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Chapter 1

Introduction

Mathematical modeling has long been a valuable tool for studying the dynam-

ics of infectious disease outbreaks. Among the most widely used models is the

SIR (Susceptible-Infected-Removed) framework, which classifies a population into

these three classes and uses analytical tools to study the dynamics of each classes.

This article provides a comprehensive study of the deterministic SIR model as

well as a stochastic SIR model that accounts for randomness. The deterministic

model, dating back to the pioneering work of Kermack and McKendrick in 1927,

uses a system of differential equations to track the time evolution of the S, I, and

R population groups. A key concept is the basic reproduction number R0, which

determines if an outbreak will occur or die out and provides a tool to estimate the

final size of the epidemic.

While the deterministic model provides a big-picture view, the stochastic

SIR model captures the randomness in real-world problem. Formulated as a

continuous-time Markov chain, it includes transition probability at each time step.

Interestingly, even when R0 > 1, the stochastic model shows there is still a chance

that only a minor outbreak happen.

The article then dives into statistical methods - namely, Bayesian inference

and data augmentation techniques - to estimate the model parameters such as

transmission and recovery rates from actual outbreak data.
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Our main work explores a framework for sequential daily prediction of new

cases and the final size of the outbreak. Both simulated datasets or real world

datasets like Ebola and COVID-19 are analyzed using this methodology. We

include the model’s performance, predictions, and limitations of this simplified

stochastic SIR model.

Chapter 2 covers the fundamental knowledge in continuous-time Markov Chain

and provides the simple birth and death processes as an example. Chapter 3

introduces the deterministic and stochastic SIR models. Chapter 4 covers Bayesian

parameter estimation using data augmentation on a smallpox outbreak dataset.

Chapter 5 presents our main work on daily Bayesian prediction of cases and final

size, applied to simulated data as well as real Ebola and COVID-19 data and

discusses the limitations of the methodology.

We also include our R code - in order to help the reader better understand how

we can simulate systems under different scenarios and analyze different datasets.

All codes are open to the reader to use for their benefit here.

https://github.com/hxlattulane/MasterThesisAtTulane


Chapter 2

Overview of continuous-time

Markov Chain

In this chapter, we study the continuous-time Markov chain. The continuous-

time Markov chain is fundamental to explore the stochastic dynamical system.

In particular, we discuss the the properties of the continuous-time Markov chain,

focusing on Poisson processes, followed by the simple birth and death chain, which

will be used to calculate the probability of having an outbreak in stochastic SIR

model in the next chapter. In this chapter, we also assume that the readers have

fundamental knowledge in probability theory and discrete-time Markov chain.

A classical reference for stochastic processes in general and continuous-time

Markov chain in particular is a book by Durrett [3]. We also consult a book

by Allen [1] to introduce an example of a continuous-time Markov chain, namely

simple birth and death process.

2.1 Exponential and Poisson distribution

We begin by reviewing the Exponential and Poisson distribution. We also in-

troduce some of their important properties and connections to other types of

distribution.

3
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2.1.1 Exponential distribution

Definition 2.1.1. A continuous random varible T is said to follow an exponential

distribution with rate λ, written as T ∼ Exp(λ), if

F (t) = P (T ≤ t) = 1− e−λt, for all t ≥ 0,

where F is the cummulative distribution function of the random variable T .

Remark 2.1.2. Let T be a random variable and T ∼ Exp(λ). Then, the expected

value and variance of T is

E(T ) =
1

λ
, Var(T ) =

1

λ2
.

We discuss the Lack of Memory Property, which is one of the most important

results of the Exponential distributed random variable.

Theorem 2.1.3. Let T be a random variable, T ∼ Exp(λ), and let s, t > 0, then

P (T > t+ s|T > t) = P (T > s). (2.1.1)

In words, this property says that if we have been waiting for t units of time, then

the probability that we wait s more units of time is the same as the probability that

we wait s units of time right from the beginning.

This property can be proven as follow.

First, we note that

{T > t+ s} ⊆ {T > t}
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for all t, s > 0. By using the definition of conditional probability, we have

P (T > t+ s|T > t) =
P ({T > t+ s} ∩ {T > t})

P (T > t)
=

P (T > t+ s)

P (T > t)

=
e−λ(t+s)

e−λt
= P (T > s).

Next, we discuss the exponential races.

Theorem 2.1.4. Let T1, T2, . . . Tn be a sequence of i.i.d exponentially distributed

random variables, Ti ∼ exp(λi), 1 ≤ i ≤ n. Let V = min(T1, T2, . . . , Tn) and I be

the index of the smallest Ti. Then V and I are random variables, and

P (V > t) = exp

(
−

n∑
i=1

λit

)
,

P (I = i) =
λi
n∑

i=1

λi

,

for t > 0 and 1 ≤ i ≤ n. Moreover, I and V are independent.

Directly from the definition of V , and by independence, for t > 0, we have

P (V > t) = P (min(T1, T2, . . . , Tn) > t) = P (T1 > t, T2 > t, . . . , Tn > t)

=
n∏

i=1

P (Ti > t) =
n∏

i=1

e−λit = e−
∑n

i=1 λit.

Therefore, we can conclude that V ∼ exp(−
∑n

i=1 λi).

We now prove the second property. Note that I is the discrete random variable,

whose values are from 1 to n. Then for 1 ≤ i ≤ n, we have

P (I = i) = P (Ti < T1, Ti < T2, . . . Ti < Tn) = P (Ti < min
1≤j≤n
j ̸=i

Tj).

Let W = min
1≤j≤n
j ̸=i

Tj, and µ =
n∑

j=1
j ̸=i

λj. Moreover, let the density function of variable

Ti is fTi
, meaning that fTi

(x) = −λie
−λix for all x > 0. By the first property,
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W ∼ Exp (µ). By using the property of probability measure, we have

P (I = i) =

∞∫
0

fTi
(ti).P (ti < W )dti =

∞∫
0

−λie
−λiti .e−µtidti

=
λi

µ+ λi

∞∫
0

−(λi + µ)e−(λi+µ)tidti =
λi

µ+ λi

.

Note that we have the last equality is because of the fact that −(λi + µ)e−(λi+µ)ti

is a density function, therefore must integrate to 1. Also, note that µ+λi =
n∑

i=1

λi.

We conclude that, for i = 1, . . . , n,

P (I = i) =
λi
n∑

i=1

λi

.

Now, we prove the independence of V and I using the definition. Let t ≤ 0 and

1 ≤ i ≤ n, we consider

P (V < t, I = i) = P (Ti < t, T1 > t, . . . , Tn > t) =

t∫
0

fTi
(x)

n∏
j=1
j ̸=i

P (Tj > x)dx

=

t∫
0

λie
−λix

n∏
j=1
j ̸=i

e−λjxdx =
λi
n∑

i=1

λi

t∫
0

n∑
i=1

λie
−

n∑
i=1

λix
dx

= P (I = i).P (V < t).

The reason why we have the last inequality is because V ∼ exp

(
n∑

i=1

λi

)
.

2.1.2 Poisson distribution

Definition 2.1.5. A discrete random varible X is said to follow a Poisson distri-

bution with rate λ, written as X ∼ Poisson(λ), if

p(n) = P (X = n) = e−λλ
n

n!
, for all n ∈ N,
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where p is the probability mass function of the random variable X.

Remark 2.1.6. Let X be a random variable and X ∼ Poisson(λ). Then, the

expected value and variance of X is

E(X) = λ, Var(X) = λ.

Next, we discuss the connections between Poisson distribution with the bino-

mial distribution.

Theorem 2.1.7. Consider a binomial distribution with n trials with probability p

of success on each trial. If n approaches infinity but the expected value remains the

same (np is fixed), the binomial distribution converges to the Poisson distribution.

Let X ∼ Binomial(n, p), where n ∈ N and p ∈ (0, 1) and λ = np. Then for

k ∈ {0, . . . , n}

P (X = k) =

 n

k

 pk(1− p)n−k =
n(n− 1) . . . (n− k + 1)

k!
pk(1− p)n−k

=
(np)k

k!

n(n− 1) . . . (n− k + 1)

nk
(1− p)n−k

=
λk

k!

n(n− 1) . . . (n− k + 1)

nk

(
1− λ

n

)n−k

=
λk

k!

n(n− 1) . . . (n− k + 1)

nk

(
1− λ

n

)n(
1− λ

n

)−k

.

Note that
λk

k!
is independent of n, and

n(n− 1) . . . (n− k + 1)

nk
=

n

n
.
n− 1

n
. . .

n− k + 1

n
→ 1,(

1− λ

n

)n

→ e−λ,(
1− λ

n

)−k

→ 1−k = 1

as n converges to infinity. Moreover, as n converges to infinity, the range of k gets
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larger, k ∈ N. Thus,

P (X = k) =
λk

k!
e−λ k ∈ N,

which is the probability mass function of a Poisson distribution with rate λ. Thus,

the Binomial(n, p) distribution can be approximate as a Poisson(np) distribution

as n gets large.

2.2 Continuous-time Markov chains

In this section, we introduce the continuous-time Markov chains. These are

stochastic processes that have continuous time, t ∈ [0,∞), and discrete-valued

states. Moreover, we show that the amount of time spending in one state before

moving to the next state is exponentially distributied.

2.2.1 Definitions and notations

Let {X(t) : t ∈ [0,∞)} be a collection of random variables. Moreover, the random

variables attain value in a finite set, {0, 1, 2, . . . N}, or an infinite set, N.

Definition 2.2.1. The stochastic process {X(t) : t ∈ [0,∞) ∈} is called a

continuous-time Markov chain if it satisfies the following condition:

For any sequence of real numbers satisfying 0 ≤ t0 < t1 < · · · < tn < tn+1, and for

possible states i0, i1, . . . , in, in+1, we have

P (X(tn+1) = in+1|X(t0) = i0, X(t1) = i1, . . . , X(tn) = in)

= P (X(tn+1) = in+1|X(tn) = in).

Remark 2.2.2. The latter condition in the definition is called the Markov prop-

erty.

In words, the probability of moving to a next state only depends on the value of
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the most recent time and does not depend on the history of the process. From now

on, unless stated otherwise, we assume that the state space is infinitely countable

and take values in N.

For t ≥ 0, we denote the mass probability distribution of X(t) as {pi(t)}∞i=0,

where

pi(t) = P (X(t) = i).

Denote the vector of probabilities as p(t) = (p0(t), p1(t), . . . )
⊤. Since X(t) attains

value in N, we have that

∞∑
i=0

pi(t) = 1.

For 0 ≤ s < t, we define the relationship between the random variables X(s)

and X(t) by the transition probabilities as follow

pij(s, t) = P (X(t) = j|X(s) = i),

for i, j ∈ N.

Definition 2.2.3. If the transition probabilities only depends on the length of

interval, i.e. t − s, then they are called stationary or homogeneous transition

probabilities; otherwise they are called nonstationary or nonhomogeneous transi-

tion probabilities. For simplicity, if the transition probabilities only depends on the

length of interval, we write it as follow

pij(t− s) = P (X(t) = j|X(s) = i) = P (X(t− s) = j|X(0) = i). (2.2.1)

From now on, unless stated otherwise, we only consider homogeneous transition
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probabilities. Denote the matrix of transition probabilities as

P (t) = (pij(t))i,j∈N.

As in the discrete case, the matrix of transition probabilities of the continuous-time

Markov chain satisfies the Chapman-Kolmogorov Equation, which stated as

Theorem 2.2.4. Let s, t ≥ 0, and i, j ∈ N,

∞∑
k=0

pik(t)pkj(s) = pij(s+ t).

This can be written in matrix form

P (t)P (s) = P (s+ t).

Remark 2.2.5. The theorem states that in order to go from i to j in the time

interval of the length s+ t, we can go to some state k in the interval of the length

s and then from that state k go to state j in the interval of the length t.

We prove this theorem as follow

pij(s+ t) = P (X(s+ t) = j|X(0) = i) =
P (X(s+ t) = j,X(0) = i)

P (X(0) = i)

=
∞∑
k=0

P (X(s+ t) = j,X(t) = k,X(0) = i)

P (X(0) = i)

=
∞∑
k=0

P (X(s+ t) = j,X(t) = k,X(0) = i)

P (X(t) = k,X(0) = i)

P (X(t) = k,X(0) = i)

P (X(0) = i)

=
∞∑
k=0

P (X(s+ t) = j|X(t) = k,X(0) = i).P (X(t) = k|X(0) = i)

=
∞∑
k=0

P (X(s+ t) = j|X(t) = k).P (X(t) = k|X(0) = i)

=
∞∑
k=0

pkj(s).pik(t).
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2.2.2 Generator matrix

Now, we construct the generator matrix Q, which describes the rate of change of

the transition probabilities.

Consider the continuous-time Markov chain {X(t) : t ∈ [0,∞), with the tran-

sition matrix P (t). Moreover, assume that for i, j ∈ N, pij(t) is continuous and

differentiable for t ≥ 0. Note that at t = 0, they satisfy

pij(0) = 0, j ̸= i, and pii(0) = 1.

The rate of change of the transition probability from i to j in a short time is then

defined as follow

qij = lim
∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, i ̸= j

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
.

(2.2.2)

Note that for i ∈ N,
∞∑
j=0

pij(∆t) = 1 since we can go to any other state from state

i. Following from this, we have that

pii(∆t)− 1 = −
∞∑

j=0,
j ̸=i

pij(∆t) = −
∞∑

j=0,
j ̸=i

[qij∆t+ o(∆t)],

where the notation o(∆t) is the Lauder order symbol. In general, we say that the

function f(∆t) is o(∆t) means that as ∆t → 0,

lim
∆t→0

f(∆t)

∆t
= 0.

From that, we derive the relationship between qii and qij as follow

qii = −
∞∑

j=0,
j ̸=i

qij.
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From the definition (2.2.2), we can define the matrix of transition Q as follow

Definition 2.2.6. Let P (∆t) be the transition matrix for the time interval ∆t,

then the matrix of transition Q is defined as

Q = (qij)i,j∈N =


q00 q01 . . .

q10 q11 . . .

. . . . . . . . .

 =


−

∞∑
i=1

q0i q01 . . .

q10 −
∞∑
i=0,
i ̸=1

q1i . . .

. . . . . . . . .



=


lim

∆t→0+

p00(∆t)− 1

∆t
lim

∆t→0+

p01(∆t)

∆t
. . .

lim
∆t→0+

p10(∆t)

∆t
lim

∆t→0+

p11(∆t)− 1

∆t
. . .

. . . . . . . . .

 = lim
∆t→0+

P (∆t)− I

∆t
,

where I is the matrix with same dimension as P (∆t) but with ones on the diagonal

and zeros on other components.

2.2.3 Kolmogorov Differential Equations

In this section, we construct the Kolmogorov Differential Equations. By using the

Chapman-Kolmogorov, for i, j ∈ N, we have that

pij(t+∆t) =
∞∑
k=0

pik(t)pkj(∆t).

Assume that the generator matrix Q exists, then we can rewrite this into

pij(t+∆t) =
∞∑
k=0

pik(t)(δkj + qkj∆t+ o(∆t)),

where δjk is the Kronecker symbol. By subtracting both side with pij(t), dividing

by ∆t and using the fact that
∞∑
k=0

pik(t) = 1, we derive

pij(t)− pij(t)

∆t
=

∞∑
k=0

pik(t)

[
qkj +

o(∆t)

∆t

]
.
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Letting ∆t → 0, we have that

dpij(t)

dt
=

∞∑
k=0

pik(t)qkj. (2.2.3)

Definition 2.2.7. The equation (2.2.3) is known as the forward Kolmogorov dif-

ferential equations, which can be expressed in matrix form as

dP (t)

dt
= P (t)Q.

By doing similarly, we can derive the backward Kolmogorov differential equa-

tions, which can be expressed in matrix form as

dP (t)

dt
= QP (t).

2.2.4 Interevent Time and Stochastic Realizations

In a continuous-time Markov chain, assume that we start at state X(0), we stay

in that state for a random amount of time W1. After that, it moves a new state

X(W1). Then it stays at X(W1) for a random amount of timeW2 before moving to

a new state atX(W2). By continue doing that, we defineWi is the random variable

for the waiting time before the i-th jump. Set W0 = 0, we then have the collection

of random variables {Wi}∞i=0, which can be referred as the waiting times of the

process. By this, we can define Ti = Wi+1 −Wi as the interevent times between

the jumps. We show that Ti is an exponentially distributed random variable.

Assume that the value of the state at the i-th jump is n. Moreover, we assume

that

P (moving to another state) =
∑
j ̸=n

pnj(∆t) = α(n)∆t+ o(∆t).

P (staying at the same state) = pnn(∆t) = 1− α(n)∆t+ o(∆t).
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Let t > 0,

P (Ti > t) = P (Wi+1 −Wi > t) = P (Wi+1 > t+Wi) := Gi(t),

that is, the probability that the process remains in state n for a time interval

[Wi,Wi + t]. The first property of Gi(t) is that, Gi(0) = P (Ti > 0) = 1. For ∆t

small enough, we have that

Gi(t+∆t) = Gi(t).pnn(∆t) = Gi(t)(1− α(n)∆t+ o(∆t))

⇔Gi(t+∆t)−Gi(t) = Gi(t)(−α(n)∆t+ o(∆t))

⇒Gi(t+∆t)−Gi(t)

∆t
= Gi(t)

(
−α(n) +

o(∆t)

∆t

)

Let ∆t → 0, we obtain the ODE as follow

dGi(t)

dt
= −α(n)Gi(t), Gi(0) = 1.

The solution of the ODE is Gi(t) = e−α(n)t. Then P (Ti ≤ t) = 1 − Gi(t) = 1 −

e−α(n)t, which is the cumulative function of the exponentially distributed random

variable with rate α(n). Thus Ti is the exponential random variable.

2.3 Simple Birth and Death Processes

2.3.1 Definition and the extinction probability

Consider the application of continuous-time Markov chain to biology. Let the

initial state of the process isX(0) = N , which can be understood as the population

of the beginning of the process. For small ∆t, we then define the infinitesimal
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transition probabilities as follow

pi,i+j(∆t) = P (X(t+∆t)−X(t) = j|X(t) = i)

=



µi∆t+ o(∆t), j = −1,

λi∆t+ o(∆t), j = 1,

1− (µ+ λ)i∆t+ o(∆t), j = 0,

o(∆t), j ̸= −1, 0, 1.

This means in a small time interval ∆t, the process only move to the next

greater state; from state i to state i + 1 (with rate λi) or move the next smaller

state; from state i to state i − 1 (with rate µi). The backward Kolmogorov

differential equations are

dpi(t)

dt
= λ(i− 1)pi−1(t) + µ(i+ 1)pi+1(t)− (λ+ µ)ipi(t)

dp0(t)

dt
= µp1(t),

for i = 1, 2, . . . , with inital condition pi(0) = δiN .

For i = 1, 2, . . . , by multiplying the differential equation by zi and sum over i,

we have

∂P(z, t)

∂t
= λ

∞∑
i=1

(i− 1)pi−1(t)z
i + µ

∞∑
i=0

(i+ 1)pi+1(t)z
i − (λ+ µ)

∞∑
i=0

ipi(t)z
i

= λz2
∂P(z, t)

∂z
+ µ

∂P(z, t)

∂z
− (λ+ µ)z

∂P(z, t)

∂z

= [λz2 + µ− (λ+ µ)z]
∂P(z, t)

∂z
,

where P is the probability generating function and the initial condition is P(z, 0) =

zN .
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By using the method of characteristic, we can solve for P(z, t).

P(z, t) =


(
et(µ−λ)(λz − µ)− µ(z − 1)

et(µ−λ)(λz − µ)− λ(z − 1)

)N

, if λ ̸= µ,(
1− (λt− 1)(z − 1)

1− λt(z − 1)

)N

if λ = µ.

Plug z = 0 into P(z, t), we have the formula for p0(t), which is the probability

that the population go to zero. We have

p0(t) = P(0, t) =


(
µ− µe(µ−λ)t

λ− µe(µ−λ)t

)N

if λ ̸= µ,(
λt

1 + λt

)N

if λ = µ.

Remark 2.3.1. This is the probability of extinction until time t. To find the

probability of extinction in the long run, we let t → ∞,

p0(∞) = lim
t→∞

p0(t) =

 1 , if λ ≤ µ,(µ
λ

)N
, if λ > µ.

This result will be used in the next chapter to calculate the probability that

the outbreak in the stochastic SIR model happens.

2.3.2 Simulation

In this section, we simulate the birth and death process by using R. Assume that

the initial population is 100. We simulate the process in two cases.

Case 1: λ ≤ µ

In the first case, we let λ = 0.3 and µ = 0.4. The process is shown in the

figure (2.1). We can see from figure (2.1) that the population is decreasing, and

eventually will be 0. This is because the probability of extinction is 1.
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Figure 2.1: The stochastic birth and death process when λ = 0.3 and µ = 0.4.

Case 2: λ > µ

In the second case, we let λ = 0.4 and µ = 0.3. The process is shown in the

figure (2.2). We can see from figure (2.2) that the population is increasing. This
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Figure 2.2: The stochastic birth and death process when λ = 0.4 and µ = 0.3.

is because the probability of extinction is

(
0.3

0.4

)100

≈ 0, so in most cases, the

population increases.



Chapter 3

Deterministic and stochastic SIR

model

In this chapter, we introduce the deterministic and stochastic SIR model. We also

introduce the basic reproduction number R0. Moreover, in the case R0 > 1, we

also show that the outbreak always happens for the deterministic model, however,

that is not the case for the stochastic model. This is an introductory text referring

to a book by Allen [1].

3.1 Deterministic SIR model

3.1.1 Introduction

The SIR model was discovered by Kermack and McKendrick in 1927 in order to

model the dynamic of infectious diseases. Up to now, the model has been used to

model the variety of diseases. In this section, we study the deterministic version

of this model. Moreover, for the purpose of the thesis, we only consider the closed

community, meaning that the total population remains constant throughout the

process. Let N be the total population. For t ≥ 0, let S(t), I(t), R(t) be the

susceptible susceptible, infected, and removed individuals at time t, respectively.

For simplicity, we assume that S(t), I(t), R(t) are continuous, meaning that they

18
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can attain real value instead of integers only. Since N is the total population,

S(t) + I(t) + R(t) = N for all t ≥ 0. Moreover, S(t), I(t), R(t) is the solution of

the ordinary differential equations:

d

dt
S = −β

SI

N
d

dt
I = β

SI

N
− γI

d

dt
R = γI,

where β is the diseases’ transmission rate, and γ is the diseases’ removal rate. For

simplicity, we let β and γ to be constant positive numbers. We also assume that

individuals meet any other individuals uniformly at random rate.

3.1.2 The basic reproduction number

Consider the SIR model, for all t ≥ 0, β, S, I are non-negative, then
d

dt
S(t) ≤ 0.

Therefore, the proportion of susceptible individuals is always decreasing. By the

same manner, the proportion of infected individual is always increasing.

Consider the dynamic of infected individuals, the number of infected individ-

uals are increasing if
d

dt
I(t) > 0 or

β
S(t)I(t)

N
− γI(t) > 0

Since I(t) ≥ 0 for all t ≥ 0, then β
S(t)

N
− γ > 0 or

β

γ

S(t)

N
> 1.

In the beginning of the process,
S(t)

N
≈ 1, so we consider the ratio

β

γ
. Let

R0 =
β

γ
. This is called the basic reproduction number.

If R0 > 1, then the number of infected individuals increases, therefore we have

a epidemic. On the other hand, if R0 < 1, then the number of infected individuals
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decreases, thus the epidemic does not happen.

As time goes on, we define R := R(t) =
β

γ

S(t)

N
. At each time, we calculate

this quantity again. If R > 1, then the number of infected individuals increase,

and decrease otherwise.

3.1.3 Final size

Now, we study the dynamic of infected individuals and final size in the case of the

epidemic, meaning that R0 > 1. We also assume that I(0) = 1 and R(0) = 0 as

our initial condition. Then S(0) = N − 1. By using the chain rule, we have that

dI

dS
=

β SI
N

− γI

−β SI
N

= −1 +
γN

βS
= −1 +

N

R0S
= −1 +

1

R
. (3.1.1)

Using this equation, we can derive a relationship between S and I. In the

beginning of the process, we use the interpretation involving R0,

dI

dS
< 0 ⇔ −1 +

N

R0S
< 0 ⇔ S

N
>

1

R0

.

In the case R0 > 1, then
1

R0

< 1. However, in the beginning of the process,
S

N
≈

1, so
S

N
>

1

R0

, leading to
dI

dS
< 0. Since the number of susceptible individuals is

always decreasing, then the number of infected individuals are increasing.

Now, we consider the latter interpretation in (3.1.1). As time goes on,
S(t)

N

decreases, and there exists t such that R < 1. By (3.1.1), −1+
1

R
> 0, so

dI

dS
> 0.

Since S is always decreasing, then the number of infected individuals decrease as

well. Moreover, the number of infected individuals decreases to 0.

In summary, forR0 > 1, in the beginning of the process, the number of infected

individuals increase. Then it decreases after reach a certain amount of time.

Now, we study the final size of the outbreak. Denote S(∞) = lim
t→∞

S(t), I(∞) =

lim
t→∞

I(t) and R(∞) = lim
t→∞

R(t). R(∞) is called the final size of the outbreak.

Since the number of infected individuals decrease to 0, I(∞) = 0. From (3.1.1),
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we derive that

I(t) = −S(t) +
N

R0

ln(S(t)) + C. (3.1.2)

At t = 0, we substitute S(0) and I(0) into (3.1.2) to find C, denote C∗. Let

t → ∞, we have

S(∞)− N

R0

ln(S(∞)) = C∗. (3.1.3)

We do not have the explicit formula for S(∞), but we can use numerical method to

attain the value of S(∞). Then the final size of the outbreak is R(∞) = N−S(∞).

By replace S(∞) = N −R(∞) into (3.1.3), we have

N −R(∞)− N

R0

ln(N −R(∞)) = C∗.

By using numerical method, we can plot the relation between R0 and R(∞) as in

figure (3.1).
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Figure 3.1: The relation between R0 and the final size of the outbreak.

Note that the final epidemic size in figure (3.1) is the proportion
R(∞)

N
. The
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figure shows that the epidemic does not happen if R0 < 1, and happens otherwise.

Moreover, the figure shows that the higher R0 is, the higher the final epidemic

size is. To explain this, recall that R0 =
β

γ
, where β is the transmission rate and

γ is the removal rate. If R0 is large, then the transmission rate is larger than

the removal rate, meaning that people gets infected faster than they are removed.

This leads to the larger final size of the epidemic.

3.1.4 Simulation

Now, we simulate the deterministic SIR process in two cases. The first case is

when R0 < 1 and the second case is when R0 > 1.

First case: R0 < 1

In this first case, we consider N = 1000, and S(0) = 999, I(0) = 1, R(0) = 0,

β = 0.15 and γ = 0.2. Then the dynamics of the process is plotted in figure (3.2).
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Figure 3.2: The dynamics of the deterministic SIR model when β = 0.15 and
γ = 0.2
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Remark 3.1.1. In this case, R0 =
β

γ
=

0.15

0.2
= 0.75 < 1. Therefore, the infected

individuals decrease over time. Thus, the outbreak does not happen. We can see

in figure (3.2) that S(t), I(t), R(t) almost stay the same through out the process.

Second case: R0 > 1

In this first case, we consider N = 1000, and S(0) = 999, I(0) = 1, R(0) = 0,

β = 0.3 and γ = 0.2. Then the dynamics of the process is plotted in figure (3.3).
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Figure 3.3: The dynamics of the deterministic SIR model when β = 0.3 and
γ = 0.2

Remark 3.1.2. In this case, R0 =
β

γ
=

0.3

0.2
= 1.5 > 1. Therefore, the infected

individuals increase at first, then decrease to 0 over time. Thus, the outbreak

happens, and the final size of the outbreak is approximately 583. We can also see

in figure (3.3) that S(t) decreases over time, R(t) increases over time. Moreover,

I(t) increases in the beginning of the process, and then decreases to 0 afterward.
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3.2 Stochastic SIR Model

3.2.1 Introduction

Now, we consider the stochastic SIR model. For simplicity, we still consider the

community with constant population N . For t ≥ 0, we consider the process

{S(t), I(t), R(t), t ∈ [0,∞)} as a continuous-time Markov chain. Since S(t) +

I(t) + R(t) = N , then R(t) depends on S(t), I(t). Therefore, it is enough to

consider S(t) and I(t). For the small interval of time ∆t > 0, denote ∆S(t) =

S(t+∆t)−S(t),∆I(t) = I(t+∆t)−I(t). We then define the transition probability

to be

P (∆S(t) = i,∆I(t) = j|S(t), I(t))

=



β
S(t)I(t)

N
∆t+ o(∆t), (i, j) = (−1, 1),

γI(t)∆t+ o(∆t), (i, j) = (0,−1),

1−
[
β
S(t)I(t)

N
+ γI(t)

]
∆+ o(∆t), (i, j) = (0, 0)

o(∆t), otherwise.

In short, we only allow one step happens in the short amount of time ∆t. It

is either a susceptible individual got infected and move to a infected group, or

an infected individual is removed from the process, or nothing happens at all.

Moreover, if ∆I(t) = −1, then ∆R(t) = 1.

For t ≥ 0, let the pair {S(t) = i, I(t) = j} be the state of the process. Ì

i ∈ {0, 1, 2, . . . , N} then j ∈ {0, 1, 2, . . . , N − i} so that i+ j ≤ N .

For example, if i = 0, then j can be chosen from 0, 1, 2, . . . , N . If i = 1, then j

can be chosen from 0, 1, 2, . . . , N − 1. Therefore, the possible states in the process

is
N+1∑
k=1

k =
(N + 1)(N + 2)

2
.

We can also derive the backward Kolmogorov equations for the transition prob-
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abilities. By definition, for i ∈ {0, 1, 2, . . . , N and j ∈ {0, 1, 2, . . . , N − i}, we have

dp(i,j)(t)

dt
=

β

N
(i+ 1)(j − 1)p(i+1,j−1)(t)

+ γ(j + 1)p(i,j+1)(t)−
[
β

N
ij + γj

]
p(i,j)(t).

If there is any (i, j) that does not belong to the domain, p(i,j) = 0.

3.2.2 Probability of no epidemic

We now consider the early stage of the process. First, assume that the initial

state is (S(0), I(0)) = (s0, i0), s0 ≥ 0, i0 > 0 and s0 + i0 = N . Moreover, in

reality, the epidemic start with a small number of infected individuals, so s0 ≈ N .

Therefore, the rate of having new infected individuals is approximately β, and the

rate of removing from the process is approximately γ. Thus, in the beginning of

the process, the dynamics of infected individuals can be understood as the birth

death process, where the initial population of the process is i0, β is the birth

rate and γ is the death rate. By using the result for the birth and death rate,

if β ≤ γ (or R0 ≤ 1), then the probability of extinction (meaning that there

is no infected individual) is 1. On the other hand, if β > γ (or R0 > 1), the

probability of extinction is

(
γ

β

)i0

. In epidemiology, we call those occurrences as

minor outbreak.

In conclusion, the result can be summarize using the R0 notation as

Theorem 3.2.1. In the stochastic SIR model, let the initial number of infected

individuals be I(0) = i. Then

P (minor outbreak) =


1, R0 ≤ 1(

1

R0

)i

, R0 > 1.

Remark 3.2.2. In this subsection, we show that if R0 > 1, in the stochastic

model, the epidemic might not happen, with probability

(
1

R0

)i

, whereas in the
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deterministic model, the epidemic always happens.

Remark 3.2.3. We can also see that the bigger the initial number of infected

individuals is, the smaller the probability that the minor outbreak happens (since

1

R0

< 1). This makes sense in reality, since the more infected individuals you

have, the easier they transmit the disease to other individuals.

3.2.3 Simulation and the final size

In this subsection, we simulate the stochastic SIR process. For t ≥ 0, let S(t), I(t), R(t)

be the susceptible, infected and removed individuals at time t, respectively that

follows the stochastic SIR process. Let N be constant population of the commu-

nity. We simulate the SIR process by using R.

First, to simulate the process, we need to calculate the probability that the

process move to another state. Assume that the process is at state (i, j), meaning

that (S(t), I(t)) = (i, j). Then, let T1 be the time that the process moves to

the state (i − 1, j + 1) and T2 be the time that the process moves to that state

(i, j−1). Since this is also a continuous-time Markov chain, then T1 ∼ Exp

(
β

N
ij

)
and T2 ∼ Exp(γj). Denote T be the time that the process move to the next state.

By the exponential races, T ∼ exp

(
β

N
ij + γj

)
. Moreover, let p the probability

that the process move to the state (i − 1, j + 1). Then by the exponential races,

we have

p =
β
N
ij

β
N
ij + γj

=
β
N
i

β
N
i+ γ

.

This follows that the probability that the process moves to the state (i, j − 1) is

1− p =
γj

β
N
ij + γj

=
γ

β
N
i+ γ

.

Now, we simulate the stochastic SIR process using R. Next, we calculate the final

size of the stochastic process in the case of R0 > 1 based on our simulation.
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Case 1: R′ < 1

In this first case, we consider N = 1000, and S(0) = 999, I(0) = 1, R(0) = 0,

β = 0.15 and γ = 0.2. Then the dynamics of the process is plotted in figure (3.4).
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Figure 3.4: The dynamics of the stochastic model when β = 0.15 and γ = 0.2

Remark 3.2.4. In this case, R0 =
β

γ
=

0.15

0.2
= 0.75 < 1. Therefore, the prob-

ability that the outbreak does not happen is 1. We can see in figure (3.4) that

S(t), I(t), R(t) almost stay the same through out the process.

Case 2: R′ >

In this first case, we consider N = 1000, and S(0) = 999, I(0) = 1, R(0) = 0,

β = 0.3 and γ = 0.2. Then the dynamics of the process is plotted in figure (3.5).

Remark 3.2.5. In this case, R0 =
β

γ
=

0.3

0.2
= 1.5 > 1. Therefore, the probability

that the outbreak does not happen is
1

R0

= 0.67. We can see in figure (3.5) that

the dynamics of S(t), I(t), R(t) are almost the same from the deterministic case.

The final size of the outbreak in this case is 575.
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Figure 3.5: The dynamics of the stochastic model when β = 0.3 and γ = 0.2 when
the major outbreak happens

However, if you run the simulation many times, you may recognize that there

is a case where the minor outbreak happens. This is due to the fact that the

probability does not happen is 0.67. Figure (3.6) shows the simulation in which

the minor outbreak happens.
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Figure 3.6: The dynamics of the stochastic model when β = 0.3 and γ = 0.2 when
the minor outbreak happens
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To study this further, we run the simulation multiples time, and collect the

final size of the out break each time. By doing this, we can attain the distribution

of the final size of the outbreak. We can also fine the mean of the final size. The

distribution of the final size of the outbreak is shown below. The mean value of

the final size is 195. In figure (3.7), we can see that the distribution is bimodal
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Figure 3.7: The distribution of the final size of the outbreak.

since there are two local peaks. The first one is for the minor case, and the second

one is for the major case. Since we only have one initial infected individual, the

probability that the minor outbreak happens is very high, 0.67. In face, there are

over 600 simulations (over 1000 simulations) whose final epidemic size is less than

200. This also affects the mean of the final size so that it is only 195, which is less

than the final size of the deterministic model. To see what is the mean of the final

size, we remove the minor outbreaks and only keep the major outbreaks. Figure

(3.8) show the distribution of the final size of the major outbreaks. The mean

value of the final size is 578.

Note that the mean value of the final size if approximately 578, which is close

to the final size of the outbreak in the deterministic model, 583.
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Chapter 4

Bayesian parameter estimation

with data augmentation in the

stochastic SIR model

In this chapter, we consider the Abakaliki smallpox data, which is obtained from a

smallpox outbreak in a closed community of 120 individuals in Abakaliki, Nigeria.

In real life, the disease has a latent period. However, for simplicity, we use the

stochastic SIR model to estimate the transmission rate and removal rate of the

disease. In particular, we first introduce the data, then introduce the likelihood

function of the data. Next, we discuss the use of Bayesian estimation by using

Markov Chain Monte Carlo (MCMC) and data augmentation algorithms. This is

given by O’Neill [5], O’Neill [6] and O’Neill and Roberts [7].

4.1 Data and the likelihood function

4.1.1 Data interpretation

First, we introduce the dataset. This dataset was compiled from an outbreak of

smallpox in a close community of 120 individuals in Abakaliki, Nigeria. The data

consist of 29 inter-removal times between detection of cases, measured in days.

31
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In the beginning, there is one initial case. Then, there are 29 subsequent cases,

making a total of 30 cases. The data consists of 29 inter-removal times, measured

in days

13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5.

A zero indicates that the a new removed case happened the same day as for the

preceding case. We also assume that the first individual became infectious at time

0 and will be removed at time 14 (days) (so this agree with the interpretation

made in [ref]). Then the 30 removal times (in days) are

14, 27, 34, 36, 39, 39, 39, 40, 44, 49, 52, 54, 54, 56, 56

61, 64, 65, 69, 69, 70, 71, 72, 74, 74, 75, 80, 80, 85, 90.

(4.1.1)

So the total duration of the outbreak is thus T = 90 days. So in this dataset, we

only know the initial infected time (at time 0), and the removal times.

4.1.2 Construction of the likelihood function

To construct the likelihood function, we first assume that the data is complete,

meaning that we know every time when an individual got infected and removed.

In general, assume that there are N individuals in a closed community, and n

cases in total. Additionally, we assume that each event, one of three outcomes

occurs: a person becomes infected, an infected individual is removed from the

infection process, or there are no changes. Let i = (i1, i2, . . . , in) be the times

when an individual got infected, and r = (r1, r2, . . . , rn) be the times when an

individual got removed. Moreover, denote T to be the final removal time, so

rn = T . Moreover, by previous assumption, then N = 120, n = 30, i1 = 0 and
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T = rn = 90. By O’Neill [5], the likelihood function is

f(i,r|β, γ) =

(
n∏

j=2

β

N
S(ij−)I(ij−)

)(
n∏

j=1

γI(rj−)

)

× exp

−
T∫

0

β

N
S(t)I(t) + γI(t)dt

 ,

(4.1.2)

where S(u−) = lim
t→u−

S(t), I(u−) = lim
t→u−

I(t).

We explain how we can derive the likelihood function. Since this is a continuous-

time stochastic process, then the time between two infection times and the time

between two removal times follow a exponential distribution.

For 2 ≤ j ≤ n, the rate to move from the j-th infection to the (j + 1)-th

infection is

β

N
I(ij)S(ij).

Therefore, the interevent times between the j-th and (j + 1)-th jump follow the

exponential distribution with rate
β

N
I(ij)S(ij). Thus, the probability density

function of infections occurring at i2, . . . , in can be written as following

n∏
j=2

(
β

N
S(ij−)I(ij−)

)
× exp

(
− β

N
S(ij−)I(ij−)(ij − ij−1)

)
. (4.1.3)

By the same manner, the probability density function of removals occurring at

r1, r2, . . . , rn can be written as following

n∏
j=1

(γI(rj−))× exp (−γI(rj−)(rj − rj−1)) , (4.1.4)

where r0 := 0.

By combining the equation in (4.1.3) and (4.1.4), we obtain the likelihood function



34

for the complete-data

f(i,r|β, γ) =

(
n∏

j=2

β

N
S(ij−)I(ij−)

)(
n∏

j=1

γI(rj−)

)

× exp

(
− β

N

n∑
j=2

S(ij−)I(ij−)(ij − ij−1)− γ

n∑
j=1

I(rj−)(rj − rj−1)

)
.

Rewrite likelihood function by replacing the summations with integrals, we can

derive the likelihood function as in (4.1.2).

4.2 Methodology

Now, we assume that only the removal times r = (r1, r2, . . . , rn) have been ob-

served. Since we do not have the infection times, we use the data augmentation

and Gibbs sampling approach. In particular, we augment the set of unknown

parameters β and γ with the infection times, which is i.

Regarding the prior of β and γ, we choose that they follow the Gamma distri-

bution. In particular,

β ∼ Gamma(µβ, λβ)

γ ∼ Gamma(µγ, λγ).

In other words, their prior distribution are proportional to

f(β) ∝ βµβ−1 exp(−λββ)

f(γ) ∝ γµγ−1 exp(−λγγ)

Finally, we estimate β, γ and i based on their posterior distribution

f(β, γ, i|r) ∝ f(β, γ, i, r) = f(i, r|β, γ)f(β)f(γ).

First, we have to initialize the parameters β, γ, i. In our work, this is the initial
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parameters:

• β = 0.01

• γ = 0.01

•

i =(0, 7, 17, 25.5, 30.75, 34.88, 36.94, 37.97, 38.98, 41.49,

45.25, 48.62, 51.31, 52.66, 54.33, 55.16, 58.08, 61.04, 63.02, 66.01,

67.51, 68.75, 69.88, 70.94, 72.47, 73.23, 74.12, 77.06, 78.53, 81.76)

(4.2.1)

Note that in (4.2.1), (ij, rj) are the infection and removal times for the same

individual j. Moreover, for each individual, the initial value of the j-th infection

time is taken to be halfway between the (j−1)-th infection times and the (j−1)-th

removal times.

At each iteration, parameters are sequentially updated with the Gibbs sampling

procedure detailed as follows.

• Given the current value of i, r, γ, we update β using the posterior distribution.

Note that

f(β|i, r, γ) ∝ f(β, γ, i, r) ∝ f(i, r|β, γ)f(β)

∝ βn−1 exp

− β

N

T∫
0

I(t)S(t)dt

 βµβ−1 exp(−λββ)

= βn+µβ−2 exp

−
 1

N

T∫
0

I(t)S(t)dt+ λβ

 β



Therefore, β|i, r, γ ∼ Gamma

n+ µβ − 1,
1

N

T∫
0

I(t)S(t)dt+ λβ

. This means

that we update β by drawing from the Gamma posterior distribution.

• Given the current value of i, r, β, we update γ using the posterior distribution.
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Note that

f(γ|i, r, β) ∝ f(γ, β, i, r) ∝ f(i, r|β, γ)f(γ)

∝ γn exp

−γ

T∫
0

I(t)dt

 γµγ−1 exp(−λγγ)

= γn+µγ−1 exp

−
 T∫

0

I(t)dt+ λγ

 γ



Therefore, γ|i, r, β ∼ Gamma

n+ µγ,

T∫
0

I(t)dt+ λγ

. This means that we

update γ by drawing from the Gamma posterior distribution.

• Given the value of β, γ, and the removal times r, we update i. We have

f(i|β, γ, r) ∝ f(i, β, γ, r) ∝ f(i, r|β, γ)

Note that i have n components, but we only update i2, i3, . . . , in since i1 is always

set to be 0. Without loss of generality, we show how to update i2. Assume that

the current value is i2. Then the new value of i2, ĩ2 is drawn from a uniform

distribution on (0, r2). Let i be the current infection times vector, and ĩ be the

new vector, which is the same as i, except for the second infection times i2. The

proposal is then accepted, with probability

min

{
1,

f (̃i, r|β, γ)
f(i, r|γ, β

}
.

After update i2, we continue to update ij, 3 ≤ j ≤ n.

4.3 Result

Consider the smallpox data, we apply the MCMC algorithm proposed in section

”Methodology”. We run 600 iterations, and then discard 200 iterations as burn-

in. The posterior distribution for β, γ and the basic reproduction number R0 is
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depicted in figure (4.1), (4.2). The mean value of β is 0.093638. The mean value

of γ is 0.083267. The mean value of R0 is 1.161784.
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Figure 4.1: [Left] The distribution of β. [Right] The distribution of γ.
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Figure 4.2: The distribution of the basic reproduction number R0.



Chapter 5

Bayesian posterior prediction

with daily updated data

In this chapter, we introduce the main work of our Master thesis. In practice, we

usually observe new cases daily. Therefore, we cannot use the model introduced

in chapter 4. We adjust the model so that the new cases follow the Poisson

distribution or the Binomial distribution. We then estimate the transmission rate

and removal rate. Moreover, we also forecast new infected cases and the final size

of the outbreak. This is an simplified model compared to the model from Gu and

Yin [4] and Ward et al. [9].

5.1 Methodology

5.1.1 Data and notations

For the dataset, we consider the population of N individuals. At the beginning

of the process, t = 0, the initial states are S0, I0, R0. Note that S0 + I0 + R0 =

N . At time k, k ∈ N, k ≥ 1, the number of susceptible, infected and removed

individuals are Sk, Ik, Rk, respectively. We observe the new infected cases and

new removed cases daily. Denote the new infected cases in day k as INk and

the new removed cases as RNk. Since we observe n days of the epidemic, we let

38
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IN = (IN1, IN2, . . . , INn) and RN = (RN1, RN2, . . . , RNn) to be sequences of

daily reported numbers of new infected cases and removed cases, respectively. It

is obvious that

INk = Sk−1 − Sk

RNk = Rk −Rk−1

We consider 4 data sets. There are 2 simulated datasets, and the Ebola and

Covid-19 data set. For the likelihood of the data, we consider two cases. The first

one considers the binomial distribution, and the other one considers the Poisson

distribution.

5.1.2 The binomial likelihood

For k = 1, 2, . . . , n we make the following assumption for each susceptible individ-

ual at day k − 1: The number of in-person contact with infected individuals and

then became infected follows a Poisson distribution with rate λ = −β
Ik−1

N
. Then

the probability that there is new infected cases is 1− exp

(
−β

Ik−1

N

)
. Therefore,

we can assume that the new cases follow a binomial distribution as

INk ∼ Binomial

(
Sk−1, 1− exp

(
−β

Ik−1

N

))
. (5.1.1)

By the same manner, the new removed cases follow the Binomial distribution with

rate γ

RNk ∼ Binomial (Ik−1, γ) . (5.1.2)
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Regarding the prior of β and γ, we choose so that they follow the Gamma distri-

bution. In particular,

β ∼ Gamma(µβ, λβ)

γ ∼ Gamma(µγ, λγ).

We then use MCMC to derive the posterior distribution. However, we can use

theorem (2.1.7) to approximate the binomial distribution with the Poisson dis-

tribution so that we can update the posterior distribution easier via conjugate

prior.

5.1.3 The Poisson likelihood

For k ∈ N, k ≥ 1, by theorem (2.1.7), we can approximate the Binomial distribu-

tion with size Sk−1 and success rate 1 − exp

(
−β

Ik−1

N

)
with the Poisson distri-

bution with rate Sk−1

(
1− exp

(
−β

Ik−1

N

))
. Moreover, by Taylor expansion, we

have that

1− exp

(
−β

Ik−1

N

)
∼ β

Ik−1

N
.

Thus, (5.1.1) becomes

INk ∼ Poisson

(
β
Sk−1Ik−1

N

)
(5.1.3)

By the same manner, (5.1.2) becomes

RNk ∼ Poisson (γIk−1) (5.1.4)
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By choosing the prior distribution of β and γ to be Gamma distribution,

β ∼ Gamma(µβ, λβ)

γ ∼ Gamma(µγ, λγ),

we can derive the posterior distribution of β and γ

β|IN1, IN2, . . . , INn, S0, I0 ∼ Gamma

(
µβ +

n∑
i=1

INi, λβ +
n∑

i=1

Si−1Ii−1

N

)
,

(5.1.5)

γ|RN1, RN2, . . . , RNn, I0 ∼ Gamma

(
µγ +

n∑
i=1

RNi, λγ +
n∑

i=1

Ii−1

)
. (5.1.6)

5.1.4 Bayesian prediction using the Poisson likelihood

From the community of N individuals, we observe n data points, and now we want

to predict what happens in the next m days. To to this, we first define how can

we simulate the epidemic with known β, γ,N and initial value S0, I0. Assume that

we want to simulate m days of the epidemic, we define the simulation function

with inputs N, β, γ, S0, I0,m as follow

simulation <- function(N, beta , gamma , S0, I0, m){

new_cases = c(NA)

S = S0

I = I0

for (i in 1: m){

IN_new = rpois(1, lambda = S*I*beta/N)

RN_new = rpois(1, lambda = I*gamma)

S = S - IN_new

I = I + IN_new - RN_new

new_cases = c(result , new_cases)



42

}

return(new_cases[-1])

}

Now, we describe our prediction. This is the iterative methods, and for each

iteration, we

• Draw β from the posterior distribution (5.1.5). Draw γ from the posterior

distribution (5.1.6).

• Now we run the simulation of m days of the epidemic with β and γ from the

previous step. For the initial condition, we let Sn, In (the number of susceptible

individuals and infected individuals at the n-th day, respectively) to be the

initial condition of the epidemic.

• From the simulation, we obtain the number of new cases and the number of

removed individuals from each day.

• Repeat the procedure again.

After that, we plot the median and the 90% credible interval for the real and

prediction new infected cases from day 1 to day n + m. Moreover, we also plot

our prediction for the final size of the epidemic.

5.2 First simulated data set

5.2.1 Introduce the data set

The first data set is the simulated data set. The population is 200 and there are

5 infected individuals in the beginning. The epidemic ends after 110 days and the

outbreak size is 200 individuals. Figure (5.1) illustrates the new cases in the first

30 days and the process in the first 50 days.
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Figure 5.1: First data set: [Left] New cases reported in 30 days. [Right] The
process in 50 days.

5.2.2 Bayesian analysis and posterior prediction

First, we determine our prior distribution. We choose β ∼ Gamma(0.01, 0.01) and

γ ∼ Gamma(0.01, 0.01). We then update our belief in the parameters using the

data. Our goal is to estimate the basic reproduction number R0 and predict the

new cases until day 30 and the final size of the epidemic.

First case: We have data of 5 days

For now, we only have the data of 5 days. The posterior distribution of β and γ is

β ∼ Gamma(15.01, 49.625),

γ ∼ Gamma(3.01, 53.01).

The Bayesian estimation of β is 0.3025 and the 90% credible interval of β is

(0.18648, 0.44128). The Bayesian estimation of γ is 0.0568 and the 90% credible

interval of γ is (0.01552, 0.11905). By using the definition, R0 =
β

γ
, we can derive

the distribution of the basic reproduction number R0, which is shown in figure

(5.2). The red line in the figure indicates R0 = 1. The Bayesian estimation of R0

is 8.0401, and the 90% credible interval of R0 is (2.18, 20.7).
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Figure 5.2: Data set 1, first case: The distribution of the basic reproduction
number R0.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.3). In the early stage after just 5 days of data, the

predictions had substantial uncertainty, reflected by the wide 90% credible inter-

vals for the basic reproduction number R0 and the projected epidemic curves. The

estimate of R0 had a mean of 8.04 but a broad credible range spanning 2.18 to

20.7.

Second case: We have data of 15 days

For now, we have the data of 15 days. The posterior distribution of β and γ is

β ∼ Gamma(135.01, 346.255),

γ ∼ Gamma(33.01, 553.01).

The Bayesian estimation of β is 0.389 and the 90% credible interval of β is

(0.336, 0.447). The Bayesian estimation of γ is 0.0597 and the 90% credible in-
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Figure 5.3: Data set 1, first case: The mean and 90% credible intervals for Bayesian
prediction of future infected cases (left) and the final size (right) compared to the
true value of the epidemic.

terval of γ is (0.0437, 0.078). By using the definition, R0 =
β

γ
, we can derive the

distribution of the basic reproduction number R0, which is shown in figure (5.4).

The red line in the figure indicates R0 = 1. The Bayesian estimation of R0 is

6.761, and the 90% credible interval of R0 is (4.85, 9.28). The credible intervals

tightened substantially. The R0 estimate has a mean of 6.76 with a range of 4.85

to 9.28.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.5). The epidemic trajectories also began to align more

accurately with the true value of the removed individuals outbreak.

Third case: We have data of 20 days

For now, we have the data of 20 days. The posterior distribution of β and γ is

β ∼ Gamma(185.01, 451.265),

γ ∼ Gamma(74.01, 1128.01).

The Bayesian estimation of β is 0.41 and the 90% credible interval of β is (0.362, 0.46).

The Bayesian estimation of γ is 0.066 and the 90% credible interval of γ is
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Figure 5.4: Data set 1, second case: The distribution of the basic reproduction
number R0.
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Figure 5.5: Data set 1, second case: The mean and 90% credible intervals for
Bayesian prediction of future infected cases (left) and the final size (right) com-
pared to to the true value of the epidemic.
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(0.054, 0.079). By using the definition, R0 =
β

γ
, we can derive the distribution of

the basic reproduction number R0, which is shown in figure (5.6). The red line in

the figure indicates R0 = 1. The Bayesian estimation of R0 is 6.272, and the 90%

credible interval of R0 is (4.99, 7.93).
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Figure 5.6: Data set 1, third case: The distribution of the basic reproduction
number R0.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.7). The predicted epidemic curves matched the true

outbreak well, precisely capturing the turning points of the curves.
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Figure 5.7: Data set 1, third case: The mean and 90% credible intervals for
Bayesian prediction of future infected cases (left) and the final size (right) com-
pared to to the true value of the epidemic.

5.3 Ebola outbreak in Kikwit, Democratic Re-

public of the Congo, 1995

5.3.1 Introduce the data set

In this section, we consider the Ebola disease in Kikwit, Democratic Republic of

the Congo in 1995. The data on daily cases reported by Khan et al. (1999) cover

the period 1995-01-06 to 1995-07-16, over which time there were 291 cases and

236 deaths. In their data, the first case became ill on 1995-01-06 and was death

on 1995-03-02. However, since they only start collect data daily from 1995-03-01,

we assume that the epidemic starts from 1995-03-06. To summarize, in our work,

the epidemic starts from 1995-03-06 and there is one infected individual in the

beginning. When an individual was infected or death, they would be moved to

the infected state or removed state, respectively. We consider the epidemic in 132

days. Information about the epidemic is depicted in figure (5.8).

Remark 5.3.1. Note that in the Ebola outbreak in Kikwit, the recovered individ-

uals were not recorded. Therefore, the infected individuals curve does not decline

to 0. However, for the simplicity, we assume that the epidemic continues after
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Figure 5.8: Ebola data set: [Left] New cases reported in 132 days. [Right] The
process in 132 days.

1995-07-16, and we only consider the epidemic in the period of 132 days.

5.3.2 Bayesian posterior prediction

First, we determine our prior distribution. We choose β ∼ Gamma(0.01, 0.01) and

γ ∼ Gamma(0.01, 0.01). We then update our belief in the parameters using the

data. Our goal is to estimate the basic reproduction number R0 and predict the

new cases until day 132 and the final size of the epidemic.

First case: We have data of 20 days

First, we assume that we have the data of 20 days. The posterior distribution of

β and γ is

β ∼ Gamma(11.01, 64.177),

γ ∼ Gamma(6.01, 66.01).

The Bayesian estimation of β is 0.1716 and the 90% credible interval of β is

(0.0962, 0.2645). The Bayesian estimation of γ is 0.091 and the 90% credible

interval of γ is (0.0397, 0.1595). By using the definition, R0 =
β

γ
, we can derive

the distribution of the basic reproduction number R0, which is shown in figure
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(5.9). The red line in the figure indicates R0 = 1. The Bayesian estimation of R0

is 2.267, and the 90% credible interval of R0 is (0.857, 4.73). In the early stage

after just 20 days of data, the predictions were quite uncertain. The mean of R0

is 2.27 but the 90% credible interval ranging from 0.86 to 4.73, which is very wide.
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Figure 5.9: Data set 2, first case: The distribution of the basic reproduction
number R0.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.10). The prediction showed reasonable potential sce-

narios, but cannot accurately capture the true value of the outbreak.

Second case: We have data of 50 days

Now, we assume that we have the data of 50 days. The posterior distribution of

β and γ is

β ∼ Gamma(60.01, 329.72),

γ ∼ Gamma(28.01, 367.01).
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Figure 5.10: Ebola data set, first case: The mean and 90% credible intervals
for Bayesian prediction of future infected cases (left) and the final size (right)
compared to to the true value of the epidemic.

The Bayesian estimation of β is 0.182 and the 90% credible interval of β is

(0.1452, 0.2222). The Bayesian estimation of γ is 0.0763 and the 90% credible

interval of γ is (0.0543, 0.1015). By using the definition, R0 =
β

γ
, we can derive

the distribution of the basic reproduction number R0, which is shown in figure

(5.11). The red line in the figure indicates R0 = 1. The Bayesian estimation of

R0 is 2.4756, and the 90% credible interval of R0 is (1.66, 3.56). As more data

accumulated up to 50 days, the parameter estimates became significantly more

precise.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.12). The prediction aligns much better with the true

value of the outbreak.

Third case: We have data of 80 days

Now, we assume that we have the data of 80 days. The posterior distribution of

β and γ is

β ∼ Gamma(243.01, 1286.833),

γ ∼ Gamma(173.01, 2525.01).
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Figure 5.11: Data set 2, second case: The distribution of the basic reproduction
number R0.
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Figure 5.12: Ebola data set, second case: The mean and 90% credible intervals
for Bayesian prediction of future infected cases and the final size compared to to
the true value of the epidemic in 132 days.
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The Bayesian estimation of β is 0.1888 and the 90% credible interval of β is

(0.1694, 0.2092). The Bayesian estimation of γ is 0.0685 and the 90% credible

interval of γ is (0.0602, 0.0773). The By using the definition, R0 =
β

γ
, we can

derive the distribution of the basic reproduction number R0, which is shown in

figure (5.13). The red line in the figure indicates R0 = 1. The Bayesian estimation

of R0 is 2.774, and the 90% credible interval of R0 is (2.34, 3.25). As we gather

more information, the mean of R0 was 2.77 with a tight 90% credible interval of

2.34 to 3.25.
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Figure 5.13: Data set 2, third case: The distribution of the basic reproduction
number R0.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.14). The prediction can accurately predict the entire

outbreak well, closely matching the observed data.
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Figure 5.14: Ebola data set, third case: The mean and 90% credible intervals
for Bayesian prediction of future infected cases (left) and the final size (right)
compared to to the true value of the epidemic.

5.4 Second simulated data set

5.4.1 Introduce the data set

The third data set is the simulated data set. The population is 41100 and there

are 10 infected individuals in the beginning. The epidemic ends after 154 days

and the outbreak size is 24301 individuals. Figure (5.15) illustrates the new cases

in the first 30 days and the process in 154 days. The difference with the first

simulated data set is that not everyone got the disease. In particular, the number

of population is 41100 but the final size of the epidemic is 24301, which is much

smaller than 41100.

5.4.2 Baysian analysis and posterior prediction

First, we determine our prior distribution. We choose β ∼ Gamma(0.01, 0.01) and

γ ∼ Gamma(0.01, 0.01). We then update our belief in the parameters using the

data. Our goal is to estimate the basic reproduction number R0 and predict the

new cases and the final size of the epidemic.
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Figure 5.15: Third data set: [Left] New cases reported in 154 days. [Right] The
process in 154 days.

First case: We have data of 5 days

First, we assume that we have the data of 5 days. The posterior distribution of β

and γ is

β ∼ Gamma(9.01, 45.99),

γ ∼ Gamma(6.01, 46.01).

The Bayesian estimation of β is 0.1959 and the 90% credible interval of β is

(0.1023, 0.3141). The Bayesian estimation of γ is 0.1306 and the 90% credible

interval of γ is (0.0569, 0.2288). By using the definition, R0 =
β

γ
, we can derive

the distribution of the basic reproduction number R0, which is shown in figure

(5.16). The red line in the figure indicates R0 = 1. The Bayesian estimation of

R0 is 1.78, and the 90% credible interval of R0 is (0.64, 3.75). In the early stage

after just 5 days of data, the predictions were again highly uncertain, with a broad

90% credible interval ranging from 0.64 to 3.75. Note that the credible interval

includes the value of R0 < 1, so the model suggests that the epidemic might not

happen.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.17). Beside the fact that the prediction is extremely
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Figure 5.16: Data set 3, first case: The distribution of the basic reproduction
number R0.

uncertain, we also notice that there is a chance that the epidemic might not hap-

pen.
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Figure 5.17: Data set 3, first case: The mean and 90% credible intervals for
Bayesian prediction of future infected cases (left) and the final size (right) com-
pared to the true value of the epidemic.
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Second case: We have data of 30 days

Now, we assume that we have the data of 30 days. The posterior distribution of

β and γ is

β ∼ Gamma(373.01, 1232.5)

γ ∼ Gamma(255.01, 1238.01).

The Bayesian estimation of β is 0.3026 and the 90% credible interval of β is

(0.2773, 0.3289). The Bayesian estimation of γ is 0.206 and the 90% credible

interval of γ is (0.1852, 0.2277). By using the definition, R0 =
β

γ
, we can derive

the distribution of the basic reproduction number R0, which is shown in figure

(5.18). The red line in the figure indicates R0 = 1. The Bayesian estimation of

R0 is 1.475, and the 90% credible interval of R0 is (1.29, 1.68).
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Figure 5.18: Data set 3, second case: The distribution of the basic reproduction
number R0.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.19).
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Figure 5.19: Data set 3, first case: The mean and 90% credible intervals for
Bayesian prediction of future infected cases (left) and the final size (right) com-
pared to the true value of the epidemic.

Third cases: We have data of 60 days

Now, we assume that we have the data of 60 days. The posterior distribution of

β and γ is

β ∼ Gamma(6122.01, 19953.66),

γ ∼ Gamma(4344.01, 21534.01).

The Bayesian estimation of β is 0.3068 and the 90% credible interval of β is

(0.3, 0.3133). The Bayesian estimation of γ is 0.2017 and the 90% credible interval

of γ is (0.1967, 0.2068). By using the definition, R0 =
β

γ
, we can derive the

distribution of the basic reproduction number R0, which is shown in figure (5.20).

The red line in the figure indicates R0 = 1. The Bayesian estimation of R0 is

1.521, and the 90% credible interval of R0 is (1.47, 1.57). With 60 days of data,

the estimates became even more precise. The credible interval for R0 is very tight,

suggesting that we can predict the final size of the epidemic well.

The Bayesian prediction for the new cases daily and the final size of the epi-

demic is shown in figure (5.21). We can see that the model can accurately predict

the final epidemic size of the outbreak. A notable advantage highlighted by this
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Figure 5.20: Data set 3, second case: The distribution of the basic reproduction
number R0.

analysis was the flexibility of the framework to handle outbreaks that only impact

a subset of the total population. Even though not everyone became infected, the

model can still provide good prediction given sufficient data.
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Figure 5.21: Data set 3, third case: The mean and 90% credible intervals for
Bayesian prediction of future infected cases (left) and the final size (right) com-
pared to the true value of the epidemic.
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5.5 Covid-19 data set in New Orleans, Louisiana

5.5.1 Introduce the data

In this section, we consider the Covid 19 in New Orleans, Louisiana, US in 2020.

The data on daily cases provided by Wahltinez et al. [8], covering the period 2020-

03-09 to 2020-06-16 (before the second wave of Covid in New Orleans), over which

time there were 8506 cases and 7418 deaths. In New Orleans, the first case was

reported on 2020-03-09. The number of population is 436126. This is the first

wave of Covid in New Orleans, and the recovery time was 20 days. Figure (5.22)

illustrates the new cases and the whole process in 100 days.
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Figure 5.22: Covid-19 data set: [Left] New cases reported in 100 days. [Right]
The removed individuals in 100 days.

5.5.2 Bayesian analysis and posterior prediction

First, we determine our prior distribution. Since Covid-19 epidemic was very

complicated, we let our γ = 1/20 = 0.05. We choose β ∼ Gamma(0.01, 0.01).

We then update our belief in the β using the data. Our goal is to estimate the

basic reproduction number R0 and predict the new cases and the final size of the

epidemic.
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First case: We have 20 days of data

First, assume that we have 20 days of data. The posterior distribution of β is

β ∼ Gamma(743.01, 2200.341)

The Bayesian estimation of β is 0.3377 and the 90% credible interval of β is

(0.3176, 0.3583). By using the definition, R0 =
β

γ
, we can derive the distribution

of the basic reproduction number R0. The Bayesian estimation of R0 is 6.756,

and the 90% credible interval of R0 is (6.35, 7.17). Figure (5.23) depicts the

distribution of R0. The red line in the figure indicates R0 = 1.
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Figure 5.23: Covid-19 data set: We use 20 days of data. The distribution of R0

First, we use 20 days of data to predict new cases in the next 5 days. Figure

(5.24) shows that the prediction can only catches one data point out of five data

points. Next, we use these 20 days of data to predict new cases in the next 80

days of the epidemic. Figure (5.24) shows that the we over-estimate the new cases

in the next 80 days. In particular, on day 29, there were only 170 cases, where as

our model suggests that there are 2513 cases. This is because the New Orleans

government has issued a stay-at-home order for all non-essential workers on March
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23, 2020. This leads to the decrease in new cases, and the decrease in final size of

the outbreak as well. Figure (5.25) shows that the we overestimate the final size

of the epidemic, in which most of the population gets the disease. In particular,

the model estimates the final size to be 416850, and the 90% credible interval is

(409591.05, 422567.30). However, the true value of the final size is 7418, which

is significantly smaller than the prediction. Therefore, in the Covid-19 case, our

model fails to estimate the transmission rate of the disease and fails to predict the

final size of the epidemic.
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Figure 5.24: Covid-19 data set: We use 20 days of data to predict the next 5 days
(left) and the next 80 days. The mean and 90% credible intervals for Bayesian
prediction of future infected cases compared to the true value of the epidemic.
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Figure 5.25: Covid-19 data set: We use 20 days of data to predict the final size.
The mean and 90% credible intervals for Bayesian prediction of future infected
cases compared to the true value of the epidemic.

Second case: We have 50 days of data

Now, we assume that we have 50 days of data. The posterior distribution of β is

β ∼ Gamma(6103.01, 72436.51)

The Bayesian estimation of β is 0.0843 and the 90% credible interval of β is

(0.0825, 0.086). By using the definition, R0 =
β

γ
, we can derive the distribution

of the basic reproduction number R0. The Bayesian estimation of R0 is 1.685,

and the 90% credible interval of R0 is (1.65, 1.72). Figure (5.26) depicts the

distribution of R0 in this case. The red line in the figure indicates R0 = 1.

We still predict the new cases in 5 days and then in the next 50 days. Figure

(5.27) shows that the prediction fail to predict the new cases. Figure (5.28) also

shows that the we overestimate the final size of the epidemic. However, the final

size is more accurate if we have 50 days of data instead of 20 days of data. In

particular, the estimation of the final size is 16686 and the 90% credible interval is
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Figure 5.26: Covid-19 data set: We use 50 days of data. The distribution of R0

(15783.20, 17599.05), which means that not everyone got the infected. Therefore,

the model still fails even if we have more data.
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Figure 5.27: Covid-19 data set: We use 50 days of data to predict the next 5 days
(left) and 50 days. The mean and 90% credible intervals for Bayesian prediction
of future infected cases compared to the true value of the epidemic.
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Figure 5.28: Covid-19 data set: We use 50 days of data to predict the final size.
The mean and 90% credible intervals for Bayesian prediction of future infected
cases compared to the true value of the epidemic.

5.6 Limitations of the methodology

Drawing from the analysis in the Covid-19 analysis, it is evident that the method-

ology we introduced has some limitations. This methodology, while providing

predictions of new daily cases and final size of the epidemic, is subject to several

limitations that must be considered. We conclude the limitations as follow

1 Our study for the Covid-19 has a major problem because we did not include

the latent period in our model. This is important because the latent period is

very common in studying infectious diseases. Including the latent period helps

us understand how the process develops over time.

2 The limitation of our study is that we used constant parameters, β and γ, in

our model. However, during an epidemic, especially Covid-19, behaviors and

conditions change rapidly and frequently. For example, New Orleans detected

the first case in March 9th, 2020. On March 14th, all schools in New Orleans

closed. On March 23rd, Gov. John Bel Edward’s issued a stay-at-home order
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for all non-essential workers. On May 16th, New Orleans phase one reopening

plan goes into effect. Since our parameters do not adjust to these changes, our

model may not accurately reflect what really happens during an epidemic. This

means our results only predicts the process if there was no behavior or policy

changes. The changes in policy also reduces the number of infectious individual.

Therefore the final size of the epidemic was relatively small (7418) compared

to the population of New Orleans. Since γ = 0.05 and the transmission rate

is quite large in the beginning of Covid-19, the basic reproduction number R0

becomes extremely large. Therefore, our model predicts that everyone in the

epidemic would get the disease.



Chapter 6

Conclusions and future work

This project provides a comprehensive overview and application of deterministic

and stochastic SIR models for studying infectious disease outbreaks. Our main

work introduce a model for Bayesian posterior prediction and updating of new

daily cases and final outbreak size as new data becomes available over time. While

the method works well in some outbreak scenarios, analyzing the COVID-19 data

highlights key limitations of the simple SIR modeling assumptions, such as not ac-

counting for time-varying parameters, population behavioral changes, and lacking

a latent disease state. These limitations lead to several promising future research

building upon this work:

• We can assume that the transmission rate and the removal rate are time-varying

by introduce the indicator vector. This indicator vector partition the pandemic

wave into several stages. Instead of being constant throughout the whole period,

the parameters in the model are homogenous within each stage and change after

moving to another period. This method is given in Gu and Yin [4].

• Extend the framework to more advanced epidemic models like SAIR (Susceptible-

Asymptomatic-Infectious-Removed) that account for exposed/latent periods be-

fore an individual becomes infectious. This would make it more applicable to

diseases like COVID-19. An proper analysis using the deterministic SAIR model

is given in [2]. We can develop a stochastic version for the SAIR model.
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