal system of partial di↵erential equations is implemented for

describing a marine predator-prey system of shark and prey fish. The model is devel-

oped to account for predator migration and for harvesting of both predator and prey

animals. The Finite Di↵erence Method is employed to develop a numerical model to

describe the behavior of the system in space over time. The dynamics of the system

for di↵erent initial conditions for predator and prey populations and harvesting rates

of both predators and prey using the numerical scheme. The resulting dynamics of

the system from adding a predator sanctuary (an area within which the predator

cannot be harvested) are also examined. It is hoped that this paper will illustrate

that model behaves as a predator-prey system is expected to behave under the tested

conditions.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Introduction to the Problem

The mathematical modeling of shark populations is not in and of itself a

complicated or di�cult task. Indeed, university-level mathematics students are in-

troduced to rudimentary shark population models in their first course in ordinary

di↵erential equations as an introduction to Lotka-Volterra predator prey systems.

However, while these rudimentary models serve as excellent examples of population

modeling, several key ecological factors are usually left out for the sake of simplicity.

This means that factors like the migratory patterns of sharks and their prey animals

as well as the e↵ects of human activity like fishing are not accounted for in these

models. It will be the purpose of this thesis to present a mathematical model that

accounts for these missing factors and therefore, give a more accurate representation

of shark populations in the real world. To this end, a system of di↵erential equations

containing spatiotemporal dynamics based on the work of Garvie and Trenchea[1]

will be introduced and solved using the Finite Di↵erence Method.

It is hoped that the work presented in this thesis will serve as a validation of

the work of the many marine biologists that have made the ecological study of sharks

and shark populations their scientific focus. It also hoped that it may help to serve
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CHAPTER 1. INTRODUCTION

as a point of advocacy for the conservation of sharks worldwide, as well as show the

importance of marine wildlife sanctuaries.

1.2 Background Information

Sharks are generally regarded as the quintessential apex predator. Over mil-

lions of years the body of a shark has evolved to have virtually perfect hunting

anatomy, especially their jaws and multiple rows of teeth [2]. Another key evolu-

tionary trait that sharks possess are heightened senses of smell, sight, hearing and

electroreception give them a considerable edge when hunting for prey [2]. The aero-

dynamics of their bodies also make them ideal aquatic animals, as it allows them to

travel very e�ciently through water [2]. Most species of shark are carnivores and have

few natural predators other than other sharks. This is another key characteristic of

an apex predator.

In spite of being excellent predators that under ideal circumstances would

never approach extinction, worldwide shark populations are on the decline [3, 4].

There are several key factors that scientists believe to play into the recent, sudden

decline in shark populations. Firstly, sharks, unlike types of fish, generally achieve

sexual maturity later in life and produce a small number of o↵spring. This means that

they are particularly vulnerable over the long term to human activity, in particular

to wasteful fishing practices like bottom trawling or shark finning [3].

While virtually all species of shark are vulnerable to these fishing practices,

the model presented in this thesis will focus on the species Galeorhinus galeus, also

commonly known as the school shark or soupfin shark. A few key characteristics of

this species of shark that make it a good choice for our model are:

• It is harvested by humans for its flesh, liver and fins [2]

• Some of its main prey animals like squid and sardines are also harvested by

2



CHAPTER 1. INTRODUCTION

humans [2]

• It is an oviviporous species of shark, meaning that eggs are fertilized and fetus

develops in the womb of the female shark with a long gestation period (about

one year) [2]

• A single female produces relatively few o↵spring (28-38 depending on the size

of the shark) [2]

• The species has a history of being overfished [2].

In order to account for all of these characteristics, our model will have to utilize

partial di↵erential equations instead of the simple ordinary di↵erential equations that

are normally used to model predator-prey systems. This will be discussed in greater

detail in the next section.

1.3 The Mathematics

As mentioned in Section 1, modeling a predator-prey system is not by

itself especially di�cult. The most rudimentary predator-prey system model model

usually consists of a two body system of ODE’s. Notable examples of such predator-

prey systems are the Lotka-Volterra (LV) and Rosenzweig-MacArthur (RM) models

[5, 6]. The model used in this thesis is more complex, incorporating spatial factors

as well the temporal factors that are present in the more basic models. This means

that unlike the LV and RM models, the system of equations used in this thesis will

need to use partial di↵erential equations which are more di�cult to solve. In order

to approximate the solution, a numerical scheme will be developed using the Finite

Di↵erence method.

The model used in this thesis will be based on the general form of a coupled pair

of reaction-di↵usion equations [1]. This will allow the model to specifically account

3



CHAPTER 1. INTRODUCTION

for population density of the sharks and their prey fish in di↵erent areas of water.

Even though the movement of the animals does not necessarily follow a di↵usion

pattern, reaction-di↵usion equations should still provide a good idea of the population

dynamics. Modifications to the equations will also be implemented to more accurately

model the movement of the two groups of animals. It will also be assumed that no

predators or prey ever enter or leave the system except through birth and death. How

this is achieved mathematically is covered in Chapter 2.

The equations will also eventually be modified to include a separate death

rate for both the predators and prey in the system due to human activity. For the

purposes of this thesis we will assume that the human population does not a↵ect the

model. This will allow us to account for human activity without adding a third body

to the problem and thereby complicating it unnecessarily.

4
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Chapter 2

System of Equations and

Numerical Scheme

2.1 The System of Equations

As mentioned in the last section of Chapter 1, the system of equations

upon which our model will be based is a system of reaction-di↵usion equations that

outline a predator-prey system. For the purposes of this project, the system we will

be dealing with will be only for time t > 0 and location x such that x 2 [0, 1]. The

general form of the system of equations is [1]:

@u

@t

= �1 4 u+ ru(1� u

w

)� pvh(ku)

(2.1a)

@v

@t

= �2 4 v + qvh(ku)� sv

(2.1b)

u(x, 0) = u0(x) and v(x, 0) = v0(x)

(2.1c)

@u

@v = @v

@v = 0 at x = 0 and x = 1

(2.1d)
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where u = u(x, t) and v = v(x, t) are the population densities of the prey and preda-

tor animals respectively. Here v represents the outward normal to the boundary of

the vector space x. �1 and �2 are di↵usion constants for the prey and predator re-

spectively. Here The constant k determines how fast the consumption rate saturates

as the prey density increases. q and r denote maximal per-capita predator and prey

birth rates, respectively. s is the per-capita predator death rate and w is the prey

carrying capacity [1]. h = h(z) is the functional response and satisfies

h(0) = 0 and lim
z!1 h(z) = 1

and is strictly increasing in the domain [0,1). Here, h depends upon u and k such

that

h(ku) = ku

1+ku

All parameters in Equations (2.1a) and (2.1b) are strictly positive. The impo-

sition of Neumann Boundary Conditions will keep the rate of change of the predator

and prey population densities at zeros at the boundaries of x. the local growth of the

prey is logistic and the predator shows the “Holling type II functional response” [1].

While the model above su�ciently represents predator-prey population dy-

namics in a bounded space, it assumes that the animals’ movement patterns can be

described by di↵usive movement alone. In the real world, this is only partially the

case. If our model is to accurately represent real-world movement patterns, then

migrations of species must be accounted for mathematically. For our purposes, we

will assume for now that only the predator animal is migratory. Since the predator
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animals in this model are assumed to migrate, we need to add a term to the predator

equation to account for migratory patterns. To do this we add a partial derivative of

v with respect to x modified by a simple oscillating time function m(t) to the predator

equation. In doing so, our model now has the general form:

@u

@t

= �1 4 u+ ru(1� u

w

)� pvh(ku)

(2.2a)

@v

@t

= �2 4 v + qvh(ku)� sv + @v

@x

m(t)

(2.2b)

u(x, 0) = u0(x) and v(x, 0) = v0(x)

(2.2c)

@u

@v = @v

@v = 0 at x = 0 and x = 1

(2.2d)

Here, m(t) represents the speed of migration of the predators accross the space

x.

Further, since we will be modeling a predator-prey in which both the predators

and the prey are subject to harvesting (in this case by humans) we need to add a term

to Equations (2.2a) and (2.2b) to account for this as well [7]. Since the harvesting of

school sharks and anchovies depends largely on the location of human fishing vessels,

that harvesting function (H) should depend on vector position in our bounded area.

It is also reasonable to assume that the harvesting function should be di↵erent for

both predators and prey, since sharks and anchovies are harvested at di↵erent rates

in the real world. Adding the harvesting functions to the model, we can now rewrite

the system of equations as

7
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@u

@t

= �1 4 u+ ru(1� u

w

)� pvh(ku)�H
u

(x)

(2.3a)

@v

@t

= �2 4 v + qvh(ku)� sv + @v

@x

m(t)�H
v

(x)

(2.3b)

u(x, 0) = u0(x) and v(x, 0) = v0(x)

(2.3c)

@u

@v = @v

@v = 0 at x = 0 and x = 1

(2.3d)

Here m(t) will be defined as a simple oscillating function of time (i.e. b sin(at))

to allow for migration of the predators in both the positive and negative direction.

H
u

(x) and H
v

(x) will be piecewise functions of the form H
u

(x) = ↵1, Hv

(x) = ↵2

where ↵1 and ↵2 are scalar constants such ↵1 = ↵2 = 0 8x /2 [m,n] 2 (0,1).

Now, we will tackle the issue of solving the system for u and v. Since solving

the system directly would prove di�cult, it will be necessary for our purposes to

develop a numerical scheme to evaluate solutions.

2.2 Numerical Scheme

Many numerical methods exist for solving systems of PDE’s like the one pre-

sented in the last section. For this particular system, we will make use of the Finite

Di↵erence Method to approximate solutions to the equations.

To start, we need to break up time and space into small intervals for which

we can solve the system numerically. For the time variable we choose some small

interval �t such that M = T

�t

and t
i

= iT

M

for i = 0, 1, . . . ,M where T is the final

8
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time. Similarly, since x 2 [0, 1] we choose some N and let x
j

= j

N

for j = 0, 1, . . . , N .

If ui

j

= u(t
i

, x
j

) and vi
j

= v(t
i

, x
j

) (for i 2 (0,M) and j 2 (0, N)) are solutions to

u and v respectively at time index i and space index j, then the general form for a

numerical scheme for our model can be written as

ui+1
j

= ui

j

+ �1�t

�x

2 (ui

j+1 � 2ui

j

+ ui

j�1) +�tf
u

(u, v)

(2.4a)

vi+1
j

= vi
j

+ �2�t

�x

2 (vi
j+1 � 2vi

j

+ vi
j�1) +�tf

v

(u, v)

(2.4b)

where f
u

and f
v

are parts of Equations (2.3a) and (2.3b) that follow the Laplacian

term [8] and �1 and �2 are the di↵usion constants of u and v respectively. Since this

model is in a bounded space, the numerical scheme must account for the boundary

conditions of the model. Since we are using an explicit method in such a space, it is

necessary to create two fictional grid points for both equations at the left and right

boundaries (x�1 and x
N+1). Since we have imposed Neumann boundary conditions

(i.e. @u

@x

(x0) =
u

i
1�u

i
�1

2�x

= 0), we can assume that the fictitious grid points will have the

same value as the grid point on the inside of the boundary point [8].

For example, this means that ui

�1 and ui

N+1 would have the same value as ui

1

and ui

N�1 respectively and would make the numerical boundary conditions for u

ui+1
0 = ui

0 +
�1�t

�x

2 (2ui

2 � 2ui

0) +�tf
u

ui+1
N

= ui

N

+ �1�t

�x

2 (2ui

N�1 � 2ui

N

) +�tf
u

Before we can write the numerical scheme out in its final form, we should

first address how the term @v

@x

m(t) in the predator equation is dealt with as it is not

entirely intuitive. Since the predators migrate back and forth across the domain of x

according to the function m(t), m has to positive for some values of t and negative

9



CHAPTER 2. SYSTEM OF EQUATIONS AND NUMERICAL SCHEME

for others. This creates an issue for our numerical scheme as the approximation of

@v

@x

changes based on whether m(t
i

) is positive or negative. To account for this we

need to implemented a method known as upwind scheme. This allows to write the

numerical solution for @v

@x

m(t) as

( sign(m(ti))+1
2

v

i
j+1�v

i
j

�x

+ 1�sign(m(ti))
2

v

i
j�v

i
j�1

�x

)m(t
i

)

Writing out f
u

and f
v

in their full form, we can write the numerical scheme

for solving the system of equations as

ui+1
j

= ui

j

+
�1�t

�x2
(ui

j+1 � 2ui

j

+ ui

j�1)

+�t

✓
rui

j

(1�
ui

j

w
)� pvi

j

h(kui

j

)�H
u

(x
j

)

◆ (2.5a)

vi+1
j

= vi
j

+
�2�t

�x2
(vi

j+1 � 2vi
j

+ vi
j�1) +�t

�
qvi

j

h(kui

j

)� svi
j

�

+�t

✓
sign(m(t

i

)) + 1

2

vi
j+1 � vi

j

�x
+

1� sign(m(t
i

))

2

vi
j

� vi
j�1

�x
)m(t

i

)�H
v

(x
j

)

◆

(2.5b)

Now that we have a numerical method for our model, the next step is to choose

values for the physical parameters in the model and run the model in MATLAB to

see how the system behaves under di↵erent conditions. This process will be covered

in detail in the next chapter. The values chosen for the physical parameters in this

thesis are experimental and are meant to illustrate the dynamics of the model. Further

research may dictate that the values for the parameters be modified to more accurately

10
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reflect real-world parameters.
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Chapter 3

Examining the Behavior of the

System

3.1 Predators and Prey Alone

Part of the process of choosing parameter values for a mathematical

model involves performing experiments with the predator or prey equation in the

system “turned o↵” or with the initial conditions of that particular equation set to be

zero at all initial positions. In such experiments, the outcome can be easily predicted,

and if the experimental result is di↵erent from the desired result, the parameter values

can be modified until the desired outcome is achieved. This section details a series of

such experiments for the system of equations introduced in the last chapter. While

this step may seem trivial, it is important to establish the model behaves correctly

for conditions for which the desired result is already known. Table 3.1 shows a list of

the parameters used in all experiments that do not change.

Prey Alone

The first experiment we conduct is to set the initial predator population density

at all locations along the vector space to 0, leaving the prey free disperse along the

space from their initial positions without being eaten. This means that the only

12
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Parameter Symbol Value Units

Maximal Con-
sumption Rate of
Prey

p 3 (Number of Prey Con-
sumed/Unit Time)

Rate of Saturation of
Consumption Rate

k 1 (Scalar)

Maximal Per Capita
Birth Rate of Prey

r 5 (Prey Born/Unit
Time)

Maximal Per Capita
Birth Rate of Preda-
tor

q 1.5 (Predators Born/Unit
Time)

Per Capita Death
Rate of Predator

s 1 (Deaths / Unit Time)

Carrying Capacity of
Prey

w 15 (Scalar)

Di↵usion Coe�cients �1 0.05 (Scalar)

�2 0.03 (Scalar)

Table 3.1: The values of these parameters are the same for all experiments.

parameters influencing the population density of the prey at any point in x will

be the di↵usion constant �1, the maximal per capita birth rate r, and the carrying

capacity w. Since the growth of the prey population in our model is logistic, the

expected outcome of this experiment is for the prey population density to grow until

the carrying capacity is reached. Figure 3.1 shows the behavior of the model under

these conditions.

Predators Alone

The second experiment examines the behavior the model when the initial prey

population density at all locations along x is set to 0. Since positive predator popu-

lation growth is determined entirely by consumption of prey, the expected result for

this experiment is the predator population shrinking rapidly after dispersal and even-

tually reaching zero at all locations. Figure 3.2 shows the results of the experiment.

13
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(a) (b)

(c) (d)

(e)

Figure 3.1: A-G show the behavior of the model over a hypothetical 1 month time
period with initial predator population density and harvesting set to 0 at all locations
on x. From an initial normal distribution with three peaks, the prey fish (population
density shown in blue) di↵use evenly over x and grow consistently toward the carrying
capacity. This behavior is expected from the model under these conditions, since the
initial predator population and harvesting rates have been set to 0.
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(a) (b)

(c) (d)

Figure 3.2: A-D show the behavior of the model from over a hypothetical 1 month
time period with initial prey population density and harvesting set to 0 at all locations
on x. From an initial normal distribution with a peak at the left of x, the predators
(represented in red) disperse and migrate across x. With no prey animals to sus-
tain positive population growth, the populations density of the predators eventually
shrinks to 0 at all locations on x.
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3.2 Predators and Prey Without Harvesting

Constant and Non-Constant Predator and Prey Distributions

Before we examine the dynamics of the full model, it is important to examine

the model without its spatial components to see if there exist any equilibrium points

other than u = 0 and v = 0. To do this, we set the derivatives of x in both equations

equal to zero so that we are left with a system ODE’s:

u0(t) = ru(1� u/w)� pvh(ku)

v0(t) = (qh(ku)� s)v

Obviously there exists an equilibrium point at (u, v) = (0, 0), but another can be

found by setting qh(ku) = s in the second equation. Once this is done, the equation

can be reduced to

u(t) =

✓
s

kq

◆

✓
s

q

◆
� 1

=
s

(k(q � s))

If this value for u is plugged back into the first equation we can find the equilib-

rium value for v:

v(t) =

✓
r

✓
1 +

s

(q � s)

◆✓
s

k(q � s)
� w

◆◆

kpw

If we plug in our parameter values, we find that the equilibrium value of u is 2

and the equilibrium value of v is 13
2 . This means that if an initial population density

of the predators an d prey distribution are set to these values, the result should be

that the population density of both predators and prey do not change at any location

on x. To see if the system behaves this way with our parameters, we can the trapezoid

rule trapezoid rule to integrate u(x, t) and v(x, t) to find the total number of preda-

tors and prey in the system at any time t. Figure 3.3 shows that the result result of
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this experiment. We expect these solution to be flat lines. If the initial population

densities were set to value other than the equilibrium values, the dynamics of the

system would go from being constant to being periodic.

Now we can move forward by running other experiments with predators and

prey in the system. The first of these experiments used a constant initial distribution

of 9 for the prey animals and 2 for the predators. The expected outcome for this par-

ticular experiment is for the population density functions should cycle up and down

as the predators and prey without reaching an equilibrium, as was alluded to earlier.

Next, the initial distribution of predators and prey animals is altered so that

the population density is higher in specific areas of x; the prey animals have three high

density locations (x = (.25, .5, .75)) and the predators have one at x = .25. Figure

3.5 shows a the total number of predators and prey present in the system at all times

during the experiment, measured out to a final time of 80 hypothetical months. The

resulting cycling population densities in x are reflective of a real world predator-prey

system in which the predator population shrinks and grows as prey become more

scarce of plentiful. Figure 3.6 shows the resulting dynamics of the experiment.
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Figure 3.3: Using the trapezoid rule, we can integrate u(x, t) and v(x, t) on the
interval of (0, 1) to find the total number of predators and prey in the system at all
times. Here the integral indicate that when u(x, 0) and v(x, 0) are set to 2 and 13/3
respectively, the population densities of both predators and prey do not change and
the system remains at equilibrium. Time is measured in months.
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Figure 3.4: When the initial conditions of u and v are set to constant distributions of
9 and 2 respectively, a periodic dynamic emerges in the system. The cycle continues
without reaching an equilibrium.
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Figure 3.5: Solving for the integral of the di↵erential equations allows us to see the
total number of predators and prey in the system at all times. Here we see that with
the harvesting functions set to zero at all locations, the predators and prey exhibit
a population cycle that is expected in a predator-prey system. The cycle does not
appears to settle into a periodic pattern every two peaks.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: A-L show the behavior of the model from over a hypothetical 23 month
time period with the harvesting rates set to 0 at all locations on x. Prey population
density is represented in blue and predator population density is represented in red.
From their initial distributions (identical to those used in the previous two experi-
ments) both predators and prey di↵use across x and the predators migrate over time.
The prey animals reproduce quickly and their population density rises quickly early
in the experiment. As the prey become more plentiful, the predators begin to con-
sume more of them until the predators outnumber the prey in some locations. As this
occurs, the predators have trouble finding prey and their population slowly decreases.
This allows the prey animals to replenish their population. The cycle continues as
time is added to the experiment.
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Migration of Predators

In previous experiments, the predator migration function m(t) was initially

set to �.25 sin(t⇡2 ) (i.e. b = .25 and a = ⇡/2). Other parameters were tried for this

function to see if any other set would allow for more healthy predator-prey interac-

tions. However, experimentation with the parameter values of m(t) showed that these

parameter values were optimal because they allowed for the most healthy recovery of

prey populations after hunting by predators reduced the population density to 0 at

certain locations.

3.3 Harvesting Predator or Prey

Now that we know how the model behaves without harvesting of predator and

prey, it is time to conduct experiments in the system where the harvesting of rate of

prey and/or predator animals is some positive constant. Predictably, when harvesting

is added to the model in which either the predator or prey have initial population

densities of zero at all locations on x the results are the same as in the preliminary

tests for predators and prey alone. The only di↵erence is that the carrying capacity

for the prey animals is slightly reduced and predator population density reaches 0 at

all locations more quickly. The next series of experiments will examine the behavior

of the model when both predators and prey are present in the system, but one species

is harvested at a “sustainable” or “unsustainable” rate.

Prey Harvesting

The next experiment examines the system when the prey are harvested at sus-

tainable and unsustainable rates and predators are not harvested at all. An important

characteristic of this experiment is that the harvesting rate of prey is constant at all

locations on x. x therefore, can be thought of as a region of ocean the entirety of

which is fished for the prey animals.
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When H
u

is set to a sustainable rate of ↵1 = 2 at all locations, the expected

result is a predator-prey population cycle that looks similar to the system without

harvesting implemented. The behavior of the system with a sustainable harvest rate

of the prey animals is shown in Figure 3.7. The expected result for an unsustainable

harvesting rate (↵1 = 3) of the prey animals is that the population densities of both

predators and prey eventually reaches 0 at all points on x. Figure 3.8 shows the

behavior of our model under such conditions.

Predator Harvesting

Next we examine how the system behaves with only harvesting of predators

implemented. Once again, the entire region of x will be fished at a constant rate

at all locations. When H
v

is set to a sustainable rate of ↵2 = 0.47 at all locations,

the expected result is, once again, a predator prey population density cycle similar

to that found in section 3.2 with no harvesting implemented. Figure 3.9 show the

behavior of the model under such conditions. The expected result for unsustainable

H
v

of ↵2 = 0.5 is similar to the result found in section 3.1 when the prey animals grow

to their carrying capacity. The results of the system behavior under these conditions

are show in Figure 3.10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 3.7: A-J show the behavior the system of equations over a hypothetical 23
month time period with a sustainable fishing rate for H

u

at all locations on x. A
population density cycle similar to the one shown in Figure 3.6 is achieved, as the
fishing rate is not so aggressive that it prevents predators from finding prey, or kill
o↵ the population of prey fish.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: A-H show the behavior the system of equations the same hypothetical 23
month period with a unsustainable fishing rate for H

u

at all locations on x. The over-
fishing of the prey population causes the population density of the prey to eventually
shrink to 0 at all locations. As a result, the predator population soon su↵ers the same
fate.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 3.9: A-J show the behavior the system of equations over the hypothetical 23
months with a sustainable fishing rate for H

v

at all locations on x. A population
density cycle similar to the one shown in Figure 3.6 is achieved as the fishing rate is
not so aggressive that it kills o↵ the population of predators faster than the predators
can consume prey and rebuild their population.
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(a) (b)

(c) (d)

(e)

Figure 3.10: A-E show the behavior the system of equations with a unsustainable
fishing rate for H

v

at all locations on x over 23 months. The result is similar to that
of the behavior of the model with only prey in the system and no harvesting. Once
the predator animals are hunted to extinction in the region, the prey animals are free
to reproduce until they reach their carrying capacity.
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3.4 Harvesting Predator and Prey

The next series of experiments examines how the model behaves when both

the predator and prey animals are harvested at a constant rate at all locations on

x. While this step may seem somewhat trivial since the expected results are more or

less the same as those of the experiments conducted in the last section, it allows for

us to see whether or not the rate for H
v

and H
u

that were considered “sustainable”

rates remain so when harvesting of both predators and prey is implemented.

Sustainable and Unsustainable Fishing Rates

Experiments showed that the fishing rates that were previously considered

sustainable and unsustainable for the prey animals from the previous series of ex-

periments more or less remained sustainable and unsustainable when harvesting of

predators was added to the model. However, a harvesting rate of ↵2 = 0.47 was no

longer sustainable. The fishing rate of the predators had to be reduced to ↵2 = 0.4

order to keep generate a predator-prey population density cycle that indicated sus-

tainable harvesting. Figures 3.11 and 3.12 show the results of the experiments.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.11: A-G show the behavior the system of equations with sustainable fishing
for H

u

and an unsustainable fishing rate for H
v

at all locations on x. An important
aspect of this particular experiment is that the fishing rate for H

v

was set to a value
that was shown to be sustainable if the prey animals were not harvested. This is
an indication of how sensitive a predator-prey system in general can be to outside
influences like harvesting. While extinction of predators does not occur immediately,
the fact that it occurs at all is significant.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.12: A-L show the behavior the system of equations from with sustainable
fishing for H

u

and H
v

at all locations on x. It should be noted that the value of H
v

in this experiment was reduced from 0.47 which was shown to be sustainable when
prey harvesting was not implemented to .4. Reducing the fishing rate of the predators
causes a population density cycle indicative of a healthy system.
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Experiment Max Sustainable
Harvesting Rate
(H

v

(x))

Harvesting Domain

No Prey Harvesting, No Sanc-
tuary

.47 [0,1]

Prey Harvesting, No Sanctuary .4 [0,1]
Prey Harvesting, Sanctuary .47 x /2 [38 ,

5
8 ]

Table 3.2: According to the behavior of the model, the sustainable and unsustainable
fishing rates exist for predators regardless of whether their prey are harvested or
not. However, it can also be seen that the maximum sustainable fishing rate of the
predators is higher when either their prey are not fished or they are protected by
sanctuaries.

Sanctuaries

Since shark fishing is prohibited in some areas of water like marine wildlife

sanctuaries, the next series of experiments will deal with examining how the model

behaves when the predator animals are not harvested in a small area of x. This

measure was not implemented for the prey animals for the sake of simplicity. The

results of these experiments should provide an indication of the importance of wildlife

sanctuaries in any predator-prey system.

Implementation

For this experiment, H
v

is initially set to the same rate that was found to be

sustainable in the experiments in the last section, with a small portion of H
v

set to

zero (i.e. H
v

(x) = 0 8x 2 [38N, 58N ]). The expected result of adding this sanctuary

to the model is that the maximum sustainable fishing rate will increase from that

found in the last section, though it will not be as high as if there were no predator

harvesting at all. A summary of the maximum sustainable fishing rates through all

experiments presented in this chapter can be found in Table 3.2. The results of this

experiment can be seen in Figure 3.13.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.13: A-M show the behavior the system of equations from timestep with
sustainable fishing forH

u

andH
v

at all locations on x after the addition of a sanctuary
in which the shark population is not harvested (marked o↵ by the green dashed lines).
The predator-prey population density cycle indicative of a healthy system is present
after the implementation of the sanctuary at the same value for H

v

(↵2 = 0.47) shown
to be unsustainable in the last experiment.
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Chapter 4

Results and Discussion

4.1 Summary of Results

The first two sets of experiments examined the behavior of the system of equa-

tions with the harvesting rates for both predators and prey set at 0. The first series

of experiments showed how the system behaved as expected when initial population

density of either the predator or prey animals was set to 0 at all locations in x. If

prey were alone in the system, they reproduced freely until they reached carrying

capacity. If predators were alone in the system, they would eventually die out in

all locations. In the second series of experiments, the interactions of predators and

prey without harvesting in the system were examined. A stable equilibrium could be

reached in the system of the initial predator and prey population densities were set to

the equilibrium values solved for in section 3.2 and evenly distributed. If the initial

conditions of u and v were set to any other value, a population density cycle would

result. Changing the distributions of predator and prey population densities form

constant to gaussian caused the dynamics of the system to become more varied, but

a periodic cycle still emerged at every two peaks. All of the results were as expected

and indicate that the model functions as a predator-prey model should without ad-

ditional factors, such as harvesting.
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The next series of experiments examined the behavior of the system with a

constant harvesting rate was added to the system at all locations. When both preda-

tor and prey were harvested alone in the system at sustainable rates, the behavior of

the system remained healthy, indicated by the same kind of continuous population

density cycle over time as was observed in the system without harvesting. When

both groups of animals were harvested together however, the maximum sustainable

harvesting rate for the predator animals decreased from 0.47 to 0.4. This result is an

indication of how sensitive the predator-prey system is to harvesting in general.

The last set of experiments examined how the addition of a predator sanc-

tuary to the model a↵ected its behavior. As was expected, blocking o↵ an area in

x within predator animals could not be harvested raised the maximum sustainable

harvesting rate for the predators, though not to the same value as when they were

harvested alone. The simple fact that the sanctuary allowed more sharks to remain

in the system allowed humans to harvest more of them and have the system remain

ecologically healthy with predators and prey undergoing the same type of population

density cycle as the previous the system without harvesting.

4.2 Discussion

The results of all experiments indicate that the numerical model developed

in this thesis behaves as expected for all tested conditions. The population density

cycles that are observed are indicative of how an ecologically healthy predator-prey

system behaves over time. Sustainable harvesting rates for both predator and prey

animals exist in all situations tested. It appears that the next step in improving this

model’s accuracy is to match the parameters in the model to observed parameters in

real-world systems.

There are plenty of other improvements that could be implemented in this
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particular model. For instance, the model could be modified so that there were more

than one type of prey animal present in the system; perhaps one prey type that could

be harvested and another that could not. Another improvement would be to add

juvenile sharks to the model, as it is the harvesting of these immature sharks that

causes many of ecological related to shark populations in the real world. Finally, the

harvesting functions in the model could be modified to not only vary with respect to

location, but with respect time as well. Most fisheries only harvest certain animals

during the time in which they are in season and as of yet, this model does not account

for this mathematically.

While theoretical in nature, it is hoped that the results achieved by the exper-

iments in which predator sanctuaries were implemented will illustrate the important

role that marine sanctuaries can play in the sustainability of harvesting a predator

in a predator-prey system. The fact that simply adding an area where the predator

animals could not be harvested made a less the ideal situation better for the preda-

tor population in general shows that sustainable fishing would undoubtedly become

more realistic if more such sanctuaries existed. It is also hoped that this model could

eventually be applied to other predator-prey system in which the predators face the

threat of extinction.
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