Applications of tree-structured regression for regional precipitation prediction
Description
This thesis presents a Tree-Structured Regression (TSR) method to relate daily precipitation with a variety of free atmosphere variables. Historical data were used to identify distinct weather patterns associated with differing types of precipitation events. Models were developed using 67% of the data for training and the remaining data for model validation. Seasonal models were built for each of four U.S. sites; New Orleans Louisiana, San Antonio and Amarillo of Texas as well as San Francisco California. The average correlation by site between observed and simulated daily precipitation data series range from 0.69 to 0.79 for the training set, and 0.64 to 0.79 for the validation set. Relative humidity related variables were found to be the dominant variables in these TSR models. Output from an NCAR Climate System Model (CSM) transient simulation of climate change were then used to drive the TSR models for predicting precipitation characteristics under climate change. A preliminary screening of the GCM output variables for current climate, however, revealed significant problems for the New Orleans, San Antonio and Amarillo sites. Specifically, the CSM missed the annual trends in humidity for the grid cells containing these sites. CSM output for the San Francisco site was found to be much more reliable. Therefore, we present future precipitation estimates only for the San Francisco site. While both GCM and TSR predict very small change in overall annual precipitation, they differ significantly from season to season