Self-assembly of ordered, conjugated polymer nanocomposites
Description
This research aims to control the configuration and properties of functional, conjugated polymer systems by tuning the composite nanostructure and molecular interactions. This is accomplished by self-assembly of specific organic and inorganic building blocks. New nanocomposite synthesis schemes are demonstrated for poly(2,5-thienylene ethynylene) (PTE) and polydiacetylene (PDA) that focus on the combination of amphiphiles with hydrophobic and hydrophilic components. The weak molecular interactions between these building blocks result in spontaneous organization into highly ordered amorphous and crystalline structures. Emulsion polymerization, simultaneous monomer incorporation during self-assembly, and PDA supramolecular assembly synthesis paradigms will be discussed. By controlling the interactions, synthesis conditions, and building blocks; this research tunes the structure, molecular conformation, and therefore the optical properties of the resultant composites. Notable results include control of PTE particle size; direction of PTE/silica nanocomposite mesostructure; synthesis of free-standing mesoporous PTE; completely reversible thermochromatic and structural transitions in PDA assemblies; chemical and solvent sensing with PDA; and tunable mechanochromatic response with PDA composites. The synthesis schemes developed in this dissertation research program provide a general route to prepare functional materials with beneficial properties such as thermally controlled optical adsorption, self-healing mesostructure, molecular recognition, and mechanically induced color changes for the detection of damage in plastic composites