


Abstract

Involutions and fixed-point-free involutions arise naturally as representatives

for certain Borel orbits in invertible matrices. Similarly, partial involutions and partial

fixed-point-free involutions represent certain Borel orbits in matrices which are not

necessarily invertible. Inclusion relations among Borel orbit closures induce a partial

order on these discrete parameterizing sets. In this dissertation we investigate the

associated order complex of these posets. In particular, we prove that the order

complex of the Bruhat poset of Borel orbit closures is shellable in symmetric as well

as skew-symmetric matrices.
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Chapter 1

Introduction

Simplicial complexes are the building blocks of algebraic topology and play an

important role in geometry. Subcomplexes of a simplicial complex are called faces,

and the faces that are maximal under inclusion are called facets. A simple example

is the three dimensional cube where the faces are the vertices, edges, sides and the

empty set. The sides of the cube are the faces maximal under inclusion, so they are

the facets. The idea of “shellability” is to build the complex successively from its

facets. For this, the facets are ordered in a way such that the intersection of a facet

with all the preceding facets is a simplicial subcomplex of codimension 1. If such an

ordering on the facets exists, then we say that the complex is shellable. The exact

definition of shellability is in general very difficult to verify, but it implies a number

of important properties. For example, it is known that a shellable simplicial complex

has the homotopy type of a wedge of spheres. Also, a shellable simplicial complex is

Cohen-Macaulay.

The concept of shellability naturally applies to partially ordered sets, since

every partially ordered set can be uniquely identified with its order complex. In

detail, one identifies the elements of the poset with vertices of the complex and the

chains with the faces. We call a poset shellable if its order complex is shellable. Since

maximal chains correspond to facets, shellability requires an ordering on the maximal

chains.
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However, it is desirable to find a condition on posets that implies shellability

without the need to consider the corresponding order complex. Such a condition was

found by Björner in [1] and is termed “lexicographic shellability.” For this, every

edge of the Hasse diagram is labeled and hence every chain in the poset can be

identified with a sequence of labels. A poset is called lexicographically shellable if

there exists a labeling such that the lexicographically first chain between any two

elements is increasing, and there is no other increasing chain between these elements.

For a precise definition see Section 2.3. Ordering the maximal chains lexicographically

using these labels gives us the desired order on maximal chains required for shellability.

Hence, lexicographic shellability implies shellability. However, we should point out

that lexicographic shellability of the poset is a stronger property than the associated

order complex being shellable. In fact, Vince and Wachs found an example of a poset

that is shellable, but not lexicographically shellable [2].

The posets we are investigating in this thesis are orbits of Borel group actions

related to Schubert varieties ordered by inclusion. A Borel subgroup B of an algebraic

groupG is a maximal connected solvable algebraic subgroup. InGLn, Borel subgroups

are the subgroups that are conjugate to the subgroup of invertible upper triangular

matrices Bn. GLn/Bn forms an algebraic variety called the flag variety. The Borel

orbit of each flag under left multiplication by Bn is called a Schubert cell. Schubert

cells are open sets and their Zariski closures are called Schubert varieties. Schubert

varieties were first introduced by Hermann Schubert in 1879 in his celebrated treatise

“Kalkül der abzählenden Geometrie” (Calculus of Enumerative Geometry [3]). They

form one of the best studied classes of algebraic varieties and play an important role

in representation theory. The Bruhat-Chevalley order on Schubert varieties is defined

by set inclusion. The study of this partial order is equivalent to the study of the cell

decomposition of these varieties in the topological sense.
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In order to prove the lexicographic shellability of posets of the kind studied

in this thesis, two things have to be done. First, we have to show that the set of

orbits is finite, and we have to find a way to parameterize them. Second, we have

to investigate the covering relations in the poset and prove that there is a labeling

satisfying the properties for lexicographic shellability.

It is well-known that every Schubert variety can be parameterized by a permu-

tation, and Edelman proves in [4] that this poset is indeed lexicographically shellable.

We focus on the space of symmetric and the space of skew-symmetric invertible

matrices on which Bn acts by g · A = (g−1)>Ag−1. Richardson and Springer show

in [5] that the Borel orbits in the case of symmetric matrices can be parameterized

by symmetric permutation matrices, and in the skew-symmetric case they show that

the Borel orbits can be parameterized by symmetric fixed-point-free permutation

matrices. It is shown in [6] that the Borel orbits in the case of symmetric matrices

form a shellable simplicial complex under inclusion. Our first main result in this thesis

is that the poset of fixed-point-free permutation matrices is also lexicographically

shellable. This was proved in joint work with Can and Cherniavsky [7].

One can extend these results by dropping the requirement of invertibility and

look at the monoid of n × n matrices Mn. Note that GLn is Zariski dense in Mn.

First, we look at the classic example of Schubert varieties again. Given the action of

Bn on GLn we can investigate the same action on Mn. It was shown by Renner in [8]

that the Borel orbits in this case can be identified with elements of the rook monoid.

Recall that the rook monoid is the finite monoid of 0/1 matrices with at most one 1

in each row and column. Can extended the results of Edelman and proved that rook

monoid is shellable too [9].

We are interested in symmetric and skew-symmetric matrices in Mn. These

spaces are the Zariski closures of the invertible symmetric and skew-symmetric ma-
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trices. We again investigate the action g ·A = (g−1)>Ag−1 of Bn. Szechtman proved

that in the case of symmetric matrices the closure of these Borel orbits in Mn can be

identified with symmetric rook matrices [10]. Our second main result in this thesis is

the lexicographic shellability of this poset. This was proved in joint work with Can

[11]. In the case of skew-symmetric matrices it is possible to identify the orbits with

fixed-point-free symmetric rook matrices as shown by Cherniavsky in [12]. Our third

main result is that this poset is lexicographically shellable as well.

The organization of this thesis is as follows. In Chapter 2 we rigorously define

the terms introduced above and provide first examples. Chapters 3, 4 and 5 each

have two subsections. In the first of these subsections we treat the invertible cases;

in the following we handle the non-invertible cases. In detail, Chapter 3 recalls that

the posets of permutations and rooks is lexicographically shellable. In Chapter 4 we

recall Incitti’s results about the poset of involutions [6] and establish the shellability

of partial involutions. Chapter 5 analyzes the posets of fixed-point-free and partial

fixed-point-free involutions. In Chapters 6, 7 and 8 we look at related results for the

investigated posets. In particular, Chapter 6 explores Eulerian intervals in the rook

monoid and partial involutions. In Chapter 7 we investigate the difference between

the Bruhat order on fixed-point-free involutions and a similar order discovered by

Deodhar and Srinivasan in [13]. Chapter 8 analyzes the order complexes of fixed-

point-free and partial fixed-point-free involutions.
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Chapter 2

Preliminaries

In this chapter we define all the terms needed and provide first examples.

Our main references are [14], [15], [16] and [17]. For general background on posets

we recommend [14]. In this thesis, we consider shellability only for the pure case.

We recommend [15] and [16] as references. [17] is a nice summary of all basic def-

initions needed for this thesis and provides further implications of shellability and

lexicographic shellability. In [17] pureness is not assumed.

2.1 Basic Definitions

Definition 1. A partially ordered set P (poset, for short) is a set, together with a

binary relation ≤ satisfying

1. For all t ∈ P, t ≤ t (reflexivity).

2. If s ≤ t and t ≤ s, then s = t (antisymmetry).

3. If s ≤ t and t ≤ u, then s ≤ u (transitivity).

Definition 2. A subposet of P is a subset Q of P and a partial ordering of Q such

that if s ≤ t in Q, then s ≤ t in P . By an induced subposet of P , we mean a subset

Q of P and a partial ordering of Q such that for s, t ∈ Q we have s ≤ t in Q if and

only if s ≤ t in P . We then say that the subset Q of P has the induced order.
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As a special type of subposet we define an interval of P to be [s, t] = {u ∈ P :

s ≤ u ≤ t}.

In a poset P , an element y is said to cover another element x, if x < y, and if

x ≤ z ≤ y for some z ∈ P , then either z = x or z = y. In this case we write y → x.

Given P , we denote by C(P ) the set of all covering relations of P ,

C(P ) = {(x, y) ∈ P × P : y covers x}.

An (increasing) chain in P is a sequence of distinct elements such that x =

x1 < x2 < · · · < xn−1 < xn = y. A chain in a poset P is called saturated, if it is of the

form x = x1 ← x2 ← · · · ← xn−1 ← xn = y. A saturated chain in an interval [x, y] is

called maximal, if the end points of the chain are x and y. A poset is called graded

if all maximal chains between any two comparable elements x ≤ y have the same

length. For a finite poset with a minimal and a maximal element, denoted by 0̂ and

1̂, respectively this amounts to the existence of an integer valued function `P : P → N

satisfying

1. `P (0̂) = 0,

2. `P (y) = `P (x) + 1 whenever y covers x in P .

`P is called the length function of P . In this case, the length of the interval [0̂, 1̂] = P

is called the length of the poset P .

We recall the definition of an abstract simplicial complex.

Definition 3. An abstract simplicial complex on a vertex set V is a collection ∆ of

subsets of V satisfying:

1. If T ∈ V then {T} ∈ ∆,

2. if F ∈ ∆ and G ⊂ F , then G ∈ ∆.
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An element F ∈ ∆ is called a face of ∆.

The faces which are maximal under inclusion are called facets. A complex is

pure if all its facets are equicardinal.

Now we define the order complex of a poset P as follows.

Definition 4. Let P be any poset, then let ∆(P ) be the simplicial complex where the

vertices of ∆(P ) are the elements of P , and the faces of ∆(P ) are the chains of P .

The simplicial complex ∆(P ) is called the order complex of P .

For every poset P let P̂ denote the poset P with 0̂ and 1̂ adjoined. We define

the notion of a Cohen-Macaulay poset.

Definition 5. A finite poset P is said to be Cohen-Macaulay over an abelian group

A if for every s < t in P̂ , the order complex ∆(s, t) of the open interval (s, t) satisfies

H̃i(∆(s, t);A) = 0, if i < dim ∆(s, t).

where H̃i(∆(s, t);A) is the i-th reduced homology of the topological realization of

∆(s, t) with coefficients in A.

Definition 6. The Möbius function of P is defined recursively by the formula

µ([x, x]) = 1,

µ([x, y]) = −
∑
x≤z<y

µ([x, z])

for all x ≤ y in P .

The main reason for our interest in the Möbius function is its connection to the

Euler characteristic of the associated order complex. Recall that the reduced Euler
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characteristic χ̃(∆) of a simplicial complex ∆ is defined to be

χ̃(∆) :=
dim ∆∑
i=−1

(−1)ifi(∆),

where fi(∆) is the number of i-dimensional faces of ∆. Here, f−1(∆) = 1 and corre-

sponds to the empty face.

Proposition 7. (Philip Hall Theorem)

For any poset P ,

µ(P̂ ) = χ̃(∆(P )).

The Euler characteristic is a topological invariant. Hence by Proposition 7,

µP (x, y) depends only on the topology of the open interval (x, y) of P .

Definition 8. A finite graded poset P with 0̂ and 1̂ is called Eulerian if µp(s, t) =

(−1)`(t)−`(s) for all s ≤ t in P .

2.2 Shellablility

For each face F of a simplicial complex ∆, let 〈F 〉 denote the subcomplex

generated by F , i.e., 〈F 〉 = {G : G ⊆ F}.

Definition 9. A pure simplicial complex ∆ is said to be shellable if its facets can be

given a linear order F1, F2, . . . , Ft in such a way that the subcomplex
(
∪k−1
i=1 〈Fi〉

)
∩〈Fk〉

is pure and (dimFk − 1)-dimensional for all k = 2, . . . , t. A linear order of the facets

which satisfies this requirement is called a shelling.

Example 10. [18], [16]

1. Every 0-dimensional complex, that is, every set of points, is shellable, by defi-

nition.
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2. Every simplex is shellable. In fact, any ordering of its facets yields a shelling.

This is easily shown by induction on the dimension, since the intersection of

any two facets Fi and Fj is a facet of both Fi and Fj.

3. The d-cubes are shellable. By induction on the dimension, it can be shown that

every ordering of the 2d facets F1, . . . , F2d such that F1 and F2d are opposite

(that is, F2d = F1) yields a shelling.

However, already for 2-complexes, problems arise. For example, in Figure 2.1,

the left complex is not shellable but the right complex is shellable.

The problem with the left complex is that cells 1 and 2 intersect at a vertex,

which is not 1-dimensional. In contrast, the ordering of the right complex is a shelling.

1

2

4

1

3

2

5

Figure 2.1: Non shellable and shellable 2-complexes

One of the most famous results about convex polytopes is the Euler-Poincaré

formula:

−f−1 + f0 − f1 + · · ·+ (−1)d−1fd−1 + (−1)dfd = 0,

where fi denotes the number of i-dimensional faces of a d-polytope P . Grünbaum

[19] observed that all classical inductive proofs of the Euler-Poincaré formula starting

with Schläfli’s proof in the middle of the nineteenth century [20] assumed that the

boundary of every polytope can be built up inductively in a nice way. That this
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is in fact possible was proved by Bruggesser and Mani in 1971 [21]. In their paper

shellability was formally introduced. The theory of shellability was extended by

Björner and Wachs [22] where ∆ is no longer assumed to be pure.

Although the definition of shellability is not very illuminating, it implies a

number of strong topological and algebraic properties.

Theorem 11. If ∆ is a shellable simplicial complex then ∆ is Cohen-Macaulay.

Theorem 12. [23] A shellable simplicial complex has the homotopy type of a wedge

of spheres.

Corollary 13. If ∆ is shellable, then for all i,

H̃i(∆;Z) ∼= H̃ i(∆;Z) ∼= Z
ri .

It should be mentioned that shellability depends on the triangulation of a

complex.

Theorem 14. [24] The tetrahedron can be triangulated in a nonshellable way.

2.3 Lexicographic shellability

In 1980 Björner found a condition for the edge labeling of a poset which implies

the shellability of the poset [1]. From this the theory of lexicographic shellability

emerged. Björner and Wachs further developed the notion to the nonpure case [25].

It should be mentioned, that there are two versions of lexicographic shellability, EL-

shellability and CL-shellability. We work with EL-shellability which is known to

imply CL-shellability.

Let P be a finite poset with a maximum and a minimum element, denoted

by 1̂ and 0̂, respectively. We assume that P is graded of rank n. Recall that by
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C(P ) we denote the set of covering relations. An edge-labeling on P is a map f =

fP,Γ : C(P )→ Γ into some totally ordered set Γ . The Jordan-Hölder sequence (with

respect to f) of a chain c : x0 < x1 < · · · < xn−1 < xn of P is the n-tuple

f(c) := (f((x0, x1)), f((x1, x2)), . . . , f((xn−1, xn))) ∈ Γ n.

Fix an edge labeling f , and a chain c : x0 < x1 < · · · < xn. We call both the chain c

and its image f(c) increasing, if

f((x0, x1)) ≤ f((x1, x2)) ≤ · · · ≤ f((xn−1, xn))

holds in Γ .

Let k > 0 be a positive integer and let Γ k denote the k−fold cartesian product

Γ k = Γ ×· · ·×Γ , totally ordered with respect to the lexicographic ordering. An edge

labeling f : C(P )→ Γ is called an EL−labeling, if

1. in every interval [x, y] ⊆ P of rank k > 0 there exists a unique maximal chain

c such that f(c) ∈ Γ k is increasing,

2. the Jordan-Hölder sequence f(c) ∈ Γ k of the unique chain c from (1) is the

smallest among the Jordan-Hölder sequences of maximal chains x = x0 < x1 <

· · · < xk = y.

A poset P is called EL-shellable, if it has an EL−labeling.

The following result of Björner justifies the term lexicographic shellability.

Theorem 15. ([1]) Suppose P is a bounded poset with an EL-labeling. Then the

lexicographic order of the maximal chains of P is a shelling of ∆(P ).

Lexicographic shellability is not equivalent to shellability. In 1985, Vince and
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Wachs found an example of a shellable poset that is not lexicographically shellable

[2].

Example 16. We depict an example of an EL-shellable poset with an EL-labeling

as well as a non EL-shellable poset.

A

B C

D E

F

3 1

1 3
2 2

3 1

Figure 2.2: EL-shellable

A

B C

D E

F

Figure 2.3: not EL-shellable

2.4 Posets of Borel orbit closures

For the remainder of our thesis we fix an algebraically closed field k and con-

sider all groups and semigroups over k. For notational ease we do not use k as long

as it is clear from the context.

We denote by GLn the general linear group of n× n invertible matrices. Let

Y be a variety on which a subgroup of GLn acts. We denote by B(Y ;G) the set of

G-orbits in Y . We focus on the following examples:

• Y = GLn and G = Bn×Bn where Bn is the Borel subgroup of invertible upper

triangular matrices acting on Y via

(x, y) · A = xAy−1, (2.1)
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where x, y ∈ Bn and A ∈ GLn.

• Y = Sym0
n, the space of symmetric matrices in GLn, and G = Bn acting on Y

via

x · A = (x−1)>Ax−1, (2.2)

where x> denotes the transpose of the matrix x ∈ Bn and A ∈ Sym0
n.

• Y = Skew0
2n, the space of skew-symmetric matrices in GLn, and G = Bn acting

on Y via

x · A = (x−1)>Ax−1, (2.3)

where x> denotes the transpose of the matrix x ∈ Bn and A ∈ Skew0
2n.

In all of these examples, B(Y ;G) is a finite poset with respect to set inclusion.

It is well known that the symmetric group of permutation matrices, Sn, parametrizes

the orbits of (2.1). For u ∈ Sn, let u̇ denote the right coset in GLn/B represented by

u. The classical Bruhat-Chevalley ordering is defined by u ≤Sn v ⇐⇒ B · u̇ ⊆ B · v̇

for u, v ∈ Sn. In [4] Edelman proves the lexicographic shellability of this poset.

A permutation u ∈ Sn called an involution if u2 = id, or equivalently, if its

permutation matrix is a symmetric matrix. We denote by In the set of all involutions

in Sn, and consider it as a subposet of the Bruhat-Chevalley poset (Sn,≤Sn). In [5],

Richardson and Springer show that In parametrizes the elements of B(Y ;G) of (2.2).

In [6] Incitti proves that (In,≤Sn) is a lexicographically shellable poset.

An involution x ∈ I2n is called fixed-point-free, if the matrix of x has no non-

zero diagonal entries. In [5], Richardson and Springer show that there exists a poset

isomorphism between F2n, the poset of (2.3) and the subposet of fixed-point-free
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involutions in I2n. Unfortunately, F2n does not form an interval in I2n, hence it does

not immediately inherit nice properties therein. In fact, this is easily seen for n = 2

from the Hasse diagram of I4 in Figure 2.4, in which the fixed point free involutions

are boxed.

id

(34) (23) (12)

(24) (13)(12)(34)

(14) (13)(24)

(14)(23)

Figure 2.4: F4 in I4

These classical cases have a straight-forward but important generalization.

The closure of GLn is Mn, the monoid of n × n matrices. Starting with Mn we get

to the following spaces:

• Y = Mn and G = Bn×Bn where Bn is the group of invertible upper triangular

matrices acting on Y via

(x, y) · A = xAy−1, (2.4)

where x, y ∈ Bn and A ∈Mn.

• Y = Symn, the space of symmetric matrices in M , and G = Bn acting on Y
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via

x · A = (x−1)>Ax−1, (2.5)

where x> denotes the transpose of the matrix x ∈ Bn and A ∈ Symn.

• Y = Skewn, the space of skew-symmetric matrices in Mn, and G = Bn acting

on Y via

x · A = (x−1)>Ax−1, (2.6)

where x> denotes the transpose of the matrix x ∈ Bn and A ∈ Skewn.

Also in these examples, B(Y ;G) is finite and partially ordered with respect to

set inclusion. The rook monoid Rn is the finite monoid of 0/1 matrices with at most

one 1 in each row and each column. The elements of Rn parametrize the orbits of

the action (2.4) of Bn × Bn on M [8]. The elements of Rn are called rooks, or rook

matrices.

It is shown by Szechtman in [10] that each orbit closure in (2.5) has a unique

corresponding symmetric rook in Rn. Following [26], we call these rooks partial invo-

lutions as they satisfy the quadratic equation

x2 = e,

where e ∈ Rn is a diagonal matrix. We denote the set of all partial involutions in Rn

by Pn.

In [12], Cherniavsky shows that the Borel orbits in (2.6) are parametrized by

those elements x ∈ Skewn such that

1. the entries of x are either 0,1 or -1,
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2. any non-zero entry of x that is above the main diagonal is a +1,

3. in every row and column of x there exists at most one non-zero entry.

Note that when the -1’s in x are replaced by +1’s, the resulting matrix x̃ is a partial

involution with no diagonal entries. In other words, x̃ is a partial fixed-point-free

involution. It is easy to check that this correspondence is a bijection, hence PFn

parametrizes the Borel orbits in Skewn.

The Bruhat-Chevalley-Renner ordering on rooks is defined by

r ≤ t ⇐⇒ BnrBn ⊆ BntBn, r, t ∈ Rn.

Here, the bar in our notation stands for the Zariski closure in M . The corresponding

partial order on Pn and PFn, denoted by � is defined similarly; if A and A′ are two

Bn-orbit closures inB(Q;Bn), and, r and r′ are two partial involutions or partial fixed-

point-free involutions representing A and A′, respectively, then r � r′ ⇐⇒ A′ ⊆ A.

It is desirable to obtain a combinatorial description of these partial orderings.

For Rn a useful characterization is found by Can and Renner in [27]. Related com-

binatorial descriptions for the partial involutions and for the partial fixed point free

involutions are given by Bagno and Cherniavsky in [26] and by Cherniavsky in [12],

respectively. For the sake of space, we review the latter two descriptions, only. In

fact, the Can-Renner description can be translated into a form similar to that found

by Bagno and Cherniavsky (see final remarks of [26]).

Let X = (xij) be an n × m matrix. For each 1 ≤ k ≤ n and 1 ≤ l ≤ m,

denote by Xkl the upper-left k × l submatrix of X. The rank-control matrix of X is

the n×m matrix Rk(X) = (rkl) with entries given by

rkl = rank(Xkl),
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for 1 ≤ k ≤ n and 1 ≤ l ≤ m. For example, the rank-control matrix of the partial

involution x =


1 0 0

0 0 0

0 0 1

 is

Rk(x) =


1 1 1

1 1 1

1 1 2

 . (2.7)

For two matrices A = (akl) and B = (bkl) of the same size with integer entries,

we write A ≤R B, if akl ≤ bkl for all k and l. Then

x � y if and only if Rk(x) ≤R Rk(y). (2.8)

Although � is more natural from a geometric point of view, we prefer to work with

its opposite, which we denote, by abuse of notation, by ≤, also. The same criterion

holds for the posets ≤Sym and ≤Skew.

2.5 Relations between the posets

We recall some fundamental facts about the covering relations of ≤Sym and

≤Skew. Our references are [26] and [12].

Lemma 17. The intersection PF2n∩I2n is equal to F2n, and furthermore, (F2n,≤Sym)

and (F2n,≤Skew) are isomorphic.

Proof. The first claim is straightforward. For the second it is enough to observe that

the partial orders ≤Skew and ≤Sym are both given by the same rank-control matrix

comparison. Therefore, they restrict to give the same poset structure on F2n.

Whenever it is clear from the context, we write (F2n,≤) instead of (F2n,≤Sym)
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or (F2n,≤Skew).

Remark 18. It is easy to see that the sets PF2n and I2n have the same cardinality.

Indeed, let x ∈ PF2n be a partial fixed-point-free involution with determinant 0. We

denote by x̃ the completion of x to an involution in I2n by adding the missing diagonal

entries. For example,

x =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 x̃ =



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


.

Define φ : PF2n → I2n by setting

φ(x) =


x̃ if x ∈ PF2n − F2n,

x otherwise.

(2.9)

It is not difficult to check that φ is a bijection between PF2n and I2n such that φ(x) =

x for all x ∈ F2n. However, as pointed out in [12] the posets (PF2n,≤Skew) and

(I2n,≤Sym) are not isomorphic. (Compare the Hasse diagram of PF4 as depicted in

Example 5.1 in [12] and the Hasse diagram of the opposite of I4 as depicted in Figure

2 of [6].)

Lemma 19. Let w0 ∈ P2n denote the “longest permutation,” namely, the 2n × 2n

anti-diagonal permutation matrix, and let j2n ∈ F2n denote the 2n×2n fixed-point-free

involution having non-zero entries at the positions (1, 2), (2, 1), (3, 4), (4, 3), . . . , (2n−

1, 2n), (2n, 2n−1), only. In other words, j2n is the fixed-point-free involution with the

only non-zero entries along its super-diagonals. Then

1. I2n is an interval in P2n with smallest element id2n and largest element w0.
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2. F2n is an interval in PF2n with smallest element j2n and largest element w0.

Proof. Let x ∈ I2n. The (2n, 2n)-th entry of Rk(x) is equal to 2n because x is

invertible. On the other hand, if x ∈ P2n is an element not contained in I2n, then its

rank is less than 2n. In other words, its (2n, 2n)-th entry cannot be 2n, and therefore,

it cannot be greater than or equal to any element of I2n. Hence, I2n is an interval. It

follows from (2.8) that w0 is the smallest, id2n is the largest element of I2n.

To prove the second claim, it is enough to prove that j2n is the smallest element

of F2n because we already know that F2n = I2n ∩ PF2n. Now, the minimality of j2n

follows from induction by using the combinatorial criterion (2.8).

0

id2n

R2n P2n

PF2n

I2n

j2n

F2n

w0

Figure 2.5: The schematic diagrams of R2n, P2n, PF2n, I2n and F2n.
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2.6 Rooks and their enumeration.

This section is joint work with Can [11].

We set up our notation for rook matrices and establish a preliminary enumer-

ative result.

Let x = (xij) ∈ Rn be a rook matrix of size n. Define the sequence (a1, . . . , an)

by

aj =


0 if the j-th column consists of zeros,

i if xij = 1.

(2.10)

By abuse of notation, we denote both the matrix and the sequence (a1, . . . , an) by x.

For example, the associated sequence of the partial permutation matrix

x =



0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0


is x = (3, 0, 4, 0).

Once n is fixed, a rook matrix x ∈ Rn with k-nonzero entries is called a k-rook.

Observe that the number of k-rooks is given by the formula

|Rn,k| = k! ·
(
n

k

)2

. (2.11)

Indeed, to determine a k-rook, we first choose n−k 0-zero rows and n−k 0-columns.

This is done in
(

n
n−k

)2
ways. Next we decide for the non-zero entires of the k-rook.

Since deleting the zero rows and columns results in a permutation matrix of size k,

there are k! possibilities. Hence, the formula follows.

Let τn denote the number of invertible partial involutions. By default, we set
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τ0 = 1.

There is no closed formula for τn, however, there is a simple recurrence that it

satisfies;

τn+1 = τn + (n− 1)τn−1 (n ≥ 1). (2.12)

There is a similar recurrence satisfied by the number of invertible n-rooks (permuta-

tions);

(n+ 1)! = n! + n2 · (n− 1)! (n ≥ 1). (2.13)

It follows that

Lemma 20. For all n ≥ 1,

1. |Rn,n−1 ∪Rn,n| = (n+ 1)!,

2. |Pn,n−1 ∪ Pn,n| = τn+1.

Proof. The first assertion follows from equations (2.13) and (2.11). The second as-

sertion follows from equation (2.12) and the fact that |Pn,n−1| = (n− 1)τn−1.
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Chapter 3

The posets of permutations Sn and
rooks Rn

3.1 The poset of permutations Sn

3.1.1 An EL-labeling of permutations

We follow the summary of Can in [9].

The symmetric group Sn is the set of all permutations of [n]. We represent the

elements of Sn in one line notation w = (w1, ..., wn) ∈ Sn so that w(i) = wi. It is well

known that the Sn is a graded poset with respect to Bruhat-Chevalley ordering. Let

B be the Borel subgroup of invertible upper triangular matrices in SLn. The grading

on Sn is given by the length function

`(w) = dim(BwB)− dim(B) = inv(w), (3.1)

where

inv(w) = |{(i, j) : 1 ≤ i < j ≤ n, wi > wj}|. (3.2)

Note that dimB =
(
n+1

2

)
.
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The Bruhat-Chevalley ordering on Sn is the smallest partial order generated

by the transitive closure of the following (covering) relations. The permutation x =

(a1, ...., an) is covered by the permutation y = (b1, ..., bn), if `(y) = `(x) + 1 and

1. ak = bk for k ∈ {1, ..., î, ..., ĵ, ..., n} (hat means omit those numbers),

2. ai = bj, aj = bi, and ai < aj.

An EL−labeling for Sn is constructed by Edelman [4] as follows. Let Γ = [n] × [n]

be the poset of pairs, ordered lexicographically: (i, j) ≤ (r, s) if i < r, or i = r and

j < s. Define f((x, y)) = (ai, aj), if y = (b1, ..., bn) covers x = (a1, ..., an) such that

1. ak = bk for k ∈ {1, ..., î, ..., ĵ, ..., n},

2. ai = bj, aj = bi, and ai < aj.

Theorem 21. ([4]) The symmetric group Sn with Bruhat-Chevalley ordering is lexi-

cographically shellable.

We depict the the EL-labeling of S3:

(1, 2, 3)

(1, 3, 2) (2, 1, 3)

(2, 3, 1) (3, 1, 2)

(3, 2, 1)

(2,3) (1,2)

(1,2) (2,3)

(1,3) (1,3)

(2,3) (1,2)

Figure 3.1: The EL-labeling of S3.
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3.2 The rook monoid Rn

3.2.1 Lexicographic shellability of the rook monoid

We revisit the results of Can in [9]. Recall that the rook monoid Rn is the

monoid of all 0-1 matrices with at most one 1 in each line and each column. We use

the one-line notation as defined in Section 2.6.

There are two different types of covering relations in Rn as layed out in the

following lemmas.

Lemma 22. ([9]) Let x = (a1, ..., an) and y = (b1, ..., bn) be elements of Rn. Suppose

that ak = bk for all k = {1, ..., î, ..., n} and ai < bi. Then, y covers x if and only if

either

1. bi = ai + 1, or

2. there exists a sequence of indices 1 ≤ j1 < · · · < js < i such that the set

{aj1 , ..., ajs} is equal to {ai + 1, ..., ai + s}, and bi = ai + s+ 1.

Lemma 23. ([9]) Let x = (a1, ..., an) and y = (b1, ..., bn) be two elements of Rn.

Suppose that aj = bi, ai = bj and aj < ai where i < j. Furthermore, suppose

that for all k ∈ {1, ...̂i, ..., ĵ, ..., n}, ak = bk. Then, y covers x if and only if for

s = i+ 1, ..., j − 1, either aj < as, or as < ai.

If a covering relation is as in Lemma 22 we call it type 1 and it is called type

2 if it is as in Lemma 23.
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Using these two lemmas, we define an EL−labeling on Rn

F : C(Rn) −→ Γ,

where Γ is the poset Γ = {0, 1, ..., n} × {0, 1, ..., n} with respect to lexicographic

ordering.

Let (x, y) ∈ C(Rn). We define

F ((x, y)) =


(ai, bi), if y covers x by type 1

(ai, aj), if y covers x by type 2.

(3.3)

Theorem 24. [9] Let Γ = {0, 1, ..., n}× {0, 1, ..., n}, and let F : C(Rn) −→ Γ be the

edge-labeling, defined as in (3.3). Then F is an EL−labeling for Rn.
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(0, 0, 0)

(0, 0, 1)

(0, 0, 2) (0, 1, 0)

(0, 1, 2) (0, 0, 3) (0, 2, 0) (1, 0, 0)

(0, 1, 3) (0, 2, 1) (0, 3, 0) (1, 0, 2) (2, 0, 0)

(0, 2, 3) (0, 3, 1) (1, 0, 3) (1, 2, 0) (2, 0, 1) (3, 0, 0)

(1, 2, 3) (0, 3, 2) (1, 3, 0) (2, 0, 3) (2, 1, 0) (3, 0, 1)

(1, 3, 2) (2, 1, 3) (2, 3, 0) (3, 0, 2) (3, 1, 0)

(2, 3, 1) (3, 1, 2) (3, 2, 0)

(3, 2, 1)

(0, 1)

(1, 2) (0, 1)

(1, 2) (0, 1)(0, 2)

(0, 1)

(0, 2) (2, 3)

(2, 3)

(0, 1) (1, 2) (0, 1) (0, 3)

(2, 3)

(0, 1)
(0, 2) (0, 2) (1, 2)

(1, 2) (1, 3)
(1, 3) (2, 3)

(0, 1) (0, 1) (2, 3) (0, 1) (0, 2) (1, 2) (1, 2) (0, 1) (0, 3)
(2, 3)

(0, 1)
(0, 2)

(0, 3)

(2, 3)

(1, 2) (0, 1) (0, 3)

(2, 3)

(0, 2)

(1, 2)
(1, 3) (1, 2)

(0, 1) (2, 3)

(1, 3)

(0, 3)

(0, 1)

(2, 3)
(0, 1)

(0, 2) (1, 2) (0, 1)
(0, 3)

(0, 2)

(1, 2)

(0, 3)

(1, 3)

(2, 3) (1, 2) (1, 3) (2, 3)

(0, 1)

(1, 2)

(1, 3)

(0, 1) (2, 3)

(1, 3)

(2, 3) (0, 1)

(0, 2)
(0, 2)

(1, 2)

(2, 3) (1, 2) (0, 1)

Figure 3.2: EL−labeling of the rook monoid R3.
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Chapter 4

The posets of involutions In and
partial involutions Pn

4.1 The poset of involutions In

4.1.1 An EL-labeling of invertible involutions.

In [6], Incitti shows that the poset of invertible involutions is EL-shellable.

Let us briefly recall his arguments.

For a permutation σ ∈ Sn, a rise of σ is a pair (i, j) ∈ [n]× [n] such that

i < j and σ(i) < σ(j).

A rise (i, j) is called free, if there is no k ∈ [n] such that

i < k < j and σ(i) < σ(k) < σ(j).

For σ ∈ Sn, define its fixed point set, its exceedance set and its defect set to be

If (σ) = Fix(σ) = {i ∈ [n] : σ(i) = i},

Ie(σ) = Exc(σ) = {i ∈ [n] : σ(i) > i},

Id(σ) = Def(σ) = {i ∈ [n] : σ(i) < i},
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respectively.

The type of a rise (i, j) is defined to be the pair (a, b), if i ∈ Ia(σ) and j ∈ Ib(σ),

for some a, b ∈ {f, e, d}. We call a rise of type (a, b) an ab-rise. Two kinds of

ee-rises have to be distinguished from each other; an ee-rise is called crossing, if

i < σ(i) < j < σ(j), and it is called non-crossing, if i < j < σ(i) < σ(j). The rise

(i, j) of an involution σ ∈ In is called suitable, if it is free and if its type is one of the

following: (f, f), (f, e), (e, f), (e, e), (e, d). We depict these possibilities in the first two

columns in Figure 4.2, below. It is easy to check that each involution τ in the right

column in Figure 4.2 covers the corresponding σ in the left column. In this case, the

covering relation is called a covering transformation of type (i, j), and τ is denoted by

ct(i,j)(σ). In [6], Incitti shows that these covering transformations exhaust all possible

covering relations in In, and moreover, he shows that the labeling

F ((σ, ct(i,j)(σ))) := (i, j) ∈ [n]× [n]

is an EL-labeling for In.

(1, 2, 3, 4)

(1, 2, 4, 3) (1, 3, 2, 4) (2, 1, 3, 4)

(1, 4, 3, 2) (2, 1, 4, 3) (3, 2, 1, 4)

(3, 4, 1, 2) (4, 2, 3, 1)

(4, 3, 2, 1)

(3,4) (2,3) (1,2)

(2,3) (1,3)
(2,4) (1,2) (3,4) (1,2)

(1,3) (1,4)

(1,4) (2,4) (1,2) (1,3)

(1,2) (2,3)

Figure 4.1: The EL-labeling of I4.
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ff -rise: ←−0
0
1

1
i
j

i j

1
1
0

0
i
j

i j

fe-rise: ←−
1

1

1

0
0

0

i
j

σ(j)

i j σ(j)

0
0

0

1
1

1

i
j

σ(j)

i j σ(j)

ef -rise: ←−
1

1
1

0

0

0

i

σ(i)

j

i σ(i) j

0

0
0

1

1

1

i

σ(i)

j

i σ(i) j

Non-crossing ee-rise: ←−0 1
01

01
0 1

i
j

σ(i)

σ(j)

i j σ(i)σ(j)

1 0
10

10
1 0

i
j

σ(i)

σ(j)

i j σ(i)σ(j)

Crossing ee-rise: ←−
0

0
0

0
1

1

1
1

i
σ(i)

j
σ(j)

iσ(i) j σ(j)

1

1
1

1
0

0

0
0

i
σ(i)

j
σ(j)

iσ(i) j σ(j)

ed-rise: ←−
1 0

0
1

10
0
1

i
σ(i)

σ(j)

j

iσ(i)σ(j) j

0 1
1
0

01
1
0

i
σ(i)

σ(j)

j

iσ(i)σ(j) j

Figure 4.2: Covering transformations σ ← τ = ct(i,j)(σ) of In.
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4.2 The poset of partial involutions Pn

The results of this section were obtained in joint work with Can [11].

4.2.1 Covering relations of partial involutions Pn.

Covering relations in Pn depend on a numerical invariant associated with the

rank-control matrices. For any non-negative integer k, define r0,k to be 0. For a

rank-control matrix Rk(x) = (rij), define

D(x) = #{(i, j)|1 ≤ i ≤ j ≤ n and rij = ri−1,j−1}.

For example, let x =


1 0 0

0 0 0

0 0 1

 and Rk(x) =


1 1 1

1 1 1

1 1 2

.

Then D(x) = #{(2, 2), (2, 3)} = 2.

In [26], Bagno and Cherniavsky prove that, in (Pn,≤),

x covers y ⇐⇒ R(x) ≤R R(y) and D(x) = D(y) + 1.

However, we need a finer classification of the covering types. The notion of a suitable

rise on involutions extends to the partial involutions (Pn,≤), verbatim. Of course,

there are additional covering relations. In this section we exhibit all of them.
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Lemma 25. Let x and y be two partial involutions. Then x covers y if and only if

one of the following is true:

1. x and y have the same zero-rows and columns. Let x̃ and ỹ denote the full rank

involutions obtained from x and y, respectively, by deleting common zero rows

and columns. Then x covers y if and only if x̃ covers ỹ. For example,

y =


1 0 0

0 0 0

0 0 1

 is covered by x =


0 0 1

0 0 0

1 0 0

 .

2. Without removing a suitable rise, x is obtained from y by one of the following

moves:

(a) a 1 on the diagonal is moved down diagonally to the first available diagonal

entry. It is possible for a 1 to be pushed out of the matrix. For example,

y =



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0


is covered by x =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 1


.

(b) Two off-diagonal symmetric 1’s are pushed right/down or down/right to the

first available entries at symmetric positions. There are two cases which

we demonstrate by examples:

i. y =


0 1 0

1 0 0

0 0 0

 is covered by x =


0 0 1

0 0 0

1 0 0

 ,
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ii. y =


0 0 1

0 0 0

1 0 0

 is covered by x =


0 0 0

0 0 1

0 1 0

 .

As a special case of ii., if there are no available entries at symmetric

positions to push down and right, then the two 1’s at positions (i, j) and

(j, i) with i > j are pushed to (i, i), and to the first available diagonal entry

below (i, i). For example,

y =



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0


is covered by x =



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

In this case, a single 1 is allowed to be pushed out of the matrix. For

example, y =

0 1

1 0

 is covered by x =

0 0

0 1

 .

Before we start the proof, let us illustrate by an example, what it means to

remove a suitable rise:

Example 26. Let y =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0


and let x =



0 0 0 1

0 0 0 0

0 0 1 0

1 0 0 0


. Then x is obtained

from y by a move as in 2.(b)i., however, it removes the suitable rise (1, 3). Therefore,

it is not a covering relation.

Proof. Comparing the rank-control matrices Rk(·) as well as the invariants D(·) of x

and y, the “if” direction of the claim is straightforward to verify.

We prove the “only if” direction by contraposition. To this end let x denote
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a partial involution that covers y ∈ Pn, and x is not obtained by one the moves as in

1., 2.(a), or 2.(b).

Since 1. does not hold, x has a smallest row consisting of zeros such that the

corresponding row of y contains a non-zero entry. Let i denote the index of this zero

row of x. Notice that, if there is a zero row for both x and y with the same index,

then removing this row and the corresponding column does not have any effect on the

remaining entries of the rank-control matrices. Therefore, we assume that neither x

nor y has a zero row before the i-th row.

There are two subcases;

I) the nonzero entry in row i of y does not occur on the i-th column,

II) it occurs on the i-th column.

Realize that if the nonzero entry in row i of y occurs after the i-th column,

then the 1’s are in the symmetric positions (i, j) and (j, i). Without loss of generality

we can therefore assume that i > j in case I), i.e. the nonzero entry in row i of y

occurs before the i-th column.

We proceed with I). Then y and x are as in

y =



0

A
... B

1

...

0 · · · 1 · · · 0 · · · 0

C
... D

0



and x =



0

A′
... B′

0

...

0 · · · 0 · · · 0 · · · 0

C ′
... D′

0



,

where A,A′B,B′, . . . stand for appropriate size matrices. Let 1 ≤ k < i denote the

index of the row of y with a 1 on its i-th entry.
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Let Γ denote the set of coordinates of non-zero entries (r, s) of x satisfying

k ≤ r ≤ n and i < s ≤ n. Since the upper k × n portions of both of y and x are of

rank k, Γ 6= ∅.

Let (r, s) ∈ Γ denote the entry with smallest column index. Unless r = s,

we define x1 to be the matrix obtained from x by moving the non-zero entries at the

positions (r, s) and (s, r) (which exists, by symmetry) to the positions (r, i) and (i, r).

If r = s, then x1 is defined by moving the non-zero entry to the (i, i)-th position.

We claim that y ≤ x1 < x. Indeed, since x1 is obtained from x by reverse of

the one of the moves 2.(a) or 2.(b), the second inequality is clear. The first inequality

follows immediately from checking the corresponding rank-control matrices of x, x1

and of y. Let us illustrate the procedure by two possible scenarios:

Example 27. Let

y =



0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0



and x =



0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0



.
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Then i = 5, k = 1, and the rank-control matrices of y and x are

Rk(y) =



0 0 0 0 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 3 3 3 3

0 1 2 2 3 3 3 4

1 2 3 3 4 4 4 5

1 2 3 3 4 5 5 6

1 2 3 3 4 5 5 6

1 2 3 4 5 6 6 7



and Rk(x) =



0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 4

0 1 2 2 2 3 3 4

1 2 3 3 3 4 4 5

1 2 3 3 3 4 5 6

1 2 3 4 4 5 6 7



.

In this case,

x1 =



0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0



and Rk(x1) =



0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 4

0 1 2 2 3 4 4 5

1 2 3 3 4 5 5 6

1 2 3 3 4 5 5 6

1 2 3 4 5 6 6 7



.
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If

y =



0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



and x =



0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0



,

then i = 4, k = 1 and the rank-control matrices are

Rk(y) =



0 0 0 0 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 3 3 3 3

0 1 2 2 3 4 4 4

1 2 3 4 4 5 5 5

1 2 3 4 5 6 6 6

1 2 3 4 5 6 7 7

1 2 3 4 5 6 7 8



and Rk(x) =



0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

1 2 3 3 3 4 5 5

1 2 3 3 4 5 6 6

1 2 3 3 4 5 6 6



.
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In this case,

x1 =



0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0



and Rk(x1) =



0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

0 1 2 2 2 3 4 4

1 2 3 3 3 4 5 5

1 2 3 4 4 5 6 6

1 2 3 4 4 5 6 6



.

We proceed with case II) that the non-zero entry of y in its i-th column occurs

at the k-th row, where k ≥ i.

First of all, without loss of generality, we may assume that x has a non-zero

entry in its (i+ 1)-st row, whose column index we denote by jx.

Denote by y1 the partial involution obtained from y by interchanging its i-th

and (i+1)-st rows as well as interchanging its i-th and (i+1)-st columns. If it exists,

let jy denote the column index of the non-zero entry of y1 in its i-th row. If jy < k,

then, y < y1. Furthermore, in this case, because the i-th row of x consists of 0’s,

y1 < x. In other words, we have y < y1 < x.

Therefore, we assume that k < jy. In this case, if k < jx, then let x1 denote

the partial involution obtained from x by interchanging its i-th and (i+ 1)-st rows as

well as interchanging its i-th and (i + 1)-st columns. Then we have y < x1 < x and

we are done. Therefore, we assume that k > jx. But in this case y < y1 < x holds.

This finishes the proof of the case 2), and we conclude the result.
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4.2.2 EL-labeling of Pn.

We define an edge labeling of Pn and prove that it is an EL-labeling.

1. If the covering relation is derived from a regular covering of an involution,

namely from a move that is as in Lemma 25, Part 1., then we use the labeling

as defined in [6].

2. If the covering relation results from a move as in Lemma 25 Part 2.(a), namely

from a diagonal push where the element that is pushed from is at the position

(i, i), then we label it by (i, i).

3. Suppose that a covering relation is as in Lemma 25 (b). Observe that, in all of

these covering relations, one of the 1’s is pushed down and the other is pushed

right. Let i denote the column index of the first 1 that is pushed to the right,

and let j denote the index of the resulting column. Then we label the move by

(i, j).

To illustrate the third labeling let us present a few examples. Also, see Figure

4.3 on page 47 for the labeling of P3 which is depicted in one-line notation.

Example 28.

y =



0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0


is covered by x =



0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0


The corresponding labeling here is (3, 5).
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Example 29.

y =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


is covered by x =



0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


The corresponding labeling here is (1, 3).

Example 30.

y =



0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0


is covered by x =



0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1


The corresponding labeling here is (2, 3).

If x covers y with label (i, j), then we refer to it as an (i, j)− covering and say

that y is obtained from x by an (i, j)-move. Alternatively, we call a covering relation

a c-cover, if it is derived from an involution; a d-cover, if it is obtained by a shift of

a diagonal element; an r-cover, if it is derived from a right/down or a down/right

move. We will refer to the corresponding moves as c-, d- and r-moves.

Let Γ denote the lexicographic order on the product [n]× [n]. Then, for any

k > 0, Γ k = Γ × · · · × Γ is totally ordered with respect to lexicographic ordering.

Finally, let F : C(Pn)→ Γ denote the labeling function defined above.
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For an interval [x, y] ⊆ Pn and a maximal chain c : x = x0 < · · · < xk = y, we

denote by F (c) the Jordan-Hölder sequence of labels of c:

F (c) = (F ((x0, x1)), . . . , F ((xk−1, xk))) ∈ Γ k.

Proposition 31. Let c : x = x0 < · · · < xk = y be a maximal chain in [x, y] such that

its Jordan-Hölder sequence F (c) is lexicographically smallest among all Jordan-Hölder

sequences (of chains in [x, y]) in Γ k. Then,

F ((x0, x1)) ≤ F ((x1, x2)) ≤ · · · ≤ F ((xk−1, xk)). (4.1)

Proof. Assume that (4.1) is not true. Then, there exist three consecutive terms

xt−1 < xt < xt+1

in c, such that F ((xt−1, xt)) > F ((xt, xt+1)). We have 9 cases to consider.

Case 1: type(xt−1, xt) = c, and type(xt, xt+1) = c.

Case 2: type(xt−1, xt) = d, and type(xt, xt+1) = d.

Case 3: type(xt−1, xt) = d, and type(xt, xt+1) = c.

Case 4: type(xt−1, xt) = c, and type(xt, xt+1) = d.

Case 5: type(xt−1, xt) = r, and type(xt, xt+1) = r.

Case 6: type(xt−1, xt) = d, and type(xt, xt+1) = r.

Case 7: type(xt−1, xt) = r, and type(xt, xt+1) = d.

Case 8: type(xt−1, xt) = r, and type(xt, xt+1) = c.

Case 9: type(xt−1, xt) = c, and type(xt, xt+1) = r.

In each of these 9 cases, we either produce an immediate contradiction by

showing that we can interchange the two moves, or we construct an element z ∈ [x, y]
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which covers xt−1, and such that F ((xt−1, z)) < F ((xt−1, xt)). Since we assume that

F (c) is the lexicographically first Jordan-Hölder sequence, the existence of z is a

contradiction, too.

Case 1: Straightforward from the fact that type c covering relations have

identical labelings with Incitti’s [6].

Case 2: Suppose that the first move is labeled (i, i) and the second one (j, j)

with j < i. If the two moves are not interchangeable then (j, i) is a legal c-move in

xt−1. Since (j, i) is lexicographically smaller than (i, i), we derive a contradiction.

Case 3: Let (i, i) be moved to (j, j) in the first step (type d move), hence

i < j. If the following c-move does not involve the entry at (j, j), then either the c-

and the d-move commute with each other, or the rise for the c-move is not free in

xt−1. In that case there has to be an ef -rise involving the entry at the position (i, i).

This ef -rise has a smaller label than (i, i), which is a contradiction.

Thus we may assume that the c-move involves the entry at the (j, j)-th posi-

tion. Then the c-move has to come from either an ff -, an fe-, or an ef -rise.

Type ff is not possible: Let (a, b) the corresponding label. The move involves

the entry at the (j, j)-th position if either a = j or b = j. If a = j then (a, b) > (i, i)

and the labels are increasing. If b = j, then we must have a < i for (a, b) < (i, i).

Therefore, there is a legal c-move (a, i) in xt−1 has a smaller label than (i, i).

Type fe is not possible since (j, b) is greater than (i, i).

Finally, ef is not possible: Let (k, j) be the label of the c-move. If (k, i) is

a suitable rise in xt−1, then (k, i) < (i, i). If (k, i) is not a suitable rise in xt−1, let

(j, j), (k, l), and (l, k) denote the entries involved in the c-move where l < k. Then
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l < i < k and (l, j) < (i, i). (l, j) is a legal r-move in xt−1 with a smaller label than

(i, i). This concludes case 3.

Case 4: This is not possible since no c-move places a 1 on the diagonal such

that moving this 1 gives rise to a smaller labeling than the c-move. Note that if there

is a 1 on the diagonal before the c-move takes place, then moving this 1 first creates

an element z with covering label lexicographically smaller that of the c-move. Thus

we are done with this case.

Case 5: Let the first move be labeled (i, j) and the second (k, l). Then it is

clear that if k = j we obtain an increasing sequence. If k = i, then we can switch

the order of the moves. If k 6= {i, j}, then, if possible, we perform the second move

first. If it is not possible to interchange the order of the r-moves, then by the moving

the element on column k in xt−1 to the right a suitable rise is removed. But then the

corresponding c-cover has a smaller label in xt−1 than (i, j).

Case 6: We either perform the r-move first if possible, or perform the c-cover

corresponding to the suitable rise removed by d-move which has a smaller label than

the d-move in xt−1.

Case 7: Similar to Case 6 so we omit the proof.

Case 8: The c-move has to include the elements moved by the previous r-move

since otherwise the c-move can be performed first.

If the suitable rise is created by the r-move then the label of the r-move is
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smaller than the label of the c-move. Otherwise, there is a suitable rise in xt−1

involving the elements moved by the r-move. But the c-move corresponding to this

suitable rise has a smaller label than the r-move.

Case 9: If the r-move does not involve an element moved by the c-move then

perform the r-move first. If this is not possible then a suitable rise is removed by

moving it. The c-move corresponding to this suitable rise has a smaller label than

the other c-move.

If the r-move involves an element that is placed at this position by the pre-

ceding c-move, then we proceed to exhibit every c-move to exclude all of them:

ff : The label of c-move is (i, j). The smaller r-move involving a new element

can only be (i, k) with k < j. But then (i, i) is possible in xt−1 and (i, i) < (i, j).

fe: Similar to ff so we omit the proof.

ef : The label of c-move is (i, j). The smaller r-move involving a new element

can only be (i, k) with k < j. Then (i, k) is possible in xt−1 and (i, k) < (i, j).

The cases of non-crossing ee, crossing ee and ed are similar to ef so we omit

the proof.

Proposition 32. We continue the notation of Proposition 31. There exists a unique

maximal chain x = x0 < · · · < xk = y with F ((x0, x1)) ≤ · · · ≤ F ((xk−1, xk)).

Proof. We already know that the lexicographically first chain is increasing. Therefore,

it is enough to show that there is no other increasing chain. We prove this by induction

on the length of the interval [x, y]. Clearly, if y covers x, there is nothing to prove. So,

we assume that for any interval of length k there exists a unique increasing maximal

chain.
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Let [x, y] ⊆ Pn be an interval of length k + 1, and let

c : x = x0 < x1 < · · · < xk < xk+1 = y

be the maximal chain such that F (c) is the lexicographically first Jordan-Hölder

sequence in Γ k+1.

Assume that there exists another increasing chain

c′ : x = x0 < x′1 < · · · < x′k < xk+1 = y.

Since the length of the chain

x′1 < · · · < x′k < xk+1 = y

is k, by the induction hypotheses, it is the lexicographically first chain between x′1

and y.

We are going to find contradictions to each of the following possibilities.

Case 1: type(x0, x1) = c, and type(x0, x
′
1) = c,

Case 2: type(x0, x1) = d, and type(x0, x
′
1) = d,

Case 3: type(x0, x1) = d, and type(x0, x
′
1) = c,

Case 4: type(x0, x1) = c, and type(x0, x
′
1) = d,

Case 5: type(x0, x1) = r, and type(x0, x
′
1) = r,

Case 6: type(x0, x1) = d, and type(x0, x
′
1) = r,

Case 7: type(x0, x1) = r, and type(x0, x
′
1) = d,

Case 8: type(x0, x1) = r, and type(x0, x
′
1) = c,

Case 9: type(x0, x1) = c, and type(x0, x
′
1) = r,

In each of these cases we will construct a partial involution z such that z covers
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x′1 and F ((x′1, z)) < F ((x′1, x
′
2)). Contradiction to the induction hypothesis.

Case 1: Proved in [6].

Case 2: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, j) with i < j. In x′1 (i, i) is a legal

covering move. Hence we have our desired contradiction: (j, j) ≤ F ((x′1, x
′
2)) ≤ (i, i).

Case 3: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, k). There are two cases to consider:

i = j and i < j. If i < j then we can reverse the order of the d and c move and get

to the same contradiction as in Case 2. If i = j then k 6= i+ 1 since otherwise (i, i) is

not a possible move x0. The d-cover moves (i, i) to (l, l) where l < k. But then (i, l)

is a legal move of x′1 and (i, l) < (i, k) which is a contradiction.

Case 4: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, k). There are two cases to be

considered: j = k and j 6= k. If j 6= k then k 6∈ [i, j] since otherwise (i, j) is not a

suitable rise, hence k > j. But this means the two covering moves are interchangeable.

We get to the same contradiction as in the preceding cases.

If j = k then (i, j) is a legal r-move of x′1 with (i, j) < (k, k).

Case 5: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). k > i since there is at most

one legal r-move of each element. We also have j < l since otherwise either (i, k) or

(i, l) is a suitable rise with a label less than (i, j). We have two cases to consider:

(a) i < j < k < l

(b) i < k < j < l

In case (a), the two moves are interchangeable.
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In case (b), (i, k) is a suitable rise of x0 with (i, k) < (i, j).

Case 6: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, k). By construction j 6= i. Hence

i < j < k and therefore (j, k) does not influence the move (i, i) and we derive a

contradiction.

Case 7: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, k). We have k > j since otherwise

a suitable rise is removed by (i, j). But then (i, j) is a legal move of x′1.

Case 8: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). Two cases need to be consid-

ered: i < k and i = k, i < j < l. If i < k then j < k since otherwise (i, j) removes a

suitable rise. But this means that (i, j) is a legal move of x′1.

If i = k then the c-move corresponds to an ef , non-crossing ee, crossing ee or

a ed rise. In each of these cases (i, j) is a legal move of x′1.

Case 9: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). We have two cases to consider:

(a) i = k, i < j < l

(b) i < k

(a) does not occur because then the r-move removes a suitable rise, hence, it is not a

covering relation.

(b) Since we have i < k < l and i < j, we consider i < j < k < l, i < k < j <

l and i < k < l < j. In all these cases the c- and the r-moves are interchangeable.

This concludes our proof.
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Combining previous two propositions we obtain our first main result.

Theorem 33. The poset of partial involutions is lexicographically shellable.

(1, 2, 3)

(1, 2, 0) (1, 3, 2) (2, 1, 3)

(1, 0, 3) (2, 1, 0) (3, 2, 1)

(1, 0, 0) (0, 2, 3) (3, 0, 1)

(0, 2, 0) (0, 3, 2)

(0, 0, 3)

(0, 0, 0)

(2,3)(3,3) (1,2)

(1,3)(2,2)

(1,2)(3,3)(2,3) (1,2)

(2,2)(3,3)

(1,1) (1,2) (1,3) (1,3) (2,3)

(1,2)(1,1) (2,3)(3,3)

(2,2) (2,3)

(3,3)

Figure 4.3: The EL-labeling of P3.
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Chapter 5

Fixed-Point-Free Involutions F2n
and Partial Fixed-Point-Free
Involutions PFn

5.1 Fixed-point-free involutions F2n

This section is joint work with Can and Cherniavsky [7].

5.1.1 Saturated chains of fixed-point-free involutions

Lemma 34. Let x = (xij)
2n
i,j=1 be an element in F2n. Then the number of equalities

along the main diagonal of Rk(x) is equal to n.

Proof. Since all diagonal entries of x are zero, as we move down along the main

diagonal of Rk(x), in each step there are exactly two possibilities: (1) ri+1,i+1 = rii,

or (2) ri+1,i+1 = rii+2. Indeed, as we move from the (i, i)-th position to the (i+1, i+1)-

th entry, the new minor gains either two new non-zero entries, say xi+1,k = 1 and

xk,i+1 = 1, or xi+1,k = xk,i+1 = 0 for all 1 6 k 6 i + 1. The matrix x is invertible, so

r2n,2n = 2n. Since each step can increase the value rii only by 2 or leave it alone, rii

has to increase exactly n times and has to stay the same exactly n times.

Proposition 35. Consider F2n as a subposet of I2n and let x, y ∈ F2n be two elements

such that x ≤ y. Then there exits a saturated chain in I2n from x to y consisting of
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fixed-point-free involutions only.

Proof. First observe that there exists a saturated chain from x to y in PF2n and since

F2n is an interval in PF2n this chain consists of fixed-point-free involutions only. Let

`Pn(x) and `PFn(x) denote the length functions of Pn and PFn, respectively. (For a

concrete description of `PF2n(x) see Section 5.2.3.) For two fixed-point-free involutions

u and w of this chain such that w covers u in PF2n we have Rk(u) < Rk(w) and

`PF2n(w) − `PF2n(u) = 1. Since Rk(u) < Rk(w), we have u < w in I2n also. By

Lemma 34 we have

`P2n(w)− `P2n(u) = `PF2n(w) + n− (`PF2n(u) + n) = 1

Therefore w covers u also in I2n, and hence this chain is saturated in I2n, also.

5.1.2 Covering transformations in F2n

Since F2n is a connected graded subposet of I2n its covering relations are among

the covering relations of I2n. On the other hand, within F2n we use only two types of

covering transformations of Figure 4.2 in Section 4.1. For convenience of the reader,

we depict these moves in Figure 5.1 and Figure 5.2.
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←−

σ

0 1

01

01

0 1

i

j

σ(i)

σ(j)

i j σ(i) σ(j)

τ

1 0

10

10

1 0

i

j

σ(i)

σ(j)

i j σ(i) σ(j)

Figure 5.1: (non-crossing) ee-rise for the covering τ → σ.

←−

σ

1 0

0

1

10

0

1

i

σ(i)

σ(j)

j

i σ(i) σ(j) j

τ

0 1

1

0

01

1

0

i

σ(i)

σ(j)

j

i σ(i) σ(j) j

Figure 5.2: ed-rise for the covering τ → σ.
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5.1.3 EL-shellability of F2n

Theorem 36. F2n is an EL-shellable poset.

Proof. Let x and y be two fixed-point-free involutions. By Proposition 35 we know

that there exists a saturated chain between x and y that is entirely contained in F2n.

Since lexicographic ordering is a total order on maximal chains, there exists a unique

largest such chain. We denote it by

c : x = x1 < x2 < · · · < xs = y.

The idea of the proof is showing that c is the unique decreasing chain and therefore

by switching the order of our totally ordered set Z2 obtaining the lexicographically

smallest chain which is the unique increasing chain. See Figure 5.3 on page 62 for an

illustration.

Towards a contradiction assume that c is not decreasing. Then, there exist

three consecutive terms

xt−1 < xt < xt+1

in c, such that f((xt−1, xt)) < f((xt, xt+1)). We have 4 cases to consider.

Case 1: type(xt−1, xt) = ee, and type(xt, xt+1) = ee.

Case 2: type(xt−1, xt) = ed, and type(xt, xt+1) = ed.

Case 3: type(xt−1, xt) = ee, and type(xt, xt+1) = ed.

Case 4: type(xt−1, xt) = ed, and type(xt, xt+1) = ee.

In each of these 4 cases, we either produce an immediate contradiction by

showing that the two moves are interchangeable (hence c is not the largest chain), or

we construct an element z ∈ [x, y]∩F2n which covers xt−1, and such that f((xt−1, z)) >

f((xt−1, xt)). Since we assume that f(c) is the lexicographically largest Jordan-Hölder
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sequence, the existence of z is a contradiction, too.

To this end, suppose that the label of the first move is (i, j), and the second

move is labeled by (k, l).

Case 1:

We begin by assuming {i, j, xt−1(i), xt−1(j)} ∩ {k, l} = ∅.

Assume for the moment that k > j. Then the covering transformations (k, l)

and (i, j) are independent of each other. Therefore, we assume that i < k < j. There

are four cases; xt−1(k) < j, j < xt−1(k) < xt−1(i), xt−1(i) < xt−1(k) < xt−1(j) or

xt−1(k) > xt−1(j). In the first case (k, xt−1(j)) is an ed-rise for xt−1 with a label

bigger than (i, j). This is a contradiction. Similarly, in the second case, (k, j) is an

ee-rise for xt−1 with a bigger label than (i, j). The third case leads to a contradiction,

because in that case (i, j) is not a suitable rise in xt−1. Finally, in the fourth case the

two covering relations (k, l) and (i, j) are independent of each other.

Next we assume that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} 6= ∅.

We observe that if k = xt−1(i), then we have

xt(k) = xt−1 · (i, j) · (xt−1(i), xt−1(j))(k) = j

. We obtain j < xt−1(i) = k < xt(k) = j, which is absurd. Similarly, if k = xt−1(j),

then we have xt(k) = i, and from i < xt−1(j) = k < xt(k) = i we obtain another

contradiction.

Next observe that if l = xt−1(i), then we have

xt(l) = xt−1 · (i, j) · (xt−1(i), xt−1(j))(l) = j

, and from j < xt−1(i) < xt−1(j) = l < xt(l) = j we obtain a contradiction. Likewise,
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l = xt−1(j) is impossible.

If i = k, then, of course we must have j < l. In this case we must also have

that xt(k) = xt−1(j). In this case, it is easy to check that xt(l) = xt−1(l); therefore,

(j, l) is an ee-rise for xt−1 which is bigger than (i, j), a contradiction. If j = k, then

we have xt(k) = xt−1(i). Just as in the previous case, (i, l) is an ee-rise for xt−1.

Furthermore, (i, l) > (i, j) gives the contradiction. Finally, if j = l, then it is easy to

check that (k, j) is an ee-rise for xt−1; therefore, we have another contradiction, and

this finishes the proof of the first case.

Case 2:

We begin with the assumption that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} = ∅.

Then k > i. If k > xt−1(j), then observe that l > xt(l) = xt−1(l) > xt(k) =

xt−1(k) > k > xt−1(j). It follows that (k, l) is an ed-rise for xt−1 with a bigger label

than (i, j), a contradiction.

We proceed with the assumption that i < k < xt−1(j). If xt−1(k) > j, then the

two moves are interchangeable. If xt−1(k) is in between i and xt−1(j), then (k, xt−1(j))

is an ee-rise for xt−1.

We proceed with the assumption that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} 6= ∅.

If k = i, then we have j < l. Since xt is obtained from xt−1 by applying

the covering transformation (i, j), in this case we see that xt(k) = xt−1(j). Note

also that xt(l) = xt−1(l). Therefore, xt−1(j) < xt−1(l) < l. If xt−1(l) < j, then

(xt−1(j), xt−1(l)) is an ee-rise for xt−1 with a label bigger than (i, j), which is a

contradiction. Otherwise, (xt−1(j), l) is an ed-rise for xt−1 with a label bigger than

(i, j), which is another contradiction.

If k = j, then since xt is obtained from xt−1 by the covering transformation of

(i, j), xt(j) = xt−1(i). But this is impossible, because (k, l) is an ed-rise for xt, and
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hence k < xt(k) which implies that j = k < xt−1(i).

If k = xt−1(i), then xt(k) = j hence xt−1(j) < j < xt(l) = xt−1(l). Therefore,

(xt−1(j), l) is an ed-rise in xt−1.

If k = xt−1(j), then k < xt(k) = i, which is absurd.

If l = j, then we see that (k, l) is an ed-rise for xt−1, which is a contradiction.

If l = xt−1(i), then l > xt(l) = j > xt−1(i) = l, which is absurd.

Finally, if l = xt−1(j), then xt(k) = xt−1(k) and furthermore xt−1(k) = xt(k) <

xt(l) = i. Therefore, (k, xt−1(i)) is an ed-rise for xt−1, which is a contradiction.

Case 3:

We begin with the assumption that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} = ∅; hence

k > i.

If k > j, then the order of the covering transformations are interchangeable

leading to a contradiction. Therefore we assume that i < k < j. If xt−1(k) > xt−1(j),

then once again in this case the two moves are interchangeable. On the other hand,

if xt−1(i) < xt−1(k) < xt−1(j), then (i, j) is not a suitable rise for xt−1, which is a

contradiction.

If xt−1(k) < xt−1(i), then we consider two cases: xt−1(k) > j and xt−1(k) < j.

In the former case, either the two moves are interchangeable, or (k, j) is an ee-rise

for xt−1 with a bigger label than (i, j), hence a contradiction.

In the latter case, we have i < xt−1(k) < j. In this case, if l < xt−1(i), then

the two moves are interchangeable. If xt−1(i) < l < xt−1(j), then either xt−1(l) is

in between i and j or xt−1(l) is greater than j. In the former case, (i, j) is not a

suitable rise. If xt−1(l) > j, then (k, l) is not a suitable rise for xt, because in this

case xt−1(k) < xt(j) = xt−1(i) < xt−1(l). Now, if xt−1(j) < l, then we have two

possibilities again; either xt−1(l) > j or xt−1(l) < j. In the former case, (k, l) is not
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a suitable rise for xt. In the latter case, the two moves are interchangeable.

We proceed with the assumption that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} 6= ∅.

If k = i then (j, l) is an ed-rise for xt−1. Indeed, in this case, xt(l) = xt−1(l)

and we have the inequalities j < xt−1(j) = xt(k) < xt(l) = xt−1(l) < l.

If k = j then either xt−1(l) < xt−1(j), or xt−1(l) > xt−1(j). In the former case,

we see that (i, l) is an ed-rise for xt−1. In the latter case (j, l) is an ed-rise for xt−1.

If k = xt−1(i), then k < xt(k) = xt−1 · (i, j) · (xt−1(i), xt−1(j))(k) = j. Since

j < xt−1(i), this is a contradiction. Similarly, if k = xt−1(j), then k < xt(k) =

xt−1 · (i, j) · (xt−1(i), xt−1(j))(k) = i. Since i < xt−1(i), this is a contradiction, also.

If l = j, then we obtain a contradiction to the facts that (k, l) is an ed-rise,

and (i, j) is an ee-rise.

If l = xt−1(i), then (k, xt−1(j)) is an ed-rise for xt−1, because k < xt−1(k) =

xt(k) < xt(l) = j < xt−1(j).

If l = xt−1(j), then (k, xt−1(i)) is an ed-rise for xt−1, because k < xt−1(k) =

xt(k) < xt(l) = i < xt−1(i).

Case 4:

We begin with the assumption that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} = ∅.

Once again, k > i. If k > xt−1(j) then the two moves are interchangeable.

Therefore we assume that i < k < xt−1(j).

If xt−1(k) < xt−1(j), then (k, j) is an ed-rise for xt−1.

If xt−1(j) < xt−1(k) < j then (k, xt−1(j)) is an ee-rise for xt−1.

If j < xt−1(k), then it is easy to check that the two moves are interchangeable.

We proceed with the case that {i, j, xt−1(i), xt−1(j)} ∩ {k, l} 6= ∅.

If k = i, then j < l. Since (k, l) is an ee-rise for xt, we see that l < xt(k) =

xt−1(j), hence j < xt−1(j). But (i, j) is an ee-rise for xt−1, hence j > xt−1(j), a
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contradiction.

If k = j, then i < k < xt(k) = xt−1 · (i, j) · (xt−1(i), xt−1(j))(k) = xt−1(i), a

contradiction.

If k = xt−1(i) then either l > xt−1(j), which implies that (xt−1(j), l) is an

ee-rise for xt−1, or k < l < xt−1(j), which implies that (i, xt−1(l)) is an ed-rise for

xt−1 and because xt−1(l) = xt(l), the label (i, xt−1(l)) is bigger than the label (i, j),

hence a contradiction.

If k = xt−1(j), then i < k < xt(k) = i, a contradiction.

If l = j, then i < l < xt(l) = i, a contradiction.

Similarly, the case l = i is impossible.

If l = xt−1(i), then we have either xt−1(k) < xt−1(j), or xt−1(j) < xt−1(k).

In the first case, if xt−1(i) < xt−1(k) < xt−1(j), then it is easy to check that

i < k < j, hence (i, j) is not a suitable rise. On the other hand, if xt−1(k) < xt−1(i),

we have a contradiction to xt−1(i) = l < xt(k) = xt−1(k). We proceed with the case

xt−1(k) > xt−1(j), then (k, xt−1(j)) is an ee-rise for xt−1.

If l = xt−1(j), then xt(l) = i and i < xt−1(j) which is a contradiction.

Our next step is to prove that no other chain is lexicographically decreasing.

We prove this by induction on the length of the interval [x, y]. Clearly, if y covers x,

there is nothing to prove. So, we assume that for any interval of length k there exists

a unique decreasing maximal chain.

Let [x, y] ⊆ F2n be an interval of length k + 1, and let

c : x = x0 < x1 < · · · < xk < xk+1 = y

be the maximal chain such that f(c) is the lexicographically largest Jordan-Hölder

sequence in Γ k+1.
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Assume that there exists another decreasing chain

c′ : x = x0 < x′1 < · · · < x′k < xk+1 = y.

Since the length of the chain

x′1 < · · · < x′k < xk+1 = y

is k, by the induction hypotheses, it is the lexicographically largest chain between x′1

and y.

We are going to find contradictions to each of the following possibilities.

Case 1: type(x0, x1) = ee, and type(x0, x
′
1) = ee,

Case 2: type(x0, x1) = ed, and type(x0, x
′
1) = ed,

Case 3: type(x0, x1) = ee, and type(x0, x
′
1) = ed,

Case 4: type(x0, x1) = ed, and type(x0, x
′
1) = ee,

In each of these cases we construct a fixed-point-free involution z such that

z covers x′1 and f((x′1, z)) > f((x′1, x
′
2)), contradicting the induction hypothesis. To

this end, let f((x0, x1)) = (i, j), f((x0, x
′
1)) = (k, l) and assume that (k, l) < (i, j).

Case 1:

If k = i and hence l < j, then (l, j) is an ee-rise for x′1. Obviously this label is

greater than (k, l) hence it is greater than the label of x′1 ← x′2, a contradiction.

Let k < i, l ≤ i. Then (i, j) is a suitable rise for x′1, which is greater than

(k, l). This is a contradiction to the maximality of the chain c′.

Let k < i and i < l < j. If either x0(l) < x0(i), or x0(k) > x0(j) hold, then

(i, j) is a suitable rise for x′1. If x0(i) < x0(l) < x0(j), then (i, j) is not a free rise,
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which is absurd. If x0(i) < x0(k) < x0(j), then (i, l) is a suitable rise in x′1 with

(i, l) > (k, l). If x0(k) < x0(i), then (k, l) is not a free rise in x0.

Let k < i and l > j. If x0(l) < x0(i), then (i, j) a suitable rise for x′1.

If x0(i) < x0(l) < x0(j) then (i, l) is a suitable rise for x0 with (i, l) > (i, j). If

x0(l) > x0(j) then (j, l) is a suitable rise for x0 with (j, l) > (i, j). This contradicts

with our assumption that (i, l) is the lexicographically largest covering label for x0.

Case 2:

Suppose that k = i. Then we have l < j. If x0(l) < x0(j), then (i, j) is not

a suitable rise, a contradiction. On the other hand, if x0(l) > x0(j), then the ee-rise

(x0(i), x0(j)) is an ee-rise for x′1, another contradiction.

Next, suppose that k < i. If x0(k) > j, then (i, j) and (k, l) are interchangeable

rises.

Therefore, we look at the case when x0(j) < x0(k) < j. In this case, if

x0(l) < j, then (k, l) is not a free rise. On the other hand, if x0(l) > j then (i, j) and

(k, l) are interchangeable rises.

If x0(i) < x0(k) < x0(j), then because (i, j) and (k, l) are free rises for x0, we

must have either l > j, x0(l) < x0(j), or l < j, x0(l) < x0(j). In both of these cases,

(i, j) gives a suitable rise for x′1 with a larger label than (k, l).

If i < x0(k) < x0(i) then (i, j) is interchangeable with (k, l) in x′1.

If x0(k) < i, then either x0(l) < i or l < x0(i). In both cases (i, j) and (k, l)

are interchangeable rises for x′1, which leads to the contradiction that we seek.

Case 3:

In this case, k = i with l < j is not possible because then (k, l) is not a free

rise in x0.
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If k < i and x0(k) > x0(j), then (i, j) and (k, l) are interchangeable for x′1.

If k < i and x0(i) < x0(k) < x0(j), then for (k, l) to be a free rise in x0 we

have to have that x0(k) < x0(l) < x0(j). In this case, (i, j) is a suitable rise for x′1.

Suppose now that k < i and x0(k) < x0(i).

If l = x0(j), then i < x0(k) < j and therefore, (i, x0(j)) is a suitable rise for

x′1 with a label greater than (k, l).

If l = x0(i), then x0(k) < i. In this case, let m be the largest integer less

than i such that x0(i) ≤ x′1(m) < x0(j). (Note that such an m exists because x0(k)

satisfies these conditions.) Then (m, j) is a suitable rise for x′1.

If x0(l) < i or if l < x0(i) then (i, j) is a suitable rise for x′1 and the contra-

diction is as before. If x0(i) < l < x0(j), since (i, j) is a suitable rise, we have either

x0(l) < i and we are done by the previous case, or x0(l) > j. In the latter case, we

have x0(l) < x0(i); otherwise (k, l) is not a free rise. Then, (i, x0(l)) is a suitable

ee-rise for x0 with a label greater than (i, j).

If l > x0(j), then we have three cases: x0(l) < i, i < x0(l) < j, or x0(l) > j.

The first case is already taken care of. For the second possibility, because (k, l) is a free

rise for x0, it follows that i < x0(k) < x0(l). Then (i, j) and (k, l) are interchangeable.

Finally, if x0(l) > j, then (i, j) and (k, l) are interchangeable.

Case 4:

Let k = i, l < j. Since (k, l) is a non-crossing ed-rise we have to have l <

x0(k) = x0(i). Then (l, j) is a suitable ed-rise for x′1 with a label greater than (k, l),

a contradiction.

Suppose now that k < i.

If x0(k) > j, then (i, j) is a suitable rise for x′1 with a greater label than (k, l),

a contradiction.
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If x0(i) < x0(k) < j, then we look at the location of l.

If l < i, then (i, j) and (k, l) are interchangeable.

If x0(i) < l < x0(j), then x0(l) > j since otherwise (i, j) is not a free rise for

x0. It follows that (l, x0(j)) is a suitable rise in x′1, a contradiction.

If l = x0(j) then (i, x0(k)) is possible in x′1. If i < l < x0(j), then x0(l) > j

since otherwise (i, j) is not a free rise for x0. But then (l, x0(j)) is a suitable rise for

x′1, another contradiction.

If x0(i) < l < i and also if x0(l) < x0(i), then (i, j) and (k, l) are interchange-

able.

If x0(i) < l < i and x0(i) > x0(l) > x0(j), then (i, j) is not a suitable rise.

If x0(i) < l < i and x0(j) < x0(l) then either (i, j) and (k, l) are interchange-

able, or (l, j) is a suitable rise.

If x0(j) < l, then because (k, l) is a free rise we must have that x0(l) < j.

If l > x0(j), then once again (i, j) and (k, l) are interchangeable. This finishes

the checking of the cases for x0(i) < x0(k) < j.

Our final case is when x0(k) < x0(i). In this case, we look at the location of l.

If l = i, then let m denote the largest integer less than i such that x0(i) ≤

x′1(m) < x0(j). Such an m exists because k satisfies these conditions. Then (m, j) is a

suitable ed-rise in x′1 with a label greater than (k, l). If l 6= i, then we have either l < i,

or x0(l) < x0(i). In both of these cases (i, j) and (k, l) are interchangeable, hence

a contradiction. This finishes our proof of the uniqueness, and hence the theorem

follows.
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(2, 1, 4, 3, 6, 5)

(3, 4, 1, 2, 6, 5) (2, 1, 5, 6, 3, 4)

(4, 3, 2, 1, 6, 5) (3, 5, 1, 6, 2, 4) (2, 1, 6, 5, 4, 3)

(5, 3, 2, 6, 1, 4) (4, 5, 6, 1, 2, 3) (3, 6, 1, 5, 4, 2)

(5, 4, 6, 2, 1, 3) (6, 3, 2, 5, 4, 1) (4, 6, 5, 1, 3, 2)

(5, 6, 4, 3, 1, 2) (6, 4, 5, 2, 3, 1)

(6, 5, 4, 3, 2, 1)

(1,4) (3,6)

(1,2) (2,6) (1,5) (3,4)

(1,6)
(1,2)

(2,6) (1,5)

(1,6)

(2,4)

(1,6)

(2,6)

(1,4)(1,2) (2,3)(1,2)

(1,5)

(2,3)

(1,3)

(1,3)

(1,2)

(2,5)

(1,2) (2,3)

Figure 5.3: Bruhat-Chevalley order on F6.
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5.2 Partial Fixed-Point-Free Involutions PFn

5.2.1 The covering relations of PFn

We investigate the poset of 0/1 partial fixed-point-free involution matrices

PFn. Unfortunately, this poset is not a connected subposet of the partial involutions.

This can easily be seen by looking at the example of 2× 2 matrices.

Example 37. There are only two partial fixed-point-free involutions when n = 2.

x =

0 0

0 0

 and y =

0 1

1 0


and therefore x covers y as a partial fixed-point-free involution.

However, viewed as a partial involution x does not cover y because y < z < x

where

z =

0 0

0 1


It is clear from the rank-control description of ≤ that if y covers x in Pn and

if both x and y are members of PFn, then y covers x in PFn too.

These constellations can only arise in the following cases:

1. y → x is an r-cover in Pn, and x, y ∈ PFn

2. y → x corresponds to a non-crossing ee or an ed-rise

There are additional covering relations though. These covering relations arise

if two fixed-point-free involutions x and y form an interval of length three in Pn and

all elements z ∈ Pn such that x < z < y are not in PFn. Such a constellation can

happen only if y is obtained from x by an r-move followed by a d-move where at

every move the rank of the matrix drops by 1. It is clear that these situations lead
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to coverings. (For an illustration see Example 37.) To see that these are all the

covering relations, suppose there are additional covering relations. Then there exist

x, y ∈ PFn such that y covers x in PFn, but y does not cover x in Pn and y is not

obtained from x by an r-move followed by a d-move as described above. This means

that [x, y] ⊂ Pn contains elements in Pn \PFn only, except for x and y. Let z ∈ [x, y]

be an element that covers x in Pn. Then z is not obtained from x by a c-cover of type

non-crossing ee or ed. But this means z can only be obtained from x be a c-cover

of type ff , fe, ef , or crossing ee, or by an r-move where two symmetric entries

are moved to the diagonal. Assume that z is obtained from x by a c-move. Since

x ∈ PFn we know that x does not contain any rises of type ff , fe or ef . Therefore,

the only possibility is that z is obtained from x by a transformation corresponding to

a crossing ee-rise. We already realized, though, that every crossing ee-rise can also be

viewed as an ed-rise. We claim that the element z1 corresponding to this rise lies in

[x, y] contradicting the assumption. Let the crossing ee-rise in x that z corresponds

to be labeled (i, j) (recall the label from 4.2). We assume z1 6∈ [x, y]. Comparing the

rank-control matrices of z1 and z we see that for y 6> z1 there must be a 1 in y on

position (k, l) where k, l ∈ [x(i), j − 1]. Since y is a partial fixed-point-free involution

we may assume that k < l. The 1 on position (k, l) has to arise from z through a

series of covering relations. There are two ways for this to happen: it is placed there

either by an ff -move or by an r-move. If it arises from an ff -move then it has to

involve the 1’s on positions (i, i) and (j, j) or these 1’s pushed further down on the

diagonal. But this is not possible because j 6< j. It is also impossible to involve only

the 1 on position (i, i) and another diagonal entry (m,m) where m < i, because then

the same argument can be used for the first 1 on the diagonal. It is also not possible

for the 1 to be placed at (k, l) by an r-move because in this case the 1 being moved

to (k, l) is to the upper left of (k, l) in z1 and thus Rk(z1) > Rk(y).
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Assume that z is obtained from x by an r-move which places two symmetric

entries on the diagonal. In this case, another r-move is possible in x involving the same

1’s. Let the resulting partial fixed-point-free involution be z1. A similar argument

shows that also in this case z1 ∈ [x, y].

Therefore [x, y] does not contain elements in Pn \PFn only, which is a contra-

diction. Hence we identified all possible covering relations.

Summarizing we have the following covering relations in PFn:

1. y → x corresponds to a non-crossing ee or an ed-rise;

2. y → x is an r-cover in Pn, and x, y ∈ PFn;

3. y → x is an r-cover followed by a d-cover in Pn where at each step the rank

drops by 1.

We define an EL-labeling for PFn:

1. If the covering relation is derived from a covering of an invertible fixed-point-

free involution, then we use the labeling as defined in Section 5.1 and transform

this label (i, j) into (n− i, n− j).

2. If the covering relation results from a right move, then we define the label to

be (i+ n, j) where y > x results from x by moving the 1 in column i to row j.

If the 1 is pushed out of the matrix then j = n+ 1.

Remark 38. In the case of invertible fixed-point-free involutions we showed that

the lexicographically largest chain is the only decreasing chain. Since the label is

transformed from (i, j) to (n − i, n − j) now the lexicographically smallest chain is

increasing.

The reason the label of r-moves is shifted by n in the first coordinate is to

ensure that every r-cover has a bigger label than any c-cover.
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(2, 1, 4, 3)

(3, 4, 1, 2) (2, 1, 0, 0)

(4, 3, 2, 1) (3, 0, 1, 0)

(4, 0, 0, 1) (0, 3, 2, 0)

(0, 4, 0, 2)

(0, 0, 4, 3)

(0, 0, 0, 0)

(3,0) (8,5)

(3,2) (8,5) (5,3)

(7,5) (7,2)

(5,4) (8,5)

(8,2) (6,4)

(8,3)

(8,5)

Figure 5.4: The EL-labeling of PF4.
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5.2.2 Lexicographic shellability of PFn

Theorem 39. PFn is a lexicographically shellable poset.

Proof. Let x and y be two partial fixed-point-free involutions.

Since lexicographic ordering is a total order on maximal chains, there exists a

unique smallest such chain. We denote it by

c : x = x1 < x2 < · · · < xs = y.

The idea of the proof is showing that c is the unique increasing chain and therefore

the unique lexicographically smallest chain which is increasing.

Towards a contradiction assume that c is not increasing. Then, there exist

three consecutive terms

xt−1 < xt < xt+1

in c, such that f((xt−1, xt)) > f((xt, xt+1)). We have 4 cases to consider.

Case 1: type((xt−1, xt)) = c, and type((xt, xt+1)) = c.

Case 2: type((xt−1, xt)) = r, and type((xt, xt+1)) = r.

Case 3: type((xt−1, xt)) = c, and type((xt, xt+1)) = r.

Case 4: type((xt−1, xt)) = r, and type((xt, xt+1)) = c.

In each of these 4 cases, we either produce an immediate contradiction by

showing that either the two moves are interchangeable (hence c is not the smallest

chain), or we construct an element z ∈ [x, y] ∩ PFn which covers xt−1, and such

that f((xt−1, z)) < f((xt−1, xt)). Since we assume that f(c) is the lexicographically

smallest Jordan-Hölder sequence, the existence of z is a contradiction, too.

To this end, suppose that the label of the first move is (i, j), and the second

move is labeled by (k, l).
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Case 1:

Done in the proof for invertible fixed-point-free involutions.

Case 2:

If i = k then l > j. Therefore we assume that k < i.

If k − n = j then j < i− n and (m + n, l) is possible in xt−1 with m < j < i

where (m, i− n) is the position of the 1 in xt−1.

If k − n 6= j then either the two moves are interchangeable or (k, l) removes a

suitable rise in xt−1 which corresponds to a move with a smaller label than (i, j).

Case 3:

This case is impossible since every c-move has a smaller label than any r-move.

Case 4:

If the r-cover labeled (i, j) is the covering relation with the lexicographically

smallest label then there is no suitable rise in xt−1. The c-move has to involve one

of the moved 1’s since otherwise there is a suitable rise in xt−1. For this, one of the

moved 1’s has to have a 1 to the upper left or the lower right in xt that was not to

the upper left or lower right of it in xt−1. Since the 1’s are moved right and down

respectively, it is impossible that there is a 1 to the lower right in xt that is not to the

lower right in xt−1. If the c-cover corresponds to the suitable rise (m, i−n) (with label

(n −m, i)) then (i, j) is not the r-move with the smallest label in xt−1 since in this

case (m+ n, j) is possible in xt−1 with (n+m, j) < (i, j). If the c-cover corresponds

to the rise (m, j), then the r-move (m+ n, i− n) is possible in xt−1 which again has

a smaller label than (i, j).
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We will now use induction to prove that no other chain is lexicographically

increasing. We prove this by induction on the length of the interval [x, y]. Clearly, if

y covers x, there is nothing to prove. So, we assume that for any interval of length k

there exists a unique increasing maximal chain.

Let [x, y] ⊆ PF2n be an interval of length s+ 1, and let

c : x = x0 < x1 < · · · < xs < xs+1 = y

be the maximal chain such that f(c) is the lexicographically smallest Jordan-Hölder

sequence in Γ k+1.

Assume that there exists another increasing chain

c′ : x = x0 < x′1 < · · · < x′s < xs+1 = y.

Since the length of the chain

x′1 < · · · < x′s < xs+1 = y

is s, by the induction hypotheses, it is the lexicographically smallest chain between

x′1 and y.

We are going to find contradictions to each of the following possibilities.

Case 1: type(x0, x1) = c, and type(x0, x
′
1) = c,

Case 2: type(x0, x1) = r, and type(x0, x
′
1) = r,

Case 3: type(x0, x1) = c, and type(x0, x
′
1) = r,

Case 4: type(x0, x1) = r, and type(x0, x
′
1) = c,

In each of these cases we will construct a partial fixed-point-free involution z ∈

[x, y] such that z covers x′1 and F ((x′1, z)) < F ((x′1, x
′
2)), contradicting the induction
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hypothesis. To this end, let f((x0, x1)) = (i, j), f((x0, x
′
1)) = (k, l) and assume that

(k, l) < (i, j).

Case 1:

Done in the proof for the invertible case.

Case 2:

It is impossible for i = k since there is only one r-move for each 1.

Therefore assume that i < k. Let the moved 1’s be on the symmetric positions

(i − n,m) and (m, i − n) in x0. If k = m + n then (l + n, j) is possible in x′1 with

(l + n, j) < (k, l). If k 6= m then either the two moves are interchangeable or the

suitable rise (n− i, n− k) is possible in x′1.

Case 3:

Since no r-move can remove a suitable rise, there exists a legal c-move in x′1.

But this c-move has a smaller label than (k, l) which is our desired contradiction.

Case 4:

This case is not possible because every c-move has a smaller label than any

r-move.

5.2.3 The length function of PFn

For any non-negative integer k we define r0,k to be 0. Let Rk(x) = (rij) be

the rank-control matrix of x. Recall from Section 4.2.1 that the length function of
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the poset of partial involutions is given by lPn(x) = D(x) where

D(x) = #{(i, j)|1 ≤ i ≤ j ≤ n and rij = ri−1,j−1}.

The length function of PFn only differs from the length function of Pn in two

ways: The rank of two matrices in PFn can only differ by a multiple of 2 and the

smallest element in Pn is the identity which is not in PFn. The minimal element in

PFn is given by the matrix with the largest rank-control matrix.

Example 40.

When n = 6, 0̂ =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


and when n = 5, 0̂ =



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0


.

This means that in the case when n is even lPFn(x) = lPn(x)− n−rk(x)
2
− n

2
. We

subtract n−rk(x)
2

so that the length function increases only by 1 if the rank drops by

2 and we subtract n
2

because the minimal element has to have length zero. Similarly,

when n is odd we have to subtract n−1−rk(x)
2

and n+1
2

.

Summarizing, we see that for all n the length function lPFn(x) of PFn is given

by

lPFn(x) = lPn(x)− n− rk(x)

2
− n

2
= lPn(x)− 2n− rk(x)

2
= D(x)− 2n− rk(x)

2
.
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Chapter 6

Eulerian intervals in Rn and Pn

The results in this chapter were found in joint work with Can [11].

There is a concrete way to compare two rooks given in one line notation in

Bruhat-Chevalley-Renner ordering. For an integer valued vector a = (a1, . . . , an) ∈

Z
n, let ã = (aα1 , . . . , aαn) be the rearrangement of the entries a1, . . . , an of a in a

non-increasing fashion;

aα1 ≥ aα2 ≥ · · · ≥ aαn .

The containment ordering, “≤c,” on Zn is then defined by

a = (a1, . . . , an) ≤c b = (b1, . . . , bn) ⇐⇒ aαj
≤ bαj

for all j = 1, . . . , n.

where ã = (aα1 , . . . , aαn), and b̃ = (bα1 , . . . , bαn).

Example 41. Let x = (4, 0, 2, 3, 1), and let y = (4, 3, 0, 5, 1). Then x ≤c y, because

x̃ = (4, 3, 2, 1, 0) and ỹ = (5, 4, 3, 1, 0).

For k ∈ [n], the k-th truncation a(k) of a = (a1, . . . , an) is defined to be

a(k) = (a1, a2, . . . , ak).

Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be two rooks in Rn. It is shown in [27]
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that

v ≤ w ⇐⇒ ṽ(k) ≤c w̃(k) for all k = 1, . . . , n.

Example 42. Let x = (0, 1, 2, 3, 4), and let y = (4, 3, 2, 5, 1). Then x ≤ y, because

x̃(1) = (0) ≤c ỹ(1) = (4),

x̃(2) = (1, 0) ≤c ỹ(2) = (4, 3),

x̃(3) = (2, 1, 0) ≤c ỹ(3) = (4, 3, 2),

x̃(4) = (3, 2, 1, 0) ≤c ỹ(4) = (5, 4, 3, 2),

x̃(5) = (4, 3, 2, 1, 0) ≤c ỹ(5) = (5, 4, 3, 2, 1).

The next lemma, whose proof is omitted, shows that for two permutations x

and y of Sn, the inequality x ≤ y can be decided in n− 1 steps.

Lemma 43. Let x = (a1, . . . , an) and y = (b1, . . . , bn) be two permutations in Sn.

Then x ≤ y if and only if

x̃(k) ≤c ỹ(k) for k = 1, . . . , n− 1.

Proposition 44. The union (Rn,n−1 ∪Rn,n,≤) is isomorphic to the poset (Sn+1,≤).

We depict the isomorphism between S4 and R3,3 ∪R3,2 in Figure 6.1.

Proof. Let u and w denote the rooks u = (0, 1, 2, . . . , n) and w = (n, n− 1, . . . , 2, 1).

Then Rn,n−1 ∪Rn = [u,w].

We define a map ψ between [v, w] and Sn+1 as follows. If x = (a1, . . . , an) ∈

[v, w], then

ψ(x) = (a1 + 1, a2 + 1, . . . , an + 1, ax), (6.1)
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where ax is the unique element of the set

[n+ 1] \ {a1 + 1, a2 + 1, . . . , an + 1}.

We have two immediate observations.

1. If x is already a permutation (in Rn,n), then ax = 1.

2. ψ is injective, hence by Lemma 20, it is bijective as well.

Now, let x = (a1, . . . , an) and y = (b1, . . . , bn) be two elements in [v, w] such

that x ≤ y. For the sake of brevity, denote the “shifted” sequence (a1 + 1, . . . , an + 1)

associated with x by x′. Since increasing each entry of x and y by 1 does not change

the relative sizes of the entries of x and y, we have

x′ ≤ y′.

Recall that this is equivalent to saying that x̃′(k) ≤c ỹ′(k) for all k = 1, . . . , n. Since,

x′ is the n-th truncation ψ(x)(n) of the permutation ψ(x), the proof of the theorem

is complete by considering Lemma 43. The converse statement “ψ(x) ≤ ψ(y) =⇒

x ≤ y′′ follows from the same argument. Therefore, ψ is a poset isomorphism.

Unfortunately, the map ψ defined in (6.1) does not restrict to partial in-

volutions nicely enough, therefore, we need another order preserving injection in

Pn,n−1 ∪ Pn onto In+1.

Let u = (0, n, n − 1, . . . , 2) and let ι = (1, 2, . . . , n). Observe that the rank-

control matrix of u is the smallest, and that the rank-control matrix of ι is the largest

among all elements of Pn,n−1∪Pn,n. Therefore, the union Pn,n−1∪Pn,n is the underlying

set of the interval [ι, u] of Pn.
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(0, 0, 0)

(0, 0, 1)

(0, 0, 2) (0, 1, 0)

(0, 1, 2) (0, 0, 3) (0, 2, 0) (1, 0, 0)

(0, 1, 3) (0, 2, 1) (0, 3, 0) (1, 0, 2) (2, 0, 0)

(0, 2, 3) (0, 3, 1) (1, 0, 3) (1, 2, 0) (2, 0, 1) (3, 0, 0)

(1, 2, 3) (0, 3, 2) (1, 3, 0) (2, 0, 3) (2, 1, 0) (3, 0, 1)

(1, 3, 2) (2, 1, 3) (2, 3, 0) (3, 0, 2) (3, 1, 0)

(2, 3, 1) (3, 1, 2) (3, 2, 0)

(3, 2, 1)

Figure 6.1: S4 in (R3,≤).
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Let x = (a1, . . . , an) ∈ [ι, u] be given in one-line notation. Then there are two

cases:

1. there is an i ∈ [n] such that ai = 0,

2. x is a permutation.

We start with the first case. If ai = 0 for some i ∈ [n], then we define bi = n + 1

and for j ∈ [n] \ {i} we set bj = aj. In addition, in this case, we define bn+1 to be

the unique element of the set {0, 1, . . . , n} − {a1, . . . , an}. In the latter case, we set

bj = aj for j = 1, . . . , n and define bn+1 = n + 1. Finally, we define φ : [ι, u] → In+1

by

φ(x) = (b1, . . . , bn+1). (6.2)

For example,

x =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1


⇒ φ(x) =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0


.

Proposition 45. The union (Pn,n−1 ∪ Pn,n,≤) is isomorphic to the poset (In+1,≤).

We depict the isomorphism between I4 and P3,3 ∪ P3,2 in Figure 6.2.

Proof. Let φ be defined as in (6.2). By its construction, φ is injective. Therefore, by

Lemma 20, Part 2., it is enough to show that φ is order preserving.

Let x and y be two elements in [ι, u] such that x ≤ y. Then Rk(y) ≤R Rk(x).

Note that the upper-left n × n portion of the rank-control matrix of φ(x) is

equal to Rk(x). The same is true for φ(y) and Rk(y).
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Let R
φ(x)
i,j denote the (i, j)-th entry of Rk(φ(x)). Then, since φ(x) is a permu-

tation in In+1, we have

R
φ(x)
n+1,i = i and R

φ(x)
j,n+1 = j

for all i, j ∈ [n+ 1]. The same is true for Rk(φ(y)). Therefore,

Rk(φ(y)) ≤R Rk(φ(x))

and the proof is complete.

(1, 2, 3)

(1, 2, 0) (1, 3, 2) (2, 1, 3)

(1, 0, 3) (2, 1, 0) (3, 2, 1)

(1, 0, 0) (0, 2, 3) (3, 0, 1)

(0, 2, 0) (0, 3, 2)

(0, 0, 3)

(0, 0, 0)

Figure 6.2: I4 in (P3,≤).
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Theorem 46. Rn,k and Pn,k are Eulerian if and only if k = n or k = n− 1.

Proof. First of all, Rn,n
∼= Sn, and Rn,n−1 is isomorphic to an interval in Sn+1. Thus,

both Rn,n and Rn,n−1 are Eulerian. The same argument is true for both of the

posets Pn,n and Pn,n−1. Therefore, to finish the proof, it is enough to show that, for

k 6= n, n− 1, Rn,k and Pn,k are not Eulerian. To this end, for k ≤ n− 2, let vk, v
′
k and

v′′k denote the elements

vk = (0, . . . , 0, 0, 1, 2, . . . , k),

v′k = (0, . . . , 0, 1, 0, 2, . . . , k),

v′′k = (0, . . . , 1, 0, 0, 2, . . . , k)

in Rn,k. Then the interval [vk, v
′′
k ] ⊂ Rn,k has exactly three elements vk, v

′
k, v
′′
k , hence

it cannot be Eulerian.

Similarly, for k ≤ n− 2, let uk, u
′
k and u′′k denote the elements

uk = (1, 2, . . . , k, 0, . . . , 0),

u′k = (1, 2, . . . , k − 1, 0, k + 1, 0, . . . , 0),

u′′k = (1, 2, . . . , k − 1, 0, 0, k + 2, 0, . . . , 0)

in In,k. Then the interval [uk, u
′′
k] ⊂ Pn,k has exactly three elements uk, u

′
k, u

′′
k, and

therefore, it cannot be Eulerian. This finishes the proof.
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Chapter 7

Deodhar-Srinivasan poset vs.
(F2n,≤)

All results in this chapter were obtained in joint work with Can and Cherni-

avsky [7].

In [13] Deodhar and Srinivasan investigate a poset (F̃2n,≤DS). (F2n,≤) and

(F̃2n,≤DS) are different, indeed, for 2n = 6 the Hasse diagrams of these two posets

differ by an edge.

In this section we show that F̃2n is a subposet of F2n. We proceed by recalling

the definition of the length function of F̃2n as defined in [13].

Let [i1, j1] · · · [in, jn] be an element from F̃2n, and let x ∈ F2n denote the

corresponding fixed-point-free involution. The arc-diagram of x ∈ F2n is defined as

follows. We place the numbers 1 to 2n on a horizontal line. We connect the numbers

i and j by a concave-down arc, if j = x(i). Let c(x) denote the number of intersection

points of all arcs.

The length function `F̃2n
of F̃2n is given by

`F̃2n
([i1, j1] · · · [in, jn]) =

n∑
t=1

(jt − it − 1)− c(π) .

See Theorem 1.3 in [13].

Our first observation is that `F̃2n
is in fact an inversion number. To this end,
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for x as above, let us define the modified inversion number of x to be the number of

inversions in the word i1j1i2j2 · · · injn, and denote it by ĩnv(x). Note that i1 is always

1 for fixed-point-free involutions.

Proposition 47. Let [i1, j1] · · · [in, jn] ∈ F̃2n, and let x ∈ F2n be the corresponding

fixed-point-free involution. Then

ĩnv(x) = `F̃2n
([i1, j1] · · · [in, jn]).

Proof. An inversion in the word i1j1i2j2 · · · injn is either the pair (jp, iq), or the pair

(jp, jq), where p < q and jp > iq, or jp > jq, respectively.

We count inversions in another way. If (it, jt) is a transposition that appears

in [i1, j1] · · · [in, jn] of x, then jt − it − 1 = #{m : m ∈ N , it < m < jt}. On the

other hand, each number m ∈ {it + 1, . . . , jt − 1} appears as an entry in another

transposition of [i1, j1] · · · [in, jn].

There are three possible cases:

1. the number m is involved in the transposition (a,m), where a < it < m;

2. the number m is involved in the transposition (a,m), where it < a < m;

3. the number m is involved in the transposition (m, b), where m < b.

In the first case the pair (jt,m) is not an inversion. Notice that when a < it,

the arc corresponding to the transposition (a,m) crosses the arc corresponding to

the transposition (it, jt). In cases 2 and 3, we have the inversion pair (jt,m) always.

For Case 3, whether b is greater than jt or not is unimportant. So, to get the

number of inversion pairs (jt, ∗) we have to subtract from jt − it − 1 the number of

intersections of the arc (it, jt) with the arcs (a,m), where a < it < m < jt. Counting

the inversions by summing up the contributions of all the transpositions (it, jt) proves

our statement.
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Let us illustrate our proof by an example.

Example 48. Take x = (1, 6)(2, 5)(3, 8)(4, 7) ∈ S8.

1 2 3 4 5 6 7 8

Start with the transposition (1, 6). The numbers between 1 and 6 are 2,3,4,5.

All the pairs (6, 2), (6, 3), (6, 4), (6, 5) are inversions of the word 16253847: 2,3,4

are involved in transpositions of the form (m, ∗) which is case (3) in our proof and

always gives an inversion, 5 is involved in transposition (2, 5), it is case (2) since

1 < 2, so it also gives an inversion. Now take the transposition (2, 5). Both of the

numbers 3,4 which are between 2 and 5 are involved in transpositions of case (3),

(3, 8) and (4, 7) and so both of them give inversions (5, 3) and (5, 4). Now consider

the transposition (3, 8). The pair (8, 4) is an inversion, it is case (3) since 4 is involved

in the transposition (4, 7). The pair (8, 7) also is an inversion since 7 is involved in

the transposition (4, 7) and 3 < 4, which belongs to case (2). But the pairs (8, 5)

and (8, 6) are not inversions since 5 and 6 are involved in transpositions (2, 5) and

(1, 6), where 1 < 3 and 2 < 3 and so both of them are of case (1). By the same

reason when we consider the last transposition of x which is (4, 7), the pairs (7, 5)

and (7, 6) are not inversions, they belong to case (1). So, summing up, we have four

inversions of the form (6, ∗) contributed by the transposition (1, 6), two inversions of

the form (5, ∗) contributed by the transposition (2, 5) and two inversions of the form

(8, ∗) contributed by the transposition (3, 8). Thus, ĩnv(x) = 4 + 2 + 2 = 8. From the

arc diagram depicted above we see that c(x) = 4. Hence,

`F̃2n
(x) = (6−1−1)+(5−2−1)+(8−3−1)+(7−4−1)−4 = 4+2+4+2−4 = 8.

So, we see that ĩnv(x) = `F̃2n
(x) as it is expected.
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Corollary 49. The length functions of (F2n,≤) and (F̃2n,≤DS) are the same.

Proof. This follows from Proposition 47 above combined with Proposition 6.2 of [12].

Recall that y → x = [a1, b1] · · · [an, bn] in F̃2n, if `F̃2n
(y) = `F̃2n

(x)+1 and there

exists 1 ≤ i < j ≤ n such that

1. y is obtained from x by interchanging bi and aj, where bi < aj, or

2. y is obtained from x by interchanging bi and bj,where bi < bj.

We call these interchanges type 1 and type 2, respectively. Note that, in a type 1

covering relation we have the inequalities ai < bi < aj < bj. The inequalities of type

2 are ai < aj < bi < bj.

Note also that an arbitrary interchange of the entries in x does not always

result in another element of F̃2n. This is because of the ordering of the ai’s. For

example, as it is seen from Figure 3 of [13], there is no edge between the elements

[1, 2][3, 6][4, 5] and [1, 4][2, 5][3, 6]. On the other hand, it is easy to check using rank-

control matrices that the corresponding involution x = (1, 2)(3, 6)(4, 5) is covered by

y = (1, 4)(2, 5)(3, 6).

Theorem 50. The covering relations of the poset F̃2n are among the covering rela-

tions of F2n.

Proof. It suffices to prove that a type 1 covering relation of F̃2n corresponds an ed-rise,

and a type 2 covering relation of F̃2n corresponds to an ee-rise in F2n.

Let x̃ = [a1, b1][a2, b2] . . . [an, bn] be an element from F̃2n and x ∈ F2n be the

corresponding fixed-point-free element. Suppose we have the inequalities ai < aj <

bi < bj, and ỹ ∈ F̃2n is obtained from x̃ by a type 2 interchange. Then

ỹ = [a1, b1][a2, b2] . . . [ai, bj] . . . [aj, bi] . . . [an, bn]
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It is straightforward to check that the corresponding y is obtained from x by moving

the non-zero entries at the positions (ai, bi) and (aj, bj) (as well as the corresponding

symmetric entries) to the positions (ai, bj) and (aj, bi) (and to the positions of the

corresponding symmetric entries). This is an ee-rise for x.

Similarly, suppose we have ai < bi < aj < bj and ỹ ∈ F2n is obtained from

x̃ by a type 1 move. In the matrix of x, there are non-zero entries at the positions

(ai, bi), (aj, bj), as well as at the corresponding symmetric positions. Then,

ỹ = [a1, b1][a2, b2] . . . [ai, aj] . . . [bi, bj] . . . [an, bn],

and the corresponding element y has non-zero entries at the positions (ai, aj), (bi, bj),

as well as at their symmetric positions. This is an ed-rise for x.

Therefore, the covering relations of F̃2n are among the covering relations of

F2n, hence the proof is finished.

As a corollary of Corollary 49 we see that

Corollary 51. For m ∈ N, let [m]q denote its q-analogue 1 + q + · · ·+ qm−1. Then,

the length-generating function
∑

x∈F2n
q`F2n

(x) of F2n is equal to

[2n− 1]q!! := [2n− 1]q[2n− 3]q · · · [3]q[1]q.

Proof. Follows from Corollary 2.2 of [13].

We should mention here that the conclusion of the above corollary is obtained

by other combinatorial methods by A. Avni in his M.Sc. thesis at Bar-Ilan University.

It turns out there is another simple characterization of `F2n , which seems to be

known to the experts. Although it is not difficult to prove, since we could not locate
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it in the literature, we record its proof here for the sake of completeness.

Proposition 52. Let x ∈ S2n be a fixed point free involution. Then

ĩnv(x) = `F2n(x) = `F̃2n
(x) =

inv(x)− n
2

,

where inv(x) = |{(i, j) : i < j and x(i) > x(j)}|.

Proof. Let x ∈ F2n. The second equality is shown to be true in Chapter 7. The first

equality follows from Proposition 6.2 of [12]. It remains to show the third equality.

In Lemma 34 we show that `I2n(x)− `F2n(x) = n. On one hand, we know that

`I2n(x) = exc(x)+inv(x)
2

, where exc(x) = |{i : i < x(i)}| (see [6]). On the other hand, if

x ∈ F2n, then exc(x) = n. Therefore,

`F2n(x) = `I2n(x)− n =
n+ inv(x)

2
− n =

inv(x)− n
2

.

Example 53. Let x = (1, 8)(2, 6)(3, 5)(4, 7) ∈ S8. Counting inversions in the word

18263547 we obtain ĩnv(x) = 10. On the other hand, written in one line notation

x = 86573241. We see that inv(x) = 24. We are in S8, so n = 4. Indeed we have

10 = 24−4
2

.
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Chapter 8

The order complexes of F2n and
PFn

8.1 The order complex of F2n

This section is joint work with Can and Cherniavsky [7].

Recall that the Möbius function is equal to the reduced Euler characteristic

of the topological realization of the order complex of the poset P , and moreover, this

number is found by counting the number of maximal chains in P .

In this section by applying these considerations to P = F2n, we prove that the

order complex ∆(F2n) is homotopy equivalent to a ball of dimension n(n− 1)− 2.

Theorem 54. The order complex ∆(F2n) triangulates a ball of dimension n(n−1)−2.

Proof. We know from [23] that if in a pure shellable complex ∆ each dim ∆ − 1

dimensional face lies in at most two maximal faces, then ∆ triangulates a sphere or

a ball.

We also know that the Bruhat-Chevalley poset I2n is Eulerian, hence every

interval of length 2 has 4 elements. Since F2n is a subposet of I2n, every interval

of length 2 in F2n has at most 4 elements. This implies that in the order complex

∆(F2n), each dim ∆(F2n) − 1 dimensional face lies in at most two maximal faces,
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hence it triangulates a sphere or a ball of dimension

dim ∆(F2n) = `(F2n) = 2

(
n

2

)
− 2 = n(n− 1)− 2.

To see that it is a ball, we show that the reduced Euler characteristic of ∆(F2n) is 0.

Thus, by the discussion above, it is enough to show that there is no maximal chain

j2n ← x1 ← · · · ← xm−1 ← w0 such that f(j2n, x1) > f(x2, x1) > · · · > f(xm−1, w0),

where f : C(F2n) → Γ is the EL-labeling that is constructed implicitly in the proof

of Theorem 36. Indeed, f is obtained from Incitti’s EL-labeling g : C(I2n) → Γ , by

reversing the order of the totally ordered set Γ of pairs (i, j), 1 ≤ i, j ≤ 2n ordered

lexicographically. Therefore, it is enough to show that there is no maximal chain

c : j2n ← x1 ← · · · ← xm−1 ← w0 (8.1)

in F2n such that g(j2n, x1) < g(x2, x1) < · · · < g(xm−1, w0). On the other hand, since

g is an EL-labeling, we see that c is the unique such chain whose sequence of labels is

lexicographically smallest among all such chains in the interval [j2n, w0] in I2n. Thus,

the proof is finished once we show that c does not lie in F2n.

It is easy to verify our claim directly in the case of n = 2. For n ≥ 3, let

C(j2n) denote the set

C(j2n) = {g(j2n, z) ∈ Γ : z ∈ I2n and j2n = (1, 2)(3, 4) · · · (2n− 1, 2n)← z}.

Observe that minC(j2n) = g(j2n, z) = (1, 3) with z = (1, 4)(5, 6)(7, 8) · · · (2n−1, 2n).

Therefore, x1 of c has to be equal to z. Since z has a fixed point, c does not lie in

F2n.
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8.2 The order complex of PFn

We would like to thank Yonah Cherniavsky for pointing out the following fact.

Similarly to the F2n case we see that ∆(PFn) triangulates a ball or a sphere

of dimension

dim ∆(PFn) = l(PFn) = n+ (n− 1) + · · ·+ 1− n =

(
n

2

)
.

Theorem 55. The order complex ∆(PFn) triangulates a ball of dimension
(
n
2

)
.

Proof. To see that it is a ball, we show that the reduced Euler characteristic of

∆(PFn) is 0. Recall that the reduced Euler characteristic of ∆(PFn) is equal to

µ([0̂, 1̂]) where 0̂ and 1̂ are the minimal and maximal elements of PFn respectively

and µ is the Möbius function.

We see that for every n the highest three levels consist of a chain. Recall the

n = 4 case illustrated in Figure 5.4. It immediately follows from the definition of the

Möbius function that it is equivalent to show µ([0̂, 1̂]) = 0 for the opposite poset.

We will prove by induction that µ([0, z]) = 0 for all z if l(z) > 1. Recall that

the Möbius function is defined by µ([x, x]) = 1 ∀x and µ([x, y]) = −
∑

x≤z<y µ([x, z]).

When l(z) = 2 then µ([0̂, z]) = −µ([0̂, b]) − µ([0̂, 0̂]) = −(−1) − 1 = 0 where b

is the only element such that 0̂ < b < z. If z is an element with l(z) = n + 1

then µ([0̂, z]) = −
∑

0̂≤c<z µ([0̂, c]) = −
∑

b≤c<z 0 − (−1) − 1 = 0 by the induction

hypothesis. In particular µ([0̂, 1̂]) = 0 which concludes the proof.
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