TRIANGULAR  $[Mo_3 (\mu_3-E) (\mu_2-EE')_3 (Q_3LR_2)_3]^+$  (E, E' = S or Se; L = CN or P; Q = S or Se) CLUSTERS: SYNTHESIS, CRYSTALLOGRAPHY, AND PHOTOCATALYTIC HYDROGEN EVOLUTION ACTIVITY AND EFFORTS TOWARD A SURFACE- TETHERED MOLYBDENUM SULFIDE CLUSTER FOR SOLAR WATER SPLITTING.

AN ABSTRACT

SUBMITTED ON THE TWENTY-SECOND DAY OF FEBRUARY 2024 TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENT

OF THE SCHOOL OF SCIENCE AND ENGINEERING

OF TULANE UNIVERSITY

FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

BY

yala

GAYATHRI RAGUNATHAN

APPROVED:

AMES P. DONAHUE. Ph.D. Director

RUSSELL H. SCHMEHL, Ph.D.

ALEXANDER, BURIN, Ph.D.

MARK FINK. Ph.D.

### Abstract

Chapter 1 summarizes how global population and economic growth in the near future project to increase the global demand for energy. Hydrogen is expected to become an increasingly important energy carrier as part of the effort to move away from nonrenewable fossil fuels and more toward renewable sources with more benign environmental impact. This chapter reviews current technologies used for molecular dihydrogen (H<sub>2</sub>) production from renewable and non-renewable sources. The massive production of H<sub>2</sub> worldwide is primarily from fossil fuels via steam reforming of methane (CH<sub>4</sub>). "Green" hydrogen, however, is produced by electrolysis/photolysis technologies from water.

Chapter 2 of this dissertation considers the limitations for the synthesis of dithiocarbamate ligands directly from secondary amines and CS<sub>2</sub>. This ligand type is used as a supporting ligand for the catalysts described in Chapter 3. With secondary amines that are not sterically hindered, such as Et<sub>2</sub>NH or <sup>*i*</sup>Bu<sub>2</sub>NH, the reaction  $2R_2NH + CS_2 \rightarrow [R_2NH_2][R_2NCS_2]$  is facile, but with Cy<sub>2</sub>NH, the reaction does not proceed cleanly. If the reaction is conducted in the presence of NaOH/H<sub>2</sub>O as proton acceptor, the reaction is complicated by the formation of S<sub>8</sub>, apparently via  $[COS_2]^{2-}$  and by tetraalkylthiuram polysulfides. A cleaner, more effective route to Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub> was found by deprotonation of Cy<sub>2</sub>NH with 'BuLi followed by oxidation coupling with I<sub>2</sub>. The conclusion from this work is that branching at the carbon atom that is alpha to the amine nitrogen decides the synthetic approach to tetraalkylthiuram disulfides that is viable.

The focus of Chapter 3 is upon the synthesis of a palette of triangular  $[Mo_3(\mu_3-E)(\mu_2-EF)_3(Q_2LR_2)_3]^+$  (E = S; F = S, or Se; L = CN or P; Q = S, or Se), clusters, which vary in the chalcogenide core composition (E,F) and in the identity of the ancillary chalcogen

donor ligand. The supporting ligand can be dithiocarbamate ( $R_2NCS_2^{1-}$ ), diselenocarbamate ( $R_2NCS_2^{1-}$ ), or dialkyldithiophosphate ( $R_2PS_2^{1-}$ ). For consistency, R has been maintained as <sup>*i*</sup>Bu or O<sup>*i*</sup>Pr. These clusters have been characterized structurally by X-ray crystallography and spectroscopically by UV-vis and NMR. With differing degrees of activity, these compounds function as homogeneous catalysts for H<sub>2</sub> formation from H<sub>2</sub>O under photolysis with [Ru(bpy)<sub>3</sub>]<sup>2+</sup> as chromophore and 4-*N*,*N*-trimethylaniline (TMA) as reversible quencher in relay with triethylamine (TEA) as sacrificial electron donor. The source of H<sup>+</sup> is H<sub>2</sub>O. Under identical conditions, [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]<sup>+</sup> is the most effective H<sub>2</sub> evolution catalyst studied in this photosystem.

Chapter 4 summarizes efforts to synthesize a phosphonate-substituted dithiocarbamate ligand that might be chemically immobilized onto an electrode surface. If tethered to an electrode, a well-defined small molecule redox catalyst can enjoy the kinetic advantage of restricted proximity to the source of reducing equivalents. One of the well-developed choices for anchoring a metal complex to an oxide surface is the phosphonate group. As detailed in Chapter 3, trimolybdenum clusters of types  $[Mo_3S_7(S_2CNR_2)_3]^+$  have been observed by us to be moderately active H<sub>2</sub> -evolving catalysts under photolysis in the presence of  $[Ru(bpy)_3]^{2+}$  as chromophore and triethylamine (TEA) as sacrificial electron donor. Several hundred turnovers in a period of several hours have been observed, and diminished activity over time appears to be due to chromophore deterioration rather than to degradation of catalyst. Thus, a surface-tethered version of the molybdenum sulfide cluster may allow a clearer view of its inherent activity without the complicating effect of dependency upon a chromophore of limited lifetime.

TRIANGULAR [Mo<sub>3</sub> ( $\mu_3$ -E) ( $\mu_2$ -EE')<sub>3</sub> (Q<sub>3</sub>LR<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (E, E' = S or Se; L = CN or P; Q = S or Se) CLUSTERS: SYNTHESIS, CRYSTALLOGRAPHY, AND PHOTOCATALYTIC HYDROGEN EVOLUTION ACTIVITY AND EFFORTS TOWARD A SURFACE- TETHERED MOLYBDENUM SULFIDE CLUSTER FOR SOLAR WATER SPLITTING.

AN ABSTRACT

SUBMITTED ON THE TWENTY-SECOND DAY OF FEBRUARY 2024 TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE SCHOOL OF SCIENCE AND ENGINEERING

OF TULANE UNIVERSITY

FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

BY

GAYATHRI RAGUNATHAN

APPROVED:

JAMES P. DONAHUE. Ph.D. Director

RUSSELL H. SCHMEHL, Ph.D.

ALEXANDER, BURIN, Ph.D.

MARK FINK. Ph.D.

© Copyright by Gayathri Ragunathan, 2024 All Rights Reserved

## Acknowledgements

First and foremost, I would like to thank and acknowledge my research advisor, Professor James P. Donahue. Throughout my journey of my graduate study, he has been kindly supporting and guiding and mentoring me in both my research projects and course works. Furthermore, he has supported and advised me to overcome difficulties during my study period at Tulane. He is an amazing instructor and fully dedicated professor for students. Moreover, he treats all his students with respect and gratitude.

I am also thankful to my dissertation committee members: Professor Russell H. Schmehl, Professor Mark Fink and Professor Alexander Burin. Thank you for your great suggestion and helpful discussions and valuable time in helping with my dissertation. Special thanks for our crystallographer, Dr. Joel Mague and Dr. Xiodong Zhang who helped me for my project.

I am thankful to all current and former postdoc, graduate students in the Donahue group including Dr. Satyendra kumar, Dr Saikat Mishra, Dr. Malathy Selvachandren, Dr. Bo Wang, Dr. Antony Obanda, Dr. Patricia Fontenot, Dr. Jared Taylor, Justin Barens, Atahar Rabby, Titir das gupta, Jimmy Martines. Special thanks is given to Dr. Malathy sevachandren's family who provided a lot of help from arriving in New Orleans to start my studies here.

Lastly, I am truly grateful for my father Ragunathan, mother Yogarani and brother Raguvarnan, without their support and blessings none of the things in my life is possible. I also want to express my thankfulness to my husband, Giridharan for his great support for my entire life in USA.

# **Table of Contents**

### Chapter 1

| 1.1 Introduction                                      |  |
|-------------------------------------------------------|--|
| 1.2 Hydrogen Production Technologies                  |  |
| 1.3 Homogeneous Systems for H <sub>2</sub> Production |  |
| 1.4 Conclusions                                       |  |
| 1.5 References                                        |  |
| Chapter 2                                             |  |
| 2.1 Introduction                                      |  |
| 2.2 Summary and Concluding Remarks                    |  |
| 2.3 Experimental                                      |  |
| 2.4 References                                        |  |
| Chapter 3                                             |  |
| 3.1 Introduction                                      |  |
| 3.2 Experimental                                      |  |
| 3.3 Discussion                                        |  |
| 3.4 Discussion of Crystal Structures                  |  |
| 3.5 Electrochemistry                                  |  |
| 3.6 Photolysis                                        |  |
| 3.7 Conclusion                                        |  |
| 3.8 References                                        |  |
| Chapter 4                                             |  |
| 4.1 Introduction                                      |  |
| 4.2 Physical Methods and General Considerations       |  |
| 4.3 Result and Discussion                             |  |
| 4.4 Future Work                                       |  |
| 4.5 References                                        |  |
| Appendices                                            |  |

# **List of Tables**

| Chapter 1                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1.1. Hydrogen Production Methods.    2                                                                                                                                                          |
| Chapter 2                                                                                                                                                                                             |
| Table 2.1. Crystal and Refinement Data for Cy2NC(S)SSC(S)NCy2 and         Cy2NC(S)SSSSC(S)NCy2.         20                                                                                            |
| Chapter 3                                                                                                                                                                                             |
| Table 3.1.Crystal and refinement data for bis(O,O'-di-isopropylphosphorothionyl)disulfide, and         bis[[bis(2-methylpropyl)amino]selenoxomethyl] triselenide                                      |
| <b>Table 3.2.</b> Crystal and refinement data for structurally characterized Mo <sub>3</sub> and Mo <sub>2</sub> compounds.66                                                                         |
| Table 3.2., Cont'd. Crystal and refinement data for structurally characterized Mo3 and Mo2 compounds.       67                                                                                        |
| Table 3.2., Cont'd. Crystal and refinement data for structurally characterized Mo3 and Mo2 compounds.       67                                                                                        |
| Table 3.2., Cont'd. Crystal and refinement data for structurally characterized Mo <sub>3</sub> and Mo <sub>2</sub> compounds.       69                                                                |
| <b>Table 3.3.</b> Selected interatomic distances (Å) and angles (deg.) for triangular $M_3$ cations.Averaged values <sup>a</sup> are presented for distances and angles that are chemically identical |
| Table 3.4. Comparison of first reduction potential for all clusters.    92                                                                                                                            |
| Table 3.5. Comparison of reversible reduction between CV and DPV                                                                                                                                      |

# **List of Figures**

#### Chapter 1

| <b>Figure 1.1</b> . Homogeneous system for Mo-catalyst in water splitting. Reproduced with permission from American Chemical Society                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2. Structure of Cobalt dithiolene complex                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Figure 1.3</b> Cartoon that illustrates the relevant energies for $H_2$ production. dHA indicates dehydroascorbic acid. Potentials are shown versus that of NHE at pH = 4.5. Reproduced with permission from Science                                                                                                                                                                                                                                                     |
| <b>Figure 1.4</b> Catalyst design is organized around the first, second, and outer coordination spheres as well as the surrounding solvent, as exemplified by a $[Ni(P^R_2N^{R'}_2)_2]^{2+}$ complex. Reproduced with permission from American Chemical Society                                                                                                                                                                                                             |
| <b>Figure 1.5.</b> (A) Structure of the cobaloxime linker in UU-100(Co) and (B) structural model of UU-100(Co) MOF viewed along [001]. Reproduced with permission from the American Chemical Society                                                                                                                                                                                                                                                                        |
| Chapter 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Figure 2.1</b> Structures of tetracyclohexylthiuram tetrasulfide ( <b>a</b> ), tetracyclohexylthiuram disulfide ( <b>b</b> ), and the chiral $C_2$ -symmetric cores of a typical tetraalkylthiuram disulfide ( <b>c</b> )                                                                                                                                                                                                                                                |
| <b>Figure 2.2</b> . Molecules 1 ( <b>a</b> ) and 2 ( <b>b</b> ) of $Cy_2NC(S)SSC(S)NCy_2$ in triclinic polymorph.<br>Ellipsoids are drawn at the 30% level. Image ( <b>c</b> ) shows the monoclinic polymorph of $Cy_2NC(S)SSC(S)NCy_2$ with 50% ellipsoids. Tetrasulfide $Cy_2NC(S)SSSC(S)NCy_2$ is presented in ( <b>d</b> ), also with 50% ellipsoids. For clarity, all H atoms are omitted, and disorder in the Cy groups in ( <b>b</b> ) and ( <b>c</b> ) is not shown |
| <b>Figure 2.3</b> . (a) Arrangement of $Cy_2NC(S)SSC(S)NCy_2$ molecules (triclinic polymorph) into sheets in the <i>ab</i> plane. (b) Stacking of sheets of $Cy_2NC(S)SSC(S)NCy_2$ molecules (triclinic polymorph) along the <i>c</i> axis                                                                                                                                                                                                                                  |
| Figure 2.4. Symmetry-imposed disorder in the monoclinic form of $Cy_2NC(S)SSC(S)NCy_2$ . A mirror plane coincides with C1, N1, C6 and N2 and generates a symmetry equivalent for all atoms that are off-plane. In addition to the symmetry-imposed disorder, the cyclohexyl groups have a static conformational disorder over two positions.                                                                                                                                |
| <b>Figure 2.5</b> . Packing arrangement for $Cy_2NC(S)SSSSC(S)NCy_2$ viewed along the <i>b</i> axis of the unit cell. All H atoms are omitted for clarity. The thermal ellipsoids are presented at the 50% level                                                                                                                                                                                                                                                            |
| Chapter 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Figure 3.1. (NH4)2(Mo3S13) structures. Reproduced with permission from <i>Nature Chemistry</i> .         33                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.2. Synthesis for Ni <sub>3</sub> Se <sub>4</sub> @MoSe <sub>2</sub> nanostructures. Reproduced with permission from Applied Sciences                                                                                                                  |
| Figure 3.3. 1H NMR spectrum of complex $[Mo_3S_7(S_2CN^iBu_2)_3]$ $(S_2CN^iBu_2)$ 53                                                                                                                                                                           |
| Figure 3.4. <sup>1</sup> H NMR spectrum of complex $[Mo_3S_7(S_2P(O^iPr)_2)_3][S_2P(O^iPr)_2]$                                                                                                                                                                 |
| Figure 3.5. <sup>31</sup> P NMR spectrum of complex $[Mo_3S_7(S_2P(O^iPr)_2)_3][S_2P(O^iPr)_2]$                                                                                                                                                                |
| <b>Figure 3.6</b> . ESI-MS spectrum of complex $[Mo_3Se_7(S_2CN^iBu_2)_3]$ + during the reaction at 170 °C                                                                                                                                                     |
| <b>Figure 3.7</b> . Thermal ellipsoid plots (50%) for bis( <i>O</i> , <i>O</i> '-di-<br>isopropylphosphorothionyl)disulfide ( <b>a</b> ), and bis[[bis(2-<br>methylpropyl)amino]selenoxomethyl] triselenide ( <b>b</b> ). All H atoms are omitted for clarity. |
| <b>Figure 3.8</b> . Thermal ellipsoid plots (50%) of $[1a]^+$ , $[1e]^+$ , $[2a][SeCN]$ , $[2e]^+$ , $[3a]^+$ , and $[3c]^+$ . For clarity, all H atoms are omitted, and any disorder is edited to show only one of two parts                                  |
| <b>Figure 3.9</b> . Thermal ellipsoid plots (50%) of [ <b>3f</b> ] <sup>+</sup> , <b>4</b> , <b>5</b> , and <b>6</b> . For clarity, all H atoms are omitted, and any disorder is edited to show only one of two parts                                          |
| <b>Figure 3.10</b> . Illustration of the distinction between equatorial and axial positions in bridging dichalcogenide ligands                                                                                                                                 |
| Figure 3.11. The whole CV window for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM75                                                                                                                |
| Figure 3.12. Reductive CV data for $[Mo_3S_7(S_2CN^iBu_2)_3]I$ in DCM75                                                                                                                                                                                        |
| Figure 3.13. Reduction peak potentials for $[Mo_3S_7(S_2CN^iBu_2)_3]I$ by DPV                                                                                                                                                                                  |
| Figure 3.14. The whole CV window for $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$ in DCM77                                                                                                                                                                                     |
| Figure 3.15. Reductive CV data for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]Cl in DCM                                                                                                                   |
| Figure 3.16. Reduction peak potentials for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]Cl by DPV78                                                                                                         |
| Figure 3.17. The whole CV window for [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]SeCN in DCM79                                                                                             |
| Figure 3.18. Reductive CV data for [Mo <sub>3</sub> S4Se3 (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]SeCN in DCM79                                                                                                                        |
| Figure 3.19. Reduction peak potentials for [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]SeCN by DPV 80                                                                                      |
| Figure 3.20. The whole CV window for [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM81                                                                                                               |
| Figure 3.21. Reductive CV data for [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM81                                                                                                                 |
| Figure 3.22. Reduction peak potentials for $[Mo_3Se_7(S_2CN^iBu_2)_3]I$ by DPV                                                                                                                                                                                 |
| Figure 3.23. The whole CV window for [Mo <sub>3</sub> Se <sub>7</sub> (Se <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM83                                                                                                              |
| Figure 3.24. Reductive CV data for [Mo <sub>3</sub> Se <sub>7</sub> (Se <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                  |
| Figure 3.25. Reduction peak potentials for [Mo <sub>3</sub> Se <sub>7</sub> (Se <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I by DPV 84                                                                                                       |

| Figure 3.26. The whole CV window for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                                      | 4      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Figure 3.27. Reductive CV data for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                                        | 5      |
| Figure 3.28. Reduction peak potentials for [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I by DPV                                                                                                                                | 5      |
| Figure 3.29. The whole CV window for [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                      | 6      |
| Figure 3.30. Reductive CV data for [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                        | 6      |
| Figure 3.31. Reduction peak potentials for [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I by DPV                                                                                                                | 7      |
| Figure 3.32. The whole CV window for $[Mo_3Se_7(S_2P^iBu_2)_3]I$ in DCM                                                                                                                                                                                                           | 8      |
| Figure 3.33. Reductive CV data for [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I in DCM                                                                                                                                       | 9      |
| Figure 3.34. Reduction peak potentials for [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> P <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ]I by DPV                                                                                                                        | 9      |
| Figure 3.35. The whole CV window for $[Mo_3Se_7(S_2P(O^iPr)_2)_3]$ $(S_2P(O^iPr)_2$ in DCM 90                                                                                                                                                                                     | 0      |
| Figure 3.36. Reductive CV data for $[Mo_3Se_7(S_2P(O^iPr)_2)_3]$ $(S_2P(O^iPr)_2$ in DCM                                                                                                                                                                                          | 1      |
| Figure 3.37. Reduction peak potentials for $[Mo_3Se_7(S_2P(O^iPr)_2)_3] (S_2P(O^iPr)_2)_5 DPV. 9$                                                                                                                                                                                 | 1      |
| Figure 3.38. TON for the [NBu <sub>4</sub> ] <sub>2</sub> [Mo <sub>3</sub> S <sub>13</sub> ] catalyst at various concentrations                                                                                                                                                   | 5      |
| Figure 3.39. TON for the $[Mo_3S_7(S_2CNEt_2)_3]^+$ catalyst at various concentrations93                                                                                                                                                                                          | 5      |
| Figure 3.40. MALDI-MS experiment during photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CNEt <sub>2</sub> ) <sub>3</sub> ] <sup>+</sup> 90                                                                                                                          | 6      |
| Figure 3.41. Hydrogen production at various concentrations of $[Mo_3S_7(S_2CN^iBu_2)_3]^+$ . 9'                                                                                                                                                                                   | 7      |
| Figure 3.42. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ] <sup>+</sup> I <sup>-</sup> 9'                                                                                   | 7      |
| Figure 3.43. Micromoles of hydrogen during 3-hour photolysis of $[Mo_3S_7(S_2CN^iBu_2)_3]^+I^-$                                                                                                                                                                                   | 8      |
| <b>Figure 3.44</b> . Turnover number during 3-hour photolysis of [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] SeCN 100                                                                                        | N<br>0 |
| <b>Figure 3.45</b> . Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] SeCN                                                                                     | 0      |
| Figure 3.46. photolysis measurement comparing [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] I, versus<br>[Mo <sub>3</sub> S <sub>4</sub> Se <sub>3</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] SeCN | 1      |
| Figure 3.47. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] +I 102                                                                                                                 | 2      |
| Figure 3.48. Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]<br>+I102                                                                                                        | 2      |
| <b>Figure 3.49</b> . Photolysis measurement comparing [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ]I, versus [MoSe <sub>7</sub> (S <sub>2</sub> CN <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ]I                | 3      |
| Figure 3.50. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (Se <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] +I 104                                                                                                                | 4      |
| Figure 3.51. Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (Se <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> +1104                                                                                                            | ]<br>4 |

| Figure 3.52. photolysis measurement comparing [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> CN <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ]I versus<br>[MoSe <sub>7</sub> (Se <sub>2</sub> CN <sup><i>i</i></sup> Bu <sub>2</sub> ) <sub>3</sub> ]I        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.53. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] +I 106                                                                                                       |
| Figure 3.54. Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] +I                                                                                                    |
| Figure 3.55. photolysis measurement comparing $[Mo_3S_7(S_2CN^iBu_2)_3]$ I, versus $[Mo_3S_7(S_2P^iBu_2)_3]$ I                                                                                                                                                        |
| Figure 3.56. Turnover number during 3-hour photolysis of $[Mo_3S_4Se_3(S_2P^iBu_2)_3]^+I^-$ . 108                                                                                                                                                                     |
| Figure 3.57. Micromoles of hydrogen during 3-hour photolysis of $[Mo_3S_4Se_3(S_2P^iBu_2)_3]^+I^-$ .108                                                                                                                                                               |
| Figure 3.58. Photolysis measurement comparing $[Mo_3S_7(S_2P^iBu_2)_3]I$ , versus $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I$                                                                                                                                                      |
| Figure 3.59. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I110                                                                                                         |
| <b>Figure 3.60</b> . Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> P <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]I.                                                                                            |
| Figure 3.61. photolysis measurement comparing $[Mo_3S_7(S_2P^iBu_2)_3]I$ , versus $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I$ and $[Mo_3Se_7(S_2P^iBu_2)_3]I$                                                                                                                      |
| Figure 3.62. Turnover number during 3-hour photolysis of $[Mo_3Se_7(S_2P(^iPrO)_2)_3]$<br>$(S_2P(^iPrO)_2)$                                                                                                                                                           |
| <b>Figure 3.63</b> . Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> Se <sub>7</sub> (S <sub>2</sub> P( <sup>i</sup> PrO) <sub>2</sub> ) <sub>3</sub> ] (S <sub>2</sub> P( <sup>i</sup> PrO) <sub>2</sub> )                                       |
| Figure 3.64. Turnover number during 3-hour photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] Cl114                                                                                                       |
| <b>Figure 3.65</b> . Micromoles of hydrogen during 3-hour photolysis of [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ]<br>Cl                                                                                        |
| <b>Figure 3.66</b> . photolysis measurement comparing [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] I , versus [Mo <sub>3</sub> S <sub>7</sub> (S <sub>2</sub> CN <sup>i</sup> Bu <sub>2</sub> ) <sub>3</sub> ] Cl |
| Figure 3.67. Comparison of all clusters                                                                                                                                                                                                                               |

### Chapter 4

| Figure 4.1. (Left) A Re catalysts for CO <sub>2</sub> reduction immobilized onto a Cu <sub>2</sub> O                                     |
|------------------------------------------------------------------------------------------------------------------------------------------|
| photocathode by a bipyridyl ligand functionalized with phosphate groups. Reproduced                                                      |
| with permission from American Chemical Society. (Right) A proposed [Mo <sub>3</sub> S <sub>7</sub> ] <sup>4+</sup> cluster               |
| functionalized with a phosphate-substituted dithiocarbamate ligand 126                                                                   |
| <b>Figure 4.2</b> . <sup>1</sup> H NMR spectrum in CDCl <sub>3</sub> of diethyl <i>P</i> -[[4-<br>(bromomethyl)phenyl]methyl]phosphonate |
| Figure 4.4. <sup>1</sup> H NMR spectrum of diethyl [[4-                                                                                  |
| [[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c)                                                                             |

| <b>Figure 4.3</b> . ESI mass spectrum of diethyl [[4-<br>[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c)            |
|----------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.6. ESI mass spectrum of bis([benzyl-4-methyl]diethylphosphonate)         benzylamine.       132                         |
| <b>Figure 4.5</b> . <sup>31</sup> P NMR spectrum of diethyl [[4-<br>[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c) |
| Figure 4.8. <sup>31</sup> P NMR spectrum of bis([benzyl-4-methyl]diethylphosphonate)         benzylamine.       133              |
| <b>Figure 4.7</b> . <sup>1</sup> H NMR spectrum of bis([benzyl-4-methyl]diethylphosphonate) benzylamine                          |
| <b>Figure 4.9</b> . <sup>1</sup> H NMR spectrum of product from reaction targeting tetrathiuram disulfide (d)                    |

# **List of Schemes**

| Chapter 2                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheme 2.1. Approaches to the synthesis of tetraalkylthiuram disulfides                                                                                                                                                                                                              |
| Chapter 3                                                                                                                                                                                                                                                                            |
| Scheme 3.1. Photocatalytic system employed in these studies. Conditions: $[Ru(bpy)_3]^{2+} = 260 \ \mu\text{M}; [TMA] = 50 \ \text{mM}; [TEA] = 0.4 \ \text{M}; \text{ solvent} = 1:2:1 \ \text{THF:MeCN:H}_2\text{O}, 4 \ \text{mL} \text{ total}; headspace = 4.7 \ \text{mL}.$ 35 |
| Scheme 3.2. Synthetic routes to $[Mo_3Q_7L_3]^+$ type cluster cations from Mo(CO) <sub>6</sub> . 49                                                                                                                                                                                  |
| Scheme 3.3. Synthetic routes to $[Mo3Q7L3]^+$ type cluster cations from $Mo(CO)_650$                                                                                                                                                                                                 |
| Scheme 3.4. Known synthetic routes to [Mo3S7L3]+ type cluster cations from [Mo3S13] <sup>2-</sup> or [Mo3S7Br6] <sup>2-</sup>                                                                                                                                                        |
| Scheme 3.5. Known synthetic routes to [Mo3S7L3] <sup>+</sup> type cluster cations                                                                                                                                                                                                    |
| Scheme 3.6. Synthetic routes to $[Mo_3S_7L_3]$ + type cluster cations from $Mo(CO)_6$ .                                                                                                                                                                                              |
| Scheme 3.7. Synthetic routes to $[Mo_3S_4Se_3L_3] +$ type cluster cations                                                                                                                                                                                                            |
| Scheme 3.8. Known synthetic routes to [Mo <sub>3</sub> Se <sub>7</sub> L <sub>3</sub> ] + type cluster cations                                                                                                                                                                       |
| Scheme 3.9. Synthetic routes to $[Mo_3Se_7L_3]^+$ type cluster cations from $Mo(CO)_6$ .                                                                                                                                                                                             |
| Scheme 3.10. New synthetic routes to $[Mo_3S_4Se_3L_3] +$ type cluster cations 61                                                                                                                                                                                                    |
| Scheme 3.11. New synthetic routes to [Mo <sub>3</sub> Se <sub>4</sub> S <sub>3</sub> L <sub>3</sub> ] + type cluster cations                                                                                                                                                         |
| <b>Scheme 3.12.</b> Proposed solution equilibrium for <sup><i>i</i></sup> Bu <sub>2</sub> NC(Se)SeSeSeC(Se)N <sup><i>i</i></sup> Bu <sub>2</sub> , as deduced by <sup>77</sup> Se NMR                                                                                                |
| Scheme 3.13. Four component photosystem using reductive quenching                                                                                                                                                                                                                    |
| Chapter 4                                                                                                                                                                                                                                                                            |
| Scheme 4.1. A proposed synthesis of an asymmetric phosphate-substituted dithiocarbamate ligand for surface immobilization                                                                                                                                                            |
| <b>Scheme 4.2</b> . Synthesis of diethyl <i>P</i> -[[4-(bromomethyl)phenyl]methyl]phosphonate, which is targeted as precursor to phosphate-substituted-dithiocarbamate                                                                                                               |
| Scheme 4.3. Synthesis of diethyl [[4-[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c)                                                                                                                                                                                    |
| Scheme 4.4. Synthesis of tetrathiuram disulfide (d)                                                                                                                                                                                                                                  |
| Scheme 4.5. Synthesis targeting tetrathiuram disulfide (e)                                                                                                                                                                                                                           |
| Scheme 4.6. Alternative synthetic route to Mo <sub>3</sub> cluster                                                                                                                                                                                                                   |

## Chapter 1

### H<sub>2</sub> Production: A Brief Overview

#### **1.1 Introduction**

Hydrogen is the simplest, most abundant, and versatile energy carrier on earth. Hydrogen in molecular form can be found as part of another substance, such as fossil fuels, water, or alcohol. Hydrogen can be obtained from natural resources such as plants and animals, which is biomass. Because of this reason, it is considered as an energy carrier, which can help tackle various critical energy challenges.

The hydrogen produced with diverse, domestic resources such as nuclear, natural gas and biomass, coal and renewable energy resources such as solar, wind, sea wave etc. To extract hydrogen from diversity of domestic energy sources makes hydrogen in an excess quantity with promising energy carrier and important for energy security. It is desirable that hydrogen be produced using renewable energy resources and production technologies would allow for its sustainable production. The production of hydrogen can be achieved via main hydrogen production technologies will be set according to the raw material used such as fossil fuels or renewable energy resources.

Hydrogen is the most abundant element and has maximum energy content per unit of weight. However, it is not available in free form in nature. Hydrogen can be produced in various ways from initial raw materials. Nowadays, hydrogen is mainly produced by thermochemical processes using fossil fuels such as steam reforming of natural gas, coal gasification, hydrocarbon pyrolysis and plasma reforming, process which leads to significant amounts of emissions of greenhouse gases<sup>1,2</sup>.

Clean hydrogen is considered to be an energy vector, not as an energy source, of the future. However, the large-scale production of clean hydrogen and its sustainability depend upon an ecofriendly hydrogen production pathway and a source of renewable energy used during the process. Hence, renewable energy will play an important role during the decarbonization of the current energy system.

#### **1.2 Hydrogen Production Technologies**

| Technology                     | Feedstock             | <b>Operating</b><br><b>Conditions</b> | Efficiency | Maturity         |
|--------------------------------|-----------------------|---------------------------------------|------------|------------------|
| Steam reforming                | Light<br>hydrocarbons | 800-1000 °C                           | 70-85%     | Commercial       |
| Partial oxidation              | Heavy<br>hydrocarbons | >1000 °C                              | 60-75%     | Commercial       |
| Autothermal reforming          | Light<br>hydrocarbons | > 1000 °C                             | 60-75%     | Early commercial |
| Plasma reforming               | Hydrocarbons          | > 2000 °C                             | 9-75%      | Long term        |
| Coal<br>Gasification           | Coal                  | 700-1200 °C                           |            | Commercial       |
| Biomass<br>Gasification        | Biomass               | 800-900 °C                            | 35-50%     | Commercial       |
| Electrolysis                   | Electricity           | 50-900 °C                             | 35-50%     | Commercial       |
| Photolysis                     | Sunlight              | Ambient conditions                    | 0.5%       | Long term        |
| Thermochemical water splitting | Heat                  | > 2500 °C                             |            | Long term        |

 Table 1.1. Hydrogen Production Methods.

### 1.2.1 Hydrogen Production from Fossil Fuel 1.2.1.1 Steam Reforming

Steam reforming is currently the most developed technique for hydrogen production. This method is one of the least expensive processes for hydrogen production.<sup>3</sup> Close to 50% of the world's hydrogen is currently generated by this method.<sup>4</sup> The steam reforming reaction process uses a mixture of steam and methane at high temperature between (700-1100 °C) (1292-2012 F) in the presence of a nickel catalyst. This reaction is highly endothermic, and it produces molecular hydrogen and carbon monoxide.<sup>5</sup> The carbon monoxide then passes through the water-gas shift reaction to produce carbon dioxide and additional hydrogen.

$$CH_4 + H_2O \longrightarrow CO + 3H_2$$
 (1)  
 $CO + H_2O \longrightarrow CO_2 + H_2$  (2)

#### **1.2.1.2 Partial Oxidation**

Partial oxidation of hydrocarbons is one of the hydrogen production techniques to obtain hydrogen from heavy fuel oil.<sup>6</sup> Partial oxidation is an exothermic process used to combust fuel-air or fuel-oxygen mixture to produce hydrogen and carbon monoxide and other partially oxidized species.<sup>7</sup> The partial oxidation reaction depends on a sub stoichiometric fuel-air mixture or a fuel-oxygen that is constrained by a high reaction temperature >1000 C in a reformer or partial oxidation reactor. The catalytic partial oxidation reactions are usually carried out with a heterogeneous catalyst at lower temperature. Overall, thermal partial oxidation (TPOX), and catalytic partial oxidation reactions (CPOX) could be described as follows.

$$C_nH_m + \frac{1}{2}n(O_2) \longrightarrow n(CO) + \frac{1}{2}m(H_2)$$
 (3)

#### 1.2.1.3 Plasma reforming

In the case of plasma reforming, energy and free radicals used for the reforming reaction are provided by a plasma converter typically produced with heat and electricity.<sup>8-11</sup> Two types of plasma reforming, thermal and non-thermal, are used.<sup>11</sup> Hydrogen can be efficiently produced in a plasma converter from hydrocarbon fuels.<sup>8-11</sup> The plasma converter has a number of advantages, namely low cost, high conversion efficiencies, fast response time, compactness and low weight. Here, the high temperature conditions accelerate the thermodynamically favored reaction without a catalyst. The dependence on electricity and maintaining a high-pressure are the only disadvantages of this method.<sup>9</sup>

#### **1.2.1.4 Coal gasification**

Production of hydrogen from coal is defined as coal gasification. In the coal gasification process, coal is converted into gaseous mixtures, including hydrogen and carbon monoxide.<sup>12-14</sup> In this thermochemical conversion process, steam and oxygen or air helps to convert to synthesis gas from coal at high temperature and pressure.<sup>15-17</sup> The main disadvantage of this method is higher carbon dioxide emissions than other methods.

### **1.2.2 Hydrogen Production from Renewable Resources 1.2.2.1 Hydrogen from Biomass**

Biomass is a primary renewable source which is available from plants, animal wastes, forest residues, crops, municipal solid waste products, microalgae, or animal byproducts.<sup>18-<sup>19</sup> Here, the hydrogen produced from biomass and waste products is via gasification, steam reforming or biological conversion processes such as fermentative hydrogen production. Compared with other hydrogen production methods, processes using biomass are more ecologically friendly. Moreover, a wide range of wastes sources can be utilized to produce</sup> hydrogen through biochemical pathways. In 2050, biomass in projected to meet more than 25% of energy demand.<sup>20</sup>

#### 1.2.2.2 Hydrogen from Water

Although at present 95% of the global demand for hydrogen,<sup>21-22</sup> is met with fossil fuels, renewable sources have attracted attention for the generation of "green" hydrogen.<sup>20</sup> Green hydrogen is produced without the use of fossil fuels by processes such as H<sub>2</sub>O-splitting, which is the oxidative and reductive deconstruction of the water molecule into elemental hydrogen and oxygen. A source of energy for water splitting with a low carbon footprint can significantly reduce carbon dioxide emissions and limit global warming. Thus, such a process is referred to as "green" hydrogen generation. The conversion can be accomplished in many ways, such as electrolysis, thermolysis, photo-electrocatalysis, bio photolysis and photocatalytic water splitting. However, these methods are more expensive than hydrocarbon-based production methods.

#### **1.3 Homogeneous Systems for H<sub>2</sub> Production**

#### **1.3.1 True H<sub>2</sub>O-Splitting**

True water splitting is the conversion of liquid water into gaseous hydrogen and oxygen.

$$H_2O(I) \xrightarrow{\text{Sunlight}} H_2(g) + \frac{1}{2}O_2(g) \qquad (4)$$

The free energy change of this reaction is  $\Delta G = 237.2$  kJ/mol or 2.46 eV/molecule. Here two electrons are involved, so n = 2 and the standard EMF = 1.23 eV/e. The photons in a solar energy system produce the energy to drive the reaction. This reaction can be driven thermally by heating water to 1500-2500 K.<sup>23</sup> However, the efficiency is below 2%.

#### **1.3.2 Proton Reduction with Metal Catalysts**

#### **1.3.2.1 Photocatalytic Systems**

An alternative method for electrolysis is multistep water splitting. In this system. an efficient photosensitizer is combined with one or more charge accumulation sites and one or more catalysts. Here in the system illustrated in **Figure 1.1**, light absorption drives a chromophore, [Ru(bipy)<sub>3</sub>]<sup>2+</sup>, into an excited state, [Ru\*(bipy)<sub>3</sub>]<sup>2+</sup>, which become quenched by a one-electron reduction from trimethylaniline (TMA). The reduced sensitizer is returned to its original state following electron transfer to the catalyst, and the oxidized TMA<sup>+</sup> is converted back to TMA by the sacrificial electron donor, triethylamine (TEA). The electrons received from [Ru(bipy)<sub>3</sub>]<sup>+</sup> are combined by the catalyst with protons from water to produce hydrogen gas. Lehn and co-workers have reported an early example of this method. They used [Ru(bpy)<sub>3</sub>Cl<sub>2</sub>], as sensitizer, triethanolamine as the sacrificial donor, and K<sub>2</sub>PtCl<sub>6</sub> as catalyst.<sup>24</sup> Sasse and co-workers have produced a quantum efficiency of 93% for hydrogen evolution from 9-anthracenecar-boxylate, EDTA and methyl viologen.<sup>25</sup>



**Figure 1.1**. Homogeneous system for Mo-catalyst in water splitting. Reproduced with permission from American Chemical Society.



Figure 1.2. Structure of Cobalt dithiolene complex.

Another example of homogeneous catalytic  $H_2$  evolution, reported in 2011 by McNamara *et al.*,<sup>26</sup> implements a cobalt bis(dithiolene) complex as catalyst as in both photocatalytic and electrocatalytic systems (**Figure 1.2**). This compound is a very active catalyst for hydrogen production from water.in the presence of  $[Ru(bpy)_3]^{2+}$  as the photosensitizer and ascorbic acid as the sacrificial donor. This system was reported to produce over 2700 TON's hydrogen.

In general terms, a photolytically driven H<sub>2</sub>-scheme features with a light absorbing molecule (chromophore) that transfers electrons to a catalyst that reduces protons.<sup>27-28</sup> However, such homogeneous solution systems typically suffer short lifetimes because of decomposition of the chromophore over a period of time.<sup>29</sup> Semiconductor nanocrystals



**Figure 1.3** Cartoon that illustrates the relevant energies for  $H_2$  production. dHA indicates dehydroascorbic acid. Potentials are shown versus that of NHE at pH = 4.5. Reproduced with permission from Science.

(NCs) are alternative chromophores for light-induced proton reduction.<sup>30-31</sup> Richard Eisenberg *et al.*<sup>32</sup> reported that CdSe nanocrystals capped with dihydrolipoic acid (DHLA) as the light absorber, Ni<sup>2+</sup>-DHLA as catalyst for proton reduction, and ascorbic acid as an electron donor (**Figure 1.3**). This is one of the active system for solar hydrogen generation in water, producing over 600,000 TON's.

#### **1.3.2.2 Electrocatalytic Systems**

Cyclic diphosphine ligands with two amines serve as the basis for class of catalysts. These 1,5-diaza-3,7-diphosphacyclooctanes, referred to as  $P_2N_2$  ligands, showed effects on the reactivity of many catalysts. The resulting [Ni  $(P^R_2N^{R'}_2)_2$ ]<sup>2+</sup> complexes have been shown to be remarkably effective in altering reaction pathways in catalysts and are excellent electrocatalyst for both production and oxidation of hydrogen.<sup>33</sup>



**Figure 1.4** Catalyst design is organized around the first, second, and outer coordination spheres as well as the surrounding solvent, as exemplified by a  $[Ni(P^R_2N^{R'}_2)_2]^{2+}$  complex. Reproduced with permission from American Chemical Society.



**Figure 1.5.** (A) Structure of the cobaloxime linker in UU-100(Co) and (B) structural model of UU-100(Co) MOF viewed along [001]. Reproduced with permission from the American Chemical Society.

Roy and co-workers<sup>34</sup> reported that structurally fragile molecular catalysts can be stabilized by incorporation into a metal-organic frameworks (MOF) so that they can be used as electrocatalysts for extended periods of time. Moreover, the structural integrity of the cobaloximes is greatly improved, as it produced at least 50-200 times higher TONs than those of any other related system that utilized similar cobaloxime.

#### **1.4 Conclusions**

Although significant effort and resources are being directed toward the development of hydrogen generation technologies, the most widely used technology is the reforming of hydrocarbons because production costs are correlated with fuel prices, which remain at acceptable levels. However, the main drawback of this method is the attending emission of a significant amount of greenhouse gases. To decrease carbon emissions, significant improvements in other hydrogen generation technologies from renewable sources such as water and biomass must be devised. Hydrogen can be generated from a wide range of renewable sources available almost everywhere. Development of hydrogen production techniques that reduce the world's dependence on fossil fuels will also reduce environmental impact. Hydrogen can be produced from a wide variety of renewable feedstock, which may allow every region of the world able to produce its own energy. It is clear that, as future improvements in green hydrogen technologies are expected, hydrogen may prove to be the most widely available fuel.

#### **1.5 References**

[1] M. Balat and M. Balat, "Political, economic and environmental impacts of biomassbased hydrogen," *International Journal of Hydrogen Energy*. **2009** vol. 34, no. 9, pp. 3589–3603.

[2] A. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, "Catalyst development for thermocatalytic decomposition of methane to hydrogen," *International Journal of Hydrogen Energy*. **2008** vol. 33, no. 1, pp. 264–272.

[3] J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz, "Comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development," *Journal of Power Sources*. **1999** vol. 79, no. 2, pp. 143–168.

[4] N. Z. Muradov and T. N. Veziroglu, "From hydrocarbon to `hydrogen-carbon to hydrogen economy," *International Journal of Hydrogen Energy*. **2005** vol. 30, no. 3, pp. 225–237.

[5] Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008). Introduction to hydrogen Technology. *John Wiley & Sons.* p. 249. *ISBN 978-0-471-77985-8*.

[6] Chen, H. L.; Lee, H. M.; Chen, S. H.; Chao, Y.; Chang, M. B.Review of Plasma Catalysis on Hydrocarbon Reforming for HydrogenProduction-Interaction, Integration, and Prospects. *Appl. Catal.*, B2008, 85 (1–2), 1–9.

[7] Hariharan, D.; Yang, R.; Zhou, Y.; Gainey, B.; Mamalis, S.;Smith, R. E.; Lugo-Pimentel, M. A.; Castaldi, M. J.; Gill, R.; Davis, A.;Modroukas, D.; Lawler, B. Catalytic Partial Oxidation Reformation ofDiesel, Gasoline, and Natural Gas for Use in Low TemperatureCombustion Engines. *Fuel* **2019**, 246, 295–307.

[8] L. Bromberg, D. R. Cohn, and A. Rabinovich, "Plasma reformer-fuel cell system for decentralized power applications," *International Journal of Hydrogen Energy*. 1997 vol. 22, no. 1, pp. 83–94.

[9] L. Bromberg, D. R. Cohn, A. Rabinovich, and N. Alexeev, "Plasma catalytic reforming of methane," *International Journal of Hydrogen Energy*. 1999 vol. 24, no. 12, pp. 1131–1137.

[10] T. Hammer, T. Kappes, and M. Baldauf, "Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes," *Catalysis Today*. **2004** vol. 89, no. 1-2, pp. 5–14.

[11] T. Paulmier and L. Fulcheri, "Use of non-thermal plasma for hydrocarbon reforming," *Chemical Engineering Journal.* 2005 vol. 106, no. 1, pp. 59–71.

[12] Stańczyk, K.; Kapusta, K.; Wiatowski, M.; Ś wiądrowski, J.;Smoliński, A.; Rogut, J.;
Kotyrba, A. Experimental Simulation of HardCoal Underground Gasification for
Hydrogen Production. *Fuel* 2012,91 (1), 40–50.

[13] Sutardi, T.; Wang, L.; Karimi, N.; Paul, M. C. Utilization ofH 2 O and CO2 in Coal Particle Gasification with an Impact of Temperature and Particle Size. *Energy Fuels* 2020, 34 (10), 12841–12852.

[14] Emami Taba, L.; Irfan, M. F.; Wan Daud, W. A. M.; Chakrabarti, M. H. The Effect of Temperature on Various Parametersin Coal, Biomass and CO-Gasification: A Review. *RenewableSustainable Energy Rev.* 2012, 16 (8), 5584–5596.

[15] Stiegel, G. J.; Ramezan, M. Hydrogen from Coal Gasification: *An Economical Pathway to a Sustainable Energy Future. Int. J. CoalGeol.* **2006**, 65 (3–4), 173–190.

[16] Mularski, J.; Pawlak-Kruczek, H.; Modlinski, N. A Review ofRecent Studies of the CFD Modelling of Coal Gasification inEntrained Flow Gasifiers, Covering Devolatilization, Gas-PhaseReactions, Surface Reactions, Models and Kinetics. Fuel **2020**, 271,117620.

[17] Dincer, I.; Acar, C. Review and Evaluation of HydrogenProduction Methods for Better Sustainability. *Int. J. Hydrogen Energy***2015**, 40 (34), 11094–11111.

[18] Ong, H. C.; Chen, W. H.; Farooq, A.; Gan, Y. Y.; Lee, K. T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Biomassfor Biofuel Production: *A Comprehensive Review. RenewableSustainable Energy Rev.* **2019**, 113, 109266.

[19] Gollakota, A. R. K.; Kishore, N.; Gu, S. A Review onHydrothermal Liquefaction of Biomass. *Renewable Sustainable EnergyRev.* **2018**, 81, 1378–1392.

[20] Hosseini, S. E.; Wahid, M. A. Hydrogen Production fromRenewable and Sustainable Energy Resources: Promising GreenEnergy Carrier for Clean Development. *Renewable Sustainable EnergyRev.* **2016**, 57, 850–866.

[21] Liu, Ke; Song, Chunshan; Subramani, Velu, eds. (2009). Hydrogen and Syngas Production and Purification Technologies. doi:10.1002/9780470561256.
ISBN 9780470561256.

[22] "Life cycle emissions of hydrogen". 4thgeneration.energy. Retrieved 2020-05-27.

[23] Etievant, C. Solar Energy Muter. 1991,24, 413.

[24] Lehn, J.-M.; Sauvage, J.-P. N O U L ~ .J. Chim. 1977, 1. 449.

[25] Johansen, O.; Mau, A. W. H.; Sass, W. H. F. Chem. Phys. Lett. 1983, 94, 107, 113.

[26] W. R. McNamara, Z. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland and R. Eisenberg, J. Am. Chem.Soc., 2011, 133,15368–15371.

[27] Bard A. J., Fox M. A., Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. *Acc. Chem. Res.* **1995**, *28*, 141.

[28] Esswein A. J., Nocera D. G., Hydrogen production by molecular photocatalysis. *Chem. Rev.* **2007**,*107*, 4022.

[29] Eckenhoff W. T., Eisenberg R., Molecular systems for light driven hydrogen production. *Dalton Trans.* **2012**, *41*, 13004.

[30] Amirav L., Alivisatos A. P., Photocatalytic hydrogen production with tunable nanorod heterostructures. *J. Phys. Chem. Lett.* **2010**, *I*, 1051.

[31] Brown K. A., Dayal S., Ai X., Rumbles G., King P. W., Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. *J. Am. Chem. Soc.* **2010**,*132*, 9672.

[32] Zhiji Han et al.Robust Photogeneration of H2 in Water Using Semiconductor
Nanocrystals and a Nickel Catalyst.Science. 2012,338,13211324.DOI:<u>10.1126/science.1227775</u>.

[33] Eric S. Wiedner, Aaron M. Appel, Simone Raugei, Wendy J. Shaw, and R. Morris
Bullock*Chemical Reviews* 2022 122 (14), 12427-12474 DOI:
10.1021/acs.chemrev.1c01001

[34] Souvik Roy, Zhehao Huang, Asamanjoy Bhunia, Ashleigh Castner, Arvind K. Gupta,
Xiaodong Zou, and Sascha Ott *Journal of the American Chemical Society* 2019 141 (40),
15942-15950 DOI: 10.1021/jacs.9b07084.

# Chapter 2

## Probing the Limits of Tetraalkylthiuram Disulfide Synthesis by Direct Reaction of Secondary Amines with CS<sub>2</sub>: The Structures of Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub> and Cy<sub>2</sub>NC(S)SSSSC(S)NCy<sub>2</sub>

#### **2.1 Introduction**

Tetraalkylthiuram disulfides comprise a class of organosulfur compounds of broad usefulness in both applied and synthetic chemistry. Tetraethylthiuram disulfide, for example, has long history of use as a treatment for alcohol use disorder<sup>1,2</sup> but has more



Scheme 2.1. Approaches to the synthesis of tetraalkylthiuram disulfides.



Figure 2.1 Structures of tetracyclohexylthiuram tetrasulfide (a), tetracyclohexylthiuram disulfide (b), and the chiral  $C_2$ -symmetric cores of a typical tetraalkylthiuram disulfide (c).

recently been repurposed for use as a potential anticancer therapeutic.<sup>3-5</sup> and as a mitigant for the severe effects of advanced sepsis.<sup>6</sup> (Klimiankou & Skokowa, 2021). Tetrathiuam disulfides have demonstrated utility for the synthesis of a wide range of dithiocarbamate coordination compounds, typically by oxidative addition to a suitable lower-valent precursor,<sup>7-10</sup> and they serve as synthons toward such other useful compounds as thioureas,<sup>11</sup> dialkylthiocarbamoyl chlorides,<sup>12</sup> and organic dithiocarbamates.<sup>13</sup> As such, optimal methods of synthesis of these compounds are of interest to for the further extension of their applications.

A commonly reported preparation of tetraalkylthiuram disulfides involve the reaction of the desired amine precursor, usually a secondary amine, with carbon disulfide in the presence of  $HO^-$  as a H<sup>+</sup> scavenger (**Scheme 2.1**, path (**a**)) prior to oxidation coupling to the disulfide.<sup>14-15</sup> We have observed this approach to be highly unsatisfactory because

hydroxide, both a smaller and more potent base than the amine, intercepts  $CS_2$  to form dithiocarbonate, which then readily proceeds to extrude elemental sulfur (**Scheme 2.1**, path (**b**)). This sulfur further complicates the reaction mixture by enabling the facile formation of tetraalkylthiuram polysulfides, which differ little in visible or spectroscopic appearances from the intended disulfide. Consequently, an inseparable mixture is often the result.

In the course of a broadly ranging survey of the activity of  $[Mo_3S_7(S_2CNR_2)_3]^+I^-$  complexes as H<sub>2</sub>-evolving catalysts,  $^{16}$  we contended with the problem illustrated in Scheme 2.1 (b) in the case of R = cyclohexyl (Cy), identified the tetrasulfide and,  $Cy_2NC(S)SSSSC(S)NCy_2$  unequivocally by X-ray crystallography as one of the species occurring in the product mixture (Figure 2.1 (a)). Appreciable amounts of  $S_8$ , determined by its unit cell, were also present. A modified approach to R<sub>2</sub>NC(S)SSC(S)NR<sub>2</sub> compounds involving the use of a second equivalent of the amine as  $H^+$  acceptor (Scheme 2.1 (c)) is effective with such alkyl substituents (R) as <sup>i</sup>Bu.<sup>15</sup> The R<sub>2</sub>NH<sub>2</sub><sup>+</sup>I<sup>-</sup> salt generated after oxidative coupling with  $I_2$  is readily separated from the  $R_2NC(S)SSC(S)NR_2$  by an extraction that exploits their very different solubilities in nonpolar media. However, the method of Scheme 2.1 (c) is ineffective with  $Cy_2NH$ , possibly because clean reactivity with CS<sub>2</sub> is inhibited by its greater steric profile. Therefore, we resorted to deprotonation of  $Cy_2NH$  with 'BuLi and subsequent introduction of the dicyclohexylamide anion to  $CS_2$ , followed by oxidative coupling (Scheme 2.1 (d)). In our hands, this procedure reliably produced Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub> in moderate yields of 74%. We note prior published syntheses of  $Cy_2NC(S)SSC(S)NCy_2$  by the method of Scheme 2.1 (a)<sup>15</sup> and by NaClO<sub>2</sub>mediated oxidative coupling of the corresponding dithiocarbamic acid.<sup>16</sup> In the latter report, a melting point of 88-89 °C is indicated for  $Cy_2NC(S)SSC(S)NCy_2$ , which is at variance with other literature data<sup>17</sup> and our observation of a melting point of 169 °C. In this account, we briefly relay the structures of both  $Cy_2NC(S)SSC(S)NCy_2$  and  $Cy_2NC(S)SSSC(S)NCy_2$  the latter of which does not have a precedent for its type in the Cambridge Crystallographic Database. Crystal data and refinement statistics are presented in **Table 1**.

Two complete molecules occur in the asymmetric unit for the triclinic polymorph of  $Cy_2NC(S)SSC(S)NCy_2$ , both of which closely approximate  $C_2$  symmetry around the central disulfide bond. The thione groups are disposed on the same side of the disulfide bond and define a 2-bladed propeller around the molecular  $C_2$ . The molecule with S1-S4 bears a right-handed (clockwise) orientation to its thione groups, while the molecule with S5-S8 is left-handed. (*cf.* **Figure 2.2**, (**a**) and (**b**)) Consequently, the C13–S2–S3–C14 and C39–S6–S7–C40 torsion angles are similar in magnitude but opposite in sign at 88.52° and -87.72°, respectively. These values are within the range observed in the many other thiuram sulfides that have been crystallographically characterized.<sup>18</sup> Slight disorder in the cyclohexyl groups of one molecule differentiates it from the other and likely contributes to the occurrence of *P*-1 as space group rather than a higher symmetry system.

The two molecules of  $Cy_2NC(S)SSC(S)NCy_2$  that comprise the asymmetric unit of the triclinic polymorph are approximately planar in the *ab* plane, with the long axes of the two molecules meeting in a near orthogonal fashion. Replication of these two molecules in the *ab* plane (**Figure 3** (**a**)) produces a zig-zagged appearance to the arrangement. The sheets of molecules thus created stack along the *c* axis of the cell (**Figure 2.3** (**b**)) with the cyclohexyl groups protruding above and

| compound                                            | Cy <sub>2</sub> NC(S)SSC(S)NCy <sub>2</sub> | Cy <sub>2</sub> NC(S)SSC(S)NCy <sub>2</sub> | Cy <sub>2</sub> NC(S)SSSSC(S)NCy <sub>2</sub> |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|
| structure code                                      | JPD926                                      | JPD1425                                     | JPD864                                        |
| formula                                             | $C_{26}H_{44}N_2S_4$                        | $C_{26}H_{44}N_2S_4$                        | $C_{26}H_{44}N_2S_6$                          |
| FW                                                  | 512.87                                      | 512.87                                      | 576.99                                        |
| temperature, K                                      | 298                                         | 150                                         | 150                                           |
| wavelength, Å                                       | 0.71073                                     | 1.54178                                     | 1.54178                                       |
| 2θ range, deg.                                      | 3.334 - 51.450                              | 9.06 - 144.56                               | 6.528 - 144.506                               |
| crystal system                                      | triclinic                                   | monoclinic                                  | monoclinic                                    |
| space group                                         | <i>P</i> -1                                 | $P2_{1}/m$                                  | C2/c                                          |
| <i>a</i> , Å                                        | 12.8612(11)                                 | 10.3672(3)                                  | 28.1464(15)                                   |
| <i>b</i> , Å                                        | 13.1642(11)                                 | 13.2293(3)                                  | 9.2015(5)                                     |
| <i>c</i> , Å                                        | 18.3871(16)                                 | 10.6033(2)                                  | 12.0265(6)                                    |
| $\alpha$ , deg.                                     | 109.965(1)                                  | 90                                          | 90                                            |
| $\beta$ , deg.                                      | 97.922(1)                                   | 109.518(1)                                  | 105.848(2)                                    |
| γ, deg.                                             | 90.446(1)                                   | 90                                          | 90                                            |
| volume, Å <sup>3</sup>                              | 2893.0(4)                                   | 1370.68(6)                                  | 2996.3(3)                                     |
| Ζ                                                   | 4                                           | 2                                           | 4                                             |
| density, g/cm <sup>3</sup>                          | 1.178                                       | 1.243                                       | 1.279                                         |
| μ, mm <sup>-1</sup>                                 | 0.345                                       | 3.296                                       | 4.343                                         |
| F(000)                                              | 1112                                        | 556                                         | 1240                                          |
| crystal size                                        | 0.083 x 0.357 x 0.397                       | 0.093 x 0.103 x 0.290                       | 0.026 x 0.143 x 0.183                         |
| color, habit                                        | amber plate                                 | pale yellow block                           | colorless plate                               |
| limiting indices, h                                 | $-15 \le h \le 15$                          | $-11 \le h \le 12$                          | $-13 \le h \le 34$                            |
| limiting indices, k                                 | $-16 \le k \le 15$                          | $-16 \le k \le 16$                          | $0 \le k \le 10$                              |
| limiting indices, l                                 | $-22 \le l \le 22$                          | $-13 \le l \le 13$                          | $-14 \le l \le 14$                            |
| reflections collected                               | 22600                                       | 27733                                       | 17752                                         |
| independent data                                    | 10898                                       | 2745                                        | 2731                                          |
| restraints                                          | 12                                          | 483                                         | 0                                             |
| parameters refined                                  | 557                                         | 282                                         | 242                                           |
| $GooF^a$                                            | 0.965                                       | 1,097                                       | 1.043                                         |
| R1, <sup><i>b,c</i></sup> wR2 <sup><i>d,c</i></sup> | 0.0536, 0.0680                              | 0.0347, 0.0946                              | 0.0575, 0.1398                                |
| $R1,^{b,e} wR2^{d,e}$                               | 0.1276, 0.0716                              | 0.0356, 0.0954                              | 0.0767, 0.1489                                |
| largest diff. peak, e·Å <sup>-3</sup>               | 0.339                                       | 0.217                                       | 0.395                                         |
| largest diff. hole, e·Å-3                           | -0.331                                      | -0.189                                      | -0.515                                        |

Table 2.1. Crystal and Refinement Data for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub> and Cy<sub>2</sub>NC(S)SSSSC(S)NCy<sub>2</sub>.

.

 $aGooF = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{\frac{1}{2}}, \text{ where } n = \text{ number of reflections and } p \text{ is the total number of parameters refined; } {}^{b}R1 = \Sigma||F_o| - |F_c||/\Sigma|F_o|; {}^{c}R \text{ indices for data cut off at I} > 2\sigma(I); {}^{d}wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2\}^{\frac{1}{2}}; w = 1/[\sigma^2(F_o^2) + (xP)^2 + yP], \text{ where } P = (F_o^2 + 2F_c^2)/3; {}^{e}R \text{ indices for all data.}$ 



**Figure 2.2**. Molecules 1 (**a**) and 2 (**b**) of  $Cy_2NC(S)SSC(S)NCy_2$  in triclinic polymorph. Ellipsoids are drawn at the 30% level. Image (**c**) shows the monoclinic polymorph of  $Cy_2NC(S)SSC(S)NCy_2$  with 50% ellipsoids. Tetrasulfide  $Cy_2NC(S)SSSC(S)NCy_2$  is presented in (**d**), also with 50% ellipsoids. For clarity, all H atoms are omitted, and disorder in the Cy groups in (**b**) and (**c**) is not shown.





**Figure 2.3**. (a) Arrangement of  $Cy_2NC(S)SSC(S)NCy_2$  molecules (triclinic polymorph) into sheets in the *ab* plane. (b) Stacking of sheets of  $Cy_2NC(S)SSC(S)NCy_2$  molecules (triclinic polymorph) along the *c* axis.


**Figure 2.4**. Symmetry-imposed disorder in the monoclinic form of  $Cy_2NC(S)SSC(S)NCy_2$ . A mirror plane coincides with C1, N1, C6 and N2 and generates a symmetry equivalent for all atoms that are off-plane. In addition to the symmetry-imposed disorder, the cyclohexyl groups have a static conformational disorder over two positions.

below such that intersheet contacts, and perhaps the packing pattern as whole, appear to be guided by hydrocarbon-hydrocarbon dispersion interactions.

The monoclinic polymorph of  $Cy_2NC(S)SSC(S)NCy_2$  places the molecule on a mirror plane in  $P2_1/m$ , although it is not a symmetry element that is possessed by the molecule. This mirror plane is coincident with the plane defined by C1, N1, and C6 on one side and cleaves each of its two pendant cyclohexyl groups (**Figure 2.2** (c), **Figure 2.4**). However, these cyclohexyl groups are not quite symmetrically bisected such that the mirror plane also passes through C4 and C9, the carbon atoms in the 4-position of the ring. These rings thus have the appearance of being slightly pivoted off the mirror plane and are consequently disordered (**Figure 2.4**). Except for N2, which also coincides with the mirror plane, the remainder of the molecule's backbone (S1-C5-S2-S3-C10-S4) is off-plane to varying degrees and necessarily subject to a symmetry-imposed disorder over two positions (**Figure 2.4**). One of the two cyclohexyl groups appended to N2 is unique, the other being generated by the reflection operation. However, this unique cyclohexyl group itself suffers from a static, highly overlapping conformational disorder over two positions, the second of which is shown in **Figure 2.4** but not in **Figure 2.2** (c). The disorder afflicting this unique Cy group was modeled as a 48.5:51.5 best fit distribution. Although it is not unusual for a molecule to crystallize on a symmetry element that it, as a free molecule does not possess, it is noteworthy that this monoclinic polymorph of Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>, is the only example, among the many structural characterizations that have been reported for the molecule type, to crystallize in such fashion. All prior instances reveal the molecule to either be on a general position or on a  $C_2$  axis or inversion center that is coincident with the midpoint of the disulfide bond.<sup>19</sup>

In contrast to Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>, tetrasulfide Cy<sub>2</sub>NC(S)SSSSC(S)NCy<sub>2</sub> coincides with a crystallographic  $C_2$  axis in monoclinic C2/c such that only half of one molecule is unique (**Figure 2.2** (**d**)). The C1–S2–S3–S3A and S2–S3–S3A–S2A torsion angles within the molecule's core are  $-75.84^{\circ}$  and  $-92.67^{\circ}$ , respectively. A right-handed aspect is displayed by the thione groups around the  $C_2$  axis, which bisects the central S3–S3A single bond. The packing arrangement for Cy<sub>2</sub>NC(S)SSSSC(S)NCy<sub>2</sub> is such that molecules stack in well-ordered columns along the *b* axis of the cell, with the columns being replicated by simple unit translations in the a and c axis directions (**Figure 2.5**). The long axis of the molecule aligns approximately with the *ab* face diagonal. When the molecular packing is considered from a vantage that is orthogonal to the *b* axis, rather than down the *b* axis as in **Figure 2.5**, it is clear than intermolecular contacts, and the pattern as a whole, are again decisively influenced by dispersion interactions between cyclohexyl groups.

Many tetraalkylthiuram disulfide molecules have been characterized structurally, but dithiocarbamoyl or diselenocarbamoyl groups with more than a two chalcogen connector



**Figure 2.5**. Packing arrangement for  $Cy_2NC(S)SSSSC(S)NCy_2$  viewed along the *b* axis of the unit cell. All H atoms are omitted for clarity. The thermal ellipsoids are presented at the 50% level.

find scant occurrence in the structural database. The only such molecules with polysulfide linkages are  $(O(CH_2CH_2)_2N)C(S)SSSC(S)(N(CH_2CH_2)_2O)$ , or bis(4morpholine)dithiocarbamoyl)monosul-fide<sup>20</sup> and  $(C_5H_{10})NC(S)S_6C(S)N(C_5H_{10})$ , bis(piperidinyl)dithiocarbamoyl tetrasulfide.<sup>21</sup> Among the selenium analogues, only bis(diethyldiselenocarbamoyl) triselenide, Et<sub>2</sub>NC(Se)SeSeSeC(Se)NEt<sub>2</sub>, has been subject to X-ray crystallographic characterization.<sup>22,23</sup>

#### 2.2 Summary and Concluding Remarks

The synthesis of tetracyclohexyylthiuram disulfide via reaction of  $Cy_2NH$  with  $CS_2$  in the presence of NaOH suffers from competing formation of  $S_8$  and  $Cy_2NC(S)SSSSC(S)NCy_2$ , the identities of which were established by X-ray crystallography. Tetrasulfide  $Cy_2NC(S)SSSSC(S)NCy_2$  is the first such molecule to be structurally characterized. The  $Cy_2N^-$  anion, generated from the amine with 'BuLi, cleanly reacts with  $CS_2$  and is oxidatively coupled to  $Cy_2NC(S)SSC(S)NCy_2$ . Triclinic and monoclinic polymorphs of  $Cy_2NC(S)SSC(S)NCy_2$ , grown by evaporation from Et<sub>2</sub>O and acetone, respectively, are reported. The latter is disordered across a mirror plane in space group  $P2_1/m$ . A conclusion arising from this work is that secondary amines with branched alkyl groups are most effectively transformed to the tetraalkylthiuram disulfides by deprotonation with an alkyllithium agent prior to introduction of  $CS_2$  and then oxidation. In continuing work, we are developing the synthesis of dithiocarbamate ligands with water-solubilizing functional groups such as diethyl phosphonate,  $OP(OEt)_2$ -.

#### 2.3 Experimental

**Cy**<sub>2</sub>**NC(S)SSC(S)NCy**<sub>2</sub>. Under a N<sub>2</sub> atmosphere, a solution of *tert*-butyllithium in *n*pentane (1.6 *M*, 25 mL, 2.56 g, 40 mmol) was added dropwise to 200 mL of THF solution of dicyclohexylamine (7.253 g, 40 mmol) held at  $-20^{\circ}$ . Carbon disulfide (3.045 g, 40 mmol) was added via syringe, which induced a change in color from light yellow to red, and stirring was continued for 2 h. The solution was warmed to 50 °C in an oil bath. Solid I<sub>2</sub> (5.076 g, 20 mmol) was then added as a single portion under an outward flow of N<sub>2</sub>, and stirring was continued overnight at 50 °C. The solvent was removed under reduced pressure to afford a pasty yellowish solid residue. This crude solid was extracted with EtOAc (3 x 100 mL), and the combined extracts were filtered to remove insoluble, finely-divided solids. The filtrate was taken to dryness under vacuum. Recrystallization of a portion of this solid by evaporation from a carefully filtered Et<sub>2</sub>O solution produced Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub> in microcrystalline form, while evaporation of an acetone solution produced its monoclinic polymorph as pale-yellow blocks. Yield: 3.321 g, 6.475 mmol, 74%. MP: 169 °C. <sup>1</sup>H NMR ( $\delta$  ppm in CDCl<sub>3</sub>): 3.03 (m, 4 H, -NCH of cyclohexyl ring), 1.99 (br, -CH<sub>2</sub>- of cyclohexyl group, 8 H), 1.86 (m, -CH<sub>2</sub>- of cyclohexyl group, 8 H), 1.38 (m, -CH<sub>2</sub>- of cyclohexyl group, 8 H), 1.23-1.14 (m, -CH<sub>2</sub>- of cyclohexyl group, 8 H). <sup>13</sup>C NMR ( $\delta$  ppm in CDCl<sub>3</sub>): 206.94, 65.86, 30.95, 26.36, 15.29.

A modest number of colorless plate crystals of  $Cy_2NC(S)SSSSC(S)NCy_2$ , commingled with elemental sulfur, were obtained by evaporation of an EtOAc solution of the crude solid obtained following a literature procedure that invoked the use of Cy<sub>2</sub>NH in reaction followed oxidation with  $NaNO_2$ <sup>15</sup> Because with CS<sub>2</sub>/NaOH/EtOAc by  $Cy_2NC(S)SSSSC(S)NCy_2$  was not easily distinguished from the other substances in the mixture by visual appearance, it could not be characterized more thoroughly. Slow evaporation of an Et<sub>2</sub>O solution of this same crude product mixture yielded small amounts of the triclinic polymorph of Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>as amber-hued plates. CCDC 2325220- 2325222 contain the supplementary crystallographic data for this structures.

#### **2.4 References**

[1] Leggio, L.; Falk, D. E.; Ryan, M. L.; Fertig, J.; Litten, R. Z. Medication Development for Alcohol Use Disorder: A Focus on Clinical Studies. Handbook of Experimental Pharmacology 2020, 258, 443-462.

[2] Brewer, C.; Streel, E.; Skinner, M. Supervised Disulfiram''s Superior Effectiveness in Alcoholism Treatment: Ethical. Methodological, and Psychological Aspects. *Alcohol and Alcoholism* 2017, *52*(2), 213-219.

[**3**] Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A Novel Repurposed Drug for Cancer Therapy. *Cancer Chemotherapy and Pharmacology* **2021**, *87*, 159-172.

[4] Lu, Y.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B.; Gu, Z. Leveraging Disulfiram to Treat Cancer: Mechanisms of Action, Delivery Strategies, and Treatment Regimens. *Biomaterials* **2022**, *281*, 121335.

[5] Ekinci, E.; Rohondia, S.; Khan, R.; Dou, Q. P. Repurposing Disulfiram as an Anti-Cancer Agent: An Updated Review on Literature and Patents. *Recent Patents on Anti-Cancer Drug Discovery* **2019**, *14*(2), 113-132.

[6] Klimiankou, M.; Skokowa, J. Old Drug Revisited: Disulfiram, NETs, and Sepsis. *Blood*2021, *138*(25), 2604-2605.

[7] Naumann, D.; Roy, T.; Caeners, B.; Hütten, D.; Tebbe, K.-F.; Gilles, T. Syntheses and Properties of Pentafluoroethylcopper(I) and -copper(III) Compounds:  $CuC_2F_5$ ·D,

[Cu(C<sub>2</sub>F<sub>5</sub>)<sub>2</sub>]<sup>-</sup>, and (C<sub>2</sub>F<sub>5</sub>)<sub>2</sub>CuSC(S)N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>. *Zeit. Anorg. Allg. Chem.* **2000**, 626, 999-1003.

[8] Evans, W. J.; Montalvo, E.; Dixon, D. J.; Ziller, J. W.; Rheingold, A. L. Lanthanide Metallocene Complexes of the 1,3,4,6,7,8-Hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidinato Ligand, (hpp)<sup>1–</sup>. *Inorg. Chem.* **2008**, *47*, 11376-11381.

[9] Karim, M. M.; Abser, M. N.; Hassan, M. R.; Ghosh, N.; Alt, H. G.; Richards, I.; Hogarth, G. Oxidative-Addition of Thiuram Disulfides to Osmium(0): Synthesis of *cis*- $[Os(CO)_2(S_2CNR_2)_2]$  (R = Me, Et, Cy, CH<sub>2</sub>CH<sub>2</sub>OMe) and Molecular Structures of *cis*- $[Os(CO)_2(S_2CNMe_2)_2]$  and  $[(MeOCH_2CH_2)_2NCS]_2$ . *Polyhedron* **2012**, *42*, 84-88.

[10] Serpe, A.; Marchiò, L.; Artizzu, F.; Mercuri, M. L.; Deplano, P. Effective One-Step Gold Dissolution Using Environmentally Friendly Low-Cost Reagents. *Chem. Eur. J.*2013, 19, 10111-10114.

[11] Boi, L. V. Thiocarbamoylation of Amine-Containing Compounds 5.\* The Mechanism of Reactions of Tetramethylthiuram Disulfide with Aliphatic Amines. *Russ. Chem. Bull.* 2000, 49, 335-343.

[12] Adeppa, K., Rupainwar, D. C., Misra, K. Development of an Improved Method for Conversion of Thiuram Disulfides into N,NDialkylcarbamoyl Halides and Derivatives. *Synth. Commun.* 2011, *41*, 285-290.

[13] Peng, H.-Y., Dong, Z.-B. Transition-Metal-Free C(sp<sup>3</sup>)–S Coupling in Water: Synthesis of Benzyl Dithiocarbamates Using Thiuram Disulfides as an Organosulfur Source. *Eur. J. Org. Chem.* 2019, 949-956.

[14] Kapanda, C. N.; Muccioli, G. G.; Labar, G.; Poupaert, J. H.; Lambert, D, M. Bis(dialkylaminethiocarbonyl)disulfides as Potent and Selective Monoglyceride Lipase Inhibitors. *J. Med. Chem.* 2009, *52*, 7310-7314.

[15] Lal, N.; Jangir, S.; Bala, V.; Mandalapu, D.; Sarswat, A.; Kumar, L.; Jain, A.; Kumar, L.; Kushwaha, B.; Pandey, A. K.; Krishna, S.; Rawat, T.; Shukla, P. K.; Maikhuri, J. P.; Siddiqi, M. I.; Gupta, G.; Sharma, V. L. Role of Disulfide Linkage in Action of Bis(dialkylaminethiocarbonyl)disulfides as Potent Double-Edged Microbicidal Spermicide: Design, Synthesis and Biology. *Eur. J. Med. Chem.* **2016**, *115*, 275-290.

[16] Ramadas, K.; Srinivasan, N. Sodium Chlorite – Yet Another Oxidant for Thiols to Disulphides. *Synth. Commun.* 1995, 25(2), 227-234.

[17] Kaul, B. B.; Pandeya, K. B. Some Copper(III) Dithiocarbamates. J. Inorg. Nucl. Chem. 1981, 43, 1942-1944.

[**18**] Fontenot, P. R.; Shan, B.; Wang, B.; Simpson, S.; Ragunathan, G.; Greene, A. F.; Obanda, A.; Hunt, L. A.; Hammer, N. I.; Webster, C. E.; Mague, J. T.; Schmehl, R. H.; Donahue, J. P. Photocataltyic H<sub>2</sub>-Evolution by Homogeneous Molybdenum Clusters Supported by Dithiocarbamate Ligands. *Inorg. Chem.* **2019**, 58, 16458-16474.

[**19**] Fontenot, P.; Wang. B.; Chen, Y.; Donahue, J. P. Crystal Structure of Tetra*iso*butylthiuram Disulfide. *Acta Crystallogr., Sect. E* **2017**, *73*, 1764-1769.

[20] Husebye, S. The Crystal Structure of Bis(4-morpholinthiocarbonyl) Trisulfide. *Acta Chem. Scand.* 1973, *27*, 756-762.

[21] Foss, O.; Maartmann-Moe, K. Crystal Structure and Rotameric Form of Bis(piperidinothiocarbonyl)hexasulfane. *Acta. Chem. Scand. A* **1986**, *40*, 664-668.

[22] Bao, M.; Hong, M.; Su, W.; Cao, R. Bis(*N*,*N*-diethyl-1,1-diselenocarbamato-*Se*)selenium, [Se<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>Se]. *Acta Crystallogr., Sect. C* 2000, *56*, e219-e220.

[23] Klapötke, T. M.; Krumm, B.; Scherr, M. Studies on the Properties of Organoselenium(IV) Fluorides and Azides. *Inorg. Chem.* 2008, *47*, 4712-4722.

### **Chapter 3**

### Tri molybdenum Triangular [Mo<sub>3</sub>(μ<sub>3</sub>-E)(μ<sub>2</sub>-EF)<sub>3</sub>(Q<sub>2</sub>LR<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (E = S; F = S, or Se; L = CN or P; Q = S, or Se) Clusters: Synthesis, Crystallographic, Electro- Physical and Photocatalytic H<sub>2</sub> Evolution Properties

#### **3.1Introduction**

The present and future demand for energy is an important topic of discussion worldwide, not only because human population continues to grow but also because improved standards of living correlate to higher per capita energy consumption. The long-term energy supply to meet this demand remains uncertain.<sup>1,2</sup> Further, fossil fuel combustion adds CO<sub>2</sub> to the atmosphere at a rate that is contributing to increases in average global temperatures.<sup>3,4</sup> In turn, global warming threatens to increase sea levels by melting the polar ice caps, which would immerse low-lying coastal cities. Fossil fuel combustion also diminishes air quality by releasing nitrogen oxides (NOx) that lead to smog and other breathing irritants. These environmental impacts of fossil fuel use, in conjunction with their nonrenewable nature, bring the issue of developing alternative energy sources to the forefront in world political discussion.<sup>5</sup>

Solar energy is a clean and renewable alternative to fossil fuels. The primary disadvantage of solar energy is its intermittent nature, which demands that energy that cannot be immediately consumed as electricity be stored. A practical form of energy storage is via chemical bonds, and the simplest, energy-rich bond that can meet this use is the H–H bond in H<sub>2</sub>.<sup>6-12</sup> Hydrogen gas is essential to other important industrial processes, such as hydrodesulfurization<sup>13</sup> and ammonia production<sup>14</sup> but is currently produced via steam reforming of CH<sub>4</sub> gas. Hence, photolytic and/or photo electrocatalytic water splitting to form H<sub>2</sub> is an attractive way to both to store solar energy and to meet industrial demand for H<sub>2</sub> without contributing to CO<sub>2</sub> emissions.

#### 3.1.1 MoS<sub>2</sub> derivatives in H<sub>2</sub> production

Molybdenum disulfide, MoS<sub>2</sub>, is one of the few H<sub>2</sub>-evolving catalytic materials that is inexpensive enough to perhaps be scalable for commercial H<sub>2</sub> production. However, polymeric, or particulate MoS<sub>2</sub>, while highly active at its surface and edge sites, is poorly active as a bulk material. Recent research studies on MoS<sub>2</sub> have aimed at making various types of MoS<sub>2</sub> to increase the surface area and reactive sites and depositing MoS<sub>2</sub> nanoparticles onto highly conducting supports to improve the kinetics of electron



**Figure 3.1.** (NH<sub>4</sub>)<sub>2</sub>(Mo<sub>3</sub>S<sub>13</sub>) structures. Reproduced with permission from *Nature Chemistry*.

transfer<sup>15</sup>. Moreover, MoS<sub>2</sub> has also been studied in photo electrocatalytic water splitting, both as a reduction catalyst and as a photo electrode/catalytic surface<sup>16</sup>.

#### 3.1.2 MoSe<sub>2</sub> derivatives in H<sub>2</sub> production

2D layered transitional metal dichalcogenides, MoSe<sub>2</sub> have superior features for attractive catalytic activity through hydrogen evolution reactions. Ni<sub>3</sub>Se<sub>4</sub>@MoSe<sup>17</sup> composites act as an active electro catalyst in hydrogen evolution reactions. MoSe<sub>2</sub>@graphene<sup>18</sup> electrocatalyst functionalization having long term electrochemical stability during hydrogen evolution reaction due to that it showed significantly enhance hydrogen evolution reaction activity. Moreover MoSe<sub>2</sub>-MoS<sub>2</sub><sup>19</sup> layered heterostructures act as an active electrocatalyst for superior hydrogen evolution reactions.



**Figure 3.2.** Synthesis for Ni<sub>3</sub>Se<sub>4</sub>@MoSe<sub>2</sub> nanostructures. Reproduced with permission from Applied Sciences.

#### 3.1.3 Objective

The objectives of this project are 1) Synthesis of a broad palette of triangular  $[Mo_3(\mu_3 - E)(\mu_2 - EF)_3]^{4+}$  clusters, which can vary in the chalcogenide core composition (E,F) and with the identity of the ancillary chalcogen donor ligand. All clusters originate from Mo(CO)<sub>6</sub> The supporting ligand can be dithiocarbamate (R<sub>2</sub>NCS<sub>2</sub><sup>1-</sup>), O- diisopropyldithiophosphate ((OR)<sub>2</sub>PS<sub>2</sub><sup>1-</sup>), dialkyldithiophosphate (R<sub>2</sub>PS<sub>2</sub><sup>1-</sup>), or diselenocarbamate (R<sub>2</sub>NCSe<sub>2</sub><sup>1-</sup>). For consistency, R will be maintained as <sup>*i*</sup>Bu. With differing degrees of activity, these compounds function as homogeneous catalysts for H<sub>2</sub> formation from H<sub>2</sub>O under photolysis with a photosensitizer and sacrificial electron donor. 2) Identification of a correlation between photocatalytic activity level and composition of the Mo<sub>3</sub> structure and physical properties of the cluster, such as reduction potentials. 3) Identification of a maximally active [Mo<sub>3</sub>(µ<sub>3</sub>-E)(µ<sub>2</sub>-EF)<sub>3</sub>]<sup>4+</sup> cluster.

#### 3.1.4 Approach

These photocatalytic studies will use a  $H_2O/MeCN$  mixture as solvent,  $[Ru(bpy)_3]^{2+}$  as chromophore,  $Et_3N$  as sacrificial electron donor and trimethyl aniline (TMA) as electron transfer intermediary (**Scheme 3.1**). The synthesis of the Mo3 clusters that are being used in this study proceeds as outlined in (**Scheme 3.2** and **Scheme 3.3**).



Scheme 3.1. Photocatalytic system employed in these studies. Conditions:  $[Ru(bpy)_3]^{2+} = 260 \ \mu\text{M};$ [TMA] = 50 mM; [TEA] = 0.4 M; solvent = 1:2:1 THF:MeCN:H<sub>2</sub>O, 4 mL total; headspace = 4.7

# 3.2 Experimental3.2.1 Analytical, Spectroscopic, and Physical Methods

The UV-vis spectra were recorded at ambient temperature with an Ocean Optics HR2000+ES spectrometer. All NMR spectra were obtained at 25 C with a Bruker 400 MHz spectrometer reported with Me<sub>4</sub>Si (0 ppm) as standard. The ESI-MS spectra were recorded on a micrOTOF 11 Bruker Daltonics instrument.. Raman spectra were obtained with a WITec Focus Innovations alpha300 spectrometer. The excitation source was a 532 nm line with a 600 grooves/mm grating. The elemental analyses were performed either by Galbraith Laboratories of Knoxville, TN, or Kolbe Microanalytical Laboratory of Oberhausen, Germany.

Unit cell and refinement data were collected using 1958-9988 selected reflections from the full data set in Tables and, and figures with full atom labeling are presented in Figures.

Electrochemistry measurements were obtained with a AgCl/Ag reference electrode, glassy carbon working electrode, Pt wire counter electrode, [<sup>n</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] as supporting electrolyte and dry CH<sub>2</sub>Cl<sub>2</sub> as solvent.

The photolysis samples were illuminated in a home-built, multiwell photoreactor comprised of an Al cylinder equipped with blue LEDs (Solid Apollo, 24 W, 460 nm) mounted inside the cylinder wall in a uniform, spiral pattern. The actinometry was carried out using the photooxidation of  $[Ru(bpy)_3]^{2+}$  by  $[S_2O_8]^{2-}$ . The 10 mL of photoreaction sample contained 8.5 mL dry MeCN, 1.0 mL H<sub>2</sub>O, and 0.5 mL dry THF with concentrations of 0.05 *M* for *N*,*N*-trimethylaniline, 260 µM for  $[Ru(bpy)_3]Cl_2$ , 0.40 M for Et<sub>3</sub>N, and 100 µM for the Mo-based catalysts. The photolysis samples were thoroughly degassed by bubbling with Ar and sealed with screwcaps having PTFE/silicone septa

before irradiation. A 4.7 mL headspace volume was kept for each sample. After irradiation, a 50 µL sample of gas was extracted and injected into a gas chromatograph (Cow-Mac GC; Molecular Sieve Column, T= 35 0C; Carrier Gas: N<sub>2</sub>) for quantitative determination of the H<sub>2</sub> produced. The quantum yield for H<sub>2</sub> production per absorbed photon was measured as  $\Phi$ H<sub>2</sub> = 2(moles H<sub>2</sub> produced)/(moles photons) = 2*PV*H<sub>2</sub> /(*R* · *T* · *I* · *t*), where *V*H<sub>2</sub> is the volume of H<sub>2</sub> produced in the cell headspace, *P* = pressure in the headspace of the photolysis vial, *R* = gas constant, *T* = temperature, *I* = light intensity (quanta /s from actinometry) and t = irradiation time. Turnover numbers (TON) for H<sub>2</sub> production per catalyst were measured as: *TON*H<sub>2</sub> = (moles H<sub>2</sub> produced)/(moles Mo- catalyst) = *PV*H<sub>2</sub> /(*R* · *T* · *n*Mo), where nMo = number of moles of Mo-catalyst in each sample.

#### **3.2.2 Syntheses**

#### **3.2.2.1 General Considerations**

[NH<sub>4</sub>]<sub>2</sub>[Mo<sub>3</sub>S<sub>13</sub>], <sup>*i*</sup>Bu<sub>2</sub>NCSSSSCN<sup>*i*</sup>Bu<sub>2</sub> and <sup>*i*</sup>Bu<sub>2</sub>PSSSSP<sup>*i*</sup>Bu<sub>2</sub> were obtained by literature procedures. Solvents for synthesis were dried with a system of drying columns from the Glass Contour Company (CH<sub>2</sub>Cl<sub>2</sub>, THF, Et<sub>2</sub>O). The anhydrous solvents (DMF, 1,2 dichlorobenzene, EtOH) were purchased from commercial sources. All other reagents where commercially available products were used without further purification.

#### $3.2.2.2 \text{ K}[S_2P(^{i}PrO)_2].$

An oven dried two neck 2 L round bottomed flask was equipped with condenser and with an outlet leading to a KOH/H<sub>2</sub>O trap with which to neutralize any H<sub>2</sub>S gas byproduct. Then 1000 mL of 99% <sup>i</sup>PrOH were added, and the system was then purged with N<sub>2</sub> gas for one hour. Then 104.67 g of  $P_4S_{10}$  were added in portions over the course of ~30 min. Initially, the  $P_4S_{10}$  was a pale yellow suspended powder, but over the course of a few hours, it was fully digested to afford a translucent, pale yellow solution. The reaction mixture was stirred for 2 days at ambient temperature and then sparged again with  $N_2(g)$  for 30 min and cooled in an ice bath. Portions of K metal that were 0.5 - 1.0 g in size were added under outward  $N_2$  flow over a period of ~1 h. A cream-colored suspension of solid formed during the course of the addition of K metal, during which time the cooling was maintained. After further stirring overnight, the solid product was collected on a large Buchner funnel, washed with cold <sup>*i*</sup>PrOH followed by cold Et<sub>2</sub>O, and dried under vacuum. Yield: 160.23 g, 65.7%. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN-d<sub>2</sub>): 4.71 (octet, 1 H, -OC*H*(CH<sub>3</sub>)<sub>2</sub>), 1.22 (d, 3 H, -OCH(C*H*<sub>3</sub>)<sub>2</sub>), 1.20 (d, 3 H, -OCH(C*H*<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>3</sub>CN-d<sub>2</sub>): 118.28, 69.64, 24.11. <sup>31</sup>P NMR (400 MHz, CD<sub>3</sub>CN-d<sub>2</sub>): 111.67.

#### $3.2.2.3 (^{i}PrO)_{2}P(=S)SSP(=S)(O^{i}Pr)_{2}.$

A mixture of K[S<sub>2</sub>P(O<sup>*i*</sup>Pr)<sub>2</sub>] (10 g, 39.6 mmol) and I<sub>2</sub> (5.0 g, 19.7 mmol) was heated for ~12 h (70 °C) in 150 mL anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to ambient temperature and allowed to stand for one day. Pale yellow crystal and white KI were observed. The remaining EtOH solution was filtered and evaporated (2.21 g) crystal was observed. The crude was washed with DI water and filtered through vacuum (5.51 g) crystal was observed. Yield: 7.72 g, 92%. MP: 85-88 °C. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 4.92 (m, 4 H, -OC*H*(CH<sub>3</sub>)<sub>2</sub>), 1.40 (d, 12 H, -OCH(CH<sub>3</sub>)<sub>2</sub>), 1.38 (d, 12H, -OCH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 75.21, 75.14, 65.19, 23.93, 23.88, 23.77, 23.72. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 81.28.

#### 3.2.2.4 <sup>*i*</sup>Bu<sub>2</sub>NC(=Se)SeSeSeC(=S)N<sup>*i*</sup>Bu<sub>2</sub>.

MP:115-118 °C. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.86 (d, 4 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.81 (d, 4 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.52 (octet, 4 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.04 (d, 12 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.93 (d, 12 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 204.2, 58, 57.4, 27.7, 27.5, 20.3.

#### $3.2.2.5 [Mo_3S_7(S_2CN^iBu_2)_3]Cl, [1a]Cl.$

A mixture of  $Mo(CO)_6$  (1.00 g, 3.79 mmol), S powder (0.24 g, 7.58 mmol) and <sup>i</sup>Bu<sub>2</sub>NC(=S)SSC(=S)CN<sup>i</sup>Bu<sub>2</sub> (1.51 g, 3.71 mmol) was refluxed (170 °C) in 50 mL of anhydrous 1,2- dichlorobenzene for 1.5 h under  $N_2$  atmosphere. The reaction mixture was cooled to room temperature, left to stand for one day, and then reduced to a dark black oily residue under steady stream of air overnight. This oily residue was dissolved in a mixture of 10 mL CH<sub>2</sub>Cl<sub>2</sub> and 20 ml Et<sub>2</sub>O, and the resulting solution was transferred to a vial that was then loosely covered with Al foil or a cap. After the evaporation of solvent over the course of one week, a black oily residue was again observed. Portions of Et<sub>2</sub>O amounting to 30 mL were then used to wash away the black oily material and leave behind an orange crystalline solid at the bottom of the vial (0.9 g). This orange solid was recrystallized by the diffusion of hexanes vapor into a 1.2 ClCH<sub>2</sub>CH<sub>2</sub>Cl solution. Yield: 0.8 g of orange needles, 68%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.66 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.60 (d, 6 H,  $-CH_2CH(CH_3)_2$ , 2.32 (m, 6 H,  $-CH_2CH(CH_3)_2$ ), 1.00 (d, 18 H,  $-CH_2CH(CH_3)_2$ ), 0.96 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 204.2, 58, 57.4, 27.7, 27.6, 20.3. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~260, ~284, ~358, ~415. MS (ESI<sup>+</sup>) Calcd for  $[C_{27}H_{54}Mo_3N_3S_{13}]^+$ : m/z 1125.7843; Observed: m/z 1125.7845; Error ( $\delta$ ): 0.21 ppm. Raman  $(cm^{-1})$ : 71.6, 103.7, 129.9, 248.2, 265.4, 291.1, 311, 356.4, 390.2, 451.9, 513.1, 535.3.

Anal. Calcd for C<sub>27</sub>H<sub>54</sub>ClMo<sub>3</sub>N<sub>3</sub>S<sub>13</sub>: C, 27.94; H, 4.69; N, 3.62; Cl, 3.05; S, 35.91; C, 27.89; H, 4.71; N, 3.60; Cl, 3.03; S, 35.92.

#### $3.2.2.6 [Mo_3S_7(S_2CN^iBu_2)_3] I, [1a]I.$

A mixture of  $[Mo_3S_7(S_2CN'Bu_2)_3]Cl$  (0.1 g, 0.075 mmol) and 10 NaI (0.11 g, 0.75 mmol) was refluxed overnight (110 °C) in 20 mL anhydrous DMF and 10 mL anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to ambient temperature and then reduced to an orange solid under steady stream of air overnight. Then the crude solid was dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> and filtered. The filtrate was evaporated to an orange solid. Orange crystals were obtained by diffusion of 'BuOMe vapor into a concentrated 1,2 ClCH<sub>2</sub>CH<sub>2</sub>Cl solution of this solid. Yield: 0.085 g, 94%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.66 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.59 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.32 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.96 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.94 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 204.2, 58, 57.4, 27.7, 27.5, 20.3. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~263, ~352, ~427. MS (ESI<sup>+</sup>) Calcd for [C<sub>27</sub>H<sub>54</sub>Mo<sub>3</sub>N<sub>3</sub>S<sub>13</sub>]<sup>+</sup>: *m/z* 1125.7843; Observed: *m/z* 1125.7845 Error ( $\delta$ ): 0.21 ppm. Raman (cm <sup>-1</sup>): 71.6, 103.7, 129.9, 248.2, 265.4, 291.1, 311, 356.4, 390.2, 451.9, 513.1, 535.3.

#### **3.2.2.7** Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>SeCN, [2a]SeCN.

A red solution of  $[Mo_3S_7(S_2CN'Bu_2)_3]I(0.05 \text{ g})$  in 10 mL CH<sub>2</sub>Cl<sub>2</sub> was stirred together with a solution of 4 equivalents of KSeCN (0.023 g) in 5 mL water under a N<sub>2</sub> atmosphere. After 2 days, the organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and evaporated to dryness to yield [**2a**]SeCN. Yield: 0.04 g, 74%. A crystalline sample was obtained by diffusing 'BuOMe into a solution of the compound in 1,2-ClCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.66 (d, 6 H, -C*H*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.60 (d, 6 H, -C*H*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.28 (m, 6H, -CH<sub>2</sub>C*H*(CH<sub>3</sub>)<sub>2</sub>), 0.96 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.94 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 204.2, 58, 57.1, 27.7, 27.6, 20.3. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>, λ<sub>max</sub> nm (ε)]: ~269, ~335, ~434. MS (ESI<sup>+</sup>) Calcd for [C<sub>27</sub>H<sub>54</sub>Mo<sub>3</sub>N<sub>3</sub>S<sub>10</sub>Se<sub>3</sub>]<sup>+</sup>: *m/z* 1265.6206; Observed: *m/z* 1265.6300; Error (δ): 7.45 ppm. Raman (cm<sup>-1</sup>): 75.7, 93.2, 125.3, 186.1, 257.9, 266.5, 289.4, 340.5, 380.1, 394.1, 441.8, 450.2, 553.

#### **3.2.2.8** [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Se.

A mixture of Mo(CO)<sub>6</sub> (1.00 g, 3.79 mmol), Se powder (1.2g, 15.2 mmol) and <sup>i</sup>Bu<sub>2</sub>NC(=S)SSC(=S)N<sup>i</sup>Bu<sub>2</sub> (1.51 g, 3.71 mmol) was refluxed (200-220 °C) in 50 mL anhydrous 1,2- dichlorobenzene for 1.5 h under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to room temperature and then vacuum filtered to remove unreacted Se. The filtrate was reduced to a dark red oily residue under steady stream of air overnight. This residual oily residue was washed with small portions of Et<sub>2</sub>O amounting to 30 mL to remove a red oily material. A crude solid residue of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Se was observed. Yield: 1.02 g, 70%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.86 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.82 (d, 6 *H*, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.94 (d, 36 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.93 (d, 36 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 204.2, 58.6, 56.4, 27.1, 27.0, 19.8. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm (ε)]: ~278, ~350, ~428. MS (ESI<sup>+</sup>) Calcd for [C<sub>54</sub>H<sub>108</sub>Se<sub>15</sub>Mo<sub>6</sub>N<sub>6</sub>S<sub>12</sub>]<sup>1+</sup>: *m/z* 2985.7233; Observed: *m/z* 2985.7353; Error (δ): 4.01 ppm.

Raman (cm<sup>-1</sup>): 85.3, 109.6, 135.9, 174.1, 200.1, 235.9, 269.6, 315, 360, 441, 470, 510, 537, 564, 601.8, 669.3.

#### 3.2.2.9 [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I, [3a]I.

A mixture of  $[Mo_3Se_7(S_2CN'Bu_2)_3]_2Se (1.00 g)$  and 10 NaI (0.5 g) was refluxed (110 °C) overnight in a mixture of 50 mL anhydrous DMF and 25 mL anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to ambient temperature and then reduced to a red solid under steady stream of air overnight. This crude solid was dissolved in 30 mL of CH<sub>2</sub>Cl<sub>2</sub> and filtered. The filtrate was evaporated to again afford a red solid, which was crystallized as red needles by the diffusion of *n*-pentane vapor into a concentrated 1,2-ClCH<sub>2</sub>CH<sub>2</sub>Cl solution. Yield: 0.44 g (crude), 99%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.58 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.55 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.24 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.94 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.88 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 205.2, 57.3, 56.7, 27.6, 27.5, 20.5. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~284, ~384, ~420. MS (ESI<sup>+</sup>) Calcd for [C<sub>27</sub>H<sub>54</sub>Mo<sub>3</sub>N<sub>3</sub>S<sub>6</sub>Se<sub>7</sub>]<sup>+</sup>: *m*/*z* 1453.4021; Observed: *m*/*z* 1453.4055; Error ( $\delta$ ): 2.36 ppm. Raman (cm <sup>-1</sup>): 72.8, 107.8, 128.2, 168.8, 203.4, 246, 272.2, 306.5, 332, 354.7, 399.8, 439, 486.5, 553, 580.5.

#### 3.2.2.10 [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]Cl, [3c]Cl.

A mixture of Mo(CO)<sub>6</sub> (0.086 g), Se powder (0.1 g) and  ${}^{i}Bu_{2}NCSeSeSeSeSeSeSeCN^{i}Bu_{2}$ (0.2 g,) was refluxed (170-180 °C) under N<sub>2</sub> atmosphere in 15 mL of anhydrous 1,2dichlorobenzene for 1.5 hours. The reaction mixture was cooled to room temperature and then vacuum filtered to remove unreacted Se. The filtrate was reduced to a dark red oily residue under steady stream of air overnight. This residual oily residue was washed with portions of Et<sub>2</sub>O amounting to20 mL to remove a red oily material. The resulting solid residue was crystallized as orange crystals by diffusion of hexanes vapor into a concentrated 1,2-ClCH<sub>2</sub>CH<sub>2</sub>Cl solution. Yield:0.09 g (crude), 70%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.59 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.55 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.25 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.95 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.91 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 205.2, 57.1, 56.7, 27.6, 27.5, 20.5. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~278, ~364, ~454. MS (ESI<sup>+</sup>) Calcd for [C<sub>27</sub>H<sub>54</sub>Mo<sub>3</sub>N<sub>3</sub>Se<sub>13</sub>]<sup>+</sup>: *m/z* 1736.0741; Observed: *m/z* 1736.0253; Error ( $\delta$ ): 29.08 ppm. Raman (cm<sup>-1</sup>): 80, 100.3, 130.6, 168.8, 214.8, 256.6, 282.3, 319.7, 341.3, 366.7, 403.7, 438.6, 461.7, 494.4, 542.2.

#### **3.2.2.11** [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I, [3c]I.

A mixture of [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]Cl (0.0122g) and 10 eq NaI (0.0051 g) was refluxed (110 °C) overnight in a mixture of 10 mL anhydrous DMF and 20 mL anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to room temperature and then reduced to a red solid under steady stream of air overnight. The resulting residual solid was dissolved in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> and filtered. Evaporation of the filtrate afforded a red solid. Red needle crystals were obtained by diffusion of hexanes vapor into a concentrated 1,2-ClCH<sub>2</sub>CH<sub>2</sub>Cl solution. Yield: 0.01 g (crude), 99%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 3.59 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 3.55 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.25 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.95 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 0.91 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 205.2, 57.1, 56.7, 27.6, 27.5, 20.5. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\varepsilon$ )]: ~278, ~364, ~454. MS (ESI<sup>+</sup>) Calcd for [C<sub>27</sub>H<sub>54</sub>Mo<sub>3</sub>N<sub>3</sub>Se<sub>13</sub>]<sup>+</sup>: *m/z* 1736.0741; Observed: *m/z* 1736.0251; Error ( $\delta$ ): 28.08 ppm. Raman (cm <sup>-1</sup>): 80, 100.3, 130.6, 168.8, 214.8, 256.6, 282.3, 319.7, 341.3, 366.7, 403.7, 438.6, 461.7, 494.4, 542.2.

#### **3.2.2.12.** $[Mo_3S_7(S_2P^iBu_2)_3](S_2P^iBu_2), [1e][S_2P^iBu_2].$

A mixture of Mo(CO)<sub>6</sub> (0.25 g, 3.79 mmol) , S powder (0.06 g, 7.58 mmol) and <sup>'</sup>Bu<sub>2</sub>PSSSSP<sup>'</sup>Bu<sub>2</sub> (0.387g, 3.71 mmol) was refluxed for 5 hours at 140 °C in 20 mL of 1,3,5triisopropylbenzene under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to room temperature. The resulting yellow-orange precipitate was collected by filtration, washed with Et<sub>2</sub>O, and dried. Then the precipitate was purified with hot DCM/methanol, and the solid part was recrystallized by DCM/pentane vapor diffusion (0.2 g). Yield: 65%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 2.42 (m, 8 H, -CH<sub>2</sub>C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.14 (d, 8 H, -*CH*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.10 (d, 8 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 24 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.11 (d, 24 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 48.8, 48.4, 46.2, 45.8, 25.1. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 123.0, 103.8. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~260, ~332, ~420. MS (ESI<sup>+</sup>) Calcd for [C<sub>24</sub>H<sub>54</sub>Mo<sub>3</sub>P<sub>3</sub>S<sub>13</sub>]<sup>+</sup>: *m/z* 1140.6963; Observed: *m/z* 1140.6968. Error ( $\delta$ ): 0.48 ppm. Raman (cm <sup>-1</sup>): 84.52, 116.6, 148.56, 160.15, 189.05, 223.6, 235.08, 249.41, 275.14, 332.05, 394.2, 436.3, 497.7, 522.6, 553, 569.5, 619, 660.

#### 3.2.2.13. [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I, [1e]I

A mixture of  $[Mo_3S_7(S_2P^iBu_2)_3][S_2P^iBu_2]$  (0.025 g) and 10 NaI (0.12 g) was refluxed (110 °C) overnight in a mixture of 20 mL anhydrous DMF and 10 mL anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to room temperature, and then the reaction mixture was reduced to an orange solid under steady stream of air overnight. The crude solid residue was dissolved in 10 mL CH<sub>2</sub>Cl<sub>2</sub> and filtered. The filtrate was evaporated to afford a red solid. Red crystals were obtained by diffusion of *n*-pentane vapor into a CH<sub>2</sub>Cl<sub>2</sub> solution of this solid. Yield: 0.02 g, 99%). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 2.38 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.10 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.16 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.14 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 48.8, 48.4, 46.2, 45.8, 25.1. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 102.8. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~238, ~345. MS (ESI<sup>+</sup>) Calcd for [C<sub>24</sub>H<sub>54</sub>Mo<sub>3</sub>P<sub>3</sub>S<sub>13</sub>]<sup>+</sup>: *m/z* 1140.6963. Observed: *m/z* 1140.6968. Error ( $\delta$ ): 0.48 ppm. Raman (cm<sup>-1</sup>): 68.7, 115.4, 141.5, 176.3, 239.6, 262.5, 288.2, 356.3, 378.9, 418.3, 449.1, 474.2, 515.9, 612.4, 647.9. Anal. Calcd for C<sub>24</sub>H<sub>54</sub>IMo<sub>3</sub>P<sub>3</sub>S<sub>13</sub>: C, 22.75; H, 4.30; P, 7.33; S, 33.89. Found: C, 23.01; H, 2.93; P, 7.39; S, 33.41.

#### $3.2.2.14 [Mo_3S_4Se_3(S_2P^iBu_2)_3]I, [2e]I.$

A red solution of  $[Mo_3S_7(S_2P^iBu_2)_3]I$  (0.05 g) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was stirred together with a solution of 4 eq of KSeCN (0.0227 g) in 5 mL water under a N<sub>2</sub> atmosphere. This mixture was gently heated to 50 °C. After 2 days, the organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and reduced to dryness to afford the crude product. A crystalline sample was obtained by diffusing *n*-pentane into a concentrated solution of the compound in CH<sub>2</sub>Cl<sub>2</sub>. Yield: 0.04 g, 74%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 2.41 (m, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.10 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.17 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 48.8, 48.4, 46.2, 45.8, 25.1. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 102.7. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$ nm ( $\epsilon$ )]: ~279, ~345, ~430. MS (ESI<sup>+</sup>) Calcd for [C<sub>2</sub>4H<sub>54</sub>Mo<sub>3</sub>P<sub>3</sub>S<sub>10</sub>Se<sub>3</sub>]<sup>+</sup>: *m/z* 1280.5325; Observed: *m/z* 1280.5345. Raman (cm <sup>-1</sup>): 79.2, 105.5, 149.1, 163.6, 229.8, 304.1, 332.5, 349.5, 397, 422.8, 450.8, 503.7, 550.8, 572.8, 589.3, 646.8, 725.6, 776.8, 841. Anal. Calcd. for C<sub>2</sub>4H<sub>36</sub>IMo<sub>3</sub>P<sub>3</sub>S<sub>10</sub>Se<sub>3</sub>: C, 20.48; H, 3.87; P, 6.60; S: 22.77. Found: C, 20.62; H, 2.63; P, 6.67; S, 22.95.

#### **3.2.2.15** $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2], [3e][S_2P^iBu_2].$

A mixture of  $Mo(CO)_6$  (0.25 g, 3.79 mmol), Se powder (0.3 g, 15.2 mmol) and <sup>7</sup>Bu<sub>2</sub>PSSSSP<sup>4</sup>Bu<sub>2</sub> (0.387 g, 3.71 mmol) was refluxed for 1.5 hours at 140 °C in 20 mL of anhydrous 1,2-dichlorobenzene under a N<sub>2</sub> atmosphere. The reaction mixture was then cooled to ambient temperature and vacuum filtered to remove unreacted Se. The filtrate was reduced to a dark black oily residue under steady stream of air overnight. This oily residue was dissolved in a mixture of 20 mL Et<sub>2</sub>O and 10 mL CH<sub>2</sub>Cl<sub>2</sub>, and the solution was loosely covered with Al foil or a cap. After the evaporation of the solvent, a black oily residual was obtained. Portions of Et<sub>2</sub>O amounting to 30 mL were then used to wash awaya this dark green oily material and leave behind a red crystalline solid. This red solid was recrystallized by diffusion of *n*-pentane vapor into a  $CH_2Cl_2$  solution. Yield: 0.2 g, 70%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 2.42 (m, 8 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (d, 8 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.09 (d, 8 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 24 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.12 (d, 24 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 48.8, 48.4, 46.2, 45.8, 25.1. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 123.0, 103.8. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~236, ~277, ~401. MS (ESI<sup>+</sup>) Calcd for  $[C_{24}H_{54}Mo_3P_3S_6Se_7]^+$ : m/z 1468.3141; Observed: m/z1468.3058; Error ( $\delta$ ): 5.61 ppm. Raman (cm<sup>-1</sup>): 116, 163, 197.7, 220.7, 260.8, 357.5, 396.9, 425, 455.8, 492, 553, 599.8, 687.2, 730.5, 797.8, 864.5. Anal. Calcd. for C<sub>32</sub>H<sub>72</sub>Mo<sub>3</sub>P<sub>4</sub>S<sub>8</sub>Se<sub>7</sub>: C, 22.91; H, 4.33; S, 15.29. Found: C, 22.51; H, 4.26; S, 15.02.

#### 3.2.2.16 [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I, [3e]I.

A mixture of  $[Mo_3Se_7(S_2P'Bu_2)_3][S_2P'Bu_2]$  (0.025 g) and 10 NaI (0.12 g) was refluxed overnight at 110 °C in a mixture of 20 mL of anhydrous DMF and 10 mL of anhydrous EtOH under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to ambient temperature and then reduced to an orange solid under steady stream of air overnight. This crude solid was dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> and filtered. The filtrate was evaporated to afford a red solid, which was obtained in crystalline form by diffusion of *n*-pentane vapor into a CH<sub>2</sub>Cl<sub>2</sub> solution. Yield: 0.02 g, 99%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 2.40 (m, 6 H, - CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.11 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 2.06 (d, 6 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 1.10 (d, 18 H, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 48.8, 48.4, 46.2, 45.8, 25.1. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 102.7. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\epsilon$ )]: ~239, ~282, ~356. MS (ESI<sup>+</sup>) Calcd for [C<sub>24</sub>H<sub>54</sub>Mo<sub>3</sub>P<sub>3</sub>S<sub>6</sub>Se<sub>7</sub>]<sup>+</sup>: *m/z* 1468.3141; Observed: *m/z* 1468.3058; Error ( $\delta$ ): 5.61 ppm. Raman (cm<sup>-1</sup>): 75.7, 116.6, 163, 249, 275.1, 332, 382.9, 461, 500.4, 575, 632.7, 670.8, 784.4, 851.2. Anal. Calcd. for C<sub>24</sub>H<sub>54</sub>IMo<sub>3</sub>P<sub>3</sub>S<sub>6</sub>Se<sub>7</sub>: C, 18.07; H, 3.41; Found: C, 19.55; H, 3.70.

#### **3.2.2.17** $[Mo_3Se_7(S_2P(O^iPr)_2)_3][S_2P(O^iPr)_2], [3f][S_2P(O^iPr)_2].$

A mixture of Mo(CO)<sub>6</sub> (1.00 g, 3.79 mmol), Se powder (1.2 g, 15.22 mmol) and freshly prepared (<sup>*i*</sup>PrO)<sub>2</sub>P(=S)SSP(=S)(O<sup>*i*</sup>Pr)<sub>2</sub> (1.6 g, 3.71 mmol) was refluxed for 1.5 hours at (140 °C) in 50 mL of anhydrous 1,2-dichlorobenzene under a N<sub>2</sub> atmosphere. The reaction mixture was cooled to room temperature and then vacuum filtered to remove unreacted Se. The filtrate was reduced to a dark black solid residue under steady stream of air overnight. This residual solid was dissolved in 30 mL of dry Et<sub>2</sub>O and slowly evaporated from a vial loosely covered with Al foil or a cap. After one week, crystalline material was collected from the bottom of the vial and washed with portions of dry Et<sub>2</sub>O amounting to 30 mL, which removed a black oily material. Yield: 0.8 g (crude), 68%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 4.86 (m, 8 H, -OC*H*(CH<sub>3</sub>)<sub>2</sub>), 1.37 (d, 24 H, -OCH(CH<sub>3</sub>)<sub>2</sub>), 1.34 (d, 24 H, -OCH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 74.35, 74.29, 24.09, 24.07, 24.05, 24.03. <sup>31</sup>P NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>-d<sub>2</sub>): 92.23, 106.4. UV-vis [CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$  nm ( $\varepsilon$ )]: ~236, ~344,

~441. MS (ESI<sup>+</sup>) Calcd for [C<sub>18</sub>H<sub>42</sub>O<sub>6</sub>Mo<sub>3</sub>P<sub>3</sub>S<sub>6</sub>Se<sub>7</sub>]<sup>+</sup>: *m/z* 1152.5717; Observed: *m/z* 1152.5688; Error (δ): 12.04 ppm. Raman (cm<sup>-1</sup>): 81.3, 103.6, 137.9, 168.1, 184.1, 243.9, 257.8, 301.2, 334.6, 363.9, 383.4, 437.7, 455, 503, 535.5, 571.5, 628.1, 674.9.

#### **3.3 Discussion**

### **3.3.1 Discussion of Syntheses**



Scheme 3.2. Synthetic routes to  $[Mo_3Q_7L_3]^+$  type cluster cations from  $Mo(CO)_6$ .



Scheme 3.3. Synthetic routes to  $[Mo3Q7L3]^+$  type cluster cations from  $Mo(CO)_6$ 



Scheme 3.4. Known synthetic routes to [Mo3S7L3]+ type cluster cations from [Mo3S13]<sup>2-</sup> or [Mo3S7Br6]<sup>2-</sup>.



Scheme 3.5. Known synthetic routes to [Mo3S7L3]<sup>+</sup> type cluster cations.

## 3.3.2 Synthesis of $[Mo_3S(S_2)_3L_3]^+$ complexes; $L = ({}^{-}S_2CN^{i}Bu_2, {}^{-}S_2CN^{i}Bu_2, {}^{-}S_2P(O^{i}Pr)_2)$

Since the first  $[Mo_3S(S_2)_3]^{4+}$  cluster core was discovered in 1974<sup>22</sup>, there are variety of  $[Mo_3S(S_2)_3]^{4+}$  complexes and efficient pathways are discovered and have been reported<sup>23-</sup> <sup>30</sup>. Especially, a trinuclear remarkable molybdenum complex,  $(NH_4)_2[Mo_3S(S_2)_6]^{23}$ , which was discovered in 1980 by Muller, considering it has bridging and terminal disulfide edges, a strong contribution to do this kind of chemistry. After discovery of (NH<sub>4</sub>)<sub>2</sub>[Mo<sub>3</sub>S(S<sub>2</sub>)<sub>6</sub>] complex, first (NEt<sub>4</sub>)<sub>2</sub>[Mo<sub>3</sub>S<sub>7</sub>X<sub>6</sub>]<sup>28</sup> (X=Cl, Br) complex was synthesized by Fedin and coworkers. However, the first cluster with the  $[Mo_3S(S_2)_3]^{4+}$  core compound supported by dithiocarbamate ligand was synthesized by Hegetschweiler<sup>31</sup>. Moreover, they reported that they obtained this compound by two methods. One method is that direct oxidation of  $(NH_4)_2[Mo_3S(S_2)_6]$  by dithiocarbomate compound (1) and another method is that nucleophilic substitution of the six Br<sup>-</sup> in (NEt<sub>4</sub>)<sub>2</sub>[Mo<sub>3</sub>S<sub>7</sub>X<sub>6</sub>] (X=Cl, Br) by Na(S<sub>2</sub>CNEt<sub>2</sub>) ligand and NaI was used to form compound (1). Furthermore, in their studies they obtained compound (2) from (NEt<sub>4</sub>)<sub>2</sub>[Mo<sub>3</sub>S<sub>7</sub>X<sub>6</sub>] (X=Cl, Br) and Na(S<sub>2</sub>CNEt<sub>2</sub>). Around the same time, Fedin and coworkers<sup>32</sup> did the experiment between 4 Na(S<sub>2</sub>CNEt<sub>2</sub>) and (NEt<sub>4</sub>)<sub>2</sub>[Mo<sub>3</sub>S<sub>7</sub>X<sub>6</sub>] (X=Cl, Br) and they obtained [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CNEt<sub>3</sub>)] (S<sub>2</sub>CNEt<sub>3</sub>) compound.

But it was not characterized by XRD. During the crystallization process of this compound with boiling 1,2 DCE they got [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CNEt<sub>3</sub>)] Cl compound (4).

In the case of Mo<sub>3</sub>S<sub>7</sub>-cluster dithiophosphinates, Keck et al,1981, reported<sup>33</sup> that reaction of the disulfanes with carbonyl complexes Mo (CO)<sub>6</sub> produced Mo<sub>3</sub>S<sub>7</sub> cluster chelate of types [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>PEt<sub>3</sub>)] (S<sub>2</sub>PEt<sub>3</sub>) compound. Rong-min et al,1998 reported<sup>34</sup> that the molecule structure of the compound of a discrete cluster cation Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>PO<sup>i</sup>Pr<sub>2</sub>)<sub>4</sub> and Mo<sub>2</sub>S<sub>4</sub>(S<sub>2</sub>PO<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub> were obtained from the reaction between (NH<sub>4</sub>)<sub>2</sub>{MoS<sub>4</sub>} and P<sub>2</sub>S<sub>5</sub>/<sup>i</sup>PrOH. Continued Sha-Fang et al, reported<sup>35</sup> [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>PO<sup>i</sup>Pr<sub>2</sub>)<sub>3</sub>] I was prepared by addition of (CH<sub>3</sub>)<sub>4</sub>NI into reaction mixture of Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>PO<sup>i</sup>Pr<sub>2</sub>)<sub>4</sub>.

Here, we propose a new synthetic route for  $[Mo_3S_7L_3] +$ ;  $L = (-S_2CN^iBu_2, -S_3CN^iBu_2, -S_2P^iBu_2, -S_2P(O^iPr)_2)$  cluster compounds from Mo (CO)<sub>6</sub>. One of the features of this study is simply refluxing the mixture of Mo (CO)<sub>6</sub>, elemental sulfur and  $(-S_2CN^iBu_2)_2$  or  $(S_2P^iBu_2)_2$  in 1,2 dicholorobenzene at different temperatures. Another feature is that this cheapest method produced high yield within the 1.5 hours of reaction time period. Beginning with  $(-S_2CN^iBu_2)_2$  ligand produced direct  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl cluster at 170 C temperature and then NaI addition produced  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I (94%). In the high temperature (220-240 C),  $[Mo_3S_7(S_2CN^iBu_2)_3]$  S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub> was formed. But this is not characterized by X-ray analysis but confirmed with <sup>1</sup>H-NMR. Followed by addition of NaI proved that it formed  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I cluster. The reaction with triseleno carbomate (iBu2NCSe2) Se at 170 C, its dimer compound and solid elemental Se were observed.

The reaction with disulfanes  $({}^{i}Bu_{2}PS_{2})_{2}$  at 140 C in 1,2 dicholorobenzene produced dimer type Mo<sub>2</sub>S<sub>4</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>2</sub> clusters rather than Mo<sub>3</sub>S<sub>7</sub> type clusters, whereas non-polar solvent like 1,3,5 triisopropylbenzene produced [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub> type clusters. Followed by addition of NaI produced  $[Mo_3S_7(S_2P^iBu_2)_3]$  I cluster. The studies of  $(O^iPr_2PS_2)_2$  at 140 °C, it formed both  $Mo_3S_7(S_2PO^iPr_2)_4$  and  $Mo_2S_4(S_2PO^iPr_2)_2$ . However,  $Mo_3S_7(S_2PO^iPr_2)_4$  was not characterized by XRD but <sup>1</sup>H NMR and <sup>31</sup>P NMR proved its identity of this compound.



Figure 3.3. 1H NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>).



Figure 3.4. <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_7(S_2P(O^iPr)_2)_3][S_2P(O^iPr)_2]$ .



Figure 3.5. <sup>31</sup>P NMR spectrum of complex  $[Mo_3S_7(S_2P(O^iPr)_2)_3][S_2P(O^iPr)_2]$ .



Scheme 3.6. Synthetic routes to  $[Mo_3S_7L_3]$  + type cluster cations from  $Mo(CO)_6$ .

## 3.3.3 Synthesis of $[Mo_3S_4Se_3L_3] +$ ; $L = (-S_2CN^iBu_2, -S_2P^iBu_2)$ complexes

The formation of  $[Mo_3S_4Se_3(S_2CNEt_2)_3]$  SeCN has been reported<sup>36</sup> from  $[Mo_3S_7(S_2CNEt_2)_3]$  S<sub>2</sub>CNEt<sub>2</sub>. The same literature procedure was used for compound  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I to form  $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]$  SeCN. However, for dithiophosphate compounds  $[Mo_3S_7(S_2P^iBu_2)_3]$  I this procedure was applied but the starting material was observed so it was modified with warming the mixture at 50 C for 2 days then  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]$  I was observed.



Scheme 3.7. Synthetic routes to  $[Mo_3S_4Se_3L_3] +$  type cluster cations.

## 3.3.4 Synthesis of $[Mo_3Se (Se_2)_3L_3] +$ ; $L = (-S_2CN^iBu_2, -S_2CN^iBu_2, -S_2P^iBu_2, -S_2P(O^iPr)_2)$ complexes.

As we previously discussed, the discovery of a largest number of the synthesis have been obtained for  $[Mo_3S(S_2)_3]^{4+}$  complexes. Particularly different synthetic methods for  $[Mo_3S(S_2)_3]^{4+}$  complexes and  $[Mo_3S_4Se_3]^{4+}$  complexes have been developed. Moreover, Di cluster compound joint with central chalcogen atom [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CNEt<sub>2</sub>)<sub>3</sub>]<sub>2</sub>S<sup>37</sup> have been developed. Most of the work in this area of specifically built polymeric metal sulfide species has been studied. However, the reports of analogs for selenides such as [Mo<sub>3</sub>Se  $(Se_2)_3$ <sup>4+</sup> have been rarely studied. The initial [Mo<sub>3</sub>Se (Se<sub>2</sub>)<sub>3</sub>]<sup>4+</sup> core compound of [Mo12Se56]<sup>12-38</sup>was obtained from metallic Mo and K2Se4 in H2O and it was structurally characterized. Fedin and coworkers developed<sup>39</sup> a new method for [Mo<sub>3</sub>Se (Se<sub>2</sub>)<sub>3</sub>]<sup>4+</sup> complexes from polymeric material [Mo<sub>3</sub>Se<sub>7</sub>X<sub>4</sub>] n (X=Cl or Br) by mechanochemical activation. Furthermore, they discovered another method<sup>40</sup> for [Mo<sub>3</sub>Se<sub>7</sub>X<sub>6</sub>]<sup>2-</sup> complexes from polymeric material  $[Mo_3Se_7X_4]_n$  by heating. They obtained the first  $[Mo_3Se_7X_4]_n$ cluster core supported by dithiocarbomate compounds( $[Mo_3Se_7(S_2CNEt_2)_3]$  S<sub>2</sub>CNEt<sub>2</sub>) from reaction between  $[Mo_3Se_7X_6]^{2-}$  and  $Na(S_2CNEt_2)$  ligand. The same  $[Mo_3Se_7X_6]^{4+}$ cluster supported with dithiocarbomate compounds joint with central Se atom [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CNEt<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Se type complex was synthesized by Almond and coworkers<sup>41</sup> from by heating of Mo (CO)<sub>6</sub>, elemental Se and  $(Et_2CNS_2)_2$  in 1,2 dichlorobenzene for 1.5 hours. Gushchin et al<sup>42</sup> recently reported that, (<sup>n</sup>Bu<sub>4</sub>N)<sub>2</sub>Mo<sub>3</sub>Se<sub>7</sub>X<sub>6</sub>]X (X=Cl or Br) was made by microwave activation of polymeric Mo<sub>3</sub>Se<sub>7</sub>Br<sub>4</sub> and (<sup>n</sup>Bu<sub>4</sub>N) Br and they obtained  $(^{n}Bu_{4}N)_{2}[Mo_{3}Se_{7}(dithiolene)_{3}]^{n}Bu_{4}N.$ 



Scheme 3.8. Known synthetic routes to  $[Mo_3Se_7L_3] +$  type cluster cations.

Here in, we propose one of the efficient, cheapest, and a new method for synthesis of  $[Mo_3Se (Se_2)_3L_3] +;$   $L = (-S_2CN^iBu_2, -Se_3CN^iBu_2, -S_2P^iBu_2, -S_2P(O^iPr)_2)$  analogs from Mo (CO)<sub>6</sub>, elemental Se and  $(-S_2CN^iBu_2)_2$  or  $(S_2P^iBu_2)_2$  in 1,2 dicholorobenzene by simply refluxing at different temperatures for 1.5 hours. This method produced high yield within the short period of time compared with other expensive previously developed methods.

Beginning with Mo (CO)<sub>6</sub>, elemental Se and (<sup>i</sup>Bu<sub>2</sub>NCS<sub>2</sub>)<sub>2</sub> was heated (220 C) under reflux in 1,2 dicholorobenzene for 1.5 hours as previously reported<sup>41</sup> dicluster  $[Mo_3Se_7(S_2CN^iBu_2)_3]_2Se$  was formed. Then it was treated with NaI and formed  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  I cluster. On the other hand, when this reaction mixture was heated at 170 C under reflux,  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  Cl or  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  (S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>) formed but this was not characterized by XRD, ESI-MS proved its identity of this compound. Then followed by addition of NaI,  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  I was observed. The same method was applied for (<sup>i</sup>Bu<sub>2</sub>NCSe<sub>2</sub>)<sub>2</sub>Se triselenocarbomate ligand,
[Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl and [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I were observed. But at 240 C dimer was observed.

For disulfanes ( ${}^{i}Bu_{2}PS_{2}$ )<sub>2</sub>, and (( ${}^{i}PrO$ )<sub>2</sub>PS<sub>2</sub>)<sub>2</sub> the temperature was kept at 140 °C, Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P(O<sup>i</sup>Pr)<sub>2</sub>)<sub>4</sub> and Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>4</sub> were observed. Followed by NaI addition produced its Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>I cluster.



**Figure 3.6**. ESI-MS spectrum of complex  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  + during the reaction at 170 °C.



Scheme 3.9. Synthetic routes to  $[Mo_3Se_7L_3]^+$  type cluster cations from  $Mo(CO)_6$ .

#### 3.3.5 Future work

1) Synthesis of  $[Mo_3S_4Se_3L_3] + and [Mo_3Se_4S_3L_3] + ; L = (-S_2CN^iBu_2, -Se_2CN^iBu_2, -S_2P^iBu_2)$  complexes can be achieved by developed new synthetic routes as illustrated in (Scheme 3.10 and Scheme 3.11).



Scheme 3.10. New synthetic routes to  $[Mo_3S_4Se_3L_3]$  + type cluster cations.



Scheme 3.11. New synthetic routes to  $[Mo_3Se_4S_3L_3] +$  type cluster cations.

2) Try to make  $[Mo_3Te_7L_3] + ; L = (-S_2CN^iBu_2, -S_2CN^iBu_2, -S_2P^iBu_2)$  complexes by developed new synthetic route as illustrated in (Scheme 3.9) at high temperatures (240 C or above).

3) Synthesis of  $[Mo_3S_7L_3]$  Br;  $L = (-S_2CN^iBu_2, -Se_2CN^iBu_2)$  complexes by developed new synthetic route as illustrated in (Scheme 3.6) with 1,2 dibromobenzene lieu of 1,2 dicholorobenzene.

4) Similar new synthetic route as illustrated in (Scheme 3.6) can be implemented to other metal carbonyls such as  $(Co_2(CO)_8, V(CO)_6, Cr (CO)_6, Fe (CO)_5, Ni(CO)_5 etc)$ 

#### **3.4 Discussion of Crystal Structures**

The crystal structure of bis(O,O'-di-isopropylphosphorothionyl)disulfide, which is the disulfide form of the O,O'-di-isopropyldithiophosphate salt, has been previously reported by others.<sup>43</sup> The unit cell found is the same as that observed earlier (**Table 3.1**), but the quality of the data obtained here, as manifested by final R-factors (**Table 3.1**) and the low uncertainties in bond parameters, is appreciably improved over the data reported earlier. The compound crystallizes on an inversion center that coincides with the S1–S1A midpoint (**Figure 3.7**), which has a length of 2.1106(3) Å as consistent with its single bond character.



**Figure 3.7**. Thermal ellipsoid plots (50%) for bis(*O*,*O*'-di-isopropylphosphorothionyl)disulfide (**a**), and bis[[bis(2-methylpropyl)amino]selenoxomethyl] triselenide (**b**). All H atoms are omitted for clarity.

The terminal phosphorus bond (P1–S2) has a length of 1.9205(2), which is consistent with its ylid character and contrasts with the P1–S1 single bond length of 2.0822(3) Å. Related compounds that have been structurally characterized are those Me,<sup>44</sup> Np,<sup>44</sup> Cy,<sup>45</sup> Ph,<sup>46</sup> and p-tolyl<sup>47</sup> in place of <sup>*i*</sup>Pr.

Bis[[bis(2-methylpropyl)amino]selenoxomethyl] triselenide, although not the intended diselenide, nevertheless serves as a source of the corresponding diselenocarbamate ligand when use in the same fashion as tetraalkyl thiuram disulfides (**Figure 3.7**, (**b**)). This compound has been previously prepared and identified as being, on the basis of <sup>77</sup>Se NMR, in solution equilibrium between an open chain form ((**a**) in **Scheme 3.12**) and a chelating form ((**b**) in **Scheme 3.12**).<sup>47</sup> The Se2–Se(3) and Se3–Se4 bond distances are 2.4674(12) Å and 2.4642(13) Å, respectively, which are similar to the 2.446 Å and 2.479 Å distance reported for the analogous compound reported with Et groups. The Se1…Se3 and Se5…Se3 distances are appreciable longer at 2.8309(13) Å and 2.7999(13) Å, respectively; indicating that chelation of the central Se atom, to the extent that such description is

appropriate, is weak and readily gives way to the linear triselenide structure. However, the crystallographic van der Waals radius reported for selenium is 1.9 Å, well beyond half the Se1…Se3 and Se5…Se3 separations. This fact argues that the interactions are both real bonding interactions and non-negligible in degree.



**Scheme 3.12.** Proposed solution equilibrium for <sup>*i*</sup>Bu<sub>2</sub>NC(Se)SeSeSeC(Se)N<sup>*i*</sup>Bu<sub>2</sub>, as deduced by <sup>77</sup>Se NMR.

| compound                              | $(^{i}PrO)_{2}\overline{P(S)SSP(S)(O^{i}Pr)_{2}}$ | <sup>i</sup> Bu <sub>2</sub> NC(Se)SeSeSeC(Se)N <sup>i</sup> Bu <sub>2</sub> |  |
|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|--|
| structure code                        | JPD1268                                           | JPD1141                                                                      |  |
| formula                               | $C_{12}H_{28}O_4P_2S_4$                           | $C_{18}H_{36}N_2Se_5$                                                        |  |
| $\mathbf{FW}$                         | 426.52                                            | 675.29                                                                       |  |
| temperature, K                        | 150                                               | 150                                                                          |  |
| wavelength, Å                         | 0.71073                                           | 0.71073                                                                      |  |
| 2θ range, deg.                        | 2.442 - 38.450                                    | 4.606 - 58.542                                                               |  |
| crystal system                        | triclinic                                         | monoclinic                                                                   |  |
| space group                           | <i>P</i> -1                                       | $P2_{1}/n$                                                                   |  |
| <i>a</i> , Å                          | 8.1001(8)                                         | 12.6525(11)                                                                  |  |
| b, Å                                  | 8.3522(8)                                         | 11.7435(11)                                                                  |  |
| <i>c</i> , Å                          | 8.4745(8)                                         | 18.2297(15)                                                                  |  |
| $\alpha$ , deg.                       | 97.731(4)                                         | 90                                                                           |  |
| $\beta$ , deg.                        | 111.085(3)                                        | 106.629(3)                                                                   |  |
| y, deg.                               | 94.678(4)                                         | 90                                                                           |  |
| volume, Å <sup>3</sup>                | 524.82(9)                                         | 2595.4(4)                                                                    |  |
| Ζ                                     | 1                                                 | 4                                                                            |  |
| density, g/cm <sup>3</sup>            | 1.350                                             | 1.728                                                                        |  |
| $\mu$ , mm <sup>-1</sup>              | 0.616                                             | 7.062                                                                        |  |
| F(000)                                | 11552                                             | 1312                                                                         |  |
| crystal size                          | 0.248 x 0.273 x 0.563                             | 0.128 x 0.286 x 0.361                                                        |  |
| color, habit                          | colorless block                                   | orange block                                                                 |  |
| limiting indices, h                   | $-15 \le h \le 15$                                | $-17 \le h \le 16$                                                           |  |
| limiting indices, k                   | $-15 \le k \le 15$                                | $0 \le k \le 16$                                                             |  |
| limiting indices, l                   | $-16 \le l \le 16$                                | $0 \le l \le 25$                                                             |  |
| reflections collected                 | 40335                                             | 16311                                                                        |  |
| independent data                      | 7197                                              | 16311                                                                        |  |
| restraints                            | 0                                                 | 12                                                                           |  |
| parameters refined                    | 104                                               | 247                                                                          |  |
| GooF <sup>a</sup>                     | 1.063                                             | 1.040                                                                        |  |
| $R1,^{b,c} wR2^{d,c}$                 | 0.0253, 0.0673                                    | 0.0727, 0.1540                                                               |  |
| $R1,^{b,e} wR2^{d,e}$                 | 0.0318, 0.0710                                    | 0.1042, 0.1704                                                               |  |
| argest diff. peak, e·Å <sup>-3</sup>  | 0.395                                             | 1.306                                                                        |  |
| largest diff. hole, e·Å <sup>-3</sup> | -0.216                                            | -1.396                                                                       |  |
|                                       |                                                   |                                                                              |  |

**Table 3.1.**Crystal and refinement data for bis(O,O'-di-isopropylphosphorothionyl)disulfide, and bis[[bis(2-methylpropyl)amino]selenoxomethyl] triselenide.

 $\frac{1}{a} \text{GooF} = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{\frac{1}{2}}, \text{ where } n = \text{ number of reflections and } p \text{ is the total number of parameters refined; } {}^{b}\text{R1} = \Sigma||F_o| - |F_c||/\Sigma|F_o|; \text{ }^{c}\text{ R indices for data cut off at I} > 2\sigma(I); {}^{d}\text{wR2} = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2\}^{\frac{1}{2}}; w = 1/[\sigma^2(F_o^2) + (xP)^2 + yP], \text{ where } P = (F_o^2 + 2F_c^2)/3; \text{ }^{c}\text{R indices for all data.} \}$ 

| compound                                            | $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]^+$                                                         | $[Mo_3S_7(S_2P^iBu_2)_3]^+$  | $[\mathrm{Mo}_{3}\mathrm{Se}_{7}(\mathrm{S}_{2}\mathrm{P}(\mathrm{O}^{i}\mathrm{Pr})_{2})_{3}]^{+}$                |
|-----------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|
| counteranion                                        | [SeCN] <sup>-</sup>                                                                      | [I] <sup>_</sup>             | $[S_2P(O^iPr)_2]^-$                                                                                                |
| structure code                                      | JPD1002                                                                                  | JPD839                       | JPD1296                                                                                                            |
| compound abbrev.                                    | [2a]SeCN                                                                                 | [ <b>1e</b> ]I               | $[\mathbf{3f}][\mathbf{S}_{2}\mathbf{P}(\mathbf{O}^{i}\mathbf{Pr})_{2}]$                                           |
| solvent                                             | <sup>1</sup> / <sub>2</sub> (DCE)· <sup>1</sup> / <sub>2</sub> <sup><i>t</i></sup> BuOMe | -                            | $^{1}/_{4}$ Et <sub>2</sub> O                                                                                      |
| formula                                             | $C_{31.50}H_{62}ClMo_3N_4O_{0.50}S_{10}Se_4$                                             | $C_{24}H_{54}IMo_3P_3S_{13}$ | C <sub>25</sub> H <sub>58.50</sub> Mo <sub>3</sub> O <sub>8.25</sub> P <sub>4</sub> S <sub>8</sub> Se <sub>7</sub> |
| $\mathbf{FW}$                                       | 1464.56                                                                                  | 1267.08                      | 1712.11                                                                                                            |
| temperature, K                                      | 150                                                                                      | 100                          | 150                                                                                                                |
| wavelength, Å                                       | 0.71073                                                                                  | 0.71073                      | 0.71073                                                                                                            |
| 2θ range, deg.                                      | 2.442 - 38.450                                                                           | 2.746 - 57.662               | 4.458 - 53.034                                                                                                     |
| crystal system                                      | tetragonal                                                                               | orthorhombic                 | triclinic                                                                                                          |
| space group                                         | $I4_1/a$                                                                                 | $Pna2_1$                     | <i>P</i> -1                                                                                                        |
| <i>a</i> , Å                                        | 35.378(4)                                                                                | 11.5814(18)                  | 13.7582(4)                                                                                                         |
| <i>b</i> , Å                                        | 35.378(4)                                                                                | 23.552(4)                    | 14.3562(4)                                                                                                         |
| <i>c</i> , Å                                        | 18.903(2)                                                                                | 19.102(3)                    | 16.1940(5)                                                                                                         |
| $\alpha$ , deg.                                     | 90                                                                                       | 90                           | 72.260(2)                                                                                                          |
| $\beta$ , deg.                                      | 90                                                                                       | 90                           | 72.906(2)                                                                                                          |
| γ, deg.                                             | 90                                                                                       | 90                           | 68.909(2)                                                                                                          |
| volume, Å <sup>3</sup>                              | 23659(6)                                                                                 | 5210.2(14)                   | 2780.59(15)                                                                                                        |
| Ζ                                                   | 16                                                                                       | 4                            | 2                                                                                                                  |
| density, g/cm <sup>3</sup>                          | 1.645                                                                                    | 1.615                        | 2.045                                                                                                              |
| μ, mm <sup>-1</sup>                                 | 3.512                                                                                    | 1.934                        | 5.701                                                                                                              |
| F(000)                                              | 11552                                                                                    | 2520                         | 1653                                                                                                               |
| crystal size                                        | 0.150 x 0.150 x 0.200                                                                    | 0.084 x 0.212 x 0.273        | 0.139 x 0.173 x 0.326                                                                                              |
| color, habit                                        | red-orange block                                                                         | orange plate                 | orange plate                                                                                                       |
| limiting indices, h                                 | $-32 \le h \le 32$                                                                       | $-15 \le h \le 15$           | $-17 \le h \le 17$                                                                                                 |
| limiting indices, k                                 | $-32 \le k \le 32$                                                                       | $-31 \le k \le 30$           | $-17 \le k \le 18$                                                                                                 |
| limiting indices, l                                 | $-17 \le l \le 17$                                                                       | $-25 \le l \le 25$           | $-20 \le l \le 20$                                                                                                 |
| reflections collected                               | 48575                                                                                    | 47648                        | 105771                                                                                                             |
| independent data                                    | 4894                                                                                     | 13014                        | 11504                                                                                                              |
| restraints                                          | 22                                                                                       | 1                            | 5                                                                                                                  |
| parameters refined                                  | 513                                                                                      | 410                          | 517                                                                                                                |
| GooF <sup>a</sup>                                   | 1.130                                                                                    | 1.005                        | 1.036                                                                                                              |
| R1, <sup><i>b,c</i></sup> wR2 <sup><i>d,c</i></sup> | 0.0455, 0.1263                                                                           | 0.0356, 0.0804               | 0.0650, 0.1461                                                                                                     |
| R1, <sup><i>b,e</i></sup> wR2 <sup><i>d,e</i></sup> | 0.0581, 0.1378                                                                           | 0.0455, 0.0839               | 0.1035, 0.1771                                                                                                     |
| largest diff. peak, e·Å-3                           | 1.183                                                                                    | 1.005                        | 2.125                                                                                                              |
| largest diff. hole, e·Å-3                           | -0.499                                                                                   | -0.566                       | -2.154                                                                                                             |

Table 3.2. Crystal and refinement data for structurally characterized Mo<sub>3</sub> and Mo<sub>2</sub> compounds.

\_\_\_\_

<sup>a</sup>GooF = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n - p)$ }<sup>b</sup>, where *n*= number of reflections and *p* is the total number of parameters refined; <sup>b</sup>R1 =  $\Sigma||F_o| - |F_c||/\Sigma|F_o|$ ; <sup>c</sup>R indices for data cut off at I > 2 $\sigma$ (I); <sup>d</sup>wR2 = { $\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2$ }<sup>1/2</sup>; w = 1/[ $\sigma^2(F_o^2) + (xP)^2 + yP$ ], where *P* = ( $F_o^2 + 2F_c^2$ )/3; <sup>c</sup>R indices for all data.

| compound                                            | $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]^+$                                                                   | $[\mathrm{Mo}_{3}\mathrm{Se}_{7}(\mathrm{S}_{2}\mathrm{CN}^{i}\mathrm{Bu}_{2})_{3}]^{+}$ | $[Mo_3Se_7(Se_2CN^iBu_2)_3]I^+$                                                  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| counteranion                                        | [1]-                                                                                               | [1]-                                                                                     | [1]-                                                                             |
| structure code                                      | JPD1097                                                                                            | JPD1172                                                                                  | JPD1375                                                                          |
| compound abbrev.                                    | [ <b>2</b> a]I                                                                                     | [ <b>3</b> a]I                                                                           | [ <b>3</b> c]I                                                                   |
| solvent                                             | $1/2(C_5H_{10})$                                                                                   | $\frac{1}{6}(DCE) \cdot \frac{1}{3}(C_5H_{10})$                                          | -                                                                                |
| formula                                             | C <sub>26.50</sub> H <sub>60</sub> IMo <sub>3</sub> P <sub>3</sub> S <sub>10</sub> Se <sub>3</sub> | C29H54.67Cl0.33M03N3S6Se7                                                                | C <sub>27</sub> H <sub>54</sub> IMo <sub>3</sub> N <sub>3</sub> Se <sub>13</sub> |
| FW                                                  | 1443.85                                                                                            | 1617.04                                                                                  | 1861.93                                                                          |
| temperature, K                                      | 150                                                                                                | 156                                                                                      | 150                                                                              |
| wavelength, Å                                       | 0.71073                                                                                            | 0.71073                                                                                  | 0.71073                                                                          |
| 2θ range, deg.                                      | 4.234 - 54.498                                                                                     | 2.500 - 59.290                                                                           | 3.576 - 52.888                                                                   |
| crystal system                                      | monoclinic                                                                                         | monoclinic                                                                               | monoclinic                                                                       |
| space group                                         | C2/c                                                                                               | $P2_{1}/c$                                                                               | $P2_{1}/c$                                                                       |
| a, Å                                                | 32.047(3)                                                                                          | 27.7223(12)                                                                              | 28.1698(14)                                                                      |
| b, Å                                                | 17.7330(14)                                                                                        | 13.5820(4)                                                                               | 13.6823(7)                                                                       |
| <i>c</i> , Å                                        | 20.1100(15)                                                                                        | 40.7503(11)                                                                              | 41.079(2)                                                                        |
| α, deg.                                             | 90                                                                                                 | 90                                                                                       | 90                                                                               |
| $\beta$ , deg.                                      | 106.950(2)                                                                                         | 90.917(1)                                                                                | 90.876(1)                                                                        |
| γ, deg.                                             | 90                                                                                                 | 90                                                                                       | 90                                                                               |
| volume, Å <sup>3</sup>                              | 10931.9(15)                                                                                        | 15341.5(8)                                                                               | 15831.3(14)                                                                      |
| Ζ                                                   | 8                                                                                                  | 12                                                                                       | 12                                                                               |
| density, g/cm <sup>3</sup>                          | 1.755                                                                                              | 2.100                                                                                    | 2.344                                                                            |
| μ, mm <sup>-1</sup>                                 | 3.729                                                                                              | 6.597                                                                                    | 10.276                                                                           |
| F(000)                                              | 5640                                                                                               | 9220                                                                                     | 10296                                                                            |
| crystal size                                        | 0.060 x 0.206 x 0.217                                                                              | 0.312 x 0.406 x 0.503                                                                    | 0.022 x 0.145 x 0.364                                                            |
| color, habit                                        | orange plate                                                                                       | thick red-orange plate                                                                   | yellow plate                                                                     |
| imiting indices, h                                  | $-41 \le h \le 41$                                                                                 | $-38 \le h \le 38$                                                                       | $-35 \le h \le 35$                                                               |
| imiting indices, k                                  | $-22 \le k \le 22$                                                                                 | $-18 \le k \le 18$                                                                       | $-17 \le k \le 17$                                                               |
| limiting indices, <i>l</i>                          | $-25 \le l \le 25$                                                                                 | $-56 \le l \le 56$                                                                       | $-51 \le l \le 51$                                                               |
| flections collected                                 | 144302                                                                                             | 1076082                                                                                  | 285209                                                                           |
| independent data                                    | 12155                                                                                              | 43161                                                                                    | 32504                                                                            |
| restraints                                          | 101                                                                                                | 0                                                                                        | 0                                                                                |
| parameters refined                                  | 465                                                                                                | 1329                                                                                     | 1290                                                                             |
| GooF <sup>a</sup>                                   | 1.072                                                                                              | 1.080                                                                                    | 1.019                                                                            |
| R1, <sup><i>b,c</i></sup> wR2 <sup><i>d,c</i></sup> | 0.0638, 0.1794                                                                                     | 0.0566, 0.1495                                                                           | 0.0519, 0.0935                                                                   |
| $R1,^{b,e} wR2^{d,e}$                               | 0.0877, 0.2066                                                                                     | 0.0695, 0.1615                                                                           | 0.1003, 0.116                                                                    |
| gest diff. peak, e·Å <sup>-3</sup>                  | 1.791                                                                                              | 2.620                                                                                    | 1,344                                                                            |
| gest diff. hole, e·Å <sup>-3</sup>                  | -2.021                                                                                             | -5.018                                                                                   | -1.641                                                                           |

**Table 3.2.**, **Cont'd**. Crystal and refinement data for structurally characterized Mo<sub>3</sub> and Mo<sub>2</sub> compounds.

<sup>a</sup>GooF = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)$ }<sup>1/2</sup>, where *n*= number of reflections and *p* is the total number of parameters refined; <sup>b</sup>R1 =  $\Sigma||F_o| - |F_c||/\Sigma|F_o|$ ; <sup>c</sup>R indices for data cut off at I > 2 $\sigma$ (I); <sup>d</sup>wR2 = { $\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)$ }<sup>1/2</sup>;  $w = 1/[\sigma^2(F_o^2) + (xP)^2 + yP]$ , where  $P = (F_o^2 + 2F_c^2)/3$ ; <sup>e</sup>R indices for all data.

| compound                              | $[Mo_3Se_7(S_2P(O'Pr)_2)_3]^+$                                                                                     | $[(Bu_2NCS_2)Mo(O)(\mu-S)]_2$ | $[(^{\prime}PrO)_{2}PS_{2})Mo(S)(\mu-S)]_{2}$ |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|
| counteranion                          | $[\mathbf{S}_2\mathbf{P}(\mathbf{O}^i\mathbf{P}\mathbf{r})_2]^-$                                                   | -                             | -                                             |
| structure code                        | JPD1296                                                                                                            | JPD1106                       | JPD1309                                       |
| compound abbrev.                      | $[\mathbf{3f}][\mathbf{S}_2\mathbf{P}(\mathbf{O}^i\mathbf{Pr})_2]$                                                 | 4                             | 5                                             |
| solvent                               | $^{1}/_{4}\text{Et}_{2}\text{O}$                                                                                   | -                             | -                                             |
| formula                               | C <sub>25</sub> H <sub>58.50</sub> Mo <sub>3</sub> O <sub>8.25</sub> P <sub>4</sub> S <sub>8</sub> Se <sub>7</sub> | $C_{18}H_{36}Mo_2N_2O_2S_6$   | $C_{12}H_{28}Mo_2O_4P_2S_8$                   |
| FW                                    | 1712.11                                                                                                            | 696.73                        | 746.64                                        |
| temperature, K                        | 150                                                                                                                | 150                           | 150                                           |
| wavelength, Å                         | 0.71073                                                                                                            | 0.71073                       | 0.71073                                       |
| 2θ range, deg.                        | 4.458 - 53.034                                                                                                     | 2.336 - 46.604                | 4.760 - 52.856                                |
| crystal system                        | triclinic                                                                                                          | monoclinic                    | monoclinic                                    |
| space group                           | <i>P</i> -1                                                                                                        | $P2_{1}/c$                    | $P2_{1}/c$                                    |
| <i>a</i> , Å                          | 13.7582(4)                                                                                                         | 18.7482(8)                    | 12.6795(5)                                    |
| <i>b</i> , Å                          | 14.3562(4)                                                                                                         | 9.6344(4)                     | 13.8455(6)                                    |
| <i>c</i> , Å                          | 16.1940(5)                                                                                                         | 16.9043(7)                    | 16.1584(6)                                    |
| $\alpha$ , deg.                       | 72.260(2)                                                                                                          | 90                            | 90                                            |
| $\beta$ , deg.                        | 72.906(2)                                                                                                          | 111.590(1)                    | 101.481(1)                                    |
| γ, deg.                               | 68.909(2)                                                                                                          | 90                            | 90                                            |
| volume, Å <sup>3</sup>                | 2780.59(15)                                                                                                        | 2839.2(2)                     | 2779.91(19)                                   |
| Ζ                                     | 2                                                                                                                  | 4                             | 4                                             |
| density, g/cm <sup>3</sup>            | 2.045                                                                                                              | 1.630                         | 1.784                                         |
| $\mu$ , mm <sup>-1</sup>              | 5.701                                                                                                              | 1.342                         | 1.635                                         |
| F(000)                                | 1653                                                                                                               | 1416                          | 1496                                          |
| crystal size                          | 0.139 x 0.173 x 0.326                                                                                              | 0.051 x 0.062 x 0.252         | 0.009 x 0.189 x 0.357                         |
| color, habit                          | orange plate                                                                                                       | yellow column                 | brown plate                                   |
| limiting indices, h                   | $-17 \le h \le 17$                                                                                                 | $-20 \le h \le 20$            | $-15 \le h \le 15$                            |
| limiting indices, k                   | $-17 \le k \le 18$                                                                                                 | $-10 \le k \le 10$            | $-17 \le k \le 17$                            |
| limiting indices, l                   | $-20 \le l \le 20$                                                                                                 | $-18 \le l \le 18$            | $-20 \le l \le 20$                            |
| reflections collected                 | 105771                                                                                                             | 65330                         | 88748                                         |
| independent data                      | 11504                                                                                                              | 4109                          | 5684                                          |
| restraints                            | 5                                                                                                                  | 0                             | 0                                             |
| parameters refined                    | 517                                                                                                                | 279                           | 261                                           |
| GooF <sup>a</sup>                     | 1.036                                                                                                              | 1.175                         | 1.018                                         |
| $R1$ , $b,c$ w $R2^{d,c}$             | 0.0650, 0.1461                                                                                                     | 0.0476, 0.0931                | 0.0230, 0.0574                                |
| $R1,^{b,e} wR2^{d,e}$                 | 0.1035, 0.1771                                                                                                     | 0.0595, 0.0973                | 0.0345, 0.0642                                |
| abs. struct. param                    | -                                                                                                                  | -                             | -                                             |
| largest diff. peak, e·Å <sup>-3</sup> | 2.125                                                                                                              | 0.831                         | 0.439                                         |
| largest diff. hole, e·Å-3             | -2.154                                                                                                             | -0.472                        | -0.343                                        |

Table 3.2., Cont'd. Crystal and refinement data for structurally characterized Mo<sub>3</sub> and Mo<sub>2</sub> compounds

 $\frac{1}{a} \operatorname{GooF} = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{\frac{1}{2}}, \text{ where } n = \text{ number of reflections and } p \text{ is the total number of parameters refined; } {}^{b}R1 = \Sigma||F_o| - |F_c||/\Sigma|F_o|; \\ {}^{c}R \text{ indices for data cut off at I} > 2\sigma(I); {}^{d}wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2\}^{\frac{1}{2}}; w = 1/[\sigma^2(F_o^2) + (xP)^2 + yP], \text{ where } P = (F_o^2 + 2F_c^2)/3; {}^{e}R \text{ indices for all data.}$ 

| compound                                            | $[(^{i}Bu_{2}NCSe_{2})Mo(O)(\mu-Se)]_{2}$ |
|-----------------------------------------------------|-------------------------------------------|
| counteranion                                        | -                                         |
| structure code                                      | JPD1293                                   |
| compound                                            | 6                                         |
| abbrev.                                             |                                           |
| solvent                                             | -                                         |
| formula                                             | $C_{18}H_{36}Mo_2N_2O_2Se_6$              |
| FW                                                  | 978.13                                    |
| temperature, K                                      | 273                                       |
| wavelength, A                                       | 0.71073                                   |
| 2θ range, deg.                                      | 4.544 - 61.106                            |
| crystal system                                      | monoclinic                                |
| space group                                         | Сс                                        |
| <i>a</i> , Å                                        | 11.3342(6)                                |
| b, Å                                                | 17.9266(10)                               |
| <i>c</i> , Å                                        | 14.5595(8)                                |
| $\alpha$ , deg.                                     | 90                                        |
| $\beta$ , deg.                                      | 95.7698(19)                               |
| γ, deg.                                             | 90                                        |
| volume, Å <sup>3</sup>                              | 2943.3(3)                                 |
| Z                                                   | 4                                         |
| density, g/cm <sup>3</sup>                          | 2.207                                     |
| $\mu$ , mm <sup>-1</sup>                            | 8.289                                     |
| F(000)                                              | 1848                                      |
| crystal size                                        | 0.090 x 0.221 x 0.286                     |
| color, habit                                        | yellow block                              |
| limiting indices,                                   | -16 < h < 16                              |
| h                                                   | 10 _ 11 _ 10                              |
| limiting indices,                                   | -2.5 < k < 2.5                            |
| k                                                   | 20 <u>_ n _ 20</u>                        |
| limiting indices,                                   | -20 < l < 20                              |
| l                                                   |                                           |
| reflections                                         | 29564                                     |
| collected                                           | 27507                                     |
| independent                                         | 8643                                      |
| data                                                | 0015                                      |
| restraints                                          | 2                                         |
| parameters                                          | 280                                       |
| refined                                             | 200                                       |
| GooF <sup>a</sup>                                   | 1.054                                     |
| R1, <sup><i>b,c</i></sup> wR2 <sup><i>d,c</i></sup> | 0.0356, 0.0818                            |
| R1, <sup><i>b,e</i></sup> wR2 <sup><i>d,e</i></sup> | 0.0435, 0.0876                            |
| abs. struct.                                        | 0.049(10)                                 |
| param                                               | 0.019(10)                                 |
| largest diff.                                       | 1 568                                     |
| peak, e·Å <sup>-3</sup>                             | 1.500                                     |
| largest diff.                                       | -1.037                                    |
| hole, e∙Å⁻³                                         | -1.057                                    |

**Table 3.2., Cont'd.** Crystal and refinement data for structurally characterized  $Mo_3$  and  $Mo_2$  compounds.

 $\frac{1}{a^{0}\text{GooF} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/(n - p)\}^{\frac{1}{2}}, \text{ where } n = \text{ number of reflections and } p \text{ is the total number of parameters refined; } {}^{b}\text{R1} = \Sigma||F_{o}| - |F_{c}||\Sigma||F_{o}|; \text{ }^{c}\text{R indices for data cut off at I} > 2\sigma(I); {}^{d}\text{wR2} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma w(F_{o}^{2})^{2}\}^{\frac{1}{2}}; w = 1/[\sigma^{2}(F_{o}^{2}) + (xP)^{2} + yP], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3; \text{ }^{c}\text{R indices for all data.}$ 



Figure 3.8. Thermal ellipsoid plots (50%) of  $[1a]^+$ ,  $[1e]^+$ , [2a][SeCN],  $[2e]^+$ ,  $[3a]^+$ , and  $[3c]^+$ . For clarity, all H atoms are omitted, and any disorder is edited to show only one of two parts.



**Figure 3.9**. Thermal ellipsoid plots (50%) of  $[3f]^+$ , 4, 5, and 6. For clarity, all H atoms are omitted, and any disorder is edited to show only one of two parts.

The isostructural clusters illustrated in **Figures 3.8** and 3.9 are defined by an equilateral triangle of Mo<sup>IV</sup> ions that are joined by a single chalcogenide dianion, either S<sup>2–</sup> or Se<sup>2–</sup> ( $\mu_3$ Q<sup>2–</sup>), in a  $\mu_3$ -bridging mode and by three identical dichalcogenide ligands, either S<sub>2</sub><sup>2–</sup>, Se<sub>2</sub><sup>2–</sup> or SeS<sup>2–</sup>, that are situated at the midpoints of the



**Figure 3.10**. Illustration of the distinction between equatorial and axial positions in bridging dichalcogenide ligands.

one atom is within the  $M_3$  plane ( $Q_{eq}$ ) while other ( $Q_{ax}$ ) is held somewhat below the  $M_3$ plane on the side opposite the  $\mu_3 Q^{2-}$  ligand (Figure 3.10). The chemical lability that distinguishes the Qeq atom from the Qax atom and enables formation of the complexes with mixed dichalcogenide  $SeS^{2-}$  is reflected in M–Q $_{eq}$  bond lengths that are  ${\sim}0.06-0.08$  Å longer than the M-Qax interatomic distances (Table 3.3). Excision of the Qeq atoms produces  $[M_3S_4]^{4+}$  voided cubanes that provide ingress to a broad range of homo- and heterometallic cubanes. Completing the coordination sphere at each metal ion is a dithiocarbamate, diselenocarbamate, or dithiophosphate ligand (Figure 3.10), whose threeatom chelate is oriented with near orthogonality to the M<sub>3</sub> plane ( $cf\theta$ , **Table 3.3**). A tighter binding of the  $\mu_3 Q^{2-}$  atom to M than the  $Q_{ax}$  atom is revealed in M- $\mu_3 Q$  bond lengths that are ~0.03-0.04 Å shorter than the corresponding M–Qax values (Table 3.3) and additionally manifested by a *trans* influence upon the chelating ligand that renders its chelation modestly asymmetric. The M-Eanti bond lengths consistently exceed the M-Esyn bond lengths by ~0.03 Å, a difference that is significant within the resolution of the data. In all instances, the soft counteranion to the cluster is ensconced in close proximity (Table 3.3)

intermetal vectors. These dichalcogenide ligands are asymmetrically positioned such that

|                                    | [ <b>1</b> a]Cl <sup>f</sup> | [1e]I     | [2a][SeCN] | <b>[3a]</b> I <sup><i>g,h,i,j</i></sup> | $[\mathbf{3c}]\mathbf{I}^{g,h,i,k}$ | <b>[4a]</b> I <sup><i>j,l,m</i></sup> |
|------------------------------------|------------------------------|-----------|------------|-----------------------------------------|-------------------------------------|---------------------------------------|
| $M-M^b$                            | 2.7129[3]                    | 2.7285[5] | 2.7278[8]  | 2.7950[3]                               | 2.7718[4]                           | 2.7092[4]                             |
| M-µ <sub>3</sub> Q                 | 2.3745[7]                    | 2.3775[9] | 2.370[2]   | 2.4718[4]                               | 2.5052[4]                           | 2.393[1]                              |
| M–Q <sub>ax</sub>                  | 2.4068[5]                    | 2.4075[7] | 2.421[1]   | 2.5416[2]                               | 2.5472[3]                           | 2.418[1]                              |
| M–Q <sub>eq</sub>                  | 2.4854[5]                    | 2.4867[7] | 2.6063[6]  | 2.6006[2]                               | 2.6100[3]                           | 2.496[1]                              |
| Q–Q                                | 2.051[1]                     | 2.053[1]  | 2.229[2]   | 2.3158[4]                               | 2.3271[5]                           | 2.068[2]                              |
| $M-E_{dtc,syn}^{c}$                | 2.4674[7]                    | 2.5126[9] | 2.469[2]   | 2.4846[4]                               | 2.6053[4]                           | 2.471[1]                              |
| $M - E_{dtc,anti}^{d}$             | 2.5141[7]                    | 2.536[1]  | 2.527[2]   | 2.5227[6]                               | 2.6425[4]                           | 2.507[1]                              |
| $M-\mu_3Q-M$                       | 69.68[2]                     | 70.03[2]  | 70.28[5]   | 67.79[1]                                | 67.18[1]                            | 68.96[3]                              |
| M–Qax–M                            | 68.61[2]                     | 69.04[2]  | 68.58[5]   | 65.69[1]                                | 65.92[1]                            | 68.15[3]                              |
| M–Q <sub>eq</sub> –M               | 66.15[2]                     | 66.54[2]  | 63.11[2]   | 64.02[1]                                | 64.15[1]                            | 65.73[3]                              |
| Qax-M-Qax                          | 84.44[2]                     | 84.31[3]  | 83.79[6]   | 83.11[1]                                | 83.05[1]                            | 85.02[4]                              |
| Qeq-M-Qeq                          | 171.40[3]                    | 171.05[3] | 168.96[3]  | 167.21[1]                               | 166.94[2]                           | 171.06[4]                             |
| Q <sub>eq</sub> -M-Q <sub>ax</sub> | 49.54[2]                     | 49.58{2]  | 52.48[3]   | 53.52[1]                                | 53.63[1]                            | 49.75[3]                              |
| $\mu_3Q$ – $M$ – $Q_{ax}$          | 110.30[2]                    | 109.95[2] | 110.10[4]  | 112.63[1]                               | 112.80[1]                           | 110.79[3]                             |
| $\mu_3Q - M - Q_{eq}$              | 85.73[2]                     | 85.56[2]  | 84.35[3]   | 84.05[1]                                | 83.84[1]                            | 85.53[3]                              |
| $\Theta^e$                         | 87.1[1]                      | 87.67[5]  | 87.4[2]    | 88.2[1]                                 | 88.0[1]                             | 88.8[2]                               |

**Table 3.3.** Selected interatomic distances (Å) and angles (deg.) for triangular M<sub>3</sub> cations. Averaged values<sup>a</sup> are presented for distances and angles that are chemically identical.

<sup>*a*</sup>For averaged values, uncertainties are determined using the general formula for error propagation as described by Taylor<sup>45</sup> and are enclosed with square brackets; <sup>*b*</sup>M = metal; <sup>*c*</sup>M-E bond length for dichalcogenocarbamate atom or <sup>-</sup>S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub> sulfur atom on the same side of the M<sub>3</sub> plane as the  $\mu_3$ S ligand; <sup>*d*</sup>M-E bond length for dichalcogenocarbamate atom or <sup>-</sup>S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub> sulfur atom on the opposite side of the M<sub>3</sub> plane as the  $\mu_3$ S ligand; <sup>*e*</sup>M = Angle between M<sub>3</sub> plane and E<sub>2</sub>C or S<sub>2</sub>P plane of chelating ligand; <sup>*f*</sup>Values are averaged across 2 independent clusters in the asymmetric unit; <sup>*b*</sup>M = Mo; <sup>*i*</sup>Q = Se; <sup>*f*</sup>E = S; <sup>*k*</sup>E = Se; <sup>*i*</sup>M = W; <sup>*m*</sup>Q = S.

to the  $Q_{ax}$  atoms of the bridging  $Q_{eq}$ – $Q_{ax}$  ligands, which bear a distinctive electrophilic character that has been noted early in the elucidation of these clusters and their properties.

#### **3.5 Electrochemistry**

#### **3.5.1**Cyclic Voltammetry and Differential Pulse Voltammetry

The laboratory experiment for electrochemistry will introduce cyclic voltammetry. This is

one of the rapid and powerful methods for characterizing the electrochemical behavior of

compounds can provide information as to whether they can be electrochemically oxidized or reduced.

To analyze the electrochemical behavior of  $Mo_3S_7$ ,  $Mo_3S_4Se_3$  &  $Mo_3Se_7$  complexes cyclic voltammetry was used. Here, there are 3 standard electrode setups that were used. Pt wire (Auxiliary or counter electrode (CE)), Ag/AgCl reference electrode (RE) and glassy carbon working electrode (WE). DCM was used as a solvent (7ml) and [Bu<sub>4</sub>N] [PF<sub>6</sub>] was used as electrolyte. For each experiment 100 mVs-1 scan rate was carried out.

For the differential pulse voltammetry measurements, here the same experimental set up was carried out like cyclic voltammetry. The potential was scanned only in the negative, cathode directions.

#### 3.5.1.1 [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

Cyclic voltammetry measurements for  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I, the whole window shows 3 reductions peaks followed by two irreversible oxidations peaks. Moreover, the third reduction is reversible with an E1/2 = -1.22V.

DPV measurements show its all reductions within the 0 to -1.6V window. It showed four reductions with its reversible third reduction at E1/2 = -1.12V



Figure 3.11. The whole CV window for  $[Mo_3S_7(S_2CN^iBu_2)_3]I$  in DCM.



Figure 3.12. Reductive CV data for [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I in DCM.



Figure 3.13. Reduction peak potentials for [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I by DPV.

## 3.5.1.2 [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl

A similar pattern was observed like  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I. here also third reduction is reversible reduction with an E1/2 = -1.224V.

Again, DPV window shows four reductions with its third reduction was reversible reduction at E1/2 = -1.12V.



Figure 3.14. The whole CV window for  $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$  in DCM



Figure 3.15. Reductive CV data for [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]Cl in DCM.



Figure 3.16. Reduction peak potentials for  $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$  by DPV.

#### 3.5.1.3 [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN

This compound shows a complex CV with multiple reductions peaks followed by one irreversible oxidation. Here the sixth reduction shows reversibility with an E1/2 = -1.52V. In the DPV measurements. The first peak and sixth peak show its maximum, whereas in between peaks shows smaller peaks. Here at sixth position E1/2 = -1.412V reversible reduction was observed.



Figure 3.17. The whole CV window for  $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]SeCN$  in DCM



Figure 3.18. Reductive CV data for  $[Mo_3S4Se3 (S_2CN^iBu_2)_3]SeCN$  in DCM.



**Figure 3.19**. Reduction peak potentials for  $[Mo_3S_4Se_3 (S_2CN^iBu_2)_3]SeCN$  by DPV.

## 3.5.1.4 [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

This compound also shows complex CV with multiple reductions peaks followed by four irreversible oxidations. This shows similarity third reduction reversibility like  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I with an E1/2 = -1.040V.

In the DPV window, there are five reductions observed. However, very sharp peak third reduction at E1/2 = -0.960V was a reversible peak.



Figure 3.20. The whole CV window for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I$  in DCM



Figure 3.21. Reductive CV data for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I$  in DCM.



Figure 3.22. Reduction peak potentials for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I$  by DPV.

### 3.5.1.5 [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

Similar reduction pattern like  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I was observed. However, here fourth reduction shows reversibility with an  $E_{\frac{1}{2}} = -1.103$  V.

Here, in the DPV reductions, although there are three smaller reductions peaks in the whole window, the broad peak with an  $E_{\frac{1}{2}} = -1.052$  V was a reversible peak.



Figure 3.23. The whole CV window for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$  in DCM



Figure 3.24. Reductive CV data for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I in DCM.



Figure 3.25. Reduction peak potentials for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$  by DPV.

# 3.5.1.6 [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

In the whole CV window, there were three reduction peaks followed by one oxidation peak being observed. Here the second reduction peak shows reversibility with an  $E_{\frac{1}{2}} = -0.979$  V.

In the DPV window, the maxima peak at  $E_{\ensuremath{\sc black}\sc black}$  = -0.888 V shows reversibility.



Figure 3.26. The whole CV window for  $[Mo_3S_7(S_2P^iBu_2)_3]I$  in DCM



Figure 3.27. Reductive CV data for  $[Mo_3S_7(S_2P^iBu_2)_3]I$  in DCM.



**Figure 3.28**. Reduction peak potentials for  $[Mo_3S_7(S_2P^iBu_2)_3]I$  by DPV.

# 3.5.1.7 [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

The whole CV window shows complex CV with multiple reductions peaks like  $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]$  SeCN compound. Followed by two irreversible oxidations. A reversible reduction pattern was observed at E1/2 = -1.03V, it was the fourth reduction.

When scanning the DPV. The reversible peak was formed at E1/2 = -0.912V with multiple reductions.



Figure 3.29. The whole CV window for [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I in DCM



Figure 3.30. Reductive CV data for  $[Mo_3S_4Se_3 (S_2P^iBu_2)_3]I$  in DCM.



Figure 3.31. Reduction peak potentials for  $[Mo_3S_4Se_3 (S_2P^iBu_2)_3]I$  by DPV.

### 3.5.1.8 [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

This compound reduction pattern was like  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  I with complex CV with multiple reductions peaks followed by three irreversible oxidations. Here reversible reduction peak was observed at E1/2 = -0.976V.

In the DPV measurements, the third reduction peak with E1/2 = -0.942V was a reversible peak.



Figure 3.32. The whole CV window for  $[Mo_3Se_7(S_2P^iBu_2)_3]I$  in DCM.







**Figure 3.34**. Reduction peak potentials for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I by DPV.

#### 3.5.1.9 [Mo<sub>3</sub>Se<sub>7</sub>( $S_2P(O^iPr)_2$ )<sub>3</sub>] ( $S_2P(O^iPr)_2$ )

When scanning the whole CV window, multiple reductions peaks were observed. Here at E1/2 = -0.859V reversible reduction peak was observed. It was a third reduction. In DPV, there are five reductions peaks were obtained. However, the third reduction peak was a reversible reduction peak with an E1/2 = -0.796V.



Figure 3.35. The whole CV window for  $[Mo_3Se_7(S_2P(O^iPr)_2)_3]$  $(S_2P(O^iPr)_2$  in DCM



Figure 3.36. Reductive CV data for  $[Mo_3Se_7(S_2P(O^iPr)_2)_3]$  $(S_2P(O^iPr)_2$  in DCM



Figure 3.37. Reduction peak potentials for  $[Mo_3Se_7(S_2P(O^iPr)_2)_3]$  $(S_2P(O^iPr)_2by DPV.$ 

| Compound                                                                                                  | CV E <sub>1/2</sub> | DPV E <sub>1/2</sub> | Reduction<br>type |
|-----------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------|
| $[Mo_3S_7(S_2CN^iBu_2)_3] I$                                                                              | -0.634V             | -0.572V              | 1 st              |
| $[Mo_3S_7(S_2CN^iBu_2)_3] Cl$                                                                             | -0.637V             | -0.572V              | 1st               |
| $[Mo_3S_4Se_3(S_2CN^iBu_2)_3] SeCN$                                                                       | -0.373V             | -0.320V              | 1st               |
| $[\mathrm{Mo}_{3}\mathrm{Se}_{7}(\mathrm{S}_{2}\mathrm{CN}^{\mathrm{i}}\mathrm{Bu}_{2})_{3}] \mathrm{I}$  | -0.470V             | -0.432V              | 1st               |
| $[Mo_3Se_7(Se_2CN^iBu_2)_3] I$                                                                            |                     | -0.2V                | 1 st              |
| $[Mo_3S_7(S_2P^iBu_2)_3] I$                                                                               | -0.721V             | -0.628V              | 1st               |
| $[\mathrm{Mo}_3\mathrm{S}_4\mathrm{Se}_3(\mathrm{S}_2\mathrm{P}^{\mathrm{i}}\mathrm{Bu}_2)_3]~\mathrm{I}$ | -0.514V             | -0.396V              | 1st               |
| $[Mo_3Se_7(S_2P^iBu_2)_3] I$                                                                              |                     | -0.416V              | 1st               |
| $[Mo_3Se_7(S_2PO^iPr_2)_3](S_2PO^iPr_2)$                                                                  | -0.343V             | -0.304V              | 1st               |

**Table 3.4**. Comparison of first reduction potential for all clusters.

 Table 3.5.
 Comparison of reversible reduction between CV and DPV.

| Compound                                                                                                  | CV E <sub>1/2</sub> | $DPV E_{\frac{1}{2}}$ | Reduction<br>type |
|-----------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-------------------|
| $[\mathrm{Mo}_3\mathrm{S}_7(\mathrm{S}_2\mathrm{CN}^{\mathrm{i}}\mathrm{Bu}_2)_3]\mathrm{I}$              | -1.221V             | -1.12V                | 3rd               |
| $[Mo_3S_7(S_2CN^iBu_2)_3] Cl$                                                                             | -1.224V             | -1.12V                | 3rd               |
| $[Mo_3S_4Se_3(S_2CN^iBu_2)_3] SeCN$                                                                       | -1.521V             | -1.412V               | 5th               |
| $[Mo_3Se_7(S_2CN^iBu_2)_3] I$                                                                             | -1.04V              | -0.990V               | 3rd               |
| $[Mo_3Se_7(Se_2CN^iBu_2)_3] I$                                                                            | -1.103V             | -1.032V               | 4th               |
| $[Mo_3S_7(S_2P^iBu_2)_3] I$                                                                               | -0.979V             | -0.888V               | 2nd               |
| $[\mathrm{Mo}_3\mathrm{S}_4\mathrm{Se}_3(\mathrm{S}_2\mathrm{P}^{\mathrm{i}}\mathrm{Bu}_2)_3]~\mathrm{I}$ | -1.03V              | -0.912V               | 4th               |
| $[Mo_3Se_7(S_2P^iBu_2)_3] I$                                                                              | -0.976V             | -0.912V               | 3rd               |
| $[Mo_3Se_7(S_2PO^iPr_2)_3](S_2PO^iPr_2)$                                                                  | -0.859V             | -0.796V               | 3rd               |

# 3.6 Photolysis3.6.1 Previous findings

The initial design and development of the multistep component systems for  $Mo_3S_7$  coordinate with dithiocarbamate catalyst's work was done by Dr. Bing Shan.<sup>49</sup> In this work they used reductive quenchers such as (TTA) or the more soluble (TMA). Here the excited state of photosensitizer (PS\*) was reduced by (PS-) by quencher (TTA). Then this (PS-) was reacted with (HEC) then H+ from H<sub>2</sub>. Here sacrificial electron donor acts to complete the cycle and to form its original state of quencher (TTA).



Scheme 3.13. Four component photosystem using reductive quenching.

Initially  $[Mo_3S_{13}]^{2-}$  was tested in this system. The results showed that it produced over 80 TON hydrogen within the 3 hours of time by using only 26 M catalyst. Due to its anionic nature and poor solubility, it shows modest activity. So, to observe its changes in this photosystem, they made cationic catalyst  $[Mo_3S_7(S_2CNEt)_3]I$ . This was tested. The maximum TON was observed at concentration of 50M catalyst. They carried out MALDI-Ms experiment with photolysis to find out its changes during the time interval. They obtained conversion from  $[Mo_3S_7(S_2CNEt_2)_3]^+$  (peak A at 957 m/z) to  $[Mo_3S_4(S_2CNEt_2)_3]$ 

<sup>+</sup> (species B at 861 m/z) within the 3 min time interval. So, they concluded that  $[Mo_3S_7(S_2CNEt)_3]$  I act as a precatalyst in this photo system.


**Figure 3.38**. TON for the [NBu<sub>4</sub>]<sub>2</sub>[Mo<sub>3</sub>S<sub>13</sub>] catalyst at various concentrations



Figure 3.39. TON for the  $[Mo_3S_7(S_2CNEt_2)_3]^+$  catalyst at various concentrations.



Figure 3.40. MALDI-MS experiment during photolysis of  $[Mo_3S_7(S_2CNEt_2)_3]^+$ .

The continuation of this work was carried out by Dr. Fontenot as part of her dissertation.<sup>50</sup> She measured the hydrogen evolution ability for  $[Mo_3S_7(S_2CNR_2)_3]$  I,  $[Mo_3S_4(S_2CNR_2)_3]$  I, and  $[Mo_3S_4(S_2CNR_2)_4]$  clusters. Among these three types of catalysts,  $[Mo_3S_7(S_2CNR_2)_3]$  I produced more hydrogen in this photosystem. Moreover, there are three types of  $[Mo_3S_7(S_2CNR_2)_3]$  I: R= Me, Et, <sup>*i*</sup>Bu clusters were made and tested through in this photosystem. More soluble iBu type clusters ( $[Mo_3S_7(S_2CNR_2)_3]$  I) act as a maximally active catalyst in this photosystem. It produced over 300 TON hydrogen within 3 hours. Investigated which concentration of this catalyst produced more hydrogen in this system.



Figure 3.41. Hydrogen production at various concentrations of  $[Mo_3S_7(S_2CN^iBu_2)_3]^+$ .



Figure 3.42. Turnover number during 3-hour photolysis of  $[Mo_3S_7(S_2CN^iBu_2)_3]^+I^-$ .



**Figure 3.43**. Micromoles of hydrogen during 3-hour photolysis of  $[Mo_3S_7(S_2CN^iBu_2)_3]^+I^-$ .

From previous conclusions, my work was started. In my work, broad synthesis of  $[Mo_3Q_7L_3] +$ ; Q = (S or Se), L = (-S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>, -Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>, -S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>, -S<sub>2</sub>P(O<sup>*i*</sup>Pr)<sub>2</sub>) clusters were made to investigate hydrogen evolution activity in this photosystem. Here, especially <sup>*i*</sup>Bu or O<sup>*i*</sup>Pr type of clusters were made to increase the solubility of the catalyst in MeCN /H<sub>2</sub>O solvent set and 100 µM catalyst was used for permanent factor to find out maximally active catalyst.

The photolysis samples were illuminated in a home-built, multi-well photoreactor comprised of an Al cylinder equipped with blue LEDs (Solid Apollo, 24 W, 460 nm) mounted inside the cylinder wall in a uniform, spiral pattern. The Actinometry was carried out using the photooxidation of  $[Ru(bpy)_3]^{2+}$  by  $[S_2O_8]^{2-}$ . The 4 ml of photoreaction sample contained 8.5 mL dry MeCN, 1.0 mL H<sub>2</sub>O, and 0.5 mL dry THF with concentrations of 0.05 M for N,N-trimethylaniline, 260  $\mu$ M for  $[Ru(bpy)_3]Cl_2$ , 0.40 M for Et<sub>3</sub>N, and 100  $\mu$ M for the Mo-based catalysts. The photolysis samples were thoroughly

degassed by bubbling with Ar and sealed with screwcaps having PTFE/silicone septa, before irradiation. The 4.7 mL headspace volume was kept for each sample. After irradiation, a 50 µL sample of gas was extracted and injected into a gas chromatograph (Cow-Mac GC; Molecular Sieve Column, T= 35 0C; Carrier Gas: N<sub>2</sub>) for quantitative determination of the H<sub>2</sub> produced. The quantum yield for H<sub>2</sub> production per absorbed photon was measured as  $\Phi$ H<sub>2</sub> = 2(moles H<sub>2</sub> produced)/(moles photons) = 2*PV*H<sub>2</sub> /(*R* · *T* · *I* · *t*), where *V*H<sub>2</sub> is the volume of H<sub>2</sub> produced in the cell headspace, P = pressure in the headspace of the photolysis vial, R = gas constant, T = temperature, I = light intensity (quanta /s from actinometry) and t = irradiation time. Turnover numbers (TON) for H<sub>2</sub> production per catalyst were measured as: *TON*H<sub>2</sub> = (moles H<sub>2</sub> produced)/(moles Mocatalyst) = *PV*H<sub>2</sub> /(*R* · *T* · *n*Mo), where nMo = number of moles of Mo-catalyst in each sample.

#### **3.6.2 Results**

## 3.6.2.1 Photolysis of [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN

The same conditions ((100  $\mu$ M) Catalyst in 9:1 MeCN: H<sub>2</sub>O, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA, and 0.4M Et<sub>3</sub>N) were used as previously they used for [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I cluster. Although it has anionic effect, it shows median activity in hydrogen production. It produced 228 TON hydrogen whereas [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I produced 314 TON in a 3-hour photolysis. This apparently shows that, when its equatorial S was changed with high molar mass Se, decreases in hydrogen evolution activity in this photosystem.











**Figure 3.46**. photolysis measurement comparing [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>1</sup>Bu<sub>2</sub>)<sub>3</sub>] I, versus [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub> (S<sub>2</sub>CN<sup>1</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN

# 3.6.2.2 Photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

As this cluster compound has higher molar mass Se atoms in equatorial, axial, and apical positions, this shows less solubility in organic solvents. So, 0.5 ml THF was used to dissolve this cluster. Here 8.5 ml MeCN, 1.0 ml H<sub>2</sub>O and 0.5 ml THF were used as solvent. Other remaining conditions (100  $\mu$ M) Catalyst in 8.5:1:0.5 MeCN: H<sub>2</sub>O:THF, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA,and 0.4M Et<sub>3</sub>N are maintained same like previous photolysis. Due to its poor solubility, it showed modest hydrogen evolution reactivity in this photosystem. It produced 80 TON hydrogen in a 3-hour period. This is four times lower than [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] I cluster hydrogen evolution reactivity.



Figure 3.47. Turnover number during 3-hour photolysis of  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  +I







Figure 3.49. Photolysis measurement comparing  $[Mo_3S_7(S_2CN^iBu_2)_3]I$ , versus  $[MoSe_7(S_2CN^iBu_2)_3]I$ 

# 3.6.2.3 Photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I

As previously mentioned about solubility, this cluster having Se atom in all positions, was insoluble in MeCN:H<sub>2</sub>O = 9:1 solvent set. So above compound parameters were used for this cluster (100  $\mu$ M) Catalyst in 8.5:1.0:0.5 MeCN: H<sub>2</sub>O:THF, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA, and 0.4M Et<sub>3</sub>N in the photosystem. When the ligand position was changed from (S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub> to (Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>, it produced 100 TON hydrogen. This number is 20 TON higher than [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I compound produced in this photosystem. So external factors also affect its hydrogen production activity not only its equatorial and axial positions.



Figure 3.50. Turnover number during 3-hour photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] +I



**Figure 3.51**. Micromoles of hydrogen during 3-hour photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] +I



**Figure 3.52**. photolysis measurement comparing [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I versus [MoSe<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

Here within the same Mo<sub>3</sub>S<sub>7</sub> core cluster, like [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I only external ligand part was changed from (S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub> to (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>. However same conditions (100  $\mu$ M) Catalyst in 9:1 MeCN: H<sub>2</sub>O, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA,and 0.4M Et<sub>3</sub>N were applied like [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I, particularly, same solvent set were applied, it dissolved like [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I, it showed modest hydrogen evolution reaction activity was observed. It produced about 78 TON hydrogen in a 3-hour period. Compared with [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I cluster it produced 4 times less hydrogen evolution reaction activity. This compound produced the same amount of hydrogen as [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I.



Figure 3.53. Turnover number during 3-hour photolysis of  $[Mo_3S_7(S_2P^iBu_2)_3]$  +I



Figure 3.54. Micromoles of hydrogen during 3-hour photolysis of  $[Mo_3S_7(S_2P^iBu_2)_3]$  +I



Figure 3.55. photolysis measurement comparing  $[Mo_3S_7(S_2CN^iBu_2)_3] I$ , versus  $[Mo_3S_7(S_2P^iBu_2)_3] I$ .

# 3.6.2.5 Photolysis of [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

When Se was substituted instead of S atom, similar decreasing behavior was observed like dithiocarbamate compounds. Even though similar reaction conditions (100  $\mu$ M) Catalyst in 9:1 MeCN: H<sub>2</sub>O, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA, and 0.4 M Et<sub>3</sub>N were applied like [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I, it produced 65 TON hydrogen. Not a very drastic difference between [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I and [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in hydrogen production in this system was observed. Only 15 TON differentiates both compounds.



Figure 3.56. Turnover number during 3-hour photolysis of  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]^+I^-$ .



Figure 3.57. Micromoles of hydrogen during 3-hour photolysis of  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]^+I^-$ .



**Figure 3.58**. Photolysis measurement comparing [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I, versus [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

# 3.6.2.6 Photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I

The same photolysis conditions (100  $\mu$ M) Catalyst in 8.5:1.0:0.5 MeCN: H<sub>2</sub>O:THF, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA,and 0.4M Et<sub>3</sub>N used, except for the change in the solvent set, were applied in measuring the hydrogen evolution reaction activity of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I. as mentioned earlier, the solvent was changed to have 3 components, THF, MeCN,and H<sub>2</sub>O. Again, a similar pattern was observed like dithiocarbamate compounds, but here same amount of TON was reduced from [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I. It produced 50 TON hydrogen. The difference between all 3 compounds was the same. In this case, all 3 are the same type and there is no anion effect like dithiocarbamate

compounds. Compared with  $Mo_3S_7$  core cluster with dithiocarbamate compounds act as very active catalyst than  $Mo_3S_7$  coordinated with dithiophosphate clusters in this photosystem.



Figure 3.59. Turnover number during 3-hour photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I.









# 3.6.2.7 Photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P(O<sup>i</sup>Bu)<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P(O<sup>i</sup>Bu)<sub>2</sub>

As this compound is like a polar compound, the same solvent set was applied MeCN: H<sub>2</sub>O = 9:1. Moreover, same conditions (100  $\mu$ M) Catalyst in 9:1 MeCN:H<sub>2</sub>O, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA, and 0.4 M Et<sub>3</sub>N were applied to find out its hydrogen evolution reaction activity. Although, this compound has different anion than previous compounds, within the 3-hour photolysis this produced only 38 TON hydrogen.



**Figure 3.62**. Turnover number during 3-hour photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>)



**Figure 3.63**. Micromoles of hydrogen during 3-hour photolysis of [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>)

# 3.6.2.8 Anion effect between [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I and [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl

When Mo<sub>3</sub>S<sub>7</sub> core cluster coordinated with dithiocarbamate compound was changed in the anion factor from I<sup>-</sup> to very strong electronegativity Cl<sup>-</sup> atom, it showed very drastic difference in hydrogen evolution reaction activity and its solubility. [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl compound having higher solubility in organic solvents, especially in MeCN, it immediately dissolves in MeCN without any sonication than [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I. Even though, its dissolving ability in MeCN higher than [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I, the same 100  $\mu$ M catalyst was used and same other photolysis conditions (100  $\mu$ M) Catalyst in 9:1 MeCN: H<sub>2</sub>O, 260  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, 0.05 M TMA, and 0.4 M Et<sub>3</sub>N were implemented to measuring HER activity in this system. Surprisingly, it surpassed the previous record 300 TON hydrogen in 50 minutes, and it produced the highest TON hydrogen in this photolysis

system. This is one of the maximally active catalysts in the multicomponent system. 220 micromoles of hydrogen were observed within the 3-hour phtolysis and over 500 TON produced. Compared with  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I, its value was 1.6 times higher than  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I cluster produced in photosystem. This is apparently shown that this is the maximally active catalyst in this photosystem.



**Figure 3.64**. Turnover number during 3-hour photolysis of [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl



Figure 3.65. Micromoles of hydrogen during 3-hour photolysis of  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl



Figure 3.66. photolysis measurement comparing  $[Mo_3S_7(S_2CN^iBu_2)_3]~I$  , versus  $[Mo_3S_7~(S_2CN^iBu_2)_3]~Cl.$ 



Figure 3.67. Comparison of all clusters.

#### **3.7 Conclusion**

Preparation of broad  $[Mo_3Q_7L_3]^+$  complexes;  $L = (-S_2CN^iBu_2, -S_2CN^iBu_2, -S_2PiBu_2, -S_2Pi$  $S_2P(O^{i}Pr)_2) Q = (S \text{ or } Se)$  was achieved by developed new methods. Although, synthesis of  $[Mo_3S_7L_3]^+$  clusters having several methods, we developed a new method from Mo (CO)<sub>6</sub> that helps us to find out maximally active catalyst in our photosystem. However, for selenium analogs  $[Mo_3Se_7L_3]^+$ , there was only one method that was previously developed. As we developed one of the efficient pathways for  $[Mo_3Se_7L_3]^+$  clusters, we were able to make almost all types of  $[Mo_3Se_7L_3]^+$ clusters.  $(Se_2CN^iBu_2)$ Even from triseleno carbamate Se ligand.  $[Mo_3Se_7(Se_2CN^iBu_2)_3]$  I compound was made by using that method.

As we successfully made all  $[Mo_3Q_7L_3]$ <sup>+</sup> clusters, to learn what effects these differing compositions of molybdenum complexes as hydrogen evolution catalyst in a photosystem was achieved. Previous work by Dr. Fontenot provided a clear idea and proposed insight for ways to carryout effective photocatalytic activity in this photosystem.

Synthesis and analysis of broad varieties of the catalysts helped to explain their differing compositions directly correlated with photocatalytic activity in this photosystem. Moreover, it provided a clear analysis to figure out and design a most active catalyst particularly for our photosystem. There were 4 different ligands  $L = (-S_2CN^iBu_2, -S_2CN^iBu_2, -S_2P^iBu_2, -S_2P(O^iPr)_2)$  catalysts tested in this photosystem,  $(-S_2CN^iBu_2)$  ligand precursors produced more hydrogen than  $(-S_2P^iBu_2)$  ligand precursors.

The studies of insight compositions of these clusters in this photosystem clearly addressed that  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I clusters are active than  $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]$  SeCN and

 $[Mo_3Se_7(S_2CN^iBu_2)_3]$  I. Even though, the choice of solvent (MeCN:H<sub>2</sub>O =9:1) was same for both  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I and  $[Mo_3S_4Se_3(S_2CN^iBu_2)_3]$  SeCN clusters,  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I act as a active catalyst in this photosystem. Comparatively,  $[Mo_3Se_7(S_2CN^iBu_2)_3]$  I cluster having less solubility in this solvent system.

Another category composition anion effect provided an interesting and important thoughts to resolve many of the problems in the homogeneous systems. Here solubility is a very important factor as previously Dr. Fontenot provided to enhance the hydrogen production in this photosystem. The solubility difference between  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I and  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl, the  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl is readily soluble in MeCN than  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I and due to electronegativity behavior of Cl- is higher than I-,  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl become more positive than  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I.

The making of a new catalyst with more soluble behavior,  $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$ , made a new path to enhance the hydrogen within the 3-hours time. The new catalyst,  $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$  from new method that resulted produced much greatest activity with highest TONs. Among all types of clusters,  $[Mo_3S_7(S_2CN^iBu_2)_3] + clusters$  proved again that it is an active catalyst in homogeneous systems. Particularly,  $[Mo_3S_7(S_2CN^iBu_2)_3]Cl$  catalyst is a maximally active catalyst in the photosystem.

#### **3.8 References**

[1] C.D. Giovanni, A. Reyes-Carmona, A. Coursier, S. Nowak, J. Grenèche, H. Lecoq,
L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud, C. Tard, Low-cost nanostructured
iron sulfide electrocatalysts for PEM water electrolysis, *ACS Catal.* (2016), 6, 2626–2631.

[2] J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters, *Nat. Chem.* (2014), 6, 248–253.

[3] Z. Qin, Y. Chen, Z. Huang, J. Su, Z. Diao, L. Guo, Composition-dependent catalytic activities of noble-metal-free NiS/Ni3S4 for hydrogen evolution reaction, *J. Phys. Chem.* (2016), C 120, 14581–14589.

[4] N. Jiang, L. Bogoev, M. Popova, S. Gul, J. Yano, Y. Sun, Electrodeposited nickelsulfide films as competent hydrogen evolution catalysts in neutral water, *J. Mater. Chem.* (2014), 2, 19407–19414.

[5] J.O. Bockris, A.K.N. Reddy, A. K. N. Modern Electrochemistry, Springer Private Limited, New York, 2014.

[6] J.K. Norskov, C.H. Christensen, Toward efficient hydrogen production at surfaces, *Science*, (**2006**), 312, 1322–1323.

[7] D.Y. Chung, J.W. Han, D.H. Lim, J.H. Jo, S.J. Yoo, H. Lee, Y.E. Sung, Structure dependent active sites of NixSy as an electrocatalyst for hydrogen evolution reaction, *Nanoscale* (**2015**), 7, 5157–5163.

[8] C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Gratzel, X. Hu, Hydrogen evolution from a Copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst, *Nat. Commun.* (**2014**), 5 (3059) 1–7.

[9] J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity, *ACS Catal.* (**2012**), 2, 1916–1923.

[10] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, *J.Am. Chem. Soc.* (2013), 135, 10274–10277.

[11] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera,
Solar energy supply and storage for the legacy and nonlegacy worlds, *Chem. Rev.* (2010),
110, 6474–6502.

[12] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobaltbased

heterogeneous catalysts for electrochemical water splitting, *Adv. Mater.* (2016) ,28, 215–230.

[13] Angelici, R. J. Hydrodesulfurization and Hydrodenitrogenation. In *Encyclopedia of Inorganic Chemistry*; King, R. B., Ed.; Wiley: New York, **1994**; Vol. 3, pp 1433–1443.

[14] Smil, V. Enriching the Earth; MIT Press: Cambridge, MA, 2001.

[15] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch,
I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, *J. Am. Chem. Soc.* (2005), 127, 5308–5309.

[16] Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum Sulfides– Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution. *Energy Environ. Sci.* **2012**, *5*, 5577–5591.

[17] Guo, W.; Le, Q.V.; Do, H.H.; Hasani, A.; Tekalgne, M.; Bae, S.-R.; Lee, T.H.; Jang, H.W.; Ahn, S.H.; Kim, S.Y. Ni<sub>3</sub>Se<sub>4</sub>@MoSe<sub>2</sub> Composites for Hydrogen Evolution Reaction. *Appl. Sci.* 2019, *9*, 5035. https://doi.org/10.3390/app9235035.

[18] Bui, H.T.; Lam, N.D.; Linh, D.C.; Mai, N.T.; Chang, H.; Han, S.-H.; Oanh, V.T.K.;
Pham, A.T.; Patil, S.A.; Tung, N.T.; et al. Escalating Catalytic Activity for Hydrogen
Evolution Reaction on MoSe2@Graphene Functionalization. *Nanomaterials* 2023, 13, 2139. https://doi.org/10.3390/nano131421.

[19] Jing Yang, Jixin Zhu, Jingsan Xu, Chao Zhang, and Tianxi Liu ACS Applied Materials
& Interfaces 2017, 9 (51), 44550-44559 DOI: 10.1021/acsami.7b15854.

[20] Fontenot., P. R.; Shan., B.; Wang., B.; Simpson., S.; Ragunathan., G.; Green., A. F;
Obanda., A.; Hunt., L. N.; Hammer., N. I.; Webster., C. E.; Mague., J. T.; Schmehl., R. S.;
Donahue, J. P. Photocatalytic H2 Evolution by Homogeneous Molybdenum Sulfide
Clusters Supported by Ditiocarbamate Ligands. *Inorg. Chem.* 2019, 58, 16458-16474.

[21] W. Kuchen, K. Strolenberg, J. Metten Chem. Ber., (1963), 96, p. 1733.

[22] Marcoll, J.; Rabenau, A.; Mootz, D.; Wunderlich, H. Rev. Chim. Miner. 1974, 11, 607.

[23]Muller,A.;Pohl,S.;Dartmann,M.;Cohen,J.P.;Benett,J.M.;Kirchner,R.M.Z.*Naturforsch*.1979,34B,434.

[24] Meyer, B.; Wunderlich, H. Z. Naturforsch. 1982, 37B, 1437.

[25] Maoyu, B.S.; Jinling, H.; Jiaxi, L. Acta Crystallogr. 1984, C40, 759.

[26]Halbert, T.R.; McGauly, K.; Pan, W.H.; Scernuszewicz, R.S.; Stiefel, E.I.J. Am. Chem. Soc. 1 984,106,1849.

[27]Klingelhofer, P.; Mflller, U.; Friebel, C.; Pebler, J.Z. Anorg. Ailg. Chem. 1986, 543, 22.

[28]Fedin, V.P.; Sokolov, M.N.; Mironov, Y.V.; Kolesov, B.A.; Tkachev, S.V.; Fedorov, V.Y. *Inor* g. Chim. Acta **1990**, 167, 39.

[29]Hegetschweiler,K.;Keller,T.;Zimmermann,H.;Schneider,W.;Schmalle,H.;Dubler,E.*In* org.*Chim.Acta***1990**,169,235.

[30](a)Muller,A.;Reinsch,U.Angew.Chem.1980,92,69.(b)Keck,H.;Kuchen,W.;Mathow,J.; Wunderlich,H.Angew.Chem.1982,94,927.(c)Cotton,F.A.;Llusar,R.;Marler,D.O.;Schwotze r,W.*Inorg.Chim.Acta*1985,102,L25.

[31] Heinrich Zimmermann, Kaspar Hegetschweiler, Thomas Keller, Volker Gramlich, Helmut W. Schmalle, Walter Petter, and Walter Schneider *Inorganic Chemistry* 1991 *30* (23), 4336-4341 DOI: 10.1021/ic00023a010.

[32] V.P. Fedin, M.N. Sokolov, O.A. Geras'ko, A.V. Virovets, N.V.Podberezkaya, V.Ye.Fedorov, *Inorg. Chim. Acta* (1992), 192, 153.

[33] Keck, H., Kuchen, W., Mathow, J., Meyer, B., Mottz, D. &Wunderlich, H. Angew.*Chem. Int. Ed. Engl.* (1981), 20, 975-976.

[34] Yu, R. M.; Lu, S. F.; Huang, X. Y.; Wu, Q. J.; Huang, J. Q. Chin. J. Struct. Chem. 1998, 17(2), 137.

[35] LU, S. F., SUN, F. X., ZHU, Y. B., PENG, Y., LIANG, Y. C., LI, J. Q., ... & LU, C. Z. (2005). Synthesis, structural characterization and properties of a series of trinuclear molybdenum-sulfur cluster compounds. *Acta Chimica Sinica*, **1979**, *63*(21).

[36] V.P. Fedin, Y.V. Mironov, A.V. Virovets, N.V. Podberezkaya, V.Y. Fedorov, *Polyhedron* (**1992**), 11, 1959.

[37] M.D. Meienberger, K. Hegetschweiler, H. Ru<sup>"</sup> egger, V. Gram-lich, *Inorg. Chim. Acta* (**1993**), 213, 157.

[38] Liao Ju-Hsiou and M. G. Kanatzidis, /. Am. Chem.sot., (1990), 112, 7400.

[39] V. P. Fedin, M. N. Sokolov, K. G. Myakishev, O. A.Gevas'ko, V. Ye. Fedorov and J.Maciliek, *Polyhedron* (1991) in press.

[40] Fedin, V. P.; Sokolov, M. N.; Geras'ko, O. A.; Virovets, A. V.; Podberezkaya, N. V.Fedorov, V. Ye. *Inorg. Chim. Acta* 1991, *187*, 81.

[41] Almond, M. J., Drew, M. G. B., Redman, H., & Rice, D. A. A new simple synthetic route to  $M_3Se_7$  (M=Mo or W) core containing complexes: crystal structure and characterisation of  $[M_3(\mu_3-Se)(\mu-Se_2)_3(dtc)_3]_2Se$ . *Polyhedron* **2000**, *19*(20-21), 2127–2133. https://doi.org/10.1016/S0277-5387(00)00515-5.

[42] Gushchin, A. L.; Llusar, R.; Vicent, C.; Abramov, P. A.; Gómez-Garcia, C. J. Mo<sub>3</sub>Q<sub>7</sub>
 (Q = S, Se) Clusters Containing Dithiolate/Diselenolate Ligands: Synthesis, Structures, and

Their Use as Precursors of Magnetic Single-Component Molecular Conductors. *Eur. J. Inorg. Chem.* **2013**, 2615-2622. https://doi.org/10.1002/ejic.201201532.

[43] Lawton, S. L. The Crystal and Molecular Structure of Bis(O,O'diisopropylphosphorothionyl) Disulfide, [(*i*-C<sub>3</sub>H<sub>7</sub>O)<sub>2</sub>PS<sub>2</sub>]<sub>2</sub>. *Inorg. Chem.* **1970**, *9*. 2269-2274.

[44] Potrzebowski, M. J. Reibenspies, J. H.; Zhong, Z. X-Ray and <sup>31</sup>P CP MAS NMR Studies of Bis(Dialkoxythiophosphoryl) Disulfides. *Heterat. Chem.* **1993**, *2*, 455-460.

[45] Ivanov, A. V.; Korneeva, E. V.; Lutsenko, I. A.; Gerasimenko, A. V.; Antzutkin, O. N.; Larsson, A.-C.; Sergienko, V. I. A Fixation Mode of Gold from Solutions Using Heterogeneous Reaction of Cadmium Dicyclohexyl Dithiophosphate with H[AuCl4]. Structural and (<sup>13</sup>C, <sup>31</sup>P) CP/MAS NMR Studies and Thermal Behaviour of Crystalline Polymeric Gold(I) Dicyclohexyl Dithiophosphate and Bis(dicyclohexylthiophosphoryl) Disulphide. *J. Mol. Struct.* 2013, *1034*, 152-161.

[46] Gallacher, A. C.; Pinkerton, A. A. Structures of the Bis(diaryithiophosphoryl) Disulfides  $[Ph_2P(S)]_2S_2$  and  $[(PhO)_2P(S)]_2S_2$  and the Question of P--S  $\pi$  Bonding. *Acta Crystallogr., Sect. C* **1993**, *49*, 1793=1796.

[47] Gurnani, C.; Maheshwari, S.; Ratnani, R.; Drake, J. E. Crystal Structure of Bis[*O*,*O*'-di(*p*-tolyl)thiophosphoryl]disulfide, [(*p*-MeC<sub>6</sub>H<sub>4</sub>O)<sub>2</sub>PS<sub>2</sub>]<sub>2</sub>. *Anal. Sci.: X-Ray Struct. Anal. Online* **2008**, *24*, x197-x198.

[48] Mazaki, Y.; Kobayashi, K. Structure and Intramolecular Dynamics of Bis(diisobutylselenocarbamoyl) Triselenide as Identified in Solution by the <sup>77</sup>Se NMR Spectroscopy. *Tetrahedron Lett.* **1989**, *30*(21), 2813-2816.

[49] Shan, B. Photoinduced Electron Transfer Systems For Generation Of Strong Reductants / Oxidants And Their Applications In Solar Fuel Generation:: Tulane University Theses and Dissertations Archive, Tulane University.

 [50] Fontenot, P. Synthesis, Characterization and Photocatalytic – Activity Of Homogeneous Molybdenum Sulfide Complexes Serving Hydrogen Evolution Catalyts:
 Tulane University Theses and Dissertations Archive, Tulane University.

# Chapter 4

# Synthesis of a Phosphonate-Substituted Dithiocarbamate Ligand for Surface Immobilization of Mo<sub>3</sub> Sulfide Catalysts

#### 4.1 Introduction

As noted in Chapter 3, we have shown that clusters of the type  $[Mo_3S_7(S_2CN'Bu_2)_3]^+$ , which are derived from Mo(CO)<sub>6</sub>, are precursors to fairly active homogeneous catalysts for H<sub>2</sub> formation under photolysis. Thus far, no method has been developed for surface attachment of discrete molybdenum sulfide clusters to electrode surfaces via covalent bonds. Here, we propose the chemical immobilization of  $[Mo_3S_7(S_2CNR_2)_3]^+$  onto a Cu<sub>2</sub>O photocathode surface. When chemically tethered to an electrode surface, a well-defined small molecule redox catalyst can enjoy the kinetic advantage of restricted proximity to the source of reducing equivalents. The methyl phosphate functional group,  $(HO)_2P(O)CH_2$ -,



**Figure 4.1.** (Left) A Re catalysts for  $CO_2$  reduction immobilized onto a  $Cu_2O$  photocathode by a bipyridyl ligand functionalized with phosphate groups. Reproduced with permission from American Chemical Society. (Right) A proposed  $[Mo_3S_7]^{4+}$  cluster functionalized with a phosphate-substituted dithiocarbamate ligand.



Scheme 4.1. A proposed synthesis of an asymmetric phosphate-substituted dithiocarbamate ligand for surface immobilization.
has been incorporated into 2,2'-bipyridine<sup>1</sup> (Figure 4.1, left) and 1,10 phenanthroline<sup>2</sup>
ligands for the tethering of a metal complex to an oxide surface and is therefore a well-

vetted choice as anchoring unit.

### 4.2 Physical Methods and General Considerations

All NMR spectra were obtained at 25 C with a Bruker-400 MHz spectrometer with a  $\delta$  (ppm) scale and TMS (= 0 ppm) as an internal standard. The ESI-MS spectra were recorded on a micrOTOF 11 Bruker Daltonics instrument. Solvents for synthesis were dried with a system of drying columns from the Glass Contour Company (CH<sub>2</sub>Cl<sub>2</sub>, THF, Et<sub>2</sub>O). The anhydrous solvents (DMF, EtOH) were purchased from commercial sources. All other reagents where commercially available products were used without further purification.

#### **4.3 Result and Discussion**

Herein, a synthesis procedure for the surface-tethering of a  $[Mo_3S_7(S_2CN'Bu_2)_3]^+$  type cluster is described (**Scheme 4.1**). Beginning with commercially available 1,4bis(bromoethyl)benzene ((**a**), **Scheme 4.1**), a Michaelis-Arbuzov condensation followed by  $S_N2$  reaction with benzyl amine and triethylamine (base) produces the asymmetric dibenzyl amine shown as (**c**) in **Scheme 4.1** Treatment of (**c**) with carbon disulfide followed by a typical oxidation protocol for tetrathiuram disulfide synthesis should yield (**d**). Dealkylation of phosphonate (**d**) with TMSBr, MeOH and water is intended to produced phosphonic acid (**e**). Compound (**e**) would serve as an immediate precursor to an *N*,*N*dialkyldithiocarbamate ligand when introduced to  $[Mo_3S_{13}]^{2-}$  complex (**g**).



Scheme 4.2. Synthesis of diethyl *P*-[[4-(bromomethyl)phenyl]methyl]phosphonate, which is targeted as precursor to phosphate-substituted-dithiocarbamate.



Figure 4.2. <sup>1</sup>H NMR spectrum in  $CDCl_3$  of diethyl *P*-[[4-(bromomethyl)phenyl]methyl]phosphonate.

Compound (**b**)<sup>3</sup> was prepared by refluxing commercially available *p*-xylene dibromide with 1 equivalent of triethylphosphite at 80-90°C for 3 hours. The remaining triethylphosphite was then removed by vacuum distillation. A small quantity of MeOH was added to the mixture, and unreacted *p*-xylene dibromide was then separated by filtration. Then the remaining oily material was purified by silica column chromatography (3:7/EtOAc:hexanes) to afford (**b**) in **Scheme 4.2** as a pale yellow oil (61%), as gauged by <sup>1</sup>H NMR spectroscopy (**Figure 4.2**).

In the next step (**Scheme 4.3**), compound (**b**) (2.35 g) was treated with 1 equivalent of benzyl amine (0.79 mL) in the presence of 1 equivalent of NEt<sub>3</sub> (1 mL), activated powered



Scheme 4.3. Synthesis of diethyl [[4-[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c).

4 Å activated powdered molecular sieves (1 g)(optional) and dry DMF (30 mL) at 20-25°C for one day. The solids were separated by filtration and washed with EtOAc. The crude product collected from the filtrate was purified by silica column chromatography (EtOAc:EtOH /9.9:0.1). Before the crude product mixture was loaded onto the column, 4 drops of NEt<sub>3</sub> were used to wash the silica (3 times) to prevent the amine from sticking to the silica. Compound (c) was obtained as a pale-yellow oil (65%) and separated from the tertiary amine (30%), which was also a yellow oil. Initial analysis of the reaction mixture by mass spectrometry showed the presence of both components, and mass spectrometry and <sup>1</sup>H NMR and <sup>31</sup>P NMR spectroscopy of the purified compounds confirmed their identities (**Figures 4.3-4.8**).


Figure 4.3. ESI mass spectrum of diethyl [[4-[[(phenylmethyl)amino]methyl]phenyl]methyl] pho: p xylene phospanate(amine, yellow oil).8.fid



Figure 4.4. <sup>1</sup>H NMR spectrum of diethyl [[4-[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (c).



**Figure 4.5**. <sup>31</sup>P NMR spectrum of diethyl [[4-[[(phenylmethyl)amino]methyl]phenyl]methyl] phosphonate, (**c**).



Figure 4.6. ESI mass spectrum of bis([benzyl-4-methyl]diethylphosphonate) benzylamine.





Figure 4.7. <sup>1</sup>H NMR spectrum of bis([benzyl-4-methyl]diethylphosphonate) benzylamine.

Figure 4.8. <sup>31</sup>P NMR spectrum of bis([benzyl-4-methyl]diethylphosphonate) benzylamine.



Scheme 4.4. Synthesis of tetrathiuram disulfide (d).

2 equivalents of compound (c) (0.4 g) and 1 equivalent of carbon disulfide (0.044 g, 0.04 mL) were mixed in 20 mL of absolute EtOH. This mixture was stired for 1 h at ambient temperature, and the solution was then refluxed at 90 °C under a N<sub>2</sub> atmosphere. Half an equivalent of solid I<sub>2</sub> (0.07 g) was added to the reaction mixture, and stirring was continued overnight. The mixture was cooled to room temperature, and the solvent was removed under reduced pressure to efford an oily residue. This residue was extracted with EtOAc (3 x 10 mL) and filtered through paper. A yellow oil was obtained upon removal of the solvent. The identity of the product obtained from the reaction illustrated in **Scheme 4.4** was assessed by NMR spectroscopy (**Figure 4.9**).



Figure 4.9. <sup>1</sup>H NMR spectrum of product from reaction targeting tetrathiuram disulfide (d).



Scheme 4.5. Synthesis targeting tetrathiuram disulfide (e).

One equivalent of the compound presumed to be (d) (0.3785 g) was added to a round bottom flask with 15 mL of dry CH<sub>2</sub>Cl<sub>2</sub>. The reaction mixture was stirred for 15 minutes. Then 6 equivalents of Me<sub>3</sub>SiBr (0.355 mL) were added, and it was sealed with a greased stopper. Stirring of the reaction was continued overnight at room temperature, and the solvent was then removed under reduced pressure. A yellow oily material was observed. Water and methanol were added. The flask was sealed with rubber septum, and a needle was inserted to vent any pressure build-up of volatiles. Then it was allowed to stir at room temperature overnight. A pale yellow solution was observed. The solvent was then evaporated overnight under a steady stream of air. The crude residue was washed with EtOAc to remove a yellow oily material and leave behind a white crude solid. This white crude solid was recrystallized from MeCN to afford white needle crystals.



Scheme 4.6. Alternative synthetic route to Mo<sub>3</sub> cluster

## 4.4 Future Work

The targeted synthesis of cluster (**j**) might be accomplished by an alternate route that involves reaction between the dithiocarbamate salt (**h**) and  $[Mo_3S_7Br_6]^{2-}$ , as illustrated in **Scheme 4.6**. If cluster (**j**) can be accessed, then its homogeneous catalytic activity will be

assessed, and samples of it will be provided to Prof. Shanlin Pan, a collaborator at the University of Alabama, who will undertake photoelectrocatalytic studies of the cluster immobilized onto a Cu<sub>2</sub>O electrode.

## 4.5 References

 Schreier, M. Luo, J.; Gao, P.; Moehl, T.; Mayer, M. T.; Grätzel, M. Covalent Immobilization of a Molecular Catalyst on Cu<sub>2</sub>O Photocathodes for CO<sub>2</sub> Reduction. *J. Am. Chem. Soc.* **2016**, *138*(6), 1938-1946.

(2) Mitrofanov, A.; Brandès, S.; Herbst, F.; Rigolet, S.; Bessmertnykh-Lemeune, A;
Beletskaya, I. Immobilization of Copper Complexes with (1,10Phenenthrolinyl)phosphonates on Titania Supports for Sustainable Catalysts. *J. Mater. Chem. A* 2017, *5*, 12216-12235.

(3) Garbay-Jaureguiberry, C.; McCort-Tranchepain, I.; Barbe, B.; Ficheux, D.; Roques, B.
P. Improved Synthesis of [p-Phosphono and p-Sulfo]methylphenylalanine. Resolution of [p-Phosphono-, p-Sulfo, and p-Carboxy and p-N-Hydroxycarboxamido-]methylphenylalanine. *Tetrahedron: Asymmetry* **1992**, 3(5), 637-650.

(4) Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y., An Efficient Method for Synthesis of 4-(Phosphonomethyl)benzene Derivatives Under Solvent-Free Conditions. *Synth. Commun.* **2004**, *34*(6), 1017-1022.

## Appendices

Supporting Spectra and Crystallographic Data



Figure B-3 <sup>1</sup>H NMR spectrum of complex Cy<sub>2</sub>NCSSSSCNCy<sub>2</sub> in Chapter 2



Figure B-2<sup>13</sup>C NMR spectrum of complex Cy<sub>2</sub>NCSSSSCNCy<sub>2</sub> in Chapter 2



Figure C-4 <sup>1</sup>H NMR spectrum of complex K[S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>] in Chapter 3



Figure C-5 <sup>13</sup>C NMR spectrum of complex K[S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>] in Chapter 3



Figure C-6 <sup>31</sup>P NMR spectrum of complex K[S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>] in Chapter 3



Figure C-4 <sup>1</sup>H NMR spectrum of complex (<sup>*i*</sup>PrO)2P(=S)SSP(=S)(O<sup>*i*</sup>Pr)2 in Chapter 3



Figure C-5<sup>13</sup>C NMR spectrum of complex (<sup>*i*</sup>PrO)<sub>2</sub>P(=S)SSP(=S)(O<sup>*i*</sup>Pr)<sub>2</sub> in Chapter 3



Figure C-6<sup>31</sup>P NMR spectrum of complex (<sup>*i*</sup>PrO)2P(=S)SSP(=S)(O<sup>*i*</sup>Pr)2 in Chapter 3



**Figure C-7** <sup>1</sup>H NMR spectrum of complex <sup>*i*</sup>Bu2NC(=Se)SeSeSeC(=S)N<sup>*i*</sup>Bu2 in Chapter 3



**Figure C-8** <sup>13</sup>C NMR spectrum of complex <sup>*i*</sup>Bu2NC(=Se)SeSeSeC(=S)N<sup>*i*</sup>Bu2 in Chapter 3



Figure C-9 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-10 UV-VIS spectrum of complex  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I in Chapter 3



Figure C-11 Raman spectrum of complex  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I in Chapter 3



Figure C-12 <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_7(S_2CN^iBu_2)_3]$  I in Chapter 3



Figure C-13 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-14 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-15 UV-VIS spectrum of complex  $[Mo_3S_7(S_2CN^iBu_2)_3]$  Cl in Chapter 3



Figure C-16 Raman spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-17 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-18<sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-19 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN in Chapter 3



Figure C-20 UV-VIS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN in Chapter 3



Figure C-21 Raman spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN in Chapter 3



Figure C-22 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN in Chapter 3



Figure C-23 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] SeCN in Chapter 3



Figure C-24 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Se in Chapter 3



Figure C-25 UV-VIS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]<sub>2</sub> Se in Chapter 3



Figure C-26 Raman spectrum of complex  $[Mo_3S_7(S_2CN'Bu_2)_3]_2$ Se in Chapter 3



Figure C-27 <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_7(S_2CN^iBu_2)_3]_2$ Se in Chapter 3



Figure C-28 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Se in Chapter 3



Figure C-29 ESI-MS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-30 UV-VIS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>'</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-31 Raman spectrum of complex  $[Mo_3Se_7(S_2CN'Bu_2)_3]$  I in Chapter 3



Figure C-32 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-33 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-34 ESI-MS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>/</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-35 UV-VIS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-36 Raman spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-37 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>'</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-38 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] Cl in Chapter 3



Figure C-39 ESI-MS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



**Figure C-40** UV-VIS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter



Figure C-41 Raman spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>'</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-42 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>'</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-43 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>'</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-44 ESI-MS spectrum of complex  $[Mo_3S_7(S_2P^iBu_2)_3]$   $(S_2P^iBu_2)$  in Chapter 3



Figure C-45 UV-VIS spectrum of complex  $[Mo_3S_7(S_2P^iBu_2)_3] (S_2P^iBu_2)$  in Chapter 3



Figure C-46 Raman spectrum of complex  $[Mo_3S_7(S_2P^iBu_2)_3] (S_2P^iBu_2)$  in Chapter 3



Figure C-47 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-48 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-49 <sup>31</sup>P NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-50 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-51 UV-VIS spectrum of complex  $[Mo_3S_7(S_2P'Bu_2)_3]$  I in Chapter 3


Figure C-52 Raman spectrum of complex  $[Mo_3S_7(S_2P'Bu_2)_3]$  I in Chapter 3



Figure C-53 <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_7(S_2P^iBu_2)_3]$  I in Chapter 3



Figure C-54 <sup>13</sup>C NMR spectrum of complex  $[Mo_3S_7(S_2P'Bu_2)_3]$  I in Chapter 3



Figure C-55 <sup>31</sup>P NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-56 ESI-MS spectrum of complex  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]$  I in Chapter 3



Figure C-57 UV-VIS spectrum of complex [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-58 Raman spectrum of complex [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-59 <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]$  I in Chapter 3



Figure C-60 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P'Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-61 <sup>31</sup>P NMR spectrum of complex [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P'Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-62 ESI-MS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-63 UV-VIS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-64 Raman spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-65 <sup>1</sup>H NMR spectrum of complex  $[Mo_3Se_7(S_2P'Bu_2)_3] (S_2P'Bu_2)$  in Chapter 3



Figure C-66 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] (S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>) in Chapter 3



Figure C-67 <sup>31</sup>P NMR spectrum of complex  $[Mo_3Se_7(S_2P'Bu_2)_3] (S_2P'Bu_2)$  in Chapter 3



Figure C-68 ESI-MS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-69 UV-VIS spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-70 Raman spectrum of complex  $[Mo_3Se_7(S_2P^iBu_2)_3]$  I in Chapter 3



Figure C-71  $^1\text{H}$  NMR spectrum of complex  $[\text{Mo}_3\text{Se}_7(\text{S}_2\text{P}^i\text{Bu}_2)_3]$  I in Chapter 3



Figure C-72 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter 3



Figure C-73 <sup>1</sup>H NMR spectrum of complex [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>] I in Chapter





Figure C-74 ESI-MS spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>((S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>))<sub>3</sub>] (S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>) Chapt

Figure C-75 UV-VIS spectrum of complex  $[Mo_3S_7((S_2P(^iPrO)_2))_3] (S_2P(^iPrO)_2)$  in Chapter 3





Figure C-76 Raman spectrum of complex  $[Mo_3S_7((S_2P(^iPrO)_2))_3] (S_2P(^iPrO)_2)$  in Chapter 3

Figure C-77 <sup>1</sup>H NMR spectrum of complex  $[Mo_3S_7((S_2P(^iPrO)_2))_3] (S_2P(^iPrO)_2)$  in Chapter 3



**Figure C-79** <sup>31</sup>P NMR spectrum of complex  $[Mo_3S_7((S_2P(^iPrO)_2))_3] (S_2P(^iPrO)_2)$ in Chapter 3

Figure C-78 <sup>13</sup>C NMR spectrum of complex [Mo<sub>3</sub>S<sub>7</sub>((S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>))<sub>3</sub>] (S<sub>2</sub>P(<sup>i</sup>PrO)<sub>2</sub>)in Chapter 3



## Structure Determination Summary



Thermal ellipsoid plot is drawn at the 30% level. All H atoms are omitted for clarity.

Table A.1. Crystal Data and Structure Refinement for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>

| Identification code  | JPD926_0m_a          | JPD926_0m_a                     |  |  |
|----------------------|----------------------|---------------------------------|--|--|
| Empirical formula    | $C_{26}H_{44}N_2S_4$ | $C_{26}H_{44}N_2S_4$            |  |  |
| Formula weight       | 512.87               | 512.87                          |  |  |
| Temperature          | 298(2) K             |                                 |  |  |
| Wavelength           | 0.71073 Å            |                                 |  |  |
| Crystal system       | Triclinic            |                                 |  |  |
| Space group          | <i>P</i> -1          |                                 |  |  |
| Unit cell dimensions | a = 12.8612(11) Å    | $\alpha = 109.9650(10)^{\circ}$ |  |  |
|                      | b = 13.1642(11)  Å   | $\beta = 97.9220(10)^{\circ}$   |  |  |

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size  $\theta$  range for data collection Index ranges Reflections collected Independent reflections Completeness to  $\theta = 25.242^{\circ}$ Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on  $F^2$ Final R indices  $[I \ge 2\sigma(I)]$ R indices (all data) Extinction coefficient Largest diff. peak and hole

c = 18.3871(16) Å  $\gamma = 90.4460(10)^{\circ}$ 2893.0(4) Å<sup>3</sup> 4  $1.178 \text{ g/cm}^3$ 0.345 mm<sup>-1</sup> 1112 0.397 x 0.357 x 0.083 mm<sup>3</sup> 1.667 to 25.725°  $-15 \le h \le 15, -16 \le k \le 15, -22 \le l \le 22$ 22600 10898 [R(int) = 0.0582]99.2 % None Full-matrix least-squares on  $F^2$ 10898 / 12 / 557 0.965 R1 = 0.0536, wR2 = 0.0680R1 = 0.1276, wR2 = 0.0716n/a 0.339 and -0.331 e·Å<sup>-3</sup>

| Atom  | Х        | У       | Z       | U(eq)  |
|-------|----------|---------|---------|--------|
| S(1)  | 6808(1)  | 2656(1) | 1984(1) | 64(1)  |
| S(2)  | 5945(1)  | 2310(1) | 3322(1) | 72(1)  |
| S(3)  | 5303(1)  | 3680(1) | 3306(1) | 75(1)  |
| S(4)  | 3973(1)  | 2003(1) | 1948(1) | 78(1)  |
| S(5)  | -1107(1) | 7709(1) | 2056(1) | 67(1)  |
| S(6)  | 329(1)   | 7374(1) | 3386(1) | 67(1)  |
| S(7)  | 972(1)   | 8705(1) | 3307(1) | 69(1)  |
| S(8)  | 1696(1)  | 6959(1) | 1973(1) | 77(1)  |
| N(1)  | 7473(2)  | 1222(2) | 2662(2) | 43(1)  |
| N(2)  | 3514(2)  | 4081(2) | 2578(2) | 55(1)  |
| N(3)  | -1441(2) | 6193(2) | 2689(2) | 44(1)  |
| N(4)  | 2456(2)  | 9019(2) | 2533(2) | 59(1)  |
| C(1)  | 7582(3)  | 874(3)  | 3349(2) | 50(1)  |
| C(2)  | 8705(3)  | 855(3)  | 3699(2) | 71(1)  |
| C(3)  | 8759(3)  | 602(4)  | 4445(2) | 92(1)  |
| C(4)  | 8192(4)  | -454(4) | 4305(2) | 100(2) |
| C(5)  | 7053(3)  | -482(3) | 3934(3) | 95(2)  |
| C(6)  | 6976(3)  | -191(3) | 3187(2) | 65(1)  |
| C(7)  | 8040(2)  | 589(3)  | 2016(2) | 46(1)  |
| C(8)  | 9021(2)  | 1214(3) | 1953(2) | 64(1)  |
| C(9)  | 9626(3)  | 439(3)  | 1349(2) | 77(1)  |
| C(10) | 8937(3)  | -91(3)  | 570(2)  | 82(1)  |
| C(11) | 7972(3)  | -679(3) | 653(2)  | 72(1)  |
| C(12) | 7369(2)  | 68(3)   | 1251(2) | 59(1)  |
| C(13) | 6847(2)  | 2010(3) | 2598(2) | 46(1)  |
| C(14) | 4138(2)  | 3255(3) | 2549(2) | 54(1)  |
| C(15) | 2664(3)  | 4008(3) | 1946(3) | 70(1)  |
| C(16) | 2932(3)  | 3849(3) | 1168(2) | 85(1)  |
| C(17) | 2040(3)  | 3944(3) | 584(2)  | 84(1)  |
| C(18) | 1038(3)  | 3343(4) | 592(3)  | 109(2) |
| C(19) | 769(3)   | 3490(3) | 1363(3) | 82(1)  |
| C(20) | 1670(3)  | 3381(3) | 1946(2) | 68(1)  |
| C(21) | 3659(3)  | 5128(3) | 3244(2) | 67(1)  |
| C(22) | 4224(3)  | 5990(3) | 3063(2) | 66(1)  |
| C(23) | 4435(3)  | 7010(3) | 3758(3) | 100(2) |
| C(24) | 3545(4)  | 7354(3) | 4203(3) | 110(2) |
| C(25) | 3015(3)  | 6468(4) | 4367(2) | 93(2)  |
| C(26) | 2758(3)  | 5499(3) | 3657(2) | 94(2)  |

5583(3)

2048(2)

45(1)

C(27)

-2271(2)

**Table A.2**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | У         | Z       | U(eq)  |
|--------|----------|-----------|---------|--------|
| C(28)  | -1905(2) | 5112(3)   | 1263(2) | 55(1)  |
| C(29)  | -2739(3) | 4364(3)   | 659(2)  | 73(1)  |
| C(30)  | -3758(3) | 4924(3)   | 595(2)  | 78(1)  |
| C(31)  | -4122(3) | 5407(3)   | 1396(2) | 70(1)  |
| C(32)  | -3279(2) | 6189(3)   | 1997(2) | 61(1)  |
| C(33)  | -1206(2) | 5744(3)   | 3323(2) | 48(1)  |
| C(34)  | -653(2)  | 4691(3)   | 3064(2) | 59(1)  |
| C(35)  | -354(3)  | 4294(3)   | 3743(2) | 77(1)  |
| C(36)  | -1300(3) | 4207(3)   | 4137(2) | 79(1)  |
| C(37)  | -1831(3) | 5259(3)   | 4390(2) | 75(1)  |
| C(38)  | -2161(2) | 5645(3)   | 3701(2) | 62(1)  |
| C(39)  | -860(2)  | 7042(3)   | 2653(2) | 45(1)  |
| C(40)  | 1810(2)  | 8213(3)   | 2547(2) | 49(1)  |
| C(41A) | 2590(6)  | 10136(5)  | 3303(5) | 48(2)  |
| C(42A) | 1962(7)  | 10933(7)  | 3141(6) | 45(3)  |
| C(43A) | 2072(7)  | 12007(7)  | 3818(6) | 84(3)  |
| C(44A) | 3098(6)  | 12385(6)  | 4153(5) | 75(3)  |
| C(45A) | 3822(6)  | 11233(8)  | 4310(5) | 64(3)  |
| C(46A) | 3729(6)  | 10519(7)  | 3615(4) | 69(3)  |
| C(41B) | 2711(7)  | 10023(8)  | 2971(7) | 44(3)  |
| C(42B) | 1876(11) | 10949(12) | 2928(9) | 89(6)  |
| C(43B) | 2256(11) | 11979(9)  | 3549(8) | 83(5)  |
| C(44B) | 2881(11) | 12013(12) | 4376(7) | 107(5) |
| C(45B) | 3597(10) | 11643(10) | 4353(7) | 67(4)  |
| C(46B) | 3301(8)  | 10076(8)  | 3774(5) | 60(4)  |
| C(47A) | 3095(6)  | 9042(10)  | 2006(6) | 62(3)  |
| C(48A) | 2496(6)  | 8739(9)   | 1156(4) | 61(3)  |
| C(49A) | 3335(10) | 8827(10)  | 544(7)  | 77(4)  |
| C(50A) | 4175(7)  | 8289(10)  | 608(5)  | 83(3)  |
| C(51A) | 4788(6)  | 8540(9)   | 1455(6) | 61(3)  |
| C(52A) | 4122(7)  | 8492(7)   | 1914(6) | 51(3)  |
| C(47B) | 2988(7)  | 8633(11)  | 1721(8) | 47(3)  |
| C(48B) | 2758(9)  | 9291(12)  | 1234(6) | 68(4)  |
| C(49B) | 3093(12) | 8977(14)  | 586(10) | 95(7)  |
| C(50B) | 4480(9)  | 8846(13)  | 736(7)  | 94(4)  |
| C(51B) | 4621(9)  | 8132(11)  | 1165(9) | 75(4)  |
| C(52B) | 4078(10) | 8360(11)  | 2081(8) | 73(5)  |

**Table A.2, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2 x 10^3$ ) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| S(1) C(12)                  | 1 675(2)               | C(7) II(7)                             | 0.0900               |
|-----------------------------|------------------------|----------------------------------------|----------------------|
| S(1)-C(13)<br>S(2) C(13)    | 1.025(3)<br>1.820(3)   | C(7)-H(7)<br>C(8) C(0)                 | 0.9800<br>1 535(4)   |
| S(2) - C(15)<br>S(2) - S(2) | 1.030(3)               | C(8) H(8A)                             | 1.333(4)             |
| S(2)-S(3)<br>S(3) C(14)     | 1.9900(12)<br>1.927(2) | $C(0)$ - $\Pi(0A)$<br>$C(2)$ $\Pi(2B)$ | 0.9700               |
| S(3)-C(14)<br>S(4) C(14)    | 1.037(3)<br>1.622(3)   | $C(0) - \Pi(0B)$                       | 1.511(4)             |
| S(4)-C(14)<br>S(5) C(30)    | 1.033(3)<br>1.626(3)   | C(9) - C(10)<br>C(0) H(0A)             | 0.0700               |
| S(3)-C(39)<br>S(6) C(39)    | 1.020(3)<br>1.834(3)   | C(9)- $H(9R)$                          | 0.9700               |
| S(0) - C(39)<br>S(6) S(7)   | 1.034(3)<br>1.0005(12) | C(10) C(11)                            | 1 510(4)             |
| S(0)-S(7)<br>S(7) C(40)     | 1.9903(12)<br>1.828(3) | C(10) - C(11)<br>C(10) + U(10A)        | 0.0700               |
| S(7) - C(40)<br>S(8) C(40)  | 1.620(3)<br>1.620(3)   | C(10) - H(10R)                         | 0.9700               |
| S(0)-C(40)<br>N(1) C(13)    | 1.020(3)<br>1.345(3)   | $C(10) - \Pi(10B)$<br>C(11) C(12)      | 1.512(4)             |
| N(1)-C(13)<br>N(1)-C(1)     | 1.343(3)<br>1.474(3)   | C(11)-C(12)<br>C(11)-H(11A)            | 0.9700               |
| N(1)-C(7)                   | 1.47+(3)<br>1.486(3)   | C(11)-H(11R)                           | 0.9700               |
| N(1) - C(1/4)               | 1.400(3)<br>1.348(4)   | $C(12)-H(12\Delta)$                    | 0.9700               |
| N(2)-C(14)<br>N(2)-C(15)    | 1.5+0(+)<br>1.458(4)   | C(12)-H(12R)                           | 0.9700               |
| N(2)-C(21)                  | 1.430(4)<br>1.489(4)   | $C(12)-\Pi(12D)$<br>C(15)-C(16)        | 1.463(A)             |
| N(2)-C(21)<br>N(3)-C(39)    | 1.407(4)<br>1.365(3)   | C(15)-C(20)                            | 1.403(4)<br>1.517(4) |
| N(3)-C(33)                  | 1.505(3)<br>1 475(3)   | C(15) - H(15)                          | 0 9800               |
| N(3) - C(27)                | 1.473(3)<br>1 473(3)   | C(16)- $C(17)$                         | 1496(4)              |
| N(4)-C(41R)                 | 1.475(3)<br>1 302(10)  | C(16) - H(16A)                         | 0 9700               |
| N(4) - C(40)                | 1 352(10)              | C(16) - H(16R)                         | 0.9700               |
| N(4)-C(47A)                 | 1.361(8)               | C(17)-C(18)                            | 1.511(4)             |
| N(4)-C(41A)                 | 1.501(0)               | C(17)-H(17A)                           | 0 9700               |
| N(4)-C(47B)                 | 1.651(11)              | C(17)-H(17B)                           | 0.9700               |
| C(1)-C(2)                   | 1.502(4)               | C(18)-C(19)                            | 1.455(4)             |
| C(1)-C(6)                   | 1.515(4)               | C(18) - H(18A)                         | 0.9700               |
| C(1)-H(1)                   | 0.9800                 | C(18)-H(18B)                           | 0.9700               |
| C(2)-C(3)                   | 1.510(4)               | C(19)-C(20)                            | 1.508(4)             |
| C(2)-H(2A)                  | 0.9700                 | C(19)-H(19A)                           | 0.9700               |
| C(2)-H(2B)                  | 0.9700                 | C(19)-H(19B)                           | 0.9700               |
| C(3)-C(4)                   | 1.490(5)               | C(20)-H(20A)                           | 0.9700               |
| C(3)-H(3A)                  | 0.9700                 | C(20)-H(20B)                           | 0.9700               |
| C(3)-H(3B)                  | 0.9700                 | C(21)-C(26)                            | 1.468(4)             |
| C(4)-C(5)                   | 1.523(4)               | C(21)-C(22)                            | 1.496(4)             |
| C(4)-H(4A)                  | 0.9700                 | C(21)-H(21)                            | 0.9800               |
| C(4)-H(4B)                  | 0.9700                 | C(22)-C(23)                            | 1.496(4)             |
| C(5)-C(6)                   | 1.538(4)               | C(22)-H(22A)                           | 0.9700               |
| C(5)-H(5A)                  | 0.9700                 | C(22)-H(22B)                           | 0.9700               |
| C(5)-H(5B)                  | 0.9700                 | C(23)-C(24)                            | 1.483(5)             |
| C(6)-H(6A)                  | 0.9700                 | C(23)-H(23A)                           | 0.9700               |
| C(6)-H(6B)                  | 0.9700                 | C(23)-H(23B)                           | 0.9700               |
| C(7)-C(12)                  | 1.480(4)               | C(24)-C(25)                            | 1.482(5)             |
| C(7)-C(8)                   | 1.540(4)               | C(24)-H(24A)                           | 0.97                 |

**Table A.3**. Bond lengths (Å) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(24)-H(24B)  | 0.9700    | C(42A)-C(43A) | 1.522(11) |
|---------------|-----------|---------------|-----------|
| C(25)-C(26)   | 1.477(4)  | C(42A)-H(42A) | 0.9700    |
| C(25)-H(25A)  | 0.9700    | C(42A)-H(42B) | 0.9700    |
| C(25)-H(25B)  | 0.9700    | C(43A)-C(44A) | 1.387(12) |
| C(26)-H(26A)  | 0.9700    | C(43A)-H(43A) | 0.9700    |
| C(26)-H(26B)  | 0.9700    | C(43A)-H(43B) | 0.9700    |
| C(27)-C(28)   | 1.506(4)  | C(44A)-C(45A) | 1.869(13) |
| C(27)-C(32)   | 1.536(4)  | C(44A)-H(44A) | 0.9700    |
| C(27)-H(27)   | 0.9800    | C(44A)-H(44B) | 0.9700    |
| C(28)-C(29)   | 1.504(4)  | C(45A)-C(46A) | 1.291(9)  |
| C(28)-H(28A)  | 0.9700    | C(45A)-H(45A) | 0.9700    |
| C(28)-H(28B)  | 0.9700    | C(45A)-H(45B) | 0.9700    |
| C(29)-C(30)   | 1.519(4)  | C(46A)-H(46A) | 0.9700    |
| C(29)-H(29A)  | 0.9700    | C(46A)-H(46B) | 0.9700    |
| C(29)-H(29B)  | 0.9700    | C(41B)-C(46B) | 1.542(15) |
| C(30)-C(31)   | 1.532(4)  | C(41B)-C(42B) | 1.646(17) |
| C(30)-H(30A)  | 0.9700    | C(41B)-H(41B) | 0.9800    |
| C(30)-H(30B)  | 0.9700    | C(42B)-C(43B) | 1.470(17) |
| C(31)-C(32)   | 1.527(4)  | C(42B)-H(42C) | 0.9700    |
| C(31)-H(31A)  | 0.9700    | C(42B)-H(42D) | 0.9700    |
| C(31)-H(31B)  | 0.9700    | C(43B)-C(44B) | 1.61(2)   |
| C(32)-H(32A)  | 0.9700    | C(43B)-H(43C) | 0.9700    |
| C(32)-H(32B)  | 0.9700    | C(43B)-H(43D) | 0.9700    |
| C(33)-C(38)   | 1.517(4)  | C(44B)-C(45B) | 1.044(14) |
| C(33)-C(34)   | 1.520(4)  | C(44B)-H(44C) | 0.9700    |
| C(33)-H(33)   | 0.9800    | C(44B)-H(44D) | 0.9700    |
| C(34)-C(35)   | 1.515(4)  | C(45B)-C(46B) | 1.978(17) |
| C(34)-H(34A)  | 0.9700    | C(45B)-H(45C) | 0.9700    |
| C(34)-H(34B)  | 0.9700    | C(45B)-H(45D) | 0.9700    |
| C(35)-C(36)   | 1.521(4)  | C(46B)-H(46C) | 0.9700    |
| C(35)-H(35A)  | 0.9700    | C(46B)-H(46D) | 0.9700    |
| C(35)-H(35B)  | 0.9700    | C(47A)-C(52A) | 1.513(12) |
| C(36)-C(37)   | 1.505(4)  | C(47A)-C(48A) | 1.560(14) |
| C(36)-H(36A)  | 0.9700    | C(47A)-H(47A) | 0.9800    |
| C(36)-H(36B)  | 0.9700    | C(48A)-C(49A) | 1.693(14) |
| C(37)-C(38)   | 1.530(4)  | C(48A)-H(48A) | 0.9700    |
| C(37)-H(37A)  | 0.9700    | C(48A)-H(48B) | 0.9700    |
| C(37)-H(37B)  | 0.9700    | C(49A)-C(50A) | 1.309(12) |
| C(38)-H(38A)  | 0.9700    | C(49A)-H(49A) | 0.9700    |
| C(38)-H(38B)  | 0.9700    | C(49A)-H(49B) | 0.9700    |
| C(41A)-C(42A) | 1.416(10) | C(50A)-C(51A) | 1.569(14) |
| C(41A)-C(46A) | 1.513(10) | C(50A)-H(50A) | 0.9700    |
| C(41A)-H(41A) | 0.9800    | C(50A)-H(50B) | 0.9700    |
|               |           |               |           |

**Table A.3, Cont'd.** Bond lengths (Å) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(51A)-C(52A) | 1.299(11) |
|---------------|-----------|
| C(51A)-H(51A) | 0.9700    |
| C(51A)-H(51B) | 0.9700    |
| C(52A)-H(52A) | 0.9700    |
| C(52A)-H(52B) | 0.9700    |
| C(47B)-C(48B) | 1.448(15) |
| C(47B)-C(52B) | 1.565(16) |
| C(47B)-H(47B) | 0.9800    |
| C(48B)-C(49B) | 1.259(17) |
| C(48B)-H(48C) | 0.9700    |
| C(48B)-H(48D) | 0.9700    |
| C(49B)-C(50B) | 1.79(2)   |
| C(49B)-H(49C) | 0.9700    |
| C(49B)-H(49D) | 0.9700    |
| C(50B)-C(51B) | 1.416(17) |
| C(50B)-H(50C) | 0.9700    |
| C(50B)-H(50D) | 0.9700    |
| C(51B)-C(52B) | 1.84(2)   |
| C(51B)-H(51C) | 0.9700    |
| C(51B)-H(51D) | 0.9700    |
| C(52B)-H(52C) | 0.9700    |
| C(52B)-H(52D) | 0.9700    |

**Table A.3, Cont'd.** Bond lengths (Å) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetrytransformations used to generate equivalent atoms:

| C(13)-S(2)-S(3)   | 105.50(11) | C(6)-C(5)-H(5A)     | 109.3    |
|-------------------|------------|---------------------|----------|
| C(14)-S(3)-S(2)   | 105.38(12) | C(4)-C(5)-H(5B)     | 109.3    |
| C(39)-S(6)-S(7)   | 104.31(12) | C(6)-C(5)-H(5B)     | 109.3    |
| C(40)-S(7)-S(6)   | 104.87(12) | H(5A)-C(5)-H(5B)    | 108.0    |
| C(13)-N(1)-C(1)   | 122.5(3)   | C(1)-C(6)-C(5)      | 110.6(3) |
| C(13)-N(1)-C(7)   | 121.9(3)   | C(1)-C(6)-H(6A)     | 109.5    |
| C(1)-N(1)-C(7)    | 115.4(2)   | C(5)-C(6)-H(6A)     | 109.5    |
| C(14)-N(2)-C(15)  | 121.7(3)   | C(1)-C(6)-H(6B)     | 109.5    |
| C(14)-N(2)-C(21)  | 122.4(3)   | C(5)-C(6)-H(6B)     | 109.5    |
| C(15)-N(2)-C(21)  | 115.9(3)   | H(6A)-C(6)-H(6B)    | 108.1    |
| C(39)-N(3)-C(33)  | 122.6(3)   | C(12)-C(7)-N(1)     | 115.0(3) |
| C(39)-N(3)-C(27)  | 121.8(3)   | C(12)-C(7)-C(8)     | 112.6(3) |
| C(33)-N(3)-C(27)  | 115.2(2)   | N(1)-C(7)-C(8)      | 113.0(3) |
| C(41B)-N(4)-C(40) | 136.2(6)   | C(12)-C(7)-H(7)     | 105.0    |
| C(40)-N(4)-C(47A) | 130.6(6)   | N(1)-C(7)-H(7)      | 105.0    |
| C(40)-N(4)-C(41A) | 116.6(4)   | C(8)-C(7)-H(7)      | 105.0    |
| C(40)-N(4)-C(47B) | 110.3(5)   | C(9)-C(8)-C(7)      | 108.6(3) |
| N(1)-C(1)-C(2)    | 113.5(3)   | C(9)-C(8)-H(8A)     | 110.0    |
| N(1)-C(1)-C(6)    | 112.5(3)   | C(7)-C(8)-H(8A)     | 110.0    |
| C(2)-C(1)-C(6)    | 111.5(3)   | C(9)-C(8)-H(8B)     | 110.0    |
| N(1)-C(1)-H(1)    | 106.3      | C(7)-C(8)-H(8B)     | 110.0    |
| C(2)-C(1)-H(1)    | 106.3      | H(8A)-C(8)-H(8B)    | 108.4    |
| C(6)-C(1)-H(1)    | 106.3      | C(10)-C(9)-C(8)     | 111.9(3) |
| C(1)-C(2)-C(3)    | 110.7(3)   | C(10)-C(9)-H(9A)    | 109.2    |
| C(1)-C(2)-H(2A)   | 109.5      | C(8)-C(9)-H(9A)     | 109.2    |
| C(3)-C(2)-H(2A)   | 109.5      | C(10)-C(9)-H(9B)    | 109.2    |
| C(1)-C(2)-H(2B)   | 109.5      | C(8)-C(9)-H(9B)     | 109.2    |
| C(3)-C(2)-H(2B)   | 109.5      | H(9A)-C(9)-H(9B)    | 107.9    |
| H(2A)-C(2)-H(2B)  | 108.1      | C(9)-C(10)-C(11)    | 111.6(3) |
| C(4)-C(3)-C(2)    | 111.4(3)   | C(9)-C(10)-H(10A)   | 109.3    |
| C(4)-C(3)-H(3A)   | 109.4      | C(11)-C(10)-H(10A)  | 109.3    |
| C(2)-C(3)-H(3A)   | 109.4      | C(9)-C(10)-H(10B)   | 109.3    |
| C(4)-C(3)-H(3B)   | 109.4      | C(11)-C(10)-H(10B)  | 109.3    |
| C(2)-C(3)-H(3B)   | 109.4      | H(10A)-C(10)-H(10B) | 108.0    |
| H(3A)-C(3)-H(3B)  | 108.0      | C(10)-C(11)-C(12)   | 111.0(3) |
| C(3)-C(4)-C(5)    | 111.5(3)   | C(10)-C(11)-H(11A)  | 109.4    |
| C(3)-C(4)-H(4A)   | 109.3      | C(12)-C(11)-H(11A)  | 109.4    |
| C(5)-C(4)-H(4A)   | 109.3      | C(10)-C(11)-H(11B)  | 109.4    |
| C(3)-C(4)-H(4B)   | 109.3      | C(12)-C(11)-H(11B)  | 109.4    |
| C(5)-C(4)-H(4B)   | 109.3      | H(11A)-C(11)-H(11B) | 108.0    |
| H(4A)-C(4)-H(4B)  | 108.0      | C(7)-C(12)-C(11)    | 112.0(3) |
| C(4)-C(5)-C(6)    | 111.5(3)   | C(7)-C(12)-H(12A)   | 109.2    |
| C(4)-C(5)-H(5A)   | 109.3      | C(11)-C(12)-H(12A)  | 109.2    |
|                   |            |                     |          |

**Table A.4**. Bond angles (deg.) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(7) C(12) U(12D)                          | 100.2                  | C(15) C(20) U(200)                                               | 100.2                |
|--------------------------------------------|------------------------|------------------------------------------------------------------|----------------------|
| C(11) C(12) H(12B)                         | 109.2                  | U(13)-U(20)-H(20B)<br>U(20A) C(20) U(20B)                        | 109.2                |
| U(12A) C(12) U(12B)                        | 109.2                  | $\Gamma(20A) - C(20) - \Pi(20B)$<br>C(26) - C(21) - N(2)         | 107.9                |
| N(1) C(12) S(1)                            | 107.9                  | C(20)-C(21)-N(2)<br>C(26)-C(21)-C(22)                            | 117.0(3)<br>114.2(3) |
| N(1)-C(13)-S(1)<br>N(1)-C(13)-S(2)         | 120.0(2)<br>110 7(2)   | N(2) C(21) C(22)                                                 | 114.2(3)<br>112.4(3) |
| N(1)-C(13)-S(2)<br>S(1)-C(13)-S(2)         | 120.50(19)             | $\Gamma(2) - C(21) - C(22)$<br>$\Gamma(26) - \Gamma(21) - H(21)$ | 103 /                |
| N(2) = C(14) = S(4)                        | 120.30(17)<br>128 5(3) | N(2) - C(21) - H(21)                                             | 103.4                |
| N(2) - C(14) - S(4)<br>N(2) - C(14) - S(3) | 120.5(3)<br>111.6(3)   | C(22)-C(21)-H(21)                                                | 103.4                |
| S(4) C(14) S(3)                            | 111.0(3)<br>110.0(2)   | $C(22)$ - $C(21)$ - $\Pi(21)$<br>C(23) $C(22)$ $C(21)$           | 103.4<br>111 7(3)    |
| N(2) - C(15) - C(16)                       | 119.9(2)<br>118.4(3)   | C(23)-C(22)-C(21)<br>C(23)-C(22)-H(22A)                          | 100.3                |
| N(2)-C(15)-C(10)                           | 116.+(3)<br>115.0(3)   | C(23)-C(22)-H(22A)                                               | 109.3                |
| C(16)-C(15)-C(20)                          | 113.0(3)<br>114.6(3)   | C(23)-C(22)-H(22R)                                               | 109.3                |
| N(2)-C(15)-H(15)                           | 101 7                  | C(21)-C(22)-H(22B)                                               | 109.3                |
| C(16)-C(15)-H(15)                          | 101.7                  | H(22A)-C(22)-H(22B)                                              | 107.9                |
| C(20)-C(15)-H(15)                          | 101.7                  | C(24)-C(23)-C(22)                                                | 115 4(4)             |
| C(15)-C(16)-C(17)                          | 114 9(3)               | C(24) - C(23) - H(23A)                                           | 108.4                |
| C(15) - C(16) - H(16A)                     | 108.6                  | C(22)-C(23)-H(23A)                                               | 108.4                |
| C(17)-C(16)-H(16A)                         | 108.6                  | C(24)-C(23)-H(23R)                                               | 108.4                |
| C(15)-C(16)-H(16B)                         | 108.6                  | C(22)-C(23)-H(23B)                                               | 108.4                |
| C(17)-C(16)-H(16B)                         | 108.6                  | H(23A)-C(23)-H(23B)                                              | 107.5                |
| H(16A)-C(16)-H(16B)                        | 107.5                  | C(23)-C(24)-C(25)                                                | 114 0(4)             |
| C(16)-C(17)-C(18)                          | 112.9(3)               | C(23)-C(24)-H(24A)                                               | 108.7                |
| C(16)-C(17)-H(17A)                         | 109.0                  | C(25)-C(24)-H(24A)                                               | 108.7                |
| C(18)-C(17)-H(17A)                         | 109.0                  | C(23)-C(24)-H(24B)                                               | 108.7                |
| C(16)-C(17)-H(17B)                         | 109.0                  | C(25)-C(24)-H(24B)                                               | 108.7                |
| С(18)-С(17)-Н(17В)                         | 109.0                  | H(24A)-C(24)-H(24B)                                              | 107.6                |
| H(17A)-C(17)-H(17B)                        | 107.8                  | C(26)-C(25)-C(24)                                                | 111.8(4)             |
| C(19)-C(18)-C(17)                          | 115.6(3)               | C(26)-C(25)-H(25A)                                               | 109.3                |
| С(19)-С(18)-Н(18А)                         | 108.4                  | C(24)-C(25)-H(25A)                                               | 109.3                |
| С(17)-С(18)-Н(18А)                         | 108.4                  | C(26)-C(25)-H(25B)                                               | 109.3                |
| С(19)-С(18)-Н(18В)                         | 108.4                  | C(24)-C(25)-H(25B)                                               | 109.3                |
| С(17)-С(18)-Н(18В)                         | 108.4                  | H(25A)-C(25)-H(25B)                                              | 107.9                |
| H(18A)-C(18)-H(18B)                        | 107.4                  | C(21)-C(26)-C(25)                                                | 113.5(4)             |
| C(18)-C(19)-C(20)                          | 114.5(3)               | C(21)-C(26)-H(26A)                                               | 108.9                |
| C(18)-C(19)-H(19A)                         | 108.6                  | C(25)-C(26)-H(26A)                                               | 108.9                |
| C(20)-C(19)-H(19A)                         | 108.6                  | C(21)-C(26)-H(26B)                                               | 108.9                |
| C(18)-C(19)-H(19B)                         | 108.6                  | C(25)-C(26)-H(26B)                                               | 108.9                |
| C(20)-C(19)-H(19B)                         | 108.6                  | H(26A)-C(26)-H(26B)                                              | 107.7                |
| H(19A)-C(19)-H(19B)                        | 107.6                  | N(3)-C(27)-C(28)                                                 | 114.3(3)             |
| C(19)-C(20)-C(15)                          | 112.3(3)               | N(3)-C(27)-C(32)                                                 | 114.1(3)             |
| C(19)-C(20)-H(20A)                         | 109.2                  | C(28)-C(27)-C(32)                                                | 111.8(3)             |
| C(15)-C(20)-H(20A)                         | 109.2                  | N(3)-C(27)-H(27)                                                 | 105.2                |
| C(19)-C(20)-H(20B)                         | 109.2                  | C(28)-C(27)-H(27)                                                | 105.2                |

**Table A.4, Cont'd.** Bond angles (deg.) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(32)-C(27)-H(27)   | 105.2    | C(34)-C(35)-C(36)    | 111.4(3)   |
|---------------------|----------|----------------------|------------|
| C(29)-C(28)-C(27)   | 112.0(3) | C(34)-C(35)-H(35A)   | 109.3      |
| C(29)-C(28)-H(28A)  | 109.2    | C(36)-C(35)-H(35A)   | 109.3      |
| C(27)-C(28)-H(28A)  | 109.2    | C(34)-C(35)-H(35B)   | 109.3      |
| C(29)-C(28)-H(28B)  | 109.2    | C(36)-C(35)-H(35B)   | 109.3      |
| C(27)-C(28)-H(28B)  | 109.2    | H(35A)-C(35)-H(35B)  | 108.0      |
| H(28A)-C(28)-H(28B) | 107.9    | C(37)-C(36)-C(35)    | 111.7(3)   |
| C(28)-C(29)-C(30)   | 111.3(3) | C(37)-C(36)-H(36A)   | 109.3      |
| C(28)-C(29)-H(29A)  | 109.4    | C(35)-C(36)-H(36A)   | 109.3      |
| C(30)-C(29)-H(29A)  | 109.4    | C(37)-C(36)-H(36B)   | 109.3      |
| C(28)-C(29)-H(29B)  | 109.4    | C(35)-C(36)-H(36B)   | 109.3      |
| C(30)-C(29)-H(29B)  | 109.4    | H(36A)-C(36)-H(36B)  | 107.9      |
| H(29A)-C(29)-H(29B) | 108.0    | C(36)-C(37)-C(38)    | 111.3(3)   |
| C(29)-C(30)-C(31)   | 111.0(3) | C(36)-C(37)-H(37A)   | 109.4      |
| C(29)-C(30)-H(30A)  | 109.4    | C(38)-C(37)-H(37A)   | 109.4      |
| C(31)-C(30)-H(30A)  | 109.4    | C(36)-C(37)-H(37B)   | 109.4      |
| C(29)-C(30)-H(30B)  | 109.4    | C(38)-C(37)-H(37B)   | 109.4      |
| C(31)-C(30)-H(30B)  | 109.4    | H(37A)-C(37)-H(37B)  | 108.0      |
| H(30A)-C(30)-H(30B) | 108.0    | C(33)-C(38)-C(37)    | 109.4(3)   |
| C(32)-C(31)-C(30)   | 111.7(3) | C(33)-C(38)-H(38A)   | 109.8      |
| C(32)-C(31)-H(31A)  | 109.3    | C(37)-C(38)-H(38A)   | 109.8      |
| C(30)-C(31)-H(31A)  | 109.3    | C(33)-C(38)-H(38B)   | 109.8      |
| C(32)-C(31)-H(31B)  | 109.3    | C(37)-C(38)-H(38B)   | 109.8      |
| C(30)-C(31)-H(31B)  | 109.3    | H(38A)-C(38)-H(38B)  | 108.2      |
| H(31A)-C(31)-H(31B) | 107.9    | N(3)-C(39)-S(5)      | 127.9(2)   |
| C(31)-C(32)-C(27)   | 108.4(3) | N(3)-C(39)-S(6)      | 111.0(2)   |
| C(31)-C(32)-H(32A)  | 110.0    | S(5)-C(39)-S(6)      | 121.12(19) |
| C(27)-C(32)-H(32A)  | 110.0    | N(4)-C(40)-S(8)      | 127.9(3)   |
| C(31)-C(32)-H(32B)  | 110.0    | N(4)-C(40)-S(7)      | 111.5(2)   |
| C(27)-C(32)-H(32B)  | 110.0    | S(8)-C(40)-S(7)      | 120.6(2)   |
| H(32A)-C(32)-H(32B) | 108.4    | C(42A)-C(41A)-C(46A) | 113.8(7)   |
| N(3)-C(33)-C(38)    | 112.8(3) | C(42A)-C(41A)-N(4)   | 110.0(7)   |
| N(3)-C(33)-C(34)    | 112.2(3) | C(46A)-C(41A)-N(4)   | 112.6(6)   |
| C(38)-C(33)-C(34)   | 112.4(3) | C(42A)-C(41A)-H(41A) | 106.6      |
| N(3)-C(33)-H(33)    | 106.3    | C(46A)-C(41A)-H(41A) | 106.6      |
| C(38)-C(33)-H(33)   | 106.3    | N(4)-C(41A)-H(41A)   | 106.6      |
| C(34)-C(33)-H(33)   | 106.3    | C(41A)-C(42A)-C(43A) | 113.1(8)   |
| C(35)-C(34)-C(33)   | 110.8(3) | C(41A)-C(42A)-H(42A) | 109.0      |
| C(35)-C(34)-H(34A)  | 109.5    | C(43A)-C(42A)-H(42A) | 109.0      |
| C(33)-C(34)-H(34A)  | 109.5    | C(41A)-C(42A)-H(42B) | 109.0      |
| C(35)-C(34)-H(34B)  | 109.5    | C(43A)-C(42A)-H(42B) | 109.0      |
| C(33)-C(34)-H(34B)  | 109.5    | H(42A)-C(42A)-H(42B) | 107.8      |
| H(34A)-C(34)-H(34B) | 108.1    | C(44A)-C(43A)-C(42A) | 115.1(7)   |

**Table A.4, Cont'd.** Bond angles (deg.) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(44A)-C(43A)-H(43A) | 108.5     | C(43B)-C(44B)-H(44C) | 108.4     |
|----------------------|-----------|----------------------|-----------|
| C(42A)-C(43A)-H(43A) | 108.5     | C(45B)-C(44B)-H(44D) | 108.4     |
| C(44A)-C(43A)-H(43B) | 108.5     | C(43B)-C(44B)-H(44D) | 108.4     |
| C(42A)-C(43A)-H(43B) | 108.5     | H(44C)-C(44B)-H(44D) | 107.5     |
| H(43A)-C(43A)-H(43B) | 107.5     | C(44B)-C(45B)-C(46B) | 108.0(13) |
| C(43A)-C(44A)-C(45A) | 108.0(7)  | C(44B)-C(45B)-H(45C) | 110.1     |
| C(43A)-C(44A)-H(44A) | 110.1     | C(46B)-C(45B)-H(45C) | 110.1     |
| C(45A)-C(44A)-H(44A) | 110.1     | C(44B)-C(45B)-H(45D) | 110.1     |
| C(43A)-C(44A)-H(44B) | 110.1     | C(46B)-C(45B)-H(45D) | 110.1     |
| C(45A)-C(44A)-H(44B) | 110.1     | H(45C)-C(45B)-H(45D) | 108.4     |
| H(44A)-C(44A)-H(44B) | 108.4     | C(41B)-C(46B)-C(45B) | 104.0(8)  |
| C(46A)-C(45A)-C(44A) | 103.2(7)  | C(41B)-C(46B)-H(46C) | 111.0     |
| C(46A)-C(45A)-H(45A) | 111.1     | C(45B)-C(46B)-H(46C) | 111.0     |
| C(44A)-C(45A)-H(45A) | 111.1     | C(41B)-C(46B)-H(46D) | 111.0     |
| C(46A)-C(45A)-H(45B) | 111.1     | C(45B)-C(46B)-H(46D) | 111.0     |
| C(44A)-C(45A)-H(45B) | 111.1     | H(46C)-C(46B)-H(46D) | 109.0     |
| H(45A)-C(45A)-H(45B) | 109.1     | N(4)-C(47A)-C(52A)   | 125.2(7)  |
| C(45A)-C(46A)-C(41A) | 110.9(8)  | N(4)-C(47A)-C(48A)   | 113.0(7)  |
| C(45A)-C(46A)-H(46A) | 109.4     | C(52A)-C(47A)-C(48A) | 104.9(9)  |
| C(41A)-C(46A)-H(46A) | 109.4     | N(4)-C(47A)-H(47A)   | 103.8     |
| C(45A)-C(46A)-H(46B) | 109.4     | C(52A)-C(47A)-H(47A) | 103.8     |
| C(41A)-C(46A)-H(46B) | 109.4     | C(48A)-C(47A)-H(47A) | 103.8     |
| H(46A)-C(46A)-H(46B) | 108.0     | C(47A)-C(48A)-C(49A) | 110.1(7)  |
| N(4)-C(41B)-C(46B)   | 110.0(8)  | C(47A)-C(48A)-H(48A) | 109.6     |
| N(4)-C(41B)-C(42B)   | 118.6(8)  | C(49A)-C(48A)-H(48A) | 109.6     |
| C(46B)-C(41B)-C(42B) | 119.2(10) | C(47A)-C(48A)-H(48B) | 109.6     |
| N(4)-C(41B)-H(41B)   | 101.8     | C(49A)-C(48A)-H(48B) | 109.6     |
| C(46B)-C(41B)-H(41B) | 101.8     | H(48A)-C(48A)-H(48B) | 108.2     |
| C(42B)-C(41B)-H(41B) | 101.8     | C(50A)-C(49A)-C(48A) | 111.9(10) |
| C(43B)-C(42B)-C(41B) | 108.8(10) | C(50A)-C(49A)-H(49A) | 109.2     |
| C(43B)-C(42B)-H(42C) | 109.9     | C(48A)-C(49A)-H(49A) | 109.2     |
| C(41B)-C(42B)-H(42C) | 109.9     | C(50A)-C(49A)-H(49B) | 109.2     |
| C(43B)-C(42B)-H(42D) | 109.9     | C(48A)-C(49A)-H(49B) | 109.2     |
| C(41B)-C(42B)-H(42D) | 109.9     | H(49A)-C(49A)-H(49B) | 107.9     |
| H(42C)-C(42B)-H(42D) | 108.3     | C(49A)-C(50A)-C(51A) | 116.7(9)  |
| C(42B)-C(43B)-C(44B) | 121.4(11) | C(49A)-C(50A)-H(50A) | 108.1     |
| C(42B)-C(43B)-H(43C) | 107.0     | C(51A)-C(50A)-H(50A) | 108.1     |
| C(44B)-C(43B)-H(43C) | 107.0     | C(49A)-C(50A)-H(50B) | 108.1     |
| C(42B)-C(43B)-H(43D) | 107.0     | C(51A)-C(50A)-H(50B) | 108.1     |
| C(44B)-C(43B)-H(43D) | 107.0     | H(50A)-C(50A)-H(50B) | 107.3     |
| H(43C)-C(43B)-H(43D) | 106.7     | C(52A)-C(51A)-C(50A) | 108.6(9)  |
| C(45B)-C(44B)-C(43B) | 115.5(14) | C(52A)-C(51A)-H(51A) | 110.0     |
| C(45B)-C(44B)-H(44C) | 108.4     | C(50A)-C(51A)-H(51A) | 110.0     |

**Table A.4, Cont'd.** Bond angles (deg.) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| C(52A)-C(51A)-H(51B) | 110.0     | C(51B)-C(52B)-H(52D)  | 113 3 |
|----------------------|-----------|-----------------------|-------|
| C(50A)-C(51A)-H(51B) | 110.0     | H(52C)-C(52B)-H(52D)  | 110.6 |
| H(51A)-C(51A)-H(51B) | 108.3     | 1(020) 0(020) 11(020) | 11010 |
| C(51A)-C(52A)-C(47A) | 127.6(9)  |                       |       |
| C(51A)-C(52A)-H(52A) | 105.4     |                       |       |
| C(47A)-C(52A)-H(52A) | 105.4     |                       |       |
| C(51A)-C(52A)-H(52B) | 105.4     |                       |       |
| C(47A)-C(52A)-H(52B) | 105.4     |                       |       |
| H(52A)-C(52A)-H(52B) | 106.0     |                       |       |
| C(48B)-C(47B)-C(52B) | 129.3(9)  |                       |       |
| C(48B)-C(47B)-N(4)   | 114.6(8)  |                       |       |
| C(52B)-C(47B)-N(4)   | 97.1(9)   |                       |       |
| C(48B)-C(47B)-H(47B) | 104.5     |                       |       |
| C(52B)-C(47B)-H(47B) | 104.5     |                       |       |
| N(4)-C(47B)-H(47B)   | 104.5     |                       |       |
| C(49B)-C(48B)-C(47B) | 116.3(13) |                       |       |
| C(49B)-C(48B)-H(48C) | 108.2     |                       |       |
| C(47B)-C(48B)-H(48C) | 108.2     |                       |       |
| C(49B)-C(48B)-H(48D) | 108.2     |                       |       |
| C(47B)-C(48B)-H(48D) | 108.2     |                       |       |
| H(48C)-C(48B)-H(48D) | 107.4     |                       |       |
| C(48B)-C(49B)-C(50B) | 109.8(13) |                       |       |
| C(48B)-C(49B)-H(49C) | 109.7     |                       |       |
| C(50B)-C(49B)-H(49C) | 109.7     |                       |       |
| C(48B)-C(49B)-H(49D) | 109.7     |                       |       |
| C(50B)-C(49B)-H(49D) | 109.7     |                       |       |
| H(49C)-C(49B)-H(49D) | 108.2     |                       |       |
| C(51B)-C(50B)-C(49B) | 104.9(11) |                       |       |
| C(51B)-C(50B)-H(50C) | 110.8     |                       |       |
| C(49B)-C(50B)-H(50C) | 110.8     |                       |       |
| C(51B)-C(50B)-H(50D) | 110.8     |                       |       |
| C(49B)-C(50B)-H(50D) | 110.8     |                       |       |
| H(50C)-C(50B)-H(50D) | 108.8     |                       |       |
| C(50B)-C(51B)-C(52B) | 122.6(10) |                       |       |
| C(50B)-C(51B)-H(51C) | 106.7     |                       |       |
| C(52B)-C(51B)-H(51C) | 106.7     |                       |       |
| C(50B)-C(51B)-H(51D) | 106.7     |                       |       |
| C(52B)-C(51B)-H(51D) | 106./     |                       |       |
| H(51C)-C(51B)-H(51D) | 106.6     |                       |       |
| C(4/B)-C(52B)-C(51B) | 92.0(10)  |                       |       |
| C(4/B)-C(52B)-H(52C) | 113.3     |                       |       |
| C(31B)-C(32B)-H(32C) | 113.3     |                       |       |
| U(4/B)-U(32B)-H(32D) | 115.5     |                       |       |

**Table A.4, Cont'd.** Bond angles (deg.) for  $Cy_2NC(S)SSC(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms:

| Atom         | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------------|----------|----------|----------|----------|----------|----------|
| <b>S</b> (1) | 60(1)    | 63(1)    | 88(1)    | 45(1)    | 16(1)    | 13(1)    |
| S(2)         | 56(1)    | 85(1)    | 94(1)    | 49(1)    | 32(1)    | 35(1)    |
| S(3)         | 49(1)    | 60(1)    | 105(1)   | 18(1)    | 6(1)     | 19(1)    |
| S(4)         | 65(1)    | 46(1)    | 115(1)   | 16(1)    | 15(1)    | 6(1)     |
| S(5)         | 58(1)    | 62(1)    | 95(1)    | 45(1)    | 7(1)     | -1(1)    |
| S(6)         | 47(1)    | 72(1)    | 87(1)    | 38(1)    | -1(1)    | -16(1)   |
| S(7)         | 56(1)    | 51(1)    | 94(1)    | 12(1)    | 24(1)    | -11(1)   |
| S(8)         | 72(1)    | 48(1)    | 105(1)   | 15(1)    | 20(1)    | 2(1)     |
| N(1)         | 38(2)    | 44(2)    | 56(2)    | 25(2)    | 18(2)    | 12(1)    |
| N(2)         | 33(2)    | 50(2)    | 89(3)    | 33(2)    | 9(2)     | 11(2)    |
| N(3)         | 35(2)    | 47(2)    | 53(2)    | 24(2)    | 2(2)     | -4(1)    |
| N(4)         | 48(2)    | 48(2)    | 91(3)    | 32(2)    | 21(2)    | -1(2)    |
| C(1)         | 48(3)    | 52(3)    | 60(3)    | 27(2)    | 21(2)    | 23(2)    |
| C(2)         | 66(3)    | 80(3)    | 75(3)    | 41(3)    | 0(2)     | 9(2)     |
| C(3)         | 90(4)    | 105(4)   | 81(4)    | 36(3)    | 2(3)     | 37(3)    |
| C(4)         | 134(5)   | 116(4)   | 83(4)    | 65(3)    | 40(3)    | 59(4)    |
| C(5)         | 105(4)   | 94(4)    | 115(4)   | 65(3)    | 36(3)    | 14(3)    |
| C(6)         | 62(3)    | 74(3)    | 71(3)    | 37(3)    | 23(2)    | 13(2)    |
| C(7)         | 50(2)    | 38(2)    | 59(3)    | 22(2)    | 22(2)    | 12(2)    |
| C(8)         | 40(2)    | 70(3)    | 81(3)    | 21(2)    | 21(2)    | 4(2)     |
| C(9)         | 53(3)    | 79(3)    | 109(4)   | 31(3)    | 43(3)    | 8(2)     |
| C(10)        | 85(3)    | 94(4)    | 72(4)    | 23(3)    | 38(3)    | 8(3)     |
| C(11)        | 71(3)    | 65(3)    | 79(3)    | 19(3)    | 23(2)    | 5(2)     |
| C(12)        | 49(2)    | 59(3)    | 64(3)    | 12(2)    | 15(2)    | -8(2)    |
| C(13)        | 34(2)    | 47(2)    | 57(3)    | 18(2)    | 10(2)    | 7(2)     |
| C(14)        | 34(2)    | 48(3)    | 76(3)    | 18(2)    | 5(2)     | 0(2)     |
| C(15)        | 50(3)    | 84(3)    | 94(4)    | 56(3)    | 1(3)     | 0(2)     |
| C(16)        | 66(3)    | 112(4)   | 78(4)    | 35(3)    | 12(3)    | -22(3)   |
| C(17)        | 91(4)    | 86(3)    | 81(4)    | 33(3)    | 16(3)    | 0(3)     |
| C(18)        | 81(4)    | 135(5)   | 85(4)    | 12(3)    | -3(3)    | -10(3)   |
| C(19)        | 54(3)    | 96(4)    | 99(4)    | 36(3)    | 8(3)     | 4(2)     |
| C(20)        | 42(3)    | 71(3)    | 96(3)    | 34(3)    | 18(2)    | 3(2)     |
| C(21)        | 58(3)    | 38(3)    | 102(4)   | 13(3)    | 26(3)    | 23(2)    |
| C(22)        | 57(3)    | 55(3)    | 81(3)    | 14(3)    | 15(2)    | -9(2)    |
| C(23)        | 119(4)   | 51(3)    | 108(4)   | 2(3)     | 11(3)    | -6(3)    |
| C(24)        | 95(4)    | 76(4)    | 121(5)   | -15(3)   | 15(3)    | 9(3)     |
| C(25)        | 101(4)   | 94(4)    | 83(4)    | 20(3)    | 40(3)    | 36(3)    |
| C(26)        | 88(4)    | 90(4)    | 102(4)   | 16(3)    | 49(3)    | -5(3)    |
| C(27)        | 40(2)    | 44(2)    | 47(3)    | 13(2)    | -4(2)    | -10(2)   |

**Table A.5**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{l1} + ... + 2hka^*b^*U^{l2}]$ .

 $U^{33}$  $U^{13}$  $U^{23}$  $U^{22}$  $U^{11}$  $U^{12}$ Atom C(28) 47(2)55(3) 61(3) 21(2) -1(2) 5(2) C(29) 26(3) 3(3) 82(3) 67(3) 69(3) -6(3) C(30) 56(3) 92(3) 79(4) 32(3) -18(3)-12(2) C(31) 40(3)81(3) 96(4) 41(3) 1(3)2(2)4(2) C(32) 31(2) 67(3) 86(3) 28(2) 2(2)38(2) 48(3) 56(3) 20(2) -2(2)-10(2)C(33) C(34) 49(2) 26(2) 7(2) 9(2) 62(3) 68(3) -10(3)4(2)C(35) 71(3) 71(3) 93(4) 42(3) C(36) 94(4) 74(3) 74(3) 40(3) -8(3) -9(3) C(37) 89(3) 81(3) 67(3) 35(3) 24(2)-4(3)C(38) 57(3) 62(3) 79(3) 31(2) 30(2) 5(2)

**Table A.5, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ .

| H atom | х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(1)   | 7260  | 1420  | 3750 | 60    |
| H(2A)  | 9066  | 1553  | 3810 | 85    |
| H(2B)  | 9057  | 311   | 3327 | 85    |
| H(3A)  | 9489  | 580   | 4656 | 110   |
| H(3B)  | 8450  | 1173  | 4829 | 110   |
| H(4A)  | 8211  | -575  | 4798 | 120   |
| H(4B)  | 8547  | -1033 | 3963 | 120   |
| H(5A)  | 6673  | 26    | 4307 | 114   |
| H(5B)  | 6727  | -1201 | 3807 | 114   |
| H(6A)  | 7258  | -760  | 2784 | 78    |
| H(6B)  | 6244  | -136  | 2998 | 78    |
| H(7)   | 8314  | -12   | 2171 | 56    |
| H(8A)  | 8812  | 1820  | 1791 | 77    |
| H(8B)  | 9465  | 1494  | 2458 | 77    |
| H(9A)  | 10218 | 838   | 1277 | 93    |
| H(9B)  | 9901  | -116  | 1546 | 93    |
| H(10A) | 9337  | -599  | 214  | 98    |
| H(10B) | 8722  | 458   | 347  | 98    |
| H(11A) | 8182  | -1288 | 812  | 86    |
| H(11B) | 7521  | -960  | 151  | 86    |
| H(12A) | 7084  | 623   | 1058 | 71    |
| H(12B) | 6785  | -343  | 1321 | 71    |
| H(15)  | 2440  | 4753  | 2102 | 85    |
| H(16A) | 3203  | 3137  | 966  | 102   |
| H(16B) | 3492  | 4378  | 1219 | 102   |
| H(17A) | 2239  | 3661  | 65   | 101   |
| H(17B) | 1910  | 4703  | 694  | 101   |
| H(18A) | 462   | 3572  | 296  | 131   |
| H(18B) | 1100  | 2576  | 324  | 131   |
| H(19A) | 207   | 2961  | 1308 | 99    |
| H(19B) | 502   | 4203  | 1571 | 99    |
| H(20A) | 1809  | 2622  | 1821 | 81    |
| H(20B) | 1471  | 3642  | 2465 | 81    |
| H(21)  | 4168  | 4976  | 3637 | 81    |
| H(22A) | 4885  | 5731  | 2895 | 80    |
| H(22B) | 3803  | 6142  | 2636 | 80    |
| H(23A) | 5029  | 6916  | 4111 | 120   |
| H(23B) | 4636  | 7589  | 3582 | 120   |
| H(24A) | 3031  | 7658  | 3910 | 132   |
| H(24B) | 3803  | 7921  | 4696 | 132   |

**Table A.6**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>.

| H atom | x     | у     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(25A) | 3471  | 6278  | 4761 | 111   |
| H(25B) | 2374  | 6719  | 4575 | 111   |
| H(26A) | 2487  | 4917  | 3802 | 113   |
| H(26B) | 2206  | 5658  | 3303 | 113   |
| H(27)  | -2479 | 4957  | 2180 | 55    |
| H(28A) | -1715 | 5696  | 1089 | 66    |
| H(28B) | -1283 | 4717  | 1316 | 66    |
| H(29A) | -2866 | 3732  | 798  | 88    |
| H(29B) | -2493 | 4122  | 155  | 88    |
| H(30A) | -4298 | 4406  | 237  | 94    |
| H(30B) | -3655 | 5495  | 386  | 94    |
| H(31A) | -4755 | 5786  | 1343 | 85    |
| H(31B) | -4291 | 4826  | 1581 | 85    |
| H(32A) | -3515 | 6454  | 2504 | 74    |
| H(32B) | -3144 | 6804  | 1839 | 74    |
| H(33)  | -705  | 6268  | 3731 | 57    |
| H(34A) | -1114 | 4146  | 2651 | 71    |
| H(34B) | -25   | 4804  | 2857 | 71    |
| H(35A) | 183   | 4791  | 4123 | 92    |
| H(35B) | -63   | 3590  | 3554 | 92    |
| H(36A) | -1799 | 3644  | 3776 | 94    |
| H(36B) | -1073 | 4001  | 4590 | 94    |
| H(37A) | -1355 | 5805  | 4790 | 91    |
| H(37B) | -2448 | 5164  | 4616 | 91    |
| H(38A) | -2686 | 5133  | 3320 | 74    |
| H(38B) | -2467 | 6342  | 3883 | 74    |
| H(41A) | 2305  | 9961  | 3716 | 58    |
| H(42A) | 1231  | 10666 | 3016 | 54    |
| H(42B) | 2157  | 11053 | 2684 | 54    |
| H(43A) | 1734  | 12548 | 3634 | 101   |
| H(43B) | 1697  | 11928 | 4221 | 101   |
| H(44A) | 3103  | 12968 | 4649 | 90    |
| H(44B) | 3432  | 12658 | 3810 | 90    |
| H(45A) | 4555  | 11450 | 4523 | 77    |
| H(45B) | 3505  | 10958 | 4660 | 77    |
| H(46A) | 4137  | 9907  | 3628 | 82    |
| H(46B) | 4008  | 10830 | 3268 | 82    |
| H(41B) | 3281  | 10204 | 2725 | 52    |
| H(42C) | 1817  | 11033 | 2421 | 107   |
| H(42D) | 1186  | 10728 | 2998 | 107   |

**Table A.6, Cont'd**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>.

| H atom | Х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
| H(43C) | 1649 | 12409 | 3658 | 99    |
| H(43D) | 2708 | 12354 | 3329 | 99    |
| H(44C) | 3011 | 12764 | 4715 | 128   |
| H(44D) | 2431 | 11666 | 4616 | 128   |
| H(45C) | 3952 | 11760 | 4878 | 80    |
| H(45D) | 4047 | 11949 | 4089 | 80    |
| H(46C) | 3948 | 9702  | 3716 | 73    |
| H(46D) | 2867 | 9755  | 4039 | 73    |
| H(47A) | 3303 | 9812  | 2154 | 75    |
| H(48A) | 1936 | 9226  | 1147 | 74    |
| H(48B) | 2182 | 8007  | 982  | 74    |
| H(49A) | 2977 | 8543  | 9    | 92    |
| H(49B) | 3545 | 9582  | 660  | 92    |
| H(50A) | 4656 | 8432  | 288  | 99    |
| H(50B) | 3968 | 7522  | 392  | 99    |
| H(51A) | 5315 | 8017  | 1451 | 73    |
| H(51B) | 5140 | 9256  | 1641 | 73    |
| H(52A) | 4524 | 8726  | 2436 | 62    |
| H(52B) | 3939 | 7727  | 1780 | 62    |
| H(47B) | 2633 | 7925  | 1410 | 57    |
| H(48C) | 2001 | 9327  | 1136 | 81    |
| H(48D) | 3053 | 10020 | 1528 | 81    |
| H(49C) | 2937 | 9495  | 322  | 114   |
| H(49D) | 2743 | 8284  | 257  | 114   |
| H(50C) | 4740 | 8548  | 240  | 113   |
| H(50D) | 4846 | 9543  | 1030 | 113   |
| H(51C) | 5374 | 8085  | 1285 | 90    |
| H(51D) | 4345 | 7422  | 809  | 90    |
| H(52C) | 4044 | 7717  | 2223 | 88    |
| H(52D) | 4433 | 8964  | 2517 | 88    |

**Table A.6, Cont'd**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>.

**Table A.7**. Crystal Data and Structure Refinement for Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>, Monoclinic Polymorph

| Identification code                      | JPD1425_0m_a                         |                                |  |
|------------------------------------------|--------------------------------------|--------------------------------|--|
| Empirical formula                        | $C_{26}H_{44}N_2S_4$                 |                                |  |
| Formula weight                           | 512.87                               |                                |  |
| Temperature                              | 150(2) K                             |                                |  |
| Wavelength                               | 1.54178 Å                            |                                |  |
| Crystal system                           | monoclinic                           |                                |  |
| Space group                              | $P2_{1}/m$                           |                                |  |
| Unit cell dimensions                     | a = 10.3672(3) Å                     | $\alpha = 90^{\circ}$          |  |
|                                          | <i>b</i> = 13.2293(3) Å              | $\beta = 109.5180(10)^{\circ}$ |  |
|                                          | c = 10.6033(2) Å                     | $\gamma = 90^{\circ}$          |  |
| Volume                                   | 1370.68(6) Å <sup>3</sup>            |                                |  |
| Ζ                                        | 2                                    |                                |  |
| Density (calculated)                     | $1.243 \text{ g/cm}^3$               |                                |  |
| Absorption coefficient                   | 3.296 mm <sup>-1</sup>               |                                |  |
| F(000)                                   | 556                                  |                                |  |
| Crystal size                             | 0.290 x 0.103 x 0.093 mm             | 1 <sup>3</sup>                 |  |
| $\theta$ range for data collection       | 4.53 to 72.28°                       |                                |  |
| Index ranges                             | $-11 \le h \le 12, -16 \le k \le 16$ | $5, -13 \le l \le 13$          |  |
| Reflections collected                    | 27733                                |                                |  |
| Independent reflections                  | 2745 [R(int) = 0.0323]               |                                |  |
| Completeness to $\theta = 72.28^{\circ}$ | 97.1%                                |                                |  |
| Absorption correction                    | Semi-empirical from equi             | valents                        |  |
| Max. and min. transmission               | 0.75 and 0.61                        |                                |  |
| Refinement method                        | Full-matrix least-squares of         | on $F^2$                       |  |
| Data / restraints / parameters           | 2745 / 483 / 282                     |                                |  |
| Goodness-of-fit on $F^2$                 | 1.097                                |                                |  |
| Final R indices $[I \ge 2\sigma(I)]$     | R1 = 0.0347, wR2 = 0.094             | 46                             |  |
| R indices (all data)                     | R1 = 0.0356, wR2 = 0.095             | 54                             |  |
| Extinction coefficient                   | n/a                                  |                                |  |
| Largest diff. peak and hole              | 0.217 and -0.189 e·Å <sup>-3</sup>   |                                |  |
| Atom         | x        | у        | Z        | U(eq) |
|--------------|----------|----------|----------|-------|
| <b>S</b> (1) | 4972(1)  | 2478(3)  | 1415(1)  | 49(1) |
| S(2)         | 7530(1)  | 2735(1)  | 3236(1)  | 53(1) |
| S(3)         | 8865(1)  | 3312(1)  | 4994(1)  | 47(1) |
| S(4)         | 9139(1)  | 1057(1)  | 5371(1)  | 49(1) |
| C(10)        | 9720(2)  | 2190(2)  | 5919(2)  | 41(1) |
| C(5)         | 5754(2)  | 2614(12) | 3069(2)  | 35(2) |
| C(2)         | 3141(7)  | 1428(6)  | 3163(13) | 59(2) |
| C(3)         | 1639(7)  | 1345(5)  | 3047(9)  | 81(2) |
| C(4)         | 813(3)   | 2231(4)  | 2309(4)  | 82(3) |
| C(2A)        | 2898(8)  | 3338(7)  | 3042(13) | 60(2) |
| C(3A)        | 1395(8)  | 3231(6)  | 2961(10) | 80(2) |
| C(7)         | 5711(7)  | 3534(7)  | 6086(7)  | 51(1) |
| C(8)         | 6683(5)  | 3659(4)  | 7527(5)  | 63(1) |
| C(9)         | 6681(4)  | 2731(4)  | 8353(3)  | 74(2) |
| C(7A)        | 6075(8)  | 1642(7)  | 6281(8)  | 62(2) |
| C(8A)        | 7022(6)  | 1788(5)  | 7709(5)  | 73(1) |
| N(1)         | 5227(1)  | 2500     | 4040(1)  | 40(1) |
| C(1)         | 3717(2)  | 2500     | 3783(2)  | 53(1) |
| C(6)         | 6083(2)  | 2500     | 5468(2)  | 52(1) |
| N(2)         | 10792(2) | 2500     | 7023(2)  | 45(1) |
| C(11A)       | 11278(5) | 3483(4)  | 7419(5)  | 50(1) |
| C(12A)       | 11190(6) | 3739(5)  | 8798(7)  | 51(1) |
| C(13A)       | 11664(7) | 4829(6)  | 9151(8)  | 67(2) |
| C(14A)       | 13102(5) | 4991(4)  | 9147(4)  | 53(1) |
| C(15A)       | 13157(7) | 4734(5)  | 7763(5)  | 63(2) |
| C(16A)       | 12711(6) | 3646(5)  | 7372(6)  | 57(1) |
| C(11B)       | 11612(5) | 3375(3)  | 7900(5)  | 43(1) |
| C(12B)       | 10852(6) | 3991(4)  | 8642(6)  | 46(1) |
| C(13B)       | 11807(8) | 4717(6)  | 9624(6)  | 63(2) |
| C(14B)       | 12619(6) | 5350(4)  | 8995(6)  | 75(1) |
| C(15B)       | 13402(5) | 4732(5)  | 8283(7)  | 63(1) |
| C(16B)       | 12423(5) | 4032(4)  | 7260(5)  | 51(1) |

**Table A.8**. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| S(1)-C(5)    | 1.678(3)   | C(6)-H(1AA)   | 0.94(3)  |
|--------------|------------|---------------|----------|
| S(2)-C(5)    | 1.797(3)   | N(2)-C(11A)#1 | 1.407(5) |
| S(2)-S(3)    | 2.0613(10) | N(2)-C(11A)   | 1.407(5) |
| S(3)-C(10)   | 1.835(2)   | N(2)-C(11B)   | 1.549(5) |
| S(4)-C(10)   | 1.647(2)   | N(2)-C(11B)#1 | 1.549(5) |
| C(10)-N(2)   | 1.380(3)   | C(11A)-C(16A) | 1.519(7) |
| C(5)-N(1)    | 1.326(3)   | C(11A)-C(12A) | 1.532(8) |
| C(2)-C(3)    | 1.525(9)   | C(11A)-H(11A) | 1.0000   |
| C(2)-C(1)    | 1.593(8)   | C(12A)-C(13A) | 1.529(9) |
| C(2)-H(2A)   | 0.9900     | C(12A)-H(12A) | 0.9900   |
| C(2)-H(2B)   | 0.9900     | C(12A)-H(12B) | 0.9900   |
| C(3)-C(4)    | 1.507(7)   | C(13A)-C(14A) | 1.508(8) |
| C(3)-H(3A)   | 0.9900     | C(13A)-H(13A) | 0.9900   |
| C(3)-H(3B)   | 0.9900     | C(13A)-H(13B) | 0.9900   |
| C(4)-C(3A)   | 1.521(7)   | C(14A)-C(15A) | 1.526(7) |
| C(4)-H(4A)   | 0.9900     | C(14A)-H(14A) | 0.9900   |
| C(4)-H(4B)   | 0.9900     | C(14A)-H(14B) | 0.9900   |
| C(2A)-C(1)   | 1.456(9)   | C(15A)-C(16A) | 1.526(8) |
| C(2A)-C(3A)  | 1.538(9)   | C(15A)-H(15A) | 0.9900   |
| C(2A)-H(2AA) | 0.9900     | C(15A)-H(15B) | 0.9900   |
| C(2A)-H(2AB) | 0.9900     | C(16A)-H(16A) | 0.9900   |
| C(3A)-H(3AA) | 0.9900     | C(16A)-H(16B) | 0.9900   |
| C(3A)-H(3AB) | 0.9900     | C(11B)-C(16B) | 1.518(6) |
| C(7)-C(8)    | 1.533(7)   | C(11B)-C(12B) | 1.522(6) |
| C(7)-C(6)    | 1.618(7)   | C(11B)-H(11B) | 1.0000   |
| C(7)-H(7A)   | 0.9900     | C(12B)-C(13B) | 1.516(8) |
| C(7)-H(7B)   | 0.9900     | C(12B)-H(12C) | 0.9900   |
| C(8)-C(9)    | 1.508(7)   | C(12B)-H(12D) | 0.9900   |
| C(8)-H(8A)   | 0.9900     | C(13B)-C(14B) | 1.493(8) |
| C(8)-H(8B)   | 0.9900     | C(13B)-H(13C) | 0.9900   |
| C(9)-C(8A)   | 1.519(7)   | C(13B)-H(13D) | 0.9900   |
| C(9)-H(9A)   | 0.9900     | C(14B)-C(15B) | 1.518(7) |
| C(9)-H(9B)   | 0.9900     | C(14B)-H(14C) | 0.9900   |
| C(7A)-C(6)   | 1.426(8)   | C(14B)-H(14D) | 0.9900   |
| C(7A)-C(8A)  | 1.517(7)   | C(15B)-C(16B) | 1.526(7) |
| C(7A)-H(7AA) | 0.9900     | C(15B)-H(15C) | 0.9900   |
| C(7A)-H(7AB) | 0.9900     | C(15B)-H(15D) | 0.9900   |
| C(8A)-H(8AA) | 0.9900     | C(16B)-H(16C) | 0.9900   |
| C(8A)-H(8AB) | 0.9900     | C(16B)-H(16D) | 0.9900   |
| N(1)-C(6)    | 1.477(2)   |               |          |
| N(1)-C(1)    | 1.496(2)   |               |          |
| C(1)-H(1)    | 0.98(3)    |               |          |

**Table A.9.** Bond lengths (Å) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. Symmetry transformations used to generate equivalent atoms: Symmetry transformations used to generate equivalent atoms: #1 x,  $-y + \frac{1}{2}$ , z.

109.8 C(5)-S(2)-S(3)118.6(2)C(6)-C(7)-H(7B)104.05(9) 108.3 C(10)-S(3)-S(2)H(7A)-C(7)-H(7B)111.3(5)N(2)-C(10)-S(4)131.74(16) C(9)-C(8)-C(7)108.75(14)C(9)-C(8)-H(8A) 109.4 N(2)-C(10)-S(3)S(4)-C(10)-S(3)119.52(14)C(7)-C(8)-H(8A)109.4 128.2(3)C(9)-C(8)-H(8B)109.4 N(1)-C(5)-S(1)N(1)-C(5)-S(2)127.47(16) C(7)-C(8)-H(8B)109.4 S(1)-C(5)-S(2)103.51(12)H(8A)-C(8)-H(8B)108.0 109.3(7)C(3)-C(2)-C(1)C(8)-C(9)-C(8A)111.2(3)109.8 109.4 C(3)-C(2)-H(2A)C(8)-C(9)-H(9A)C(1)-C(2)-H(2A)109.8 C(8A)-C(9)-H(9A) 109.4 109.8 109.4 C(3)-C(2)-H(2B)C(8)-C(9)-H(9B)C(1)-C(2)-H(2B)109.8 C(8A)-C(9)-H(9B)109.4 108.3 H(9A)-C(9)-H(9B) 108.0 H(2A)-C(2)-H(2B)111.9(6) C(4)-C(3)-C(2)C(6)-C(7A)-C(8A)111.7(5)C(4)-C(3)-H(3A)109.2 C(6)-C(7A)-H(7AA)109.3 C(2)-C(3)-H(3A) 109.2 C(8A)-C(7A)-H(7AA)109.3 C(4)-C(3)-H(3B)109.2 C(6)-C(7A)-H(7AB) 109.3 C(2)-C(3)-H(3B)109.2 C(8A)-C(7A)-H(7AB) 109.3 107.9 H(7AA)-C(7A)-H(7AB) 107.9 H(3A)-C(3)-H(3B)C(3)-C(4)-C(3A)111.7(3)C(7A)-C(8A)-C(9) 112.5(6) C(3)-C(4)-H(4A)109.3 C(7A)-C(8A)-H(8AA)109.1 109.3 109.1 C(3A)-C(4)-H(4A)C(9)-C(8A)-H(8AA) 109.3 109.1 C(3)-C(4)-H(4B)C(7A)-C(8A)-H(8AB)C(3A)-C(4)-H(4B)109.3 C(9)-C(8A)-H(8AB) 109.1 107.9 107.8 H(4A)-C(4)-H(4B)H(8AA)-C(8A)-H(8AB)111.0(7)122.26(16) C(1)-C(2A)-C(3A)C(5)-N(1)-C(6)109.4 122.42(17)C(1)-C(2A)-H(2AA)C(5)-N(1)-C(1)109.4 114.85(15) C(3A)-C(2A)-H(2AA)C(6)-N(1)-C(1)C(1)-C(2A)-H(2AB)109.4 119.0(4)C(2A)-C(1)-N(1)C(3A)-C(2A)-H(2AB)109.4 C(2A)-C(1)-C(2)112.6(3) 108.0 H(2AA)-C(2A)-H(2AB)N(1)-C(1)-C(2)107.5(3)C(4)-C(3A)-C(2A)110.3(6) C(2A)-C(1)-H(1)107.6(12)C(4)-C(3A)-H(3AA)109.6 N(1)-C(1)-H(1)103.9(18)109.6 C(2A)-C(3A)-H(3AA)C(2)-C(1)-H(1)105.1(8) 109.6 C(4)-C(3A)-H(3AB)C(7A)-C(6)-N(1)119.8(3)109.6 C(2A)-C(3A)-H(3AB)C(7A)-C(6)-C(7)112.2(2)H(3AA)-C(3A)-H(3AB)108.1 N(1)-C(6)-C(7)105.8(2)C(8)-C(7)-C(6)109.2(4)C(7A)-C(6)-H(1AA) 103.3(11)C(8)-C(7)-H(7A) 109.8 N(1)-C(6)-H(1AA)102.7(17)109.8 C(6)-C(7)-H(7A)C(7)-C(6)-H(1AA) 112.9(8) C(8)-C(7)-H(7B) 109.8 C(10)-N(2)-C(11A)#1 94.9(2)

**Table A.10**. Bond angles (deg.) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. Symmetry transformations used to generate equivalent atoms: Symmetry transformations used to generate equivalent atoms: #1 x,  $-y + \frac{1}{2}$ , z.

**Table A.10, Cont'd**. Bond angles (deg.) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. Symmetry transformations used to generate equivalent atoms: Symmetry transformations used to generate equivalent atoms:  $\#1 x, -y + \frac{1}{2}, z$ .

| C(10)-N(2)-C(11A)      | 129.4(2)  | C(16B)-C(11B)-C(12B) | 112.6(4) |
|------------------------|-----------|----------------------|----------|
| C(11A)#1-N(2)-C(11A)   | 135.1(4)  | C(16B)-C(11B)-N(2)   | 115.7(3) |
| C(10)-N(2)-C(11B)#1    | 114.3(2)  | C(12B)-C(11B)-N(2)   | 115.8(4) |
| C(11A)#1-N(2)-C(11B)#1 | 19.97(17) | C(16B)-C(11B)-H(11B) | 103.5    |
| C(11A)-N(2)-C(11B)#1   | 116.2(4)  | C(12B)-C(11B)-H(11B) | 103.5    |
| C(11B)-N(2)-C(11B)#1   | 96.7(4)   | N(2)-C(11B)-H(11B)   | 103.5    |
| N(2)-C(11A)-C(16A)     | 112.2(4)  | C(13B)-C(12B)-C(11B) | 111.3(5) |
| N(2)-C(11A)-C(12A)     | 111.1(4)  | C(13B)-C(12B)-H(12C) | 109.4    |
| C(16A)-C(11A)-C(12A)   | 111.7(5)  | C(11B)-C(12B)-H(12C) | 109.4    |
| N(2)-C(11A)-H(11A)     | 107.1     | C(13B)-C(12B)-H(12D) | 109.4    |
| C(16A)-C(11A)-H(11A)   | 107.1     | C(11B)-C(12B)-H(12D) | 109.4    |
| C(12A)-C(11A)-H(11A)   | 107.1     | H(12C)-C(12B)-H(12D) | 108.0    |
| C(13A)-C(12A)-C(11A)   | 109.1(6)  | C(14B)-C(13B)-C(12B) | 112.6(5) |
| C(13A)-C(12A)-H(12A)   | 109.9     | C(14B)-C(13B)-H(13C) | 109.1    |
| C(11A)-C(12A)-H(12A)   | 109.9     | C(12B)-C(13B)-H(13C) | 109.1    |
| C(13A)-C(12A)-H(12B)   | 109.9     | C(14B)-C(13B)-H(13D) | 109.1    |
| C(11A)-C(12A)-H(12B)   | 109.9     | C(12B)-C(13B)-H(13D) | 109.1    |
| H(12A)-C(12A)-H(12B)   | 108.3     | H(13C)-C(13B)-H(13D) | 107.8    |
| C(14A)-C(13A)-C(12A)   | 111.7(6)  | C(13B)-C(14B)-C(15B) | 113.3(6) |
| C(14A)-C(13A)-H(13A)   | 109.3     | C(13B)-C(14B)-H(14C) | 108.9    |
| C(12A)-C(13A)-H(13A)   | 109.3     | C(15B)-C(14B)-H(14C) | 108.9    |
| C(14A)-C(13A)-H(13B)   | 109.3     | C(13B)-C(14B)-H(14D) | 108.9    |
| C(12A)-C(13A)-H(13B)   | 109.3     | C(15B)-C(14B)-H(14D) | 108.9    |
| H(13A)-C(13A)-H(13B)   | 107.9     | H(14C)-C(14B)-H(14D) | 107.7    |
| C(13A)-C(14A)-C(15A)   | 109.0(5)  | C(14B)-C(15B)-C(16B) | 110.0(4) |
| C(13A)-C(14A)-H(14A)   | 109.9     | C(14B)-C(15B)-H(15C) | 109.7    |
| C(15A)-C(14A)-H(14A)   | 109.9     | C(16B)-C(15B)-H(15C) | 109.7    |
| C(13A)-C(14A)-H(14B)   | 109.9     | C(14B)-C(15B)-H(15D) | 109.7    |
| C(15A)-C(14A)-H(14B)   | 109.9     | C(16B)-C(15B)-H(15D) | 109.7    |
| H(14A)-C(14A)-H(14B)   | 108.3     | H(15C)-C(15B)-H(15D) | 108.2    |
| C(14A)-C(15A)-C(16A)   | 111.5(5)  | C(11B)-C(16B)-C(15B) | 111.4(5) |
| C(14A)-C(15A)-H(15A)   | 109.3     | C(11B)-C(16B)-H(16C) | 109.3    |
| C(16A)-C(15A)-H(15A)   | 109.3     | C(15B)-C(16B)-H(16C) | 109.3    |
| C(14A)-C(15A)-H(15B)   | 109.3     | C(11B)-C(16B)-H(16D) | 109.3    |
| C(16A)-C(15A)-H(15B)   | 109.3     | C(15B)-C(16B)-H(16D) | 109.3    |
| H(15A)-C(15A)-H(15B)   | 108.0     | H(16C)-C(16B)-H(16D) | 108.0    |
| C(11A)-C(16A)-C(15A)   | 109.7(5)  |                      |          |
| C(11A)-C(16A)-H(16A)   | 109.7     |                      |          |
| C(15A)-C(16A)-H(16A)   | 109.7     |                      |          |
| C(11A)-C(16A)-H(16B)   | 109.7     |                      |          |
| C(15A)-C(16A)-H(16B)   | 109.7     |                      |          |
| H(16A)-C(16A)-H(16B)   | 108.2     |                      |          |
|                        |           |                      |          |

| Atom   | $U^{II}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{I3}$ | $U^{12}$ |
|--------|----------|----------|----------|----------|----------|----------|
| S(1)   | 34(1)    | 68(1)    | 39(1)    | -15(1)   | 5(1)     | 1(1)     |
| S(2)   | 30(1)    | 83(1)    | 40(1)    | 11(1)    | 6(1)     | -8(1)    |
| S(3)   | 32(1)    | 52(1)    | 48(1)    | 9(1)     | 1(1)     | -7(1)    |
| S(4)   | 42(1)    | 51(1)    | 46(1)    | -6(1)    | 6(1)     | -7(1)    |
| C(10)  | 32(1)    | 50(2)    | 40(1)    | 2(1)     | 11(1)    | -3(1)    |
| C(5)   | 31(1)    | 27(6)    | 43(1)    | 2(1)     | 5(1)     | -1(1)    |
| C(2)   | 34(3)    | 75(4)    | 64(3)    | -4(3)    | 11(3)    | -21(3)   |
| C(3)   | 44(3)    | 126(5)   | 73(4)    | -24(4)   | 19(3)    | -35(3)   |
| C(4)   | 31(1)    | 143(8)   | 69(2)    | -33(3)   | 15(1)    | -15(2)   |
| C(2A)  | 37(3)    | 79(4)    | 59(3)    | -5(3)    | 9(2)     | 2(2)     |
| C(3A)  | 33(2)    | 129(6)   | 75(3)    | -26(4)   | 16(2)    | 3(3)     |
| C(7)   | 36(3)    | 74(3)    | 37(2)    | -12(2)   | 6(2)     | -3(2)    |
| C(8)   | 45(2)    | 91(3)    | 52(2)    | -15(2)   | 14(2)    | -2(2)    |
| C(9)   | 55(2)    | 120(7)   | 42(1)    | 0(2)     | 11(1)    | 7(2)     |
| C(7A)  | 45(4)    | 80(4)    | 56(3)    | 10(2)    | 11(2)    | 13(3)    |
| C(8A)  | 62(3)    | 105(4)   | 44(2)    | 18(3)    | 8(2)     | 16(3)    |
| N(1)   | 29(1)    | 49(1)    | 40(1)    | 0        | 6(1)     | 0        |
| C(1)   | 30(1)    | 79(1)    | 48(1)    | 0        | 10(1)    | 0        |
| C(6)   | 31(1)    | 82(1)    | 40(1)    | 0        | 8(1)     | 0        |
| N(2)   | 30(1)    | 61(1)    | 40(1)    | 0        | 4(1)     | 0        |
| C(11A) | 41(2)    | 53(2)    | 47(3)    | 7(2)     | 2(2)     | 0(2)     |
| C(12A) | 27(2)    | 55(3)    | 69(3)    | -14(2)   | 12(2)    | -3(2)    |
| C(13A) | 43(2)    | 64(3)    | 81(5)    | -20(3)   | 4(3)     | 7(2)     |
| C(14A) | 39(2)    | 46(2)    | 62(2)    | 2(2)     | 1(2)     | -3(1)    |
| C(15A) | 57(3)    | 68(2)    | 51(3)    | 10(2)    | 1(2)     | -18(2)   |
| C(16A) | 51(3)    | 65(3)    | 57(2)    | -6(2)    | 23(2)    | -18(2)   |
| C(11B) | 37(2)    | 45(2)    | 47(2)    | 3(2)     | 12(2)    | -1(1)    |
| C(12B) | 40(3)    | 52(3)    | 49(2)    | -3(2)    | 17(2)    | 0(2)     |
| C(13B) | 59(3)    | 69(3)    | 60(3)    | -20(2)   | 19(3)    | -15(2)   |
| C(14B) | 61(3)    | 66(3)    | 100(3)   | -24(2)   | 29(3)    | -22(2)   |
| C(15B) | 38(2)    | 64(2)    | 80(4)    | -2(3)    | 12(3)    | -16(2)   |
| C(16B) | 37(2)    | 60(3)    | 58(2)    | 4(2)     | 20(1)    | 1(2)     |

**Table A.11.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{l1} + ... + 2hka^{*}b^{*}U^{l2}]$ .

| H atom | Х        | У    | Z        | U(eq) |
|--------|----------|------|----------|-------|
| H(2A)  | 3234     | 1356 | 2268     | 71    |
| H(2B)  | 3674     | 882  | 3744     | 71    |
| H(3A)  | 1254     | 713  | 2570     | 97    |
| H(3B)  | 1569     | 1309 | 3955     | 97    |
| H(4A)  | -143     | 2163 | 2292     | 98    |
| H(4B)  | 804      | 2227 | 1372     | 98    |
| H(2AA) | 2950     | 3355 | 2127     | 72    |
| H(2AB) | 3272     | 3982 | 3490     | 72    |
| H(3AA) | 1333     | 3263 | 3871     | 96    |
| H(3AB) | 853      | 3796 | 2431     | 96    |
| H(7A)  | 5803     | 4118 | 5539     | 61    |
| H(7B)  | 4752     | 3508 | 6075     | 61    |
| H(8A)  | 7622     | 3784 | 7520     | 76    |
| H(8B)  | 6399     | 4253 | 7939     | 76    |
| H(9A)  | 5768     | 2652 | 8448     | 88    |
| H(9B)  | 7362     | 2816 | 9259     | 88    |
| H(7AA) | 6365     | 1037 | 5896     | 74    |
| H(7AB) | 5132     | 1524 | 6281     | 74    |
| H(8AA) | 7977     | 1836 | 7714     | 87    |
| H(8AB) | 6959     | 1190 | 8246     | 87    |
| H(1)   | 3640(30) | 2500 | 4680(30) | 80    |
| H(1AA) | 6980(30) | 2500 | 5430(30) | 78    |
| H(11A) | 10658    | 3961 | 6763     | 60    |
| H(12A) | 10236    | 3661 | 8784     | 61    |
| H(12B) | 11778    | 3273 | 9479     | 61    |
| H(13A) | 11035    | 5293 | 8497     | 80    |
| H(13B) | 11624    | 4994 | 10049    | 80    |
| H(14A) | 13745    | 4554 | 9829     | 63    |
| H(14B) | 13376    | 5704 | 9368     | 63    |
| H(15A) | 14103    | 4830 | 7759     | 76    |
| H(15B) | 12552    | 5201 | 7095     | 76    |
| H(16A) | 12721    | 3509 | 6457     | 68    |
| H(16B) | 13356    | 3174 | 7996     | 68    |
| H(11B) | 12336    | 3019 | 8634     | 52    |
| H(12C) | 10107    | 4377 | 7988     | 56    |
| H(12D) | 10434    | 3529 | 9130     | 56    |
| H(13C) | 11262    | 5166 | 9999     | 75    |
| H(13D) | 12442    | 4327 | 10372    | 75    |
| H(14C) | 13277    | 5764 | 9697     | 90    |
| H(14D) | 11993    | 5817 | 8344     | 90    |

**Table A.12**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>.

| H atom | Х     | У    | Z    | U(eq) |
|--------|-------|------|------|-------|
| H(15C) | 14115 | 4326 | 8945 | 75    |
| H(15D) | 13859 | 5190 | 7826 | 75    |
| H(16C) | 11783 | 4442 | 6539 | 61    |
| H(16D) | 12952 | 3595 | 6852 | 61    |

**Table A.12, Cont'd.** Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for monoclinic Cy<sub>2</sub>NC(S)SSC(S)NCy<sub>2</sub>.

| Identification code                       | jpd864_4a_a                          |                              |
|-------------------------------------------|--------------------------------------|------------------------------|
| Empirical formula                         | $C_{26}H_{44}N_2S_6$                 |                              |
| Formula weight                            | 576.99                               |                              |
| Temperature                               | 150(2) K                             |                              |
| Wavelength                                | 1.54178 Å                            |                              |
| Crystal system                            | monoclinic                           |                              |
| Space group                               | C2/c                                 |                              |
| Unit cell dimensions                      | a = 28.1464(15) Å                    | $\alpha = 90^{\circ}$        |
|                                           | b = 9.2015(5)  Å                     | $\beta = 105.848(2)^{\circ}$ |
|                                           | c = 12.0265(6) Å                     | $\gamma = 90^{\circ}$        |
| Volume                                    | 2996.3(3) Å <sup>3</sup>             |                              |
| Ζ                                         | 4                                    |                              |
| Density (calculated)                      | $1.279 \text{ g/cm}^3$               |                              |
| Absorption coefficient                    | 4.343 mm <sup>-1</sup>               |                              |
| F(000)                                    | 1240                                 |                              |
| Crystal size                              | 0.183 x 0.143 x 0.026 mm             | n <sup>3</sup>               |
| $\theta$ range for data collection        | 3.264 to 72.253°                     |                              |
| Index ranges                              | $-14 \le h \le 14, -10 \le k \le 10$ | $, 16 \le l \le -33$         |
| Reflections collected                     | 17752                                |                              |
| Independent reflections                   | 2731 [R(int) = 0.0637]               |                              |
| Completeness to $\theta = 68.000^{\circ}$ | 93.5 %                               |                              |
| Absorption correction                     | Semi-empirical from equi             | valents                      |
| Max. and min. transmission                | 0.90 and 0.50                        |                              |
| Refinement method                         | Full-matrix least-squares            | on $F^2$                     |
| Data / restraints / parameters            | 2731 / 0 / 242                       |                              |
| Goodness-of-fit on $F^2$                  | 1.043                                |                              |
| Final R indices $[I \ge 2\sigma(I)]$      | R1 = 0.0575, wR2 = 0.139             | 98                           |
| R indices (all data)                      | R1 = 0.0767, wR2 = 0.148             | 89                           |
| Extinction coefficient                    | n/a                                  |                              |
| Largest diff. peak and hole               | 0.394 and -0.515 e⋅Å <sup>-3</sup>   |                              |

**Table A.13.** Crystal Data and Structure Refinement for  $Cy_2NC(S)S_4C(S)NCy_2$ .

| Atom  | x       | У        | Ζ       | U(eq) |
|-------|---------|----------|---------|-------|
| S(1)  | 4098(1) | 10506(1) | 3397(1) | 38(1) |
| S(2)  | 4771(1) | 7926(1)  | 4025(1) | 32(1) |
| S(3)  | 5162(1) | 9391(1)  | 3383(1) | 37(1) |
| N(1)  | 3891(1) | 8093(3)  | 4441(3) | 29(1) |
| C(1)  | 4193(1) | 8878(4)  | 3982(3) | 28(1) |
| C(2)  | 3397(1) | 8619(5)  | 4481(4) | 36(1) |
| C(3)  | 3410(2) | 9972(4)  | 5206(4) | 36(1) |
| C(4)  | 2887(2) | 10387(6) | 5244(5) | 59(1) |
| C(5)  | 2540(2) | 10515(7) | 4058(6) | 73(2) |
| C(6)  | 2518(2) | 9126(7)  | 3361(5) | 61(1) |
| C(7)  | 3035(2) | 8694(5)  | 3292(4) | 45(1) |
| C(8)  | 4025(1) | 6629(4)  | 4958(3) | 33(1) |
| C(9)  | 4121(2) | 6628(5)  | 6263(4) | 45(1) |
| C(10) | 4290(2) | 5132(6)  | 6767(5) | 52(1) |
| C(11) | 3931(2) | 3953(5)  | 6200(5) | 55(1) |
| C(12) | 3831(2) | 3965(5)  | 4902(5) | 59(1) |
| C(13) | 3665(2) | 5444(4)  | 4379(4) | 45(1) |

**Table A.14**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters  $(Å^2 \times 10^3)$  for Cy<sub>2</sub>NC(S)S<sub>4</sub>C(S)NCy<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| S(1)-C(1)      | 1.646(4)   |
|----------------|------------|
| S(2)-C(1)      | 1.836(4)   |
| S(2)-S(3)      | 2.0216(13) |
| S(3)-S(3)#1    | 2.069(2)   |
| N(1)-C(1)      | 1.345(5)   |
| N(1)-C(2)      | 1.486(4)   |
| N(1)-C(8)      | 1.488(5)   |
| C(2)-C(7)      | 1.513(6)   |
| C(2)-C(3)      | 1.514(6)   |
| C(2)-H(2)      | 1.01(4)    |
| C(3)-C(4)      | 1.535(6)   |
| C(3)-H(3A)     | 0.99(6)    |
| C(3)-H(3B)     | 1.00(5)    |
| C(4)-C(5)      | 1.497(9)   |
| C(4)-H(4A)     | 1.10(6)    |
| C(4)-H(4B)     | 0.97(6)    |
| C(5)-C(6)      | 1.520(9)   |
| C(5)-H(5A)     | 1.01(5)    |
| C(5)-H(5B)     | 1.12(8)    |
| C(6)-C(7)      | 1.532(7)   |
| C(6)-H(6A)     | 0.96(6)    |
| C(6)-H(6B)     | 1.05(6)    |
| C(7)-H(7A)     | 1.00(5)    |
| C(7)-H(7B)     | 1.06(5)    |
| C(8)-C(9)      | 1.519(6)   |
| C(8)-C(13)     | 1.522(6)   |
| C(8)-H(8)      | 1.01(4)    |
| C(9)-C(10)     | 1.527(6)   |
| C(9)-H(9A)     | 0.9/(5)    |
| C(9)-H(9B)     | 0.86(4)    |
| C(10)-C(11)    | 1.513(7)   |
| C(10)-H(10A)   | 1.09(8)    |
| C(10)-H(10B)   | 0.84(5)    |
| C(11)-C(12)    | 1.510(8)   |
| C(11)-H(11B)   | 0.97(6)    |
| C(11)-H(11A)   | 1.0/(6)    |
| C(12)- $C(13)$ | 1.519(6)   |
| C(12)-H(12A)   | 0.93(6)    |
| C(12)-H(12B)   | 0.92(5)    |
| C(13)-H(13A)   | 1.05(5)    |
| C(13)-H(13B)   | 0.95(5)    |

**Table A.15**. Bond lengths (Å) for Cy<sub>2</sub>NC(S)S<sub>4</sub>C(S)NCy<sub>2</sub>. Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y,  $-z + \frac{1}{2}$ .

C(1)-S(2)-S(3)103.96(13) H(7A)-C(7)-H(7B)121(4)S(2)-S(3)-S(3)#1105.02(6) N(1)-C(8)-C(9)112.7(3)122.8(3) 113.3(3) C(1)-N(1)-C(2)N(1)-C(8)-C(13)122.7(3)112.3(4)C(1)-N(1)-C(8)C(9)-C(8)-C(13)114.5(3)108(2)C(2)-N(1)-C(8)N(1)-C(8)-H(8)N(1)-C(1)-S(1)128.1(3)C(9)-C(8)-H(8)104(2)112.8(3)C(13)-C(8)-H(8)105(2)N(1)-C(1)-S(2)S(1)-C(1)-S(2)119.1(2)C(8)-C(9)-C(10)111.0(4)N(1)-C(2)-C(7)112.2(3)C(8)-C(9)-H(9A) 109(3)C(10)-C(9)-H(9A) 108(3)N(1)-C(2)-C(3)114.2(3)C(7)-C(2)-C(3)114.3(4)C(8)-C(9)-H(9B)97(3) N(1)-C(2)-H(2)107(2)C(10)-C(9)-H(9B) 113(3)C(7)-C(2)-H(2)104(2)H(9A)-C(9)-H(9B)118(4)C(3)-C(2)-H(2)104(3)C(11)-C(10)-C(9)111.7(4)110.4(4)113(4)C(2)-C(3)-C(4)C(11)-C(10)-H(10A)C(2)-C(3)-H(3A)111(3)C(9)-C(10)-H(10A) 115(4)C(4)-C(3)-H(3A)109(3)C(11)-C(10)-H(10B)109(3)C(2)-C(3)-H(3B) 112(3) C(9)-C(10)-H(10B) 107(3)C(4)-C(3)-H(3B)108(3) H(10A)-C(10)-H(10B) 100(5)H(3A)-C(3)-H(3B)105(4)C(12)-C(11)-C(10)112.0(4)104(3)C(5)-C(4)-C(3)111.9(4)C(12)-C(11)-H(11B)C(5)-C(4)-H(4A)104(3)C(10)-C(11)-H(11B) 113(3)C(3)-C(4)-H(4A)109(3)C(12)-C(11)-H(11A)113(3)C(5)-C(4)-H(4B)105(3)C(10)-C(11)-H(11A) 106(3)109(4)C(3)-C(4)-H(4B)106(3)H(11B)-C(11)-H(11A)H(4A)-C(4)-H(4B)119(5) C(11)-C(12)-C(13)112.6(4)112.1(4)C(11)-C(12)-H(12A) 115(4)C(4)-C(5)-C(6)C(4)-C(5)-H(5A) 106(3)103(4)C(13)-C(12)-H(12A) 107(3)C(6)-C(5)-H(5A)108(3)C(11)-C(12)-H(12B)C(4)-C(5)-H(5B) 115(4)102(3)C(13)-C(12)-H(12B) C(6)-C(5)-H(5B)103(4)118(5)H(12A)-C(12)-H(12B)H(5A)-C(5)-H(5B)114(5)C(12)-C(13)-C(8) 111.2(4)112(3)C(5)-C(6)-C(7)110.6(4)C(12)-C(13)-H(13A)C(5)-C(6)-H(6A)107(4)110(3)C(8)-C(13)-H(13A)C(7)-C(6)-H(6A)112(3)C(12)-C(13)-H(13B)111(3)C(5)-C(6)-H(6B)115(3)C(8)-C(13)-H(13B) 104(3)H(13A)-C(13)-H(13B) 108(4)C(7)-C(6)-H(6B)108(3)104(4)H(6A)-C(6)-H(6B)C(2)-C(7)-C(6)111.4(4)C(2)-C(7)-H(7A) 103(3)C(6)-C(7)-H(7A)107(2)C(2)-C(7)-H(7B)106(3)C(6)-C(7)-H(7B)108(2)

**Table A.16**. Bond angles (deg.) for  $Cy_2NC(S)S_4C(S)NCy_2$ . Symmetry transformations used to generate equivalent atoms: #1 - x + 1,  $y, -z + \frac{1}{2}$ .

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| S(1)  | 46(1)    | 29(1)    | 41(1)    | 6(1)     | 16(1)    | 4(1)     |
| S(2)  | 31(1)    | 32(1)    | 34(1)    | 0(1)     | 12(1)    | 2(1)     |
| S(3)  | 34(1)    | 40(1)    | 38(1)    | -6(1)    | 15(1)    | -9(1)    |
| N(1)  | 29(2)    | 23(2)    | 35(2)    | -3(1)    | 12(1)    | 2(1)     |
| C(1)  | 33(2)    | 21(2)    | 30(2)    | -4(1)    | 8(1)     | 0(1)     |
| C(2)  | 26(2)    | 39(2)    | 46(2)    | -1(2)    | 12(2)    | 5(2)     |
| C(3)  | 45(2)    | 26(2)    | 42(2)    | 5(2)     | 18(2)    | 7(2)     |
| C(4)  | 62(3)    | 48(3)    | 77(4)    | 3(3)     | 35(3)    | 19(2)    |
| C(5)  | 52(3)    | 78(4)    | 91(4)    | 18(3)    | 21(3)    | 35(3)    |
| C(6)  | 34(2)    | 67(4)    | 72(4)    | 20(3)    | -1(2)    | 1(2)     |
| C(7)  | 43(2)    | 40(3)    | 44(2)    | 3(2)     | 0(2)     | 2(2)     |
| C(8)  | 37(2)    | 22(2)    | 41(2)    | 2(2)     | 12(2)    | 0(2)     |
| C(9)  | 47(3)    | 35(2)    | 46(3)    | 4(2)     | 3(2)     | 0(2)     |
| C(10) | 42(3)    | 50(3)    | 57(3)    | 18(2)    | 0(2)     | 0(2)     |
| C(11) | 57(3)    | 32(2)    | 72(3)    | 17(2)    | 8(2)     | 5(2)     |
| C(12) | 65(3)    | 25(2)    | 82(4)    | -2(2)    | 13(3)    | -1(2)    |
| C(13) | 64(3)    | 25(2)    | 43(3)    | -3(2)    | 7(2)     | 1(2)     |

**Table A.17**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for Cy<sub>2</sub>NC(S)S<sub>4</sub>C(S)NCy<sub>2</sub>. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

K,GTRDAXVNM

| H atom | Х        | у         | Z        | U(eq)   |
|--------|----------|-----------|----------|---------|
| H(2)   | 3252(16) | 7850(50)  | 4890(40) | 43(12)  |
| H(3A)  | 3620(20) | 9830(60)  | 6010(50) | 68(16)  |
| H(3B)  | 3557(19) | 10820(60) | 4900(50) | 62(15)  |
| H(4A)  | 2730(20) | 9510(70)  | 5660(50) | 90(20)  |
| H(4B)  | 2910(19) | 11360(70) | 5560(50) | 70(17)  |
| H(5A)  | 2201(19) | 10670(50) | 4180(40) | 53(14)  |
| H(5B)  | 2650(30) | 11350(90) | 3490(70) | 130(30) |
| H(6A)  | 2370(20) | 8390(70)  | 3730(50) | 71(17)  |
| H(6B)  | 2290(20) | 9170(60)  | 2520(50) | 76(18)  |
| H(7A)  | 3013(15) | 7660(50)  | 3030(40) | 41(12)  |
| H(7B)  | 3165(17) | 9520(50)  | 2840(40) | 48(13)  |
| H(8)   | 4351(15) | 6340(50)  | 4830(40) | 37(11)  |
| H(9A)  | 3820(20) | 6870(60)  | 6450(50) | 64(16)  |
| H(9B)  | 4354(16) | 7270(50)  | 6410(40) | 35(11)  |
| H(10Å) | 4400(30) | 5080(80)  | 7710(70) | 120(30) |
| H(10B) | 4564(17) | 4970(50)  | 6640(40) | 39(13)  |
| H(11B) | 4060(20) | 2990(60)  | 6420(50) | 72(17)  |
| H(11A) | 3610(20) | 4110(60)  | 6490(50) | 70(16)  |
| H(12A) | 3570(20) | 3360(60)  | 4510(50) | 70(17)  |
| H(12B) | 4130(20) | 3860(60)  | 4740(50) | 60(16)  |
| H(13A) | 3310(20) | 5710(60)  | 4430(50) | 68(16)  |
| H(13B) | 3664(17) | 5480(50)  | 3590(50) | 50(13)  |

**Table A.18**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for Cy<sub>2</sub>NC(S)S<sub>4</sub>C(S)NCy<sub>2</sub>.



**Table A.19**. Crystal Data and Structure Refinement for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ .

| Identification code                       | jpd839_0m_a_sq                                         |
|-------------------------------------------|--------------------------------------------------------|
| Empirical formula                         | $C_{24}H_{54}IMo_3P_3S_{13}$                           |
| Formula weight                            | 1267.08                                                |
| Temperature                               | 100(2) K                                               |
| Wavelength                                | 0.71073 Å                                              |
| Crystal system                            | orthorhombic                                           |
| Space group                               | $Pna2_1$                                               |
| Unit cell dimensions                      | $a = 11.5814(18) \text{ Å} \qquad \alpha = 90^{\circ}$ |
|                                           | $b = 23.552(4) \text{ Å} \qquad \beta = 90^{\circ}$    |
|                                           | $c = 19.102(3) \text{ Å}$ $\gamma = 90^{\circ}$        |
| Volume                                    | $5210.2(14) \text{ Å}^3$                               |
| Ζ                                         | 4                                                      |
| Density (calculated)                      | $1.615 \text{ g/cm}^3$                                 |
| Absorption coefficient                    | $1.934 \text{ mm}^{-1}$                                |
| F(000)                                    | 2520                                                   |
| Crystal size                              | 0.273 x 0.212 x 0.084 mm <sup>3</sup>                  |
| $\theta$ range for data collection        | 1.373 to 28.831°                                       |
| Index ranges                              | $-15 \le h \le 15, -31 \le k \le 30, -25 \le l \le 25$ |
| Reflections collected                     | 47648                                                  |
| Independent reflections                   | 13014 [R(int) = 0.0454]                                |
| Completeness to $\theta = 28.500^{\circ}$ | 99.3 %                                                 |
| Absorption correction                     | Semi-empirical from equivalents                        |
| Max. and min. transmission                | 0.74 and 0.61                                          |
|                                           |                                                        |

**Table A.19, Cont'd.** Crystal Data and Structure Refinement for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ .

| Full-matrix least-squares on $F^2$ |
|------------------------------------|
| 13014 / 1 / 410                    |
| 1.005                              |
| R1 = 0.0356, $wR2 = 0.0804$        |
| R1 = 0.0455, wR2 = 0.0839          |
| 0.483(18)                          |
| n/a                                |
| 1.332 and -0.566 e⋅Å <sup>-3</sup> |
|                                    |

| Atom     | Х        | у       | Ζ       | U(eq) |
|----------|----------|---------|---------|-------|
| <br>I(1) | 608(1)   | 3658(1) | 5251(1) | 28(1) |
| Mo(1)    | 7933(1)  | 4846(1) | 4234(1) | 17(1) |
| Mo(2)    | 7844(1)  | 5010(1) | 5644(1) | 18(1) |
| Mo(3)    | 6730(1)  | 4106(1) | 5058(1) | 17(1) |
| S(1)     | 9602(1)  | 4909(1) | 4980(1) | 20(1) |
| S(2)     | 8809(1)  | 5678(1) | 4829(1) | 22(1) |
| S(3)     | 8179(1)  | 4032(1) | 5957(1) | 20(1) |
| S(4)     | 6637(1)  | 4336(1) | 6327(1) | 22(1) |
| S(5)     | 8278(1)  | 3840(1) | 4285(1) | 20(1) |
| S(6)     | 6787(1)  | 4041(1) | 3755(1) | 21(1) |
| S(7)     | 6236(1)  | 5075(1) | 4875(1) | 20(1) |
| S(8)     | 9349(1)  | 4776(1) | 3224(1) | 21(1) |
| S(9)     | 7082(1)  | 5527(1) | 3366(1) | 24(1) |
| S(10)    | 9218(1)  | 5244(1) | 6633(1) | 24(1) |
| S(11)    | 6831(1)  | 5825(1) | 6245(1) | 25(1) |
| S(12)    | 6499(1)  | 3040(1) | 5219(1) | 22(1) |
| S(13)    | 4579(1)  | 4000(1) | 5041(1) | 22(1) |
| P(1)     | 8423(1)  | 5372(1) | 2704(1) | 23(1) |
| P(2)     | 8140(2)  | 5866(1) | 6950(1) | 24(1) |
| P(3)     | 4765(1)  | 3146(1) | 5172(1) | 21(1) |
| C(1)     | 7830(6)  | 5182(3) | 1866(4) | 30(2) |
| C(2)     | 7020(6)  | 4677(3) | 1824(4) | 34(2) |
| C(3)     | 7651(7)  | 4101(3) | 1809(4) | 39(2) |
| C(4)     | 6224(7)  | 4731(4) | 1179(4) | 42(2) |
| C(5)     | 9364(6)  | 5966(3) | 2508(4) | 28(2) |
| C(6)     | 9982(7)  | 6247(3) | 3110(4) | 33(2) |
| C(7)     | 11117(7) | 6506(4) | 2827(5) | 46(2) |
| C(8)     | 9257(7)  | 6695(3) | 3464(4) | 42(2) |
| C(9)     | 8895(6)  | 6546(3) | 6972(4) | 33(2) |
| C(10)    | 9418(7)  | 6755(3) | 6285(4) | 36(2) |
| C(11)    | 8534(8)  | 7042(4) | 5804(5) | 56(2) |
| C(12)    | 10414(7) | 7157(4) | 6448(5) | 44(2) |
| C(13)    | 7695(5)  | 5765(3) | 7849(4) | 27(1) |
| C(14)    | 7152(6)  | 5198(3) | 8050(4) | 31(2) |
| C(15)    | 5848(7)  | 5187(4) | 7923(5) | 52(2) |
| C(16)    | 7408(7)  | 5044(4) | 8807(5) | 41(2) |
| C(17)    | 4057(5)  | 2766(3) | 4469(4) | 24(1) |
| C(18)    | 4389(5)  | 2909(3) | 3718(4) | 28(2) |
| C(19)    | 5507(6)  | 2610(4) | 3503(4) | 41(2) |

**Table A.20**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Х       | у                                                        | Z                                                                                                                                                                                     | U(eq)                                                                                                        |
|---------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 3418(6) | 2743(3)                                                  | 3225(4)                                                                                                                                                                               | 37(2)                                                                                                        |
| 4007(6) | 2895(3)                                                  | 5940(4)                                                                                                                                                                               | 27(2)                                                                                                        |
| 4248(6) | 3186(3)                                                  | 6639(4)                                                                                                                                                                               | 33(2)                                                                                                        |
| 3238(7) | 3099(4)                                                  | 7126(4)                                                                                                                                                                               | 41(2)                                                                                                        |
| 5375(7) | 2983(4)                                                  | 6980(4)                                                                                                                                                                               | 45(2)                                                                                                        |
|         | x<br>3418(6)<br>4007(6)<br>4248(6)<br>3238(7)<br>5375(7) | x         y           3418(6)         2743(3)           4007(6)         2895(3)           4248(6)         3186(3)           3238(7)         3099(4)           5375(7)         2983(4) | xyz3418(6)2743(3)3225(4)4007(6)2895(3)5940(4)4248(6)3186(3)6639(4)3238(7)3099(4)7126(4)5375(7)2983(4)6980(4) |

**Table A.20, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>( $\mu_2$ -S<sub>2</sub>)<sub>3</sub>( $\mu_3$ -S)(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Mo(1)-S(7)     | 2.3776(16) | C(2)-C(4)    | 1.545(10) |
|----------------|------------|--------------|-----------|
| Mo(1)-S(5)     | 2.4041(16) | C(2)-H(2)    | 1.0000    |
| Mo(1)-S(1)     | 2.4071(16) | C(3)-H(3A)   | 0.9800    |
| Mo(1)-S(2)     | 2.4829(17) | C(3)-H(3B)   | 0.9800    |
| Mo(1)-S(6)     | 2.4892(17) | C(3)-H(3C)   | 0.9800    |
| Mo(1)-S(9)     | 2.5081(17) | C(4)-H(4A)   | 0.9800    |
| Mo(1)-S(8)     | 2.5364(17) | C(4)-H(4B)   | 0.9800    |
| Mo(1)-Mo(2)    | 2.7239(9)  | C(4)-H(4C)   | 0.9800    |
| Mo(1)-Mo(3)    | 2.7309(8)  | C(5)-C(6)    | 1.508(11) |
| Mo(2)-S(7)     | 2.3765(16) | C(5)-H(5A)   | 0.9900    |
| Mo(2)-S(1)     | 2.4106(16) | C(5)-H(5B)   | 0.9900    |
| Mo(2)-S(3)     | 2.4107(16) | C(6)-C(8)    | 1.508(11) |
| Mo(2)-S(2)     | 2.4802(17) | C(6)-C(7)    | 1.547(11) |
| Mo(2)-S(4)     | 2.4862(16) | C(6)-H(6)    | 1.0000    |
| Mo(2)-S(11)    | 2.5260(17) | C(7)-H(7A)   | 0.9800    |
| Mo(2)-S(10)    | 2.5299(17) | C(7)-H(7B)   | 0.9800    |
| Mo(2)- $Mo(3)$ | 2.7306(8)  | C(7)-H(7C)   | 0.9800    |
| Mo(3)-S(7)     | 2.3784(16) | C(8)-H(8A)   | 0.9800    |
| Mo(3)-S(5)     | 2.4047(16) | C(8)-H(8B)   | 0.9800    |
| Mo(3)-S(3)     | 2.4076(16) | C(8)-H(8C)   | 0.9800    |
| Mo(3)-S(4)     | 2.4870(17) | C(9)-C(10)   | 1.527(10) |
| Mo(3)-S(6)     | 2.4947(17) | C(9)-H(9A)   | 0.9900    |
| Mo(3)-S(13)    | 2.5038(15) | C(9)-H(9B)   | 0.9900    |
| Mo(3)-S(12)    | 2.5428(16) | C(10)-C(12)  | 1.524(10) |
| S(1)-S(2)      | 2.053(2)   | C(10)-C(11)  | 1.533(11) |
| S(3)-S(4)      | 2.049(2)   | C(10)-H(10)  | 1.0000    |
| S(5)-S(6)      | 2.058(2)   | C(11)-H(11A) | 0.9800    |
| S(8)-P(1)      | 2.028(2)   | C(11)-H(11B) | 0.9800    |
| S(9)-P(1)      | 2.037(2)   | C(11)-H(11C) | 0.9800    |
| S(10)-P(2)     | 2.018(2)   | C(12)-H(12A) | 0.9800    |
| S(11)-P(2)     | 2.030(2)   | C(12)-H(12B) | 0.9800    |
| S(12)-P(3)     | 2.026(2)   | C(12)-H(12C) | 0.9800    |
| S(13)-P(3)     | 2.037(2)   | C(13)-C(14)  | 1.527(10) |
| P(1)-C(1)      | 1.799(7)   | C(13)-H(13A) | 0.9900    |
| P(1)-C(5)      | 1.811(7)   | C(13)-H(13B) | 0.9900    |
| P(2)-C(13)     | 1.808(7)   | C(14)-C(16)  | 1.519(11) |
| P(2)-C(9)      | 1.826(7)   | C(14)-C(15)  | 1.530(10) |
| P(3)-C(21)     | 1.809(7)   | C(14)-H(14)  | 1.0000    |
| P(3)-C(17)     | 1.810(7)   | C(15)-H(15A) | 0.9800    |
| C(1)-C(2)      | 1.518(10)  | C(15)-H(15B) | 0.9800    |
| C(1)-H(1A)     | 0.9900     | C(15)-H(15C) | 0.9800    |
| C(1)-H(1B)     | 0.9900     | C(16)-H(16A) | 0.9800    |
| C(2)-C(3)      | 1.540(11)  | C(16)-H(16B) | 0.9800    |

**Table A.21.** Bond lengths (Å) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| C(16)-H(16C) | 0.9800    |
|--------------|-----------|
| C(17)-C(18)  | 1.523(10) |
| C(17)-H(17A) | 0.9900    |
| C(17)-H(17B) | 0.9900    |
| C(18)-C(20)  | 1.518(10) |
| C(18)-C(19)  | 1.530(10) |
| C(18)-H(18)  | 1.0000    |
| C(19)-H(19A) | 0.9800    |
| C(19)-H(19B) | 0.9800    |
| C(19)-H(19C) | 0.9800    |
| C(20)-H(20A) | 0.9800    |
| C(20)-H(20B) | 0.9800    |
| C(20)-H(20C) | 0.9800    |
| C(21)-C(22)  | 1.528(10) |
| C(21)-H(21A) | 0.9900    |
| C(21)-H(21B) | 0.9900    |
| C(22)-C(23)  | 1.508(10) |
| C(22)-C(24)  | 1.534(10) |
| C(22)-H(22)  | 1.0000    |
| C(23)-H(23A) | 0.9800    |
| C(23)-H(23B) | 0.9800    |
| C(23)-H(23C) | 0.9800    |
| C(24)-H(24A) | 0.9800    |
| C(24)-H(24B) | 0.9800    |
| C(24)-H(24C) | 0.9800    |
|              |           |

**Table A.21, Cont'd**. Bond lengths (Å) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| S(7)-Mo(1)-S(5)   | 109.85(6) | S(1)-Mo(2)-S(4)   | 133.46(6) |
|-------------------|-----------|-------------------|-----------|
| S(7)-Mo(1)-S(1)   | 110.15(6) | S(3)-Mo(2)-S(4)   | 49.45(5)  |
| S(5)-Mo(1)-S(1)   | 84.43(5)  | S(2)-Mo(2)-S(4)   | 171.26(6) |
| S(7)-Mo(1)-S(2)   | 85.57(5)  | S(7)-Mo(2)-S(11)  | 82.42(6)  |
| S(5)-Mo(1)-S(2)   | 133.74(6) | S(1)-Mo(2)-S(11)  | 134.97(6) |
| S(1)-Mo(1)-S(2)   | 49.61(5)  | S(3)-Mo(2)-S(11)  | 133.48(6) |
| S(7)-Mo(1)-S(6)   | 85.48(5)  | S(2)-Mo(2)-S(11)  | 90.71(6)  |
| S(5)-Mo(1)-S(6)   | 49.69(5)  | S(4)-Mo(2)-S(11)  | 89.19(6)  |
| S(1)-Mo(1)-S(6)   | 133.88(6) | S(7)-Mo(2)-S(10)  | 160.08(6) |
| S(2)-Mo(1)-S(6)   | 171.02(5) | S(1)-Mo(2)-S(10)  | 83.30(6)  |
| S(7)-Mo(1)-S(9)   | 82.56(6)  | S(3)-Mo(2)-S(10)  | 85.48(6)  |
| S(5)-Mo(1)-S(9)   | 136.26(6) | S(2)-Mo(2)-S(10)  | 92.74(6)  |
| S(1)-Mo(1)-S(9)   | 131.90(6) | S(4)-Mo(2)-S(10)  | 95.77(6)  |
| S(2)-Mo(1)-S(9)   | 87.59(6)  | S(11)-Mo(2)-S(10) | 77.75(6)  |
| S(6)-Mo(1)-S(9)   | 91.99(6)  | S(7)-Mo(2)-Mo(1)  | 55.06(4)  |
| S(7)-Mo(1)-S(8)   | 160.19(6) | S(1)-Mo(2)-Mo(1)  | 55.51(4)  |
| S(5)-Mo(1)-S(8)   | 81.91(6)  | S(3)-Mo(2)-Mo(1)  | 95.95(4)  |
| S(1)-Mo(1)-S(8)   | 86.29(6)  | S(2)-Mo(2)-Mo(1)  | 56.76(4)  |
| S(2)-Mo(1)-S(8)   | 97.78(6)  | S(4)-Mo(2)-Mo(1)  | 116.72(4) |
| S(6)-Mo(1)-S(8)   | 90.90(6)  | S(11)-Mo(2)-Mo(1) | 125.09(5) |
| S(9)-Mo(1)-S(8)   | 78.10(5)  | S(10)-Mo(2)-Mo(1) | 138.22(4) |
| S(7)-Mo(1)-Mo(2)  | 55.03(4)  | S(7)-Mo(2)-Mo(3)  | 54.98(4)  |
| S(5)-Mo(1)-Mo(2)  | 96.07(4)  | S(1)-Mo(2)-Mo(3)  | 96.09(4)  |
| S(1)-Mo(1)-Mo(2)  | 55.63(4)  | S(3)-Mo(2)-Mo(3)  | 55.43(4)  |
| S(2)-Mo(1)-Mo(2)  | 56.67(4)  | S(2)-Mo(2)-Mo(3)  | 116.76(5) |
| S(6)-Mo(1)-Mo(2)  | 116.84(4) | S(4)-Mo(2)-Mo(3)  | 56.71(4)  |
| S(9)-Mo(1)-Mo(2)  | 123.21(5) | S(11)-Mo(2)-Mo(3) | 124.03(4) |
| S(8)-Mo(1)-Mo(2)  | 141.78(4) | S(10)-Mo(2)-Mo(3) | 140.61(5) |
| S(7)-Mo(1)-Mo(3)  | 54.97(4)  | Mo(1)-Mo(2)-Mo(3) | 60.09(2)  |
| S(5)-Mo(1)-Mo(3)  | 55.41(4)  | S(7)-Mo(3)-S(5)   | 109.80(6) |
| S(1)-Mo(1)-Mo(3)  | 96.16(4)  | S(7)-Mo(3)-S(3)   | 109.95(6) |
| S(2)-Mo(1)-Mo(3)  | 116.65(4) | S(5)-Mo(3)-S(3)   | 84.25(6)  |
| S(6)-Mo(1)-Mo(3)  | 56.87(4)  | S(7)-Mo(3)-S(4)   | 85.62(6)  |
| S(9)-Mo(1)-Mo(3)  | 126.05(4) | S(5)-Mo(3)-S(4)   | 133.43(5) |
| S(8)-Mo(1)-Mo(3)  | 136.58(4) | S(3)-Mo(3)-S(4)   | 49.48(5)  |
| Mo(2)-Mo(1)-Mo(3) | 60.08(2)  | S(7)-Mo(3)-S(6)   | 85.34(6)  |
| S(7)-Mo(2)-S(1)   | 110.06(6) | S(5)-Mo(3)-S(6)   | 49.62(5)  |
| S(7)-Mo(2)-S(3)   | 109.90(6) | S(3)-Mo(3)-S(6)   | 133.58(5) |
| S(1)-Mo(2)-S(3)   | 84.26(6)  | S(4)-Mo(3)-S(6)   | 170.88(6) |
| S(7)-Mo(2)-S(2)   | 85.65(6)  | S(7)-Mo(3)-S(13)  | 81.63(5)  |
| S(1)-Mo(2)-S(2)   | 49.60(5)  | S(5)-Mo(3)-S(13)  | 135.06(6) |
| S(3)-Mo(2)-S(2)   | 133.59(6) | S(3)-Mo(3)-S(13)  | 134.06(6) |
| S(7)-Mo(2)-S(4)   | 85.67(6)  | S(4)-Mo(3)-S(13)  | 89.48(6)  |
|                   |           |                   | · /       |

**Table A.22**. Bond angles (deg.) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| S(6)-Mo(3)-S(13)  | 90.40(5)  | P(1)-S(8)-Mo(1)  | 89.17(7)   |
|-------------------|-----------|------------------|------------|
| S(7)-Mo(3)-S(12)  | 159.97(5) | P(1)-S(9)-Mo(1)  | 89.76(7)   |
| S(5)-Mo(3)-S(12)  | 84.05(5)  | P(2)-S(10)-Mo(2) | 89.59(8)   |
| S(3)-Mo(3)-S(12)  | 85.18(5)  | P(2)-S(11)-Mo(2) | 89.44(7)   |
| S(4)-Mo(3)-S(12)  | 95.28(6)  | P(3)-S(12)-Mo(3) | 88.69(7)   |
| S(6)-Mo(3)-S(12)  | 93.62(6)  | P(3)-S(13)-Mo(3) | 89.53(7)   |
| S(13)-Mo(3)-S(12) | 78.37(5)  | C(1)-P(1)-C(5)   | 103.7(3)   |
| S(7)-Mo(3)-Mo(2)  | 54.92(4)  | C(1)-P(1)-S(8)   | 117.8(3)   |
| S(5)-Mo(3)-Mo(2)  | 95.88(4)  | C(5)-P(1)-S(8)   | 108.5(2)   |
| S(3)-Mo(3)-Mo(2)  | 55.53(4)  | C(1)-P(1)-S(9)   | 107.8(2)   |
| S(4)-Mo(3)-Mo(2)  | 56.68(4)  | C(5)-P(1)-S(9)   | 116.7(3)   |
| S(6)-Mo(3)-Mo(2)  | 116.41(4) | S(8)-P(1)-S(9)   | 102.89(10) |
| S(13)-Mo(3)-Mo(2) | 123.58(4) | C(13)-P(2)-C(9)  | 103.3(3)   |
| S(12)-Mo(3)-Mo(2) | 140.35(4) | C(13)-P(2)-S(10) | 111.5(2)   |
| S(7)-Mo(3)-Mo(1)  | 54.94(4)  | C(9)-P(2)-S(10)  | 110.4(2)   |
| S(5)-Mo(3)-Mo(1)  | 55.38(4)  | C(13)-P(2)-S(11) | 114.3(2)   |
| S(3)-Mo(3)-Mo(1)  | 95.84(4)  | C(9)-P(2)-S(11)  | 114.5(3)   |
| S(4)-Mo(3)-Mo(1)  | 116.44(4) | S(10)-P(2)-S(11) | 103.22(10) |
| S(6)-Mo(3)-Mo(1)  | 56.68(4)  | C(21)-P(3)-C(17) | 102.7(3)   |
| S(13)-Mo(3)-Mo(1) | 124.31(4) | C(21)-P(3)-S(12) | 113.9(2)   |
| S(12)-Mo(3)-Mo(1) | 138.91(4) | C(17)-P(3)-S(12) | 114.9(2)   |
| Mo(2)-Mo(3)-Mo(1) | 59.83(2)  | C(21)-P(3)-S(13) | 111.8(2)   |
| S(2)-S(1)-Mo(1)   | 67.12(6)  | C(17)-P(3)-S(13) | 110.4(2)   |
| S(2)-S(1)-Mo(2)   | 66.96(6)  | S(12)-P(3)-S(13) | 103.41(9)  |
| Mo(1)-S(1)-Mo(2)  | 68.86(4)  | C(2)-C(1)-P(1)   | 118.6(5)   |
| S(1)-S(2)-Mo(2)   | 63.43(6)  | C(2)-C(1)-H(1A)  | 107.7      |
| S(1)-S(2)-Mo(1)   | 63.27(6)  | P(1)-C(1)-H(1A)  | 107.7      |
| Mo(2)-S(2)-Mo(1)  | 66.57(4)  | C(2)-C(1)-H(1B)  | 107.7      |
| S(4)-S(3)-Mo(3)   | 67.28(6)  | P(1)-C(1)-H(1B)  | 107.7      |
| S(4)-S(3)-Mo(2)   | 67.19(6)  | H(1A)-C(1)-H(1B) | 107.1      |
| Mo(3)-S(3)-Mo(2)  | 69.04(4)  | C(1)-C(2)-C(3)   | 113.4(6)   |
| S(3)-S(4)-Mo(2)   | 63.35(6)  | C(1)-C(2)-C(4)   | 110.2(6)   |
| S(3)-S(4)-Mo(3)   | 63.25(6)  | C(3)-C(2)-C(4)   | 110.0(7)   |
| Mo(2)-S(4)-Mo(3)  | 66.61(4)  | C(1)-C(2)-H(2)   | 107.7      |
| S(6)-S(5)-Mo(1)   | 67.31(6)  | C(3)-C(2)-H(2)   | 107.7      |
| S(6)-S(5)-Mo(3)   | 67.46(6)  | C(4)-C(2)-H(2)   | 107.7      |
| Mo(1)-S(5)-Mo(3)  | 69.21(4)  | C(2)-C(3)-H(3A)  | 109.5      |
| S(5)-S(6)-Mo(1)   | 63.00(6)  | C(2)-C(3)-H(3B)  | 109.5      |
| S(5)-S(6)-Mo(3)   | 62.91(6)  | H(3A)-C(3)-H(3B) | 109.5      |
| Mo(1)-S(6)-Mo(3)  | 66.45(4)  | C(2)-C(3)-H(3C)  | 109.5      |
| Mo(2)-S(7)-Mo(1)  | 69.91(4)  | H(3A)-C(3)-H(3C) | 109.5      |
| Mo(2)-S(7)-Mo(3)  | 70.10(4)  | H(3B)-C(3)-H(3C) | 109.5      |
| Mo(1)-S(7)-Mo(3)  | 70.09(4)  | C(2)-C(4)-H(4A)  | 109.5      |

**Table A.22, Cont'd.** Bond angles (deg.) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| C(2)-C(4)-H(4B)    | 109.5    | H(11A)-C(11)-H(11B) | 109.5    |
|--------------------|----------|---------------------|----------|
| H(4A)-C(4)-H(4B)   | 109.5    | C(10)-C(11)-H(11C)  | 109.5    |
| C(2)-C(4)-H(4C)    | 109.5    | H(11A)-C(11)-H(11C) | 109.5    |
| H(4A)-C(4)-H(4C)   | 109.5    | H(11B)-C(11)-H(11C) | 109.5    |
| H(4B)-C(4)-H(4C)   | 109.5    | C(10)-C(12)-H(12A)  | 109.5    |
| C(6)-C(5)-P(1)     | 117.8(5) | C(10)-C(12)-H(12B)  | 109.5    |
| C(6)-C(5)-H(5A)    | 107.9    | H(12A)-C(12)-H(12B) | 109.5    |
| P(1)-C(5)-H(5A)    | 107.9    | C(10)-C(12)-H(12C)  | 109.5    |
| C(6)-C(5)-H(5B)    | 107.9    | H(12A)-C(12)-H(12C) | 109.5    |
| P(1)-C(5)-H(5B)    | 107.9    | H(12B)-C(12)-H(12C) | 109.5    |
| H(5A)-C(5)-H(5B)   | 107.2    | C(14)-C(13)-P(2)    | 118.1(5) |
| C(8)-C(6)-C(5)     | 112.6(7) | C(14)-C(13)-H(13A)  | 107.8    |
| C(8)-C(6)-C(7)     | 110.7(6) | P(2)-C(13)-H(13A)   | 107.8    |
| C(5)-C(6)-C(7)     | 108.0(6) | C(14)-C(13)-H(13B)  | 107.8    |
| C(8)-C(6)-H(6)     | 108.5    | P(2)-C(13)-H(13B)   | 107.8    |
| C(5)-C(6)-H(6)     | 108.5    | H(13A)-C(13)-H(13B) | 107.1    |
| C(7)-C(6)-H(6)     | 108.5    | C(16)-C(14)-C(13)   | 111.6(6) |
| C(6)-C(7)-H(7A)    | 109.5    | C(16)-C(14)-C(15)   | 109.8(6) |
| C(6)-C(7)-H(7B)    | 109.5    | C(13)-C(14)-C(15)   | 112.4(6) |
| H(7A)-C(7)-H(7B)   | 109.5    | C(16)-C(14)-H(14)   | 107.6    |
| C(6)-C(7)-H(7C)    | 109.5    | C(13)-C(14)-H(14)   | 107.6    |
| H(7A)-C(7)-H(7C)   | 109.5    | C(15)-C(14)-H(14)   | 107.6    |
| H(7B)-C(7)-H(7C)   | 109.5    | C(14)-C(15)-H(15A)  | 109.5    |
| C(6)-C(8)-H(8A)    | 109.5    | C(14)-C(15)-H(15B)  | 109.5    |
| C(6)-C(8)-H(8B)    | 109.5    | H(15A)-C(15)-H(15B) | 109.5    |
| H(8A)-C(8)-H(8B)   | 109.5    | C(14)-C(15)-H(15C)  | 109.5    |
| C(6)-C(8)-H(8C)    | 109.5    | H(15A)-C(15)-H(15C) | 109.5    |
| H(8A)-C(8)-H(8C)   | 109.5    | H(15B)-C(15)-H(15C) | 109.5    |
| H(8B)-C(8)-H(8C)   | 109.5    | C(14)-C(16)-H(16A)  | 109.5    |
| C(10)-C(9)-P(2)    | 116.9(5) | C(14)-C(16)-H(16B)  | 109.5    |
| C(10)-C(9)-H(9A)   | 108.1    | H(16A)-C(16)-H(16B) | 109.5    |
| P(2)-C(9)-H(9A)    | 108.1    | C(14)-C(16)-H(16C)  | 109.5    |
| C(10)-C(9)-H(9B)   | 108.1    | H(16A)-C(16)-H(16C) | 109.5    |
| P(2)-C(9)-H(9B)    | 108.1    | H(16B)-C(16)-H(16C) | 109.5    |
| H(9A)-C(9)-H(9B)   | 107.3    | C(18)-C(17)-P(3)    | 118.4(4) |
| C(12)-C(10)-C(9)   | 108.9(6) | C(18)-C(17)-H(17A)  | 107.7    |
| C(12)-C(10)-C(11)  | 110.7(7) | P(3)-C(17)-H(17A)   | 107.7    |
| C(9)-C(10)-C(11)   | 113.1(7) | C(18)-C(17)-H(17B)  | 107.7    |
| C(12)-C(10)-H(10)  | 108.0    | P(3)-C(17)-H(17B)   | 107.7    |
| C(9)-C(10)-H(10)   | 108.0    | H(17A)-C(17)-H(17B) | 107.1    |
| C(11)-C(10)-H(10)  | 108.0    | C(20)-C(18)-C(17)   | 109.9(5) |
| C(10)-C(11)-H(11A) | 109.5    | C(20)-C(18)-C(19)   | 110.0(6) |
| C(10)-C(11)-H(11B) | 109.5    | C(17)-C(18)-C(19)   | 111.4(6) |

**Table A.22, Cont'd.** Bond angles (deg.) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| C(20)-C(18)-H(18)   | 108.5    |
|---------------------|----------|
| C(17)-C(18)-H(18)   | 108.5    |
| C(19)-C(18)-H(18)   | 108.5    |
| C(18)-C(19)-H(19A)  | 109.5    |
| C(18)-C(19)-H(19B)  | 109.5    |
| H(19A)-C(19)-H(19B) | 109.5    |
| C(18)-C(19)-H(19C)  | 109.5    |
| H(19A)-C(19)-H(19C) | 109.5    |
| H(19B)-C(19)-H(19C) | 109.5    |
| C(18)-C(20)-H(20A)  | 109.5    |
| C(18)-C(20)-H(20B)  | 109.5    |
| H(20A)-C(20)-H(20B) | 109.5    |
| C(18)-C(20)-H(20C)  | 109.5    |
| H(20A)-C(20)-H(20C) | 109.5    |
| H(20B)-C(20)-H(20C) | 109.5    |
| C(22)-C(21)-P(3)    | 118.2(5) |
| C(22)-C(21)-H(21A)  | 107.8    |
| P(3)-C(21)-H(21A)   | 107.8    |
| C(22)-C(21)-H(21B)  | 107.8    |
| P(3)-C(21)-H(21B)   | 107.8    |
| H(21A)-C(21)-H(21B) | 107.1    |
| C(23)-C(22)-C(21)   | 109.5(6) |
| C(23)-C(22)-C(24)   | 110.9(6) |
| C(21)-C(22)-C(24)   | 112.7(6) |
| C(23)-C(22)-H(22)   | 107.9    |
| C(21)-C(22)-H(22)   | 107.9    |
| C(24)-C(22)-H(22)   | 107.9    |
| C(22)-C(23)-H(23A)  | 109.5    |
| C(22)-C(23)-H(23B)  | 109.5    |
| H(23A)-C(23)-H(23B) | 109.5    |
| C(22)-C(23)-H(23C)  | 109.5    |
| H(23A)-C(23)-H(23C) | 109.5    |
| H(23B)-C(23)-H(23C) | 109.5    |
| C(22)-C(24)-H(24A)  | 109.5    |
| C(22)-C(24)-H(24B)  | 109.5    |
| H(24A)-C(24)-H(24B) | 109.5    |
| C(22)-C(24)-H(24C)  | 109.5    |
| H(24A)-C(24)-H(24C) | 109.5    |
| H(24B)-C(24)-H(24C) | 109.5    |

**Table A.22, Cont'd.** Bond angles (deg.) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . Symmetry transformations used to generate equivalent atoms:

| Atom         | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------------|----------|----------|----------|----------|----------|----------|
| I(1)         | 19(1)    | 26(1)    | 40(1)    | -1(1)    | -2(1)    | 3(1)     |
| Mo(1)        | 12(1)    | 18(1)    | 21(1)    | 2(1)     | 0(1)     | 0(1)     |
| Mo(2)        | 12(1)    | 20(1)    | 22(1)    | -1(1)    | 1(1)     | 1(1)     |
| Mo(3)        | 12(1)    | 18(1)    | 21(1)    | 1(1)     | 0(1)     | 0(1)     |
| <b>S</b> (1) | 13(1)    | 23(1)    | 25(1)    | -2(1)    | 1(1)     | -1(1)    |
| S(2)         | 19(1)    | 19(1)    | 28(1)    | 0(1)     | 1(1)     | -1(1)    |
| S(3)         | 15(1)    | 22(1)    | 23(1)    | 2(1)     | -1(1)    | 1(1)     |
| S(4)         | 17(1)    | 27(1)    | 21(1)    | 1(1)     | 2(1)     | -1(1)    |
| S(5)         | 14(1)    | 20(1)    | 24(1)    | 0(1)     | 1(1)     | 1(1)     |
| S(6)         | 15(1)    | 26(1)    | 22(1)    | 0(1)     | -1(1)    | 0(1)     |
| S(7)         | 12(1)    | 21(1)    | 26(1)    | 1(1)     | 0(1)     | 1(1)     |
| S(8)         | 15(1)    | 26(1)    | 23(1)    | 4(1)     | 3(1)     | 2(1)     |
| S(9)         | 18(1)    | 27(1)    | 28(1)    | 6(1)     | 2(1)     | 5(1)     |
| S(10)        | 14(1)    | 32(1)    | 27(1)    | -6(1)    | -2(1)    | 3(1)     |
| S(11)        | 18(1)    | 25(1)    | 32(1)    | -6(1)    | 1(1)     | 2(1)     |
| S(12)        | 14(1)    | 19(1)    | 31(1)    | 2(1)     | -1(1)    | 1(1)     |
| S(13)        | 13(1)    | 21(1)    | 31(1)    | 2(1)     | 0(1)     | -1(1)    |
| P(1)         | 19(1)    | 26(1)    | 25(1)    | 5(1)     | 1(1)     | 2(1)     |
| P(2)         | 20(1)    | 25(1)    | 28(1)    | -6(1)    | 2(1)     | -1(1)    |
| P(3)         | 14(1)    | 20(1)    | 28(1)    | 2(1)     | 1(1)     | -1(1)    |
| C(1)         | 21(3)    | 42(4)    | 26(4)    | 9(3)     | 1(3)     | 8(3)     |
| C(2)         | 31(4)    | 42(4)    | 31(4)    | 9(3)     | -2(3)    | -1(3)    |
| C(3)         | 31(4)    | 45(5)    | 41(5)    | -2(4)    | -12(3)   | -1(3)    |
| C(4)         | 34(4)    | 53(5)    | 40(4)    | 0(4)     | -10(4)   | 2(4)     |
| C(5)         | 27(4)    | 28(4)    | 28(3)    | 7(3)     | 2(3)     | 2(3)     |
| C(6)         | 34(4)    | 27(3)    | 37(4)    | 6(3)     | -1(3)    | -8(3)    |
| C(7)         | 42(5)    | 47(5)    | 49(5)    | -3(4)    | 2(4)     | -12(4)   |
| C(8)         | 53(5)    | 31(4)    | 43(5)    | 3(4)     | 3(4)     | -6(4)    |
| C(9)         | 29(4)    | 34(4)    | 36(4)    | -9(3)    | 6(3)     | 0(3)     |
| C(10)        | 44(5)    | 31(4)    | 32(4)    | -5(3)    | 8(3)     | -1(3)    |
| C(11)        | 57(6)    | 55(6)    | 55(6)    | 13(5)    | -5(4)    | -13(5)   |
| C(12)        | 42(5)    | 48(5)    | 42(5)    | -2(4)    | 5(4)     | -16(4)   |
| C(13)        | 17(3)    | 33(4)    | 30(4)    | -11(3)   | 0(3)     | 3(3)     |
| C(14)        | 22(3)    | 35(4)    | 37(4)    | -6(3)    | 3(3)     | -1(3)    |
| C(15)        | 29(4)    | 73(6)    | 53(6)    | 7(5)     | 5(4)     | -16(4)   |
| C(16)        | 31(4)    | 53(5)    | 40(5)    | 2(4)     | 5(4)     | 2(4)     |
| C(17)        | 15(3)    | 20(3)    | 38(4)    | 1(3)     | -5(3)    | -3(2)    |
| C(18)        | 23(3)    | 28(4)    | 32(4)    | -2(3)    | 1(3)     | -2(3)    |
| C(19)        | 31(4)    | 53(5)    | 40(5)    | -5(4)    | 0(3)     | 0(4)     |

**Table A.23**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ 

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| C(20) | 32(4)    | 39(4)    | 39(4)    | 2(4)     | -5(3)    | -1(3)    |
| C(21) | 24(3)    | 20(3)    | 36(4)    | 1(3)     | 8(3)     | -1(3)    |
| C(22) | 34(4)    | 31(4)    | 33(4)    | 7(3)     | 5(3)     | -1(3)    |
| C(23) | 46(5)    | 42(5)    | 36(4)    | 0(4)     | 15(4)    | 9(4)     |
| C(24) | 35(4)    | 70(6)    | 29(4)    | 7(4)     | 3(3)     | -6(4)    |

**Table A.23, Cont'd**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>( $\mu_2$ -S<sub>2</sub>)<sub>3</sub>( $\mu_3$ -S)(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [h<sup>2</sup>a<sup>\*2</sup>U<sup>11</sup> + ... + 2hka\*b\*U<sup>12</sup>]

| H atom | Х     | У    | Z    | U(eq) |
|--------|-------|------|------|-------|
| H(1A)  | 7411  | 5517 | 1683 | 35    |
| H(1B)  | 8483  | 5109 | 1544 | 35    |
| H(2)   | 6519  | 4683 | 2251 | 41    |
| H(3A)  | 7086  | 3793 | 1848 | 58    |
| H(3B)  | 8192  | 4081 | 2203 | 58    |
| H(3C)  | 8076  | 4064 | 1368 | 58    |
| H(4A)  | 6686  | 4699 | 751  | 63    |
| H(4B)  | 5836  | 5101 | 1188 | 63    |
| H(4C)  | 5644  | 4428 | 1188 | 63    |
| H(5A)  | 9954  | 5833 | 2171 | 33    |
| H(5B)  | 8898  | 6259 | 2267 | 33    |
| H(6)   | 10182 | 5949 | 3463 | 39    |
| H(7A)  | 11662 | 6201 | 2716 | 69    |
| H(7B)  | 11454 | 6756 | 3182 | 69    |
| H(7C)  | 10953 | 6726 | 2402 | 69    |
| H(8A)  | 9170  | 7021 | 3151 | 64    |
| H(8B)  | 9635  | 6816 | 3898 | 64    |
| H(8C)  | 8494  | 6538 | 3572 | 64    |
| H(9A)  | 8347  | 6838 | 7140 | 40    |
| H(9B)  | 9523  | 6519 | 7322 | 40    |
| H(10)  | 9740  | 6419 | 6031 | 43    |
| H(11A) | 8919  | 7173 | 5377 | 84    |
| H(11B) | 8189  | 7367 | 6047 | 84    |
| H(11C) | 7927  | 6770 | 5681 | 84    |
| H(12A) | 10766 | 7286 | 6010 | 66    |
| H(12B) | 10993 | 6958 | 6730 | 66    |
| H(12C) | 10122 | 7485 | 6709 | 66    |
| H(13A) | 8381  | 5824 | 8150 | 32    |
| H(13B) | 7135  | 6069 | 7965 | 32    |
| H(14)  | 7508  | 4898 | 7747 | 38    |
| H(15A) | 5691  | 5263 | 7428 | 78    |
| H(15B) | 5476  | 5477 | 8212 | 78    |
| H(15C) | 5543  | 4812 | 8048 | 78    |
| H(16A) | 8224  | 4942 | 8854 | 62    |
| H(16B) | 6926  | 4722 | 8947 | 62    |
| H(16C) | 7238  | 5371 | 9108 | 62    |
| H(17A) | 4199  | 2356 | 4541 | 29    |
| H(17B) | 3215  | 2828 | 4518 | 29    |
| H(18)  | 4511  | 3328 | 3682 | 33    |
| H(19A) | 5694  | 2707 | 3017 | 62    |

**Table A.24**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_2-S_2)_3(\mu_3-S)(S_2P^iBu_2)_3]$ .

| H atom | Х    | У    | Z    | U(eq) |
|--------|------|------|------|-------|
| H(19B) | 5406 | 2198 | 3545 | 62    |
| H(19C) | 6137 | 2733 | 3810 | 62    |
| H(20A) | 3627 | 2847 | 2744 | 55    |
| H(20B) | 2710 | 2942 | 3360 | 55    |
| H(20C) | 3291 | 2332 | 3252 | 55    |
| H(21A) | 3168 | 2926 | 5846 | 32    |
| H(21B) | 4184 | 2486 | 5996 | 32    |
| H(22)  | 4322 | 3603 | 6549 | 39    |
| H(23A) | 2520 | 3196 | 6882 | 62    |
| H(23B) | 3327 | 3342 | 7538 | 62    |
| H(23C) | 3210 | 2700 | 7273 | 62    |
| H(24A) | 5328 | 2574 | 7069 | 67    |
| H(24B) | 5492 | 3185 | 7423 | 67    |
| H(24C) | 6024 | 3062 | 6665 | 67    |

**Table A.24, Cont'd.** Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>( $\mu_2$ -S<sub>2</sub>)<sub>3</sub>( $\mu_3$ -S)(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>].



**Table A.25.** Crystal Data and Structure Refinement for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN] \cdot \frac{1}{2}ClCH_2CH_2Cl \cdot \frac{1}{2}BuOMe.$ 

| Identification code                       | JPD1002_0m_a                                           |  |  |
|-------------------------------------------|--------------------------------------------------------|--|--|
| Empirical formula                         | $C_{31.50}H_{62}ClMo_3N_4O_{0.50}S_{10}Se_4$           |  |  |
| Formula weight                            | 1464.56                                                |  |  |
| Temperature                               | 150(2) K                                               |  |  |
| Wavelength                                | 0.71073 Å                                              |  |  |
| Crystal system                            | Tetragonal                                             |  |  |
| Space group                               | $I4_1/a$                                               |  |  |
| Unit cell dimensions                      | $a = 35.378(4) \text{ Å} \qquad \alpha = 90^{\circ}$   |  |  |
|                                           | $b = 35.378(4) \text{ Å} \qquad \beta = 90^{\circ}$    |  |  |
|                                           | $c = 18.903(2) \text{ Å}$ $\gamma = 90^{\circ}$        |  |  |
| Volume                                    | 23659(6) Å <sup>3</sup>                                |  |  |
| Ζ                                         | 16                                                     |  |  |
| Density (calculated)                      | $1.645 \text{ g/cm}^3$                                 |  |  |
| Absorption coefficient                    | 3.512 mm <sup>-1</sup>                                 |  |  |
| F(000)                                    | 11552                                                  |  |  |
| Crystal size                              | 0.200 x 0.150 x 0.150 mm <sup>3</sup>                  |  |  |
| $\theta$ range for data collection        | 1.221 to 19.225°                                       |  |  |
| Index ranges                              | $-32 \le h \le 32, -32 \le k \le 32, -17 \le l \le 17$ |  |  |
| Reflections collected                     | 48575                                                  |  |  |
| Independent reflections                   | 4894 [R(int) = 0.0791]                                 |  |  |
| Completeness to $\theta = 19.225^{\circ}$ | 99.2 %                                                 |  |  |
| Absorption correction                     | Semi-empirical from equivalents                        |  |  |
| Max. and min. transmission                | 0.621 and 0.403                                        |  |  |

**Table A.25, Cont'd.** Crystal Data and Structure Refinement for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^{\dagger}Bu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2Cl\cdot\frac{1}{2}BuOMe.$ 

| Refinement method                  | Full-matrix least-squares on $F^2$ |
|------------------------------------|------------------------------------|
| Data / restraints / parameters     | 4894 / 22 / 513                    |
| Goodness-of-fit on $F^2$           | 1.130                              |
| Final R indices $[I > 2\sigma(I)]$ | R1 = 0.0455, wR2 = 0.1263          |
| R indices (all data)               | R1 = 0.0581, wR2 = 0.1378          |
| Extinction coefficient             | n/a                                |
| Largest diff. peak and hole        | 1.183 and -0.499 e⋅Å <sup>-3</sup> |

| Atom  | Х       | у       | Z       | U(eq)  |
|-------|---------|---------|---------|--------|
| Mo(1) | 720(1)  | 5247(1) | 5611(1) | 24(1)  |
| Mo(3) | 1229(1) | 4998(1) | 4638(1) | 24(1)  |
| Mo(2) | 952(1)  | 5715(1) | 4542(1) | 23(1)  |
| Se(1) | 498(1)  | 5950(1) | 5545(1) | 29(1)  |
| Se(2) | 1485(1) | 5479(1) | 3706(1) | 29(1)  |
| Se(3) | 1065(1) | 4604(1) | 5759(1) | 31(1)  |
| Se(4) | 1704(1) | 4741(1) | 6691(1) | 54(1)  |
| S(1)  | 300(1)  | 5544(1) | 4762(1) | 26(1)  |
| S(2)  | 898(1)  | 5249(1) | 3615(1) | 27(1)  |
| S(3)  | 632(1)  | 4692(1) | 4888(2) | 28(1)  |
| S(4)  | 1342(1) | 5486(1) | 5467(1) | 24(1)  |
| S(5)  | 832(1)  | 5361(1) | 6883(2) | 34(1)  |
| S(6)  | 140(1)  | 5066(1) | 6316(2) | 31(1)  |
| S(7)  | 1329(1) | 6297(1) | 4668(2) | 30(1)  |
| S(8)  | 696(1)  | 6227(1) | 3738(2) | 29(1)  |
| S(9)  | 1896(1) | 4831(1) | 4868(2) | 31(1)  |
| S(10) | 1411(1) | 4431(1) | 3907(2) | 33(1)  |
| N(1)  | 183(3)  | 5373(3) | 7621(5) | 37(3)  |
| N(2)  | 1062(2) | 6883(3) | 3961(5) | 31(2)  |
| N(3)  | 2138(3) | 4237(2) | 4126(5) | 30(2)  |
| N(4)  | 1374(4) | 4651(4) | 8080(8) | 89(4)  |
| C(1)  | 361(3)  | 5274(3) | 7025(6) | 32(3)  |
| C(2)  | -224(3) | 5332(3) | 7719(6) | 37(3)  |
| C(3)  | -444(4) | 5700(3) | 7653(7) | 49(4)  |
| C(4)  | -393(4) | 5883(4) | 6940(7) | 66(4)  |
| C(5)  | -857(3) | 5625(4) | 7821(7) | 57(4)  |
| C(6)  | 403(3)  | 5557(4) | 8196(6) | 49(4)  |
| C(7)  | 620(4)  | 5279(5) | 8662(8) | 75(5)  |
| C(8)  | 372(4)  | 5036(4) | 9097(7) | 71(4)  |
| C(9)  | 885(5)  | 5517(6) | 9143(9) | 127(8) |
| C(10) | 1031(3) | 6517(3) | 4095(5) | 26(3)  |
| C(11) | 791(3)  | 7085(3) | 3486(6) | 35(3)  |
| C(12) | 961(3)  | 7192(3) | 2778(6) | 42(3)  |
| C(13) | 1083(4) | 6848(4) | 2348(6) | 56(4)  |
| C(14) | 675(4)  | 7431(4) | 2376(7) | 61(4)  |
| C(15) | 1372(3) | 7104(3) | 4269(6) | 38(3)  |
| C(16) | 1324(4) | 7203(3) | 5051(7) | 47(4)  |
| C(17) | 989(4)  | 7453(4) | 5188(7) | 68(4)  |
| C(18) | 1686(4) | 7384(4) | 5315(8) | 80(5)  |
| C(19) | 1855(3) | 4467(3) | 4272(6) | 29(3)  |
| C(20) | 2097(3) | 3908(3) | 3660(6) | 37(3)  |
| C(21) | 2056(3) | 3538(3) | 4049(6) | 38(3)  |
| C(22) | 2103(4) | 3207(3) | 3545(6) | 48(4)  |

**Table A.26**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2CH_2Cl\cdot\frac{1}{2}'BuOMe$ . U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | У        | Z         | U(eq)   |
|--------|----------|----------|-----------|---------|
| C(23)  | 1680(4)  | 3509(3)  | 4434(6)   | 47(3)   |
| C(24)  | 2520(3)  | 4306(3)  | 4396(6)   | 38(3)   |
| C(25A) | 2790(6)  | 4469(8)  | 3854(12)  | 46(8)   |
| C(26A) | 3179(7)  | 4506(9)  | 4177(15)  | 77(9)   |
| C(27A) | 2654(6)  | 4835(8)  | 3586(14)  | 65(8)   |
| C(25B) | 2717(9)  | 4666(11) | 4080(20)  | 21(12)  |
| C(27B) | 2723(12) | 4652(14) | 3280(30)  | 62(16)  |
| C(26B) | 3114(14) | 4697(16) | 4370(30)  | 73(16)  |
| C(28)  | 1498(4)  | 4691(4)  | 7489(10)  | 62(4)   |
| Cl(1)  | -1011(2) | 6522(2)  | 10677(4)  | 75(2)   |
| Cl(2)  | -1137(2) | 5735(2)  | 9659(5)   | 88(3)   |
| C(29)  | -1130(7) | 6074(6)  | 10915(13) | 46(7)   |
| C(30)  | -1397(7) | 5846(7)  | 10391(12) | 47(7)   |
| O(1Á)  | -580(1)  | 5849(1)  | 9748(2)   | 117(16) |
| C(31A) | -909(1)  | 6007(1)  | 10098(1)  | 90(20)  |
| C(32A) | -1160(1) | 5665(1)  | 10300(2)  | 250(70) |
| C(33A) | -848(1)  | 6255(1)  | 10763(1)  | 270(80) |
| C(34A) | -1116(1) | 6244(1)  | 9528(1)   | 130(30) |
| C(35)  | -233(1)  | 6046(2)  | 9916(5)   | 159(18) |
| O(1B)  | 216(1)   | 6160(1)  | 9602(2)   | 89(13)  |
| C(31B) | 363(1)   | 6542(1)  | 9630(1)   | 53(14)  |
| C(32B) | 525(1)   | 6592(1)  | 10385(1)  | 50(14)  |
| C(33B) | 90(1)    | 6874(1)  | 9472(2)   | 160(40) |
| C(34B) | 693(1)   | 6554(1)  | 9092(1)   | 140(30) |

**Table A.26, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}'BuOMe$ . U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

0.9900 Mo(1)-S(4)2.373(3)C(2)-H(2B)Mo(1)-S(3)2.413(3)C(3)-C(4)1.506(17)1.519(17)Mo(1)-S(1)2.428(3)C(3)-C(5)Mo(1)-S(5)2.471(3)C(3)-H(3) 1.0000 Mo(1)-S(6)2.530(3)C(4)-H(4A)0.9800 2.5959(15) C(4)-H(4B) 0.9800 Mo(1)-Se(3) Mo(1)-Se(1) 2.6116(14)C(4)-H(4C)0.9800 Mo(1)-Mo(3)2.7205(13)C(5)-H(5A) 0.9800 Mo(1)-Mo(2)2.7374(13)C(5)-H(5B) 0.9800 Mo(3)-S(4)2.365(3)C(5)-H(5C)0.9800 2.421(3)C(6)-C(7)Mo(3)-S(3)1.528(19)Mo(3)-S(2)2.429(3)C(6)-H(6A) 0.9900 C(6)-H(6B) 0.9900 Mo(3)-S(9)2.469(3)Mo(3)-S(10)2.518(3) C(7)-C(8)1.477(19)Mo(3)-Se(3) 2.6014(14)C(7)-C(9)1.55(2)2.6098(14)C(7)-H(7) 1.0000 Mo(3)-Se(2) Mo(3)-Mo(2)2.7256(13)C(8)-H(8A) 0.9800 Mo(2)-S(4)2.372(3)C(8)-H(8B)0.9800 0.9800 Mo(2)-S(2) 2.414(3)C(8)-H(8C) Mo(2)-S(1)2.420(3)C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 Mo(2)-S(7)2.467(3)C(9)-H(9C) Mo(2)-S(8)2.532(3)0.9800 Mo(2)-Se(2) 2.5991(14)C(11)-C(12)1.514(16)0.9900 Mo(2)-Se(1) 2.6201(14)C(11)-H(11A) Se(1)-S(1)2.178(3)C(11)-H(11B) 0.9900 Se(2)-S(2)2.237(3)C(12)-C(14)1.520(16)Se(3)-S(3)2.271(3)C(12)-C(13)1.527(17)1.684(19)Se(4)-C(28)C(12)-H(12)1.0000 S(5)-C(1)1.713(12) C(13)-H(13A) 0.9800 0.9800 S(6)-C(1)1.718(12)C(13)-H(13B) C(13)-H(13C) S(7)-C(10)1.702(11)0.9800 S(8)-C(10) 1.710(11) C(14)-H(14A) 0.9800 S(9)-C(19)1.718(12)C(14)-H(14B)0.9800 S(10)-C(19)1.722(12)C(14)-H(14C)0.9800 N(1)-C(1)1.338(13)C(15)-C(16)1.529(16) N(1)-C(2)1.459(14)C(15)-H(15A) 0.9900 N(1)-C(6)1.487(14)C(15)-H(15B) 0.9900 N(2)-C(10)1.322(12) C(16)-C(17)1.502(17)N(2)-C(15) 1.469(14) C(16)-C(18) 1.517(18) N(2)-C(11)1.496(14)1.0000 C(16)-H(16)N(3)-C(19)1.318(13)C(17)-H(17A) 0.9800 N(3)-C(20) 1.465(14)C(17)-H(17B) 0.9800 1.466(13) C(17)-H(17C) 0.9800 N(3)-C(24)N(4)-C(28)1.207(19) C(18)-H(18A) 0.9800 C(2)-C(3)1.522(16)C(18)-H(18B) 0.9800 0.9900 C(18)-H(18C) 0.9800 C(2)-H(2A)

TableA.27.Bondlengths(Å)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2Cl\cdot\frac{1}{2}BuOMe.$ SSe)\_3(S\_2CN^iBu\_2)\_3][SeCN]\cdot\frac{1}{2}ClCH\_2Cl\cdot\frac{1}{2}BuOMe.Symmetrytransformationsused to generate equivalent atoms:

TableA.27,Cont'd.Bondlengths(Å)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalentatoms:

| C(20)-C(21)         | 1.507(15)          | C(20)-H(20A)                       | 0.9900      |
|---------------------|--------------------|------------------------------------|-------------|
| C(20)-H(20B)        | 0.9900             | C(32A)-H(32B)                      | 0.9800      |
| C(21)-C(22)         | 1.520(15)          | C(32A)-H(32C)                      | 0.9800      |
| C(21)-C(23)         | 1.521(16)          | C(33A)-H(33A)                      | 0.9800      |
| C(21)-H(21)         | 1.0000             | C(33A)-H(33B)                      | 0.9800      |
| C(22)-H(22A)        | 0.9800             | C(33A)-H(33C)                      | 0.9800      |
| C(22)-H(22B)        | 0.9800             | C(34A)-H(34A)                      | 0.9800      |
| C(22)-H(22C)        | 0.9800             | C(34A)-H(34B)                      | 0.9800      |
| C(23)-H(23A)        | 0.9800             | C(34A)-H(34C)                      | 0.9800      |
| C(23)-H(23B)        | 0.9800             | C(35)-H(35A)                       | 0.9800      |
| C(23)-H(23C)        | 0.9800             | C(35)-H(35B)                       | 0.9800      |
| C(24)-C(25A)        | 1.52(2)            | C(35)-H(35C)                       | 0.9800      |
| C(24)-C(25B)        | 1.57(3)            | O(1B)-C(31B)                       | 1 44889(19) |
| C(24)-H(24A)        | 0,9900             | C(31B)-C(33B)                      | 1 5488(2)   |
| C(24)-H(24B)        | 0.9900             | C(31B)-C(32B)                      | 1 54899(18) |
| C(25A)-C(27A)       | 1.47(4)            | C(31B)-C(34B)                      | 1 54899(17) |
| C(25A)-C(26A)       | 1.17(1)<br>1.51(3) | C(32B)-H(32D)                      | 0.9800      |
| C(25A)-H(25A)       | 1.0000             | C(32B) - H(32E)                    | 0.9800      |
| C(26A)-H(26A)       | 0.9800             | C(32B)-H(32E)                      | 0.9800      |
| C(26A)-H(26B)       | 0.9800             | C(32B) - H(32D)                    | 0.9800      |
| C(26A)-H(26C)       | 0.9800             | C(33B)-H(33E)                      | 0.9800      |
| C(27A)-H(27A)       | 0.9800             | C(33B)-H(33E)                      | 0.9800      |
| C(27A)-H(27B)       | 0.9800             | C(34B)-H(34D)                      | 0.9800      |
| C(27A) H(27C)       | 0.2800             | C(34B) + H(34E)                    | 0.9800      |
| C(25R) C(26R)       | 0.9800             | C(34B) - H(34E)<br>C(34B) - H(34E) | 0.9800      |
| C(25B) - C(25B)     | 1.51(5)<br>1.52(8) | C(34D)-II(34I)                     | 0.9800      |
| C(25B)-C(27B)       | 1.0000             |                                    |             |
| C(23B) - H(23B)     | 1.0000             |                                    |             |
| C(27B) + H(27E)     | 0.9800             |                                    |             |
| C(27B) - H(27E)     | 0.9800             |                                    |             |
| $C(2/B) - \Pi(2/F)$ | 0.9800             |                                    |             |
| C(26B)-H(26D)       | 0.9800             |                                    |             |
| C(26B)-H(26E)       | 0.9800             |                                    |             |
| C(26B)-H(26F)       | 0.9800             |                                    |             |
| Cl(1) - C(29)       | 1.70(2)            |                                    |             |
| CI(2)-C(30)         | 1./1(3)            |                                    |             |
| C(29)-C(30)         | 1.59(3)            |                                    |             |
| C(29)-H(29A)        | 0.9900             |                                    |             |
| C(29)-H(29B)        | 0.9900             |                                    |             |
| C(30)-H(30A)        | 0.9900             |                                    |             |
| C(30)-H(30B)        | 0.9900             |                                    |             |
| O(1A)-C(31A)        | 1.44889(17)        |                                    |             |
| O(1A)-C(35)         | 1.4500(2)          |                                    |             |
| C(31A)-C(32A)       | 1.54899(19)        |                                    |             |
| C(31A)-C(33A)       | 1.54882(18)        |                                    |             |
| C(31A)-C(34A)       | 1.54899(16)        |                                    |             |
| C(32A)-H(32A)       | 0.9800             |                                    |             |

TableA.28.Bondangles(deg.)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalent atoms:

| S(4)-Mo(1)-S(3)                               | 110.18(10)             | S(4)-Mo(3)-Se(3)                                  | 83.60(7)               |
|-----------------------------------------------|------------------------|---------------------------------------------------|------------------------|
| S(4)-Mo(1)-S(1)                               | 109.78(10)             | S(3)-Mo(3)-Se(3)                                  | 53.62(7)               |
| S(3)-Mo(1)-S(1)                               | 84.19(10)              | S(2)-Mo(3)-Se(3)                                  | 137.42(8)              |
| S(4)-Mo(1)-S(5)                               | 84.53(10)              | S(9)-Mo(3)-Se(3)                                  | 86.63(8)               |
| S(3)-Mo(1)-S(5)                               | 134.89(10)             | S(10)-Mo(3)-Se(3)                                 | 94,43(8)               |
| S(1)-Mo(1)-S(5)                               | 132.09(10)             | S(4)-Mo(3)-Se(2)                                  | 85.04(7)               |
| S(4)-Mo(1)-S(6)                               | 154.51(10)             | S(3)-Mo(3)-Se(2)                                  | 136.51(8)              |
| S(3)-Mo(1)-S(6)                               | 89.34(10)              | S(2)-Mo(3)-Se(2)                                  | 52.56(7)               |
| S(1)-Mo(1)-S(6)                               | 87.74(9)               | S(9)-Mo(3)-Se(2)                                  | 86.79(8)               |
| S(5)-Mo(1)-S(6)                               | 69.99(9)               | S(10)-Mo(3)-Se(2)                                 | 93.44(8)               |
| S(4)-Mo(1)-Se(3)                              | 83.57(7)               | Se(3)-Mo(3)-Se(2)                                 | 167.40(5)              |
| S(3)-Mo(1)-Se(3)                              | 53.78(7)               | S(4)-Mo(3)-Mo(1)                                  | 55 09(7)               |
| S(1)-Mo(1)-Se(3)                              | 137.64(8)              | S(3)-Mo(3)-Mo(1)                                  | 55 60(7)               |
| S(5)-Mo(1)-Se(3)                              | 87 91(8)               | S(2)-Mo(3)-Mo(1)                                  | 95 77(7)               |
| S(6)-Mo(1)-Se(3)                              | 95 96(8)               | S(2) - Mo(3) - Mo(1)                              | 126 21(8)              |
| S(4)-Mo(1)-Se(1)                              | 86 26(7)               | S(10)-Mo(3)-Mo(1)                                 | 120.21(0)<br>142.88(8) |
| S(3)-Mo(1)-Se(1)                              | 135 17(8)              | S(10)-MO(3)-MO(1)<br>Se(3)-MO(3)-MO(1)            | 58 34(4)               |
| S(3)-MO(1)-Se(1)                              | 51 06(7)               | Se(2)-Mo(3)-Mo(1)                                 | 118 35(4)              |
| S(1) = MO(1) - SC(1)<br>S(5) MO(1) Se(1)      | S1.00(7)<br>86.45(8)   | $S(4) M_0(3) M_0(2)$                              | 54.99(7)               |
| S(5) - MO(1) - Sc(1)<br>S(6) Mo(1) Se(1)      | 01.70(8)               | S(4) - WO(3) - WO(2)<br>S(3) Mo(3) Mo(2)          | 96.58(7)               |
| $S_{0}(3) M_{0}(1) S_{0}(1)$                  | 91.20(8)<br>168 70(5)  | S(3) - WO(3) - WO(2)<br>S(2) Mo(3) Mo(2)          | 55.38(7)               |
| $S(4) M_0(1) M_0(3)$                          | 106.79(3)<br>54.81(7)  | S(2) - WO(3) - WO(2)<br>S(0) Mo(3) Mo(2)          | 125,27(8)              |
| S(4) - WO(1) - WO(3)<br>$S(2) M_0(1) M_0(2)$  | 54.01(7)               | S(3)-1010(3)-1010(2)<br>$S(10) M_0(2) M_0(2)$     | 123.37(6)<br>142.77(8) |
| S(3)- $WO(1)$ - $WO(3)S(1) M_{2}(1) M_{2}(2)$ | 33.91(7)               | S(10)-WO(3)-WO(2)<br>$S_{2}(2) M_{2}(2) M_{2}(2)$ | 142.77(0)<br>110.19(5) |
| S(1)-MO(1)-MO(3)<br>S(5) Mo(1) Mo(2)          | 95.09(7)               | Se(3)-Mo(3)-Mo(2)<br>Se(2) Mo(2) Mo(2)            | 110.10(J)<br>59.26(4)  |
| S(5) - MO(1) - MO(3)                          | 127.24(8)<br>144.20(8) | Se(2)-MO(3)-MO(2)<br>Mo(1) Mo(2) Mo(2)            | 58.20(4)               |
| S(0)- $WO(1)$ - $WO(3)$                       | 144.30(8)              | MO(1)-MO(3)-MO(2)                                 | 00.53(3)               |
| Se(3)-MO(1)-MO(3)                             | 58.55(4)<br>118.20(4)  | S(4) - NIO(2) - S(2)                              | 110.34(10)             |
| Se(1)-Mo(1)-Mo(3)                             | 118.39(4)              | S(4)-MO(2)-S(1)                                   | 110.0/(10)             |
| S(4)-MO(1)-MO(2)                              | 54.74(7)               | S(2)-MO(2)-S(1)                                   | 83.08(10)              |
| S(3)-MO(1)-MO(2)                              | 96.47(8)               | S(4)-MO(2)-S(7)                                   | 84.17(9)               |
| S(1)-MO(1)-MO(2)                              | 55.49(7)               | S(2)-MO(2)-S(7)                                   | 133.09(10)             |
| S(5)-Mo(1)-Mo(2)                              | 124.85(8)              | S(1)-Mo(2)-S(7)                                   | 135.08(10)             |
| S(6)-Mo(1)-Mo(2)                              | 141.67(8)              | S(4)-Mo(2)-S(8)                                   | 153.60(10)             |
| Se(3)-Mo(1)-Mo(2)                             | 117.94(5)              | S(2)-Mo(2)-S(8)                                   | 91.41(9)               |
| Se(1)-Mo(1)-Mo(2)                             | 58.60(4)               | S(1)-Mo(2)-S(8)                                   | 86.60(9)               |
| Mo(3)-Mo(1)-Mo(2)                             | 59.92(3)               | S(7)-Mo(2)-S(8)                                   | 69.81(9)               |
| S(4)-Mo(3)-S(3)                               | 110.15(10)             | S(4)-Mo(2)-Se(2)                                  | 85.14(7)               |
| S(4)-Mo(3)-S(2)                               | 110.05(10)             | S(2)-Mo(2)-Se(2)                                  | 52.85(7)               |
| S(3)-Mo(3)-S(2)                               | 84.11(10)              | S(1)-Mo(2)-Se(2)                                  | 135.74(8)              |
| S(4)-Mo(3)-S(9)                               | 84.09(10)              | S(7)-Mo(2)-Se(2)                                  | 86.20(8)               |
| S(3)-Mo(3)-S(9)                               | 133.78(10)             | S(8)-Mo(2)-Se(2)                                  | 97.17(7)               |
| S(2)-Mo(3)-S(9)                               | 133.50(10)             | S(4)-Mo(2)-Se(1)                                  | 86.08(7)               |
| S(4)-Mo(3)-S(10)                              | 154.35(10)             | S(2)-Mo(2)-Se(1)                                  | 133.97(8)              |
| S(3)-Mo(3)-S(10)                              | 88.48(10)              | S(1)-Mo(2)-Se(1)                                  | 51.02(7)               |
| S(2)-Mo(3)-S(10)                              | 88.68(10)              | S(7)-Mo(2)-Se(1)                                  | 89.83(8)               |
| S(9)-Mo(3)-S(10)                              | 70.26(9)               | S(8)-Mo(2)-Se(1)                                  | 89.33(7)               |

TableA.28,Cont'd.Bondangles(deg.)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN'Bu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalentatoms:

| Se(2)-Mo(2)-Se(1)                  | 170.69(5)           | S(4)-Mo(2)-Mo(3)              | 54.75(7)               |
|------------------------------------|---------------------|-------------------------------|------------------------|
| S(2)-Mo(2)-Mo(3)                   | 56.01(7)            | C(10)-N(2)-C(11)              | 122.0(9)               |
| S(1)-Mo(2)-Mo(3)                   | 95.74(7)            | C(15)-N(2)-C(11)              | 117.5(9)               |
| S(7)-Mo(2)-Mo(3)                   | 125.10(7)           | C(19)-N(3)-C(20)              | 122.7(9)               |
| S(8)-Mo(2)-Mo(3)                   | 146.55(8)           | C(19)-N(3)-C(24)              | 121.5(9)               |
| Se(2)-Mo(2)-Mo(3)                  | 58.64(4)            | C(20)-N(3)-C(24)              | 115.7(9)               |
| Se(1)-Mo(2)-Mo(3)                  | 117.90(4)           | N(1)-C(1)-S(5)                | 122.9(8)               |
| S(4)-Mo(2)-Mo(1)                   | 54.77(7)            | N(1)-C(1)-S(6)                | 123.6(8)               |
| S(2)-Mo(2)-Mo(1)                   | 95.69(7)            | S(5)-C(1)-S(6)                | 113.5(7)               |
| S(1)-Mo(2)-Mo(1)                   | 55.75(7)            | N(1)-C(2)-C(3)                | 114.1(10)              |
| S(7)-Mo(2)-Mo(1)                   | 126.56(8)           | N(1)-C(2)-H(2A)               | 108.7                  |
| S(8)-Mo(2)-Mo(1)                   | 140.23(7)           | C(3)-C(2)-H(2A)               | 108.7                  |
| Se(2)-Mo(2)-Mo(1)                  | 118.12(4)           | N(1)-C(2)-H(2B)               | 108.7                  |
| Se(1)-Mo(2)-Mo(1)                  | 58.30(4)            | C(3)-C(2)-H(2B)               | 108.7                  |
| Mo(3)-Mo(2)-Mo(1)                  | 59.73(3)            | H(2A)-C(2)-H(2B)              | 107.6                  |
| S(1)-Se(1)-Mo(1)                   | 60.10(8)            | C(4)-C(3)-C(5)                | 112.1(11)              |
| S(1)-Se(1)-Mo(2)                   | 59.74(8)            | C(4)-C(3)-C(2)                | 112.4(10)              |
| Mo(1)-Se(1)-Mo(2)                  | 63.10(4)            | C(5)-C(3)-C(2)                | 109.1(10)              |
| S(2)-Se(2)-Mo(2)                   | 59.32(8)            | C(4)-C(3)-H(3)                | 107.7                  |
| S(2)-Se(2)-Mo(3)                   | 59.56(8)            | C(5)-C(3)-H(3)                | 107.7                  |
| $M_0(2)$ -Se(2)-M <sub>0</sub> (3) | 63.10(4)            | C(2)-C(3)-H(3)                | 107.7                  |
| S(3)-Se(3)-Mo(1)                   | 58.98(8)            | C(3)-C(4)-H(4A)               | 109.5                  |
| S(3)-Se(3)-Mo(3)                   | 59.13(7)            | C(3)-C(4)-H(4B)               | 109.5                  |
| $M_0(1)-Se(3)-M_0(3)$              | 63.13(4)            | H(4A)-C(4)-H(4B)              | 109.5                  |
| Se(1)-S(1)-Mo(2)                   | 69.24(8)            | C(3)-C(4)-H(4C)               | 109.5                  |
| Se(1)-S(1)-Mo(1)                   | 68.84(8)            | H(4A)-C(4)-H(4C)              | 109.5                  |
| $M_0(2)-S(1)-M_0(1)$               | 68 76(8)            | H(4B)-C(4)-H(4C)              | 109.5                  |
| Se(2)-S(2)-Mo(2)                   | 67.83(8)            | C(3)-C(5)-H(5A)               | 109.5                  |
| Se(2)-S(2)-Mo(3)                   | 67.88(8)            | C(3)-C(5)-H(5B)               | 109.5                  |
| $M_0(2)-S(2)-M_0(3)$               | 68 50(8)            | H(5A)-C(5)-H(5B)              | 109.5                  |
| Se(3)-S(3)-Mo(1)                   | 67 23(8)            | C(3)-C(5)-H(5C)               | 109.5                  |
| Se(3)-S(3)-Mo(3)                   | 67 24(8)            | H(5A)-C(5)-H(5C)              | 109.5                  |
| $M_0(1) = S(3) = M_0(3)$           | 68 / 9(8)           | H(5R)-C(5)-H(5C)              | 109.5                  |
| $M_0(3)-S(4)-M_0(2)$               | 70 27(8)            | N(1)-C(6)-C(7)                | 113 6(11)              |
| $M_0(3) - S(4) - M_0(2)$           | 70.27(8)            | N(1) - C(6) - H(6A)           | 108.8                  |
| $M_0(2) S(4) M_0(1)$               | 70.10(0)            | C(7) C(6) H(6A)               | 108.8                  |
| $C(1)$ $S(5)$ $M_{0}(1)$           | 70.48(8)<br>88.2(4) | N(1) C(6) H(6R)               | 108.8                  |
| C(1) - S(5) - MO(1)                | 86.2(4)             | C(7) C(6) H(6P)               | 108.8                  |
| C(1)-S(0)-MO(1)                    | 80.1(4)<br>80.1(4)  | $U(f) - C(0) - \Pi(0B)$       | 100.0                  |
| C(10)-S(7)-MO(2)                   | 69.1(4)<br>86.8(4)  | $\Gamma(0A) - C(0) - \Pi(0B)$ | 107.7                  |
| C(10)-S(0)-MO(2)                   | 80.8(4)             | C(8) - C(7) - C(0)            | 113.3(12)<br>110.4(12) |
| C(19)-S(9)-MO(3)                   | 89.2(4)<br>87.5(4)  | C(8) - C(7) - C(9)            | 110.4(12)<br>106.0(14) |
| C(19)-S(10)-WIO(3)                 | ð/.3(4)<br>122 1(0) | C(0) - C(7) - C(9)            | 100.9(14)              |
| C(1)-IN(1)-C(2)<br>C(1) N(1) C(2)  | 123.1(9)            | C(0)-C(7)-H(7)                | 108./                  |
| C(1)-IN(1)-C(0)                    | 117.0(9)            | C(0)-C(7)-H(7)                | 108./                  |
| C(2)-IN(1)-C(0)                    | 11/.8(9)            | C(9)-C(7)-H(7)                | 108.7                  |
| C(10)-N(2)-C(15)                   | 120.5(9)            | C(7)-C(8)-H(8A)               | 109.5                  |

TableA.28,Cont'd.Bondangles(deg.)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalentatoms:

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} C(7) \ C(7) \ H(101) & 109.5 & C(15) \ C(16) \ H(16) & 109.5 \\ C(7) \ C(9) \ H(9B) & 109.5 & C(16) \ C(17) \ H(17A) & 109.5 \\ H(9A) \ C(9) \ H(9B) & 109.5 & C(16) \ C(17) \ H(17B) & 109.5 \\ C(7) \ C(9) \ H(9C) & 109.5 & H(17A) \ C(17) \ H(17B) & 109.5 \\ H(9B) \ C(9) \ H(9C) & 109.5 & H(17A) \ C(17) \ H(17C) & 109.5 \\ H(9B) \ C(9) \ H(9C) & 109.5 & H(17A) \ C(17) \ H(17C) & 109.5 \\ H(9B) \ C(9) \ H(9C) & 109.5 & H(17A) \ C(17) \ H(17C) & 109.5 \\ H(2) \ C(10) \ S(7) & 121.3(8) & H(17B) \ C(17) \ H(17C) & 109.5 \\ N(2) \ C(10) \ S(8) & 124.7(8) & C(16) \ C(16) \ C(18) \ H(18A) & 109.5 \\ S(7) \ C(10) \ S(8) & 114.0(6) & C(16) \ C(16) \ H(18B) & 109.5 \\ N(2) \ C(11) \ H(11A) & 108.9 & C(16) \ C(18) \ H(18C) & 109.5 \\ C(12) \ C(11) \ H(11A) & 108.9 & H(18A) \ C(18) \ H(18C) & 109.5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5 </td |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>→.5</li> <li>→.5</li> <li>→.5</li> <li>→.5</li> <li>→.5</li> <li>→.5</li> <li>→.5</li> <li>→.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ).5<br>).5<br>).5<br>).5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li><i>∂</i>.5</li> <li><i>∂</i>.5</li> <li><i>∂</i>.5</li> <li><i>∂</i>.5</li> <li><i>∂</i>.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul><li><i>∂</i>.5</li><li><i>∂</i>.5</li><li><i>∂</i>.5</li><li><i>∂</i>.5</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹.5<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} C(12)-C(11)-H(11A) \\ C(12)-C(11)-H(11A) \\ C(12)-C(12)-H(18C) \\ C($ | ) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N(2)-C(11)-H(11B) 108.9 $H(18B)-C(18)-H(18C)$ 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(11)-H(11B) 108.9 $N(3)-C(19)-S(9)$ 122.5(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(11A)-C(11)-H(11B) 107.7 $N(3)-C(19)-S(10)$ 122.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(11)-C(12)-C(14) = 1085(10) = S(9)-C(19)-S(10) = 1131(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(11)-C(12)-C(13) = 112.5(9) = N(3)-C(20)-C(21) = 114.0(12)-C(20)-C(21) = 114.0(12)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20)-C(20                                                                                                                | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(14)-C(12)-C(13) 111 5(10) $N(3)-C(20)-H(20A)$ 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(11)-C(12)-H(12) 108 1 $C(21)-C(20)-H(20A)$ 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(14)-C(12)-H(12) 108.1 $N(3)-C(20)-H(20B)$ 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(13)-C(12)-H(12) 108.1 $C(21)-C(20)-H(20B)$ 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(13)-H(13A) 109.5 $H(20A)-C(20)-H(20B)$ 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(13)-H(13B) 109.5 $C(20)-C(21)-C(22)$ 110.7(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(13A)-C(13)-H(13B) 109.5 $C(20)-C(21)-C(23)$ 112.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(13)-H(13C) 109.5 $C(22)-C(21)-C(23)$ 110.2(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left( 0 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H(13A)-C(13)-H(13C) 109.5 $C(20)-C(21)-H(21)$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(13B)-C(13)-H(13C) 109.5 $C(22)-C(21)-H(21)$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(14)-H(14A) 109.5 $C(23)-C(21)-H(21)$ 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(12)-C(14)-H(14B) 109.5 $C(21)-C(22)-H(22A)$ 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | €.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(14A)-C(14)-H(14B) 109.5 C(21)-C(22)-H(22B) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>)</del> .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(12)-C(14)-H(14C) 109.5 H(22A)-C(22)-H(22B) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(14A)-C(14)-H(14C) 109.5 C(21)-C(22)-H(22C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(14B)-C(14)-H(14C) 109.5 H(22A)-C(22)-H(22C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N(2)-C(15)-C(16) 115.0(10) H(22B)-C(22)-H(22C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N(2)-C(15)-H(15A) 108.5 C(21)-C(23)-H(23A) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(16)-C(15)-H(15A) 108.5 C(21)-C(23)-H(23B) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N(2)-C(15)-H(15B) 108.5 H(23A)-C(23)-H(23B) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(16)-C(15)-H(15B) 108.5 C(21)-C(23)-H(23C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H(15A)-C(15)-H(15B) 107.5 H(23A)-C(23)-H(23C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Э.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(17)-C(16)-C(18) 111.1(11) H(23B)-C(23)-H(23C) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | €.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(17)-C(16)-C(15) 112.9(11) N(3)-C(24)-C(25A) 114.2(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(18)-C(16)-C(15) 108.7(11) N(3)-C(24)-C(25B) 114.5(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(17)-C(16)-H(16) 108.0 N(3)-C(24)-H(24A) 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11)<br>4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
**Table**A.28,Cont'd.Bondangles(deg.)for $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN'Bu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalentatoms:

| C(25A)-C(24)-H(24A)  | 108.7     | H(24A)-C(24)-H(24B)  | 107.6       |
|----------------------|-----------|----------------------|-------------|
| N(3)-C(24)-H(24B)    | 108.7     | C(27A)-C(25A)-C(26A) | 111.2(19)   |
| C(25A)-C(24)-H(24B)  | 108.7     | C(27A)-C(25A)-C(24)  | 111(2)      |
| C(26A)-C(25A)-C(24)  | 109.5(17) | Cl(2)-C(30)-H(30A)   | 110.2       |
| C(27A)-C(25A)-H(25A) | 108.3     | C(29)-C(30)-H(30B)   | 110.2       |
| C(26A)-C(25A)-H(25A) | 108.3     | Cl(2)-C(30)-H(30B)   | 110.2       |
| C(24)-C(25A)-H(25A)  | 108.3     | H(30A)-C(30)-H(30B)  | 108.5       |
| C(25A)-C(26A)-H(26A) | 109.5     | C(31A)-O(1A)-C(35)   | 113.191(12) |
| C(25A)-C(26A)-H(26B) | 109.5     | O(1A)-C(31A)-C(32A)  | 105.711(10) |
| H(26A)-C(26A)-H(26B) | 109.5     | O(1A)-C(31A)-C(33A)  | 118.57(3)   |
| C(25A)-C(26A)-H(26C) | 109.5     | C(32A)-C(31A)-C(33A) | 108.839(12) |
| H(26A)-C(26A)-H(26C) | 109.5     | O(1A)-C(31A)-C(34A)  | 105.711(12) |
| H(26B)-C(26A)-H(26C) | 109.5     | C(32A)-C(31A)-C(34A) | 108.825(10) |
| C(25A)-C(27A)-H(27A) | 109.5     | C(33A)-C(31A)-C(34A) | 108.839(13) |
| C(25A)-C(27A)-H(27B) | 109.5     | C(31A)-C(32A)-H(32A) | 109.5       |
| H(27A)-C(27A)-H(27B) | 109.5     | C(31A)-C(32A)-H(32B) | 109.5       |
| C(25A)-C(27A)-H(27C) | 109.5     | H(32A)-C(32A)-H(32B) | 109.5       |
| H(27A)-C(27A)-H(27C) | 109.5     | C(31A)-C(32A)-H(32C) | 109.5       |
| H(27B)-C(27A)-H(27C) | 109.5     | H(32A)-C(32A)-H(32C) | 109.5       |
| C(26B)-C(25B)-C(27B) | 110(3)    | H(32B)-C(32A)-H(32C) | 109.5       |
| C(26B)-C(25B)-C(24)  | 110(3)    | C(31A)-C(33A)-H(33A) | 109.5       |
| C(27B)-C(25B)-C(24)  | 111(3)    | C(31A)-C(33A)-H(33B) | 109.5       |
| C(26B)-C(25B)-H(25B) | 108.7     | H(33A)-C(33A)-H(33B) | 109.5       |
| C(27B)-C(25B)-H(25B) | 108.7     | C(31A)-C(33A)-H(33C) | 109.5       |
| C(24)-C(25B)-H(25B)  | 108.7     | H(33A)-C(33A)-H(33C) | 109.5       |
| C(25B)-C(27B)-H(27D) | 109.5     | H(33B)-C(33A)-H(33C) | 109.5       |
| C(25B)-C(27B)-H(27E) | 109.5     | C(31A)-C(34A)-H(34A) | 109.5       |
| H(27D)-C(27B)-H(27E) | 109.5     | C(31A)-C(34A)-H(34B) | 109.5       |
| C(25B)-C(27B)-H(27F) | 109.5     | H(34A)-C(34A)-H(34B) | 109.5       |
| H(27D)-C(27B)-H(27F) | 109.5     | C(31A)-C(34A)-H(34C) | 109.5       |
| H(27E)-C(27B)-H(27F) | 109.5     | H(34A)-C(34A)-H(34C) | 109.5       |
| C(25B)-C(26B)-H(26D) | 109.5     | H(34B)-C(34A)-H(34C) | 109.5       |
| C(25B)-C(26B)-H(26E) | 109.5     | O(1A)-C(35)-H(35A)   | 109.5       |
| H(26D)-C(26B)-H(26E) | 109.5     | O(1A)-C(35)-H(35B)   | 109.5       |
| C(25B)-C(26B)-H(26F) | 109.5     | H(35A)-C(35)-H(35B)  | 109.5       |
| H(26D)-C(26B)-H(26F) | 109.5     | O(1A)-C(35)-H(35C)   | 109.5       |
| H(26E)-C(26B)-H(26F) | 109.5     | H(35A)-C(35)-H(35C)  | 109.5       |
| N(4)-C(28)-Se(4)     | 175.6(14) | H(35B)-C(35)-H(35C)  | 109.5       |
| C(30)-C(29)-Cl(1)    | 117.1(17) | O(1B)-C(31B)-C(33B)  | 118.57(3)   |
| C(30)-C(29)-H(29A)   | 108.0     | O(1B)-C(31B)-C(32B)  | 105.711(11) |
| Cl(1)-C(29)-H(29A)   | 108.0     | C(33B)-C(31B)-C(32B) | 108.839(10) |
| C(30)-C(29)-H(29B)   | 108.0     | O(1B)-C(31B)-C(34B)  | 105.711(10) |
| Cl(1)-C(29)-H(29B)   | 108.0     | C(33B)-C(31B)-C(34B) | 108.839(11) |
| H(29A)-C(29)-H(29B)  | 107.3     | C(32B)-C(31B)-C(34B) | 108.826(13) |
| C(29)-C(30)-Cl(2)    | 107.6(17) | C(31B)-C(32B)-H(32D) | 109.5       |
| C(29)-C(30)-H(30A)   | 110.2     | C(31B)-C(32B)-H(32E) | 109.5       |

TableA.28,Cont'd.Bondangles(deg.)for $[Mo_3(\mu_3-S)(\mu-S))(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN] \cdot \frac{1}{2}ClCH_2CH_2Cl \cdot \frac{1}{2}BuOMe.$ Symmetrytransformationsusedtogenerateequivalent atoms:

| H(32D)-C(32B)-H(32E) | 109.5 |
|----------------------|-------|
| C(31B)-C(32B)-H(32F) | 109.5 |
| H(32D)-C(32B)-H(32F) | 109.5 |
| H(32E)-C(32B)-H(32F) | 109.5 |
| C(31B)-C(33B)-H(33D) | 109.5 |
| C(31B)-C(33B)-H(33E) | 109.5 |
| H(33D)-C(33B)-H(33E) | 109.5 |
| C(31B)-C(33B)-H(33F) | 109.5 |
| H(33D)-C(33B)-H(33F) | 109.5 |
| H(33E)-C(33B)-H(33F) | 109.5 |
| C(31B)-C(34B)-H(34D) | 109.5 |
| C(31B)-C(34B)-H(34E) | 109.5 |
| H(34D)-C(34B)-H(34E) | 109.5 |
| C(31B)-C(34B)-H(34F) | 109.5 |
| H(34D)-C(34B)-H(34F) | 109.5 |
| H(34E)-C(34B)-H(34F) | 109.5 |

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1(1))              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1(1))              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -8(2)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(1)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\cdot 2(1)$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1(1)                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1)                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2(5)               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(5)               |
| N(4)111(12) $76(10)$ $80(11)$ $6(9)$ $-17(10)$ $-17(10)$ C(1) $32(7)$ $41(8)$ $23(8)$ $7(6)$ $1(6)$ C(2) $34(8)$ $49(9)$ $28(7)$ $-2(6)$ $12(6)$ C(3) $52(10)$ $41(9)$ $55(10)$ $-10(7)$ $3(7)$ C(4) $73(11)$ $52(10)$ $74(11)$ $23(8)$ $20(8)$ $20(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4(5)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(6)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·8(7)               |
| C(4) /3(11) 52(10) /4(11) 23(8) 20(8) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9(7)                |
| C(5) 47(10) 50(0) (2(10) 1(0) 4(7) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20(8)               |
| C(5) = 47(10) = 59(9) = 63(10) = -1(8) = 4(7) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0(8))              |
| C(7) 47(10) 137(15) 42(9) -11(10) -13(9) 5<br>C(8) 74(11) 05(12) 46(0) 2(0) 12(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (10)                |
| C(8) 74(11) 95(12) 40(9) 5(9) -12(9) -<br>C(0) 70(12) 240(20) (0(12) 14(14) 10(10) (0(12) 14(14) 10(10)) (0(12) 14(14) 10(10)) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10)) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10))) (0(12) 14(14) 10(10)))) (0(12) 14(14) 10(10)))) (0(12) 14(14) 10(10)))) (0(12) 14(14) 10(10)))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (15)                |
| C(9) $70(12)$ $240(30)$ $69(12)$ $14(14)$ $-10(10)$ $-00C(10)$ $27(7)$ $10(7)$ $20(7)$ $5(5)$ $11(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (13)                |
| C(10)  5/(7)  10(7)  50(7)  5(5)  11(0)  -<br>C(11)  22(7)  24(7)  20(8)  2(6)  7(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2(5)}{2(6)}$ |
| C(11)  52(7)  54(7)  59(8)  2(0)  7(7)  1<br>C(12)  44(8)  34(8)  47(0)  14(7)  15(7)  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S(0)                |
| C(12) 44(6) 54(6) 47(7) 14(7) -15(7) -1<br>C(12) 52(0) 84(11) 22(8) 8(8) 4(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(8)                |
| C(13)  55(3)  64(11)  52(6)  6(6)  4(7)  -<br>C(14)  76(10)  46(0)  50(0)  25(7)  22(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{0}{2}(0)$    |
| $C(14) \ 70(10) \ 40(9) \ 59(9) \ 25(7) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8) \ -22(8$ | $\frac{1}{6}$       |
| C(15) + 49(6) = 50(7) = 55(6) = 4(0) = -2(0)<br>C(16) = 54(0) = 35(8) = 53(10) = 9(7) = 2(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3(7)                |
| C(10)  54(0)  55(0)  55(10)  -9(1)  2(1)<br>C(17)  74(11)  79(11)  51(9)  -4(8)  3(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1(0)               |
| C(17) $(7(11)$ $(7(11)$ $(7(11)$ $(7(11)$ $(7(11)$ $(7(11)$ $(7(11)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10)$ $(7(10))$ $(7(10)$ $(7(10))$ $(7(10)$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7(10))$ $(7$   | -1(2)<br>-2(0)      |
| C(10) - 11(2) - 01(12) - 11(11) - 52(10) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 51(7) - 5   | -1(6)               |
| C(17) = 55(0) = 21(7) = 55(7) = 0(0) = 11(0) = -<br>C(20) = 44(8) = 26(8) = 40(8) = 8(7) = 9(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8(6)                |
| C(21) $40(8)$ $37(8)$ $36(8)$ $0(7)$ $-4(6)$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0(6)                |
| C(22) = 68(10) = 32(8) = 44(8) = -6(7) = 8(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7(7)                |

**Table A.29**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}BuOMe$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

**Table A.29, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^{\dagger}Bu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2CH_2Cl\cdot\frac{1}{2}BuOMe$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| C(23) | 65(10)   | 40(8)    | 37(8)    | -8(6)    | -1(7)    | -6(7)    |
| C(24) | 26(8)    | 40(8)    | 48(8)    | 5(6)     | 0(6)     | 1(6)     |
| C(28) | 66(11)   | 40(9)    | 81(13)   | 14(9)    | -33(10)  | -10(7)   |

| H atom                                                   | х            | У            | Z            | U(eq)    |
|----------------------------------------------------------|--------------|--------------|--------------|----------|
| H(2A)                                                    | -271         | 5223         | 8194         | 44       |
| H(2B)                                                    | -321         | 5150         | 7364         | 44       |
| H(3)                                                     | -344         | 5878         | 8018         | 59       |
| H(4A)                                                    | -471         | 5706         | 6568         | 100      |
| H(4B)                                                    | -127         | 5950         | 6874         | 100      |
| H(4C)                                                    | -549         | 6112         | 6914         | 100      |
| H(5A)                                                    | -994         | 5866         | 7838         | 85       |
| H(5B)                                                    | -877         | 5498         | 8280         | 85       |
| H(5C)                                                    | -967         | 5464         | 7452         | 85       |
| H(6A)                                                    | 227          | 5704         | 8497         | 59       |
| H(6R)                                                    | 585          | 5737         | 7983         | 59       |
| H(0D)                                                    | 778          | 5113         | 8352         | 90       |
| H(8A)                                                    | 229          | 5194         | 9430         | 107      |
| H(8R)                                                    | 526          | 4854         | 9360         | 107      |
| H(8C)                                                    | 195          | 4900         | 8789         | 107      |
| H(9A)                                                    | 739          | 5624         | 9535         | 190      |
| H(9R)                                                    | 998          | 5721         | 8866         | 190      |
| H(9C)                                                    | 1086         | 5354         | 9332         | 190      |
| $H(11\Delta)$                                            | 702          | 7317         | 3726         | 42       |
| H(11R)<br>H(11R)                                         | 568          | 6921         | 3/20         | 42       |
| H(11D)<br>H(12)                                          | 1189         | 7351         | 2869         | 42<br>50 |
| H(12)<br>H(13A)                                          | 850          | 6702         | 2009         | 50<br>84 |
| H(13R)<br>H(13R)                                         | 1250         | 6680         | 2208         | 84       |
| H(13C)                                                   | 1230         | 6031         | 1024         | 84       |
| $\mathbf{H}(13\mathbf{C})$<br>$\mathbf{H}(14\mathbf{A})$ | 1219         | 7787         | 2200         | 01       |
| H(14R)                                                   | 440<br>785   | 7282         | 1023         | 91       |
| H(14C)                                                   | 611          | 7510         | 1925         | 91       |
| H(14C)<br>H(15A)                                         | 1208         | 7055         | 2030         | 91<br>45 |
| H(15R)<br>H(15P)                                         | 1570         | 6060         | 3997<br>4011 | 45       |
| $\Pi(13D)$<br>$\Pi(16)$                                  | 1010         | 0900<br>6062 | 4211<br>5318 | 4J<br>57 |
| H(10)<br>H(17A)                                          | 080          | 0902         | 5602         | 102      |
| $\Pi(1/A)$<br>$\Pi(17P)$                                 | 900<br>757   | 7310         | 5056         | 102      |
| H(17C)                                                   | 1012         | 7520         | J0J0<br>4007 | 102      |
| $\Pi(1/C)$<br>$\Pi(18A)$                                 | 1012         | 7085         | 4907         | 102      |
| H(10A)<br>H(19D)                                         | 1/41         | 7010         | 5051         | 121      |
| H(10D)                                                   | 1695         | 7204         | 5271         | 121      |
| $\Pi(10C)$                                               | 1030         | 7437         | 2249         | 121      |
| H(20A)                                                   | 2321         | 3893<br>2046 | 2256         | 44       |
| H(20D)                                                   | 1072         | 3940<br>2524 | 5550         | 44       |
| H(21)                                                    | 2202         | 3324<br>2200 | 4410<br>2014 | 43       |
| $\Pi(22A)$ $\Pi(22D)$                                    | 1070         | 5200<br>2071 | 3214<br>2016 | 12       |
| $\Pi(22D)$                                               | 2111         | 2971         | 3810<br>2270 | 12       |
| $\Pi(22\mathbb{C})$                                      | 2009<br>1626 | 5230<br>2740 | 3219         | 12       |
| п(23A)<br>Ц(22D)                                         | 1030         | 3/4U<br>2201 | 4/Uð<br>1755 | /1       |
| II(23D)                                                  | 1000         | 5291         | 4/33         | / 1      |

**Table A.30**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3(\mu_3-S)(\mu-SSe)_3(S_2CN^iBu_2)_3][SeCN]\cdot\frac{1}{2}ClCH_2CH_2Cl\cdot\frac{1}{2}^tBuOMe$ .

| H atom | Х     | у    | Z     | U(eq) |
|--------|-------|------|-------|-------|
| H(23C) | 1475  | 3477 | 4089  | 71    |
| H(24A) | 2625  | 4065 | 4575  | 46    |
| H(24B) | 2503  | 4483 | 4801  | 46    |
| H(25A) | 2806  | 4289 | 3447  | 56    |
| H(26A) | 3262  | 4258 | 4351  | 116   |
| H(26B) | 3357  | 4597 | 3818  | 116   |
| H(26C) | 3170  | 4685 | 4571  | 116   |
| H(27A) | 2407  | 4800 | 3362  | 97    |
| H(27B) | 2834  | 4933 | 3238  | 97    |
| H(27C) | 2631  | 5013 | 3980  | 97    |
| H(25B) | 2571  | 4895 | 4235  | 25    |
| H(27D) | 2917  | 4472 | 3121  | 93    |
| H(27E) | 2782  | 4904 | 3091  | 93    |
| H(27E) | 2475  | 4571 | 3103  | 93    |
| H(26D) | 3106  | 4706 | 4888  | 109   |
| H(26E) | 3261  | 4477 | 4219  | 109   |
| H(26F) | 3232  | 4928 | 4189  | 109   |
| H(29A) | -894  | 5927 | 10976 | 55    |
| H(29B) | -1256 | 6085 | 11382 | 55    |
| H(30A) | -1618 | 6003 | 10257 | 56    |
| H(30B) | -1490 | 5613 | 10622 | 56    |
| H(32A) | -1388 | 5755 | 10540 | 369   |
| H(32B) | -1231 | 5527 | 9871  | 369   |
| H(32C) | -1019 | 5497 | 10616 | 369   |
| H(33A) | -1093 | 6342 | 10941 | 410   |
| H(33B) | -720  | 6107 | 11130 | 410   |
| H(33C) | -692  | 6474 | 10639 | 410   |
| H(34A) | -1342 | 6359 | 9735  | 195   |
| H(34B) | -947  | 6443 | 9355  | 195   |
| H(34C) | -1189 | 6080 | 9134  | 195   |
| H(35A) | -22   | 5927 | 9666  | 239   |
| H(35B) | -254  | 6311 | 9769  | 239   |
| H(35C) | -188  | 6034 | 10427 | 239   |
| H(32D) | 629   | 6847 | 10436 | 75    |
| H(32E) | 323   | 6554 | 10733 | 75    |
| H(32F) | 725   | 6405 | 10465 | 75    |
| H(33D) | 228   | 7114 | 9510  | 246   |
| H(33E) | -11   | 6848 | 8992  | 246   |
| H(33F) | -118  | 6872 | 9813  | 246   |
| H(34D) | 804   | 6807 | 9087  | 207   |
| H(34E) | 886   | 6369 | 9230  | 207   |
| H(34F) | 598   | 6492 | 8619  | 207   |

**Table A.30, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>( $\mu_3$ -S)( $\mu$ -SSe)<sub>3</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>][SeCN]·½ClCH<sub>2</sub>CH<sub>2</sub>Cl·½<sup>*i*</sup>BuOMe.



The thermal ellipsoid plot is drawn at the 50% level. All H atoms are omitted for clarity



| Identification code                | JPD1172_0m_a                      |                                                                                                                      |  |  |  |
|------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Empirical formula                  | C29H54.67Cl0.33IM03N3             | C <sub>29</sub> H <sub>54,67</sub> Cl <sub>0.33</sub> IMo <sub>3</sub> N <sub>3</sub> S <sub>6</sub> Se <sub>7</sub> |  |  |  |
| Formula weight                     | 1617.04                           |                                                                                                                      |  |  |  |
| Temperature                        | 156(2) K                          |                                                                                                                      |  |  |  |
| Wavelength                         | 0.71073 Å                         |                                                                                                                      |  |  |  |
| Crystal system                     | Monoclinic                        |                                                                                                                      |  |  |  |
| Space group                        | $P2_{1}/c$                        |                                                                                                                      |  |  |  |
| Unit cell dimensions               | a = 27.7223(8) Å                  | $\alpha = 90^{\circ}$                                                                                                |  |  |  |
|                                    | b = 13.5820(4) Å                  | $\beta = 90.9170(10)^{\circ}$                                                                                        |  |  |  |
|                                    | c = 40.7503(11)  Å                | $\gamma = 90^{\circ}$                                                                                                |  |  |  |
| Volume                             | 15341.5(8) Å <sup>3</sup>         |                                                                                                                      |  |  |  |
| Ζ                                  | 12                                |                                                                                                                      |  |  |  |
| Density (calculated)               | $2.100 \text{ g/cm}^3$            |                                                                                                                      |  |  |  |
| Absorption coefficient             | 6.597 mm <sup>-1</sup>            |                                                                                                                      |  |  |  |
| F(000)                             | 9220                              |                                                                                                                      |  |  |  |
| Crystal size                       | 0.503 x 0.406 x 0.312             | 0.503 x 0.406 x 0.312 mm <sup>3</sup>                                                                                |  |  |  |
| $\theta$ range for data collection | 1.250 to 29.645°                  | 1.250 to 29.645°                                                                                                     |  |  |  |
| Index ranges                       | $-38 \le h \le 38, -18 \le k \le$ | $-38 \le h \le 38, -18 \le k \le 18, -56 \le l \le 56$                                                               |  |  |  |

**Table A.31, Cont'd.** Crystal Data and Structure Refinement for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10}).$ 

Reflections collected Independent reflections Completeness to  $\theta = 25.242^{\circ}$ Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on  $F^2$ Final R indices [I>2 $\sigma$ (I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 1076082 43161 [R(int) = 0.0626] 99.9 % Semi-empirical from equivalents Full-matrix least-squares on  $F^2$ 43161 / 0 / 1329 1.080 R1 = 0.0566, wR2 = 0.1495 R1 = 0.0695, wR2 = 0.1615 n/a 2.620 and -5.018 e·Å<sup>-3</sup>

| Atom   | Х       | У        | Z       | U(eq) |
|--------|---------|----------|---------|-------|
| I(1)   | 2677(1) | 11202(1) | 4110(1) | 45(1) |
| I(2)   | 1097(1) | 6070(1)  | 1473(1) | 36(1) |
| I(3)   | 4890(1) | 3212(1)  | 6236(1) | 29(1) |
| Mo(1)  | 1528(1) | 8847(1)  | 3782(1) | 19(1) |
| Mo(2)  | 1619(1) | 8843(1)  | 4456(1) | 25(1) |
| Mo(3)  | 2283(1) | 7862(1)  | 4078(1) | 23(1) |
| Mo(4)  | 1698(1) | 6087(1)  | 2528(1) | 15(1) |
| Mo(5)  | 2063(1) | 7742(1)  | 2221(1) | 15(1) |
| Mo(6)  | 2480(1) | 5936(1)  | 2120(1) | 15(1) |
| Mo(7)  | 4553(1) | 6521(1)  | 6046(1) | 19(1) |
| Mo(8)  | 4206(1) | 6037(1)  | 6656(1) | 19(1) |
| Mo(9)  | 3679(1) | 5564(1)  | 6099(1) | 20(1) |
| Se(1)  | 1596(1) | 10418(1) | 4120(1) | 29(1) |
| Se(2)  | 871(1)  | 9582(1)  | 4154(1) | 37(1) |
| Se(3)  | 2517(1) | 9191(1)  | 4492(1) | 33(1) |
| Se(4)  | 2276(1) | 7696(1)  | 4714(1) | 43(1) |
| Se(5)  | 2406(1) | 9248(1)  | 3666(1) | 27(1) |
| Se(6)  | 2124(1) | 7786(1)  | 3444(1) | 27(1) |
| Se(7)  | 1432(1) | 7360(1)  | 4124(1) | 49(1) |
| Se(8)  | 1192(1) | 7194(1)  | 2158(1) | 22(1) |
| Se(9)  | 1398(1) | 7857(1)  | 2664(1) | 26(1) |
| Se(10) | 2142(1) | 6990(1)  | 1654(1) | 22(1) |
| Se(11) | 2854(1) | 7539(1)  | 1891(1) | 25(1) |
| Se(12) | 1705(1) | 4974(1)  | 2025(1) | 23(1) |
| Se(13) | 2179(1) | 4457(1)  | 2466(1) | 29(1) |
| Se(14) | 2500(1) | 6805(1)  | 2650(1) | 37(1) |
| Se(15) | 5023(1) | 5467(1)  | 6455(1) | 24(1) |
| Se(16) | 4971(1) | 7127(1)  | 6580(1) | 30(1) |
| Se(17) | 4377(1) | 4877(1)  | 5773(1) | 26(1) |
| Se(18) | 3988(1) | 6223(1)  | 5543(1) | 34(1) |
| Se(19) | 3952(1) | 4286(1)  | 6515(1) | 25(1) |
| Se(20) | 3337(1) | 5318(1)  | 6685(1) | 28(1) |
| Se(21) | 3828(1) | 7277(1)  | 6286(1) | 42(1) |
| S(1)   | 1282(1) | 9911(1)  | 3305(1) | 25(1) |
| S(2)   | 853(1)  | 8068(1)  | 3473(1) | 23(1) |
| S(3)   | 1538(1) | 9976(2)  | 4941(1) | 37(1) |
| S(4)   | 1042(1) | 8143(2)  | 4858(1) | 36(1) |
| S(5)   | 3171(1) | 7479(1)  | 4055(1) | 35(1) |
| S(6)   | 2407(1) | 6056(1)  | 4037(1) | 32(1) |

**Table A.32**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom  | Х       | у        | Z       | U(eq) |
|-------|---------|----------|---------|-------|
| S(7)  | 924(1)  | 5229(1)  | 2683(1) | 26(1) |
| S(8)  | 1697(1) | 5727(1)  | 3128(1) | 22(1) |
| S(9)  | 1827(1) | 9311(1)  | 1927(1) | 24(1) |
| S(10) | 2452(1) | 9183(1)  | 2492(1) | 25(1) |
| S(11) | 2881(1) | 4924(1)  | 1683(1) | 25(1) |
| S(12) | 3294(1) | 5428(1)  | 2310(1) | 24(1) |
| S(13) | 5324(1) | 6595(1)  | 5724(1) | 26(1) |
| S(14) | 4676(1) | 8197(1)  | 5815(1) | 28(1) |
| S(15) | 4434(1) | 5350(1)  | 7212(1) | 25(1) |
| S(16) | 3971(1) | 7205(1)  | 7095(1) | 24(1) |
| S(17) | 3173(1) | 4230(1)  | 5832(1) | 28(1) |
| S(18) | 2872(1) | 6224(1)  | 5942(1) | 29(1) |
| N(1)  | 444(2)  | 9299(4)  | 3028(1) | 21(1) |
| N(2)  | 913(3)  | 9311(5)  | 5389(2) | 35(2) |
| N(3)  | 3348(2) | 5535(5)  | 4054(2) | 31(1) |
| N(4)  | 897(2)  | 4798(5)  | 3327(2) | 25(1) |
| N(5)  | 2193(2) | 10919(4) | 2223(2) | 26(1) |
| N(6)  | 3743(2) | 4226(4)  | 1890(2) | 26(1) |
| N(7)  | 5507(2) | 8412(4)  | 5488(2) | 26(1) |
| N(8)  | 4100(2) | 6470(4)  | 7704(1) | 24(1) |
| N(9)  | 2308(2) | 4904(5)  | 5626(2) | 27(1) |
| C(1)  | 806(2)  | 9116(5)  | 3238(2) | 20(1) |
| C(2)  | 66(2)   | 8544(5)  | 2961(2) | 24(1) |
| C(3)  | -412(2) | 8721(5)  | 3130(2) | 28(1) |
| C(4)  | -776(3) | 7962(7)  | 3000(3) | 42(2) |
| C(5)  | -368(3) | 8660(7)  | 3504(2) | 37(2) |
| C(6)  | 438(3)  | 10190(5) | 2825(2) | 25(1) |
| C(7)  | 113(3)  | 11025(6) | 2954(2) | 31(2) |
| C(8)  | 249(4)  | 11367(6) | 3296(2) | 42(2) |
| C(9)  | 144(3)  | 11868(7) | 2707(2) | 41(2) |
| C(10) | 1135(3) | 9168(6)  | 5103(2) | 36(2) |
| C(11) | 670(4)  | 8505(7)  | 5558(2) | 39(2) |
| C(12) | 136(4)  | 8659(8)  | 5618(2) | 45(2) |
| C(13) | -157(5) | 8729(9)  | 5301(3) | 58(3) |
| C(14) | -44(5)  | 7790(10) | 5822(3) | 64(3) |
| C(15) | 1048(4) | 10186(7) | 5591(2) | 41(2) |
| C(16) | 831(4)  | 11178(7) | 5479(2) | 42(2) |
| C(17) | 1125(5) | 12001(9) | 5640(4) | 69(3) |
| C(18) | 302(4)  | 11276(8) | 5558(2) | 49(2) |

**Table A.32, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | x        | У        | Z        | U(eq) |
|--------|----------|----------|----------|-------|
| C(19)  | 3026(3)  | 6251(5)  | 4042(2)  | 29(1) |
| C(20)  | 3233(3)  | 4506(6)  | 3982(2)  | 34(2) |
| C(21)  | 3365(3)  | 4224(6)  | 3632(2)  | 41(2) |
| C(22)  | 3432(5)  | 3137(8)  | 3602(3)  | 61(3) |
| C(23)  | 2985(4)  | 4603(8)  | 3381(2)  | 49(2) |
| C(24)  | 3850(3)  | 5751(6)  | 4154(2)  | 31(2) |
| C(25)  | 3899(3)  | 5863(7)  | 4529(2)  | 38(2) |
| C(26)  | 3683(4)  | 5024(8)  | 4716(2)  | 48(2) |
| C(27)  | 4433(3)  | 6016(7)  | 4619(2)  | 39(2) |
| C(28)  | 1134(2)  | 5195(5)  | 3085(2)  | 22(1) |
| C(29)  | 425(3)   | 4320(6)  | 3266(2)  | 34(2) |
| C(30A) | 3(5)     | 5091(10) | 3254(3)  | 40(3) |
| C(31A) | -64(6)   | 5680(12) | 3580(4)  | 51(3) |
| C(32A) | -466(6)  | 4545(13) | 3155(4)  | 53(3) |
| C(30B) | 9(11)    | 4670(20) | 3418(8)  | 40(3) |
| C(31B) | -39(13)  | 5700(30) | 3348(9)  | 51(3) |
| C(32B) | -447(14) | 4120(30) | 3287(10) | 53(3) |
| C(33)  | 1097(3)  | 4763(6)  | 3663(2)  | 32(2) |
| C(34A) | 1204(8)  | 3764(15) | 3786(5)  | 39(3) |
| C(35A) | 1584(9)  | 3292(19) | 3580(6)  | 53(3) |
| C(36A) | 1380(10) | 3827(19) | 4152(6)  | 52(4) |
| C(34B) | 1465(6)  | 3891(12) | 3716(4)  | 39(3) |
| C(35B) | 1287(8)  | 2929(15) | 3620(5)  | 53(3) |
| C(36B) | 1630(8)  | 3869(16) | 4090(5)  | 52(4) |
| C(37)  | 2163(2)  | 9941(5)  | 2214(2)  | 24(1) |
| C(38)  | 1946(3)  | 11536(5) | 1975(2)  | 28(1) |
| C(39)  | 2228(3)  | 11677(6) | 1660(2)  | 36(2) |
| C(40)  | 2728(4)  | 12101(7) | 1722(3)  | 49(2) |
| C(41)  | 1935(5)  | 12370(8) | 1434(3)  | 59(3) |
| C(42)  | 2442(3)  | 11413(5) | 2495(2)  | 33(2) |
| C(43)  | 2153(4)  | 11460(6) | 2810(2)  | 41(2) |
| C(44)  | 2435(5)  | 12032(8) | 3067(3)  | 63(3) |
| C(45)  | 1651(4)  | 11888(7) | 2752(2)  | 45(2) |
| C(46)  | 3358(2)  | 4782(5)  | 1951(2)  | 24(1) |
| C(47)  | 3819(3)  | 3823(6)  | 1561(2)  | 31(2) |
| C(48)  | 4044(3)  | 4577(6)  | 1331(2)  | 38(2) |
| C(49)  | 4539(4)  | 4889(9)  | 1447(3)  | 59(3) |
| C(50)  | 4051(5)  | 4157(8)  | 984(2)   | 55(3) |
| C(51)  | 4108(3)  | 4056(6)  | 2148(2)  | 31(2) |

**Table A.32, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | у         | Z        | U(eq)  |
|--------|----------|-----------|----------|--------|
| C(52)  | 3952(4)  | 3316(7)   | 2402(2)  | 46(2)  |
| C(53)  | 3917(5)  | 2314(8)   | 2266(3)  | 64(3)  |
| C(54)  | 4306(5)  | 3377(11)  | 2698(3)  | 75(4)  |
| C(55)  | 5214(2)  | 7823(5)   | 5653(2)  | 26(1)  |
| C(56)  | 5957(3)  | 8051(6)   | 5346(2)  | 31(2)  |
| C(57)  | 5927(4)  | 8028(8)   | 4967(3)  | 51(2)  |
| C(58)  | 5530(5)  | 7370(11)  | 4841(3)  | 67(3)  |
| C(59)  | 6436(5)  | 7713(12)  | 4850(4)  | 83(5)  |
| C(60)  | 5390(3)  | 9454(5)   | 5437(2)  | 32(2)  |
| C(61A) | 5776(5)  | 10182(10) | 5583(3)  | 38(2)  |
| C(62A) | 5598(7)  | 11261(14) | 5503(5)  | 58(4)  |
| C(63A) | 5883(8)  | 10039(15) | 5926(5)  | 62(4)  |
| C(61B) | 5546(10) | 10070(20) | 5735(7)  | 38(2)  |
| C(62B) | 5399(14) | 11160(30) | 5634(10) | 58(4)  |
| C(63B) | 6095(15) | 10020(30) | 5815(10) | 62(4)  |
| C(64)  | 4160(2)  | 6358(5)   | 7384(2)  | 22(1)  |
| C(65)  | 4289(3)  | 5729(6)   | 7934(2)  | 28(1)  |
| C(66)  | 3943(4)  | 4876(7)   | 7994(3)  | 47(2)  |
| C(67)  | 3487(4)  | 5143(11)  | 8155(4)  | 71(4)  |
| C(68)  | 4224(5)  | 4106(9)   | 8190(4)  | 77(4)  |
| C(69)  | 3860(3)  | 7325(6)   | 7839(2)  | 29(2)  |
| C(70)  | 4202(3)  | 8021(7)   | 8021(2)  | 38(2)  |
| C(71)  | 3913(4)  | 8814(8)   | 8184(3)  | 56(3)  |
| C(72)  | 4560(4)  | 8466(9)   | 7793(3)  | 62(3)  |
| C(73)  | 2728(2)  | 5084(6)   | 5780(2)  | 26(1)  |
| C(74)  | 2209(3)  | 3954(6)   | 5473(2)  | 32(2)  |
| C(75A) | 2422(7)  | 4010(20)  | 5102(5)  | 32(2)  |
| C(76A) | 2276(10) | 3010(20)  | 4961(7)  | 54(4)  |
| C(77A) | 2267(10) | 4840(30)  | 4905(7)  | 52(4)  |
| C(75B) | 2413(7)  | 3728(18)  | 5152(5)  | 32(2)  |
| C(76B) | 2273(9)  | 2700(20)  | 5030(7)  | 54(4)  |
| C(77B) | 2275(9)  | 4480(20)  | 4897(6)  | 52(4)  |
| C(78)  | 1926(3)  | 5650(7)   | 5624(2)  | 38(2)  |
| C(79)  | 1642(3)  | 5681(9)   | 5944(3)  | 56(3)  |
| C(80)  | 1301(5)  | 6547(11)  | 5934(6)  | 119(8) |
| C(81)  | 1383(4)  | 4750(10)  | 6018(3)  | 65(3)  |
| C(82)  | 3568(11) | 16030(20) | 222(8)   | 69(7)  |
| C(83)  | 3621(10) | 16440(20) | 136(7)   | 62(6)  |
| C(84)  | 3310(11) | 16460(20) | 409(8)   | 65(7)  |

**Table A.32, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom  | Х        | у         | Z        | U(eq)   |
|-------|----------|-----------|----------|---------|
| C(85) | 3190(20) | 16170(50) | 478(16)  | 150(20) |
| C(86) | 2960(9)  | 15488(19) | 475(6)   | 57(5)   |
| C(87) | 2615(11) | 15550(20) | 762(7)   | 74(7)   |
| C(88) | 2294(13) | 15950(30) | 822(9)   | 89(9)   |
| C(89) | 2095(9)  | 16394(18) | 696(6)   | 57(5)   |
| C(90) | 2393(14) | 14720(30) | 836(10)  | 101(11) |
| C(91) | 2654(13) | 13650(30) | 793(9)   | 94(10)  |
| C(92) | 458(14)  | 5830(30)  | 4599(10) | 101(11) |
| C(93) | 858(15)  | 5450(30)  | 4775(11) | 112(12) |
| Cl(1) | 125(6)   | 5191(12)  | 4402(4)  | 151(5)  |
| Cl(2) | 850(5)   | 4372(10)  | 4991(3)  | 126(4)  |

**Table A.32, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Mo(1)-Se(7)    | 2.4699(13) | Mo(6)-S(11)   | 2.5217(17) |
|----------------|------------|---------------|------------|
| Mo(1)- $S(2)$  | 2.4772(17) | Mo(6)-Se(12)  | 2.5393(8)  |
| Mo(1)-S(1)     | 2.5103(18) | Mo(6)-Se(10)  | 2.5445(8)  |
| Mo(1)-Se(5)    | 2.5450(9)  | Mo(6)-Se(11)  | 2.5934(8)  |
| Mo(1)-Se(1)    | 2.5456(9)  | Mo(6)-Se(13)  | 2.5978(9)  |
| Mo(1)-Se(2)    | 2.5881(10) | Mo(7)-Se(21)  | 2.4731(11) |
| Mo(1)-Se(6)    | 2.6027(9)  | Mo(7)-S(14)   | 2.4878(19) |
| Mo(1)-Mo(3)    | 2.7451(8)  | Mo(7)-S(13)   | 2.5272(18) |
| Mo(1)- $Mo(2)$ | 2.7523(8)  | Mo(7)-Se(17)  | 2.5388(9)  |
| Mo(2)-Se(7)    | 2.4753(13) | Mo(7)-Se(15)  | 2.5420(9)  |
| Mo(2)-S(4)     | 2.494(2)   | Mo(7)-Se(16)  | 2.5867(9)  |
| Mo(2)-S(3)     | 2.518(2)   | Mo(7)-Se(18)  | 2.5896(10) |
| Mo(2)-Se(3)    | 2.5357(10) | Mo(7)-Mo(8)   | 2.7601(8)  |
| Mo(2)-Se(1)    | 2.5401(10) | Mo(7)-Mo(9)   | 2.7604(8)  |
| Mo(2)-Se(2)    | 2.5970(11) | Mo(8)-Se(21)  | 2.4830(12) |
| Mo(2)-Se(4)    | 2.6063(11) | Mo(8)-S(16)   | 2.4866(17) |
| Mo(2)-Mo(3)    | 2.7617(9)  | Mo(8)-S(15)   | 2.5220(18) |
| Mo(3)-Se(7)    | 2.4670(13) | Mo(8)-Se(15)  | 2.5411(8)  |
| Mo(3)-S(6)     | 2.483(2)   | Mo(8)-Se(19)  | 2.5433(9)  |
| Mo(3)-S(5)     | 2.5195(19) | Mo(8)-Se(20)  | 2.6044(9)  |
| Mo(3)-Se(3)    | 2.5473(10) | Mo(8)-Se(16)  | 2.6079(9)  |
| Mo(3)-Se(5)    | 2.5489(10) | Mo(8)-Mo(9)   | 2.7550(7)  |
| Mo(3)-Se(4)    | 2.6039(11) | Mo(9)-Se(21)  | 2.4793(11) |
| Mo(3)-Se(6)    | 2.6156(10) | Mo(9)-S(18)   | 2.4850(18) |
| Mo(4)-Se(14)   | 2.4700(10) | Mo(9)-S(17)   | 2.5280(17) |
| Mo(4)-S(8)     | 2.4900(16) | Mo(9)-Se(19)  | 2.5333(9)  |
| Mo(4)-S(7)     | 2.5317(17) | Mo(9)-Se(17)  | 2.5423(9)  |
| Mo(4)-Se(8)    | 2.5386(8)  | Mo(9)-Se(18)  | 2.5949(10) |
| Mo(4)-Se(12)   | 2.5496(8)  | Mo(9)-Se(20)  | 2.6062(9)  |
| Mo(4)-Se(13)   | 2.5998(9)  | Se(1)-Se(2)   | 2.3143(12) |
| Mo(4)-Se(9)    | 2.6059(9)  | Se(3)-Se(4)   | 2.3254(13) |
| Mo(4)-Mo(6)    | 2.7603(7)  | Se(5)-Se(6)   | 2.3130(10) |
| Mo(4)-Mo(5)    | 2.7712(7)  | Se(8)-Se(9)   | 2.3146(10) |
| Mo(5)-Se(14)   | 2.4665(10) | Se(10)-Se(11) | 2.3070(9)  |
| Mo(5)-S(10)    | 2.4855(16) | Se(12)-Se(13) | 2.3182(10) |
| Mo(5)-S(9)     | 2.5263(16) | Se(15)-Se(16) | 2.3170(10) |
| Mo(5)-Se(8)    | 2.5350(8)  | Se(17)-Se(18) | 2.3127(12) |
| Mo(5)-Se(10)   | 2.5380(8)  | Se(19)-Se(20) | 2.3204(10) |
| Mo(5)-Se(9)    | 2.6049(9)  | S(1)-C(1)     | 1.722(7)   |
| Mo(5)-Se(11)   | 2.6063(9)  | S(2)-C(1)     | 1.720(7)   |
| Mo(5)-Mo(6)    | 2.7450(7)  | S(3)-C(10)    | 1.707(9)   |
| Mo(6)-Se(14)   | 2.4618(10) | S(4)-C(10)    | 1.731(8)   |
| Mo(6)-S(12)    | 2.4724(17) | S(5)-C(19)    | 1.715(8)   |

**Table A.33.** Bond lengths (Å) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . Symmetry transformations used to generate equivalent atoms:

0.9900 S(6)-C(19)1.734(8)C(2)-H(2B) S(7)-C(28) 1.729(7)C(3)-C(5)1.528(11)S(8)-C(28)1.726(7)C(3)-C(4)1.532(11)S(9)-C(37) 1.714(7)C(3)-H(3)1.0000 C(4)-H(4A) 0.9800 S(10)-C(37)1.718(7)S(11)-C(46)1.711(7)C(4)-H(4B)0.9800 0.9800 S(12)-C(46)1.717(7)C(4)-H(4C)0.9800 S(13)-C(55) 1.720(7)C(5)-H(5A) 1.719(7) 0.9800 S(14)-C(55)C(5)-H(5B)0.9800 S(15)-C(64)1.719(7)C(5)-H(5C)S(16)-C(64)1.721(7)C(6)-C(7)1.548(10)0.9900 S(17)-C(73)1.705(7)C(6)-H(6A)S(18)-C(73) 1.727(7)C(6)-H(6B) 0.9900 1.331(8)C(7)-C(8)1.512(12)N(1)-C(1)C(7)-C(9)N(1)-C(6)1.465(9)1.527(11)N(1)-C(2)1.489(8) C(7)-H(7)1.0000 N(2)-C(10) 1.341(10)C(8)-H(8A) 0.9800 N(2)-C(11)1.464(11)C(8)-H(8B) 0.9800 N(2)-C(15)1.489(11)C(8)-H(8C) 0.9800 N(3)-C(19)1.322(9)C(9)-H(9A) 0.9800 N(3)-C(20)1.462(10)C(9)-H(9B) 0.9800 N(3)-C(24)1.472(10)C(9)-H(9C)0.9800 C(11)-C(12) 1.517(14) N(4)-C(28)1.310(8) 1.470(9) 0.9900 N(4)-C(33)C(11)-H(11A) N(4)-C(29)1.478(9) C(11)-H(11B) 0.9900 N(5)-C(37)1.332(8)C(12)-C(13)1.518(15) N(5)-C(42) 1.460(9) C(12)-C(14) 1.532(15)1.474(9)C(12)-H(12) 1.0000 N(5)-C(38)N(6)-C(46) 1.335(9)C(13)-H(13A) 0.9800 N(6)-C(51)1.466(10)C(13)-H(13B) 0.9800 N(6)-C(47)1.466(10) C(13)-H(13C) 0.9800 1.329(9) 0.9800 N(7)-C(55)C(14)-H(14A)0.9800 N(7)-C(60)1.465(9)C(14)-H(14B) C(14)-H(14C) 0.9800 N(7)-C(56)1.469(9) 1.326(8) C(15)-C(16) 1.541(13) N(8)-C(64) N(8)-C(69) 1.454(9)C(15)-H(15A) 0.9900 1.467(9) C(15)-H(15B) 0.9900 N(8)-C(65)C(16)-C(18) N(9)-C(73)1.335(9)1.513(14)N(9)-C(74) 1.457(9) C(16)-C(17)1.524(15)1.0000 N(9)-C(78) 1.466(10)C(16)-H(16) C(2)-C(3)1.520(10)0.9800 C(17)-H(17A) C(2)-H(2A) 0.9900 0.9800 C(17)-H(17B)

TableA.33,Cont'd.Bondlengths(Å)for $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ .Symmetry transformations used to generate equivalent atoms:

| C(17)-H(17C)  | 0.9800    | C(30B)-C(32B) | 1.56(5)   |
|---------------|-----------|---------------|-----------|
| C(18)-H(18A)  | 0.9800    | C(30B)-H(30B) | 1.0000    |
| C(18)-H(18B)  | 0.9800    | C(31B)-H(31D) | 0.9800    |
| C(18)-H(18C)  | 0.9800    | C(31B)-H(31E) | 0.9800    |
| C(20)-C(21)   | 1.529(13) | C(31B)-H(31F) | 0.9800    |
| C(20)-H(20A)  | 0.9900    | C(32B)-H(32D) | 0.9800    |
| C(20)-H(20B)  | 0.9900    | C(32B)-H(32E) | 0.9800    |
| C(21)-C(22)   | 1.493(14) | C(32B)-H(32F) | 0.9800    |
| C(21)-C(23)   | 1.544(13) | C(33)-C(34A)  | 1.47(2)   |
| C(21)-H(21)   | 1.0000    | C(33)-C(34B)  | 1.576(19) |
| C(22)-H(22A)  | 0.9800    | C(33)-H(33A)  | 0.9900    |
| C(22)-H(22B)  | 0.9800    | C(33)-H(33B)  | 0.9900    |
| C(22)-H(22C)  | 0.9800    | C(34A)-C(35A) | 1.50(3)   |
| C(23)-H(23A)  | 0.9800    | C(34A)-C(36A) | 1.56(3)   |
| C(23)-H(23B)  | 0.9800    | C(34A)-H(34A) | 1.0000    |
| C(23)-H(23C)  | 0.9800    | C(35A)-H(35A) | 0.9800    |
| C(24)-C(25)   | 1.537(12) | C(35A)-H(35B) | 0.9800    |
| C(24)-H(24A)  | 0.9900    | C(35A)-H(35C) | 0.9800    |
| C(24)-H(24B)  | 0.9900    | C(36A)-H(36A) | 0.9800    |
| C(25)-C(26)   | 1.502(14) | C(36A)-H(36B) | 0.9800    |
| C(25)-C(27)   | 1.534(12) | C(36A)-H(36C) | 0.9800    |
| C(25)-H(25)   | 1.0000    | C(34B)-C(35B) | 1.45(3)   |
| C(26)-H(26A)  | 0.9800    | C(34B)-C(36B) | 1.58(3)   |
| C(26)-H(26B)  | 0.9800    | C(34B)-H(34B) | 1.0000    |
| C(26)-H(26C)  | 0.9800    | C(35B)-H(35D) | 0.9800    |
| C(27)-H(27A)  | 0.9800    | C(35B)-H(35E) | 0.9800    |
| С(27)-Н(27В)  | 0.9800    | C(35B)-H(35F) | 0.9800    |
| C(27)-H(27C)  | 0.9800    | C(36B)-H(36D) | 0.9800    |
| C(29)-C(30B)  | 1.40(3)   | C(36B)-H(36E) | 0.9800    |
| C(29)-C(30A)  | 1.571(16) | C(36B)-H(36F) | 0.9800    |
| C(29)-H(29A)  | 0.9900    | C(38)-C(39)   | 1.526(11) |
| C(29)-H(29B)  | 0.9900    | C(38)-H(38A)  | 0.9900    |
| C(30A)-C(32A) | 1.55(2)   | C(38)-H(38B)  | 0.9900    |
| C(30A)-C(31A) | 1.56(2)   | C(39)-C(40)   | 1.520(13) |
| C(30A)-H(30A) | 1.0000    | C(39)-C(41)   | 1.538(13) |
| C(31A)-H(31A) | 0.9800    | С(39)-Н(39)   | 1.0000    |
| C(31A)-H(31B) | 0.9800    | C(40)-H(40A)  | 0.9800    |
| C(31A)-H(31C) | 0.9800    | C(40)-H(40B)  | 0.9800    |
| C(32A)-H(32A) | 0.9800    | C(40)-H(40C)  | 0.9800    |
| C(32A)-H(32B) | 0.9800    | C(41)-H(41A)  | 0.9800    |
| C(32A)-H(32C) | 0.9800    | C(41)-H(41B)  | 0.9800    |
| C(30B)-C(31B) | 1.44(5)   | C(41)-H(41C)  | 0.9800    |
|               |           |               |           |

TableA.33,Cont'd.Bondlengths(Å)for $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ .Symmetry transformations used to generate equivalent atoms:

| C(42)-C(43)  | 1.526(13) | C(58)-H(58A)  | 0.9800    |
|--------------|-----------|---------------|-----------|
| C(42)-H(42A) | 0.9900    | C(58)-H(58B)  | 0.9800    |
| C(42)-H(42B) | 0.9900    | C(58)-H(58C)  | 0.9800    |
| C(43)-C(44)  | 1.509(13) | C(59)-H(59A)  | 0.9800    |
| C(43)-C(45)  | 1.525(14) | C(59)-H(59B)  | 0.9800    |
| C(43)-H(43)  | 1.0000    | C(59)-H(59C)  | 0.9800    |
| C(44)-H(44A) | 0.9800    | C(60)-C(61B)  | 1.53(3)   |
| C(44)-H(44B) | 0.9800    | C(60)-C(61A)  | 1.569(15) |
| C(44)-H(44C) | 0.9800    | C(60)-H(60A)  | 0.9900    |
| C(45)-H(45A) | 0.9800    | C(60)-H(60B)  | 0.9900    |
| C(45)-H(45B) | 0.9800    | C(61A)-C(63A) | 1.44(2)   |
| C(45)-H(45C) | 0.9800    | C(61A)-C(62A) | 1.58(2)   |
| C(47)-C(48)  | 1.528(11) | C(61A)-H(61A) | 1.0000    |
| C(47)-H(47A) | 0.9900    | C(62A)-H(62A) | 0.9800    |
| C(47)-H(47B) | 0.9900    | C(62A)-H(62B) | 0.9800    |
| C(48)-C(49)  | 1.506(15) | C(62A)-H(62C) | 0.9800    |
| C(48)-C(50)  | 1.525(13) | C(63A)-H(63A) | 0.9800    |
| C(48)-H(48)  | 1.0000    | C(63A)-H(63B) | 0.9800    |
| C(49)-H(49A) | 0.9800    | C(63A)-H(63C) | 0.9800    |
| C(49)-H(49B) | 0.9800    | C(61B)-C(63B) | 1.55(5)   |
| C(49)-H(49C) | 0.9800    | C(61B)-C(62B) | 1.59(5)   |
| C(50)-H(50A) | 0.9800    | C(61B)-H(61B) | 1.0000    |
| C(50)-H(50B) | 0.9800    | C(62B)-H(62D) | 0.9800    |
| C(50)-H(50C) | 0.9800    | C(62B)-H(62E) | 0.9800    |
| C(51)-C(52)  | 1.512(13) | C(62B)-H(62F) | 0.9800    |
| C(51)-H(51A) | 0.9900    | C(63B)-H(63D) | 0.9800    |
| C(51)-H(51B) | 0.9900    | C(63B)-H(63E) | 0.9800    |
| C(52)-C(53)  | 1.471(15) | C(63B)-H(63F) | 0.9800    |
| C(52)-C(54)  | 1.547(15) | C(65)-C(66)   | 1.526(12) |
| C(52)-H(52A) | 1.0000    | C(65)-H(65A)  | 0.9900    |
| C(53)-H(53A) | 0.9800    | C(65)-H(65B)  | 0.9900    |
| C(53)-H(53B) | 0.9800    | C(66)-C(67)   | 1.479(16) |
| C(53)-H(53C) | 0.9800    | C(66)-C(68)   | 1.522(15) |
| C(54)-H(54A) | 0.9800    | C(66)-H(66)   | 1.0000    |
| C(54)-H(54B) | 0.9800    | C(67)-H(67A)  | 0.9800    |
| C(54)-H(54C) | 0.9800    | C(67)-H(67B)  | 0.9800    |
| C(56)-C(57)  | 1.544(13) | C(67)-H(67C)  | 0.9800    |
| C(56)-H(56A) | 0.9900    | C(68)-H(68A)  | 0.9800    |
| C(56)-H(56B) | 0.9900    | C(68)-H(68B)  | 0.9800    |
| C(57)-C(58)  | 1.503(18) | C(68)-H(68C)  | 0.9800    |
| C(57)-C(59)  | 1.556(15) | C(69)-C(70)   | 1.521(10) |
| C(57)-H(57)  | 1.0000    | C(69)-H(69A)  | 0.9900    |
|              |           |               |           |

TableA.33,Cont'd.Bondlengths(Å)for $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ .Symmetry transformations used to generate equivalent atoms:

| C(69)-H(69B)  | 0.9900                 | C(70)-H(70)     | 1,0000             |
|---------------|------------------------|-----------------|--------------------|
| C(70)-C(72)   | 1.496(15)              | C(71)-H(71A)    | 0.9800             |
| C(70)-C(71)   | 1.198(12)<br>1.503(12) | C(71)-H(71B)    | 0.9800             |
| C(71)-H(71C)  | 0.9800                 | C(82)-C(84)     | 1 21(4)            |
| C(72)-H(72A)  | 0.9800                 | C(82) - C(85)   | 1.21(1)            |
| C(72)-H(72B)  | 0.9800                 | C(83)-C(84)     | 1.31(7)<br>1.42(4) |
| C(72)-H(72C)  | 0.9800                 | C(83)-C(85)     | 1.89(7)            |
| C(74)-C(75B)  | 1.47(2)                | C(84)- $C(85)$  | 0.59(7)            |
| C(74)-C(75A)  | 1.17(2)<br>1.63(2)     | C(84)-C(86)     | 1.66(4)            |
| C(74)-H(74A)  | 0.9900                 | C(85)-C(86)     | 1.00(1)            |
| C(74)-H(74B)  | 0.9900                 | C(86)-C(87)     | 1.13(0)            |
| C(75A)-C(77A) | 1.44(3)                | C(87)- $C(88)$  | 1.08(4)            |
| C(75A)-C(76A) | 1.11(3)<br>1.52(3)     | C(87)- $C(90)$  | 1 32(5)            |
| C(75A)-H(75A) | 1,0000                 | C(87)- $C(89)$  | 1.82(3)            |
| C(76A)-H(76A) | 0.9800                 | C(88)-C(89)     | 0.96(4)            |
| C(76A)-H(76B) | 0.9800                 | C(88)- $C(90)$  | 1.70(5)            |
| C(76A)-H(76C) | 0.9800                 | C(90)- $C(91)$  | 1.64(5)            |
| C(77A)-H(77A) | 0.9800                 | C(92)-C(93)     | 1.01(5)<br>1.40(5) |
| C(77A)-H(77B) | 0.9800                 | C(92)- $C(1)$   | 1.49(4)            |
| C(77A)-H(77C) | 0.9800                 | C(92)- $H(92A)$ | 0.9900             |
| C(75B)-C(77B) | 1.51(3)                | C(92)-H(92B)    | 0.9900             |
| C(75B)-C(76B) | 1.52(3)                | C(93)-C(2)      | 1.71(4)            |
| C(75B)-H(75B) | 1.0000                 | C(93)-H(93A)    | 0.9900             |
| C(76B)-H(76D) | 0.9800                 | C(93)-H(93B)    | 0.9900             |
| C(76B)-H(76E) | 0.9800                 |                 |                    |
| C(76B)-H(76F) | 0.9800                 |                 |                    |
| C(77B)-H(77D) | 0.9800                 |                 |                    |
| C(77B)-H(77E) | 0.9800                 |                 |                    |
| C(77B)-H(77F) | 0.9800                 |                 |                    |
| C(78)-C(79)   | 1.537(15)              |                 |                    |
| C(78)-H(78A)  | 0.9900                 |                 |                    |
| C(78)-H(78B)  | 0.9900                 |                 |                    |
| C(79)-C(81)   | 1.487(18)              |                 |                    |
| C(79)-C(80)   | 1.509(16)              |                 |                    |
| С(79)-Н(79)   | 1.0000                 |                 |                    |
| C(80)-H(80A)  | 0.9800                 |                 |                    |
| C(80)-H(80B)  | 0.9800                 |                 |                    |
| C(80)-H(80C)  | 0.9800                 |                 |                    |
| C(81)-H(81A)  | 0.9800                 |                 |                    |
| C(81)-H(81B)  | 0.9800                 |                 |                    |
| C(81)-H(81C)  | 0.9800                 |                 |                    |
| C(82)-C(83)   | 0.68(3)                |                 |                    |

| Se(7)-Mo(1)-S(2)  | 81.38(5)  | S(4)-Mo(2)-Se(1)  | 131.53(6) |
|-------------------|-----------|-------------------|-----------|
| Se(7)-Mo(1)-S(1)  | 151.31(5) | S(3)-Mo(2)-Se(1)  | 84.59(6)  |
| S(2)-Mo(1)-S(1)   | 69.94(6)  | Se(3)-Mo(2)-Se(1) | 83.74(3)  |
| Se(7)-Mo(1)-Se(5) | 113.15(4) | Se(7)-Mo(2)-Se(2) | 84.05(4)  |
| S(2)-Mo(1)-Se(5)  | 135.52(5) | S(4)-Mo(2)-Se(2)  | 86.70(6)  |
| S(1)-Mo(1)-Se(5)  | 88.94(5)  | S(3)-Mo(2)-Se(2)  | 93.17(6)  |
| Se(7)-Mo(1)-Se(1) | 112.82(4) | Se(3)-Mo(2)-Se(2) | 137.01(4) |
| S(2)-Mo(1)-Se(1)  | 132.97(5) | Se(1)-Mo(2)-Se(2) | 53.54(3)  |
| S(1)-Mo(1)-Se(1)  | 87.32(5)  | Se(7)-Mo(2)-Se(4) | 82.75(4)  |
| Se(5)-Mo(1)-Se(1) | 81.90(3)  | S(4)-Mo(2)-Se(4)  | 87.63(6)  |
| Se(7)-Mo(1)-Se(2) | 84.34(4)  | S(3)-Mo(2)-Se(4)  | 96.82(6)  |
| S(2)-Mo(1)-Se(2)  | 85.91(5)  | Se(3)-Mo(2)-Se(4) | 53.75(3)  |
| S(1)-Mo(1)-Se(2)  | 92.61(5)  | Se(1)-Mo(2)-Se(4) | 137.13(4) |
| Se(5)-Mo(1)-Se(2) | 135.28(3) | Se(2)-Mo(2)-Se(4) | 166.02(4) |
| Se(1)-Mo(1)-Se(2) | 53.58(3)  | Se(7)-Mo(2)-Mo(1) | 56.09(3)  |
| Se(7)-Mo(1)-Se(6) | 85.53(3)  | S(4)-Mo(2)-Mo(1)  | 127.26(6) |
| S(2)-Mo(1)-Se(6)  | 88.55(5)  | S(3)-Mo(2)-Mo(1)  | 140.69(6) |
| S(1)-Mo(1)-Se(6)  | 94.31(5)  | Se(3)-Mo(2)-Mo(1) | 97.55(3)  |
| Se(5)-Mo(1)-Se(6) | 53.39(3)  | Se(1)-Mo(2)-Mo(1) | 57.33(2)  |
| Se(1)-Mo(1)-Se(6) | 135.16(3) | Se(2)-Mo(2)-Mo(1) | 57.78(3)  |
| Se(2)-Mo(1)-Se(6) | 169.09(4) | Se(4)-Mo(2)-Mo(1) | 117.15(3) |
| Se(7)-Mo(1)-Mo(3) | 56.17(3)  | Se(7)-Mo(2)-Mo(3) | 55.89(3)  |
| S(2)-Mo(1)-Mo(3)  | 125.42(5) | S(4)-Mo(2)-Mo(3)  | 128.48(6) |
| S(1)-Mo(1)-Mo(3)  | 144.78(5) | S(3)-Mo(2)-Mo(3)  | 143.25(6) |
| Se(5)-Mo(1)-Mo(3) | 57.46(2)  | Se(3)-Mo(2)-Mo(3) | 57.29(3)  |
| Se(1)-Mo(1)-Mo(3) | 97.04(3)  | Se(1)-Mo(2)-Mo(3) | 96.75(3)  |
| Se(2)-Mo(1)-Mo(3) | 118.06(3) | Se(2)-Mo(2)-Mo(3) | 117.15(3) |
| Se(6)-Mo(1)-Mo(3) | 58.49(2)  | Se(4)-Mo(2)-Mo(3) | 57.95(3)  |
| Se(7)-Mo(1)-Mo(2) | 56.28(3)  | Mo(1)-Mo(2)-Mo(3) | 59.72(2)  |
| S(2)-Mo(1)-Mo(2)  | 124.25(5) | Se(7)-Mo(3)-S(6)  | 82.31(5)  |
| S(1)-Mo(1)-Mo(2)  | 142.53(5) | Se(7)-Mo(3)-S(5)  | 151.93(6) |
| Se(5)-Mo(1)-Mo(2) | 96.54(3)  | S(6)-Mo(3)-S(5)   | 69.92(6)  |
| Se(1)-Mo(1)-Mo(2) | 57.14(2)  | Se(7)-Mo(3)-Se(3) | 112.25(4) |
| Se(2)-Mo(1)-Mo(2) | 58.10(3)  | S(6)-Mo(3)-Se(3)  | 135.25(6) |
| Se(6)-Mo(1)-Mo(2) | 118.60(3) | S(5)-Mo(3)-Se(3)  | 86.14(6)  |
| Mo(3)-Mo(1)-Mo(2) | 60.31(2)  | Se(7)-Mo(3)-Se(5) | 113.11(4) |
| Se(7)-Mo(2)-S(4)  | 85.24(6)  | S(6)-Mo(3)-Se(5)  | 131.72(6) |
| Se(7)-Mo(2)-S(3)  | 154.85(6) | S(5)-Mo(3)-Se(5)  | 89.28(6)  |
| S(4)-Mo(2)-S(3)   | 69.63(7)  | Se(3)-Mo(3)-Se(5) | 82.98(3)  |
| Se(7)-Mo(2)-Se(3) | 112.36(4) | Se(7)-Mo(3)-Se(4) | 82.96(4)  |
| S(4)-Mo(2)-Se(3)  | 132.24(6) | S(6)-Mo(3)-Se(4)  | 89.11(6)  |
| S(3)-Mo(2)-Se(3)  | 86.58(6)  | S(5)-Mo(3)-Se(4)  | 92.40(6)  |
| Se(7)-Mo(2)-Se(1) | 112.83(4) | Se(3)-Mo(3)-Se(4) | 53.66(3)  |

**Table A.34**. Bond angles (deg.) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . Symmetry transformations used to generate equivalent atoms:

| $S_{2}(5) M_{2}(2) S_{2}(4)$                  | 12622(4)              | $\mathbf{S}_{2}(12) \mathbf{M}_{2}(4) \mathbf{S}_{2}(0)$ | 166 57(2)              |
|-----------------------------------------------|-----------------------|----------------------------------------------------------|------------------------|
| Se(3)-Mo(3)-Se(4)<br>Se(7) Mo(3) Se(6)        | 130.32(4)<br>85 31(3) | Se(13)-MO(4)-Se(3)<br>Se(14) Mo(4) Mo(6)                 | 100.37(3)<br>55.82(3)  |
| $S(6) M_0(3) S_0(6)$                          | 85.10(6)              | $S(8) M_{0}(4) M_{0}(6)$                                 | 126 12(4)              |
| S(0)-MO(3)-Se(0)<br>S(5) Mo(3) So(6)          | 05.19(0)              | S(3) - WO(4) - WO(0)<br>$S(7) M_{2}(4) M_{2}(6)$         | 120.12(4)<br>142.42(5) |
| S(3)-MO(3)-Se(0)<br>$S_{2}(3) MO(3) S_{2}(6)$ | 90.01(0)<br>125.00(4) | S(7) - WO(4) - WO(0)<br>$S_{2}(8) M_{2}(4) M_{2}(6)$     | 142.43(3)<br>06 75(2)  |
| Se(5)-Mo(5)-Se(0)                             | 133.99(4)             | Se(8)-MO(4)-MO(0)                                        | 90.73(2)               |
| Se(3)-Mo(3)-Se(0)                             | 35.20(5)              | Se(12)-MO(4)-MO(0)                                       | 50.97(2)               |
| Se(4)-MO(3)-Se(6)                             | 167.55(4)             | Se(13)-MO(4)-MO(6)                                       | 57.89(2)               |
| Se(7)-Mo(3)-Mo(1)                             | 56.27(3)              | Se(9)-Mo(4)-Mo(6)                                        | 116.92(3)              |
| S(6)-Mo(3)-Mo(1)                              | 123.87(5)             | Se(14)-Mo(4)-Mo(5)                                       | 55.79(3)               |
| S(5)-Mo(3)-Mo(1)                              | 145.36(6)             | S(8)-Mo(4)-Mo(5)                                         | 127.52(4)              |
| Se(3)-Mo(3)-Mo(1)                             | 97.45(3)              | S(7)-Mo(4)-Mo(5)                                         | 143.38(5)              |
| Se(5)-Mo(3)-Mo(1)                             | 57.32(2)              | Se(8)-Mo(4)-Mo(5)                                        | 56.83(2)               |
| Se(4)-Mo(3)-Mo(1)                             | 117.49(3)             | Se(12)-Mo(4)-Mo(5)                                       | 96.28(2)               |
| Se(6)-Mo(3)-Mo(1)                             | 58.03(2)              | Se(13)-Mo(4)-Mo(5)                                       | 117.06(3)              |
| Se(7)-Mo(3)-Mo(2)                             | 56.17(3)              | Se(9)-Mo(4)-Mo(5)                                        | 57.85(2)               |
| S(6)-Mo(3)-Mo(2)                              | 127.47(6)             | Mo(6)-Mo(4)-Mo(5)                                        | 59.505(18)             |
| S(5)-Mo(3)-Mo(2)                              | 141.34(6)             | Se(14)-Mo(5)-S(10)                                       | 83.44(5)               |
| Se(3)-Mo(3)-Mo(2)                             | 56.89(3)              | Se(14)-Mo(5)-S(9)                                        | 153.17(5)              |
| Se(5)-Mo(3)-Mo(2)                             | 96.22(3)              | S(10)-Mo(5)-S(9)                                         | 69.73(5)               |
| Se(4)-Mo(3)-Mo(2)                             | 58.03(3)              | Se(14)-Mo(5)-Se(8)                                       | 112.16(3)              |
| Se(6)-Mo(3)-Mo(2)                             | 117.80(3)             | S(10)-Mo(5)-Se(8)                                        | 132.99(5)              |
| Mo(1)-Mo(3)-Mo(2)                             | 59.97(2)              | S(9)-Mo(5)-Se(8)                                         | 87.77(4)               |
| Se(14)-Mo(4)-S(8)                             | 84.00(4)              | Se(14)-Mo(5)-Se(10)                                      | 112.91(3)              |
| Se(14)-Mo(4)-S(7)                             | 153.59(5)             | S(10)-Mo(5)-Se(10)                                       | 132.68(5)              |
| S(8)-Mo(4)-S(7)                               | 69.59(5)              | S(9)-Mo(5)-Se(10)                                        | 86.15(5)               |
| Se(14)-Mo(4)-Se(8)                            | 111.92(3)             | Se(8)-Mo(5)-Se(10)                                       | 83.47(3)               |
| S(8)-Mo(4)-Se(8)                              | 133.67(5)             | Se(14)-Mo(5)-Se(9)                                       | 83.34(3)               |
| S(7)-Mo(4)-Se(8)                              | 87.57(5)              | S(10)-Mo(5)-Se(9)                                        | 87.19(5)               |
| Se(14)-Mo(4)-Se(12)                           | 112.22(3)             | S(9)-Mo(5)-Se(9)                                         | 95.64(5)               |
| S(8)-Mo(4)-Se(12)                             | 132.28(5)             | Se(8)-Mo(5)-Se(9)                                        | 53.51(2)               |
| S(7)-Mo(4)-Se(12)                             | 86.79(5)              | Se(10)-Mo(5)-Se(9)                                       | 136.71(3)              |
| Se(8)-Mo(4)-Se(12)                            | 83.29(3)              | Se(14)-Mo(5)-Se(11)                                      | 84.47(3)               |
| Se(14)-Mo(4)-Se(13)                           | 83.96(3)              | S(10)-Mo(5)-Se(11)                                       | 87.09(5)               |
| S(8)-Mo(4)-Se(13)                             | 86.43(5)              | S(9)-Mo(5)-Se(11)                                        | 93.26(5)               |
| S(7)-Mo(4)-Se(13)                             | 94.04(5)              | Se(8)-Mo(5)-Se(11)                                       | 136.47(3)              |
| Se(8)-Mo(4)-Se(13)                            | 136.50(3)             | Se(10)-Mo(5)-Se(11)                                      | 53.27(2)               |
| Se(12)-Mo(4)-Se(13)                           | 53.50(3)              | Se(9)-Mo(5)-Se(11)                                       | 167.05(3)              |
| Se(14)-Mo(4)-Se(9)                            | 83.25(3)              | Se(14)-Mo(5)-Mo(6)                                       | 56.07(3)               |
| S(8)-Mo(4)-Se(9)                              | 88 17(5)              | S(10)-Mo(5)-Mo(6)                                        | 126.09(4)              |
| S(7)-Mo(4)-Se(9)                              | 95 58(5)              | $S(9)-M_0(5)-M_0(6)$                                     | 142 09(5)              |
| S(7) = MO(1) = SO(9)<br>Se(8)-MO(4)-Se(9)     | 53 46(2)              | $S_{(2)} = M_{0}(5) + M_{0}(6)$                          | 97 2.07(3)             |
| Se(17) - Mo(1) - Se(0)                        | 136 11(3)             | Se(0) Mo(5) Mo(6)                                        | 57.22(2)<br>57.43(2)   |
| $50(12)^{-1110(4)}$                           | 150.41(5)             | $SC(10)^{-110}(3)^{-110}(0)$                             | 57.+5(2)               |

| Se(9)-Mo(5)-Mo(6)   | 117.50(3)  | Se(11)-Mo(5)-Mo(6)  | 57.91(2)   |
|---------------------|------------|---------------------|------------|
| Se(14)-Mo(5)-Mo(4)  | 55.91(2)   | Se(11)-Mo(6)-Mo(4)  | 118.50(3)  |
| S(10)-Mo(5)-Mo(4)   | 126.60(5)  | Se(13)-Mo(6)-Mo(4)  | 57.96(2)   |
| S(9)-Mo(5)-Mo(4)    | 143.66(5)  | Mo(5)-Mo(6)-Mo(4)   | 60.446(18) |
| Se(8)-Mo(5)-Mo(4)   | 56.95(2)   | Se(21)-Mo(7)-S(14)  | 83.49(5)   |
| Se(10)-Mo(5)-Mo(4)  | 97.06(2)   | Se(21)-Mo(7)-S(13)  | 152.69(5)  |
| Se(9)-Mo(5)-Mo(4)   | 57.89(2)   | S(14)-Mo(7)-S(13)   | 69.28(6)   |
| Se(11)-Mo(5)-Mo(4)  | 117.65(3)  | Se(21)-Mo(7)-Se(17) | 112.74(3)  |
| Mo(6)-Mo(5)-Mo(4)   | 60.049(18) | S(14)-Mo(7)-Se(17)  | 131.79(5)  |
| Se(14)-Mo(6)-S(12)  | 81.48(5)   | S(13)-Mo(7)-Se(17)  | 88.05(5)   |
| Se(14)-Mo(6)-S(11)  | 151.26(5)  | Se(21)-Mo(7)-Se(15) | 112.70(4)  |
| S(12)-Mo(6)-S(11)   | 69.98(6)   | S(14)-Mo(7)-Se(15)  | 133.72(5)  |
| Se(14)-Mo(6)-Se(12) | 112.85(3)  | S(13)-Mo(7)-Se(15)  | 86.17(5)   |
| S(12)-Mo(6)-Se(12)  | 132.10(5)  | Se(17)-Mo(7)-Se(15) | 83.36(3)   |
| S(11)-Mo(6)-Se(12)  | 89.62(5)   | Se(21)-Mo(7)-Se(16) | 83.76(3)   |
| Se(14)-Mo(6)-Se(10) | 112.85(3)  | S(14)-Mo(7)-Se(16)  | 87.98(5)   |
| S(12)-Mo(6)-Se(10)  | 135.50(5)  | S(13)-Mo(7)-Se(16)  | 93.02(5)   |
| S(11)-Mo(6)-Se(10)  | 86.59(4)   | Se(17)-Mo(7)-Se(16) | 136.81(3)  |
| Se(12)-Mo(6)-Se(10) | 82.81(3)   | Se(15)-Mo(7)-Se(16) | 53.71(3)   |
| Se(14)-Mo(6)-Se(11) | 84.84(3)   | Se(21)-Mo(7)-Se(18) | 83.85(3)   |
| S(12)-Mo(6)-Se(11)  | 88.76(5)   | S(14)-Mo(7)-Se(18)  | 85.96(5)   |
| S(11)-Mo(6)-Se(11)  | 91.11(5)   | S(13)-Mo(7)-Se(18)  | 95.83(5)   |
| Se(12)-Mo(6)-Se(11) | 136.00(3)  | Se(17)-Mo(7)-Se(18) | 53.60(3)   |
| Se(10)-Mo(6)-Se(11) | 53.35(2)   | Se(15)-Mo(7)-Se(18) | 136.70(3)  |
| Se(14)-Mo(6)-Se(13) | 84.17(3)   | Se(16)-Mo(7)-Se(18) | 166.74(3)  |
| S(12)-Mo(6)-Se(13)  | 85.08(5)   | Se(21)-Mo(7)-Mo(8)  | 56.33(3)   |
| S(11)-Mo(6)-Se(13)  | 96.33(5)   | S(14)-Mo(7)-Mo(8)   | 127.57(5)  |
| Se(12)-Mo(6)-Se(13) | 53.63(3)   | S(13)-Mo(7)-Mo(8)   | 141.83(5)  |
| Se(10)-Mo(6)-Se(13) | 136.22(3)  | Se(17)-Mo(7)-Mo(8)  | 96.76(3)   |
| Se(11)-Mo(6)-Se(13) | 168.08(3)  | Se(15)-Mo(7)-Mo(8)  | 57.10(2)   |
| Se(14)-Mo(6)-Mo(5)  | 56.23(3)   | Se(16)-Mo(7)-Mo(8)  | 58.28(2)   |
| S(12)-Mo(6)-Mo(5)   | 125.97(4)  | Se(18)-Mo(7)-Mo(8)  | 117.44(3)  |
| S(11)-Mo(6)-Mo(5)   | 141.62(5)  | Se(21)-Mo(7)-Mo(9)  | 56.23(3)   |
| Se(12)-Mo(6)-Mo(5)  | 97.18(2)   | S(14)-Mo(7)-Mo(9)   | 125.90(5)  |
| Se(10)-Mo(6)-Mo(5)  | 57.20(2)   | S(13)-Mo(7)-Mo(9)   | 144.11(5)  |
| Se(11)-Mo(6)-Mo(5)  | 58.36(2)   | Se(17)-Mo(7)-Mo(9)  | 57.15(2)   |
| Se(13)-Mo(6)-Mo(5)  | 118.06(3)  | Se(15)-Mo(7)-Mo(9)  | 97.13(3)   |
| Se(14)-Mo(6)-Mo(4)  | 56.11(3)   | Se(16)-Mo(7)-Mo(9)  | 117.72(3)  |
| S(12)-Mo(6)-Mo(4)   | 123.65(5)  | Se(18)-Mo(7)-Mo(9)  | 57.92(3)   |
| S(11)-Mo(6)-Mo(4)   | 145.65(5)  | Mo(8)-Mo(7)-Mo(9)   | 59.874(19) |
| Se(12)-Mo(6)-Mo(4)  | 57.33(2)   | Se(21)-Mo(8)-S(16)  | 83.76(5)   |
| Se(10)-Mo(6)-Mo(4)  | 97.18(2)   | Se(21)-Mo(8)-S(15)  | 153.44(5)  |

| S(16)-Mo(8)-S(15)   | 69.76(6)  | Se(21)-Mo(8)-Se(15) | 112.40(3) |
|---------------------|-----------|---------------------|-----------|
| S(16)-Mo(8)-Se(15)  | 132.26(5) | S(15)-Mo(8)-Se(15)  | 88.05(5)  |
| Se(21)-Mo(8)-Se(19) | 112.58(3) | Se(21)-Mo(9)-Se(18) | 83.61(3)  |
| S(16)-Mo(8)-Se(19)  | 133.12(5) | S(18)-Mo(9)-Se(18)  | 87.64(6)  |
| S(15)-Mo(8)-Se(19)  | 85.47(5)  | S(17)-Mo(9)-Se(18)  | 93.41(5)  |
| Se(15)-Mo(8)-Se(19) | 83.54(3)  | Se(19)-Mo(9)-Se(18) | 136.18(3) |
| Se(21)-Mo(8)-Se(20) | 84.26(3)  | Se(17)-Mo(9)-Se(18) | 53.50(3)  |
| S(16)-Mo(8)-Se(20)  | 87.25(5)  | Se(21)-Mo(9)-Se(20) | 84.30(3)  |
| S(15)-Mo(8)-Se(20)  | 92.16(5)  | S(18)-Mo(9)-Se(20)  | 86.77(5)  |
| Se(15)-Mo(8)-Se(20) | 136.89(3) | S(17)-Mo(9)-Se(20)  | 95.48(5)  |
| Se(19)-Mo(8)-Se(20) | 53.57(2)  | Se(19)-Mo(9)-Se(20) | 53.66(3)  |
| Se(21)-Mo(8)-Se(16) | 83.12(3)  | Se(17)-Mo(9)-Se(20) | 136.32(3) |
| S(16)-Mo(8)-Se(16)  | 86.93(5)  | Se(18)-Mo(9)-Se(20) | 167.19(3) |
| S(15)-Mo(8)-Se(16)  | 97.13(5)  | Se(21)-Mo(9)-Mo(8)  | 56.34(3)  |
| Se(15)-Mo(8)-Se(16) | 53.47(3)  | S(18)-Mo(9)-Mo(8)   | 126.30(5) |
| Se(19)-Mo(8)-Se(16) | 136.64(3) | S(17)-Mo(9)-Mo(8)   | 143.65(5) |
| Se(20)-Mo(8)-Se(16) | 166.61(3) | Se(19)-Mo(9)-Mo(8)  | 57.31(2)  |
| Se(21)-Mo(8)-Mo(9)  | 56.21(3)  | Se(17)-Mo(9)-Mo(8)  | 96.81(3)  |
| S(16)-Mo(8)-Mo(9)   | 126.82(4) | Se(18)-Mo(9)-Mo(8)  | 117.44(3) |
| S(15)-Mo(8)-Mo(9)   | 140.86(5) | Se(20)-Mo(9)-Mo(8)  | 58.05(2)  |
| Se(15)-Mo(8)-Mo(9)  | 97.29(3)  | Se(21)-Mo(9)-Mo(7)  | 56.02(3)  |
| Se(19)-Mo(8)-Mo(9)  | 56.96(2)  | S(18)-Mo(9)-Mo(7)   | 126.68(5) |
| Se(20)-Mo(8)-Mo(9)  | 58.11(2)  | S(17)-Mo(9)-Mo(7)   | 141.72(5) |
| Se(16)-Mo(8)-Mo(9)  | 117.17(3) | Se(19)-Mo(9)-Mo(7)  | 97.05(3)  |
| Se(21)-Mo(8)-Mo(7)  | 55.99(3)  | Se(17)-Mo(9)-Mo(7)  | 57.03(2)  |
| S(16)-Mo(8)-Mo(7)   | 126.57(5) | Se(18)-Mo(9)-Mo(7)  | 57.74(2)  |
| S(15)-Mo(8)-Mo(7)   | 144.34(5) | Se(20)-Mo(9)-Mo(7)  | 117.74(3) |
| Se(15)-Mo(8)-Mo(7)  | 57.13(2)  | Mo(8)-Mo(9)-Mo(7)   | 60.06(2)  |
| Se(19)-Mo(8)-Mo(7)  | 96.82(3)  | Se(2)-Se(1)-Mo(2)   | 64.49(3)  |
| Se(20)-Mo(8)-Mo(7)  | 117.81(3) | Se(2)-Se(1)-Mo(1)   | 64.15(3)  |
| Se(16)-Mo(8)-Mo(7)  | 57.53(2)  | Mo(2)-Se(1)-Mo(1)   | 65.53(3)  |
| Mo(9)-Mo(8)-Mo(7)   | 60.07(2)  | Se(1)-Se(2)-Mo(1)   | 62.27(3)  |
| Se(21)-Mo(9)-S(18)  | 83.39(5)  | Se(1)-Se(2)-Mo(2)   | 61.97(3)  |
| Se(21)-Mo(9)-S(17)  | 153.24(5) | Mo(1)-Se(2)-Mo(2)   | 64.12(3)  |
| S(18)-Mo(9)-S(17)   | 69.90(6)  | Se(4)-Se(3)-Mo(2)   | 64.68(3)  |
| Se(21)-Mo(9)-Se(19) | 113.05(3) | Se(4)-Se(3)-Mo(3)   | 64.42(3)  |
| S(18)-Mo(9)-Se(19)  | 132.65(6) | Mo(2)-Se(3)-Mo(3)   | 65.82(3)  |
| S(17)-Mo(9)-Se(19)  | 87.40(5)  | Se(3)-Se(4)-Mo(3)   | 61.93(3)  |
| Se(21)-Mo(9)-Se(17) | 112.40(3) | Se(3)-Se(4)-Mo(2)   | 61.57(3)  |
| S(18)-Mo(9)-Se(17)  | 133.39(6) | Mo(3)-Se(4)-Mo(2)   | 64.02(3)  |
| S(17)-Mo(9)-Se(17)  | 86.13(5)  | Se(6)-Se(5)-Mo(1)   | 64.59(3)  |
| Se(19)-Mo(9)-Se(17) | 82.93(3)  | Se(6)-Se(5)-Mo(3)   | 64.88(3)  |

| Mo(1)-Se(5)-Mo(3)   | 65.22(2) | Se(5)-Se(6)-Mo(1)  | 62.03(3) |
|---------------------|----------|--------------------|----------|
| Se(5)-Se(6)-Mo(3)   | 61.93(3) | Mo(3)-Se(7)-Mo(1)  | 67.57(3) |
| Mo(1)-Se(6)-Mo(3)   | 63.48(2) | Mo(3)-Se(7)-Mo(2)  | 67.94(4) |
| Mo(1)-Se(7)-Mo(2)   | 67.64(4) | Mo(8)-Se(20)-Mo(9) | 63.84(2) |
| Se(9)-Se(8)-Mo(5)   | 64.79(3) | Mo(7)-Se(21)-Mo(9) | 67.75(3) |
| Se(9)-Se(8)-Mo(4)   | 64.76(3) | Mo(7)-Se(21)-Mo(8) | 67.68(3) |
| Mo(5)-Se(8)-Mo(4)   | 66.21(2) | Mo(9)-Se(21)-Mo(8) | 67.45(3) |
| Se(8)-Se(9)-Mo(5)   | 61.70(3) | C(1)-S(1)-Mo(1)    | 87.7(2)  |
| Se(8)-Se(9)-Mo(4)   | 61.78(3) | C(1)-S(2)-Mo(1)    | 88.9(2)  |
| Mo(5)-Se(9)-Mo(4)   | 64.26(2) | C(10)-S(3)-Mo(2)   | 88.7(3)  |
| Se(11)-Se(10)-Mo(5) | 64.88(3) | C(10)-S(4)-Mo(2)   | 89.0(3)  |
| Se(11)-Se(10)-Mo(6) | 64.41(3) | C(19)-S(5)-Mo(3)   | 88.4(2)  |
| Mo(5)-Se(10)-Mo(6)  | 65.38(2) | C(19)-S(6)-Mo(3)   | 89.2(3)  |
| Se(10)-Se(11)-Mo(6) | 62.24(3) | C(28)-S(7)-Mo(4)   | 88.4(2)  |
| Se(10)-Se(11)-Mo(5) | 61.85(3) | C(28)-S(8)-Mo(4)   | 89.9(2)  |
| Mo(6)-Se(11)-Mo(5)  | 63.73(2) | C(37)-S(9)-Mo(5)   | 87.9(2)  |
| Se(13)-Se(12)-Mo(6) | 64.47(3) | C(37)-S(10)-Mo(5)  | 89.1(2)  |
| Se(13)-Se(12)-Mo(4) | 64.36(3) | C(46)-S(11)-Mo(6)  | 87.5(2)  |
| Mo(6)-Se(12)-Mo(4)  | 65.69(2) | C(46)-S(12)-Mo(6)  | 89.0(2)  |
| Se(12)-Se(13)-Mo(6) | 61.89(3) | C(55)-S(13)-Mo(7)  | 88.7(2)  |
| Se(12)-Se(13)-Mo(4) | 62.14(3) | C(55)-S(14)-Mo(7)  | 90.0(3)  |
| Mo(6)-Se(13)-Mo(4)  | 64.16(2) | C(64)-S(15)-Mo(8)  | 88.0(2)  |
| Mo(6)-Se(14)-Mo(5)  | 67.70(3) | C(64)-S(16)-Mo(8)  | 89.1(2)  |
| Mo(6)-Se(14)-Mo(4)  | 68.07(3) | C(73)-S(17)-Mo(9)  | 87.8(2)  |
| Mo(5)-Se(14)-Mo(4)  | 68.30(3) | C(73)-S(18)-Mo(9)  | 88.7(2)  |
| Se(16)-Se(15)-Mo(8) | 64.74(3) | C(1)-N(1)-C(6)     | 121.2(6) |
| Se(16)-Se(15)-Mo(7) | 64.13(3) | C(1)-N(1)-C(2)     | 120.6(6) |
| Mo(8)-Se(15)-Mo(7)  | 65.78(2) | C(6)-N(1)-C(2)     | 117.7(5) |
| Se(15)-Se(16)-Mo(7) | 62.16(3) | C(10)-N(2)-C(11)   | 121.4(7) |
| Se(15)-Se(16)-Mo(8) | 61.79(3) | C(10)-N(2)-C(15)   | 118.8(7) |
| Mo(7)-Se(16)-Mo(8)  | 64.19(2) | C(11)-N(2)-C(15)   | 116.8(6) |
| Se(18)-Se(17)-Mo(7) | 64.32(3) | C(19)-N(3)-C(20)   | 123.5(7) |
| Se(18)-Se(17)-Mo(9) | 64.41(3) | C(19)-N(3)-C(24)   | 119.9(7) |
| Mo(7)-Se(17)-Mo(9)  | 65.81(2) | C(20)-N(3)-C(24)   | 116.6(6) |
| Se(17)-Se(18)-Mo(7) | 62.08(3) | C(28)-N(4)-C(33)   | 121.9(6) |
| Se(17)-Se(18)-Mo(9) | 62.09(3) | C(28)-N(4)-C(29)   | 120.6(6) |
| Mo(7)-Se(18)-Mo(9)  | 64.34(3) | C(33)-N(4)-C(29)   | 117.5(6) |
| Se(20)-Se(19)-Mo(9) | 64.78(3) | C(37)-N(5)-C(42)   | 120.5(6) |
| Se(20)-Se(19)-Mo(8) | 64.56(3) | C(37)-N(5)-C(38)   | 121.3(6) |
| Mo(9)-Se(19)-Mo(8)  | 65.73(2) | C(42)-N(5)-C(38)   | 118.0(6) |
| Se(19)-Se(20)-Mo(8) | 61.87(3) | C(46)-N(6)-C(51)   | 119.9(6) |
| Se(19)-Se(20)-Mo(9) | 61.57(3) | C(46)-N(6)-C(47)   | 120.6(6) |
|                     |          |                    |          |

| C(51) N(C) $C(47)$ | 110 4(6) | C(55) N(7) $C(60)$  | 101.0(()  |
|--------------------|----------|---------------------|-----------|
| C(51)-N(6)-C(47)   | 119.4(6) | C(55)-N(7)-C(60)    | 121.2(6)  |
| C(55)-N(7)-C(56)   | 121.8(6) | C(64)-N(8)- $C(65)$ | 120.2(6)  |
| C(60)-N(7)-C(56)   | 117.0(6) | C(69)-N(8)-C(65)    | 11/./(6)  |
| C(64)-N(8)-C(69)   | 122.1(6) | C(73)-N(9)-C(74)    | 121.4(6)  |
| C(73)-N(9)-C(78)   | 120.0(6) | C(8)-C(7)-H(7)      | 108.4     |
| C(74)-N(9)-C(78)   | 118.6(6) | C(9)-C(7)-H(7)      | 108.4     |
| N(1)-C(1)-S(2)     | 124.2(5) | C(6)-C(7)-H(7)      | 108.4     |
| N(1)-C(1)-S(1)     | 123.5(5) | C(7)-C(8)-H(8A)     | 109.5     |
| S(2)-C(1)-S(1)     | 112.3(4) | C(7)-C(8)-H(8B)     | 109.5     |
| N(1)-C(2)-C(3)     | 115.1(6) | H(8A)-C(8)-H(8B)    | 109.5     |
| N(1)-C(2)-H(2A)    | 108.5    | C(7)-C(8)-H(8C)     | 109.5     |
| C(3)-C(2)-H(2A)    | 108.5    | H(8A)-C(8)-H(8C)    | 109.5     |
| N(1)-C(2)-H(2B)    | 108.5    | H(8B)-C(8)-H(8C)    | 109.5     |
| C(3)-C(2)-H(2B)    | 108.5    | C(7)-C(9)-H(9A)     | 109.5     |
| H(2A)-C(2)-H(2B)   | 107.5    | C(7)-C(9)-H(9B)     | 109.5     |
| C(2)-C(3)-C(5)     | 112.7(6) | H(9A)-C(9)-H(9B)    | 109.5     |
| C(2)-C(3)-C(4)     | 108.2(6) | C(7)-C(9)-H(9C)     | 109.5     |
| C(5)-C(3)-C(4)     | 110.5(7) | H(9A)-C(9)-H(9C)    | 109.5     |
| C(2)-C(3)-H(3)     | 108.4    | H(9B)-C(9)-H(9C)    | 109.5     |
| C(5)-C(3)-H(3)     | 108.4    | N(2)-C(10)-S(3)     | 123.7(7)  |
| C(4)-C(3)-H(3)     | 108.4    | N(2)-C(10)-S(4)     | 123.6(7)  |
| C(3)-C(4)-H(4A)    | 109.5    | S(3)-C(10)-S(4)     | 112.7(5)  |
| C(3)-C(4)-H(4B)    | 109.5    | N(2)-C(11)-C(12)    | 115.5(8)  |
| H(4A)-C(4)-H(4B)   | 109.5    | N(2)-C(11)-H(11A)   | 108.4     |
| C(3)-C(4)-H(4C)    | 109.5    | C(12)-C(11)-H(11A)  | 108.4     |
| H(4A)-C(4)-H(4C)   | 109.5    | N(2)-C(11)-H(11B)   | 108.4     |
| H(4B)-C(4)-H(4C)   | 109.5    | C(12)-C(11)-H(11B)  | 108.4     |
| C(3)-C(5)-H(5A)    | 109.5    | H(11A)-C(11)-H(11B) | 107.5     |
| C(3)-C(5)-H(5B)    | 109.5    | C(11)-C(12)-C(13)   | 112.4(8)  |
| H(5A)-C(5)-H(5B)   | 109.5    | C(11)-C(12)-C(14)   | 107.9(9)  |
| C(3)-C(5)-H(5C)    | 109.5    | C(13)-C(12)-C(14)   | 109.6(10) |
| H(5A)-C(5)-H(5C)   | 109.5    | C(11)-C(12)-H(12)   | 109.0     |
| H(5B)-C(5)-H(5C)   | 109.5    | C(13)-C(12)-H(12)   | 109.0     |
| N(1)-C(6)-C(7)     | 114.5(6) | C(14)-C(12)-H(12)   | 109.0     |
| N(1)-C(6)-H(6A)    | 108.6    | C(12)-C(13)-H(13A)  | 109.5     |
| C(7)-C(6)-H(6A)    | 108.6    | C(12)-C(13)-H(13B)  | 109.5     |
| N(1)-C(6)-H(6B)    | 108.6    | H(13A)-C(13)-H(13B) | 109.5     |
| C(7)-C(6)-H(6B)    | 108.6    | C(12)-C(13)-H(13C)  | 109.5     |
| H(6A)-C(6)-H(6B)   | 107.6    | H(13A)-C(13)-H(13C) | 109.5     |
| C(8)-C(7)-C(9)     | 111.2(7) | H(13B)-C(13)-H(13C) | 109.5     |
| C(8)-C(7)-C(6)     | 113.5(6) | C(12)-C(14)-H(14A)  | 109.5     |
| C(9)-C(7)-C(6)     | 106.6(7) | C(12)-C(14)-H(14B)  | 109.5     |
|                    |          |                     |           |

| H(14A)-C(14)-H(14B) | 109.5    | C(12)-C(14)-H(14C)  | 109.5     |
|---------------------|----------|---------------------|-----------|
| H(14A)-C(14)-H(14C) | 109.5    | C(16)-C(15)-H(15A)  | 108.2     |
| H(14B)-C(14)-H(14C) | 109.5    | N(2)-C(15)-H(15B)   | 108.2     |
| N(2)-C(15)-C(16)    | 116.2(7) | C(16)-C(15)-H(15B)  | 108.2     |
| N(2)-C(15)-H(15A)   | 108.2    | H(15A)-C(15)-H(15B) | 107.4     |
| C(18)-C(16)-C(17)   | 110.9(9) | H(22A)-C(22)-H(22C) | 109.5     |
| C(18)-C(16)-C(15)   | 112.8(8) | H(22B)-C(22)-H(22C) | 109.5     |
| C(17)-C(16)-C(15)   | 108.2(9) | C(21)-C(23)-H(23A)  | 109.5     |
| C(18)-C(16)-H(16)   | 108.3    | C(21)-C(23)-H(23B)  | 109.5     |
| C(17)-C(16)-H(16)   | 108.3    | H(23A)-C(23)-H(23B) | 109.5     |
| C(15)-C(16)-H(16)   | 108.3    | C(21)-C(23)-H(23C)  | 109.5     |
| C(16)-C(17)-H(17A)  | 109.5    | H(23A)-C(23)-H(23C) | 109.5     |
| C(16)-C(17)-H(17B)  | 109.5    | H(23B)-C(23)-H(23C) | 109.5     |
| H(17A)-C(17)-H(17B) | 109.5    | N(3)-C(24)-C(25)    | 111.3(6)  |
| C(16)-C(17)-H(17C)  | 109.5    | N(3)-C(24)-H(24A)   | 109.4     |
| H(17A)-C(17)-H(17C) | 109.5    | C(25)-C(24)-H(24A)  | 109.4     |
| H(17B)-C(17)-H(17C) | 109.5    | N(3)-C(24)-H(24B)   | 109.4     |
| C(16)-C(18)-H(18A)  | 109.5    | C(25)-C(24)-H(24B)  | 109.4     |
| C(16)-C(18)-H(18B)  | 109.5    | H(24A)-C(24)-H(24B) | 108.0     |
| H(18A)-C(18)-H(18B) | 109.5    | C(26)-C(25)-C(27)   | 111.8(8)  |
| C(16)-C(18)-H(18C)  | 109.5    | C(26)-C(25)-C(24)   | 113.6(8)  |
| H(18A)-C(18)-H(18C) | 109.5    | C(27)-C(25)-C(24)   | 108.7(7)  |
| H(18B)-C(18)-H(18C) | 109.5    | C(26)-C(25)-H(25)   | 107.5     |
| N(3)-C(19)-S(5)     | 123.8(6) | C(27)-C(25)-H(25)   | 107.5     |
| N(3)-C(19)-S(6)     | 123.7(6) | C(24)-C(25)-H(25)   | 107.5     |
| S(5)-C(19)-S(6)     | 112.4(4) | C(25)-C(26)-H(26A)  | 109.5     |
| N(3)-C(20)-C(21)    | 111.9(7) | C(25)-C(26)-H(26B)  | 109.5     |
| N(3)-C(20)-H(20A)   | 109.2    | H(26A)-C(26)-H(26B) | 109.5     |
| C(21)-C(20)-H(20A)  | 109.2    | C(25)-C(26)-H(26C)  | 109.5     |
| N(3)-C(20)-H(20B)   | 109.2    | H(26A)-C(26)-H(26C) | 109.5     |
| C(21)-C(20)-H(20B)  | 109.2    | H(26B)-C(26)-H(26C) | 109.5     |
| H(20A)-C(20)-H(20B) | 107.9    | C(25)-C(27)-H(27A)  | 109.5     |
| C(22)-C(21)-C(20)   | 110.7(8) | C(25)-C(27)-H(27B)  | 109.5     |
| C(22)-C(21)-C(23)   | 111.2(9) | H(27A)-C(27)-H(27B) | 109.5     |
| C(20)-C(21)-C(23)   | 111.3(8) | C(25)-C(27)-H(27C)  | 109.5     |
| C(22)-C(21)-H(21)   | 107.8    | H(27A)-C(27)-H(27C) | 109.5     |
| C(20)-C(21)-H(21)   | 107.8    | H(27B)-C(27)-H(27C) | 109.5     |
| C(23)-C(21)-H(21)   | 107.8    | N(4)-C(28)-S(8)     | 124.0(5)  |
| C(21)-C(22)-H(22A)  | 109.5    | N(4)-C(28)-S(7)     | 123.9(5)  |
| C(21)-C(22)-H(22B)  | 109.5    | S(8)-C(28)-S(7)     | 112.1(3)  |
| H(22A)-C(22)-H(22B) | 109.5    | C(30B)-C(29)-N(4)   | 120.6(14) |
| C(21)-C(22)-H(22C)  | 109.5    | N(4)-C(29)-C(30A)   | 111.7(8)  |
|                     |          |                     |           |

| N(4)-C(29)-H(29A)    | 109.3        | C(30A)-C(29)-H(29A)  | 109.3     |
|----------------------|--------------|----------------------|-----------|
| N(4)-C(29)-H(29B)    | 109.3        | N(4)-C(33)-H(33A)    | 108.6     |
| C(30A)-C(29)-H(29B)  | 109.3        | C(34A)-C(33)-H(33A)  | 108.6     |
| H(29A)-C(29)-H(29B)  | 108.0        | N(4)-C(33)-H(33B)    | 108.6     |
| C(32A)-C(30A)-C(31A) | 110.8(12)    | C(34A)-C(33)-H(33B)  | 108.6     |
| C(32A)-C(30A)-C(29)  | 108.1(11)    | H(33A)-C(33)-H(33B)  | 107.6     |
| C(31A)-C(30A)-C(29)  | 114.5(11)    | C(33)-C(34A)-C(35A)  | 109.9(17) |
| C(32A)-C(30A)-H(30A) | 107.7        | C(33)-C(34A)-C(36A)  | 109.4(16) |
| C(31A)-C(30A)-H(30A) | 107.7        | C(35A)-C(34A)-C(36A) | 110.3(19) |
| C(29)-C(30A)-H(30A)  | 107.7        | C(33)-C(34A)-H(34A)  | 109.1     |
| C(30A)-C(31A)-H(31A) | 109.5C(30A)- | C(35A)-C(34A)-H(34A) | 109.1     |
| C(31A)-H(31B)        | 109.5        | C(36A)-C(34A)-H(34A) | 109.1     |
| H(31A)-C(31A)-H(31B) | 109.5        | C(34A)-C(35A)-H(35A) | 109.5     |
| C(30A)-C(31A)-H(31C) | 109.5        | C(34A)-C(35A)-H(35B) | 109.5     |
| H(31A)-C(31A)-H(31C) | 109.5        | H(35A)-C(35A)-H(35B) | 109.5     |
| H(31B)-C(31A)-H(31C) | 109.5        | C(34A)-C(35A)-H(35C) | 109.5     |
| C(30A)-C(32A)-H(32A) | 109.5        | H(35A)-C(35A)-H(35C) | 109.5     |
| C(30A)-C(32A)-H(32B) | 109.5        | H(35B)-C(35A)-H(35C) | 109.5     |
| H(32A)-C(32A)-H(32B) | 109.5        | C(34A)-C(36A)-H(36A) | 109.5     |
| C(30A)-C(32A)-H(32C) | 109.5        | C(34A)-C(36A)-H(36B) | 109.5     |
| H(32A)-C(32A)-H(32C) | 109.5        | H(36A)-C(36A)-H(36B) | 109.5     |
| H(32B)-C(32A)-H(32C) | 109.5        | C(34A)-C(36A)-H(36C) | 109.5     |
| C(29)-C(30B)-C(31B)  | 109(3)       | H(36A)-C(36A)-H(36C) | 109.5     |
| C(29)-C(30B)-C(32B)  | 111(2)       | H(36B)-C(36A)-H(36C) | 109.5     |
| C(31B)-C(30B)-C(32B) | 109(3)       | C(35B)-C(34B)-C(33)  | 115.0(14) |
| C(29)-C(30B)-H(30B)  | 109.4        | C(35B)-C(34B)-C(36B) | 109.6(15) |
| C(31B)-C(30B)-H(30B) | 109.4        | C(33)-C(34B)-C(36B)  | 108.8(13) |
| C(32B)-C(30B)-H(30B) | 109.4        | C(35B)-C(34B)-H(34B) | 107.7     |
| C(30B)-C(31B)-H(31D) | 109.5        | C(33)-C(34B)-H(34B)  | 107.7     |
| C(30B)-C(31B)-H(31E) | 109.5        | C(36B)-C(34B)-H(34B) | 107.7     |
| H(31D)-C(31B)-H(31E) | 109.5        | C(34B)-C(35B)-H(35D) | 109.5     |
| C(30B)-C(31B)-H(31F) | 109.5        | C(34B)-C(35B)-H(35E) | 109.5     |
| H(31D)-C(31B)-H(31F) | 109.5        | H(35D)-C(35B)-H(35E) | 109.5     |
| H(31E)-C(31B)-H(31F) | 109.5        | C(34B)-C(35B)-H(35F) | 109.5     |
| C(30B)-C(32B)-H(32D) | 109.5        | H(35D)-C(35B)-H(35F) | 109.5     |
| C(30B)-C(32B)-H(32E) | 109.5        | H(35E)-C(35B)-H(35F) | 109.5     |
| H(32D)-C(32B)-H(32E) | 109.5        | C(34B)-C(36B)-H(36D) | 109.5     |
| C(30B)-C(32B)-H(32F) | 109.5        | C(34B)-C(36B)-H(36E) | 109.5     |
| H(32D)-C(32B)-H(32F) | 109.5        | H(36D)-C(36B)-H(36E) | 109.5     |
| H(32E)-C(32B)-H(32F) | 109.5        | C(34B)-C(36B)-H(36F) | 109.5     |
| N(4)-C(33)-C(34A)    | 114.7(10)    | H(36D)-C(36B)-H(36F) | 109.5     |
| N(4)-C(33)-C(34B)    | 112.7(8)     | H(36E)-C(36B)-H(36F) | 109.5     |

| N(5)-C(37)-S(9)     | 123.4(5) | N(5)-C(37)-S(10)    | 123.5(5) |
|---------------------|----------|---------------------|----------|
| S(9)-C(37)-S(10)    | 113.2(4) | H(38A)-C(38)-H(38B) | 107.6    |
| N(5)-C(38)-C(39)    | 114.2(6) | C(40)-C(39)-C(38)   | 112.7(8) |
| N(5)-C(38)-H(38A)   | 108.7    | C(40)-C(39)-C(41)   | 109.9(8) |
| C(39)-C(38)-H(38A)  | 108.7    | C(38)-C(39)-C(41)   | 107.9(7) |
| N(5)-C(38)-H(38B)   | 108.7    | C(40)-C(39)-H(39)   | 108.8    |
| C(39)-C(38)-H(38B)  | 108.7    | C(38)-C(39)-H(39)   | 108.8    |
| C(41)-C(39)-H(39)   | 108.8    | H(45A)-C(45)-H(45C) | 109.5    |
| C(39)-C(40)-H(40A)  | 109.5    | H(45B)-C(45)-H(45C) | 109.5    |
| C(39)-C(40)-H(40B)  | 109.5    | N(6)-C(46)-S(11)    | 123.9(6) |
| H(40A)-C(40)-H(40B) | 109.5    | N(6)-C(46)-S(12)    | 122.8(6) |
| C(39)-C(40)-H(40C)  | 109.5    | S(11)-C(46)-S(12)   | 113.3(4) |
| H(40A)-C(40)-H(40C) | 109.5    | N(6)-C(47)-C(48)    | 112.1(7) |
| H(40B)-C(40)-H(40C) | 109.5    | N(6)-C(47)-H(47A)   | 109.2    |
| C(39)-C(41)-H(41A)  | 109.5    | C(48)-C(47)-H(47A)  | 109.2    |
| C(39)-C(41)-H(41B)  | 109.5    | N(6)-C(47)-H(47B)   | 109.2    |
| H(41A)-C(41)-H(41B) | 109.5    | C(48)-C(47)-H(47B)  | 109.2    |
| C(39)-C(41)-H(41C)  | 109.5    | H(47A)-C(47)-H(47B) | 107.9    |
| H(41A)-C(41)-H(41C) | 109.5    | C(49)-C(48)-C(50)   | 111.8(9) |
| H(41B)-C(41)-H(41C) | 109.5    | C(49)-C(48)-C(47)   | 112.0(7) |
| N(5)-C(42)-C(43)    | 114.2(7) | C(50)-C(48)-C(47)   | 109.2(8) |
| N(5)-C(42)-H(42A)   | 108.7    | C(49)-C(48)-H(48)   | 107.9    |
| C(43)-C(42)-H(42A)  | 108.7    | C(50)-C(48)-H(48)   | 107.9    |
| N(5)-C(42)-H(42B)   | 108.7    | C(47)-C(48)-H(48)   | 107.9    |
| C(43)-C(42)-H(42B)  | 108.7    | C(48)-C(49)-H(49A)  | 109.5    |
| H(42A)-C(42)-H(42B) | 107.6    | C(48)-C(49)-H(49B)  | 109.5    |
| C(44)-C(43)-C(45)   | 111.9(8) | H(49A)-C(49)-H(49B) | 109.5    |
| C(44)-C(43)-C(42)   | 109.3(9) | C(48)-C(49)-H(49C)  | 109.5    |
| C(45)-C(43)-C(42)   | 112.0(7) | H(49A)-C(49)-H(49C) | 109.5    |
| C(44)-C(43)-H(43)   | 107.8    | H(49B)-C(49)-H(49C) | 109.5    |
| C(45)-C(43)-H(43)   | 107.8    | C(48)-C(50)-H(50A)  | 109.5    |
| C(42)-C(43)-H(43)   | 107.8    | C(48)-C(50)-H(50B)  | 109.5    |
| C(43)-C(44)-H(44A)  | 109.5    | H(50A)-C(50)-H(50B) | 109.5    |
| C(43)-C(44)-H(44B)  | 109.5    | C(48)-C(50)-H(50C)  | 109.5    |
| H(44A)-C(44)-H(44B) | 109.5    | H(50A)-C(50)-H(50C) | 109.5    |
| C(43)-C(44)-H(44C)  | 109.5    | H(50B)-C(50)-H(50C) | 109.5    |
| H(44A)-C(44)-H(44C) | 109.5    | N(6)-C(51)-C(52)    | 113.2(7) |
| H(44B)-C(44)-H(44C) | 109.5    | N(6)-C(51)-H(51A)   | 108.9    |
| C(43)-C(45)-H(45A)  | 109.5    | C(52)-C(51)-H(51A)  | 108.9    |
| C(43)-C(45)-H(45B)  | 109.5    | N(6)-C(51)-H(51B)   | 108.9    |
| H(45A)-C(45)-H(45B) | 109.5    | C(52)-C(51)-H(51B)  | 108.9    |
| C(43)-C(45)-H(45C)  | 109.5    | H(51A)-C(51)-H(51B) | 107.7    |

| C(53)-C(52)-C(51)   | 112.0(9)  | C(53)-C(52)-C(54)    | 112.4(10) |
|---------------------|-----------|----------------------|-----------|
| C(51)-C(52)-C(54)   | 108.2(9)  | C(52)-C(53)-H(53C)   | 109.5     |
| C(53)-C(52)-H(52A)  | 108.0     | H(53A)-C(53)-H(53C)  | 109.5     |
| C(51)-C(52)-H(52A)  | 108.0     | H(53B)-C(53)-H(53C)  | 109.5     |
| C(54)-C(52)-H(52A)  | 108.0     | C(52)-C(54)-H(54A)   | 109.5     |
| C(52)-C(53)-H(53A)  | 109.5     | C(52)-C(54)-H(54B)   | 109.5     |
| C(52)-C(53)-H(53B)  | 109.5     | H(54A)-C(54)-H(54B)  | 109.5     |
| H(53A)-C(53)-H(53B) | 109.5     | C(52)-C(54)-H(54C)   | 109.5     |
| H(54A)-C(54)-H(54C) | 109.5     | C(61A)-C(60)-H(60B)  | 108.8     |
| H(54B)-C(54)-H(54C) | 109.5     | H(60A)-C(60)-H(60B)  | 107.7     |
| N(7)-C(55)-S(14)    | 123.9(5)  | C(63A)-C(61A)-C(60)  | 114.4(13) |
| N(7)-C(55)-S(13)    | 124.1(5)  | C(63A)-C(61A)-C(62A) | 112.7(14) |
| S(14)-C(55)-S(13)   | 112.0(4)  | C(60)-C(61A)-C(62A)  | 107.3(11) |
| N(7)-C(56)-C(57)    | 111.6(7)  | C(63A)-C(61A)-H(61A) | 107.4     |
| N(7)-C(56)-H(56A)   | 109.3     | C(60)-C(61A)-H(61A)  | 107.4     |
| C(57)-C(56)-H(56A)  | 109.3     | C(62A)-C(61A)-H(61A) | 107.4     |
| N(7)-C(56)-H(56B)   | 109.3     | C(61A)-C(62A)-H(62A) | 109.5     |
| C(57)-C(56)-H(56B)  | 109.3     | C(61A)-C(62A)-H(62B) | 109.5     |
| H(56A)-C(56)-H(56B) | 108.0     | H(62A)-C(62A)-H(62B) | 109.5     |
| C(58)-C(57)-C(56)   | 112.5(8)  | C(61A)-C(62A)-H(62C) | 109.5     |
| C(58)-C(57)-C(59)   | 113.2(11) | H(62A)-C(62A)-H(62C) | 109.5     |
| C(56)-C(57)-C(59)   | 106.1(9)  | H(62B)-C(62A)-H(62C) | 109.5     |
| C(58)-C(57)-H(57)   | 108.3     | C(61A)-C(63A)-H(63A) | 109.5     |
| C(56)-C(57)-H(57)   | 108.3     | C(61A)-C(63A)-H(63B) | 109.5     |
| C(59)-C(57)-H(57)   | 108.3     | H(63A)-C(63A)-H(63B) | 109.5     |
| C(57)-C(58)-H(58A)  | 109.5     | C(61A)-C(63A)-H(63C) | 109.5     |
| C(57)-C(58)-H(58B)  | 109.5     | H(63A)-C(63A)-H(63C) | 109.5     |
| H(58A)-C(58)-H(58B) | 109.5     | H(63B)-C(63A)-H(63C) | 109.5     |
| C(57)-C(58)-H(58C)  | 109.5     | C(60)-C(61B)-C(63B)  | 114(2)    |
| H(58A)-C(58)-H(58C) | 109.5     | C(60)-C(61B)-C(62B)  | 104(2)    |
| H(58B)-C(58)-H(58C) | 109.5     | C(63B)-C(61B)-C(62B) | 110(3)    |
| C(57)-C(59)-H(59A)  | 109.5     | C(60)-C(61B)-H(61B)  | 109.7     |
| C(57)-C(59)-H(59B)  | 109.5     | C(63B)-C(61B)-H(61B) | 109.7     |
| H(59A)-C(59)-H(59B) | 109.5     | C(62B)-C(61B)-H(61B) | 109.7     |
| C(57)-C(59)-H(59C)  | 109.5     | C(61B)-C(62B)-H(62D) | 109.5     |
| H(59A)-C(59)-H(59C) | 109.5     | C(61B)-C(62B)-H(62E) | 109.5     |
| H(59B)-C(59)-H(59C) | 109.5     | H(62D)-C(62B)-H(62E) | 109.5     |
| N(7)-C(60)-C(61B)   | 110.7(12) | C(61B)-C(62B)-H(62F) | 109.5     |
| N(7)-C(60)-C(61A)   | 114.0(8)  | H(62D)-C(62B)-H(62F) | 109.5     |
| N(7)-C(60)-H(60A)   | 108.8     | H(62E)-C(62B)-H(62F) | 109.5     |
| C(61A)-C(60)-H(60A) | 108.8     | C(61B)-C(63B)-H(63D) | 109.5     |
| N(7)-C(60)-H(60B)   | 108.8     | C(61B)-C(63B)-H(63E) | 109.5     |

|                      | 100 5     |                        | 100 5     |
|----------------------|-----------|------------------------|-----------|
| H(63D)-C(63B)-H(63E) | 109.5     | C(61B)-C(63B)-H(63F)   | 109.5     |
| H(03D)-C(03B)-H(03F) | 109.5     | C(70) - C(71) - H(71R) | 109.5     |
| H(03E)-C(03B)-H(03F) | 109.5     | U(70)-U(71)-H(71B)     | 109.5     |
| N(8)-C(64)-S(15)     | 123.0(5)  | H(/1A)-C(/1)-H(/1B)    | 109.5     |
| N(8)-C(64)-S(16)     | 123.7(5)  | C(70)-C(71)-H(71C)     | 109.5     |
| S(15)-C(64)-S(16)    | 112.8(4)  | H(/1A)-C(/1)-H(/1C)    | 109.5     |
| N(8)-C(65)-C(66)     | 113.9(7)  | H(/1B)-C(/1)-H(/1C)    | 109.5     |
| N(8)-C(65)-H(65A)    | 108.8     | C(70)-C(72)-H(72A)     | 109.5     |
| C(66)-C(65)-H(65A)   | 108.8     | C(70)-C(72)-H(72B)     | 109.5     |
| N(8)-C(65)-H(65B)    | 108.8     | H(72A)-C(72)-H(72B)    | 109.5     |
| C(66)-C(65)-H(65B)   | 108.8     | C(70)-C(72)-H(72C)     | 109.5     |
| H(65A)-C(65)-H(65B)  | 107.7     | H(72A)-C(72)-H(72C)    | 109.5     |
| C(67)-C(66)-C(68)    | 111.6(10) | H(72B)-C(72)-H(72C)    | 109.5     |
| C(67)-C(66)-C(65)    | 115.3(9)  | N(9)-C(73)-S(17)       | 123.9(6)  |
| C(68)-C(66)-C(65)    | 106.7(9)  | N(9)-C(73)-S(18)       | 122.6(6)  |
| C(67)-C(66)-H(66)    | 107.6     | S(17)-C(73)-S(18)      | 113.6(4)  |
| C(68)-C(66)-H(66)    | 107.6     | N(9)-C(74)-C(75B)      | 119.8(11) |
| C(65)-C(66)-H(66)    | 107.6     | N(9)-C(74)-C(75A)      | 106.9(10) |
| C(66)-C(67)-H(67A)   | 109.5     | N(9)-C(74)-H(74A)      | 110.3     |
| C(66)-C(67)-H(67B)   | 109.5     | C(75A)-C(74)-H(74A)    | 110.3     |
| H(67A)-C(67)-H(67B)  | 109.5     | N(9)-C(74)-H(74B)      | 110.3     |
| C(66)-C(67)-H(67C)   | 109.5     | C(75A)-C(74)-H(74B)    | 110.3     |
| H(67A)-C(67)-H(67C)  | 109.5     | H(74A)-C(74)-H(74B)    | 108.6     |
| H(67B)-C(67)-H(67C)  | 109.5     | C(77A)-C(75A)-C(76A)   | 114.1(19) |
| C(66)-C(68)-H(68A)   | 109.5     | C(77A)-C(75A)-C(74)    | 116.1(17) |
| C(66)-C(68)-H(68B)   | 109.5     | C(76A)-C(75A)-C(74)    | 102.2(16) |
| H(68A)-C(68)-H(68B)  | 109.5     | C(77A)-C(75A)-H(75A)   | 108.0     |
| C(66)-C(68)-H(68C)   | 109.5     | C(76A)-C(75A)-H(75A)   | 108.0     |
| H(68A)-C(68)-H(68C)  | 109.5     | C(74)-C(75A)-H(75A)    | 108.0     |
| H(68B)-C(68)-H(68C)  | 109.5     | C(75A)-C(76A)-H(76A)   | 109.5     |
| N(8)-C(69)-C(70)     | 113.3(6)  | C(75A)-C(76A)-H(76B)   | 109.5     |
| N(8)-C(69)-H(69A)    | 108.9     | H(76A)-C(76A)-H(76B)   | 109.5     |
| C(70)-C(69)-H(69A)   | 108.9     | C(75A)-C(76A)-H(76C)   | 109.5     |
| N(8)-C(69)-H(69B)    | 108.9     | H(76A)-C(76A)-H(76C)   | 109.5     |
| C(70)-C(69)-H(69B)   | 108.9     | H(76B)-C(76A)-H(76C)   | 109.5     |
| H(69A)-C(69)-H(69B)  | 107.7     | C(75A)-C(77A)-H(77A)   | 109.5     |
| C(72)-C(70)-C(71)    | 110.4(9)  | C(75A)-C(77A)-H(77B)   | 109.5     |
| C(72)-C(70)-C(69)    | 111.4(8)  | H(77A)-C(77A)-H(77B)   | 109.5     |
| C(71)-C(70)-C(69)    | 109.1(7)  | C(75A)-C(77A)-H(77C)   | 109.5     |
| C(72)-C(70)-H(70)    | 108.6     | H(77A)-C(77A)-H(77C)   | 109.5     |
| C(71)-C(70)-H(70)    | 108.6     | H(77B)-C(77A)-H(77C)   | 109.5     |
| С(69)-С(70)-Н(70)    | 108.6     | C(74)-C(75B)-C(77B)    | 112.1(15) |
| · / · · · /          |           |                        | ( - )     |

| C(74)-C(75B)-C(76B)  | 112.5(16) | C(77B)-C(75B)-C(76B) | 109.6(17) |
|----------------------|-----------|----------------------|-----------|
| C(74)-C(75B)-H(75B)  | 107.5     | C(84)-C(82)-C(85)    | 21(3)     |
| C(77B)-C(75B)-H(75B) | 107.5     | C(82)-C(83)-C(84)    | 58(4)     |
| C(76B)-C(75B)-H(75B) | 107.5     | C(82)-C(83)-C(85)    | 47(4)     |
| C(75B)-C(76B)-H(76D) | 109.5     | C(84)-C(83)-C(85)    | 12(3)     |
| C(75B)-C(76B)-H(76E) | 109.5     | C(85)-C(84)-C(82)    | 110(9)    |
| H(76D)-C(76B)-H(76E) | 109.5     | C(85)-C(84)-C(83)    | 137(9)    |
| C(75B)-C(76B)-H(76F) | 109.5     | C(82)-C(84)-C(83)    | 28.7(18)  |
| H(76D)-C(76B)-H(76F) | 109.5     | C(85)-C(84)-C(86)    | 20(8)     |
| H(76E)-C(76B)-H(76F) | 109.5     | C(82)-C(84)-C(86)    | 94(3)     |
| C(75B)-C(77B)-H(77D) | 109.5     | C(83)-C(84)-C(86)    | 119(2)    |
| C(75B)-C(77B)-H(77E) | 109.5     | C(84)-C(85)-C(86)    | 150(10)   |
| H(77D)-C(77B)-H(77E) | 109.5     | C(84)-C(85)-C(82)    | 49(7)     |
| C(75B)-C(77B)-H(77F) | 109.5     | C(86)-C(85)-C(82)    | 106(5)    |
| H(77D)-C(77B)-H(77F) | 109.5     | C(84)-C(85)-C(83)    | 31(7)     |
| H(77E)-C(77B)-H(77F) | 109.5     | C(86)-C(85)-C(83)    | 121(5)    |
| N(9)-C(78)-C(79)     | 113.1(8)  | C(82)-C(85)-C(83)    | 19.3(16)  |
| N(9)-C(78)-H(78A)    | 109.0     | C(85)-C(86)-C(87)    | 108(4)    |
| C(79)-C(78)-H(78A)   | 109.0     | C(85)-C(86)-C(84)    | 10(4)     |
| N(9)-C(78)-H(78B)    | 109.0     | C(87)-C(86)-C(84)    | 117(2)    |
| C(79)-C(78)-H(78B)   | 109.0     | C(88)-C(87)-C(90)    | 90(3)     |
| H(78A)-C(78)-H(78B)  | 107.8     | C(88)-C(87)-C(86)    | 137(4)    |
| C(81)-C(79)-C(80)    | 111.4(10) | C(90)-C(87)-C(86)    | 115(3)    |
| C(81)-C(79)-C(78)    | 113.8(9)  | C(88)-C(87)-C(89)    | 23(2)     |
| C(80)-C(79)-C(78)    | 109.1(13) | C(90)-C(87)-C(89)    | 101(3)    |
| C(81)-C(79)-H(79)    | 107.4     | C(86)-C(87)-C(89)    | 115(2)    |
| C(80)-C(79)-H(79)    | 107.4     | C(89)-C(88)-C(87)    | 132(5)    |
| C(78)-C(79)-H(79)    | 107.4     | C(89)-C(88)-C(90)    | 136(4)    |
| C(79)-C(80)-H(80A)   | 109.5     | C(87)-C(88)-C(90)    | 51(3)     |
| C(79)-C(80)-H(80B)   | 109.5     | C(88)-C(89)-C(87)    | 26(3)     |
| H(80A)-C(80)-H(80B)  | 109.5     | C(87)-C(90)-C(91)    | 122(3)    |
| C(79)-C(80)-H(80C)   | 109.5     | C(87)-C(90)-C(88)    | 39(2)     |
| H(80A)-C(80)-H(80C)  | 109.5     | C(91)-C(90)-C(88)    | 161(3)    |
| H(80B)-C(80)-H(80C)  | 109.5     | C(93)-C(92)-Cl(1)    | 123(3)    |
| C(79)-C(81)-H(81A)   | 109.5     | C(93)-C(92)-H(92A)   | 106.6     |
| C(79)-C(81)-H(81B)   | 109.5     | Cl(1)-C(92)-H(92A)   | 106.6     |
| H(81A)-C(81)-H(81B)  | 109.5     | C(93)-C(92)-H(92B)   | 106.6     |
| C(79)-C(81)-H(81C)   | 109.5     | Cl(1)-C(92)-H(92B)   | 106.6     |
| H(81A)-C(81)-H(81C)  | 109.5     | H(92A)-C(92)-H(92B)  | 106.6     |
| H(81B)-C(81)-H(81C)  | 109.5     | C(92)-C(93)-Cl(2)    | 124(3)    |
| C(83)-C(82)-C(84)    | 93(5)     | C(92)-C(93)-H(93A)   | 106.4     |
| C(83)-C(82)-C(85)    | 114(5)    | Cl(2)-C(93)-H(93A)   | 106.4     |

| H(93A)-C(93)-H(93B) | 106.4 |
|---------------------|-------|
| C(92)-C(93)-H(93B)  | 106.4 |
| Cl(2)-C(93)-H(93B)  | 106.4 |

| Atom         | $U^{11}$ | $U^{22}$ | <i>U</i> <sup>33</sup> | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------------|----------|----------|------------------------|----------|----------|----------|
| I(1)         | 48(1)    | 37(1)    | 51(1)                  | -6(1)    | -2(1)    | -14(1)   |
| I(2)         | 36(1)    | 50(1)    | 23(1)                  | 1(1)     | -9(1)    | -16(1)   |
| I(3)         | 25(1)    | 25(1)    | 38(1)                  | -8(1)    | 1(1)     | 3(1)     |
| Mo(1)        | 17(1)    | 20(1)    | 21(1)                  | -1(1)    | -1(1)    | 2(1)     |
| Mo(2)        | 27(1)    | 27(1)    | 21(1)                  | -2(1)    | -1(1)    | 1(1)     |
| Mo(3)        | 19(1)    | 24(1)    | 26(1)                  | -1(1)    | -4(1)    | 3(1)     |
| Mo(4)        | 14(1)    | 15(1)    | 17(1)                  | 1(1)     | 0(1)     | -4(1)    |
| Mo(5)        | 13(1)    | 12(1)    | 20(1)                  | 1(1)     | -2(1)    | -1(1)    |
| Mo(6)        | 15(1)    | 12(1)    | 18(1)                  | 1(1)     | 1(1)     | 0(1)     |
| Mo(7)        | 15(1)    | 21(1)    | 22(1)                  | -5(1)    | 1(1)     | 0(1)     |
| Mo(8)        | 17(1)    | 20(1)    | 20(1)                  | -6(1)    | 0(1)     | 1(1)     |
| Mo(9)        | 15(1)    | 22(1)    | 22(1)                  | -7(1)    | -1(1)    | 0(1)     |
| Se(1)        | 31(1)    | 24(1)    | 31(1)                  | -4(1)    | 0(1)     | 3(1)     |
| Se(2)        | 32(1)    | 40(1)    | 39(1)                  | -4(1)    | 5(1)     | 6(1)     |
| Se(3)        | 31(1)    | 36(1)    | 32(1)                  | -5(1)    | -9(1)    | 0(1)     |
| Se(4)        | 48(1)    | 45(1)    | 35(1)                  | 3(1)     | -10(1)   | 3(1)     |
| Se(5)        | 21(1)    | 28(1)    | 32(1)                  | -2(1)    | 1(1)     | 0(1)     |
| Se(6)        | 25(1)    | 29(1)    | 29(1)                  | -6(1)    | 1(1)     | 2(1)     |
| Se(7)        | 48(1)    | 53(1)    | 47(1)                  | 0(1)     | -1(1)    | 6(1)     |
| Se(8)        | 15(1)    | 26(1)    | 26(1)                  | 3(1)     | -2(1)    | -2(1)    |
| Se(9)        | 24(1)    | 28(1)    | 27(1)                  | -3(1)    | 2(1)     | 4(1)     |
| Se(10)       | 21(1)    | 22(1)    | 21(1)                  | 3(1)     | 0(1)     | -2(1)    |
| Se(11)       | 18(1)    | 24(1)    | 32(1)                  | 6(1)     | 2(1)     | -4(1)    |
| Se(12)       | 26(1)    | 19(1)    | 24(1)                  | -2(1)    | 0(1)     | -8(1)    |
| Se(13)       | 36(1)    | 19(1)    | 33(1)                  | 3(1)     | 2(1)     | -2(1)    |
| Se(14)       | 36(1)    | 33(1)    | 43(1)                  | 1(1)     | 2(1)     | 0(1)     |
| Se(15)       | 18(1)    | 25(1)    | 28(1)                  | -5(1)    | -1(1)    | 1(1)     |
| Se(16)       | 25(1)    | 30(1)    | 34(1)                  | -8(1)    | -4(1)    | -3(1)    |
| Se(17)       | 23(1)    | 28(1)    | 26(1)                  | -10(1)   | 2(1)     | 0(1)     |
| Se(18)       | 34(1)    | 41(1)    | 27(1)                  | -6(1)    | -2(1)    | 1(1)     |
| Se(19)       | 23(1)    | 23(1)    | 28(1)                  | -6(1)    | 2(1)     | 0(1)     |
| Se(20)       | 23(1)    | 27(1)    | 34(1)                  | -7(1)    | 6(1)     | -1(1)    |
| Se(21)       | 36(1)    | 47(1)    | 42(1)                  | -7(1)    | 1(1)     | -2(1)    |
| <b>S</b> (1) | 22(1)    | 24(1)    | 29(1)                  | 5(1)     | -5(1)    | -3(1)    |
| S(2)         | 22(1)    | 21(1)    | 27(1)                  | 2(1)     | -5(1)    | -1(1)    |
| S(3)         | 45(1)    | 40(1)    | 26(1)                  | -8(1)    | 4(1)     | -6(1)    |
| S(4)         | 46(1)    | 36(1)    | 25(1)                  | -4(1)    | 6(1)     | -5(1)    |
| S(5)         | 22(1)    | 27(1)    | 56(1)                  | 0(1)     | -6(1)    | 5(1)     |
| S(6)         | 25(1)    | 25(1)    | 46(1)                  | 1(1)     | -5(1)    | 3(1)     |

**Table A.35**. Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| Atom  | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|-----------------|-----------------|----------|----------|----------|
|       |          |                 |                 |          |          |          |
| S(7)  | 20(1)    | 37(1)           | 22(1)           | 5(1)     | -2(1)    | -12(1)   |
| S(8)  | 20(1)    | 26(1)           | 19(1)           | 2(1)     | 0(1)     | -7(1)    |
| S(9)  | 25(1)    | 15(1)           | 32(1)           | 4(1)     | -10(1)   | 0(1)     |
| S(10) | 28(1)    | 13(1)           | 34(1)           | 0(1)     | -13(1)   | -2(1)    |
| S(11) | 27(1)    | 24(1)           | 23(1)           | -3(1)    | 2(1)     | 7(1)     |
| S(12) | 20(1)    | 22(1)           | 28(1)           | -2(1)    | -1(1)    | 6(1)     |
| S(13) | 21(1)    | 22(1)           | 36(1)           | 0(1)     | 9(1)     | 3(1)     |
| S(14) | 24(1)    | 23(1)           | 37(1)           | -2(1)    | 7(1)     | 5(1)     |
| S(15) | 30(1)    | 24(1)           | 23(1)           | -5(1)    | 0(1)     | 7(1)     |
| S(16) | 26(1)    | 24(1)           | 22(1)           | -7(1)    | -3(1)    | 6(1)     |
| S(17) | 20(1)    | 27(1)           | 36(1)           | -12(1)   | -6(1)    | 1(1)     |
| S(18) | 20(1)    | 26(1)           | 42(1)           | -10(1)   | -6(1)    | 2(1)     |
| N(1)  | 20(2)    | 21(3)           | 21(3)           | 0(2)     | -2(2)    | 1(2)     |
| N(2)  | 48(4)    | 40(4)           | 17(3)           | -1(3)    | 2(3)     | 1(3)     |
| N(3)  | 30(3)    | 28(3)           | 36(3)           | -3(3)    | -4(3)    | 9(3)     |
| N(4)  | 21(3)    | 30(3)           | 25(3)           | 6(2)     | 2(2)     | -5(2)    |
| N(5)  | 29(3)    | 14(2)           | 34(3)           | 2(2)     | -7(2)    | -1(2)    |
| N(6)  | 26(3)    | 21(3)           | 29(3)           | 6(2)     | 5(2)     | 6(2)     |
| N(7)  | 21(3)    | 21(3)           | 35(3)           | 2(2)     | 5(2)     | 1(2)     |
| N(8)  | 23(3)    | 28(3)           | 21(3)           | -7(2)    | 0(2)     | 2(2)     |
| N(9)  | 19(3)    | 33(3)           | 29(3)           | -6(2)    | -3(2)    | 3(2)     |
| C(1)  | 16(3)    | 26(3)           | 20(3)           | 0(2)     | 2(2)     | 5(2)     |
| C(2)  | 21(3)    | 29(3)           | 23(3)           | -6(3)    | -4(2)    | -1(3)    |
| C(3)  | 19(3)    | 27(3)           | 38(4)           | -1(3)    | 4(3)     | 2(3)     |
| C(4)  | 22(3)    | 41(5)           | 62(6)           | -7(4)    | -2(3)    | -5(3)    |
| C(5)  | 34(4)    | 41(4)           | 36(4)           | -2(3)    | 9(3)     | 2(3)     |
| C(6)  | 28(3)    | 28(3)           | 19(3)           | 3(2)     | -1(2)    | 3(3)     |
| C(7)  | 25(3)    | 28(3)           | 38(4)           | 4(3)     | 2(3)     | 0(3)     |
| C(8)  | 53(5)    | 29(4)           | 44(5)           | -7(3)    | 6(4)     | 7(4)     |
| C(9)  | 36(4)    | 37(4)           | 51(5)           | 19(4)    | -2(4)    | 5(3)     |
| C(10) | 51(5)    | 38(4)           | 20(3)           | -5(3)    | -4(3)    | 0(4)     |
| C(11) | 60(5)    | 40(4)           | 19(3)           | -1(3)    | 2(3)     | -1(4)    |
| C(12) | 59(6)    | 47(5)           | 28(4)           | -7(4)    | 7(4)     | -1(4)    |
| C(13) | 65(7)    | 58(7)           | 51(6)           | -6(5)    | -2(5)    | 2(5)     |
| C(14) | 76(8)    | 74(8)           | 42(6)           | 7(5)     | 17(5)    | -15(6)   |
| C(15) | 52(5)    | 49(5)           | 22(3)           | -2(3)    | -4(3)    | 0(4)     |
| C(16) | 50(5)    | 46(5)           | 31(4)           | -7(4)    | 6(4)     | 1(4)     |
| C(17) | 76(8)    | 52(7)           | 80(9)           | -16(6)   | 1(7)     | -14(6)   |
| C(18) | 57(6)    | 52(6)           | 39(5)           | -4(4)    | 8(4)     | 5(5)     |

**Table A.35, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

 $U^{11}$  $U^{12}$  $I^{22}$  $I^{33}$  $I^{23}$  $U^{13}$ Atom C(19) 24(3) 25(3) 37(4) 4(3) -2(3)9(3) 39(4) -2(3)C(20) 24(3)40(4)1(3)5(3) 44(5)32(4) 46(5)-4(4)0(4)C(21) -6(3)C(22) 75(8) 47(6) 62(7)-16(5)11(6) 2(5)C(23) 60(6) 55(6) 33(4) -6(4)-9(4) -10(5)36(4)C(24) 21(3)35(4)-3(3)-1(3)10(3)29(4) 48(5) 37(4) -6(4)1(3)9(3) C(25) -8(4)0(4)C(26) 50(5) 64(6) 31(4)-2(5)-5(4)-2(3)C(27) 28(4)52(5) 37(4)6(4) C(28) 21(3) 26(3)18(3) 4(2)4(2)-6(2)C(29) 23(3) 42(4)11(3)5(3) -13(3)38(4)C(33) 37(4) 40(4)18(3) 1(3)-2(3)-5(3)C(37) 25(3) 14(3)32(3) 0(2)-3(3)2(2)C(38) 31(3) 15(3)38(4) 5(3) 1(3)3(3)C(39) 45(4)20(3)42(4)3(3)7(4)5(3) C(40) 45(5)31(4) 72(7)3(4)28(5)0(4)12(5)C(41) 85(8) 51(6) 41(5)20(4)19(6) 0(3)C(42) 44(4)17(3) 37(4)-12(3)-8(3)C(43) 64(6)21(3)38(4) -3(3)-7(4) -7(4)44(6) 51(6) -12(5)-30(6)C(44) 92(9) 8(6) 9(4) C(45) 60(6) 29(4)47(5)0(4)-8(4)C(46) 20(3)32(3) 1(3)3(3)21(3)2(2)C(47) 32(4) 30(4)30(4)1(3)9(3) 9(3) C(48) 46(5)33(4)36(4)9(3) 9(3) 14(3)C(49) 53(6) 70(7) 54(6) 22(5)15(5)-14(5)C(50) 74(7) 57(6) 35(5) 9(4) 10(5)20(5) 2(3)C(51) 20(3)27(3)46(4)3(3)5(3) -17(6)C(53) 80(8) 42(6)68(7)8(5) -5(5)-32(7)C(54) 82(9) 78(9) 65(8) 20(7)-8(7)C(55) 19(3) 26(3)33(4)-2(3)3(3)2(2)C(56) 23(3)27(3) 43(4)1(3)7(3)2(3)57(6) C(57) 50(5)47(5)12(4)24(5)17(5)C(58) 76(8) 84(9) 42(6)-15(6)-3(5)16(7)81(9) 75(9) C(59) 93(10) 23(8)52(8) 32(8) C(60) 34(4) 23(3)38(4) 2(3)7(3) 1(3)C(64) 19(3) 24(3)22(3)-9(2)-1(2)1(2)-2(3)C(65) 28(3) 32(4)23(3)-2(3)4(3)C(66) 52(5) 41(5)48(5)6(4)1(4)-4(4)C(67) 38(5) 82(9) 92(10) 33(8) 3(6) -6(5)

**Table A.35, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| C(68) | 78(9)    | 45(6)    | 109(11)  | 38(7)    | 0(8)     | -3(6)    |
| C(69) | 26(3)    | 36(4)    | 25(3)    | -12(3)   | 0(3)     | 6(3)     |
| C(70) | 34(4)    | 40(4)    | 39(4)    | -21(4)   | -10(3)   | 5(3)     |
| C(71) | 63(6)    | 54(6)    | 49(6)    | -33(5)   | -12(5)   | 13(5)    |
| C(72) | 61(7)    | 50(6)    | 74(8)    | -17(5)   | 10(6)    | -21(5)   |
| C(73) | 20(3)    | 31(3)    | 27(3)    | -5(3)    | -3(2)    | -2(3)    |
| C(74) | 22(3)    | 38(4)    | 35(4)    | -13(3)   | -5(3)    | -8(3)    |
| C(78) | 23(3)    | 38(4)    | 53(5)    | -1(4)    | -14(3)   | 7(3)     |
| C(79) | 30(4)    | 62(6)    | 75(7)    | -28(6)   | 1(4)     | 11(4)    |
| C(80) | 59(8)    | 57(8)    | 240(30)  | -37(12)  | 25(12)   | 24(7)    |
| C(81) | 54(6)    | 76(8)    | 66(7)    | -11(6)   | 17(6)    | 3(6)     |

**Table A.35, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10})$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| H atom          | Х     | у     | Z    | U(eq)    |
|-----------------|-------|-------|------|----------|
| H(2A)           | 192   | 7894  | 3031 | 29       |
| H(2B)           | 5     | 8514  | 2721 | 29       |
| H(3)            | -530  | 9393  | 3069 | 34       |
| H(4A)           | -847  | 8092  | 2767 | 62       |
| H(4B)           | -1074 | 8008  | 3125 | 62       |
| H(4C)           | -640  | 7299  | 3024 | 62       |
| H(5A)           | -260  | 8000  | 3568 | 56       |
| H(5B)           | -683  | 8794  | 3600 | 56       |
| H(5C)           | -133  | 9148  | 3583 | 56       |
| H(6A)           | 328   | 10012 | 2601 | 30       |
| H(6B)           | 772   | 10442 | 2809 | 30       |
| H(0D)           | -228  | 10782 | 2956 | 37       |
| H(8A)           | 290   | 10794 | 3440 | 63       |
| H(8B)           | -6    | 11791 | 3381 | 63       |
| H(8C)           | 553   | 11736 | 3290 | 63       |
| H(9A)           | -94   | 12375 | 2761 | 62       |
| H(9B)           | 77    | 11616 | 2486 | 62<br>62 |
| H(9C)           | 468   | 12153 | 2716 | 62       |
| H(11A)          | 834   | 8396  | 5772 | 47       |
| H(11B)          | 708   | 7897  | 5427 | 47       |
| H(12)           | 93    | 9280  | 5746 | 54       |
| H(12)<br>H(13A) | -46   | 9294  | 5173 | 87       |
| H(13B)          | -499  | 8815  | 5352 | 87       |
| H(13C)          | -116  | 8124  | 5174 | 87       |
| H(14A)          | -69   | 7203  | 5683 | 96       |
| H(14B)          | -361  | 7947  | 5910 | 96       |
| H(14C)          | 184   | 7663  | 6003 | 96       |
| H(15A)          | 1403  | 10247 | 5594 | 49       |
| H(15B)          | 947   | 10063 | 5820 | 49       |
| H(16)           | 866   | 11231 | 5236 | 51       |
| H(17A)          | 1013  | 12638 | 5555 | 104      |
| H(17B)          | 1467  | 11914 | 5589 | 104      |
| H(17C)          | 1084  | 11979 | 5878 | 104      |
| H(18A)          | 116   | 10789 | 5432 | 74       |
| H(18B)          | 191   | 11940 | 5500 | 74       |
| H(18C)          | 257   | 11163 | 5793 | 74       |
| H(20A)          | 2884  | 4395  | 4013 | 41       |
| H(20B)          | 3411  | 4076  | 4139 | 41       |
| H(21)           | 3680  | 4547  | 3581 | 49       |
| H(22A)          | 3691  | 2924  | 3753 | 92       |

**Table A.36**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2CN^iBu_2)_3]I \cdot \frac{1}{6}(ClCH_2CH_2Cl) \cdot \frac{1}{3}(C_5H_{10}).$
| H atom | х    | У    | Z    | U(eq) |
|--------|------|------|------|-------|
| H(22B) | 3518 | 2973 | 3376 | 92    |
| H(22C) | 3132 | 2802 | 3659 | 92    |
| H(23A) | 2671 | 4310 | 3429 | 74    |
| H(23B) | 3080 | 4419 | 3159 | 74    |
| H(23C) | 2962 | 5322 | 3397 | 74    |
| H(24A) | 3955 | 6367 | 4047 | 37    |
| H(24B) | 4062 | 5212 | 4080 | 37    |
| H(25)  | 3723 | 6476 | 4591 | 46    |
| H(26A) | 3843 | 4409 | 4656 | 72    |
| H(26B) | 3338 | 4977 | 4664 | 72    |
| H(26C) | 3728 | 5139 | 4952 | 72    |
| H(27A) | 4463 | 6231 | 4847 | 59    |
| H(27B) | 4570 | 6518 | 4475 | 59    |
| H(27C) | 4608 | 5395 | 4591 | 59    |
| H(29A) | 365  | 3836 | 3442 | 41    |
| H(29B) | 434  | 3959 | 3055 | 41    |
| H(30A) | 75   | 5576 | 3077 | 48    |
| H(31A) | 237  | 6021 | 3638 | 77    |
| H(31B) | -323 | 6165 | 3549 | 77    |
| H(31C) | -149 | 5225 | 3756 | 77    |
| H(32A) | -416 | 4181 | 2951 | 79    |
| H(32B) | -553 | 4084 | 3330 | 79    |
| H(32C) | -727 | 5024 | 3123 | 79    |
| H(30B) | 41   | 4574 | 3660 | 48    |
| H(31D) | -329 | 5958 | 3453 | 77    |
| H(31E) | 245  | 6055 | 3434 | 77    |
| H(31F) | -66  | 5801 | 3110 | 77    |
| H(32D) | -734 | 4372 | 3396 | 79    |
| H(32E) | -480 | 4216 | 3049 | 79    |
| H(32F) | -414 | 3411 | 3333 | 79    |
| H(33A) | 865  | 5079 | 3812 | 38    |
| H(33B) | 1398 | 5155 | 3671 | 38    |
| H(34A) | 903  | 3358 | 3774 | 47    |
| H(35A) | 1653 | 2629 | 3663 | 79    |
| H(35B) | 1468 | 3249 | 3352 | 79    |
| H(35C) | 1879 | 3689 | 3590 | 79    |
| H(36A) | 1451 | 3164 | 4234 | 79    |
| H(36B) | 1672 | 4232 | 4166 | 79    |
| H(36C) | 1127 | 4126 | 4284 | 79    |
| H(34B) | 1757 | 4035 | 3583 | 47    |

**Table A.36, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>).

| H atom | Х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
| (35D)  | 1538 | 2434  | 3661 | 79    |
| H(35E) | 1001 | 2767  | 3748 | 79    |
| H(35F) | 1201 | 2934  | 3386 | 79    |
| H(36D) | 1751 | 4521  | 4155 | 79    |
| H(36E) | 1355 | 3694  | 4226 | 79    |
| H(36F) | 1887 | 3381  | 4121 | 79    |
| H(38A) | 1882 | 12191 | 2072 | 34    |
| H(38B) | 1630 | 11232 | 1919 | 34    |
| H(39)  | 2260 | 11025 | 1549 | 43    |
| H(40A) | 2700 | 12787 | 1795 | 73    |
| H(40B) | 2913 | 12075 | 1520 | 73    |
| H(40C) | 2894 | 11716 | 1893 | 73    |
| H(41A) | 1904 | 13015 | 1540 | 88    |
| H(41B) | 1613 | 12091 | 1394 | 88    |
| H(41C) | 2101 | 12445 | 1225 | 88    |
| H(42A) | 2523 | 12092 | 2427 | 39    |
| H(42B) | 2749 | 11064 | 2542 | 39    |
| H(43)  | 2114 | 10772 | 2893 | 49    |
| H(44A) | 2773 | 11819 | 3067 | 94    |
| H(44B) | 2298 | 11911 | 3283 | 94    |
| H(44C) | 2417 | 12736 | 3016 | 94    |
| H(45A) | 1679 | 12560 | 2666 | 68    |
| H(45B) | 1476 | 11901 | 2959 | 68    |
| H(45C) | 1474 | 11480 | 2592 | 68    |
| H(47A) | 3505 | 3604  | 1467 | 37    |
| H(47B) | 4033 | 3240  | 1578 | 37    |
| H(48)  | 3833 | 5174  | 1328 | 46    |
| H(49A) | 4514 | 5240  | 1656 | 88    |
| H(49B) | 4683 | 5323  | 1283 | 88    |
| H(49C) | 4743 | 4305  | 1477 | 88    |
| H(50A) | 4266 | 3584  | 979  | 83    |
| H(50B) | 4168 | 4659  | 832  | 83    |
| H(50C) | 3724 | 3957  | 918  | 83    |
| H(51A) | 4181 | 4689  | 2258 | 37    |
| H(51B) | 4408 | 3821  | 2046 | 37    |
| H(52A) | 3624 | 3511  | 2479 | 55    |
| H(53A) | 3815 | 1858  | 2438 | 96    |
| H(53B) | 3680 | 2306  | 2085 | 96    |
| H(53C) | 4233 | 2112  | 2185 | 96    |
| H(54A) | 4318 | 4055  | 2780 | 113   |

**Table A.36, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>).

| H atom | Х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
| H(54B) | 4197 | 2937  | 2873 | 113   |
| H(54C) | 4629 | 3178  | 2629 | 113   |
| H(56A) | 6025 | 7380  | 5429 | 37    |
| H(56B) | 6227 | 8484  | 5417 | 37    |
| H(57)  | 5863 | 8712  | 4887 | 61    |
| H(58A) | 5592 | 6692  | 4912 | 101   |
| H(58B) | 5519 | 7396  | 4600 | 101   |
| H(58C) | 5221 | 7594  | 4927 | 101   |
| H(59A) | 6678 | 8177  | 4935 | 124   |
| H(59B) | 6441 | 7712  | 4610 | 124   |
| H(59C) | 6510 | 7050  | 4932 | 124   |
| H(60A) | 5075 | 9595  | 5538 | 38    |
| H(60B) | 5355 | 9577  | 5198 | 38    |
| H(61A) | 6082 | 10074 | 5461 | 46    |
| H(62A) | 5531 | 11320 | 5267 | 88    |
| H(62B) | 5304 | 11399 | 5625 | 88    |
| H(62C) | 5850 | 11733 | 5567 | 88    |
| H(63A) | 6126 | 10519 | 5998 | 93    |
| H(63B) | 5588 | 10129 | 6052 | 93    |
| H(63C) | 6008 | 9371  | 5961 | 93    |
| H(61B) | 5360 | 9860  | 5931 | 46    |
| H(62D) | 5487 | 11612 | 5812 | 88    |
| H(62E) | 5570 | 11348 | 5435 | 88    |
| H(62F) | 5050 | 11190 | 5593 | 88    |
| H(63D) | 6168 | 10430 | 6007 | 93    |
| H(63E) | 6188 | 9338  | 5860 | 93    |
| H(63F) | 6276 | 10264 | 5626 | 93    |
| H(65A) | 4364 | 6053  | 8147 | 33    |
| H(65B) | 4594 | 5462  | 7848 | 33    |
| H(66)  | 3858 | 4580  | 7776 | 56    |
| H(67A) | 3560 | 5443  | 8369 | 106   |
| H(67B) | 3292 | 4550  | 8186 | 106   |
| H(67C) | 3308 | 5613  | 8018 | 106   |
| H(68A) | 4316 | 4379  | 8405 | 116   |
| H(68B) | 4514 | 3921  | 8071 | 116   |
| H(68C) | 4021 | 3523  | 8221 | 116   |
| H(69A) | 3609 | 7100  | 7993 | 35    |
| H(69B) | 3697 | 7690  | 7659 | 35    |
| H(70)  | 4381 | 7641  | 8194 | 45    |
| H(71A) | 4131 | 9257  | 8304 | 83    |

**Table A.36, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>).

| H atom | Х    | У    | Z    | U(eq) |
|--------|------|------|------|-------|
| H(71B) | 3687 | 8514 | 8336 | 83    |
| H(71C) | 3733 | 9189 | 8016 | 83    |
| H(72A) | 4754 | 7943 | 7696 | 92    |
| H(72B) | 4771 | 8918 | 7916 | 92    |
| H(72C) | 4389 | 8828 | 7619 | 92    |
| H(74A) | 1857 | 3826 | 5465 | 38    |
| H(74B) | 2368 | 3419 | 5599 | 38    |
| H(75A) | 2782 | 4025 | 5120 | 39    |
| H(76A) | 2393 | 2489 | 5107 | 81    |
| H(76B) | 1923 | 2979 | 4942 | 81    |
| H(76C) | 2417 | 2932 | 4744 | 81    |
| H(77A) | 2374 | 5448 | 5010 | 77    |
| H(77B) | 2408 | 4786 | 4686 | 77    |
| H(77C) | 1914 | 4833 | 4884 | 77    |
| H(75B) | 2772 | 3743 | 5178 | 39    |
| H(76D) | 2418 | 2587 | 4816 | 81    |
| H(76E) | 2391 | 2209 | 5187 | 81    |
| H(76F) | 1921 | 2658 | 5009 | 81    |
| H(77D) | 2418 | 4304 | 4687 | 77    |
| H(77E) | 1923 | 4504 | 4872 | 77    |
| H(77F) | 2394 | 5131 | 4965 | 77    |
| H(78A) | 1700 | 5514 | 5439 | 46    |
| H(78B) | 2072 | 6305 | 5586 | 46    |
| H(79)  | 1879 | 5799 | 6128 | 67    |
| H(80A) | 1044 | 6423 | 5771 | 178   |
| H(80B) | 1478 | 7142 | 5873 | 178   |
| H(80C) | 1159 | 6638 | 6151 | 178   |
| H(81A) | 1231 | 4803 | 6233 | 97    |
| H(81B) | 1613 | 4202 | 6021 | 97    |
| H(81C) | 1135 | 4631 | 5849 | 97    |
| H(92A) | 584  | 6332 | 4447 | 121   |
| H(92B) | 258  | 6181 | 4760 | 121   |
| H(93A) | 958  | 5971 | 4932 | 134   |
| H(93B) | 1122 | 5390 | 4615 | 134   |

**Table A.36, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>6</sub>(ClCH<sub>2</sub>CH<sub>2</sub>Cl)·<sup>1</sup>/<sub>3</sub>(C<sub>5</sub>H<sub>10</sub>).



The thermal ellipsoid plot is drawn at the 50% level. All H atoms are omitted for clarity



and

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group

Unit cell dimensions

Density (calculated) Absorption coefficient

Volume

F(000)

Ζ

| Э. |                                                                                                                                                                                                                                                                |                                                                                             |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| ). | JPD1296_0m_a<br>$C_{25}H_{56}Mo_3O_{8.25}P_4S_8Se_7$<br>1709.59<br>150(2) K<br>0.71073 Å<br>Triclinic<br><i>P</i> -1<br><i>a</i> = 13.7582(4) Å<br><i>b</i> = 14.3562(4) Å<br><i>c</i> = 16.1940(5) Å<br>2780.59(15) Å^3<br>2<br>2.042 g/cm^3<br>5.701 mm^{-1} | $\alpha = 72.260(2)^{\circ}$<br>$\beta = 72.906(2)^{\circ}$<br>$\gamma = 68.909(2)^{\circ}$ |  |
|    | 1648                                                                                                                                                                                                                                                           |                                                                                             |  |

Structure

Refinement

for

TableA.37,Cont'd.Crystal $[Mo_3Se_7(S_2PO^iPr_2)_3][S_2PO^iPr_2] \cdot \frac{1}{4}Et_2O.$ 

Crystal size  $\theta$  range for data collection Index ranges Reflections collected Independent reflections Completeness to  $\theta = 25.242^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on  $F^2$ Final R indices [I>2 $\sigma$ (I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Data and Structure Refinement for

0.326 x 0.173 x 0.139 mm<sup>3</sup> 1.887 to 26.517°  $-17 \le h \le 17, -17 \le k \le 18, -20 \le l \le 20$ 105773 11505 [R(int) = 0.0801] 99.9 % Semi-empirical from equivalents 0.7465 and 0.6798 Full-matrix least-squares on  $F^2$ 11505 / 0 / 514 1.028 R1 = 0.0656, wR2 = 0.1572 R1 = 0.1038, wR2 = 0.1916 n/a 2.095 and -2.175 e·Å<sup>-3</sup>

| Atom            | Х         | У         | Z         | U(eq) |
|-----------------|-----------|-----------|-----------|-------|
| Mo(1)           | 3120(1)   | 2507(1)   | 7940(1)   | 21(1) |
| Mo(2)           | 2762(1)   | 4609(1)   | 7352(1)   | 22(1) |
| Mo(3)           | 4836(1)   | 3291(1)   | 7174(1)   | 23(1) |
| Se(1)           | 2037(1)   | 3586(1)   | 6768(1)   | 27(1) |
| Se(2)           | 1217(1)   | 3819(1)   | 8198(1)   | 32(1) |
| Se(3)           | 4056(1)   | 4571(1)   | 5895(1)   | 37(1) |
| Se(4)           | 4436(1)   | 5292(1)   | 6785(1)   | 33(1) |
| Se(5)           | 4484(1)   | 2041(1)   | 6561(1)   | 27(1) |
| Se(6)           | 5061(1)   | 1354(1)   | 7899(1)   | 34(1) |
| Se(7)           | 3631(1)   | 3553(1)   | 8616(1)   | 38(1) |
| S(1)            | 2496(2)   | 1036(2)   | 7904(2)   | 30(1) |
| $\mathbf{S}(2)$ | 2698(2)   | 1638(2)   | 9560(2)   | 32(1) |
| S(3)            | 1528(2)   | 6151(2)   | 6481(2)   | 32(1) |
| S(4)            | 2010(2)   | 5869(2)   | 8349(2)   | 31(1) |
| S(5)            | 6582(2)   | 3040(2)   | 5995(2)   | 34(1) |
| S(6)            | 6212(2)   | 3139(2)   | 7988(2)   | 36(1) |
| S(7)            | 3693(3)   | 746(2)    | 5623(2)   | 48(1) |
| S(8)            | 3567(2)   | 3249(2)   | 5033(2)   | 28(1) |
| P(1)            | 2191(2)   | 679(2)    | 9224(2)   | 30(1) |
| P(2)            | 1116(2)   | 6850(2)   | 7475(2)   | 31(1) |
| P(3)            | 7362(2)   | 2783(2)   | 6939(2)   | 33(1) |
| P(4)            | 3066(2)   | 2113(2)   | 4975(2)   | 35(1) |
| O(1)            | 2695(6)   | -487(6)   | 9628(5)   | 37(2) |
| O(2)            | 996(6)    | 711(6)    | 9686(5)   | 38(2) |
| O(3)            | -120(6)   | 7200(6)   | 7886(5)   | 38(2) |
| O(4)            | 1248(6)   | 7951(5)   | 7184(5)   | 37(2) |
| O(5)            | 8216(6)   | 3361(6)   | 6691(5)   | 38(2) |
| O(6)            | 8162(7)   | 1672(6)   | 7113(6)   | 46(2) |
| O(7)            | 3238(7)   | 2193(7)   | 3929(5)   | 44(2) |
| O(8)            | 1813(7)   | 2514(6)   | 5207(6)   | 45(2) |
| $\mathbf{C}(1)$ | 3765(11)  | -1085(11) | 9319(8)   | 52(3) |
| C(2)            | 3718(14)  | -2154(11) | 9480(10)  | 66(4) |
| C(3)            | 4523(15)  | -1048(12) | 9792(15)  | 90(6) |
| C(4)            | 133(9)    | 1682(9)   | 9624(9)   | 46(3) |
| C(5)            | -539(11)  | 1666(12)  | 10537(10) | 60(4) |
| C(6)            | -473(13)  | 1702(14)  | 8980(10)  | 73(5) |
| C(7)            | -744(10)  | 6477(9)   | 8252(8)   | 42(3) |
| C(8)            | -1834(10) | 7074(11)  | 8033(10)  | 56(4) |
| C(9)            | -818(11)  | 6122(12)  | 9223(9)   | 62(4) |

**Table A.38**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>][S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>]·<sup>1</sup>/<sub>4</sub>Et<sub>2</sub>O. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х         | у        | Z         | U(eq)   |
|--------|-----------|----------|-----------|---------|
| C(10)  | 2266(11)  | 8133(9)  | 6743(8)   | 46(3)   |
| C(11)  | 2216(16)  | 8659(12) | 5790(9)   | 71(5)   |
| C(12)  | 2460(12)  | 8748(11) | 7255(9)   | 54(3)   |
| C(13)  | 7963(11)  | 4485(9)  | 6421(9)   | 48(3)   |
| C(14)  | 8021(19)  | 4851(15) | 7171(14)  | 97(7)   |
| C(15)  | 8764(13)  | 4721(11) | 5601(11)  | 71(5)   |
| C(16)  | 7909(11)  | 720(9)   | 7274(11)  | 57(4)   |
| C(17A) | 7880(20)  | 190(20)  | 8163(18)  | 66(6)   |
| C(18A) | 8750(20)  | 130(20)  | 6583(18)  | 63(6)   |
| C(17B) | 8560(40)  | 60(40)   | 8100(30)  | 66(6)   |
| C(18B) | 8180(40)  | 240(30)  | 6600(30)  | 63(6)   |
| C(19)  | 4301(11)  | 1806(10) | 3436(8)   | 48(3)   |
| C(20)  | 4289(14)  | 933(12)  | 3091(10)  | 70(5)   |
| C(21)  | 4570(13)  | 2689(13) | 2717(10)  | 67(4)   |
| C(22)  | 1205(11)  | 1789(11) | 5373(10)  | 53(3)   |
| C(23)  | 456(14)   | 2195(16) | 4744(12)  | 83(5)   |
| C(24)  | 671(11)   | 1609(16) | 6332(10)  | 76(5)   |
| O(9)   | -5000     | 5000     | 10000     | 170(20) |
| C(25B) | -4280(70) | 4720(70) | 10570(60) | 101(19) |
| C(25A) | -3930(80) | 5010(70) | 9560(60)  | 101(19) |
| C(26)  | -3000(30) | 4720(30) | 9570(30)  | 80(10)  |

**Table A.38, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Mo(1)-Se(7)    | 2.4831(14) | O(1)-C(1)    | 1.440(15) |
|----------------|------------|--------------|-----------|
| Mo(1)-S(2)     | 2.532(2)   | O(2)-C(4)    | 1.468(15) |
| Mo(1)-Se(1)    | 2.5357(13) | O(3)-C(7)    | 1.461(14) |
| Mo(1)-Se(5)    | 2.5498(12) | O(4)-C(10)   | 1.449(14) |
| Mo(1)-S(1)     | 2.571(3)   | O(5)-C(13)   | 1.475(13) |
| Mo(1)-Se(6)    | 2.5798(14) | O(6)-C(16)   | 1.460(15) |
| Mo(1)-Se(2)    | 2.6197(13) | O(7)-C(19)   | 1.444(15) |
| Mo(1)- $Mo(2)$ | 2.7775(11) | O(8)-C(22)   | 1.477(15) |
| Mo(1)- $Mo(3)$ | 2.7782(11) | C(1)-C(3)    | 1.49(2)   |
| Mo(2)-Se(7)    | 2.4817(14) | C(1)-C(2)    | 1.50(2)   |
| Mo(2)-Se(3)    | 2.5059(13) | C(1)-H(1)    | 1.0000    |
| Mo(2)-S(4)     | 2.529(3)   | C(2)-H(2A)   | 0.9800    |
| Mo(2)-Se(1)    | 2.5499(13) | C(2)-H(2B)   | 0.9800    |
| Mo(2)-S(3)     | 2.564(3)   | C(2)-H(2C)   | 0.9800    |
| Mo(2)-Se(2)    | 2.5998(13) | C(3)-H(3A)   | 0.9800    |
| Mo(2)-Se(4)    | 2.6338(13) | C(3)-H(3B)   | 0.9800    |
| Mo(2)- $Mo(3)$ | 2.7865(12) | C(3)-H(3C)   | 0.9800    |
| Mo(3)-Se(7)    | 2.4799(14) | C(4)-C(5)    | 1.494(18) |
| Mo(3)-S(6)     | 2.522(3)   | C(4)-C(6)    | 1.50(2)   |
| Mo(3)-Se(3)    | 2.5278(14) | C(4)-H(4)    | 1.0000    |
| Mo(3)-Se(5)    | 2.5378(13) | C(5)-H(5A)   | 0.9800    |
| Mo(3)-S(5)     | 2.579(3)   | C(5)-H(5B)   | 0.9800    |
| Mo(3)-Se(6)    | 2.6105(13) | C(5)-H(5C)   | 0.9800    |
| Mo(3)-Se(4)    | 2.6290(13) | C(6)-H(6A)   | 0.9800    |
| Se(1)-Se(2)    | 2.3263(14) | C(6)-H(6B)   | 0.9800    |
| Se(3)-Se(4)    | 2.2719(17) | C(6)-H(6C)   | 0.9800    |
| Se(5)-Se(6)    | 2.3335(15) | C(7)-C(9)    | 1.482(18) |
| S(1)-P(1)      | 1.993(4)   | C(7)-C(8)    | 1.521(18) |
| S(2)-P(1)      | 2.011(4)   | C(7)-H(7)    | 1.0000    |
| S(3)-P(2)      | 1.989(4)   | C(8)-H(8A)   | 0.9800    |
| S(4)-P(2)      | 2.014(4)   | C(8)-H(8B)   | 0.9800    |
| S(5)-P(3)      | 1.990(4)   | C(8)-H(8C)   | 0.9800    |
| S(6)-P(3)      | 2.004(4)   | C(9)-H(9A)   | 0.9800    |
| S(7)-P(4)      | 1.938(4)   | C(9)-H(9B)   | 0.9800    |
| S(8)-P(4)      | 2.020(4)   | C(9)-H(9C)   | 0.9800    |
| P(1)-O(1)      | 1.574(8)   | C(10)-C(11)  | 1.507(19) |
| P(1)-O(2)      | 1.583(8)   | C(10)-C(12)  | 1.513(19) |
| P(2)-O(4)      | 1.567(8)   | C(10)-H(10)  | 1.0000    |
| P(2)-O(3)      | 1.585(8)   | C(11)-H(11A) | 0.9800    |
| P(3)-O(5)      | 1.565(8)   | C(11)-H(11B) | 0.9800    |
| P(3)-O(6)      | 1.574(8)   | C(11)-H(11C) | 0.9800    |
| P(4)-O(8)      | 1.575(9)   | C(12)-H(12A) | 0.9800    |
| P(4)-O(7)      | 1.613(8)   | C(12)-H(12B) | 0.9800    |

**Table A.39.** Bond lengths (Å) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| C(12)-H(12C)  | 0.9800    | C(24)-H(24B)  | 0.9800   |
|---------------|-----------|---------------|----------|
| C(13)-C(15)   | 1.492(18) | C(24)-H(24C)  | 0.9800   |
| C(13)-C(14)   | 1.49(2)   | O(9)-C(25B)#1 | 1.41(9)  |
| C(13)-H(13)   | 1.0000    | O(9)-C(25B)   | 1.41(9)  |
| C(14)-H(14A)  | 0.9800    | O(9)-C(25A)#1 | 1.44(10) |
| C(14)-H(14B)  | 0.9800    | O(9)-C(25A)   | 1.44(10) |
| C(14)-H(14C)  | 0.9800    | C(25A)-C(26)  | 1.19(9)  |
| C(15)-H(15A)  | 0.9800    |               |          |
| C(15)-H(15B)  | 0.9800    |               |          |
| C(15)-H(15C)  | 0.9800    |               |          |
| C(16)-C(18B)  | 1.36(4)   |               |          |
| C(16)-C(17A)  | 1.40(3)   |               |          |
| C(16)-C(18A)  | 1.55(3)   |               |          |
| C(16)-C(17B)  | 1.68(5)   |               |          |
| C(16)-H(16)   | 1.0000    |               |          |
| C(17A)-H(17A) | 0.9800    |               |          |
| C(17A)-H(17B) | 0.9800    |               |          |
| C(17A)-H(17C) | 0.9800    |               |          |
| C(18A)-H(18A) | 0.9800    |               |          |
| C(18A)-H(18B) | 0.9800    |               |          |
| C(18A)-H(18C) | 0.9800    |               |          |
| C(17B)-H(17D) | 0.9800    |               |          |
| C(17B)-H(17E) | 0.9800    |               |          |
| C(17B)-H(17F) | 0.9800    |               |          |
| C(18B)-H(18D) | 0.9800    |               |          |
| C(18B)-H(18E) | 0.9800    |               |          |
| C(18B)-H(18F) | 0.9800    |               |          |
| C(19)-C(21)   | 1.51(2)   |               |          |
| C(19)-C(20)   | 1.53(2)   |               |          |
| C(19)-H(19)   | 1.0000    |               |          |
| C(20)-H(20A)  | 0.9800    |               |          |
| C(20)-H(20B)  | 0.9800    |               |          |
| C(20)-H(20C)  | 0.9800    |               |          |
| C(21)-H(21A)  | 0.9800    |               |          |
| C(21)-H(21B)  | 0.9800    |               |          |
| C(21)-H(21C)  | 0.9800    |               |          |
| C(22)-C(24)   | 1.50(2)   |               |          |
| C(22)-C(23)   | 1.50(2)   |               |          |
| C(22)-H(22)   | 1.0000    |               |          |
| C(23)-H(23A)  | 0.9800    |               |          |
| C(23)-H(23B)  | 0.9800    |               |          |
| C(23)-H(23C)  | 0.9800    |               |          |
| C(24)-H(24A)  | 0.9800    |               |          |

**Table A.39, Cont'd.** Bond lengths (Å) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| Se(7)-Mo(1)-S(2)  | 79.92(7)  | Se(3)-Mo(2)-S(3)  | 85.46(7)  |
|-------------------|-----------|-------------------|-----------|
| Se(7)-Mo(1)-Se(1) | 112.73(5) | S(4)-Mo(2)-S(3)   | 76.72(9)  |
| S(2)-Mo(1)-Se(1)  | 135.35(8) | Se(1)-Mo(2)-S(3)  | 83.32(7)  |
| Se(7)-Mo(1)-Se(5) | 112.17(5) | Se(7)-Mo(2)-Se(2) | 85.40(4)  |
| S(2)-Mo(1)-Se(5)  | 136.41(7) | Se(3)-Mo(2)-Se(2) | 135.60(5) |
| Se(1)-Mo(1)-Se(5) | 80.44(4)  | S(4)-Mo(2)-Se(2)  | 88.52(7)  |
| Se(7)-Mo(1)-S(1)  | 156.59(7) | Se(1)-Mo(2)-Se(2) | 53.70(4)  |
| S(2)-Mo(1)-S(1)   | 76.78(8)  | S(3)-Mo(2)-Se(2)  | 91.93(7)  |
| Se(1)-Mo(1)-S(1)  | 85.89(7)  | Se(7)-Mo(2)-Se(4) | 84.30(4)  |
| Se(5)-Mo(1)-S(1)  | 83.92(7)  | Se(3)-Mo(2)-Se(4) | 52.39(4)  |
| Se(7)-Mo(1)-Se(6) | 84.57(5)  | S(4)-Mo(2)-Se(4)  | 86.67(7)  |
| S(2)-Mo(1)-Se(6)  | 87.71(7)  | Se(1)-Mo(2)-Se(4) | 134.14(5) |
| Se(1)-Mo(1)-Se(6) | 134.38(5) | S(3)-Mo(2)-Se(4)  | 96.36(7)  |
| Se(5)-Mo(1)-Se(6) | 54.11(4)  | Se(2)-Mo(2)-Se(4) | 169.20(5) |
| S(1)-Mo(1)-Se(6)  | 92.31(7)  | Se(7)-Mo(2)-Mo(1) | 56.01(4)  |
| Se(7)-Mo(1)-Se(2) | 84.95(4)  | Se(3)-Mo(2)-Mo(1) | 96.91(4)  |
| S(2)-Mo(1)-Se(2)  | 87.35(7)  | S(4)-Mo(2)-Mo(1)  | 124.75(7) |
| Se(1)-Mo(1)-Se(2) | 53.62(4)  | Se(1)-Mo(2)-Mo(1) | 56.65(3)  |
| Se(5)-Mo(1)-Se(2) | 133.80(5) | S(3)-Mo(2)-Mo(1)  | 138.85(7) |
| S(1)-Mo(1)-Se(2)  | 96.07(7)  | Se(2)-Mo(2)-Mo(1) | 58.20(3)  |
| Se(6)-Mo(1)-Se(2) | 169.05(5) | Se(4)-Mo(2)-Mo(1) | 117.57(4) |
| Se(7)-Mo(1)-Mo(2) | 55.96(4)  | Se(7)-Mo(2)-Mo(3) | 55.80(4)  |
| S(2)-Mo(1)-Mo(2)  | 122.99(7) | Se(3)-Mo(2)-Mo(3) | 56.76(3)  |
| Se(1)-Mo(1)-Mo(2) | 57.14(3)  | S(4)-Mo(2)-Mo(3)  | 123.86(7) |
| Se(5)-Mo(1)-Mo(2) | 95.86(4)  | Se(1)-Mo(2)-Mo(3) | 95.30(4)  |
| S(1)-Mo(1)-Mo(2)  | 142.27(7) | S(3)-Mo(2)-Mo(3)  | 141.85(7) |
| Se(6)-Mo(1)-Mo(2) | 118.08(4) | Se(2)-Mo(2)-Mo(3) | 117.90(4) |
| Se(2)-Mo(1)-Mo(2) | 57.50(3)  | Se(4)-Mo(2)-Mo(3) | 57.95(3)  |
| Se(7)-Mo(1)-Mo(3) | 55.91(3)  | Mo(1)-Mo(2)-Mo(3) | 59.91(3)  |
| S(2)-Mo(1)-Mo(3)  | 123.87(7) | Se(7)-Mo(3)-S(6)  | 81.79(7)  |
| Se(1)-Mo(1)-Mo(3) | 95.83(4)  | Se(7)-Mo(3)-Se(3) | 111.20(5) |
| Se(5)-Mo(1)-Mo(3) | 56.69(3)  | S(6)-Mo(3)-Se(3)  | 135.13(8) |
| S(1)-Mo(1)-Mo(3)  | 139.41(7) | Se(7)-Mo(3)-Se(5) | 112.69(5) |
| Se(6)-Mo(1)-Mo(3) | 58.17(3)  | S(6)-Mo(3)-Se(5)  | 133.59(8) |
| Se(2)-Mo(1)-Mo(3) | 117.50(4) | Se(3)-Mo(3)-Se(5) | 82.50(4)  |
| Mo(2)-Mo(1)-Mo(3) | 60.21(3)  | Se(7)-Mo(3)-S(5)  | 158.07(8) |
| Se(7)-Mo(2)-Se(3) | 111.88(5) | S(6)-Mo(3)-S(5)   | 76.40(9)  |
| Se(7)-Mo(2)-S(4)  | 80.90(7)  | Se(3)-Mo(3)-S(5)  | 83.47(7)  |
| Se(3)-Mo(2)-S(4)  | 133.17(7) | Se(5)-Mo(3)-S(5)  | 84.59(7)  |
| Se(7)-Mo(2)-Se(1) | 112.29(5) | Se(7)-Mo(3)-Se(6) | 83.99(4)  |
| Se(3)-Mo(2)-Se(1) | 82.03(4)  | S(6)-Mo(3)-Se(6)  | 86.54(8)  |
| S(4)-Mo(2)-Se(1)  | 136.54(7) | Se(3)-Mo(3)-Se(6) | 135.95(5) |
| Se(7)-Mo(2)-S(3)  | 157.52(7) | Se(5)-Mo(3)-Se(6) | 53.88(4)  |

**Table A.40.** Bond angles (deg.) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| S(5)-Mo(3)-Se(6)         | 96.78(7)  | P(1)-S(1)-Mo(1) | 88.82(12)  |
|--------------------------|-----------|-----------------|------------|
| Se(7)-Mo(3)-Se(4)        | 84.44(4)  | P(1)-S(2)-Mo(1) | 89.51(12)  |
| S(6)-Mo(3)-Se(4)         | 88.86(8)  | P(2)-S(3)-Mo(2) | 89.25(12)  |
| Se(3)-Mo(3)-Se(4)        | 52.24(4)  | P(2)-S(4)-Mo(2) | 89.69(12)  |
| Se(5)-Mo(3)-Se(4)        | 134.57(5) | P(3)-S(5)-Mo(3) | 88.43(12)  |
| S(5)-Mo(3)-Se(4)         | 92.84(7)  | P(3)-S(6)-Mo(3) | 89.70(13)  |
| Se(6)-Mo(3)-Se(4)        | 168.04(5) | O(1)-P(1)-O(2)  | 96.0(4)    |
| Se(7)-Mo(3)-Mo(1)        | 56.01(4)  | O(1)-P(1)-S(1)  | 113.5(3)   |
| S(6)-Mo(3)-Mo(1)         | 124.14(7) | O(2)-P(1)-S(1)  | 115.3(3)   |
| Se(3)-Mo(3)-Mo(1)        | 96.38(4)  | O(1)-P(1)-S(2)  | 114.2(3)   |
| Se(5)-Mo(3)-Mo(1)        | 57.11(3)  | O(2)-P(1)-S(2)  | 113.5(3)   |
| S(5)-Mo(3)-Mo(1)         | 141.17(8) | S(1)-P(1)-S(2)  | 104.64(15) |
| Se(6)-Mo(3)-Mo(1)        | 57.11(3)  | O(4)-P(2)-O(3)  | 95.6(4)    |
| Se(4)-Mo(3)-Mo(1)        | 117.71(4) | O(4)-P(2)-S(3)  | 113.8(3)   |
| Se(7)-Mo(3)-Mo(2)        | 55.86(4)  | O(3)-P(2)-S(3)  | 115.5(3)   |
| S(6)-Mo(3)-Mo(2)         | 125.95(8) | O(4)-P(2)-S(4)  | 113.8(3)   |
| Se(3)-Mo(3)-Mo(2)        | 56.01(3)  | O(3)-P(2)-S(4)  | 114.2(3)   |
| Se(5)-Mo(3)-Mo(2)        | 95.91(4)  | S(3)-P(2)-S(4)  | 104.24(16) |
| S(5)-Mo(3)-Mo(2)         | 138.82(7) | O(5)-P(3)-O(6)  | 95.9(4)    |
| Se(6)-Mo(3)-Mo(2)        | 116.70(4) | O(5)-P(3)-S(5)  | 115.4(3)   |
| Se(4)-Mo(3)-Mo(2)        | 58.12(3)  | O(6)-P(3)-S(5)  | 113.5(4)   |
| Mo(1)-Mo(3)-Mo(2)        | 59.88(3)  | O(5)-P(3)-S(6)  | 113.1(4)   |
| Se(2)-Se(1)-Mo(1)        | 65.04(4)  | O(6)-P(3)-S(6)  | 114.9(4)   |
| Se(2)-Se(1)-Mo(2)        | 64.25(4)  | S(5)-P(3)-S(6)  | 104.35(16) |
| Mo(1)-Se(1)-Mo(2)        | 66.21(4)  | O(8)-P(4)-O(7)  | 99.1(5)    |
| Se(1)-Se(2)-Mo(2)        | 62.05(4)  | O(8)-P(4)-S(7)  | 115.3(4)   |
| Se(1)-Se(2)-Mo(1)        | 61.34(4)  | O(7)-P(4)-S(7)  | 113.3(4)   |
| Mo(2)-Se(2)-Mo(1)        | 64.30(3)  | O(8)-P(4)-S(8)  | 105.5(3)   |
| Se(4)-Se(3)-Mo(2)        | 66.70(4)  | O(7)-P(4)-S(8)  | 104.5(4)   |
| Se(4)-Se(3)-Mo(3)        | 66.17(5)  | S(7)-P(4)-S(8)  | 117.1(2)   |
| Mo(2)-Se(3)-Mo(3)        | 67.22(4)  | C(1)-O(1)-P(1)  | 124.8(7)   |
| Se(3)-Se(4)-Mo(3)        | 61.59(4)  | C(4)-O(2)-P(1)  | 121.1(6)   |
| Se(3)- $Se(4)$ - $Mo(2)$ | 60.91(4)  | C(7)-O(3)-P(2)  | 122.0(7)   |
| Mo(3)-Se(4)-Mo(2)        | 63.94(3)  | C(10)-O(4)-P(2) | 122.0(7)   |
| Se(6)-Se(5)-Mo(3)        | 64.65(4)  | C(13)-O(5)-P(3) | 123.3(7)   |
| Se(6)-Se(5)-Mo(1)        | 63.60(4)  | C(16)-O(6)-P(3) | 125.7(8)   |
| Mo(3)-Se(5)-Mo(1)        | 66.20(3)  | C(19)-O(7)-P(4) | 118.8(8)   |
| Se(5)-Se(6)-Mo(1)        | 62.29(4)  | C(22)-O(8)-P(4) | 118.6(8)   |
| Se(5)-Se(6)-Mo(3)        | 61.47(4)  | O(1)-C(1)-C(3)  | 111.4(13)  |
| Mo(1)-Se(6)-Mo(3)        | 64.72(4)  | O(1)-C(1)-C(2)  | 105.7(11)  |
| Mo(3)-Se(7)-Mo(2)        | 68.33(4)  | C(3)-C(1)-C(2)  | 111.5(12)  |
| Mo(3)-Se(7)-Mo(1)        | 68.08(4)  | O(1)-C(1)-H(1)  | 109.4      |
| Mo(2)-Se(7)-Mo(1)        | 68.03(4)  | C(3)-C(1)-H(1)  | 109.4      |

**Table A.40, Cont'd**. Bond angles (deg.) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| C(2)-C(1)-H(1)   | 109.4     | C(7)-C(9)-H(9A)     | 109.5     |
|------------------|-----------|---------------------|-----------|
| C(1)-C(2)-H(2A)  | 109.5     | C(7)-C(9)-H(9B)     | 109.5     |
| C(1)-C(2)-H(2B)  | 109.5     | H(9A)-C(9)-H(9B)    | 109.5     |
| H(2A)-C(2)-H(2B) | 109.5     | C(7)-C(9)-H(9C)     | 109.5     |
| C(1)-C(2)-H(2C)  | 109.5     | H(9A)-C(9)-H(9C)    | 109.5     |
| H(2A)-C(2)-H(2C) | 109.5     | H(9B)-C(9)-H(9C)    | 109.5     |
| H(2B)-C(2)-H(2C) | 109.5     | O(4)-C(10)-C(11)    | 107.8(12) |
| C(1)-C(3)-H(3A)  | 109.5     | O(4)-C(10)-C(12)    | 107.0(11) |
| C(1)-C(3)-H(3B)  | 109.5     | C(11)-C(10)-C(12)   | 114.4(10) |
| H(3A)-C(3)-H(3B) | 109.5     | O(4)-C(10)-H(10)    | 109.2     |
| C(1)-C(3)-H(3C)  | 109.5     | C(11)-C(10)-H(10)   | 109.2     |
| H(3A)-C(3)-H(3C) | 109.5     | С(12)-С(10)-Н(10)   | 109.2     |
| H(3B)-C(3)-H(3C) | 109.5     | C(10)-C(11)-H(11A)  | 109.5     |
| O(2)-C(4)-C(5)   | 106.0(10) | C(10)-C(11)-H(11B)  | 109.5     |
| O(2)-C(4)-C(6)   | 107.1(11) | H(11A)-C(11)-H(11B) | 109.5     |
| C(5)-C(4)-C(6)   | 111.8(11) | C(10)-C(11)-H(11C)  | 109.5     |
| O(2)-C(4)-H(4)   | 110.6     | H(11A)-C(11)-H(11C) | 109.5     |
| C(5)-C(4)-H(4)   | 110.6     | H(11B)-C(11)-H(11C) | 109.5     |
| C(6)-C(4)-H(4)   | 110.6     | C(10)-C(12)-H(12A)  | 109.5     |
| C(4)-C(5)-H(5A)  | 109.5     | C(10)-C(12)-H(12B)  | 109.5     |
| C(4)-C(5)-H(5B)  | 109.5     | H(12A)-C(12)-H(12B) | 109.5     |
| H(5A)-C(5)-H(5B) | 109.5     | C(10)-C(12)-H(12C)  | 109.5     |
| C(4)-C(5)-H(5C)  | 109.5     | H(12A)-C(12)-H(12C) | 109.5     |
| H(5A)-C(5)-H(5C) | 109.5     | H(12B)-C(12)-H(12C) | 109.5     |
| H(5B)-C(5)-H(5C) | 109.5     | O(5)-C(13)-C(15)    | 106.8(11) |
| C(4)-C(6)-H(6A)  | 109.5     | O(5)-C(13)-C(14)    | 107.5(12) |
| C(4)-C(6)-H(6B)  | 109.5     | C(15)-C(13)-C(14)   | 112.5(14) |
| H(6A)-C(6)-H(6B) | 109.5     | O(5)-C(13)-H(13)    | 109.9     |
| C(4)-C(6)-H(6C)  | 109.5     | C(15)-C(13)-H(13)   | 109.9     |
| H(6A)-C(6)-H(6C) | 109.5     | C(14)-C(13)-H(13)   | 109.9     |
| H(6B)-C(6)-H(6C) | 109.5     | C(13)-C(14)-H(14A)  | 109.5     |
| O(3)-C(7)-C(9)   | 110.0(11) | C(13)-C(14)-H(14B)  | 109.5     |
| O(3)-C(7)-C(8)   | 105.0(10) | H(14A)-C(14)-H(14B) | 109.5     |
| C(9)-C(7)-C(8)   | 111.2(11) | C(13)-C(14)-H(14C)  | 109.5     |
| O(3)-C(7)-H(7)   | 110.2     | H(14A)-C(14)-H(14C) | 109.5     |
| C(9)-C(7)-H(7)   | 110.2     | H(14B)-C(14)-H(14C) | 109.5     |
| C(8)-C(7)-H(7)   | 110.2     | C(13)-C(15)-H(15A)  | 109.5     |
| C(7)-C(8)-H(8A)  | 109.5     | C(13)-C(15)-H(15B)  | 109.5     |
| C(7)-C(8)-H(8B)  | 109.5     | H(15A)-C(15)-H(15B) | 109.5     |
| H(8A)-C(8)-H(8B) | 109.5     | C(13)-C(15)-H(15C)  | 109.5     |
| C(7)-C(8)-H(8C)  | 109.5     | H(15A)-C(15)-H(15C) | 109.5     |
| H(8A)-C(8)-H(8C) | 109.5     | H(15B)-C(15)-H(15C) | 109.5     |
| H(8B)-C(8)-H(8C) | 109.5     | C(18B)-C(16)-O(6)   | 119(2)    |

**Table A.40, Cont'd**. Bond angles (deg.) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| C(17A)-C(16)-O(6)    | 110.7(17) | H(20B)-C(20)-H(20C)    | 109.5       |
|----------------------|-----------|------------------------|-------------|
| C(17A)-C(16)-C(18A)  | 115.3(18) | C(19)-C(21)-H(21A)     | 109.5       |
| O(6)-C(16)-C(18A)    | 105.1(14) | C(19)-C(21)-H(21B)     | 109.5       |
| C(18B)-C(16)-C(17B)  | 114(3)    | H(21A)-C(21)-H(21B)    | 109.5       |
| O(6)-C(16)-C(17B)    | 97.3(19)  | C(19)-C(21)-H(21C)     | 109.5       |
| C(17A)-C(16)-H(16)   | 108.5     | H(21A)-C(21)-H(21C)    | 109.5       |
| O(6)-C(16)-H(16)     | 108.5     | H(21B)-C(21)-H(21C)    | 109.5       |
| C(18A)-C(16)-H(16)   | 108.5     | O(8)-C(22)-C(24)       | 108.4(12)   |
| C(16)-C(17A)-H(17A)  | 109.5     | O(8)-C(22)-C(23)       | 109.2(12)   |
| C(16)-C(17A)-H(17B)  | 109.5     | C(24)-C(22)-C(23)      | 114.4(13)   |
| H(17A)-C(17A)-H(17B) | 109.5     | O(8)-C(22)-H(22)       | 108.2       |
| C(16)-C(17A)-H(17C)  | 109.5     | C(24)-C(22)-H(22)      | 108.2       |
| H(17A)-C(17A)-H(17C) | 109.5     | C(23)-C(22)-H(22)      | 108.2       |
| H(17B)-C(17A)-H(17C) | 109.5     | C(22)-C(23)-H(23A)     | 109.5       |
| C(16)-C(18A)-H(18A)  | 109.5     | C(22)-C(23)-H(23B)     | 109.5       |
| C(16)-C(18A)-H(18B)  | 109.5     | H(23A)-C(23)-H(23B)    | 109.5       |
| H(18A)-C(18A)-H(18B) | 109.5     | C(22)-C(23)-H(23C)     | 109.5       |
| C(16)-C(18A)-H(18C)  | 109.5     | H(23A)-C(23)-H(23C)    | 109.5       |
| H(18A)-C(18A)-H(18C) | 109.5     | H(23B)-C(23)-H(23C)    | 109.5       |
| H(18B)-C(18A)-H(18C) | 109.5     | C(22)-C(24)-H(24A)     | 109.5       |
| C(16)-C(17B)-H(17D)  | 109.5     | C(22)-C(24)-H(24B)     | 109.5       |
| C(16)-C(17B)-H(17E)  | 109.5     | H(24A)-C(24)-H(24B)    | 109.5       |
| H(17D)-C(17B)-H(17E) | 109.5     | C(22)-C(24)-H(24C)     | 109.5       |
| C(16)-C(17B)-H(17F)  | 109.5     | H(24A)-C(24)-H(24C)    | 109.5       |
| H(17D)-C(17B)-H(17F) | 109.5     | H(24B)-C(24)-H(24C)    | 109.5       |
| H(17E)-C(17B)-H(17F) | 109.5     | C(25B)#1-O(9)-C(25B)   | 180.00(2)   |
| C(16)-C(18B)-H(18D)  | 109.5     | C(25B)#1-O(9)-C(25A)#1 | 65(5)       |
| C(16)-C(18B)-H(18E)  | 109.5     | C(25B)-O(9)-C(25A)#1   | 115(5)      |
| H(18D)-C(18B)-H(18E) | 109.5     | C(25A)#1-O(9)-C(25A)   | 179.998(11) |
| C(16)-C(18B)-H(18F)  | 109.5     | C(26)-C(25A)-O(9)      | 150(8)      |
| H(18D)-C(18B)-H(18F) | 109.5     |                        |             |
| H(18E)-C(18B)-H(18F) | 109.5     |                        |             |
| O(7)-C(19)-C(21)     | 107.6(11) |                        |             |
| O(7)-C(19)-C(20)     | 106.5(12) |                        |             |
| C(21)-C(19)-C(20)    | 114.2(12) |                        |             |
| O(7)-C(19)-H(19)     | 109.5     |                        |             |
| C(21)-C(19)-H(19)    | 109.5     |                        |             |
| C(20)-C(19)-H(19)    | 109.5     |                        |             |
| C(19)-C(20)-H(20A)   | 109.5     |                        |             |
| C(19)-C(20)-H(20B)   | 109.5     |                        |             |
| H(20A)-C(20)-H(20B)  | 109.5     |                        |             |
| C(19)-C(20)-H(20C)   | 109.5     |                        |             |
| H(20A)-C(20)-H(20C)  | 109.5     |                        |             |

**Table A.40, Cont'd**. Bond angles (deg.) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ . Symmetry transformations used to generate equivalent atoms: #1 - x - 1, -y + 1, -z + 2.

| Atom         | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------------|----------|----------|----------|----------|----------|----------|
| Mo(1)        | 23(1)    | 20(1)    | 17(1)    | 0(1)     | 0(1)     | -9(1)    |
| Mo(2)        | 24(1)    | 20(1)    | 18(1)    | -2(1)    | 0(1)     | -9(1)    |
| Mo(3)        | 23(1)    | 23(1)    | 18(1)    | 0(1)     | 1(1)     | -9(1)    |
| Se(1)        | 32(1)    | 24(1)    | 24(1)    | -2(1)    | -4(1)    | -10(1)   |
| Se(2)        | 30(1)    | 30(1)    | 30(1)    | -4(1)    | 1(1)     | -11(1)   |
| Se(3)        | 38(1)    | 35(1)    | 30(1)    | -1(1)    | 0(1)     | -12(1)   |
| Se(4)        | 33(1)    | 30(1)    | 34(1)    | -3(1)    | -1(1)    | -15(1)   |
| Se(5)        | 30(1)    | 25(1)    | 21(1)    | -3(1)    | 1(1)     | -9(1)    |
| Se(6)        | 36(1)    | 31(1)    | 29(1)    | 1(1)     | -4(1)    | -10(1)   |
| Se(7)        | 40(1)    | 38(1)    | 32(1)    | -4(1)    | -2(1)    | -16(1)   |
| <b>S</b> (1) | 41(2)    | 27(1)    | 24(1)    | -3(1)    | -2(1)    | -18(1)   |
| S(2)         | 43(2)    | 33(1)    | 19(1)    | -1(1)    | 1(1)     | -20(1)   |
| S(3)         | 38(1)    | 26(1)    | 28(1)    | -3(1)    | -11(1)   | -4(1)    |
| S(4)         | 35(1)    | 29(1)    | 27(1)    | -8(1)    | -4(1)    | -7(1)    |
| S(5)         | 27(1)    | 36(1)    | 25(1)    | 0(1)     | 4(1)     | -8(1)    |
| S(6)         | 32(1)    | 48(2)    | 28(1)    | 0(1)     | -7(1)    | -19(1)   |
| S(7)         | 59(2)    | 32(2)    | 48(2)    | -2(1)    | -15(2)   | -10(1)   |
| S(8)         | 36(1)    | 20(1)    | 27(1)    | 2(1)     | -6(1)    | -12(1)   |
| <b>P</b> (1) | 34(1)    | 29(1)    | 24(1)    | 0(1)     | 2(1)     | -17(1)   |
| P(2)         | 34(1)    | 24(1)    | 30(1)    | -6(1)    | -2(1)    | -6(1)    |
| P(3)         | 26(1)    | 28(1)    | 37(2)    | 3(1)     | -4(1)    | -9(1)    |
| P(4)         | 39(2)    | 31(1)    | 30(1)    | -4(1)    | -4(1)    | -9(1)    |
| O(1)         | 47(5)    | 30(4)    | 26(4)    | 3(3)     | -1(3)    | -15(3)   |
| O(2)         | 42(4)    | 35(4)    | 35(4)    | 0(3)     | 3(3)     | -25(4)   |
| O(3)         | 38(4)    | 40(4)    | 34(4)    | -9(3)    | -6(3)    | -11(4)   |
| O(4)         | 35(4)    | 27(4)    | 38(4)    | 1(3)     | -3(3)    | -7(3)    |
| O(5)         | 22(4)    | 31(4)    | 51(5)    | 0(3)     | 0(3)     | -10(3)   |
| O(6)         | 40(5)    | 35(4)    | 59(5)    | 2(4)     | -14(4)   | -13(4)   |
| O(7)         | 44(5)    | 51(5)    | 33(4)    | -12(4)   | -6(4)    | -8(4)    |
| O(8)         | 41(5)    | 36(4)    | 50(5)    | -7(4)    | -1(4)    | -10(4)   |
| C(1)         | 49(8)    | 55(8)    | 35(7)    | 8(6)     | -9(6)    | -9(6)    |
| C(2)         | 82(11)   | 54(9)    | 53(9)    | -16(7)   | -24(8)   | 3(8)     |
| C(3)         | 82(12)   | 39(8)    | 137(18)  | 24(10)   | -48(12)  | -19(8)   |
| C(4)         | 35(6)    | 39(6)    | 53(7)    | 0(6)     | 7(5)     | -21(5)   |
| C(5)         | 47(8)    | 67(9)    | 63(9)    | -31(8)   | 3(7)     | -12(7)   |
| C(6)         | 55(9)    | 82(11)   | 51(9)    | 3(8)     | -3(7)    | -5(8)    |
| C(7)         | 39(6)    | 36(6)    | 47(7)    | -6(5)    | 0(5)     | -16(5)   |
| C(8)         | 38(7)    | 64(9)    | 64(9)    | -10(7)   | -6(6)    | -20(6)   |
| C(9)         | 47(8)    | 64(9)    | 52(8)    | 12(7)    | -7(6)    | -13(7)   |

**Table A.41.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot \frac{1}{4}Et_2O$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| C(10) | 52(7)    | 31(6)    | 45(7)    | 8(5)     | -4(6)    | -19(6)   |
| C(11) | 120(15)  | 60(9)    | 44(8)    | -14(7)   | 4(8)     | -54(10)  |
| C(12) | 64(9)    | 60(8)    | 49(8)    | 0(6)     | -15(7)   | -37(7)   |
| C(13) | 47(7)    | 28(6)    | 60(8)    | 1(5)     | -2(6)    | -17(5)   |
| C(14) | 130(18)  | 69(12)   | 96(15)   | -27(11)  | -4(13)   | -41(12)  |
| C(15) | 77(11)   | 45(8)    | 66(10)   | 12(7)    | 11(8)    | -29(8)   |
| C(16) | 45(7)    | 30(6)    | 80(10)   | 5(6)     | -10(7)   | -8(6)    |
| C(19) | 49(7)    | 57(8)    | 35(6)    | -21(6)   | -5(5)    | -3(6)    |
| C(20) | 78(11)   | 60(9)    | 49(8)    | -23(7)   | -7(8)    | 10(8)    |
| C(21) | 60(9)    | 86(12)   | 50(8)    | -26(8)   | 1(7)     | -17(8)   |
| C(22) | 52(8)    | 50(8)    | 64(9)    | -8(7)    | -12(7)   | -27(6)   |
| C(23) | 67(11)   | 120(16)  | 77(12)   | -21(11)  | -31(9)   | -34(11)  |
| C(24) | 31(7)    | 128(16)  | 59(9)    | -3(10)   | -12(7)   | -26(9)   |
|       |          |          |          |          |          |          |

**Table A.41, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2] \cdot \frac{1}{4}Et_2O$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| H atom | х     | у     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
| H(1)   | 3991  | -817  | 8668  | 63    |
| H(2A)  | 3525  | -2427 | 10119 | 99    |
| H(2B)  | 4416  | -2587 | 9237  | 99    |
| H(2C)  | 3182  | -2146 | 9189  | 99    |
| H(3A)  | 4494  | -334  | 9712  | 135   |
| H(3B)  | 5246  | -1438 | 9552  | 135   |
| H(3C)  | 4326  | -1346 | 10425 | 135   |
| H(4)   | 428   | 2276  | 9416  | 55    |
| H(5A)  | -809  | 1072  | 10735 | 89    |
| H(5B)  | -1139 | 2295  | 10532 | 89    |
| H(5C)  | -109  | 1621  | 10943 | 89    |
| H(6A)  | -4    | 1696  | 8394  | 110   |
| H(6B)  | -1081 | 2324  | 8946  | 110   |
| H(6C)  | -729  | 1099  | 9182  | 110   |
| H(7)   | -410  | 5879  | 7963  | 50    |
| H(8A)  | -2136 | 7679  | 8291  | 84    |
| H(8B)  | -2306 | 6638  | 8277  | 84    |
| H(8C)  | -1763 | 7291  | 7388  | 84    |
| H(9A)  | -100  | 5816  | 9348  | 93    |
| H(9B)  | -1206 | 5611  | 9459  | 93    |
| H(9C)  | -1198 | 6706  | 9504  | 93    |
| H(10)  | 2838  | 7461  | 6764  | 55    |
| H(11A) | 2164  | 8187  | 5488  | 106   |
| H(11B) | 2861  | 8868  | 5495  | 106   |
| H(11C) | 1590  | 9266  | 5767  | 106   |
| H(12A) | 1900  | 9406  | 7239  | 82    |
| H(12B) | 3154  | 8870  | 6986  | 82    |
| H(12C) | 2453  | 8368  | 7871  | 82    |
| H(13)  | 7230  | 4793  | 6294  | 57    |
| H(14A) | 7353  | 4897  | 7614  | 146   |
| H(14B) | 8133  | 5528  | 6947  | 146   |
| H(14C) | 8615  | 4369  | 7444  | 146   |
| H(15A) | 9479  | 4294  | 5690  | 107   |
| H(15B) | 8724  | 5445  | 5471  | 107   |
| H(15C) | 8615  | 4579  | 5104  | 107   |
| H(16)  | 7190  | 891   | 7144  | 69    |
| H(17A) | 7529  | 685   | 8547  | 100   |
| H(17B) | 8608  | -168  | 8253  | 100   |
| H(17C) | 7482  | -300  | 8311  | 100   |
| H(18A) | 9438  | -154  | 6768  | 94    |

**Table A.42**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ .

| H atom | Х    | у    | Z    | U(eq) |
|--------|------|------|------|-------|
| H(18B) | 8827 | 607  | 6003 | 94    |
| H(18C) | 8523 | -420 | 6544 | 94    |
| H(17D) | 8608 | -666 | 8223 | 100   |
| H(17E) | 8165 | 323  | 8638 | 100   |
| H(17F) | 9272 | 136  | 7936 | 100   |
| H(18D) | 7882 | 721  | 6094 | 94    |
| H(18E) | 7892 | -344 | 6795 | 94    |
| H(18F) | 8956 | -3   | 6421 | 94    |
| H(19)  | 4816 | 1534 | 3841 | 58    |
| H(20A) | 4040 | 424  | 3589 | 105   |
| H(20B) | 5010 | 610  | 2789 | 105   |
| H(20C) | 3810 | 1205 | 2674 | 105   |
| H(21A) | 4127 | 2898 | 2278 | 101   |
| H(21B) | 5323 | 2475 | 2427 | 101   |
| H(21C) | 4435 | 3267 | 2979 | 101   |
| H(22)  | 1719 | 1124 | 5249 | 64    |
| H(23A) | -78  | 2830 | 4876 | 124   |
| H(23B) | 100  | 1687 | 4814 | 124   |
| H(23C) | 858  | 2334 | 4134 | 124   |
| H(24A) | 1209 | 1351 | 6697 | 114   |
| H(24B) | 289  | 1106 | 6459 | 114   |
| H(24C) | 166  | 2255 | 6467 | 114   |

**Table A.42, Cont'd.** Hydrogen coordinates  $(x \ 10^4)$  and isotropic displacement parameters  $(\mathring{A}^2 x \ 10^3)$  for  $[Mo_3Se_7(S_2P^iBu_2)_3][S_2P^iBu_2]\cdot\frac{1}{4}Et_2O$ .



Thermal ellipsoid plot is drawn at the 50% level.



| Identification code                       | JPD1268_xprep_a                      |                              |
|-------------------------------------------|--------------------------------------|------------------------------|
| Empirical formula                         | $C_{12}H_{28}O_4P_2S_4$              |                              |
| Formula weight                            | 426.52                               |                              |
| Temperature                               | 150(2) K                             |                              |
| Wavelength                                | 0.71073 Å                            |                              |
| Crystal system                            | Triclinic                            |                              |
| Space group                               | <i>P</i> -1                          |                              |
| Unit cell dimensions                      | a = 8.1001(8)  Å                     | $\alpha = 97.731(4)^{\circ}$ |
|                                           | b = 8.3522(8)  Å                     | $\beta = 111.085(3)^{\circ}$ |
|                                           | c = 8.4745(8)  Å                     | $\gamma = 94.678(4)^{\circ}$ |
| Volume                                    | 524.82(9) Å <sup>3</sup>             |                              |
| Ζ                                         | 1                                    |                              |
| Density (calculated)                      | $1.350 \text{ g/cm}^3$               |                              |
| Absorption coefficient                    | 0.616 mm <sup>-1</sup>               |                              |
| F(000)                                    | 226                                  |                              |
| Crystal size                              | 0.563 x 0.273 x 0.248 mm             | n <sup>3</sup>               |
| $\theta$ range for data collection        | 2.985 to 42.412°                     |                              |
| Index ranges                              | $-15 \le h \le 15, -15 \le k \le 15$ | $l, -16 \le l \le 16$        |
| Reflections collected                     | 40335                                |                              |
| Independent reflections                   | 7197 [R(int) = 0.0362]               |                              |
| Completeness to $\theta = 25.242^{\circ}$ | 88.3 %                               |                              |
| Absorption correction                     | Semi-empirical from equi             | valents                      |
| Max. and min. transmission                | 0.7483 and 0.6825                    |                              |
| Refinement method                         | Full-matrix least-squares            | on $F^2$                     |
| Data / restraints / parameters            | 7197 / 0 / 104                       |                              |
| Goodness-of-fit on $F^2$                  | 1.063                                |                              |
| Final R indices $[I \ge 2\sigma(I)]$      | R1 = 0.0253, wR2 = 0.06              | 73                           |
| R indices (all data)                      | R1 = 0.0318, wR2 = 0.07              | 10                           |
| Extinction coefficient                    | n/a                                  |                              |
| Largest diff. peak and hole               | 0.395 and -0.216 e⋅Å <sup>-3</sup>   |                              |

| Atom | Х       | у       | Z       | U(eq) |
|------|---------|---------|---------|-------|
| S(1) | 5586(1) | 4324(1) | 5975(1) | 22(1) |
| S(2) | 4167(1) | 1792(1) | 7831(1) | 24(1) |
| P(1) | 3297(1) | 3108(1) | 6093(1) | 15(1) |
| O(1) | 2062(1) | 2255(1) | 4222(1) | 20(1) |
| O(2) | 2072(1) | 4406(1) | 6317(1) | 20(1) |
| C(1) | 2329(1) | 1246(1) | 1568(1) | 32(1) |
| C(2) | 2557(1) | 857(1)  | 3316(1) | 23(1) |
| C(3) | 1367(1) | -655(1) | 3255(1) | 36(1) |
| C(4) | 2524(1) | 7266(1) | 7448(1) | 27(1) |
| C(5) | 2605(1) | 5591(1) | 7931(1) | 20(1) |
| C(6) | 1334(1) | 5169(1) | 8795(1) | 36(1) |

**Table A.44**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [( $^{i}$ PrO)<sub>2</sub>P(S)S–SP(S)(O $^{i}$ Pr)<sub>2</sub>]. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| S(1)-P(1)        | 2.0822(3)   | C(2)-C(1)-H(1B)  | 109.5     |
|------------------|-------------|------------------|-----------|
| S(1)-S(1)#1      | 2.1106(3)   | H(1A)-C(1)-H(1B) | 109.5     |
| S(2)-P(1)        | 1.9205(2)   | C(2)-C(1)-H(1C)  | 109.5     |
| P(1)-O(2)        | 1.5660(4)   | H(1A)-C(1)-H(1C) | 109.5     |
| P(1)-O(1)        | 1.5689(4)   | H(1B)-C(1)-H(1C) | 109.5     |
| O(1)-C(2)        | 1.4734(7)   | O(1)-C(2)-C(1)   | 106.17(5) |
| O(2)-C(5)        | 1.4756(6)   | O(1)-C(2)-C(3)   | 107.80(5) |
| C(1)-C(2)        | 1.5081(9)   | C(1)-C(2)-C(3)   | 113.75(6) |
| C(1)-H(1A)       | 0.9800      | O(1)-C(2)-H(2)   | 109.7     |
| C(1)-H(1B)       | 0.9800      | C(1)-C(2)-H(2)   | 109.7     |
| C(1)-H(1C)       | 0.9800      | C(3)-C(2)-H(2)   | 109.7     |
| C(2)-C(3)        | 1.5089(10)  | C(2)-C(3)-H(3A)  | 109.5     |
| C(2)-H(2)        | 1.0000      | C(2)-C(3)-H(3B)  | 109.5     |
| C(3)-H(3A)       | 0.9800      | H(3A)-C(3)-H(3B) | 109.5     |
| C(3)-H(3B)       | 0.9800      | C(2)-C(3)-H(3C)  | 109.5     |
| C(3)-H(3C)       | 0.9800      | H(3A)-C(3)-H(3C) | 109.5     |
| C(4)-C(5)        | 1.5095(8)   | H(3B)-C(3)-H(3C) | 109.5     |
| C(4)-H(4A)       | 0.9800      | C(5)-C(4)-H(4A)  | 109.5     |
| C(4)-H(4B)       | 0.9800      | C(5)-C(4)-H(4B)  | 109.5     |
| C(4)-H(4C)       | 0.9800      | H(4A)-C(4)-H(4B) | 109.5     |
| C(5)-C(6)        | 1.5079(9)   | C(5)-C(4)-H(4C)  | 109.5     |
| C(5)-H(5)        | 1.0000      | H(4A)-C(4)-H(4C) | 109.5     |
| C(6)-H(6A)       | 0.9800      | H(4B)-C(4)-H(4C) | 109.5     |
| C(6)-H(6B)       | 0.9800      | O(2)-C(5)-C(6)   | 107.33(5) |
| C(6)-H(6C)       | 0.9800      | O(2)-C(5)-C(4)   | 106.86(4) |
|                  |             | C(6)-C(5)-C(4)   | 113.33(5) |
| P(1)-S(1)-S(1)#1 | 100.063(11) | O(2)-C(5)-H(5)   | 109.7     |
| O(2)-P(1)-O(1)   | 96.97(2)    | C(6)-C(5)-H(5)   | 109.7     |
| O(2)-P(1)-S(2)   | 119.302(18) | C(4)-C(5)-H(5)   | 109.7     |
| O(1)-P(1)-S(2)   | 119.164(19) | C(5)-C(6)-H(6A)  | 109.5     |
| O(2)-P(1-S(1))   | 108.086(19) | C(5)-C(6)-H(6B)  | 109.5     |
| O(1)-P(1)-S(1)   | 107.835(19) | H(6A)-C(6)-H(6B) | 109.5     |
| S(2)-P(1)-S(1)   | 104.816(10) | C(5)-C(6)-H(6C)  | 109.5     |
| C(2)-O(1)-P(1)   | 121.43(3)   | H(6A)-C(6)-H(6C) | 109.5     |
| C(5)-O(2)-P(1)   | 120.73(3)   | H(6B)-C(6)-H(6C) | 109.5     |
| C(2)-C(1)-H(1A)  | 109.5       |                  |           |

**Table A.45**. Bond lengths (Å) and angles (deg.) for  $[({}^{i}PrO)_{2}P(S)S-SP(S)(O{}^{i}Pr)_{2}]$ . Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z + 1.

| Atom | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|------|----------|----------|----------|----------|----------|----------|
| S(1) | 14(1)    | 28(1)    | 24(1)    | 12(1)    | 6(1)     | 3(1)     |
| S(2) | 28(1)    | 23(1)    | 22(1)    | 10(1)    | 8(1)     | 4(1)     |
| P(1) | 15(1)    | 16(1)    | 15(1)    | 3(1)     | 5(1)     | 2(1)     |
| O(1) | 19(1)    | 21(1)    | 18(1)    | -1(1)    | 3(1)     | 5(1)     |
| O(2) | 18(1)    | 22(1)    | 19(1)    | 0(1)     | 6(1)     | 5(1)     |
| C(1) | 39(1)    | 34(1)    | 21(1)    | 0(1)     | 12(1)    | 6(1)     |
| C(2) | 24(1)    | 22(1)    | 20(1)    | -1(1)    | 5(1)     | 7(1)     |
| C(3) | 48(1)    | 21(1)    | 35(1)    | 3(1)     | 12(1)    | 1(1)     |
| C(4) | 30(1)    | 21(1)    | 30(1)    | 4(1)     | 11(1)    | 5(1)     |
| C(5) | 22(1)    | 20(1)    | 18(1)    | 1(1)     | 8(1)     | 4(1)     |
| C(6) | 46(1)    | 35(1)    | 35(1)    | 3(1)     | 28(1)    | 1(1)     |

**Table A.46**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for (3,5-Cl<sub>2</sub>-H<sub>3</sub>C<sub>6</sub>)C(O)C(O)(C<sub>6</sub>H<sub>3</sub>-3,5-Cl<sub>2</sub>). The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

**Table A.47**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for (3,5-Cl<sub>2</sub>-H<sub>3</sub>C<sub>6</sub>)C(O)C(O)(C<sub>6</sub>H<sub>3</sub>-3,5-Cl<sub>2</sub>).

| H atom | Х    | У     | Z    | U(eq) |
|--------|------|-------|------|-------|
| H(1A)  | 2631 | 343   | 904  | 48    |
| H(1B)  | 3121 | 2249  | 1702 | 48    |
| H(1C)  | 1085 | 1399  | 964  | 48    |
| H(2)   | 3835 | 743   | 3954 | 28    |
| H(3A)  | 1682 | -1609 | 2674 | 55    |
| H(3B)  | 116  | -542  | 2625 | 55    |
| H(3C)  | 1529 | -798  | 4429 | 55    |
| H(4A)  | 2867 | 8093  | 8488 | 40    |
| H(4B)  | 1304 | 7339  | 6681 | 40    |
| H(4C)  | 3347 | 7454  | 6860 | 40    |
| H(5)   | 3854 | 5504  | 8693 | 24    |
| H(6A)  | 1670 | 5918  | 9890 | 54    |
| H(6B)  | 1391 | 4046  | 9006 | 54    |
| H(6C)  | 114  | 5268  | 8050 | 54    |



Thermal ellipsoid plot is drawn at the 50% level. All H atoms are omitted for clarity. The cation is afflicted by a "whole-molecule" disorder by a pivot along the Se(3)–S(3) axis.



Thermal ellipsoid plot is drawn at the 30% level. All H atoms are omitted for clarity.

(1)

**Table A.48**. Crystal Data and Structure Refinement for [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>2</sub>C<sub>5</sub>H<sub>12</sub>.

| Identification code<br>Empirical formula<br>Formula weight<br>Temperature | JPD1097_0m_a<br>C <sub>26.50</sub> H <sub>60</sub> IMo <sub>3</sub> P <sub>3</sub> S <sub>10</sub> Se <sub>3</sub><br>1443.85<br>150(2) K |                                                                                |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Wavelength                                                                | 0.71073 Å                                                                                                                                 |                                                                                |
| Crystal system                                                            | Monoclinic                                                                                                                                |                                                                                |
| Space group                                                               | C2/c                                                                                                                                      |                                                                                |
| Unit cell dimensions                                                      | a = 32.047(3)  Å<br>b = 17.7330(14)  Å<br>c = 20.1100(15)  Å                                                                              | $\alpha = 90^{\circ}$<br>$\beta = 106.950(2)^{\circ}$<br>$\gamma = 90^{\circ}$ |
| Volume                                                                    | 10931.9(15) Å <sup>3</sup>                                                                                                                |                                                                                |
| Ζ                                                                         | 8                                                                                                                                         |                                                                                |
| Density (calculated)                                                      | $1.755 \text{ g/cm}^3$                                                                                                                    |                                                                                |
| Absorption coefficient                                                    | 3.729 mm <sup>-1</sup>                                                                                                                    |                                                                                |
| F(000)                                                                    | 5640                                                                                                                                      |                                                                                |

| Table                             | A.48,             | Cont'd.                          | Crystal                  |
|-----------------------------------|-------------------|----------------------------------|--------------------------|
| [Mo <sub>3</sub> S <sub>4</sub> S | $Se_3(S_2P^iB_1)$ | $u_2)_3]I \cdot \frac{1}{2}C_5H$ | <b>I</b> <sub>12</sub> . |

Crystal size  $\theta$  range for data collection Index ranges Reflections collected Independent reflections Completeness to  $\theta = 25.242^{\circ}$ Refinement method Data / restraints / parameters Goodness-of-fit on  $F^2$ Final R indices [I>2 $\sigma$ (I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Data and Structure Refinement for

0.217 x 0.206 x 0.060 mm<sup>3</sup> 2.117 to 27.249°  $-41 \le h \le 41, -22 \le k \le 22, -25 \le l \le 25$ 144302 12155 [R(int) = 0.0336] 99.9 % Full-matrix least-squares on  $F^2$ 12155 / 101 / 465 1.072 R1 = 0.0638, wR2 = 0.1794 R1 = 0.0877, wR2 = 0.2066 n/a 1.791 and -2.021 e·Å<sup>-3</sup>

| Atom   | x        | у         | Ζ        | U(eq)<br>66(1)<br>55(1)<br>36(1)<br>28(1)<br>32(1)<br>27(1)<br>59(1) |
|--------|----------|-----------|----------|----------------------------------------------------------------------|
| I(1)   | 1843(1)  | 8631(1)   | 3652(1)  | 66(1)                                                                |
| Se(3)  | 2344(1)  | 8383(1)   | 1332(1)  | 55(1)                                                                |
| S(3)   | 2163(1)  | 8506(1)   | 2285(1)  | 36(1)                                                                |
| Mo(1A) | 1710(2)  | 7678(2)   | 1474(3)  | 28(1)                                                                |
| Mo(2A) | 951(1)   | 8444(1)   | 1333(1)  | 32(1)                                                                |
| Mo(3A) | 1689(1)  | 9200(2)   | 1298(2)  | 27(1)                                                                |
| Se(1A) | 973(1)   | 6994(1)   | 1391(1)  | 59(1)                                                                |
| Se(2A) | 951(1)   | 9889(1)   | 1128(1)  | 50(1)                                                                |
| S(1A)  | 1304(3)  | 7644(4)   | 2314(4)  | 34(1)                                                                |
| S(2A)  | 1297(3)  | 9446(4)   | 2142(5)  | 32(1)                                                                |
| S(4A)  | 1303(2)  | 8312(3)   | 452(3)   | 32(1)                                                                |
| S(5A)  | 2159(4)  | 6594(10)  | 2280(10) | 38(2)                                                                |
| S(6A)  | 1877(7)  | 6712(14)  | 678(14)  | 43(2)                                                                |
| P(1A)  | 2157(3)  | 6027(9)   | 1405(8)  | 40(2)                                                                |
| C(1A)  | 2697(5)  | 5827(9)   | 1352(8)  | 39(3)                                                                |
| C(2A)  | 2992(6)  | 6514(11)  | 1395(9)  | 47(4)                                                                |
| C(3A)  | 2905(6)  | 6890(11)  | 677(9)   | 51(5)                                                                |
| C(4A)  | 3474(8)  | 6267(16)  | 1661(14) | 76(8)                                                                |
| C(5A)  | 1945(7)  | 5070(11)  | 1484(11) | 58(5)                                                                |
| C(6A)  | 1485(9)  | 5023(16)  | 1566(14) | 83(7)                                                                |
| C(7A)  | 1442(12) | 4400(20)  | 1993(17) | 115(11)                                                              |
| C(8A)  | 1145(12) | 5020(20)  | 853(16)  | 116(12)                                                              |
| S(7A)  | 344(1)   | 8517(2)   | 1899(2)  | 45(1)                                                                |
| S(8A)  | 284(1)   | 8334(3)   | 305(2)   | 51(1)                                                                |
| P(2A)  | -89(1)   | 8532(3)   | 940(2)   | 53(1)                                                                |
| C(9A)  | -345(10) | 9459(15)  | 660(15)  | 89(8)                                                                |
| C(10A) | -301(6)  | 10035(10) | 1228(9)  | 56(4)                                                                |
| C(11A) | -427(8)  | 10784(12) | 838(12)  | 80(6)                                                                |
| C(12A) | -525(11) | 9980(20)  | 1744(17) | 115(11)                                                              |
| C(13A) | -515(6)  | 7863(11)  | 867(11)  | 67(5)                                                                |
| C(14A) | -389(7)  | 7042(12)  | 1047(13) | 74(5)                                                                |
| C(15A) | -741(9)  | 6609(16)  | 1234(16) | 105(9)                                                               |
| C(16A) | -251(9)  | 6599(15)  | 501(14)  | 95(7)                                                                |
| S(9A)  | 2108(3)  | 10376(6)  | 1808(5)  | 44(1)                                                                |
| S(10A) | 1765(2)  | 9852(3)   | 226(3)   | 38(1)                                                                |
| P(3A)  | 2075(2)  | 10719(4)  | 836(3)   | 42(1)                                                                |
| C(17A) | 1553(6)  | 11395(9)  | 550(9)   | 49(4)                                                                |
| C(18A) | 1695(9)  | 12074(12) | 1042(13) | 79(6)                                                                |
| C(19A) | 1845(8)  | 12744(13) | 633(13)  | 83(6)                                                                |

**Table A.49**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 x 10^3$ ) for [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·1/2C<sub>5</sub>H<sub>12</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | х        | у         | y z      |         |
|--------|----------|-----------|----------|---------|
| C(20A) | 1726(16) | 12180(20) | 1674(16) | 163(16) |
| C(21A) | 2612(7)  | 10963(12) | 784(12)  | 66(5)   |
| C(22A) | 2962(7)  | 10389(13) | 1078(13) | 71(6)   |
| C(23A) | 2979(11) | 9795(17)  | 533(17)  | 99(11)  |
| C(24A) | 3383(9)  | 10718(19) | 1368(18) | 112(11) |
| Mo(1B) | 1708(2)  | 7498(2)   | 1559(3)  | 28(1)   |
| Mo(2B) | 925(1)   | 8170(1)   | 1504(1)  | 32(1)   |
| Mo(3B) | 1596(1)  | 9030(1)   | 1337(2)  | 27(1)   |
| Se(1B) | 1042(1)  | 6731(1)   | 1618(1)  | 59(1)   |
| Se(2B) | 822(1)   | 9588(1)   | 1190(1)  | 50(1)   |
| S(1B)  | 1366(3)  | 7463(4)   | 2482(3)  | 34(1)   |
| S(2B)  | 1229(3)  | 9242(3)   | 2206(5)  | 32(1)   |
| S(4B)  | 1226(2)  | 8079(2)   | 557(3)   | 32(1)   |
| S(5B)  | 2275(4)  | 6685(9)   | 2305(9)  | 38(2)   |
| S(6B)  | 1785(6)  | 6596(13)  | 625(13)  | 43(2)   |
| P(1B)  | 2291(2)  | 6060(9)   | 1478(8)  | 40(2)   |
| C(1B)  | 2836(5)  | 5984(8)   | 1394(7)  | 34(3)   |
| C(2B)  | 3112(5)  | 6689(9)   | 1454(8)  | 42(4)   |
| C(3B)  | 3015(5)  | 7089(9)   | 755(7)   | 36(3)   |
| C(4B)  | 3575(7)  | 6461(13)  | 1714(12) | 64(5)   |
| C(5B)  | 2109(6)  | 5118(9)   | 1530(9)  | 47(4)   |
| C(6B)  | 1662(7)  | 4978(12)  | 1612(10) | 63(5)   |
| C(7B)  | 1642(9)  | 4306(15)  | 2096(13) | 90(7)   |
| C(8B)  | 1308(10) | 4875(18)  | 912(13)  | 97(9)   |
| S(7B)  | 392(1)   | 8128(2)   | 2218(2)  | 45(1)   |
| S(8B)  | 202(1)   | 7898(2)   | 600(2)   | 51(1)   |
| P(2B)  | -99(1)   | 7922(3)   | 1354(2)  | 53(1)   |
| C(9B)  | -522(5)  | 8627(8)   | 1225(8)  | 50(3)   |
| C(10B) | -384(5)  | 9444(8)   | 1245(8)  | 47(3)   |
| C(11B) | -387(8)  | 9752(15)  | 537(11)  | 76(6)   |
| C(12B) | -686(7)  | 9873(11)  | 1530(10) | 60(4)   |
| C(13B) | -382(7)  | 7052(11)  | 1445(12) | 72(5)   |
| C(14B) | -106(8)  | 6330(13)  | 1619(13) | 88(6)   |
| C(15B) | -295(10) | 5807(18)  | 2071(15) | 124(10) |
| C(16B) | -84(13)  | 5910(20)  | 985(17)  | 152(14) |
| S(9B)  | 1968(3)  | 10264(5)  | 1797(5)  | 44(1)   |
| S(10B) | 1622(2)  | 9680(3)   | 236(3)   | 38(1)   |
| P(3B)  | 1905(2)  | 10587(3)  | 804(3)   | 42(1)   |
| C(17B) | 1728(8)  | 11526(11) | 544(12)  | 75(6)   |

**Table A.49, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2 x 10^3$ ) for [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>2</sub>C<sub>5</sub>H<sub>12</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х         | У         | Z        | U(eq)   |
|--------|-----------|-----------|----------|---------|
| C(18B) | 1816(14)  | 12230(18) | 990(20)  | 161(17) |
| C(19B) | 1501(14)  | 12800(20) | 300(20)  | 169(16) |
| C(20B) | 1391(11)  | 12242(18) | 1397(16) | 119(10) |
| C(21B) | 2422(5)   | 10896(9)  | 710(9)   | 48(3)   |
| C(22B) | 2812(6)   | 10361(10) | 978(10)  | 55(4)   |
| C(23B) | 2837(8)   | 9712(12)  | 493(12)  | 65(5)   |
| C(24B) | 3229(8)   | 10853(15) | 1144(16) | 96(8)   |
| C(25A) | -873(18)  | 3550(30)  | 1120(30) | 98(15)  |
| C(26A) | -480(20)  | 3550(50)  | 830(50)  | 170(40) |
| C(27A) | -150(20)  | 2950(30)  | 1240(40) | 120(20) |
| C(28A) | 297(17)   | 2570(30)  | 1530(60) | 190(40) |
| C(29A) | 220(20)   | 1720(30)  | 1620(30) | 113(18) |
| C(25B) | -1025(16) | 3530(30)  | 1530(30) | 90(13)  |
| C(26B) | -780(17)  | 3960(30)  | 1090(30) | 88(13)  |
| C(27B) | -600(20)  | 3480(40)  | 590(40)  | 130(30) |
| C(28B) | -120(20)  | 3730(40)  | 950(60)  | 220(50) |
| C(29B) | 160(20)   | 3020(50)  | 1190(40) | 160(30) |

**Table A.49, Cont'd.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2 x 10^3$ ) for [Mo<sub>3</sub>S<sub>4</sub>Se<sub>3</sub>(S<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I·<sup>1</sup>/<sub>2</sub>C<sub>5</sub>H<sub>12</sub>. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Se(3)-S(3)    | 2.1689(17) | C(3A)-H(3A3)  | 0.9800    |
|---------------|------------|---------------|-----------|
| Se(3)-Mo(1A)  | 2.472(5)   | C(4A)-H(4A1)  | 0.9800    |
| Se(3)-Mo(3A)  | 2.535(4)   | C(4A)-H(4A2)  | 0.9800    |
| Se(3)-Mo(3B)  | 2.660(3)   | C(4A)-H(4A3)  | 0.9800    |
| Se(3)-Mo(1B)  | 2.713(5)   | C(5A)-C(6A)   | 1.53(3)   |
| S(3)-Mo(1A)   | 2.354(6)   | C(5A)-H(5A1)  | 0.9900    |
| S(3)-Mo(3B)   | 2.405(4)   | C(5A)-H(5A2)  | 0.9900    |
| S(3)-Mo(3A)   | 2.451(4)   | C(6A)-C(7A)   | 1.43(3)   |
| S(3)-Mo(1B)   | 2.492(5)   | C(6A)-C(8A)   | 1.53(3)   |
| Mo(1A)-S(4A)  | 2.371(7)   | C(6A)-H(6A)   | 1.0000    |
| Mo(1A)-S(1A)  | 2.415(10)  | C(7A)-H(7A1)  | 0.9800    |
| Mo(1A)-S(6A)  | 2.51(3)    | C(7A)-H(7A2)  | 0.9800    |
| Mo(1A)-Se(1A) | 2.617(6)   | C(7A)-H(7A3)  | 0.9800    |
| Mo(1A)-S(5A)  | 2.652(19)  | C(8A)-H(8A1)  | 0.9800    |
| Mo(1A)-Mo(3A) | 2.720(4)   | C(8A)-H(8A2)  | 0.9800    |
| Mo(1A)-Mo(2A) | 2.726(6)   | C(8A)-H(8A3)  | 0.9800    |
| Mo(2A)-S(4A)  | 2.372(5)   | S(7A)-P(2A)   | 2.020(6)  |
| Mo(2A)-S(1A)  | 2.425(5)   | S(8A)-P(2A)   | 2.021(6)  |
| Mo(2A)-S(2A)  | 2.446(8)   | P(2A)-C(13A)  | 1.781(19) |
| Mo(2A)-S(8A)  | 2.512(4)   | P(2A)-C(9A)   | 1.85(3)   |
| Mo(2A)-S(7A)  | 2.529(4)   | C(9A)-C(10A)  | 1.51(3)   |
| Mo(2A)-Se(1A) | 2.575(3)   | C(9A)-H(9A1)  | 0.9900    |
| Mo(2A)-Se(2A) | 2.595(2)   | C(9A)-H(9A2)  | 0.9900    |
| Mo(2A)-Mo(3A) | 2.736(2)   | C(10A)-C(12A) | 1.43(3)   |
| Mo(3A)-S(4A)  | 2.382(6)   | C(10A)-C(11A) | 1.53(2)   |
| Mo(3A)-S(2A)  | 2.428(9)   | C(10A)-H(10A) | 1.0000    |
| Mo(3A)-S(10A) | 2.520(6)   | C(11A)-H(11A) | 0.9800    |
| Mo(3A)-S(9A)  | 2.531(8)   | C(11A)-H(11B) | 0.9800    |
| Mo(3A)-Se(2A) | 2.594(4)   | C(11A)-H(11C) | 0.9800    |
| Se(1A)-S(1A)  | 2.180(9)   | C(12A)-H(12A) | 0.9800    |
| Se(2A)-S(2A)  | 2.163(10)  | C(12A)-H(12B) | 0.9800    |
| S(5A)-P(1A)   | 2.02(2)    | C(12A)-H(12C) | 0.9800    |
| S(6A)-P(1A)   | 1.91(3)    | C(13A)-C(14A) | 1.52(3)   |
| P(1A)-C(1A)   | 1.802(19)  | C(13A)-H(13A) | 0.9900    |
| P(1A)-C(5A)   | 1.85(2)    | C(13A)-H(13B) | 0.9900    |
| C(1A)-C(2A)   | 1.53(2)    | C(14A)-C(15A) | 1.50(3)   |
| C(1A)-H(1A1)  | 0.9900     | C(14A)-C(16A) | 1.52(3)   |
| C(1A)-H(1A2)  | 0.9900     | C(14A)-H(14A) | 1.0000    |
| C(2A)-C(3A)   | 1.54(2)    | C(15A)-H(15A) | 0.9800    |
| C(2A)-C(4A)   | 1.54(3)    | C(15A)-H(15B) | 0.9800    |
| C(2A)-H(2A)   | 1.0000     | C(15A)-H(15C) | 0.9800    |
| C(3A)-H(3A1)  | 0.9800     | C(16A)-H(16A) | 0.9800    |
| C(3A)-H(3A2)  | 0.9800     | C(16A)-H(16B) | 0.9800    |
|               |            |               |           |

**Table A.50**. Bond lengths (Å) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| $Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O$ | C <sub>5</sub> H <sub>12</sub> . Symmetry |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Mo(2B)-Mo(3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.737(2)                                  |
| Mo(3B)-S(4B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.372(6)                                  |
| Mo(3B)-S(2B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.404(8)                                  |
| Mo(3B)-S(10B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.518(6)                                  |
| Mo(3B)-S(9B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.535(8)                                  |
| $\mathbf{M}$ (2D) $\mathbf{G}$ (2D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2$ ( $\Omega$ ( $\Lambda$ )              |

**Table A.50, Cont'd.** Bond lengths (Å) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

0.9800

C(16A)-H(16C)

| S(9A)-P(3A)     | 2.021(12) | Mo(3B)- $S(4B)$ | 2.372(6)  |
|-----------------|-----------|-----------------|-----------|
| S(10A)-P(3A)    | 2.037(9)  | Mo(3B)-S(2B)    | 2.404(8)  |
| P(3A)-C(21A)    | 1.81(2)   | Mo(3B)-S(10B)   | 2.518(6)  |
| P(3A)-C(17A)    | 2.002(18) | Mo(3B)-S(9B)    | 2.535(8)  |
| C(17A)-C(18A)   | 1.54(2)   | Mo(3B)-Se(2B)   | 2.606(4)  |
| C(17A)-H(17A)   | 0.9900    | Se(1B)- $S(1B)$ | 2.176(9)  |
| C(17A)-H(17B)   | 0.9900    | Se(2B)-S(2B)    | 2.167(9)  |
| C(18A)-C(20A)   | 1.26(3)   | S(5B)-P(1B)     | 2.01(2)   |
| C(18A)-C(19A)   | 1.60(3)   | S(6B)-P(1B)     | 2.20(3)   |
| C(18A)-H(18A)   | 1.0000    | P(1B)-C(5B)     | 1.78(2)   |
| C(19A)-H(19A)   | 0.9800    | P(1B)-C(1B)     | 1.809(17) |
| C(19A)-H(19B)   | 0.9800    | C(1B)-C(2B)     | 1.52(2)   |
| C(19A)-H(19C)   | 0.9800    | C(1B)-H(1B1)    | 0.9900    |
| C(20A)-H(20A)   | 0.9800    | C(1B)-H(1B2)    | 0.9900    |
| C(20A)-H(20B)   | 0.9800    | C(2B)-C(4B)     | 1.48(2)   |
| C(20A)-H(20C)   | 0.9800    | C(2B)-C(3B)     | 1.524(19) |
| C(21A)-C(22A)   | 1.50(3)   | C(2B)-H(2B)     | 1.0000    |
| C(21A)-H(21A)   | 0.9900    | C(3B)-H(3B1)    | 0.9800    |
| C(21A)-H(21B)   | 0.9900    | C(3B)-H(3B2)    | 0.9800    |
| C(22A)-C(24A)   | 1.43(3)   | C(3B)-H(3B3)    | 0.9800    |
| C(22A)-C(23A)   | 1.53(3)   | C(4B)-H(4B1)    | 0.9800    |
| C(22A)-H(22A)   | 1.0000    | C(4B)-H(4B2)    | 0.9800    |
| C(23A)-H(23A)   | 0.9800    | C(4B)-H(4B3)    | 0.9800    |
| C(23A)-H(23B)   | 0.9800    | C(5B)-C(6B)     | 1.51(2)   |
| C(23A)-H(23C)   | 0.9800    | C(5B)-H(5B1)    | 0.9900    |
| C(24A)-H(24A)   | 0.9800    | C(5B)-H(5B2)    | 0.9900    |
| C(24A)-H(24B)   | 0.9800    | C(6B)-C(8B)     | 1.54(3)   |
| C(24A)-H(24C)   | 0.9800    | C(6B)-C(7B)     | 1.55(3)   |
| Mo(1B)- $S(4B)$ | 2.386(7)  | C(6B)-H(6B)     | 1.0000    |
| Mo(1B)- $S(1B)$ | 2.417(9)  | C(7B)-H(7B1)    | 0.9800    |
| Mo(1B)- $S(5B)$ | 2.457(18) | C(7B)-H(7B2)    | 0.9800    |
| Mo(1B)- $S(6B)$ | 2.53(2)   | C(7B)-H(7B3)    | 0.9800    |
| Mo(1B)-Se(1B)   | 2.564(6)  | C(8B)-H(8B1)    | 0.9800    |
| Mo(1B)-Mo(2B)   | 2.753(6)  | C(8B)-H(8B2)    | 0.9800    |
| Mo(1B)-Mo(3B)   | 2.760(4)  | C(8B)-H(8B3)    | 0.9800    |
| Mo(2B)- $S(4B)$ | 2.377(5)  | S(7B)-P(2B)     | 2.009(6)  |
| Mo(2B)- $S(2B)$ | 2.399(7)  | S(8B)-P(2B)     | 2.023(6)  |
| Mo(2B)- $S(1B)$ | 2.413(4)  | P(2B)-C(9B)     | 1.807(15) |
| Mo(2B)-S(7B)    | 2.530(4)  | P(2B)-C(13B)    | 1.824(19) |
| Mo(2B)-S(8B)    | 2.539(4)  | C(9B)-C(10B)    | 1.512(19) |
| Mo(2B)-Se(1B)   | 2.579(3)  | C(9B)-H(9B1)    | 0.9900    |
| Mo(2B)-Se(2B)   | 2.591(2)  | C(9B)-H(9B2)    | 0.9900    |

| $Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}$<br>ns: | C <sub>5</sub> H <sub>12</sub> . Symmetry |
|--------------------------------------------------------|-------------------------------------------|
| C(23B)-H(23D)                                          | 0.9800                                    |
| C(23B)-H(23E)                                          | 0.9800                                    |
| C(23B)-H(23F)                                          | 0.9800                                    |
| C(24B)-H(24D)                                          | 0.9800                                    |
| C(24B)-H(24E)                                          | 0.9800                                    |
| C(24B)-H(24F)                                          | 0.9800                                    |
| C(25A)-C(26A)                                          | 1.547(10)                                 |
| C(25A)-H(25A)                                          | 0.9800                                    |
| C(25A)-H(25B)                                          | 0.9800                                    |
| C(25A)-H(25C)                                          | 0.9800                                    |
| C(26A)-C(27A)                                          | 1.550(10)                                 |
| C(26A)-H(26A)                                          | 0.9900                                    |
| C(26A)-H(26B)                                          | 0.9900                                    |
| C(27A) $C(28A)$                                        | 1.551(10)                                 |

Table A.50, Cont'd. Bond lengths (Å) for [M transformations used to generate equivalent atom

1.47(2)

1.52(2)

1.0000

C(10B)-C(12B) C(10B)-C(11B)

C(10B)-H(10B)

| C(11B)-H(11D) | 0.9800    | C(24B)-H(24D) | 0.9800    |
|---------------|-----------|---------------|-----------|
| C(11B)-H(11E) | 0.9800    | C(24B)-H(24E) | 0.9800    |
| C(11B)-H(11F) | 0.9800    | C(24B)-H(24F) | 0.9800    |
| C(12B)-H(12D) | 0.9800    | C(25A)-C(26A) | 1.547(10) |
| C(12B)-H(12E) | 0.9800    | C(25A)-H(25A) | 0.9800    |
| C(12B)-H(12F) | 0.9800    | C(25A)-H(25B) | 0.9800    |
| C(13B)-C(14B) | 1.54(3)   | C(25A)-H(25C) | 0.9800    |
| C(13B)-H(13C) | 0.9900    | C(26A)-C(27A) | 1.550(10) |
| C(13B)-H(13D) | 0.9900    | C(26A)-H(26A) | 0.9900    |
| C(14B)-C(16B) | 1.50(3)   | C(26A)-H(26B) | 0.9900    |
| C(14B)-C(15B) | 1.54(3)   | C(27A)-C(28A) | 1.551(10) |
| C(14B)-H(14B) | 1.0000    | C(27A)-H(27A) | 0.9900    |
| C(15B)-H(15D) | 0.9800    | C(27A)-H(27B) | 0.9900    |
| C(15B)-H(15E) | 0.9800    | C(28A)-C(29A) | 1.546(10) |
| C(15B)-H(15F) | 0.9800    | C(28A)-H(28A) | 0.9900    |
| C(16B)-H(16D) | 0.9800    | C(28A)-H(28B) | 0.9900    |
| C(16B)-H(16E) | 0.9800    | C(29A)-H(29A) | 0.9800    |
| C(16B)-H(16F) | 0.9800    | C(29A)-H(29B) | 0.9800    |
| S(9B)-P(3B)   | 2.031(11) | C(29A)-H(29C) | 0.9800    |
| S(10B)-P(3B)  | 2.027(8)  | C(25B)-C(26B) | 1.550(10) |
| P(3B)-C(17B)  | 1.79(2)   | C(25B)-H(25D) | 0.9800    |
| P(3B)-C(21B)  | 1.805(16) | C(25B)-H(25E) | 0.9800    |
| C(17B)-C(18B) | 1.51(3)   | C(25B)-H(25F) | 0.9800    |
| C(17B)-H(17C) | 0.9900    | C(26B)-C(27B) | 1.548(10) |
| C(17B)-H(17D) | 0.9900    | C(26B)-H(26C) | 0.9900    |
| C(18B)-C(19B) | 1.77(4)   | C(26B)-H(26D) | 0.9900    |
| C(18B)-C(20B) | 1.79(4)   | C(27B)-C(28B) | 1.548(10) |
| C(18B)-H(18B) | 1.0000    | C(27B)-H(27C) | 0.9900    |
| C(19B)-H(19D) | 0.9800    | C(27B)-H(27D) | 0.9900    |
| C(19B)-H(19E) | 0.9800    | C(28B)-C(29B) | 1.551(10) |
| C(19B)-H(19F) | 0.9800    | C(28B)-H(28C) | 0.9900    |
| C(20B)-H(20D) | 0.9800    | C(28B)-H(28D) | 0.9900    |
| C(20B)-H(20E) | 0.9800    | C(29B)-H(29D) | 0.9800    |
| C(20B)-H(20F) | 0.9800    | C(29B)-H(29E) | 0.9800    |
| C(21B)-C(22B) | 1.54(2)   | C(29B)-H(29F) | 0.9800    |
| C(21B)-H(21C) | 0.9900    |               |           |
| C(21B)-H(21D) | 0.9900    |               |           |
| C(22B)-C(23B) | 1.52(2)   |               |           |
| C(22B)-C(24B) | 1.55(3)   |               |           |
| C(22B)-H(22B) | 1.0000    |               |           |

| S(3)-Se(3)-Mo(1A)    | 60.55(14)  | Se(3)-Mo(1A)-Mo(2A)  | 118.32(12) |
|----------------------|------------|----------------------|------------|
| S(3)-Se(3)-Mo(3A)    | 62.23(9)   | S(6A)-Mo(1A)-Mo(2A)  | 128.6(6)   |
| Mo(1A)-Se(3)-Mo(3A)  | 65.79(11)  | Se(1A)-Mo(1A)-Mo(2A) | 57.59(14)  |
| S(3)-Se(3)-Mo(3B)    | 58.67(8)   | S(5A)-Mo(1A)-Mo(2A)  | 137.2(3)   |
| S(3)-Se(3)-Mo(1B)    | 60.17(12)  | Mo(3A)-Mo(1A)-Mo(2A) | 60.33(11)  |
| Mo(3B)-Se(3)-Mo(1B)  | 61.80(10)  | S(4A)-Mo(2A)-S(1A)   | 109.9(3)   |
| Se(3)-S(3)-Mo(1A)    | 66.11(14)  | S(4A)-Mo(2A)-S(2A)   | 110.3(2)   |
| Se(3)-S(3)-Mo(3B)    | 70.92(8)   | S(1A)-Mo(2A)-S(2A)   | 82.6(3)    |
| Se(3)-S(3)-Mo(3A)    | 66.23(9)   | S(4A)-Mo(2A)-S(8A)   | 81.56(18)  |
| Mo(1A)-S(3)-Mo(3A)   | 68.92(11)  | S(1A)-Mo(2A)-S(8A)   | 135.0(2)   |
| Se(3)-S(3)-Mo(1B)    | 70.80(12)  | S(2A)-Mo(2A)-S(8A)   | 135.7(3)   |
| Mo(3B)-S(3)-Mo(1B)   | 68.58(11)  | S(4A)-Mo(2A)-S(7A)   | 159.51(18) |
| S(3)-Mo(1A)-S(4A)    | 112.16(18) | S(1A)-Mo(2A)-S(7A)   | 84.3(2)    |
| S(3)-Mo(1A)-S(1A)    | 83.1(3)    | S(2A)-Mo(2A)-S(7A)   | 85.5(2)    |
| S(4A)-Mo(1A)-S(1A)   | 110.2(3)   | S(8A)-Mo(2A)-S(7A)   | 77.98(14)  |
| S(3)-Mo(1A)-Se(3)    | 53.34(12)  | S(4A)-Mo(2A)-Se(1A)  | 85.58(14)  |
| S(4A)-Mo(1A)-Se(3)   | 85.60(16)  | S(1A)-Mo(2A)-Se(1A)  | 51.6(2)    |
| S(1A)-Mo(1A)-Se(3)   | 136.2(3)   | S(2A)-Mo(2A)-Se(1A)  | 134.0(2)   |
| S(3)-Mo(1A)-S(6A)    | 131.7(5)   | S(8A)-Mo(2A)-Se(1A)  | 87.99(13)  |
| S(4A)-Mo(1A)-S(6A)   | 86.3(7)    | S(7A)-Mo(2A)-Se(1A)  | 92.59(13)  |
| S(1A)-Mo(1A)-S(6A)   | 133.5(6)   | S(4A)-Mo(2A)-Se(2A)  | 87.55(13)  |
| Se(3)-Mo(1A)-S(6A)   | 86.3(5)    | S(1A)-Mo(2A)-Se(2A)  | 133.2(2)   |
| S(3)-Mo(1A)-Se(1A)   | 134.1(2)   | S(2A)-Mo(2A)-Se(2A)  | 50.7(2)    |
| S(4A)-Mo(1A)-Se(1A)  | 84.7(2)    | S(8A)-Mo(2A)-Se(2A)  | 89.18(12)  |
| S(1A)-Mo(1A)-Se(1A)  | 51.2(3)    | S(7A)-Mo(2A)-Se(2A)  | 93.21(12)  |
| Se(3)-Mo(1A)-Se(1A)  | 169.8(2)   | Se(1A)-Mo(2A)-Se(2A) | 172.88(10) |
| S(6A)-Mo(1A)-Se(1A)  | 89.9(4)    | S(4A)-Mo(2A)-Mo(1A)  | 54.92(17)  |
| S(3)-Mo(1A)-S(5A)    | 85.0(4)    | S(1A)-Mo(2A)-Mo(1A)  | 55.5(2)    |
| S(4A)-Mo(1A)-S(5A)   | 159.4(5)   | S(2A)-Mo(2A)-Mo(1A)  | 94.3(3)    |
| S(1A)-Mo(1A)-S(5A)   | 82.0(4)    | S(8A)-Mo(2A)-Mo(1A)  | 124.48(17) |
| Se(3)-Mo(1A)-S(5A)   | 96.8(3)    | S(7A)-Mo(2A)-Mo(1A)  | 139.39(14) |
| S(6A)-Mo(1A)-S(5A)   | 73.5(8)    | Se(1A)-Mo(2A)-Mo(1A) | 59.08(11)  |
| Se(1A)-Mo(1A)-S(5A)  | 91.2(2)    | Se(2A)-Mo(2A)-Mo(1A) | 117.86(11) |
| S(3)-Mo(1A)-Mo(3A)   | 57.22(12)  | S(4A)-Mo(2A)-Mo(3A)  | 55.04(15)  |
| S(4A)-Mo(1A)-Mo(3A)  | 55.28(15)  | S(1A)-Mo(2A)-Mo(3A)  | 96.1(2)    |
| S(1A)-Mo(1A)-Mo(3A)  | 96.8(2)    | S(2A)-Mo(2A)-Mo(3A)  | 55.5(2)    |
| Se(3)-Mo(1A)-Mo(3A)  | 58.22(10)  | S(8A)-Mo(2A)-Mo(3A)  | 123.46(13) |
| S(6A)-Mo(1A)-Mo(3A)  | 126.6(7)   | S(7A)-Mo(2A)-Mo(3A)  | 140.43(13) |
| Se(1A)-Mo(1A)-Mo(3A) | 117.7(2)   | Se(1A)-Mo(2A)-Mo(3A) | 118.59(11) |
| S(5A)-Mo(1A)-Mo(3A)  | 141.9(4)   | Se(2A)-Mo(2A)-Mo(3A) | 58.15(9)   |
| S(3)-Mo(1A)-Mo(2A)   | 96.48(17)  | Mo(1A)-Mo(2A)-Mo(3A) | 59.73(12)  |
| S(4A)-Mo(1A)-Mo(2A)  | 54.94(17)  | S(4A)-Mo(3A)-S(2A)   | 110.6(2)   |
| S(1A)-Mo(1A)-Mo(2A)  | 55.91(18)  | S(4A)-Mo(3A)-S(3)    | 108.46(17) |
|                      |            |                      |            |

**Table A.51.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetrytransformations used to generate equivalent atoms:

| S(2A)-Mo(3A)-S(3)          | 81.3(2)    | Se(2A)-S(2A)-Mo(3A)     | 68.5(3)   |
|----------------------------|------------|-------------------------|-----------|
| S(4A)-Mo(3A)-S(10A)        | 81.49(19)  | Se(2A)-S(2A)-Mo(2A)     | 68.2(3)   |
| S(2A)-Mo(3A)-S(10A)        | 135.6(3)   | $M_0(3A)-S(2A)-M_0(2A)$ | 68.3(3)   |
| S(3)-Mo(3A)-S(10A)         | 137.05(19) | $M_0(2A)-S(4A)-M_0(1A)$ | 70.1(2)   |
| S(4A)-Mo(3A)-S(9A)         | 159.7(3)   | $M_0(2A)-S(4A)-M_0(3A)$ | 70.28(17) |
| S(2A)-Mo(3A)-S(9A)         | 83.7(3)    | $M_0(1A)-S(4A)-M_0(3A)$ | 69.8(2)   |
| S(3)-Mo(3A)-S(9A)          | 87.4(3)    | P(1A)-S(5A)-Mo(1A)      | 88.0(8)   |
| S(10A)-Mo(3A)-S(9A)        | 78.3(3)    | P(1A)-S(6A)-Mo(1A)      | 94.9(12)  |
| S(4A)-Mo(3A)-Se(3)         | 83.98(18)  | C(1A)-P(1A)-C(5A)       | 102.0(11) |
| S(2A)-Mo(3A)-Se(3)         | 132.6(3)   | C(1A)-P(1A)-S(6A)       | 108.9(12) |
| S(3)-Mo(3A)-Se(3)          | 51.54(8)   | C(5A)-P(1A)-S(6A)       | 123.0(10) |
| S(10A)-Mo(3A)-Se(3)        | 89.99(18)  | C(1A)-P(1A)-S(5A)       | 112.9(8)  |
| S(9A)-Mo(3A)-Se(3)         | 97.0(3)    | C(5A)-P(1A)-S(5A)       | 106.8(11) |
| S(4A)-Mo(3A)-Se(2A)        | 87.36(18)  | S(6A)-P(1A)-S(5A)       | 103.4(12) |
| S(2A)-Mo(3A)-Se(2A)        | 50.9(2)    | C(2A)-C(1A)-P(1A)       | 115.4(12) |
| S(3)-Mo(3A)-Se(2A)         | 131.97(13) | C(2A)-C(1A)-H(1A1)      | 108.4     |
| S(10A)-Mo(3A)-Se(2A)       | 89.05(19)  | P(1A)-C(1A)-H(1A1)      | 108.4     |
| S(9A)-Mo(3A)-Se(2A)        | 91.2(3)    | C(2A)-C(1A)-H(1A2)      | 108.4     |
| Se(3)-Mo(3A)-Se(2A)        | 171.33(14) | P(1A)-C(1A)-H(1A2)      | 108.4     |
| S(4A)-Mo(3A)-Mo(1A)        | 54.91(17)  | H(1A1)-C(1A)-H(1A2)     | 107.5     |
| S(2A)-Mo(3A)-Mo(1A)        | 94.90(19)  | C(1A)-C(2A)-C(3A)       | 110.5(15) |
| S(3)-Mo(3A)-Mo(1A)         | 53.86(14)  | C(1A)-C(2A)-C(4A)       | 109.5(16) |
| S(10A)-Mo(3A)-Mo(1A)       | 124.2(2)   | C(3A)-C(2A)-C(4A)       | 109.7(16) |
| S(9A)-Mo(3A)-Mo(1A)        | 140.8(3)   | C(1A)-C(2A)-H(2A)       | 109.0     |
| Se(3)-Mo(3A)-Mo(1A)        | 55.99(15)  | C(3A)-C(2A)-H(2A)       | 109.0     |
| Se(2A)-Mo(3A)-Mo(1A)       | 118.10(15) | C(4A)-C(2A)-H(2A)       | 109.0     |
| S(4A)-Mo(3A)-Mo(2A)        | 54.69(13)  | C(2A)-C(3A)-H(3A1)      | 109.5     |
| S(2A)-Mo(3A)-Mo(2A)        | 56.16(18)  | C(2A)-C(3A)-H(3A2)      | 109.5     |
| S(3)-Mo(3A)-Mo(2A)         | 93.96(8)   | H(3A1)-C(3A)-H(3A2)     | 109.5     |
| S(10A)-Mo(3A)-Mo(2A)       | 123.13(18) | C(2A)-C(3A)-H(3A3)      | 109.5     |
| S(9A)-Mo(3A)-Mo(2A)        | 138.9(3)   | H(3A1)-C(3A)-H(3A3)     | 109.5     |
| Se(3)-Mo(3A)-Mo(2A)        | 115.71(10) | H(3A2)-C(3A)-H(3A3)     | 109.5     |
| Se(2A)-Mo(3A)-Mo(2A)       | 58.19(8)   | C(2A)-C(4A)-H(4A1)      | 109.5     |
| Mo(1A)-Mo(3A)-Mo(2A)       | 59.94(14)  | C(2A)-C(4A)-H(4A2)      | 109.5     |
| S(1A)-Se(1A)-Mo(2A)        | 60.66(14)  | H(4A1)-C(4A)-H(4A2)     | 109.5     |
| S(1A)-Se(1A)-Mo(1A)        | 59.6(3)    | C(2A)-C(4A)-H(4A3)      | 109.5     |
| Mo(2A)-Se(1A)-Mo(1A)       | 63.34(12)  | H(4A1)-C(4A)-H(4A3)     | 109.5     |
| S(2A)-Se(2A)-Mo(3A)        | 60.6(3)    | H(4A2)-C(4A)-H(4A3)     | 109.5     |
| S(2A)-Se(2A)-Mo(2A)        | 61.07(19)  | C(6A)-C(5A)-P(1A)       | 116.6(16) |
| Mo(3A)-Se(2A)-Mo(2A)       | 63.66(7)   | C(6A)-C(5A)-H(5A1)      | 108.2     |
| Se(1A)-S(1A)-Mo(1A)        | 69.2(3)    | P(1A)-C(5A)-H(5A1)      | 108.2     |
| Se(1A)-S(1A)-Mo(2A)        | 67.75(19)  | C(6A)-C(5A)-H(5A2)      | 108.2     |
| Mo(1A)- $S(1A)$ - $Mo(2A)$ | 68.6(2)    | P(1A)-C(5A)-H(5A2)      | 108.2     |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| H(5A1)-C(5A)-H(5A2)  | 107.3     | H(11A)-C(11A)-H(11C) | 109.5     |
|----------------------|-----------|----------------------|-----------|
| C(7A)-C(6A)-C(8A)    | 113(3)    | H(11B)-C(11A)-H(11C) | 109.5     |
| C(7A)-C(6A)-C(5A)    | 112(2)    | C(10A)-C(12A)-H(12A) | 109.5     |
| C(8A)-C(6A)-C(5A)    | 110(2)    | C(10A)-C(12A)-H(12B) | 109.5     |
| C(7A)-C(6A)-H(6A)    | 107.2     | H(12A)-C(12A)-H(12B) | 109.5     |
| C(8A)-C(6A)-H(6A)    | 107.2     | C(10A)-C(12A)-H(12C) | 109.5     |
| C(5A)-C(6A)-H(6A)    | 107.2     | H(12A)-C(12A)-H(12C) | 109.5     |
| C(6A)-C(7A)-H(7A1)   | 109.5     | H(12B)-C(12A)-H(12C) | 109.5     |
| С(6А)-С(7А)-Н(7А2)   | 109.5     | C(14A)-C(13A)-P(2A)  | 118.3(15) |
| H(7A1)-C(7A)-H(7A2)  | 109.5     | C(14A)-C(13A)-H(13A) | 107.7     |
| C(6A)-C(7A)-H(7A3)   | 109.5     | P(2A)-C(13A)-H(13A)  | 107.7     |
| H(7A1)-C(7A)-H(7A3)  | 109.5     | C(14A)-C(13A)-H(13B) | 107.7     |
| H(7A2)-C(7A)-H(7A3)  | 109.5     | P(2A)-C(13A)-H(13B)  | 107.7     |
| C(6A)-C(8A)-H(8A1)   | 109.5     | H(13A)-C(13A)-H(13B) | 107.1     |
| C(6A)-C(8A)-H(8A2)   | 109.5     | C(15A)-C(14A)-C(13A) | 112.5(19) |
| H(8A1)-C(8A)-H(8A2)  | 109.5     | C(15A)-C(14A)-C(16A) | 108.4(19) |
| C(6A)-C(8A)-H(8A3)   | 109.5     | C(13A)-C(14A)-C(16A) | 116(2)    |
| H(8A1)-C(8A)-H(8A3)  | 109.5     | C(15A)-C(14A)-H(14A) | 106.5     |
| H(8A2)-C(8A)-H(8A3)  | 109.5     | C(13A)-C(14A)-H(14A) | 106.5     |
| P(2A)-S(7A)-Mo(2A)   | 88.65(19) | C(16A)-C(14A)-H(14A) | 106.5     |
| P(2A)-S(8A)-Mo(2A)   | 89.13(19) | C(14A)-C(15A)-H(15A) | 109.5     |
| C(13A)-P(2A)-C(9A)   | 107.9(12) | C(14A)-C(15A)-H(15B) | 109.5     |
| C(13A)-P(2A)-S(7A)   | 111.5(7)  | H(15A)-C(15A)-H(15B) | 109.5     |
| C(9A)-P(2A)-S(7A)    | 115.0(9)  | C(14A)-C(15A)-H(15C) | 109.5     |
| C(13A)-P(2A)-S(8A)   | 114.3(7)  | H(15A)-C(15A)-H(15C) | 109.5     |
| C(9A)-P(2A)-S(8A)    | 104.7(9)  | H(15B)-C(15A)-H(15C) | 109.5     |
| S(7A)-P(2A)-S(8A)    | 103.4(2)  | C(14A)-C(16A)-H(16A) | 109.5     |
| C(10A)-C(9A)-P(2A)   | 115.8(18) | C(14A)-C(16A)-H(16B) | 109.5     |
| C(10A)-C(9A)-H(9A1)  | 108.3     | H(16A)-C(16A)-H(16B) | 109.5     |
| P(2A)-C(9A)-H(9A1)   | 108.3     | C(14A)-C(16A)-H(16C) | 109.5     |
| C(10A)-C(9A)-H(9A2)  | 108.3     | H(16A)-C(16A)-H(16C) | 109.5     |
| P(2A)-C(9A)-H(9A2)   | 108.3     | H(16B)-C(16A)-H(16C) | 109.5     |
| H(9A1)-C(9A)-H(9A2)  | 107.4     | P(3A)-S(9A)-Mo(3A)   | 89.1(4)   |
| C(12A)-C(10A)-C(9A)  | 123(2)    | P(3A)-S(10A)-Mo(3A)  | 89.0(3)   |
| C(12A)-C(10A)-C(11A) | 108.5(19) | C(21A)-P(3A)-C(17A)  | 124.8(9)  |
| C(9A)-C(10A)-C(11A)  | 104.3(17) | C(21A)-P(3A)-S(9A)   | 110.2(8)  |
| C(12A)-C(10A)-H(10A) | 106.6     | C(17A)-P(3A)-S(9A)   | 105.2(7)  |
| C(9A)-C(10A)-H(10A)  | 106.6     | C(21A)-P(3A)-S(10A)  | 116.8(8)  |
| C(11A)-C(10A)-H(10A) | 106.6     | C(17A)-P(3A)-S(10A)  | 93.4(6)   |
| С(10А)-С(11А)-Н(11А) | 109.5     | S(9A)-P(3A)-S(10A)   | 103.5(4)  |
| С(10А)-С(11А)-Н(11В) | 109.5     | C(18A)-C(17A)-P(3A)  | 102.6(13) |
| H(11A)-C(11A)-H(11B) | 109.5     | C(18A)-C(17A)-H(17A) | 111.3     |
| С(10А)-С(11А)-Н(11С) | 109.5     | P(3A)-C(17A)-H(17A)  | 111.3     |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| C(19A) C(17A) U(17D)     | 111.2               | $\mathbf{H}(24\mathbf{A}) = \mathbf{C}(24\mathbf{A}) = \mathbf{H}(24\mathbf{C})$ | 100 5                 |
|--------------------------|---------------------|----------------------------------------------------------------------------------|-----------------------|
| $C(18A)-C(17A)-\Pi(17B)$ | 111.5               | $\Pi(24A)$ - $C(24A)$ - $\Pi(24C)$                                               | 109.5                 |
| $P(3A)-C(1/A)-\Pi(1/B)$  | 111.5               | $\Pi(24D) - C(24A) - \Pi(24C)$                                                   | 109.3                 |
| H(1/A)-C(1/A)-H(1/B)     | 109.2               | S(4B) - MO(1B) - S(1B)<br>S(4B) - Mo(1B) - S(5B)                                 | 109.4(3)              |
| C(20A) - C(18A) - C(17A) | 134(3)              | S(4B)-MO(1B)-S(5B)                                                               | 101.9(5)              |
| C(17A) - C(18A) - C(19A) | 11/(3)<br>100 2(17) | S(1B)-MO(1B)-S(3B)<br>$S(4B) M_{2}(1B) S(2)$                                     | 80.3(4)<br>109.04(15) |
| C(1/A) - C(18A) - C(19A) | 109.2(17)           | S(4D)-WO(1D)-S(3)<br>$S(1D) M_{2}(1D) S(2)$                                      | 108.04(13)            |
| C(20A)-C(18A)-H(18A)     | 90.7                | S(1B)-MO(1B)-S(3)<br>S(5D) Mo(1D) S(2)                                           | 83.5(3)               |
| C(1/A) - C(18A) - H(18A) | 90.7                | S(3B) - MO(1B) - S(3)                                                            | 82.0(4)               |
| C(19A) - C(18A) - H(18A) | 90.7                | S(4B)-MO(1B)-S(0B)<br>$S(1B) M_{2}(1B) S(6B)$                                    | 125.9(6)              |
| C(18A) - C(19A) - H(19A) | 109.5               | S(1B)-MO(1B)-S(0B)                                                               | 135.8(0)              |
| U(18A) - C(19A) - H(19B) | 109.5               | S(3B)-MO(1B)-S(0B)                                                               | 82.5(7)               |
| H(19A)-C(19A)-H(19B)     | 109.5               | S(3)-MO(1B)- $S(0B)$                                                             | 130.2(5)              |
| U(18A) - C(19A) - H(19C) | 109.5               | S(4B)-MO(1B)-Se(1B)<br>S(1B) Mo(1B) So(1B)                                       | 85.0(2)<br>51.7(2)    |
| H(19A)-C(19A)-H(19C)     | 109.5               | S(1B)-MO(1B)-Se(1B)                                                              | 51.7(2)               |
| H(19B)-C(19A)-H(19C)     | 109.5               | S(3B)-MO(1B)-Se(1B)                                                              | 97.9(2)               |
| C(18A) - C(20A) - H(20A) | 109.5               | S(3)-MO(1B)-Se(1B)<br>S(5D) Mo(1D) So(1D)                                        | 134.9(2)              |
| C(18A)-C(20A)-H(20B)     | 109.5               | S(0B)-MO(1B)-Se(1B)                                                              | 87.8(4)               |
| H(20A)-C(20A)-H(20B)     | 109.5               | S(4B)-MO(1B)-Se(3)                                                               | 86.70(14)             |
| C(18A)-C(20A)-H(20C)     | 109.5               | S(1B)-MO(1B)-Se(3)                                                               | 132.5(3)              |
| H(20A)-C(20A)-H(20C)     | 109.5               | S(3B)-MO(1B)-Se(3)                                                               | 89.1(3)               |
| H(20B)-C(20A)-H(20C)     | 109.5               | S(3)-MO(1B)-Se(3)                                                                | 49.03(10)             |
| C(22A)-C(21A)-P(3A)      | 115.5(16)           | S(0B)-MO(1B)-Se(3)                                                               | 90.1(5)               |
| C(22A)-C(21A)-H(21A)     | 108.4               | Se(1B)-MO(1B)-Se(3)                                                              | 1/2.3(2)              |
| P(3A)-C(2IA)-H(2IA)      | 108.4               | S(4B)-MO(1B)-MO(2B)                                                              | 54.54(16)             |
| C(22A)-C(21A)-H(21B)     | 108.4               | S(1B)-MO(1B)-MO(2B)                                                              | 55.18(17)             |
| P(3A)-C(21A)-H(21B)      | 108.4               | S(5B)-MO(1B)-MO(2B)                                                              | 141.4(4)              |
| H(21A)-C(21A)-H(21B)     | 107.5               | S(3)-MO(1B)-MO(2B)                                                               | 94.82(15)             |
| C(24A)-C(22A)-C(21A)     | 113(2)              | S(6B)-MO(1B)-MO(2B)                                                              | 121.8(5)              |
| C(24A)-C(22A)-C(23A)     | 110(2)              | Se(1B)-Mo(1B)-Mo(2B)                                                             | 57.89(13)             |
| C(21A)-C(22A)-C(23A)     | 111(2)              | Se(3)-Mo(1B)-Mo(2B)                                                              | 11/.65(11)            |
| C(24A)-C(22A)-H(22A)     | 107.3               | S(4B)-MO(1B)-MO(3B)                                                              | 54.32(14)             |
| C(21A)-C(22A)-H(22A)     | 107.3               | S(1B)-MO(1B)-MO(3B)                                                              | 94.7(2)               |
| C(23A)-C(22A)-H(22A)     | 107.3               | S(5B)-MO(1B)-MO(3B)                                                              | 135.6(4)              |
| C(22A)-C(23A)-H(23A)     | 109.5               | S(3)-Mo(1B)-Mo(3B)                                                               | 54.21(10)             |
| C(22A)-C(23A)-H(23B)     | 109.5               | S(6B)-Mo(1B)-Mo(3B)                                                              | 122.5(6)              |
| H(23A)-C(23A)-H(23B)     | 109.5               | Se(1B)-Mo(1B)-Mo(3B)                                                             | 117.3(2)              |
| C(22A)-C(23A)-H(23C)     | 109.5               | Se(3)-Mo(1B)-Mo(3B)                                                              | 58.17(8)              |
| H(23A)-C(23A)-H(23C)     | 109.5               | Mo(2B)-Mo(1B)-Mo(3B)                                                             | 59.53(10)             |
| H(23B)-C(23A)-H(23C)     | 109.5               | S(4B)-Mo(2B)-S(2B)                                                               | 109.6(2)              |
| C(22A)-C(24A)-H(24A)     | 109.5               | S(4B)-Mo(2B)-S(1B)                                                               | 109.8(2)              |
| C(22A)-C(24A)-H(24B)     | 109.5               | S(2B)-Mo(2B)-S(1B)                                                               | 83.7(3)               |
| H(24A)-C(24A)-H(24B)     | 109.5               | S(4B)-Mo(2B)-S(7B)                                                               | 161.86(17)            |
| C(22A)-C(24A)-H(24C)     | 109.5               | S(2B)-Mo(2B)-S(7B)                                                               | 85.1(2)               |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| S(1B)-Mo(2B)-S(7B)   | 81.6(2)    | S(2B)-Mo(3B)-Se(2B)        | 51.1(2)    |
|----------------------|------------|----------------------------|------------|
| S(4B)-Mo(2B)-S(8B)   | 84.94(17)  | S(10B)-Mo(3B)-Se(2B)       | 90.01(18)  |
| S(2B)-Mo(2B)-S(8B)   | 134.5(3)   | S(9B)-Mo(3B)-Se(2B)        | 92.5(3)    |
| S(1B)-Mo(2B)-S(8B)   | 133.0(2)   | S(4B)-Mo(3B)-Se(3)         | 88.19(17)  |
| S(7B)-Mo(2B)-S(8B)   | 77.06(13)  | S(3)-Mo(3B)-Se(3)          | 50.40(7)   |
| S(4B)-Mo(2B)-Se(1B)  | 85.48(13)  | S(2B)-Mo(3B)-Se(3)         | 134.6(3)   |
| S(2B)-Mo(2B)-Se(1B)  | 135.1(2)   | S(10B)-Mo(3B)-Se(3)        | 86.21(16)  |
| S(1B)-Mo(2B)-Se(1B)  | 51.6(2)    | S(9B)-Mo(3B)-Se(3)         | 92.6(2)    |
| S(7B)-Mo(2B)-Se(1B)  | 91.44(12)  | Se(2B)-Mo(3B)-Se(3)        | 172.87(14) |
| S(8B)-Mo(2B)-Se(1B)  | 87.41(12)  | S(4B)-Mo(3B)-Mo(2B)        | 54.90(11)  |
| S(4B)-Mo(2B)-Se(2B)  | 85.59(12)  | S(3)-Mo(3B)-Mo(2B)         | 97.28(9)   |
| S(2B)-Mo(2B)-Se(2B)  | 51.3(2)    | S(2B)-Mo(3B)-Mo(2B)        | 55.18(16)  |
| S(1B)-Mo(2B)-Se(2B)  | 134.9(2)   | S(10B)-Mo(3B)-Mo(2B)       | 126.26(17) |
| S(7B)-Mo(2B)-Se(2B)  | 96.22(11)  | S(9B)-Mo(3B)-Mo(2B)        | 137.7(2)   |
| S(8B)-Mo(2B)-Se(2B)  | 89.15(12)  | Se(2B)-Mo(3B)-Mo(2B)       | 57.96(7)   |
| Se(1B)-Mo(2B)-Se(2B) | 170.69(9)  | Se(3)-Mo(3B)-Mo(2B)        | 120.09(10) |
| S(4B)-Mo(2B)-Mo(3B)  | 54.73(13)  | S(4B)-Mo(3B)-Mo(1B)        | 54.79(17)  |
| S(2B)-Mo(2B)-Mo(3B)  | 55.34(18)  | S(3)-Mo(3B)-Mo(1B)         | 57.21(13)  |
| S(1B)-Mo(2B)-Mo(3B)  | 95.4(2)    | S(2B)-Mo(3B)-Mo(1B)        | 96.02(18)  |
| S(7B)-Mo(2B)-Mo(3B)  | 140.36(12) | S(10B)-Mo(3B)-Mo(1B)       | 123.8(2)   |
| S(8B)-Mo(2B)-Mo(3B)  | 127.11(13) | S(9B)-Mo(3B)-Mo(1B)        | 140.0(3)   |
| Se(1B)-Mo(2B)-Mo(3B) | 117.58(11) | Se(2B)-Mo(3B)-Mo(1B)       | 117.88(14) |
| Se(2B)-Mo(2B)-Mo(3B) | 58.49(8)   | Se(3)-Mo(3B)-Mo(1B)        | 60.03(14)  |
| S(4B)-Mo(2B)-Mo(1B)  | 54.84(16)  | Mo(2B)-Mo(3B)-Mo(1B)       | 60.12(13)  |
| S(2B)-Mo(2B)-Mo(1B)  | 96.3(2)    | S(1B)- $Se(1B)$ - $Mo(1B)$ | 60.7(2)    |
| S(1B)-Mo(2B)-Mo(1B)  | 55.3(2)    | S(1B)-Se(1B)-Mo(2B)        | 60.29(13)  |
| S(7B)-Mo(2B)-Mo(1B)  | 136.26(12) | Mo(1B)-Se(1B)-Mo(2B)       | 64.73(11)  |
| S(8B)-Mo(2B)-Mo(1B)  | 125.29(15) | S(2B)-Se(2B)-Mo(2B)        | 59.76(17)  |
| Se(1B)-Mo(2B)-Mo(1B) | 57.38(10)  | S(2B)-Se(2B)-Mo(3B)        | 59.6(2)    |
| Se(2B)-Mo(2B)-Mo(1B) | 118.63(9)  | Mo(2B)-Se(2B)-Mo(3B)       | 63.55(7)   |
| Mo(3B)-Mo(2B)-Mo(1B) | 60.35(10)  | Se(1B)-S(1B)-Mo(2B)        | 68.16(19)  |
| S(4B)-Mo(3B)-S(3)    | 111.47(17) | Se(1B)- $S(1B)$ - $Mo(1B)$ | 67.6(3)    |
| S(4B)-Mo(3B)-S(2B)   | 109.6(2)   | Mo(2B)- $S(1B)$ - $Mo(1B)$ | 69.50(19)  |
| S(3)-Mo(3B)-S(2B)    | 84.3(2)    | Se(2B)-S(2B)-Mo(2B)        | 68.9(3)    |
| S(4B)-Mo(3B)-S(10B)  | 83.29(18)  | Se(2B)-S(2B)-Mo(3B)        | 69.3(2)    |
| S(3)-Mo(3B)-S(10B)   | 131.53(17) | Mo(2B)- $S(2B)$ - $Mo(3B)$ | 69.5(2)    |
| S(2B)-Mo(3B)-S(10B)  | 135.7(3)   | Mo(3B)- $S(4B)$ - $Mo(2B)$ | 70.37(16)  |
| S(4B)-Mo(3B)-S(9B)   | 161.2(3)   | Mo(3B)- $S(4B)$ - $Mo(1B)$ | 70.9(2)    |
| S(3)-Mo(3B)-S(9B)    | 83.0(3)    | Mo(2B)- $S(4B)$ - $Mo(1B)$ | 70.61(18)  |
| S(2B)-Mo(3B)-S(9B)   | 82.9(3)    | P(1B)-S(5B)-Mo(1B)         | 90.6(7)    |
| S(10B)-Mo(3B)-S(9B)  | 78.1(2)    | P(1B)-S(6B)-Mo(1B)         | 84.5(8)    |
| S(4B)-Mo(3B)-Se(2B)  | 85.36(16)  | C(5B)-P(1B)-C(1B)          | 106.0(10)  |
| S(3)-Mo(3B)-Se(2B)   | 135.33(13) | C(5B)-P(1B)-S(5B)          | 112.4(10)  |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| C(1B)-P(1B)-S(5B)   | 112.1(7)  | C(6B)-C(7B)-H(7B3)   | 109.5     |
|---------------------|-----------|----------------------|-----------|
| C(5B)-P(1B)-S(6B)   | 105.8(8)  | H(7B1)-C(7B)-H(7B3)  | 109.5     |
| C(1B)-P(1B)-S(6B)   | 118.1(11) | H(7B2)-C(7B)-H(7B3)  | 109.5     |
| S(5B)-P(1B)-S(6B)   | 102.5(10) | C(6B)-C(8B)-H(8B1)   | 109.5     |
| C(2B)-C(1B)-P(1B)   | 119.2(11) | C(6B)-C(8B)-H(8B2)   | 109.5     |
| C(2B)-C(1B)-H(1B1)  | 107.5     | H(8B1)-C(8B)-H(8B2)  | 109.5     |
| P(1B)-C(1B)-H(1B1)  | 107.5     | C(6B)-C(8B)-H(8B3)   | 109.5     |
| C(2B)-C(1B)-H(1B2)  | 107.5     | H(8B1)-C(8B)-H(8B3)  | 109.5     |
| P(1B)-C(1B)-H(1B2)  | 107.5     | H(8B2)-C(8B)-H(8B3)  | 109.5     |
| H(1B1)-C(1B)-H(1B2) | 107.0     | P(2B)-S(7B)-Mo(2B)   | 90.19(18) |
| C(4B)-C(2B)-C(1B)   | 107.7(14) | P(2B)-S(8B)-Mo(2B)   | 89.65(18) |
| C(4B)-C(2B)-C(3B)   | 111.6(14) | C(9B)-P(2B)-C(13B)   | 103.1(8)  |
| C(1B)-C(2B)-C(3B)   | 110.7(13) | C(9B)-P(2B)-S(7B)    | 111.4(6)  |
| C(4B)-C(2B)-H(2B)   | 108.9     | C(13B)-P(2B)-S(7B)   | 110.7(7)  |
| C(1B)-C(2B)-H(2B)   | 108.9     | C(9B)-P(2B)-S(8B)    | 114.1(6)  |
| C(3B)-C(2B)-H(2B)   | 108.9     | C(13B)-P(2B)-S(8B)   | 114.7(7)  |
| C(2B)-C(3B)-H(3B1)  | 109.5     | S(7B)-P(2B)-S(8B)    | 103.1(2)  |
| C(2B)-C(3B)-H(3B2)  | 109.5     | C(10B)-C(9B)-P(2B)   | 117.2(11) |
| H(3B1)-C(3B)-H(3B2) | 109.5     | C(10B)-C(9B)-H(9B1)  | 108.0     |
| C(2B)-C(3B)-H(3B3)  | 109.5     | P(2B)-C(9B)-H(9B1)   | 108.0     |
| H(3B1)-C(3B)-H(3B3) | 109.5     | C(10B)-C(9B)-H(9B2)  | 108.0     |
| H(3B2)-C(3B)-H(3B3) | 109.5     | P(2B)-C(9B)-H(9B2)   | 108.0     |
| C(2B)-C(4B)-H(4B1)  | 109.5     | H(9B1)-C(9B)-H(9B2)  | 107.2     |
| C(2B)-C(4B)-H(4B2)  | 109.5     | C(12B)-C(10B)-C(9B)  | 106.4(13) |
| H(4B1)-C(4B)-H(4B2) | 109.5     | C(12B)-C(10B)-C(11B) | 110.7(15) |
| C(2B)-C(4B)-H(4B3)  | 109.5     | C(9B)-C(10B)-C(11B)  | 113.4(15) |
| H(4B1)-C(4B)-H(4B3) | 109.5     | C(12B)-C(10B)-H(10B) | 108.7     |
| H(4B2)-C(4B)-H(4B3) | 109.5     | C(9B)-C(10B)-H(10B)  | 108.7     |
| C(6B)-C(5B)-P(1B)   | 119.7(13) | C(11B)-C(10B)-H(10B) | 108.7     |
| C(6B)-C(5B)-H(5B1)  | 107.4     | C(10B)-C(11B)-H(11D) | 109.5     |
| P(1B)-C(5B)-H(5B1)  | 107.4     | C(10B)-C(11B)-H(11E) | 109.5     |
| C(6B)-C(5B)-H(5B2)  | 107.4     | H(11D)-C(11B)-H(11E) | 109.5     |
| P(1B)-C(5B)-H(5B2)  | 107.4     | C(10B)-C(11B)-H(11F) | 109.5     |
| H(5B1)-C(5B)-H(5B2) | 106.9     | H(11D)-C(11B)-H(11F) | 109.5     |
| C(5B)-C(6B)-C(8B)   | 112.8(19) | H(11E)-C(11B)-H(11F) | 109.5     |
| C(5B)-C(6B)-C(7B)   | 114.0(18) | C(10B)-C(12B)-H(12D) | 109.5     |
| C(8B)-C(6B)-C(7B)   | 109.2(19) | C(10B)-C(12B)-H(12E) | 109.5     |
| C(5B)-C(6B)-H(6B)   | 106.8     | H(12D)-C(12B)-H(12E) | 109.5     |
| C(8B)-C(6B)-H(6B)   | 106.8     | C(10B)-C(12B)-H(12F) | 109.5     |
| C(7B)-C(6B)-H(6B)   | 106.8     | H(12D)-C(12B)-H(12F) | 109.5     |
| C(6B)-C(7B)-H(7B1)  | 109.5     | H(12E)-C(12B)-H(12F) | 109.5     |
| C(6B)-C(7B)-H(7B2)  | 109.5     | C(14B)-C(13B)-P(2B)  | 117.2(15) |
| H(7B1)-C(7B)-H(7B2) | 109.5     | C(14B)-C(13B)-H(13C) | 108.0     |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:
| P(2B)-C(13B)-H(13C)  | 108.0    | C(18B)-C(19B)-H(19E) | 109.5     |
|----------------------|----------|----------------------|-----------|
| C(14B)-C(13B)-H(13D) | 108.0    | H(19D)-C(19B)-H(19E) | 109.5     |
| P(2B)-C(13B)-H(13D)  | 108.0    | C(18B)-C(19B)-H(19F) | 109.5     |
| H(13C)-C(13B)-H(13D) | 107.2    | H(19D)-C(19B)-H(19F) | 109.5     |
| C(16B)-C(14B)-C(13B) | 113(2)   | H(19E)-C(19B)-H(19F) | 109.5     |
| C(16B)-C(14B)-C(15B) | 109(2)   | C(18B)-C(20B)-H(20D) | 109.5     |
| C(13B)-C(14B)-C(15B) | 110(2)   | C(18B)-C(20B)-H(20E) | 109.5     |
| C(16B)-C(14B)-H(14B) | 108.4    | H(20D)-C(20B)-H(20E) | 109.5     |
| C(13B)-C(14B)-H(14B) | 108.4    | C(18B)-C(20B)-H(20F) | 109.5     |
| C(15B)-C(14B)-H(14B) | 108.4    | H(20D)-C(20B)-H(20F) | 109.5     |
| C(14B)-C(15B)-H(15D) | 109.5    | H(20E)-C(20B)-H(20F) | 109.5     |
| C(14B)-C(15B)-H(15E) | 109.5    | C(22B)-C(21B)-P(3B)  | 117.0(12) |
| H(15D)-C(15B)-H(15E) | 109.5    | C(22B)-C(21B)-H(21C) | 108.0     |
| C(14B)-C(15B)-H(15F) | 109.5    | P(3B)-C(21B)-H(21C)  | 108.0     |
| H(15D)-C(15B)-H(15F) | 109.5    | C(22B)-C(21B)-H(21D) | 108.0     |
| H(15E)-C(15B)-H(15F) | 109.5    | P(3B)-C(21B)-H(21D)  | 108.0     |
| C(14B)-C(16B)-H(16D) | 109.5    | H(21C)-C(21B)-H(21D) | 107.3     |
| C(14B)-C(16B)-H(16E) | 109.5    | C(23B)-C(22B)-C(21B) | 115.6(16) |
| H(16D)-C(16B)-H(16E) | 109.5    | C(23B)-C(22B)-C(24B) | 111.1(18) |
| C(14B)-C(16B)-H(16F) | 109.5    | C(21B)-C(22B)-C(24B) | 106.9(16) |
| H(16D)-C(16B)-H(16F) | 109.5    | C(23B)-C(22B)-H(22B) | 107.7     |
| H(16E)-C(16B)-H(16F) | 109.5    | C(21B)-C(22B)-H(22B) | 107.7     |
| P(3B)-S(9B)-Mo(3B)   | 89.0(4)  | C(24B)-C(22B)-H(22B) | 107.7     |
| P(3B)-S(10B)-Mo(3B)  | 89.6(3)  | C(22B)-C(23B)-H(23D) | 109.5     |
| C(17B)-P(3B)-C(21B)  | 84.8(10) | C(22B)-C(23B)-H(23E) | 109.5     |
| C(17B)-P(3B)-S(10B)  | 121.5(8) | H(23D)-C(23B)-H(23E) | 109.5     |
| C(21B)-P(3B)-S(10B)  | 117.1(6) | C(22B)-C(23B)-H(23F) | 109.5     |
| C(17B)-P(3B)-S(9B)   | 118.8(8) | H(23D)-C(23B)-H(23F) | 109.5     |
| C(21B)-P(3B)-S(9B)   | 110.9(6) | H(23E)-C(23B)-H(23F) | 109.5     |
| S(10B)-P(3B)-S(9B)   | 103.3(3) | C(22B)-C(24B)-H(24D) | 109.5     |
| C(18B)-C(17B)-P(3B)  | 128(2)   | C(22B)-C(24B)-H(24E) | 109.5     |
| C(18B)-C(17B)-H(17C) | 105.4    | H(24D)-C(24B)-H(24E) | 109.5     |
| P(3B)-C(17B)-H(17C)  | 105.4    | C(22B)-C(24B)-H(24F) | 109.5     |
| C(18B)-C(17B)-H(17D) | 105.4    | H(24D)-C(24B)-H(24F) | 109.5     |
| P(3B)-C(17B)-H(17D)  | 105.4    | H(24E)-C(24B)-H(24F) | 109.5     |
| H(17C)-C(17B)-H(17D) | 106.0    | C(26A)-C(25A)-H(25A) | 109.5     |
| C(17B)-C(18B)-C(19B) | 93(2)    | C(26A)-C(25A)-H(25B) | 109.5     |
| C(17B)-C(18B)-C(20B) | 104(3)   | H(25A)-C(25A)-H(25B) | 109.5     |
| C(19B)-C(18B)-C(20B) | 91(2)    | C(26A)-C(25A)-H(25C) | 109.5     |
| C(17B)-C(18B)-H(18B) | 120.8    | H(25A)-C(25A)-H(25C) | 109.5     |
| C(19B)-C(18B)-H(18B) | 120.8    | H(25B)-C(25A)-H(25C) | 109.5     |
| C(20B)-C(18B)-H(18B) | 120.8    | C(25A)-C(26A)-C(27A) | 106(5)    |
| C(18B)-C(19B)-H(19D) | 109.5    | C(25A)-C(26A)-H(26A) | 110.5     |

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

**Table A.51, Cont'd.** Bond angles (deg.) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . Symmetry transformations used to generate equivalent atoms:

| C(27A)-C(26A)-H(26A) | 110.5  | C(27B)-C(28B)-H(28D) | 110.0 |
|----------------------|--------|----------------------|-------|
| C(25A)-C(26A)-H(26B) | 110.5  | C(29B)-C(28B)-H(28D) | 110.0 |
| C(27A)-C(26A)-H(26B) | 110.5  | H(28C)-C(28B)-H(28D) | 108.3 |
| H(26A)-C(26A)-H(26B) | 108.7  | C(28B)-C(29B)-H(29D) | 109.5 |
| C(26A)-C(27A)-C(28A) | 155(6) | C(28B)-C(29B)-H(29E) | 109.5 |
| C(26A)-C(27A)-H(27A) | 97.6   | H(29D)-C(29B)-H(29E) | 109.5 |
| C(28A)-C(27A)-H(27A) | 97.6   | C(28B)-C(29B)-H(29F) | 109.5 |
| C(26A)-C(27A)-H(27B) | 97.6   | H(29D)-C(29B)-H(29F) | 109.5 |
| C(28A)-C(27A)-H(27B) | 97.6   | H(29E)-C(29B)-H(29F) | 109.5 |
| H(27A)-C(27A)-H(27B) | 103.6  |                      |       |
| C(29A)-C(28A)-C(27A) | 107(3) |                      |       |
| C(29A)-C(28A)-H(28A) | 110.2  |                      |       |
| C(27A)-C(28A)-H(28A) | 110.2  |                      |       |
| C(29A)-C(28A)-H(28B) | 110.2  |                      |       |
| C(27A)-C(28A)-H(28B) | 110.2  |                      |       |
| H(28A)-C(28A)-H(28B) | 108.5  |                      |       |
| C(28A)-C(29A)-H(29A) | 109.5  |                      |       |
| C(28A)-C(29A)-H(29B) | 109.5  |                      |       |
| H(29A)-C(29A)-H(29B) | 109.5  |                      |       |
| C(28A)-C(29A)-H(29C) | 109.5  |                      |       |
| H(29A)-C(29A)-H(29C) | 109.5  |                      |       |
| H(29B)-C(29A)-H(29C) | 109.5  |                      |       |
| C(26B)-C(25B)-H(25D) | 109.5  |                      |       |
| C(26B)-C(25B)-H(25E) | 109.5  |                      |       |
| H(25D)-C(25B)-H(25E) | 109.5  |                      |       |
| C(26B)-C(25B)-H(25F) | 109.5  |                      |       |
| H(25D)-C(25B)-H(25F) | 109.5  |                      |       |
| H(25E)-C(25B)-H(25F) | 109.5  |                      |       |
| C(27B)-C(26B)-C(25B) | 117(5) |                      |       |
| C(27B)-C(26B)-H(26C) | 107.9  |                      |       |
| C(25B)-C(26B)-H(26C) | 107.9  |                      |       |
| C(27B)-C(26B)-H(26D) | 107.9  |                      |       |
| C(25B)-C(26B)-H(26D) | 107.9  |                      |       |
| H(26C)-C(26B)-H(26D) | 107.2  |                      |       |
| C(26B)-C(27B)-C(28B) | 93(6)  |                      |       |
| C(26B)-C(27B)-H(27C) | 113.2  |                      |       |
| C(28B)-C(27B)-H(27C) | 113.2  |                      |       |
| C(26B)-C(27B)-H(27D) | 113.2  |                      |       |
| C(28B)-C(27B)-H(27D) | 113.2  |                      |       |
| H(27C)-C(27B)-H(27D) | 110.5  |                      |       |
| C(27B)-C(28B)-C(29B) | 109(3) |                      |       |
| C(27B)-C(28B)-H(28C) | 110.0  |                      |       |
| C(29B)-C(28B)-H(28C) | 110.0  |                      |       |

| Atom   | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------|----------|----------|----------|----------|----------|----------|
| I(1)   | 89(1)    | 72(1)    | 38(1)    | -8(1)    | 19(1)    | -11(1)   |
| Se(3)  | 64(1)    | 61(1)    | 42(1)    | 5(1)     | 19(1)    | 16(1)    |
| S(3)   | 41(1)    | 42(1)    | 24(1)    | -1(1)    | 8(1)     | 5(1)     |
| Mo(1A) | 43(1)    | 16(1)    | 25(1)    | 2(1)     | 11(1)    | 7(1)     |
| Mo(2A) | 36(1)    | 31(1)    | 28(1)    | 0(1)     | 10(1)    | 4(1)     |
| Mo(3A) | 35(1)    | 24(1)    | 22(1)    | -1(1)    | 10(1)    | 1(1)     |
| Se(1A) | 71(1)    | 50(1)    | 56(1)    | -4(1)    | 17(1)    | -3(1)    |
| Se(2A) | 54(1)    | 44(1)    | 53(1)    | 0(1)     | 18(1)    | 8(1)     |
| S(1A)  | 44(2)    | 32(3)    | 28(3)    | 3(2)     | 13(2)    | 3(2)     |
| S(2A)  | 45(3)    | 23(3)    | 32(2)    | -4(2)    | 16(1)    | 2(2)     |
| S(4A)  | 42(2)    | 32(2)    | 23(2)    | -1(2)    | 9(1)     | 3(2)     |
| S(5A)  | 47(5)    | 37(3)    | 35(1)    | -3(2)    | 20(4)    | -2(3)    |
| S(6A)  | 49(7)    | 41(6)    | 33(3)    | -19(3)   | 5(5)     | 2(4)     |
| P(1A)  | 39(5)    | 44(2)    | 33(3)    | -8(2)    | 4(4)     | 13(4)    |
| S(7A)  | 38(1)    | 55(2)    | 44(2)    | 2(1)     | 16(1)    | 5(1)     |
| S(8A)  | 44(1)    | 62(2)    | 40(1)    | 1(1)     | 2(1)     | -3(1)    |
| P(2A)  | 41(1)    | 60(2)    | 54(2)    | -3(1)    | 8(1)     | 4(1)     |
| S(9A)  | 69(5)    | 37(3)    | 28(1)    | -4(1)    | 18(3)    | -18(3)   |
| S(10A) | 53(3)    | 38(2)    | 25(1)    | 3(1)     | 15(2)    | -1(2)    |
| P(3A)  | 56(3)    | 39(2)    | 34(1)    | 3(1)     | 18(2)    | -7(2)    |
| Mo(1B) | 43(1)    | 16(1)    | 25(1)    | 2(1)     | 11(1)    | 7(1)     |
| Mo(2B) | 36(1)    | 31(1)    | 28(1)    | 0(1)     | 10(1)    | 4(1)     |
| Mo(3B) | 35(1)    | 24(1)    | 22(1)    | -1(1)    | 10(1)    | 1(1)     |
| Se(1B) | 71(1)    | 50(1)    | 56(1)    | -4(1)    | 17(1)    | -3(1)    |
| Se(2B) | 54(1)    | 44(1)    | 53(1)    | 0(1)     | 18(1)    | 8(1)     |
| S(1B)  | 44(2)    | 32(3)    | 28(3)    | 3(2)     | 13(2)    | 3(2)     |
| S(2B)  | 45(3)    | 23(3)    | 32(2)    | -4(2)    | 16(1)    | 2(2)     |
| S(4B)  | 42(2)    | 32(2)    | 23(2)    | -1(2)    | 9(1)     | 3(2)     |
| S(5B)  | 47(5)    | 37(3)    | 35(1)    | -3(2)    | 20(4)    | -2(3)    |
| S(6B)  | 49(7)    | 41(6)    | 33(3)    | -19(3)   | 5(5)     | 2(4)     |
| P(1B)  | 39(5)    | 44(2)    | 33(3)    | -8(2)    | 4(4)     | 13(4)    |
| S(7B)  | 38(1)    | 55(2)    | 44(2)    | 2(1)     | 16(1)    | 5(1)     |
| S(8B)  | 44(1)    | 62(2)    | 40(1)    | 1(1)     | 2(1)     | -3(1)    |
| P(2B)  | 41(1)    | 60(2)    | 54(2)    | -3(1)    | 8(1)     | 4(1)     |
| S(9B)  | 69(5)    | 37(3)    | 28(1)    | -4(1)    | 18(3)    | -18(3)   |
| S(10B) | 53(3)    | 38(2)    | 25(1)    | 3(1)     | 15(2)    | -1(2)    |
| P(3B)  | 56(3)    | 39(2)    | 34(1)    | 3(1)     | 18(2)    | -7(2)    |

**Table A.52.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| H atom           | X     | у     | Z    | U(eq) |
|------------------|-------|-------|------|-------|
| H(1A1)           | 2841  | 5476  | 1732 | 47    |
| H(1A2)           | 2671  | 5564  | 907  | 47    |
| H(2A)            | 2931  | 6886  | 1729 | 56    |
| H(3A1)           | 3096  | 7329  | 714  | 77    |
| H(3A2)           | 2963  | 6528  | 347  | 77    |
| H(3A3)           | 2600  | 7052  | 513  | 77    |
| H(4A1)           | 3663  | 6708  | 1689 | 114   |
| H(4A2)           | 3530  | 6040  | 2124 | 114   |
| H(4A3)           | 3535  | 5897  | 1340 | 114   |
| H(5A1)           | 1948  | 4778  | 1065 | 69    |
| H(5A2)           | 2149  | 4819  | 1889 | 69    |
| H(6A)            | 1438  | 5493  | 1810 | 99    |
| H(7A1)           | 1667  | 4430  | 2442 | 173   |
| H(7A2)           | 1153  | 4413  | 2068 | 173   |
| H(7A3)           | 1475  | 3926  | 1762 | 173   |
| H(8A1)           | 1190  | 5457  | 585  | 173   |
| H(8A2)           | 1174  | 4556  | 605  | 174   |
| H(8A3)           | 852   | 5043  | 912  | 174   |
| H(9A1)           | -215  | 9672  | 310  | 107   |
| H(9A2)           | -659  | 9378  | 427  | 107   |
| H(10A)           | 17    | 10070 | 1482 | 67    |
| H(10A)<br>H(11A) | -275  | 10830 | 481  | 121   |
| H(11R)<br>H(11R) | -743  | 10090 | 618  | 121   |
| H(11C)           | -343  | 11204 | 1167 | 121   |
| H(12A)           | -448  | 10413 | 2059 | 172   |
| H(12R)<br>H(12R) | -840  | 9976  | 1519 | 172   |
| H(12C)           | -439  | 9513  | 2009 | 172   |
| H(120)<br>H(13A) | -691  | 8034  | 1169 | 81    |
| H(13B)           | -707  | 7878  | 382  | 81    |
| H(14A)           | -132  | 7070  | 1472 | 89    |
| H(15A)           | -645  | 6087  | 1345 | 158   |
| H(15R)           | -800  | 6843  | 1639 | 158   |
| H(15C)           | -1007 | 6614  | 840  | 158   |
| H(16A)           | -20   | 6875  | 372  | 142   |
| H(16B)           | -140  | 6105  | 689  | 142   |
| H(16C)           | -502  | 6532  | 89   | 142   |
| H(17A)           | 1490  | 11549 | 57   | 58    |
| H(17B)           | 1292  | 11146 | 619  | 58    |
| H(18A)           | 1389  | 12272 | 902  | 94    |
| H(19A)           | 1805  | 12592 | 150  | 124   |

**Table A.53**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ .

| H atom | Х    | У     | Z    | U(eq) |
|--------|------|-------|------|-------|
| H(19B) | 1668 | 13193 | 642  | 124   |
| H(19C) | 2153 | 12859 | 856  | 124   |
| H(20A) | 1830 | 12699 | 1803 | 245   |
| H(20B) | 1440 | 12118 | 1749 | 245   |
| H(20C) | 1933 | 11824 | 1961 | 245   |
| H(21A) | 2593 | 11047 | 289  | 80    |
| H(21B) | 2700 | 11445 | 1032 | 80    |
| H(22A) | 2884 | 10122 | 1462 | 85    |
| H(23A) | 2688 | 9575  | 338  | 148   |
| H(23B) | 3072 | 10033 | 160  | 148   |
| H(23C) | 3186 | 9398  | 751  | 148   |
| H(24A) | 3597 | 10319 | 1551 | 169   |
| H(24B) | 3466 | 11000 | 1007 | 169   |
| H(24C) | 3374 | 11061 | 1746 | 169   |
| H(1B1) | 2999 | 5625  | 1752 | 41    |
| H(1B2) | 2812 | 5753  | 936  | 41    |
| H(2B)  | 3043 | 7038  | 1798 | 50    |
| H(3B1) | 2706 | 7232  | 597  | 53    |
| H(3B2) | 3196 | 7542  | 803  | 53    |
| H(3B3) | 3080 | 6750  | 413  | 53    |
| H(4B1) | 3762 | 6908  | 1758 | 96    |
| H(4B2) | 3629 | 6220  | 2170 | 96    |
| H(4B3) | 3643 | 6105  | 1387 | 96    |
| H(5B1) | 2123 | 4852  | 1103 | 56    |
| H(5B2) | 2324 | 4872  | 1926 | 56    |
| H(6B)  | 1582 | 5440  | 1833 | 75    |
| H(7B1) | 1344 | 4249  | 2125 | 134   |
| H(7B2) | 1731 | 3842  | 1908 | 134   |
| H(7B3) | 1841 | 4401  | 2561 | 134   |
| H(8B1) | 1026 | 4786  | 995  | 145   |
| H(8B2) | 1291 | 5330  | 630  | 145   |
| H(8B3) | 1383 | 4441  | 666  | 145   |
| H(9B1) | -739 | 8532  | 769  | 60    |
| H(9B2) | -673 | 8554  | 1586 | 60    |
| H(10B) | -82  | 9493  | 1570 | 56    |
| H(11D) | -184 | 9460  | 357  | 114   |
| H(11E) | -681 | 9712  | 215  | 114   |
| H(11F) | -297 | 10282 | 584  | 114   |
| H(12D) | -609 | 10409 | 1553 | 89    |
| H(12E) | -985 | 9806  | 1229 | 89    |

**Table A.53, Cont'd.** Hydrogen coordinates  $(x \ 10^4)$  and isotropic displacement parameters  $(\mathring{A}^2 \ x \ 10^3)$  for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ .

| H atom | х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(13C) | -525  | 7131  | 1814 | 86    |
| H(13D) | -615  | 6966  | 1005 | 86    |
| H(14B) | 197   | 6474  | 1891 | 105   |
| H(15D) | -310  | 6079  | 2487 | 187   |
| H(15E) | -588  | 5644  | 1805 | 187   |
| H(15F) | -106  | 5365  | 2209 | 187   |
| H(16D) | 95    | 5454  | 1126 | 228   |
| H(16E) | -379  | 5761  | 712  | 228   |
| H(16F) | 46    | 6230  | 703  | 228   |
| H(17C) | 1838  | 11637 | 143  | 90    |
| H(17D) | 1407  | 11495 | 355  | 90    |
| H(18B) | 2121  | 12377 | 1248 | 193   |
| H(19D) | 1504  | 13320 | 458  | 254   |
| H(19E) | 1625  | 12776 | -94  | 254   |
| H(19F) | 1200  | 12611 | 149  | 254   |
| H(20D) | 1424  | 12687 | 1697 | 178   |
| H(20E) | 1107  | 12261 | 1041 | 178   |
| H(20F) | 1408  | 11785 | 1678 | 178   |
| H(21C) | 2383  | 10991 | 211  | 58    |
| H(21D) | 2497  | 11383 | 956  | 58    |
| H(22B) | 2793  | 10137 | 1424 | 66    |
| H(23D) | 3095  | 9405  | 708  | 97    |
| H(23E) | 2574  | 9400  | 410  | 97    |
| H(23F) | 2857  | 9916  | 51   | 97    |
| H(24D) | 3205  | 11265 | 1456 | 144   |
| H(24E) | 3484  | 10542 | 1370 | 144   |
| H(24F) | 3263  | 11063 | 712  | 144   |
| H(25A) | -1089 | 3917  | 871  | 147   |
| H(25B) | -1006 | 3042  | 1057 | 147   |
| H(25C) | -776  | 3671  | 1615 | 147   |
| H(26A) | -340  | 4059  | 886  | 205   |
| H(26B) | -570  | 3427  | 325  | 205   |
| H(27A) | -321  | 2501  | 1033 | 146   |
| H(27B) | -223  | 3011  | 1690 | 146   |
| H(28A) | 473   | 2638  | 1207 | 232   |
| H(28B) | 458   | 2795  | 1987 | 232   |
| H(29A) | 496   | 1462  | 1807 | 170   |
| H(29B) | 42    | 1661  | 1948 | 170   |
| H(29C) | 57    | 1505  | 1172 | 170   |
| H(25D) | -1125 | 3896  | 1821 | 135   |

**Table A.53, Cont'd.** Hydrogen coordinates  $(x \ 10^4)$  and isotropic displacement parameters  $(\mathring{A}^2 \ x \ 10^3)$  for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ .

| H atom | Х     | У    | Z    | U(eq) |
|--------|-------|------|------|-------|
| H(25E) | -1278 | 3271 | 1226 | 135   |
| H(25F) | -829  | 3167 | 1830 | 135   |
| H(26C) | -980  | 4339 | 803  | 106   |
| H(26D) | -533  | 4235 | 1405 | 106   |
| H(27C) | -705  | 3646 | 99   | 157   |
| H(27D) | -641  | 2933 | 629  | 157   |
| H(28C) | -112  | 4057 | 1354 | 263   |
| H(28D) | -8    | 4028 | 620  | 263   |
| H(29D) | 465   | 3173 | 1419 | 236   |
| H(29E) | 51    | 2735 | 1518 | 236   |
| H(29F) | 154   | 2706 | 786  | 236   |

**Table A.53, Cont'd.** Hydrogen coordinates  $(x \ 10^4)$  and isotropic displacement parameters  $(\mathring{A}^2 \ x \ 10^3)$  for  $[Mo_3S_4Se_3(S_2P^iBu_2)_3]I \cdot \frac{1}{2}C_5H_{12}$ .



Thermal ellipsoid plot is drawn at the 50% level. All H atoms are omitted for clarity.

| Table               | A.54.       | Crystal         | Data | and | Structure | Refinement | for | $[((^{i}PrO)_{2}PS_{2})Mo(S)(\mu_{2}-$ |
|---------------------|-------------|-----------------|------|-----|-----------|------------|-----|----------------------------------------|
| S) <sub>2</sub> Mo( | $(S)(S_2P($ | $(O^i Pr)_2)$ ] |      |     |           |            |     |                                        |

| Identification code                       | JPD1309_0m_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Empirical formula                         | $C_{12}H_{28}Mo_2O_4P_2S_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| Formula weight                            | 1493.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| Temperature                               | 150(2) K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| Wavelength                                | 0.71073 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| Crystal system                            | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Space group                               | $P2_{1}/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Unit cell dimensions                      | a = 12.6795(5) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\alpha = 90^{\circ}$          |
|                                           | b = 13.8455(6)  Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\beta = 101.4810(10)^{\circ}$ |
|                                           | c = 16.1584(6) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\gamma = 90^{\circ}$          |
| Volume                                    | 2779.91(19) Å <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Ζ                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| Density (calculated)                      | $1.784 \text{ g/cm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Absorption coefficient                    | 1.635 mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| F(000)                                    | 1496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| Crystal size                              | 0.357 x 0.189 x 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $9 \text{ mm}^3$               |
| $\theta$ range for data collection        | 2.380 to 26.428°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| Index ranges                              | $-15 \le h \le 15, -17 \le k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\leq 17, -20 \leq l \leq 20$  |
| Reflections collected                     | 88748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| Independent reflections                   | 5684 [R(int) = 0.0497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7]                             |
| Completeness to $\theta = 25.242^{\circ}$ | 99.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Absorption correction                     | Semi-empirical from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | equivalents                    |
| Max. and min. transmission                | 0.99 and 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| Refinement method                         | Full-matrix least-squa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ares on $F^2$                  |
| Data / restraints / parameters            | 5684 / 0 / 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| Goodness-of-fit on $F^2$                  | 1.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| Final R indices $[I \ge 2\sigma(I)]$      | R1 = 0.0230, wR2 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0574                         |
| R indices (all data)                      | R1 = 0.0345, wR2 = 0.03455, wR2 = 0.034555, wR2 = 0.034555, wR2 = 0.0345555, wR2 = 0.03455555, wR2 = 0.03455555555555555555555555555555555555 | 0.0642                         |
| Extinction coefficient                    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |
| Largest diff. peak and hole               | 0.439 and -0.343 e∙Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3                             |

| Atom  | Х        | у       | Z        | U(eq) |
|-------|----------|---------|----------|-------|
| Mo(1) | 6942(1)  | 2201(1) | 7749(1)  | 19(1) |
| Mo(2) | 5196(1)  | 2058(1) | 6368(1)  | 18(1) |
| S(1)  | 8814(1)  | 2747(1) | 7784(1)  | 31(1) |
| S(2)  | 7270(1)  | 3272(1) | 9014(1)  | 27(1) |
| S(3)  | 7001(1)  | 2119(1) | 6334(1)  | 21(1) |
| S(4)  | 5203(1)  | 2733(1) | 7678(1)  | 23(1) |
| S(5)  | 5086(1)  | 2424(1) | 4847(1)  | 25(1) |
| S(6)  | 3503(1)  | 3026(1) | 6030(1)  | 23(1) |
| S(7)  | 7050(1)  | 776(1)  | 8210(1)  | 32(1) |
| S(8)  | 4770(1)  | 596(1)  | 6412(1)  | 29(1) |
| P(1)  | 8820(1)  | 3352(1) | 8915(1)  | 22(1) |
| P(2)  | 3538(1)  | 2758(1) | 4816(1)  | 20(1) |
| O(1)  | 9635(1)  | 2890(1) | 9663(1)  | 26(1) |
| O(2)  | 9293(1)  | 4397(1) | 8985(1)  | 27(1) |
| O(3)  | 2723(1)  | 1937(1) | 4484(1)  | 22(1) |
| O(4)  | 3122(1)  | 3613(1) | 4196(1)  | 26(1) |
| C(1)  | 9784(3)  | 1810(2) | 10822(2) | 58(1) |
| C(2)  | 9578(2)  | 1858(2) | 9891(2)  | 29(1) |
| C(3)  | 10396(4) | 1326(3) | 9521(3)  | 86(2) |
| C(4)  | 9657(3)  | 5565(3) | 7977(2)  | 61(1) |
| C(5)  | 8791(2)  | 5160(2) | 8391(2)  | 33(1) |
| C(6)  | 8295(2)  | 5880(2) | 8883(2)  | 41(1) |
| C(7)  | 2789(3)  | 5283(2) | 4418(2)  | 47(1) |
| C(8)  | 3645(2)  | 4573(2) | 4305(2)  | 31(1) |
| C(9)  | 4131(2)  | 4748(2) | 3544(2)  | 42(1) |
| C(10) | 2510(3)  | 336(2)  | 3967(2)  | 46(1) |
| C(11) | 2789(2)  | 1336(2) | 3736(2)  | 27(1) |
| C(12) | 2039(3)  | 1738(2) | 2981(2)  | 49(1) |

**Table A.55**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [((<sup>*i*</sup>PrO)<sub>2</sub>PS<sub>2</sub>)Mo(S)( $\mu_2$ -S)<sub>2</sub>Mo(S)(S<sub>2</sub>P(O<sup>*i*</sup>Pr)<sub>2</sub>)]. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| ·····       |            |              |          |
|-------------|------------|--------------|----------|
| Mo(1)-S(7)  | 2.1044(7)  | C(7)-H(7B)   | 0.9800   |
| Mo(1)-S(3)  | 2.3044(6)  | C(7)-H(7C)   | 0.9800   |
| Mo(1)-S(4)  | 2.3059(7)  | C(8)-C(9)    | 1.501(4) |
| Mo(1)-S(1)  | 2.4804(7)  | C(8)-H(8)    | 1.0000   |
| Mo(1)-S(2)  | 2.4921(6)  | C(9)-H(9A)   | 0.9800   |
| Mo(1)-Mo(2) | 2.8199(3)  | C(9)-H(9B)   | 0.9800   |
| Mo(2)-S(8)  | 2.0994(7)  | C(9)-H(9C)   | 0.9800   |
| Mo(2)-S(3)  | 2.3016(7)  | C(10)-C(11)  | 1.494(4) |
| Mo(2)-S(4)  | 2.3122(6)  | C(10)-H(10A) | 0.9800   |
| Mo(2)-S(5)  | 2.4859(6)  | C(10)-H(10B) | 0.9800   |
| Mo(2)-S(6)  | 2.4972(7)  | C(10)-H(10C) | 0.9800   |
| S(1)-P(1)   | 2.0088(9)  | C(11)-C(12)  | 1.497(4) |
| S(2)-P(1)   | 2.0060(9)  | C(11)-H(11)  | 1.0000   |
| S(5)-P(2)   | 2.0064(9)  | C(12)-H(12A) | 0.9800   |
| S(6)-P(2)   | 2.0048(8)  | C(12)-H(12B) | 0.9800   |
| P(1)-O(2)   | 1.5615(18) | C(12)-H(12C) | 0.9800   |
| P(1)-O(1)   | 1.5629(17) |              |          |
| P(2)-O(3)   | 1.5580(17) |              |          |
| P(2)-O(4)   | 1.5721(17) |              |          |
| O(1)-C(2)   | 1.481(3)   |              |          |
| O(2)-C(5)   | 1.483(3)   |              |          |
| O(3)-C(11)  | 1.483(3)   |              |          |
| O(4)-C(8)   | 1.481(3)   |              |          |
| C(1)-C(2)   | 1.475(4)   |              |          |
| C(1)-H(1A)  | 0.9800     |              |          |
| C(1)-H(1B)  | 0.9800     |              |          |
| C(1)-H(1C)  | 0.9800     |              |          |
| C(2)-C(3)   | 1.492(4)   |              |          |
| C(2)-H(2)   | 1.0000     |              |          |
| C(3)-H(3A)  | 0.9800     |              |          |
| C(3)-H(3B)  | 0.9800     |              |          |
| C(3)-H(3C)  | 0.9800     |              |          |
| C(4)-C(5)   | 1.503(4)   |              |          |
| C(4)-H(4A)  | 0.9800     |              |          |
| C(4)-H(4B)  | 0.9800     |              |          |
| C(4)-H(4C)  | 0.9800     |              |          |
| C(5)-C(6)   | 1.490(4)   |              |          |
| C(5)-H(5)   | 1.0000     |              |          |
| C(6)-H(6A)  | 0.9800     |              |          |
| C(6)-H(6B)  | 0.9800     |              |          |
| C(6)-H(6C)  | 0.9800     |              |          |
| C(7)-C(8)   | 1.502(4)   |              |          |
| C(7)-H(7A)  | 0.9800     |              |          |
|             |            |              |          |

**Table A.56**. Bond lengths (Å) for  $[(({}^{i}PrO)_{2}PS_{2})Mo(S)(\mu_{2}-S)_{2}Mo(S)(S_{2}P(O^{i}Pr)_{2})]$ . Symmetry transformations used to generate equivalent atoms:

| S(7)-Mo(1)-S(3)  | 107.02(2)   | O(3)-P(2)-S(6)   | 109.27(7)  |
|------------------|-------------|------------------|------------|
| S(7)-Mo(1)-S(4)  | 108.11(3)   | O(4)-P(2)-S(6)   | 114.46(7)  |
| S(3)-Mo(1)-S(4)  | 100.72(2)   | O(3)-P(2)-S(5)   | 114.75(7)  |
| S(7)-Mo(1)-S(1)  | 106.46(3)   | O(4)-P(2)-S(5)   | 113.06(7)  |
| S(3)-Mo(1)-S(1)  | 79.51(2)    | S(6)-P(2)-S(5)   | 103.32(3)  |
| S(4)-Mo(1)-S(1)  | 143.61(3)   | C(2)-O(1)-P(1)   | 122.02(15) |
| S(7)-Mo(1)-S(2)  | 106.19(3)   | C(5)-O(2)-P(1)   | 120.18(15) |
| S(3)-Mo(1)-S(2)  | 144.06(2)   | C(11)-O(3)-P(2)  | 123.34(15) |
| S(4)-Mo(1)-S(2)  | 81.53(2)    | C(8)-O(4)-P(2)   | 120.99(14) |
| S(1)-Mo(1)-S(2)  | 78.30(2)    | C(2)-C(1)-H(1A)  | 109.5      |
| S(7)-Mo(1)-Mo(2) | 101.53(2)   | C(2)-C(1)-H(1B)  | 109.5      |
| S(3)-Mo(1)-Mo(2) | 52.204(16)  | H(1A)-C(1)-H(1B) | 109.5      |
| S(4)-Mo(1)-Mo(2) | 52.468(15)  | C(2)-C(1)-H(1C)  | 109.5      |
| S(1)-Mo(1)-Mo(2) | 129.522(18) | H(1A)-C(1)-H(1C) | 109.5      |
| S(2)-Mo(1)-Mo(2) | 131.868(17) | H(1B)-C(1)-H(1C) | 109.5      |
| S(8)-Mo(2)-S(3)  | 107.48(2)   | C(1)-C(2)-O(1)   | 106.9(2)   |
| S(8)-Mo(2)-S(4)  | 108.22(2)   | C(1)-C(2)-C(3)   | 113.0(3)   |
| S(3)-Mo(2)-S(4)  | 100.61(2)   | O(1)-C(2)-C(3)   | 107.7(2)   |
| S(8)-Mo(2)-S(5)  | 105.43(2)   | C(1)-C(2)-H(2)   | 109.7      |
| S(3)-Mo(2)-S(5)  | 80.18(2)    | O(1)-C(2)-H(2)   | 109.7      |
| S(4)-Mo(2)-S(5)  | 144.27(2)   | C(3)-C(2)-H(2)   | 109.7      |
| S(8)-Mo(2)-S(6)  | 108.00(2)   | C(2)-C(3)-H(3A)  | 109.5      |
| S(3)-Mo(2)-S(6)  | 142.21(2)   | C(2)-C(3)-H(3B)  | 109.5      |
| S(4)-Mo(2)-S(6)  | 80.21(2)    | H(3A)-C(3)-H(3B) | 109.5      |
| S(5)-Mo(2)-S(6)  | 78.30(2)    | C(2)-C(3)-H(3C)  | 109.5      |
| S(8)-Mo(2)-Mo(1) | 102.001(19) | H(3A)-C(3)-H(3C) | 109.5      |
| S(3)-Mo(2)-Mo(1) | 52.295(15)  | H(3B)-C(3)-H(3C) | 109.5      |
| S(4)-Mo(2)-Mo(1) | 52.264(16)  | C(5)-C(4)-H(4A)  | 109.5      |
| S(5)-Mo(2)-Mo(1) | 130.429(17) | C(5)-C(4)-H(4B)  | 109.5      |
| S(6)-Mo(2)-Mo(1) | 129.846(16) | H(4A)-C(4)-H(4B) | 109.5      |
| P(1)-S(1)-Mo(1)  | 88.77(3)    | C(5)-C(4)-H(4C)  | 109.5      |
| P(1)-S(2)-Mo(1)  | 88.51(3)    | H(4A)-C(4)-H(4C) | 109.5      |
| Mo(2)-S(3)-Mo(1) | 75.50(2)    | H(4B)-C(4)-H(4C) | 109.5      |
| Mo(1)-S(4)-Mo(2) | 75.27(2)    | O(2)-C(5)-C(6)   | 107.6(2)   |
| P(2)-S(5)-Mo(2)  | 86.21(3)    | O(2)-C(5)-C(4)   | 107.3(2)   |
| P(2)-S(6)-Mo(2)  | 85.94(3)    | C(6)-C(5)-C(4)   | 114.2(3)   |
| O(2)-P(1)-O(1)   | 97.89(9)    | O(2)-C(5)-H(5)   | 109.2      |
| O(2)-P(1)-S(2)   | 114.45(7)   | C(6)-C(5)-H(5)   | 109.2      |
| O(1)-P(1)-S(2)   | 115.00(8)   | C(4)-C(5)-H(5)   | 109.2      |
| O(2)-P(1)-S(1)   | 112.66(7)   | C(5)-C(6)-H(6A)  | 109.5      |
| O(1)-P(1)-S(1)   | 114.55(8)   | C(5)-C(6)-H(6B)  | 109.5      |
| S(2)-P(1)-S(1)   | 102.87(4)   | H(6A)-C(6)-H(6B) | 109.5      |
| O(3)-P(2)-O(4)   | 102.33(9)   | C(5)-C(6)-H(6C)  | 109.5      |

**Table A.57.** Bond angles (deg.) for  $[(({}^{i}PrO)_{2}PS_{2})Mo(S)(\mu_{2}-S)_{2}Mo(S)(S_{2}P(O^{i}Pr)_{2})]$ . Symmetry transformations used to generate equivalent atoms:

| H(6A)-C(6)-H(6C)    | 109.5    |
|---------------------|----------|
| H(6B)-C(6)-H(6C)    | 109.5    |
| C(8)-C(7)-H(7A)     | 109.5    |
| C(8)-C(7)-H(7B)     | 109.5    |
| H(7A)-C(7)-H(7B)    | 109.5    |
| C(8)-C(7)-H(7C)     | 109.5    |
| H(7A)-C(7)-H(7C)    | 109.5    |
| H(7B)-C(7)-H(7C)    | 109.5    |
| O(4)-C(8)-C(7)      | 106.5(2) |
| O(4)-C(8)-C(9)      | 107.2(2) |
| C(7)-C(8)-C(9)      | 114.7(2) |
| O(4)-C(8)-H(8)      | 109.4    |
| C(7)-C(8)-H(8)      | 109.4    |
| C(9)-C(8)-H(8)      | 109.4    |
| C(8)-C(9)-H(9A)     | 109.5    |
| C(8)-C(9)-H(9B)     | 109.5    |
| H(9A)-C(9)-H(9B)    | 109.5    |
| C(8)-C(9)-H(9C)     | 109.5    |
| H(9A)-C(9)-H(9C)    | 109.5    |
| H(9B)-C(9)-H(9C)    | 109.5    |
| C(11)-C(10)-H(10A)  | 109.5    |
| C(11)-C(10)-H(10B)  | 109.5    |
| H(10A)-C(10)-H(10B) | 109.5    |
| C(11)-C(10)-H(10C)  | 109.5    |
| H(10A)-C(10)-H(10C) | 109.5    |
| H(10B)-C(10)-H(10C) | 109.5    |
| O(3)-C(11)-C(10)    | 105.2(2) |
| O(3)-C(11)-C(12)    | 109.0(2) |
| C(10)-C(11)-C(12)   | 113.8(2) |
| O(3)-C(11)-H(11)    | 109.5    |
| C(10)-C(11)-H(11)   | 109.5    |
| C(12)-C(11)-H(11)   | 109.5    |
| C(11)-C(12)-H(12A)  | 109.5    |
| C(11)-C(12)-H(12B)  | 109.5    |
| H(12A)-C(12)-H(12B) | 109.5    |
| C(11)-C(12)-H(12C)  | 109.5    |
| H(12A)-C(12)-H(12C) | 109.5    |
| H(12B)-C(12)-H(12C) | 109.5    |

**Table**A.57, Cont'd.Bond angles (deg.)for  $[(({}^{i}PrO)_{2}PS_{2})Mo(S)(\mu_{2}-S)_{2}Mo(S)(S_{2}P(O'Pr)_{2})]$ .Symmetry transformations used to generate equivalent atoms:

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| Mo(1) | 19(1)    | 21(1)    | 16(1)    | -1(1)    | 1(1)     | -1(1)    |
| Mo(2) | 19(1)    | 19(1)    | 16(1)    | 0(1)     | 1(1)     | -2(1)    |
| S(1)  | 22(1)    | 48(1)    | 25(1)    | -12(1)   | 7(1)     | -7(1)    |
| S(2)  | 21(1)    | 37(1)    | 23(1)    | -10(1)   | 4(1)     | -4(1)    |
| S(3)  | 21(1)    | 25(1)    | 17(1)    | -2(1)    | 2(1)     | 1(1)     |
| S(4)  | 21(1)    | 31(1)    | 18(1)    | -3(1)    | 3(1)     | -1(1)    |
| S(5)  | 20(1)    | 38(1)    | 18(1)    | 4(1)     | 2(1)     | 1(1)     |
| S(6)  | 24(1)    | 25(1)    | 21(1)    | -2(1)    | 3(1)     | 1(1)     |
| S(7)  | 40(1)    | 27(1)    | 27(1)    | 5(1)     | 1(1)     | 1(1)     |
| S(8)  | 32(1)    | 22(1)    | 31(1)    | 0(1)     | 2(1)     | -6(1)    |
| P(1)  | 19(1)    | 27(1)    | 20(1)    | -3(1)    | 1(1)     | -3(1)    |
| P(2)  | 20(1)    | 19(1)    | 19(1)    | 1(1)     | 0(1)     | -1(1)    |
| O(1)  | 24(1)    | 24(1)    | 27(1)    | 1(1)     | -2(1)    | -4(1)    |
| O(2)  | 23(1)    | 25(1)    | 28(1)    | 2(1)     | -2(1)    | -4(1)    |
| O(3)  | 24(1)    | 20(1)    | 24(1)    | -4(1)    | 6(1)     | -3(1)    |
| O(4)  | 27(1)    | 21(1)    | 25(1)    | 3(1)     | -4(1)    | -4(1)    |
| C(1)  | 97(3)    | 40(2)    | 33(2)    | 8(1)     | 6(2)     | 9(2)     |
| C(2)  | 30(2)    | 24(1)    | 31(1)    | 4(1)     | 4(1)     | -6(1)    |
| C(3)  | 133(4)   | 42(2)    | 110(3)   | 27(2)    | 85(3)    | 38(2)    |
| C(4)  | 70(2)    | 51(2)    | 71(2)    | 28(2)    | 39(2)    | 19(2)    |
| C(5)  | 34(2)    | 30(1)    | 32(1)    | 4(1)     | -2(1)    | 4(1)     |
| C(6)  | 37(2)    | 37(2)    | 51(2)    | -4(1)    | 10(1)    | 6(1)     |
| C(7)  | 68(2)    | 26(2)    | 51(2)    | -2(1)    | 23(2)    | -5(2)    |
| C(8)  | 36(2)    | 22(1)    | 30(1)    | 5(1)     | -4(1)    | -10(1)   |
| C(9)  | 44(2)    | 34(2)    | 50(2)    | 10(1)    | 14(2)    | -5(1)    |
| C(10) | 72(2)    | 25(2)    | 40(2)    | -9(1)    | 8(2)     | -2(2)    |
| C(11) | 27(1)    | 30(1)    | 23(1)    | -10(1)   | 5(1)     | -1(1)    |
| C(12) | 68(2)    | 43(2)    | 28(2)    | -3(1)    | -6(2)    | 6(2)     |

**Table A.58**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [((<sup>*i*</sup>PrO)<sub>2</sub>PS<sub>2</sub>)Mo(S)( $\mu_2$ -S)<sub>2</sub>Mo(S)(S<sub>2</sub>P(O<sup>*i*</sup>Pr)<sub>2</sub>)]. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

| H atom | Х     | У    | Z     | U(eq) |
|--------|-------|------|-------|-------|
| H(1A)  | 9758  | 1135 | 11000 | 87    |
| H(1B)  | 9234  | 2183 | 11031 | 87    |
| H(1C)  | 10497 | 2080 | 11052 | 87    |
| H(2)   | 8844  | 1600 | 9654  | 34    |
| H(3A)  | 10379 | 640  | 9665  | 130   |
| H(3B)  | 11113 | 1589 | 9748  | 130   |
| H(3C)  | 10234 | 1400 | 8905  | 130   |
| H(4A)  | 9350  | 6066 | 7572  | 91    |
| H(4B)  | 9959  | 5048 | 7682  | 91    |
| H(4C)  | 10228 | 5847 | 8409  | 91    |
| H(5)   | 8216  | 4864 | 7950  | 40    |
| H(6A)  | 7961  | 6397 | 8506  | 62    |
| H(6B)  | 8852  | 6154 | 9329  | 62    |
| H(6C)  | 7747  | 5562 | 9137  | 62    |
| H(7A)  | 3102  | 5931 | 4499  | 70    |
| H(7B)  | 2496  | 5102 | 4913  | 70    |
| H(7C)  | 2212  | 5277 | 3915  | 70    |
| H(8)   | 4227  | 4569 | 4823  | 37    |
| H(9A)  | 4479  | 5383 | 3591  | 64    |
| H(9B)  | 3565  | 4729 | 3034  | 64    |
| H(9C)  | 4667  | 4247 | 3510  | 64    |
| H(10A) | 2539  | -102 | 3496  | 69    |
| H(10B) | 1783  | 333  | 4088  | 69    |
| H(10C) | 3026  | 123  | 4468  | 69    |
| H(11)  | 3542  | 1346 | 3636  | 32    |
| H(12A) | 2059  | 1330 | 2488  | 73    |
| H(12B) | 2263  | 2395 | 2871  | 73    |
| H(12C) | 1306  | 1752 | 3088  | 73    |

**Table A.59**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [(( $^{i}PrO$ )<sub>2</sub>PS<sub>2</sub>)Mo(S)( $\mu_2$ -S)<sub>2</sub>Mo(S)(S<sub>2</sub>P(O $^{i}Pr$ )<sub>2</sub>)].

## Structure Determination Summary



Thermal ellipsoid plot is drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

## **Table A.60.** Crystal Data and Structure Refinement for $[({}^{i}Bu_{2}NCSe_{2})MoO(\mu-Se)_{2}MoO(Se_{2}CN{}^{i}Bu_{2})]$ .

| Identification code                       | JPD1293_0m                                               |                               |  |  |  |
|-------------------------------------------|----------------------------------------------------------|-------------------------------|--|--|--|
| Empirical formula                         | $C_{18}H_{36}Mo_2N_2O_2Se_6$                             |                               |  |  |  |
| Formula weight                            | 978.13                                                   |                               |  |  |  |
| Temperature                               | 273(2) K                                                 |                               |  |  |  |
| Wavelength                                | 0.71073 Å                                                |                               |  |  |  |
| Crystal system                            | Monoclinic                                               |                               |  |  |  |
| Space group                               | Cc                                                       |                               |  |  |  |
| Unit cell dimensions                      | a = 11.3342(6) Å                                         | $\alpha = 90^{\circ}$         |  |  |  |
|                                           | b = 17.9266(10) Å                                        | $\beta = 95.7698(19)^{\circ}$ |  |  |  |
|                                           | c = 14.5595(8) Å                                         | $\gamma = 90^{\circ}$         |  |  |  |
| Volume                                    | 2943.3(3) Å <sup>3</sup>                                 |                               |  |  |  |
| Ζ                                         | 4                                                        |                               |  |  |  |
| Density (calculated)                      | $2.207 \text{ g/cm}^3$                                   |                               |  |  |  |
| Absorption coefficient                    | 8.289 mm <sup>-1</sup>                                   |                               |  |  |  |
| F(000)                                    | 1848                                                     |                               |  |  |  |
| Crystal size                              | 0.286 x 0.221 x 0.090 mm <sup>3</sup>                    |                               |  |  |  |
| $\theta$ range for data collection        | 2.272 to 30.553°                                         |                               |  |  |  |
| Index ranges                              | $-16 \le h \le 16,  -25 \le k \le 25,  -20 \le l \le 20$ |                               |  |  |  |
| Reflections collected                     | 29564                                                    |                               |  |  |  |
| Independent reflections                   | 8643 [R(int) = 0.0370]                                   |                               |  |  |  |
| Completeness to $\theta = 25.242^{\circ}$ | 99.7 %                                                   |                               |  |  |  |
| Absorption correction                     | Semi-empirical from equi                                 | valents                       |  |  |  |
| Max. and min. transmission                | 0.52 and 0.33                                            |                               |  |  |  |
| Refinement method                         | Full-matrix least-squares on $F^2$                       |                               |  |  |  |
| Data / restraints / parameters            | 8643 / 2 / 280                                           |                               |  |  |  |
| Goodness-of-fit on $F^2$                  | 1.054                                                    |                               |  |  |  |
| Final R indices $[I \ge 2\sigma(I)]$      | R1 = 0.0356, wR2 = 0.082                                 | 18                            |  |  |  |
| R indices (all data)                      | R1 = 0.0435, wR2 = 0.087                                 | 76                            |  |  |  |
| Absolute structure parameter              | 0.049(10)                                                |                               |  |  |  |
| Extinction coefficient                    | n/a                                                      |                               |  |  |  |
| Largest diff. peak and hole               | 1.568 and -1.037 e·Å <sup>-3</sup>                       |                               |  |  |  |

| Atom  | Х          | У        | Z         | U(eq) |
|-------|------------|----------|-----------|-------|
| Mo(1) | -7584(1)   | -1864(1) | -368(1)   | 23(1) |
| Mo(2) | -7545(1)   | -3317(1) | -1243(1)  | 25(1) |
| Se(1) | -6786(1)   | -1420(1) | 1261(1)   | 33(1) |
| Se(2) | -9240(1)   | -1096(1) | 263(1)    | 29(1) |
| Se(3) | -6770(1)   | -4587(1) | -620(1)   | 28(1) |
| Se(4) | -9170(1)   | -4283(1) | -1722(1)  | 36(1) |
| Se(5) | -6155(1)   | -2862(1) | 38(1)     | 26(1) |
| Se(6) | -9289(1)   | -2513(1) | -1182(1)  | 32(1) |
| O(1)  | -7016(5)   | -1283(3) | -1110(4)  | 36(1) |
| O(2)  | -6931(6)   | -3164(4) | -2225(4)  | 42(1) |
| N(1)  | -8472(5)   | -502(4)  | 2033(4)   | 27(1) |
| N(2)  | -8351(5)   | -5752(4) | -1297(4)  | 27(1) |
| C(1)  | -8209(6)   | -891(4)  | 1340(5)   | 23(1) |
| C(2)  | -7660(7)   | -419(4)  | 2887(5)   | 28(2) |
| C(3)  | -8114(8)   | -764(6)  | 3726(6)   | 41(2) |
| C(4)  | -7172(9)   | -688(6)  | 4550(6)   | 48(2) |
| C(5)  | -8467(10)  | -1585(7) | 3546(8)   | 58(3) |
| C(6)  | -9659(6)   | -147(4)  | 2048(6)   | 30(2) |
| C(7)  | -9600(6)   | 671(4)   | 2301(5)   | 26(1) |
| C(8)  | -10885(7)  | 964(5)   | 2267(6)   | 35(2) |
| C(9)  | -8885(7)   | 1124(5)  | 1683(6)   | 36(2) |
| C(10) | -8137(6)   | -5041(5) | -1240(5)  | 30(2) |
| C(11) | -7578(7)   | -6310(5) | -793(5)   | 32(2) |
| C(12) | -8129(9)   | -6657(6) | 20(6)     | 49(3) |
| C(13) | -8496(12)  | -6063(9) | 691(7)    | 71(4) |
| C(14) | -7229(11)  | -7191(7) | 502(7)    | 60(3) |
| C(15) | -9431(7)   | -6053(5) | -1840(6)  | 33(2) |
| C(16) | -9201(7)   | -6289(6) | -2805(6)  | 40(2) |
| C(17) | -10262(13) | -6828(9) | -3178(10) | 76(4) |
| C(18) | -8963(12)  | -5745(8) | -3482(9)  | 70(3) |

**Table A.61**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [( ${}^iBu_2NCSe_2$ )MoO( $\mu$ -Se)<sub>2</sub>MoO(Se<sub>2</sub>CN ${}^iBu_2$ )]. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |            |              |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|--------------|-----------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-O(1)  | 1.674(6)   | C(9)-H(9B)   | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-Se(5) | 2.4461(9)  | C(9)-H(9C)   | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-Se(6) | 2.4570(10) | C(11)-C(12)  | 1.526(11) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-Se(2) | 2.5708(9)  | C(11)-H(11A) | 0.9700    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-Se(1) | 2.5770(10) | C(11)-H(11B) | 0.9700    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(1)-Mo(2) | 2.9017(9)  | C(12)-C(14)  | 1.518(16) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(2)-O(2)  | 1.675(6)   | C(12)-C(13)  | 1.530(17) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(2)-Se(6) | 2.4545(10) | C(12)-H(12)  | 0.9800    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(2)-Se(5) | 2.4565(9)  | C(13)-H(13A) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(2)-Se(3) | 2.5724(10) | C(13)-H(13B) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo(2)-Se(4) | 2.5734(10) | C(13)-H(13C) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Se(1)-C(1)  | 1.885(7)   | C(14)-H(14A) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Se(2)-C(1)  | 1.895(7)   | C(14)-H(14B) | 0.9600    |
| $\begin{array}{ccccccc} Se(4)-C(10) & 1.883(8) & C(15)-C(16) & 1.516(12) \\ N(1)-C(1) & 1.285(9) & C(15)-H(15A) & 0.9700 \\ N(1)-C(2) & 1.478(9) & C(15)-H(15B) & 0.9700 \\ N(1)-C(6) & 1.491(9) & C(16)-C(18) & 1.431(17) \\ N(2)-C(10) & 1.297(11) & C(16)-C(17) & 1.594(15) \\ N(2)-C(11) & 1.477(11) & C(16)-H(16) & 0.9800 \\ N(2)-C(15) & 1.490(9) & C(17)-H(17A) & 0.9600 \\ C(2)-C(3) & 1.506(11) & C(17)-H(17B) & 0.9600 \\ C(2)-H(2A) & 0.9700 & C(17)-H(17C) & 0.9600 \\ C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4C) & 0.9600 \\ C(5)-H(5A) & 0.9600 \\ \end{array}$ | Se(3)-C(10) | 1.897(7)   | C(14)-H(14C) | 0.9600    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Se(4)-C(10) | 1.883(8)   | C(15)-C(16)  | 1.516(12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N(1)-C(1)   | 1.285(9)   | C(15)-H(15A) | 0.9700    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N(1)-C(2)   | 1.478(9)   | C(15)-H(15B) | 0.9700    |
| $\begin{array}{cccccccc} N(2)-C(10) & 1.297(11) & C(16)-C(17) & 1.594(15) \\ N(2)-C(11) & 1.477(11) & C(16)-H(16) & 0.9800 \\ N(2)-C(15) & 1.490(9) & C(17)-H(17A) & 0.9600 \\ C(2)-C(3) & 1.506(11) & C(17)-H(17B) & 0.9600 \\ C(2)-H(2A) & 0.9700 & C(17)-H(17C) & 0.9600 \\ C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4B) & 0.9600 \\ C(4)-H(4C) & 0.9600 \\ C(5)-H(5A) & 0.9600 \\ \end{array}$                                                                                                                                                                                | N(1)-C(6)   | 1.491(9)   | C(16)-C(18)  | 1.431(17) |
| $\begin{array}{ccccccc} N(2)-C(11) & 1.477(11) & C(16)-H(16) & 0.9800 \\ N(2)-C(15) & 1.490(9) & C(17)-H(17A) & 0.9600 \\ C(2)-C(3) & 1.506(11) & C(17)-H(17B) & 0.9600 \\ C(2)-H(2A) & 0.9700 & C(17)-H(17C) & 0.9600 \\ C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4B) & 0.9600 \\ C(4)-H(4C) & 0.9600 \\ C(5)-H(5A) & 0.9600 \\ \end{array}$                                                                                                                                                                                                                                     | N(2)-C(10)  | 1.297(11)  | C(16)-C(17)  | 1.594(15) |
| $\begin{array}{ccccccc} N(2)-C(15) & 1.490(9) & C(17)-H(17A) & 0.9600 \\ C(2)-C(3) & 1.506(11) & C(17)-H(17B) & 0.9600 \\ C(2)-H(2A) & 0.9700 & C(17)-H(17C) & 0.9600 \\ C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4B) & 0.9600 \\ C(4)-H(4C) & 0.9600 \\ C(5)-H(5A) & 0.9600 \\ \hline \end{array}$                                                                                                                                                                                                                                                                               | N(2)-C(11)  | 1.477(11)  | C(16)-H(16)  | 0.9800    |
| $\begin{array}{cccccc} C(2)-C(3) & 1.506(11) & C(17)-H(17B) & 0.9600 \\ C(2)-H(2A) & 0.9700 & C(17)-H(17C) & 0.9600 \\ C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 & & & \\ C(4)-H(4A) & 0.9600 & & & \\ C(4)-H(4B) & 0.9600 & & & \\ C(4)-H(4C) & 0.9600 & & & \\ C(5)-H(5A) & 0.9600 & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                          | N(2)-C(15)  | 1.490(9)   | C(17)-H(17A) | 0.9600    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(2)-C(3)   | 1.506(11)  | C(17)-H(17B) | 0.9600    |
| $\begin{array}{ccccc} C(2)-H(2B) & 0.9700 & C(18)-H(18A) & 0.9600 \\ C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 & & \\ C(4)-H(4A) & 0.9600 & & \\ C(4)-H(4B) & 0.9600 & & \\ C(4)-H(4C) & 0.9600 & & \\ C(5)-H(5A) & 0.9600 & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                     | C(2)-H(2A)  | 0.9700     | C(17)-H(17C) | 0.9600    |
| $\begin{array}{ccccc} C(3)-C(4) & 1.530(13) & C(18)-H(18B) & 0.9600 \\ C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 & \\ C(4)-H(4A) & 0.9600 & \\ C(4)-H(4B) & 0.9600 & \\ C(4)-H(4C) & 0.9600 & \\ C(5)-H(5A) & 0.9600 & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(2)-H(2B)  | 0.9700     | C(18)-H(18A) | 0.9600    |
| $\begin{array}{ccccc} C(3)-C(5) & 1.540(16) & C(18)-H(18C) & 0.9600 \\ C(3)-H(3) & 0.9800 \\ C(4)-H(4A) & 0.9600 \\ C(4)-H(4B) & 0.9600 \\ C(4)-H(4C) & 0.9600 \\ C(5)-H(5A) & 0.9600 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(3)-C(4)   | 1.530(13)  | C(18)-H(18B) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(3)-C(5)   | 1.540(16)  | C(18)-H(18C) | 0.9600    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(3)-H(3)   | 0.9800     |              |           |
| C(4)-H(4B) 0.9600   C(4)-H(4C) 0.9600   C(5)-H(5A) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(4)-H(4A)  | 0.9600     |              |           |
| C(4)-H(4C) 0.9600<br>C(5)-H(5A) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(4)-H(4B)  | 0.9600     |              |           |
| C(5)-H(5A) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(4)-H(4C)  | 0.9600     |              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(5)-H(5A)  | 0.9600     |              |           |
| C(5)-H(5B) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(5)-H(5B)  | 0.9600     |              |           |
| C(5)-H(5C) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(5)-H(5C)  | 0.9600     |              |           |
| C(6)-C(7) 1.512(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(6)-C(7)   | 1.512(11)  |              |           |
| C(6)-H(6A) 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(6)-H(6A)  | 0.9700     |              |           |
| C(6)-H(6B) 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(6)-H(6B)  | 0.9700     |              |           |
| C(7)-C(9) 1.508(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(7)-C(9)   | 1.508(11)  |              |           |
| C(7)-C(8) 1.543(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(7)-C(8)   | 1.543(10)  |              |           |
| C(7)-H(7) 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(7)-H(7)   | 0.9800     |              |           |
| C(8)-H(8A) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(8)-H(8A)  | 0.9600     |              |           |
| C(8)-H(8B) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(8)-H(8B)  | 0.9600     |              |           |
| C(8)-H(8C) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(8)-H(8C)  | 0.9600     |              |           |
| C(9)-H(9A) 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(9)-H(9A)  | 0.9600     |              |           |

**Table A.62**. Bond lengths (Å) for  $[({}^{i}Bu_{2}NCSe_{2})MoO(\mu-Se)_{2}MoO(Se_{2}CN{}^{i}Bu_{2})]$ . Symmetry transformations used to generate equivalent atoms:

| $O(1)$ $M_{0}(1)$ $S_{0}(5)$             | 100.0(2)               | $N(1) C(1) C_{2}(2)$                      | 125 ((5)             |
|------------------------------------------|------------------------|-------------------------------------------|----------------------|
| O(1)-MO(1)-Se(5)<br>O(1) Mo(1) So(6)     | 108.8(2)<br>108.6(2)   | N(1)-C(1)-Se(2)                           | 123.0(3)<br>108 2(3) |
| O(1)-MO(1)-Se(0)<br>So(5) Mo(1) So(6)    | 100.0(2)<br>103.85(3)  | Se(1)-C(1)-Se(2)<br>N(1) C(2) C(3)        | 106.2(3)<br>114.0(7) |
| O(1) Mo(1) So(2)                         | 103.03(3)<br>103.0(2)  | N(1) - C(2) - C(3)<br>N(1) - C(2) - H(2A) | 114.0(7)             |
| O(1)-MO(1)-Se(2)<br>So(5) Mo(1) So(2)    | 103.9(2)<br>142.64(4)  | $\Gamma(1)$ - $C(2)$ - $\Pi(2A)$          | 108.7                |
| Se(3)-MO(1)-Se(2)<br>So(6) Mo(1) So(2)   | 142.04(4)<br>81.80(2)  | N(1) C(2) H(2R)                           | 108.7                |
| O(1) Mo(1) So(1)                         | 1062(2)                | $\Gamma(1)$ - $C(2)$ - $\Pi(2B)$          | 108.7                |
| O(1)-MO(1)-Se(1)<br>So(5) Mo(1) So(1)    | 100.3(2)               | $U(3)-U(2)-\Pi(2D)$<br>U(2A) C(2) U(2D)   | 106.7                |
| Se(3)-Mo(1)-Se(1)                        | 60.61(3)               | $\Pi(2A) - C(2) - \Pi(2B)$                | 107.0<br>100.2(7)    |
| Se(0)-MO(1)-Se(1)<br>Se(2) Me(1) Se(1)   | 140.09(4)<br>72.08(2)  | C(2) - C(3) - C(4)                        | 109.3(7)             |
| Se(2)-MO(1)-Se(1)<br>O(1) Mo(1) Mo(2)    | 12.96(3)               | C(2)-C(3)-C(3)                            | 111.0(0)<br>111.6(0) |
| O(1)-MO(1)-MO(2)<br>So(5) Mo(1) Mo(2)    | 104.3(2)<br>52.87(2)   | C(4)-C(3)-C(3)                            | 111.0(8)             |
| Se(3)-Mo(1)-Mo(2)                        | 53.07(2)               | C(2)- $C(3)$ - $H(3)$                     | 100.5                |
| Se(0)-MO(1)-MO(2)<br>Se(2) Me(1) Me(2)   | 35.73(5)<br>122.05(2)  | C(4)-C(3)-H(3)                            | 108.5                |
| Se(2)-MO(1)-MO(2)<br>Se(1) Me(1) Me(2)   | 132.93(3)<br>121.29(2) | C(3) - C(3) - H(3)                        | 100.5                |
| Se(1)-Mo(1)-Mo(2)                        | 131.38(3)<br>100.0(2)  | $C(3)-C(4)-\Pi(4A)$                       | 109.5                |
| O(2)-MO(2)-Se(6)                         | 109.9(2)<br>107.7(2)   | U(3)-U(4)-H(4B)                           | 109.5                |
| O(2)-MO(2)-Se(5)                         | 107.7(2)               | H(4A)-C(4)-H(4B)                          | 109.5                |
| Se(0)-Mo(2)-Se(3)                        | 105.01(5)<br>106.8(2)  | U(3)-U(4)-H(4U)                           | 109.5                |
| O(2)-MO(2)-Se(3)                         | 100.8(2)<br>128.04(4)  | H(4A)-C(4)-H(4C)                          | 109.5                |
| Se(6)-Mo(2)-Se(3)                        | 138.94(4)              | H(4B)-C(4)-H(4C)                          | 109.5                |
| Se(5)-Mo(2)-Se(3)                        | 81./1(3)<br>102.1(2)   | C(3)-C(5)-H(5A)                           | 109.5                |
| O(2)-MO(2)-Se(4)                         | 105.1(2)               | U(5)-U(5)-H(5B)                           | 109.5                |
| Se(6)-Mo(2)-Se(4)                        | 81.23(3)               | H(5A)-C(5)-H(5B)                          | 109.5                |
| Se(5)-Mo(2)-Se(4)                        | 144.72(4)              | C(3)-C(5)-H(5C)                           | 109.5                |
| Se(3)-Mo(2)-Se(4)                        | /3.11(3)               | H(5A)-C(5)-H(5C)                          | 109.5                |
| O(2)-MO(2)-MO(1)                         | 104.7(2)               | H(5B)-C(5)-H(5C)                          | 112 ((6)             |
| Se(0)-Mo(2)-Mo(1)                        | 53.83(3)               | N(1) - C(0) - C(7)                        | 113.0(0)             |
| Se(3)-Mo(2)-Mo(1)                        | 55.55(2)               | N(1)-C(0)-H(0A)                           | 108.8                |
| Se(3)-Mo(2)-Mo(1)                        | 131.20(3)<br>122.05(2) | C(7)-C(0)-H(0A)                           | 108.8                |
| Se(4)-MO(2)-MO(1)                        | 132.95(3)              | N(1)-C(6)-H(6B)                           | 108.8                |
| C(1)-Se(1)-Mo(1)<br>C(1) Se(2) Me(1)     | 89.3(2)                | U(7)-U(6)-H(6B)                           | 108.8                |
| C(1)-Se(2)-MO(1)<br>C(10) Se(2) Me(2)    | 89.3(2)                | H(0A)-C(0)-H(0B)                          | 112 0(6)             |
| C(10)-Se(3)-Mo(2)<br>C(10) Se(4) Me(2)   | 88.8(3)<br>80.1(2)     | C(9) - C(7) - C(8)                        | 113.0(0)             |
| C(10)-Se(4)-Mo(2)                        | 89.1(2)                | C(9) - C(7) - C(8)                        | 111.1(0)<br>107.7(6) |
| MO(1)-Se(5)-MO(2)<br>Mo(2), So(6), Mo(1) | 72.38(3)               | C(0) - C(7) - C(8)                        | 107.7(0)             |
| MO(2)-Se(6)-MO(1)                        | 12.43(3)               | C(9)-C(7)-H(7)                            | 108.3                |
| C(1)-N(1)-C(2)                           | 122.8(0)               | C(0)-C(7)-H(7)                            | 108.3                |
| C(1)-N(1)-C(6)                           | 121.0(0)<br>115.5(6)   | C(8)-C(7)-H(7)                            | 108.3                |
| U(2)-IN(1)-U(0)                          | 113.3(0)               | C(7) C(8) H(8A)                           | 109.5                |
| C(10)-N(2)-C(11)<br>C(10) N(2) C(15)     | 122.4(0)               | U(7)-U(3)-H(3B)                           | 109.5                |
| C(10)-N(2)-C(15)                         | 121.8(7)               | $H(\delta A)-U(\delta)-H(\delta B)$       | 109.5                |
| U(11)-IN(2)-U(15)                        | 115./(6)               | U(7)-U(8)-H(8U)                           | 109.5                |
| N(1)-C(1)-Se(1)                          | 126.1(5)               | H(8A)-C(8)-H(8C)                          | 109.5                |

**Table A.63**. Bond angles (deg.) for  $[({}^{i}Bu_{2}NCSe_{2})MoO(\mu-Se)_{2}MoO(Se_{2}CN{}^{i}Bu_{2})]$ . Symmetry transformations used to generate equivalent atoms:

| H(8B)-C(8)-H(8C)    | 109.5     | C(18)-C(16)-H(16)   | 105.6 |
|---------------------|-----------|---------------------|-------|
| C(7)-C(9)-H(9A)     | 109.5     | C(15)-C(16)-H(16)   | 105.6 |
| C(7)-C(9)-H(9B)     | 109.5     | C(17)-C(16)-H(16)   | 105.6 |
| H(9A)-C(9)-H(9B)    | 109.5     | C(16)-C(17)-H(17A)  | 109.5 |
| C(7)-C(9)-H(9C)     | 109.5     | C(16)-C(17)-H(17B)  | 109.5 |
| H(9A)-C(9)-H(9C)    | 109.5     | H(17A)-C(17)-H(17B) | 109.5 |
| H(9B)-C(9)-H(9C)    | 109.5     | C(16)-C(17)-H(17C)  | 109.5 |
| N(2)-C(10)-Se(4)    | 125.4(5)  | H(17A)-C(17)-H(17C) | 109.5 |
| N(2)-C(10)-Se(3)    | 126.2(6)  | H(17B)-C(17)-H(17C) | 109.5 |
| Se(4)-C(10)-Se(3)   | 108.3(4)  | C(16)-C(18)-H(18A)  | 109.5 |
| N(2)-C(11)-C(12)    | 113.1(7)  | C(16)-C(18)-H(18B)  | 109.5 |
| N(2)-C(11)-H(11A)   | 109.0     | H(18A)-C(18)-H(18B) | 109.5 |
| C(12)-C(11)-H(11A)  | 109.0     | C(16)-C(18)-H(18C)  | 109.5 |
| N(2)-C(11)-H(11B)   | 109.0     | H(18A)-C(18)-H(18C) | 109.5 |
| C(12)-C(11)-H(11B)  | 109.0     | H(18B)-C(18)-H(18C) | 109.5 |
| H(11A)-C(11)-H(11B) | 107.8     |                     |       |
| C(14)-C(12)-C(11)   | 107.9(8)  |                     |       |
| C(14)-C(12)-C(13)   | 111.0(9)  |                     |       |
| C(11)-C(12)-C(13)   | 111.8(9)  |                     |       |
| C(14)-C(12)-H(12)   | 108.7     |                     |       |
| C(11)-C(12)-H(12)   | 108.7     |                     |       |
| C(13)-C(12)-H(12)   | 108.7     |                     |       |
| C(12)-C(13)-H(13A)  | 109.5     |                     |       |
| C(12)-C(13)-H(13B)  | 109.5     |                     |       |
| H(13A)-C(13)-H(13B) | 109.5     |                     |       |
| C(12)-C(13)-H(13C)  | 109.5     |                     |       |
| H(13A)-C(13)-H(13C) | 109.5     |                     |       |
| H(13B)-C(13)-H(13C) | 109.5     |                     |       |
| C(12)-C(14)-H(14A)  | 109.5     |                     |       |
| C(12)-C(14)-H(14B)  | 109.5     |                     |       |
| H(14A)-C(14)-H(14B) | 109.5     |                     |       |
| C(12)-C(14)-H(14C)  | 109.5     |                     |       |
| H(14A)-C(14)-H(14C) | 109.5     |                     |       |
| H(14B)-C(14)-H(14C) | 109.5     |                     |       |
| N(2)-C(15)-C(16)    | 112.6(6)  |                     |       |
| N(2)-C(15)-H(15A)   | 109.1     |                     |       |
| C(16)-C(15)-H(15A)  | 109.1     |                     |       |
| N(2)-C(15)-H(15B)   | 109.1     |                     |       |
| C(16)-C(15)-H(15B)  | 109.1     |                     |       |
| H(15A)-C(15)-H(15B) | 107.8     |                     |       |
| C(18)-C(16)-C(15)   | 120.6(10) |                     |       |
| C(18)-C(16)-C(17)   | 111.5(9)  |                     |       |
| C(15)-C(16)-C(17)   | 106.9(8)  |                     |       |

**Table A.63, Cont'd**. Bond angles (deg.) for  $[({}^{i}Bu_{2}NCSe_{2})MoO(\mu-Se)_{2}MoO(Se_{2}CN{}^{i}Bu_{2})]$ . Symmetry transformations used to generate equivalent atoms:

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| Mo(1) | 19(1)    | 31(1)    | 21(1)    | 2(1)     | 2(1)     | 3(1)     |
| Mo(2) | 20(1)    | 38(1)    | 18(1)    | -3(1)    | 4(1)     | 2(1)     |
| Se(1) | 20(1)    | 49(1)    | 28(1)    | -8(1)    | -3(1)    | 12(1)    |
| Se(2) | 18(1)    | 41(1)    | 29(1)    | -5(1)    | -2(1)    | 7(1)     |
| Se(3) | 21(1)    | 33(1)    | 29(1)    | -6(1)    | -3(1)    | -3(1)    |
| Se(4) | 20(1)    | 46(1)    | 40(1)    | -11(1)   | -4(1)    | 2(1)     |
| Se(5) | 18(1)    | 32(1)    | 29(1)    | -1(1)    | -1(1)    | 2(1)     |
| Se(6) | 22(1)    | 43(1)    | 29(1)    | -3(1)    | -5(1)    | 6(1)     |
| O(1)  | 32(3)    | 42(3)    | 35(3)    | 10(2)    | 7(2)     | 4(2)     |
| O(2)  | 44(4)    | 60(4)    | 24(3)    | -1(3)    | 14(3)    | -3(3)    |
| N(1)  | 18(3)    | 36(3)    | 28(3)    | -2(2)    | 3(2)     | 3(2)     |
| N(2)  | 20(3)    | 42(3)    | 20(3)    | -2(2)    | 1(2)     | -10(3)   |
| C(1)  | 15(3)    | 30(3)    | 24(3)    | 2(3)     | 3(2)     | 0(2)     |
| C(2)  | 25(4)    | 37(4)    | 24(3)    | -3(3)    | 4(3)     | 4(3)     |
| C(3)  | 28(4)    | 57(6)    | 40(5)    | 8(4)     | 13(3)    | 7(4)     |
| C(4)  | 46(5)    | 73(7)    | 29(4)    | 9(4)     | 15(4)    | 10(5)    |
| C(5)  | 44(6)    | 68(7)    | 61(7)    | 31(6)    | 1(5)     | -9(5)    |
| C(6)  | 18(3)    | 36(4)    | 35(4)    | -4(3)    | 7(3)     | 2(3)     |
| C(7)  | 19(3)    | 38(4)    | 23(3)    | 2(3)     | 4(3)     | 3(3)     |
| C(8)  | 27(4)    | 44(4)    | 35(4)    | 5(3)     | 11(3)    | 9(3)     |
| C(9)  | 28(4)    | 44(5)    | 38(4)    | 10(4)    | 10(3)    | 4(3)     |
| C(10) | 19(3)    | 43(4)    | 28(4)    | -12(3)   | 5(3)     | -4(3)    |
| C(11) | 29(4)    | 42(4)    | 24(4)    | 5(3)     | -1(3)    | -18(3)   |
| C(12) | 43(5)    | 80(7)    | 25(4)    | 12(4)    | 2(4)     | -36(5)   |
| C(13) | 67(8)    | 118(11)  | 32(5)    | 2(6)     | 22(5)    | -5(7)    |
| C(14) | 65(7)    | 73(7)    | 38(5)    | 22(5)    | -9(5)    | -37(6)   |
| C(15) | 22(3)    | 45(4)    | 31(4)    | -3(3)    | 1(3)     | -14(3)   |
| C(16) | 23(4)    | 71(6)    | 26(4)    | -6(4)    | -3(3)    | -12(4)   |
| C(17) | 67(8)    | 89(10)   | 68(9)    | -12(7)   | -11(7)   | -23(7)   |
| C(18) | 70(8)    | 72(8)    | 64(8)    | -5(6)    | -3(6)    | 3(6)     |

**Table A.64**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [(<sup>*i*</sup>Bu<sub>2</sub>NCSe<sub>2</sub>)MoO( $\mu$ -Se)<sub>2</sub>MoO(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)]. The anisotropic displacement factor exponent takes the form: -  $2\pi^{2}[h^{2} a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ .

| H atom | Х      | У     | Z     | U(eq) |
|--------|--------|-------|-------|-------|
| H(2A)  | -7522  | 108   | 3003  | 34    |
| H(2B)  | -6905  | -646  | 2792  | 34    |
| H(3)   | -8821  | -488  | 3866  | 49    |
| H(4A)  | -6451  | -923  | 4407  | 72    |
| H(4B)  | -7447  | -925  | 5080  | 72    |
| H(4C)  | -7026  | -169  | 4679  | 72    |
| H(5A)  | -9093  | -1610 | 3051  | 87    |
| H(5B)  | -8736  | -1796 | 4094  | 87    |
| H(5C)  | -7793  | -1860 | 3380  | 87    |
| H(6A)  | -10096 | -410  | 2488  | 36    |
| H(6B)  | -10096 | -200  | 1443  | 36    |
| H(7)   | -9231  | 716   | 2937  | 32    |
| H(8A)  | -11293 | 864   | 1670  | 52    |
| H(8B)  | -10873 | 1492  | 2379  | 52    |
| H(8C)  | -11286 | 717   | 2732  | 52    |
| H(9A)  | -8076  | 957   | 1754  | 54    |
| H(9B)  | -8917  | 1641  | 1850  | 54    |
| H(9C)  | -9206  | 1062  | 1052  | 54    |
| H(11A) | -6834  | -6074 | -568  | 39    |
| H(11B) | -7403  | -6703 | -1217 | 39    |
| H(12)  | -8834  | -6940 | -217  | 59    |
| H(13A) | -8782  | -6301 | 1216  | 107   |
| H(13B) | -9113  | -5758 | 386   | 107   |
| H(13C) | -7824  | -5757 | 891   | 107   |
| H(14A) | -6991  | -7547 | 63    | 90    |
| H(14B) | -7579  | -7448 | 985   | 90    |
| H(14C) | -6548  | -6916 | 760   | 90    |
| H(15A) | -10046 | -5674 | -1881 | 39    |
| H(15B) | -9720  | -6478 | -1517 | 39    |
| H(16)  | -8494  | -6606 | -2726 | 48    |
| H(17A) | -10947 | -6535 | -3382 | 114   |
| H(17B) | -10447 | -7156 | -2692 | 114   |
| H(17C) | -10030 | -7117 | -3685 | 114   |
| H(18A) | -9670  | -5463 | -3659 | 104   |
| H(18B) | -8711  | -5991 | -4014 | 104   |
| H(18C) | -8349  | -5415 | -3226 | 104   |

**Table A.65**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [( $^{i}Bu_{2}NCSe_{2}$ )MoO( $\mu$ -Se)<sub>2</sub>MoO(Se<sub>2</sub>CN $^{i}Bu_{2}$ )].



Table A.66. Crystal Data and Structure Refinement for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>i</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

| Identification code                       | jpd1375_0m_a_sq                                                                  |                               |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
| Empirical formula                         | C <sub>27</sub> H <sub>54</sub> IMo <sub>3</sub> N <sub>3</sub> Se <sub>13</sub> | $C_{27}H_{54}IMo_3N_3Se_{13}$ |  |  |  |  |
| Formula weight                            | 1861.93                                                                          | 1861.93                       |  |  |  |  |
| Temperature                               | 150(2) K                                                                         |                               |  |  |  |  |
| Wavelength                                | 0.71073 Å                                                                        |                               |  |  |  |  |
| Crystal system                            | monoclinic                                                                       |                               |  |  |  |  |
| Space group                               | $P2_{1}/c$                                                                       |                               |  |  |  |  |
| Unit cell dimensions                      | a = 28.1698(14) Å                                                                | $\alpha = 90^{\circ}$         |  |  |  |  |
|                                           | b = 13.6823(7)  Å                                                                | $\beta = 90.8760(10)^{\circ}$ |  |  |  |  |
|                                           | c = 41.079(2) Å                                                                  | $\gamma = 90^{\circ}$         |  |  |  |  |
| Volume                                    | 15831.3(14) Å <sup>3</sup>                                                       |                               |  |  |  |  |
| Ζ                                         | 12                                                                               |                               |  |  |  |  |
| Density (calculated)                      | $2.344 \text{ g/cm}^3$                                                           |                               |  |  |  |  |
| Absorption coefficient                    | $10.276 \text{ mm}^{-1}$                                                         |                               |  |  |  |  |
| F(000)                                    | 10296                                                                            |                               |  |  |  |  |
| Crystal size                              | 0.364 x 0.145 x 0.022 i                                                          | mm <sup>3</sup>               |  |  |  |  |
| $\theta$ range for data collection        | 1.788 to 26.444°                                                                 | $1.788$ to $26.444^{\circ}$   |  |  |  |  |
| Index ranges                              | $-35 \le h \le 35, -17 \le k \le$                                                | $17, -51 \le l \le 51$        |  |  |  |  |
| Reflections collected                     | 285209                                                                           |                               |  |  |  |  |
| Independent reflections                   | 32504 [R(int) = 0.1040                                                           | )]                            |  |  |  |  |
| Completeness to $\theta = 25.242^{\circ}$ | 99.9 %                                                                           |                               |  |  |  |  |
| Absorption correction                     | Semi-empirical from e                                                            | quivalents                    |  |  |  |  |
| Max. and min. transmission                | 0.78 and 0.63                                                                    | 0.78 and 0.63                 |  |  |  |  |
|                                           |                                                                                  |                               |  |  |  |  |

| Refinement method                    |  |
|--------------------------------------|--|
| Data / restraints / parameters       |  |
| Goodness-of-fit on $F^2$             |  |
| Final R indices $[I \ge 2\sigma(I)]$ |  |
| R indices (all data)                 |  |
| Extinction coefficient               |  |
| Largest diff. peak and hole          |  |

Full-matrix least-squares on  $F^2$ 32504 / 0 / 1290 1.019 R1 = 0.0519, wR2 = 0.0935 R1 = 0.1003, wR2 = 0.1116 n/a 1.344 and -1.641 e·Å<sup>-3</sup>

| Atom   | Х       | У        | Z       | U(eq) |
|--------|---------|----------|---------|-------|
| I(1)   | 7344(1) | 3757(1)  | 5887(1) | 45(1) |
| I(2)   | 8868(1) | 8955(1)  | 8519(1) | 37(1) |
| I(3)   | 5114(1) | 3217(1)  | 8775(1) | 33(1) |
| Mo(1)  | 7715(1) | 7100(1)  | 5921(1) | 23(1) |
| Mo(2)  | 8373(1) | 6140(1)  | 5538(1) | 26(1) |
| Mo(3)  | 8470(1) | 6134(1)  | 6210(1) | 21(1) |
| Mo(4)  | 7937(1) | 7274(1)  | 7761(1) | 17(1) |
| Mo(5)  | 8286(1) | 8941(1)  | 7459(1) | 17(1) |
| Mo(6)  | 7506(1) | 9058(1)  | 7862(1) | 18(1) |
| Mo(7)  | 5458(1) | 6497(1)  | 8939(1) | 23(1) |
| Mo(8)  | 5781(1) | 5998(1)  | 8325(1) | 23(1) |
| Mo(9)  | 6321(1) | 5542(1)  | 8874(1) | 23(1) |
| Se(1)  | 7490(1) | 5775(1)  | 5509(1) | 31(1) |
| Se(2)  | 7716(1) | 7272(1)  | 5288(1) | 35(1) |
| Se(3)  | 8406(1) | 4573(1)  | 5872(1) | 29(1) |
| Se(4)  | 9120(1) | 5422(1)  | 5835(1) | 31(1) |
| Se(5)  | 7608(1) | 5713(1)  | 6329(1) | 26(1) |
| Se(6)  | 7881(1) | 7174(1)  | 6549(1) | 26(1) |
| Se(7)  | 8560(1) | 7637(1)  | 5869(1) | 24(1) |
| Se(8)  | 6795(1) | 7434(1)  | 5950(1) | 32(1) |
| Se(9)  | 7590(1) | 8979(1)  | 5966(1) | 30(1) |
| Se(10) | 8450(1) | 4929(1)  | 5043(1) | 38(1) |
| Se(11) | 8959(1) | 6906(1)  | 5122(1) | 35(1) |
| Se(12) | 8721(1) | 5005(1)  | 6700(1) | 29(1) |
| Se(13) | 9166(1) | 6977(1)  | 6521(1) | 26(1) |
| Se(14) | 8789(1) | 7854(1)  | 7829(1) | 22(1) |
| Se(15) | 8600(1) | 7191(1)  | 7322(1) | 24(1) |
| Se(16) | 8265(1) | 10033(1) | 7963(1) | 24(1) |
| Se(17) | 7794(1) | 10545(1) | 7523(1) | 25(1) |
| Se(18) | 7842(1) | 8011(1)  | 8325(1) | 22(1) |
| Se(19) | 7146(1) | 7435(1)  | 8083(1) | 23(1) |
| Se(20) | 7495(1) | 8193(1)  | 7326(1) | 18(1) |
| Se(21) | 8201(1) | 5677(1)  | 8076(1) | 26(1) |
| Se(22) | 7551(1) | 5779(1)  | 7467(1) | 27(1) |
| Se(23) | 9084(1) | 9861(1)  | 7311(1) | 29(1) |
| Se(24) | 8273(1) | 9316(1)  | 6835(1) | 23(1) |
| Se(25) | 7091(1) | 10076(1) | 8323(1) | 28(1) |
| Se(26) | 6670(1) | 9566(1)  | 7648(1) | 26(1) |
| Se(27) | 4984(1) | 5441(1)  | 8540(1) | 26(1) |

**Table A.67**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | У        | Z       | U(eq) |
|--------|----------|----------|---------|-------|
| Se(28) | 5032(1)  | 7093(1)  | 8409(1) | 29(1) |
| Se(29) | 6038(1)  | 4261(1)  | 8467(1) | 26(1) |
| Se(30) | 6637(1)  | 5283(1)  | 8284(1) | 29(1) |
| Se(31) | 5642(1)  | 4868(1)  | 9211(1) | 27(1) |
| Se(32) | 6036(1)  | 6214(1)  | 9430(1) | 30(1) |
| Se(33) | 6170(1)  | 7258(1)  | 8683(1) | 24(1) |
| Se(34) | 4671(1)  | 6524(1)  | 9281(1) | 31(1) |
| Se(35) | 5342(1)  | 8249(1)  | 9179(1) | 31(1) |
| Se(36) | 5522(1)  | 5240(1)  | 7755(1) | 32(1) |
| Se(37) | 6021(1)  | 7212(1)  | 7868(1) | 29(1) |
| Se(38) | 6837(1)  | 4136(1)  | 9148(1) | 30(1) |
| Se(39) | 7157(1)  | 6251(1)  | 9018(1) | 32(1) |
| N(1)   | 6609(3)  | 9465(5)  | 5942(2) | 24(2) |
| N(2)   | 9099(3)  | 5639(6)  | 4580(2) | 31(2) |
| N(3)   | 9587(3)  | 5676(6)  | 6980(2) | 25(2) |
| N(4)   | 7832(3)  | 3999(6)  | 7765(2) | 26(2) |
| N(5)   | 9111(3)  | 10283(6) | 6637(2) | 27(2) |
| N(6)   | 6211(3)  | 10823(6) | 8090(2) | 26(2) |
| N(7)   | 4481(3)  | 8417(6)  | 9529(2) | 28(2) |
| N(8)   | 5898(3)  | 6373(6)  | 7243(2) | 28(2) |
| N(9)   | 7727(3)  | 4876(6)  | 9360(2) | 26(2) |
| C(1)   | 6932(3)  | 8767(7)  | 5955(2) | 26(2) |
| C(2)   | 6123(3)  | 9232(7)  | 5835(2) | 26(2) |
| C(3)   | 6072(4)  | 9122(8)  | 5465(2) | 37(3) |
| C(4)   | 6299(5)  | 9920(10) | 5278(3) | 58(4) |
| C(5)   | 5566(4)  | 8940(9)  | 5365(3) | 41(3) |
| C(6)   | 6721(4)  | 10500(7) | 6007(2) | 28(2) |
| C(7)   | 6599(4)  | 10804(7) | 6354(3) | 34(3) |
| C(8)   | 6964(4)  | 10426(8) | 6601(3) | 42(3) |
| C(9)   | 6542(4)  | 11904(8) | 6378(3) | 54(3) |
| C(10)  | 8877(4)  | 5795(8)  | 4863(3) | 37(3) |
| C(11)  | 8980(4)  | 4745(8)  | 4384(3) | 40(3) |
| C(12)  | 9202(4)  | 3783(8)  | 4514(3) | 40(3) |
| C(13)  | 9731(4)  | 3698(8)  | 4438(3) | 43(3) |
| C(14)  | 8927(5)  | 2946(9)  | 4356(3) | 64(4) |
| C(15)  | 9346(4)  | 6442(8)  | 4412(3) | 40(3) |
| C(16)  | 9870(4)  | 6296(8)  | 4371(3) | 39(3) |
| C(17)  | 10135(4) | 6247(9)  | 4694(3) | 46(3) |
| C(18)  | 10055(5) | 7148(10) | 4166(3) | 65(4) |

**Table A.67, Cont'd.** Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | У         | Z       | U(eq)  |
|--------|----------|-----------|---------|--------|
| C(19)  | 9229(3)  | 5843(7)   | 6774(2) | 21(2)  |
| C(20)  | 9595(3)  | 4786(7)   | 7186(2) | 27(2)  |
| C(21)  | 9918(4)  | 3971(7)   | 7069(3) | 33(3)  |
| C(22)  | 9805(4)  | 3618(8)   | 6730(3) | 42(3)  |
| C(23)  | 9886(4)  | 3127(8)   | 7309(3) | 44(3)  |
| C(24)  | 9959(3)  | 6408(7)   | 7041(2) | 26(2)  |
| C(25)  | 10427(3) | 6262(8)   | 6871(3) | 33(3)  |
| C(26)  | 10382(4) | 6301(8)   | 6503(2) | 35(3)  |
| C(27)  | 10789(4) | 7032(8)   | 6998(3) | 49(3)  |
| C(28)  | 7852(3)  | 4970(6)   | 7770(2) | 27(2)  |
| C(29)  | 8066(4)  | 3395(7)   | 8014(2) | 28(2)  |
| C(30)  | 7783(4)  | 3290(7)   | 8329(3) | 41(3)  |
| C(31)  | 8070(5)  | 2619(9)   | 8563(3) | 59(4)  |
| C(32)  | 7289(4)  | 2899(8)   | 8273(3) | 50(3)  |
| C(33)  | 7583(3)  | 3484(7)   | 7493(2) | 28(2)  |
| C(34)  | 7876(4)  | 3433(7)   | 7184(3) | 40(3)  |
| C(35)  | 8372(4)  | 3005(7)   | 7243(3) | 38(3)  |
| C(36)  | 7602(5)  | 2885(9)   | 6924(3) | 58(4)  |
| C(37)  | 8872(3)  | 9884(6)   | 6881(2) | 22(2)  |
| C(38)  | 9581(3)  | 10724(8)  | 6695(3) | 38(3)  |
| C(39)  | 9983(4)  | 9966(13)  | 6691(4) | 73(5)  |
| C(40)  | 10438(4) | 10545(15) | 6794(4) | 105(7) |
| C(41)  | 10036(5) | 9396(12)  | 6404(5) | 111(7) |
| C(42)  | 8908(4)  | 10315(8)  | 6301(2) | 37(3)  |
| C(43A) | 8546(7)  | 11195(13) | 6244(4) | 35(4)  |
| C(44A) | 8721(6)  | 12142(13) | 6356(4) | 44(4)  |
| C(45A) | 8409(7)  | 11201(17) | 5887(5) | 52(5)  |
| C(43B) | 8818(12) | 11290(20) | 6172(7) | 35(4)  |
| C(44B) | 8380(11) | 11680(20) | 6385(8) | 44(4)  |
| C(45B) | 8673(13) | 11200(30) | 5819(9) | 52(5)  |
| C(46)  | 6585(3)  | 10268(6)  | 8035(2) | 24(2)  |
| C(47)  | 6147(4)  | 11244(7)  | 8417(2) | 31(2)  |
| C(48)  | 5934(4)  | 10513(8)  | 8653(3) | 38(3)  |
| C(49)  | 5955(4)  | 10924(9)  | 8998(3) | 52(3)  |
| C(50)  | 5438(4)  | 10225(9)  | 8552(3) | 53(4)  |
| C(51)  | 5859(3)  | 11044(7)  | 7837(3) | 30(2)  |
| C(52A) | 5883(7)  | 12129(15) | 7711(5) | 33(4)  |
| C(53A) | 5557(8)  | 12222(17) | 7407(5) | 48(5)  |
| C(54A) | 6396(8)  | 12348(18) | 7595(6) | 57(5)  |

**Table A.67, Cont'd.** Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Atom   | Х        | у         | Z        | U(eq) |
|--------|----------|-----------|----------|-------|
| C(52B) | 6033(9)  | 11731(18) | 7596(6)  | 33(4) |
| C(53B) | 5724(10) | 11710(20) | 7294(7)  | 48(5) |
| C(54B) | 6127(11) | 12720(20) | 7729(7)  | 57(5) |
| C(55)  | 4771(4)  | 7838(7)   | 9362(2)  | 32(2) |
| C(56)  | 4041(3)  | 8047(8)   | 9672(3)  | 35(3) |
| C(57)  | 4069(4)  | 8000(9)   | 10047(3) | 51(3) |
| C(58)  | 4449(5)  | 7340(11)  | 10166(3) | 74(4) |
| C(59)  | 3578(5)  | 7671(12)  | 10161(4) | 91(5) |
| C(60)  | 4595(4)  | 9470(7)   | 9580(3)  | 38(3) |
| C(61A) | 4449(7)  | 10094(13) | 9292(5)  | 44(4) |
| C(62A) | 4580(9)  | 11150(18) | 9372(6)  | 79(7) |
| C(63A) | 3930(8)  | 10075(17) | 9211(6)  | 63(6) |
| C(61B) | 4206(13) | 10220(20) | 9469(9)  | 44(4) |
| C(62B) | 4409(17) | 11220(30) | 9573(13) | 79(7) |
| C(63B) | 4133(16) | 10050(30) | 9106(11) | 63(6) |
| C(64)  | 5827(3)  | 6281(7)   | 7560(3)  | 31(2) |
| C(65)  | 5715(3)  | 5640(8)   | 7009(2)  | 33(2) |
| C(66A) | 6045(7)  | 4819(15)  | 6971(6)  | 32(4) |
| C(67A) | 5792(8)  | 4057(18)  | 6776(6)  | 47(5) |
| C(68A) | 6510(8)  | 4786(19)  | 6935(7)  | 53(5) |
| C(66B) | 6094(7)  | 5098(17)  | 6781(6)  | 32(4) |
| C(67B) | 5822(9)  | 4329(19)  | 6581(7)  | 47(5) |
| C(68B) | 6522(9)  | 5120(20)  | 6773(8)  | 53(5) |
| C(69)  | 6149(3)  | 7209(7)   | 7099(3)  | 32(3) |
| C(70)  | 5817(4)  | 7907(8)   | 6922(3)  | 39(3) |
| C(71)  | 6109(4)  | 8699(9)   | 6761(3)  | 53(3) |
| C(72)  | 5439(4)  | 8332(10)  | 7139(3)  | 59(4) |
| C(73)  | 7317(3)  | 5051(7)   | 9206(2)  | 24(2) |
| C(74)  | 7817(3)  | 3942(7)   | 9522(2)  | 31(2) |
| C(75)  | 7609(4)  | 3881(10)  | 9864(3)  | 52(3) |
| C(76)  | 7746(5)  | 2876(11)  | 10004(3) | 78(5) |
| C(77)  | 7745(5)  | 4709(12)  | 10083(3) | 77(5) |
| C(78)  | 8101(3)  | 5631(8)   | 9369(3)  | 34(3) |
| C(79)  | 8392(4)  | 5667(9)   | 9059(3)  | 46(3) |
| C(80)  | 8727(5)  | 6530(10)  | 9084(4)  | 82(5) |
| C(81)  | 8660(4)  | 4728(10)  | 8994(3)  | 65(4) |

**Table A.67, Cont'd.** Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Mo(1)-Se(7)  | 2.5041(12) | Mo(6)-Se(18)  | 2.5499(12) |
|--------------|------------|---------------|------------|
| Mo(1)-Se(5)  | 2.5533(13) | Mo(6)-Se(26)  | 2.5958(12) |
| Mo(1)-Se(1)  | 2.5541(13) | Mo(6)-Se(17)  | 2.6015(12) |
| Mo(1)-Se(9)  | 2.6020(13) | Mo(6)-Se(19)  | 2.6091(12) |
| Mo(1)-Se(2)  | 2.6108(14) | Mo(6)-Se(25)  | 2.6377(12) |
| Mo(1)-Se(6)  | 2.6185(13) | Mo(7)-Se(33)  | 2.5046(12) |
| Mo(1)-Se(8)  | 2.6367(12) | Mo(7)-Se(31)  | 2.5429(12) |
| Mo(1)-Mo(3)  | 2.7574(11) | Mo(7)-Se(27)  | 2.5482(13) |
| Mo(1)-Mo(2)  | 2.7786(11) | Mo(7)-Se(28)  | 2.5999(13) |
| Mo(2)-Se(7)  | 2.5091(13) | Mo(7)-Se(32)  | 2.6024(13) |
| Mo(2)-Se(1)  | 2.5391(13) | Mo(7)-Se(35)  | 2.6153(13) |
| Mo(2)-Se(3)  | 2.5465(13) | Mo(7)-Se(34)  | 2.6442(13) |
| Mo(2)-Se(4)  | 2.6088(13) | Mo(7)-Mo(9)   | 2.7757(11) |
| Mo(2)-Se(11) | 2.6121(13) | Mo(7)-Mo(8)   | 2.7779(12) |
| Mo(2)-Se(2)  | 2.6126(14) | Mo(8)-Se(33)  | 2.5068(13) |
| Mo(2)-Se(10) | 2.6353(13) | Mo(8)-Se(27)  | 2.5435(12) |
| Mo(2)-Mo(3)  | 2.7687(12) | Mo(8)-Se(29)  | 2.5490(12) |
| Mo(3)-Se(7)  | 2.5034(12) | Mo(8)-Se(37)  | 2.6030(12) |
| Mo(3)-Se(3)  | 2.5517(13) | Mo(8)-Se(30)  | 2.6100(12) |
| Mo(3)-Se(5)  | 2.5518(12) | Mo(8)-Se(28)  | 2.6148(13) |
| Mo(3)-Se(13) | 2.5957(13) | Mo(8)-Se(36)  | 2.6546(14) |
| Mo(3)-Se(4)  | 2.6004(12) | Mo(8)-Mo(9)   | 2.7697(12) |
| Mo(3)-Se(6)  | 2.6072(12) | Mo(9)-Se(33)  | 2.5088(12) |
| Mo(3)-Se(12) | 2.6258(13) | Mo(9)-Se(29)  | 2.5412(13) |
| Mo(4)-Se(20) | 2.5028(12) | Mo(9)-Se(31)  | 2.5522(12) |
| Mo(4)-Se(14) | 2.5385(11) | Mo(9)-Se(32)  | 2.6033(14) |
| Mo(4)-Se(18) | 2.5441(12) | Mo(9)-Se(39)  | 2.6050(13) |
| Mo(4)-Se(22) | 2.6048(12) | Mo(9)-Se(30)  | 2.6167(13) |
| Mo(4)-Se(15) | 2.6174(12) | Mo(9)-Se(38)  | 2.6524(13) |
| Mo(4)-Se(19) | 2.6180(12) | Se(1)-Se(2)   | 2.3327(15) |
| Mo(4)-Se(21) | 2.6413(12) | Se(3)-Se(4)   | 2.3315(14) |
| Mo(4)-Mo(6)  | 2.7606(10) | Se(5)-Se(6)   | 2.3211(14) |
| Mo(4)-Mo(5)  | 2.7821(11) | Se(8)-C(1)    | 1.864(9)   |
| Mo(5)-Se(20) | 2.5058(11) | Se(9)-C(1)    | 1.875(10)  |
| Mo(5)-Se(14) | 2.5418(12) | Se(10)-C(10)  | 1.851(11)  |
| Mo(5)-Se(16) | 2.5549(12) | Se(11)-C(10)  | 1.868(11)  |
| Mo(5)-Se(17) | 2.6115(12) | Se(12)-C(19)  | 1.854(9)   |
| Mo(5)-Se(24) | 2.6139(12) | Se(13)-C(19)  | 1.875(9)   |
| Mo(5)-Se(15) | 2.6166(12) | Se(14)-Se(15) | 2.3265(14) |
| Mo(5)-Se(23) | 2.6544(12) | Se(16)-Se(17) | 2.3320(14) |
| Mo(5)-Mo(6)  | 2.7756(11) | Se(18)-Se(19) | 2.3225(13) |
| Mo(6)-Se(20) | 2.5011(12) | Se(21)-C(28)  | 1.856(10)  |
| Mo(6)-Se(16) | 2.5476(12) | Se(22)-C(28)  | 1.859(9)   |
|              |            |               |            |

**Table A.68**. Bond lengths (Å) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

| Se(23)-C(37)  | 1.856(9)   | C(6)-C(7)     | 1.530(13) |
|---------------|------------|---------------|-----------|
| Se(24)-C(37)  | 1.864(9)   | C(7)-C(9)     | 1.517(14) |
| Se(25)-C(46)  | 1.857(10)  | C(7)-C(8)     | 1.524(14) |
| Se(26)-C(46)  | 1.875(9)   | C(11)-C(12)   | 1.549(15) |
| Se(27)-Se(28) | 2.3272(14) | C(12)-C(14)   | 1.522(15) |
| Se(29)-Se(30) | 2.3265(13) | C(12)-C(13)   | 1.530(14) |
| Se(31)-Se(32) | 2.3235(15) | C(15)-C(16)   | 1.502(15) |
| Se(34)-C(55)  | 1.848(10)  | C(16)-C(17)   | 1.516(14) |
| Se(35)-C(55)  | 1.872(10)  | C(16)-C(18)   | 1.534(15) |
| Se(36)-C(64)  | 1.850(10)  | C(20)-C(21)   | 1.522(13) |
| Se(37)-C(64)  | 1.872(11)  | C(21)-C(22)   | 1.503(14) |
| Se(38)-C(73)  | 1.855(9)   | C(21)-C(23)   | 1.523(14) |
| Se(39)-C(73)  | 1.867(10)  | C(24)-C(25)   | 1.512(13) |
| N(1)-C(1)     | 1.321(11)  | C(25)-C(26)   | 1.517(14) |
| N(1)-C(2)     | 1.467(11)  | C(25)-C(27)   | 1.550(14) |
| N(1)-C(6)     | 1.474(11)  | C(29)-C(30)   | 1.534(14) |
| N(2)-C(10)    | 1.345(12)  | C(30)-C(32)   | 1.507(15) |
| N(2)-C(15)    | 1.476(13)  | C(30)-C(31)   | 1.548(15) |
| N(2)-C(11)    | 1.501(12)  | C(33)-C(34)   | 1.528(14) |
| N(3)-C(19)    | 1.326(11)  | C(34)-C(36)   | 1.508(15) |
| N(3)-C(24)    | 1.468(11)  | C(34)-C(35)   | 1.530(14) |
| N(3)-C(20)    | 1.484(11)  | C(38)-C(39)   | 1.536(17) |
| N(4)-C(28)    | 1.330(11)  | C(39)-C(41)   | 1.43(2)   |
| N(4)-C(29)    | 1.465(11)  | C(39)-C(40)   | 1.559(18) |
| N(4)-C(33)    | 1.487(12)  | C(42)-C(43B)  | 1.46(3)   |
| N(5)-C(37)    | 1.333(11)  | C(42)-C(43A)  | 1.59(2)   |
| N(5)-C(38)    | 1.471(11)  | C(43A)-C(44A) | 1.46(2)   |
| N(5)-C(42)    | 1.488(12)  | C(43A)-C(45A) | 1.51(3)   |
| N(6)-C(46)    | 1.321(11)  | C(43B)-C(45B) | 1.51(4)   |
| N(6)-C(51)    | 1.456(12)  | C(43B)-C(44B) | 1.61(4)   |
| N(6)-C(47)    | 1.476(12)  | C(47)-C(48)   | 1.524(13) |
| N(7)-C(55)    | 1.335(12)  | C(48)-C(50)   | 1.504(15) |
| N(7)-C(56)    | 1.471(12)  | C(48)-C(49)   | 1.524(15) |
| N(7)-C(60)    | 1.491(12)  | C(51)-C(52B)  | 1.46(3)   |
| N(8)-C(64)    | 1.328(12)  | C(51)-C(52A)  | 1.57(2)   |
| N(8)-C(69)    | 1.473(12)  | C(52A)-C(53A) | 1.54(3)   |
| N(8)-C(65)    | 1.478(12)  | C(52A)-C(54A) | 1.56(3)   |
| N(9)-C(73)    | 1.329(11)  | C(52B)-C(54B) | 1.49(4)   |
| N(9)-C(74)    | 1.463(12)  | C(52B)-C(53B) | 1.51(3)   |
| N(9)-C(78)    | 1.476(12)  | C(56)-C(57)   | 1.545(15) |
| C(2)-C(3)     | 1.528(13)  | C(57)-C(58)   | 1.478(17) |
| C(3)-C(4)     | 1.485(15)  | C(57)-C(59)   | 1.536(17) |
| C(3)-C(5)     | 1.499(13)  | C(60)-C(61A)  | 1.51(2)   |

**Table A.68, Cont'd.** Bond lengths (Å) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetrytransformations used to generate equivalent atoms:

| C(60)-C(61B)  | 1.56(3)   |
|---------------|-----------|
| C(61A)-C(63A) | 1.50(3)   |
| C(61A)-C(62A) | 1.53(3)   |
| C(61B)-C(63B) | 1.52(6)   |
| C(61B)-C(62B) | 1.55(5)   |
| C(65)-C(66A)  | 1.47(2)   |
| C(65)-C(66B)  | 1.61(2)   |
| C(66A)-C(68A) | 1.32(3)   |
| C(66A)-C(67A) | 1.49(3)   |
| C(66B)-C(68B) | 1.21(3)   |
| C(66B)-C(67B) | 1.53(3)   |
| C(69)-C(70)   | 1.514(13) |
| C(70)-C(72)   | 1.515(15) |
| C(70)-C(71)   | 1.519(14) |
| C(74)-C(75)   | 1.530(15) |
| C(75)-C(77)   | 1.494(18) |
| C(75)-C(76)   | 1.537(17) |
| C(78)-C(79)   | 1.525(15) |
| C(79)-C(80)   | 1.513(16) |
| C(79)-C(81)   | 1.516(16) |
|               |           |

**Table A.68, Cont'd.** Bond lengths (Å) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

| Se(7)-Mo(1)-Se(5)  | 113.36(4) | Se(1)-Mo(2)-Se(11)  | 132.55(5) |
|--------------------|-----------|---------------------|-----------|
| Se(7)-Mo(1)-Se(1)  | 112.25(4) | Se(3)-Mo(2)-Se(11)  | 132.21(5) |
| Se(5)-Mo(1)-Se(1)  | 82.93(4)  | Se(4)-Mo(2)-Se(11)  | 86.75(4)  |
| Se(7)-Mo(1)-Se(9)  | 81.16(4)  | Se(7)-Mo(2)-Se(2)   | 82.60(4)  |
| Se(5)-Mo(1)-Se(9)  | 132.09(5) | Se(1)-Mo(2)-Se(2)   | 53.82(4)  |
| Se(1)-Mo(1)-Se(9)  | 135.71(5) | Se(3)-Mo(2)-Se(2)   | 136.93(5) |
| Se(7)-Mo(1)-Se(2)  | 82.73(4)  | Se(4)-Mo(2)-Se(2)   | 165.75(5) |
| Se(5)-Mo(1)-Se(2)  | 136.29(5) | Se(11)-Mo(2)-Se(2)  | 87.49(4)  |
| Se(1)-Mo(1)-Se(2)  | 53.69(4)  | Se(7)-Mo(2)-Se(10)  | 155.80(5) |
| Se(9)-Mo(1)-Se(2)  | 89.06(4)  | Se(1)-Mo(2)-Se(10)  | 86.06(4)  |
| Se(7)-Mo(1)-Se(6)  | 85.25(4)  | Se(3)-Mo(2)-Se(10)  | 83.33(4)  |
| Se(5)-Mo(1)-Se(6)  | 53.31(3)  | Se(4)-Mo(2)-Se(10)  | 92.81(4)  |
| Se(1)-Mo(1)-Se(6)  | 136.04(5) | Se(11)-Mo(2)-Se(10) | 71.77(4)  |
| Se(9)-Mo(1)-Se(6)  | 85.07(4)  | Se(2)-Mo(2)-Se(10)  | 97.75(5)  |
| Se(2)-Mo(1)-Se(6)  | 167.31(5) | Se(7)-Mo(2)-Mo(3)   | 56.37(3)  |
| Se(7)-Mo(1)-Se(8)  | 152.84(5) | Se(1)-Mo(2)-Mo(3)   | 97.39(4)  |
| Se(5)-Mo(1)-Se(8)  | 88.44(4)  | Se(3)-Mo(2)-Mo(3)   | 57.20(3)  |
| Se(1)-Mo(1)-Se(8)  | 85.32(4)  | Se(4)-Mo(2)-Mo(3)   | 57.75(3)  |
| Se(9)-Mo(1)-Se(8)  | 72.00(4)  | Se(11)-Mo(2)-Mo(3)  | 126.81(4) |
| Se(2)-Mo(1)-Se(8)  | 92.56(4)  | Se(2)-Mo(2)-Mo(3)   | 116.91(4) |
| Se(6)-Mo(1)-Se(8)  | 96.29(4)  | Se(10)-Mo(2)-Mo(3)  | 139.42(5) |
| Se(7)-Mo(1)-Mo(3)  | 56.57(3)  | Se(7)-Mo(2)-Mo(1)   | 56.25(3)  |
| Se(5)-Mo(1)-Mo(3)  | 57.28(3)  | Se(1)-Mo(2)-Mo(1)   | 57.20(3)  |
| Se(1)-Mo(1)-Mo(3)  | 97.32(4)  | Se(3)-Mo(2)-Mo(1)   | 96.43(4)  |
| Se(9)-Mo(1)-Mo(3)  | 123.21(4) | Se(4)-Mo(2)-Mo(1)   | 117.01(4) |
| Se(2)-Mo(1)-Mo(3)  | 117.37(4) | Se(11)-Mo(2)-Mo(1)  | 127.88(4) |
| Se(6)-Mo(1)-Mo(3)  | 57.95(3)  | Se(2)-Mo(2)-Mo(1)   | 57.83(3)  |
| Se(8)-Mo(1)-Mo(3)  | 144.71(5) | Se(10)-Mo(2)-Mo(1)  | 142.86(5) |
| Se(7)-Mo(1)-Mo(2)  | 56.42(3)  | Mo(3)-Mo(2)-Mo(1)   | 59.61(3)  |
| Se(5)-Mo(1)-Mo(2)  | 96.15(4)  | Se(7)-Mo(3)-Se(3)   | 112.97(4) |
| Se(1)-Mo(1)-Mo(2)  | 56.68(3)  | Se(7)-Mo(3)-Se(5)   | 113.44(4) |
| Se(9)-Mo(1)-Mo(2)  | 126.82(4) | Se(3)-Mo(3)-Se(5)   | 81.69(4)  |
| Se(2)-Mo(1)-Mo(2)  | 57.89(3)  | Se(7)-Mo(3)-Se(13)  | 80.10(4)  |
| Se(6)-Mo(1)-Mo(2)  | 117.76(4) | Se(3)-Mo(3)-Se(13)  | 133.39(4) |
| Se(8)-Mo(1)-Mo(2)  | 140.55(4) | Se(5)-Mo(3)-Se(13)  | 136.08(5) |
| Mo(3)-Mo(1)-Mo(2)  | 60.01(3)  | Se(7)-Mo(3)-Se(4)   | 84.14(4)  |
| Se(7)-Mo(2)-Se(1)  | 112.60(4) | Se(3)-Mo(3)-Se(4)   | 53.80(4)  |
| Se(7)-Mo(2)-Se(3)  | 112.96(5) | Se(5)-Mo(3)-Se(4)   | 135.28(5) |
| Se(1)-Mo(2)-Se(3)  | 83.52(4)  | Se(13)-Mo(3)-Se(4)  | 85.68(4)  |
| Se(7)-Mo(2)-Se(4)  | 83.85(4)  | Se(7)-Mo(3)-Se(6)   | 85.51(4)  |
| Se(1)-Mo(2)-Se(4)  | 137.00(5) | Se(3)-Mo(3)-Se(6)   | 135.01(4) |
| Se(3)-Mo(2)-Se(4)  | 53.76(4)  | Se(5)-Mo(3)-Se(6)   | 53.46(3)  |
| Se(7)-Mo(2)-Se(11) | 84.09(4)  | Se(13)-Mo(3)-Se(6)  | 88.63(4)  |
|                    |           |                     |           |

**Table A.69**. Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

Se(4)-Mo(3)-Se(6)168.90(5)Se(20)-Mo(4)-Mo(6) 56.49(3) 152.10(5) Se(14)-Mo(4)-Mo(6) 97.15(4) Se(7)-Mo(3)-Se(12)86.59(4) Se(3)-Mo(3)-Se(12)Se(18)-Mo(4)-Mo(6)57.29(3) 88.07(4) Se(5)-Mo(3)-Se(12)Se(22)-Mo(4)-Mo(6)125.64(4)Se(13)-Mo(3)-Se(12)72.01(4) 117.52(4)Se(15)-Mo(4)-Mo(6)Se(4)-Mo(3)-Se(12)92.85(4) Se(19)-Mo(4)-Mo(6) 57.97(3) 94.44(4)Se(21)-Mo(4)-Mo(6) 141.16(4)Se(6)-Mo(3)-Se(12)Se(7)-Mo(3)-Mo(1)56.60(3)Se(20)-Mo(4)-Mo(5)56.31(3) Se(3)-Mo(3)-Mo(1)96.84(4) Se(14)-Mo(4)-Mo(5)56.85(3) 57.33(3) Se(5)-Mo(3)-Mo(1)Se(18)-Mo(4)-Mo(5)97.09(4) Se(13)-Mo(3)-Mo(1)124.82(4)Se(22)-Mo(4)-Mo(5)125.82(4)Se(4)-Mo(3)-Mo(1)118.05(4) Se(15)-Mo(4)-Mo(5)57.88(3) Se(6)-Mo(3)-Mo(1)58.35(3) Se(19)-Mo(4)-Mo(5)117.72(4)Se(12)-Mo(3)-Mo(1)144.00(4)Se(21)-Mo(4)-Mo(5) 142.95(4) 56.57(3) 60.10(3)Se(7)-Mo(3)-Mo(2)Mo(6)-Mo(4)-Mo(5)Se(3)-Mo(3)-Mo(2)57.02(3) Se(20)-Mo(5)-Se(14) 112.20(4)Se(5)-Mo(3)-Mo(2)96.43(4) Se(20)-Mo(5)-Se(16)112.60(4)123.51(4) 82.96(4) Se(13)-Mo(3)-Mo(2)Se(14)-Mo(5)-Se(16) 58.04(3) 83.91(4) Se(4)-Mo(3)-Mo(2)Se(20)-Mo(5)-Se(17)Se(6)-Mo(3)-Mo(2)118.51(4) Se(14)-Mo(5)-Se(17)136.31(4) 141.93(4) Se(12)-Mo(3)-Mo(2)Se(16)-Mo(5)-Se(17)53.65(3)Mo(1)-Mo(3)-Mo(2)60.37(3)Se(20)-Mo(5)-Se(24) 82.33(4) Se(20)-Mo(4)-Se(14)112.41(4)Se(14)-Mo(5)-Se(24)134.45(4)113.13(4) Se(20)-Mo(4)-Se(18)Se(16)-Mo(5)-Se(24) 132.83(4)Se(14)-Mo(4)-Se(18)83.61(4) Se(17)-Mo(5)-Se(24)86.26(4) Se(20)-Mo(4)-Se(22)82.17(4) Se(20)-Mo(5)-Se(15) 83.18(4) 133.12(4)53.59(3) Se(14)-Mo(4)-Se(22)Se(14)-Mo(5)-Se(15)133.17(4) 136.22(4) Se(18)-Mo(4)-Se(22)Se(16)-Mo(5)-Se(15)Se(20)-Mo(4)-Se(15)83.23(4) Se(17)-Mo(5)-Se(15)166.51(4)53.62(3) Se(14)-Mo(4)-Se(15)Se(24)-Mo(5)-Se(15) 88.17(4) 136.96(4) 153.80(5) Se(18)-Mo(4)-Se(15)Se(20)-Mo(5)-Se(23)Se(22)-Mo(4)-Se(15) 86.76(4) 86.99(4) Se(14)-Mo(5)-Se(23)84.24(4) Se(20)-Mo(4)-Se(19)Se(16)-Mo(5)-Se(23)86.47(4) 136.78(4) Se(17)-Mo(5)-Se(23) 94.42(4) Se(14)-Mo(4)-Se(19)Se(18)-Mo(4)-Se(19)53.45(3)Se(24)-Mo(5)-Se(23) 71.46(3) Se(22)-Mo(4)-Se(19)86.99(4) Se(15)-Mo(5)-Se(23) 95.44(4) 166.65(4)56.25(3)Se(15)-Mo(4)-Se(19)Se(20)-Mo(5)-Mo(6)96.69(4) Se(20)-Mo(4)-Se(21)154.06(4)Se(14)-Mo(5)-Mo(6) Se(14)-Mo(4)-Se(21)86.92(4) Se(16)-Mo(5)-Mo(6)56.92(3)85.10(4) Se(18)-Mo(4)-Se(21)Se(17)-Mo(5)-Mo(6)57.65(3) Se(22)-Mo(4)-Se(21)71.91(4) Se(24)-Mo(5)-Mo(6) 125.04(4)

95.96(4)

93.29(4)

Se(15)-Mo(5)-Mo(6)

Se(23)-Mo(5)-Mo(6)

117.02(4)

142.15(4)

Se(15)-Mo(4)-Se(21)

Se(19)-Mo(4)-Se(21)

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

Se(20)-Mo(5)-Mo(4) 56.21(3) Mo(4)-Mo(6)-Mo(5)60.33(3)Se(14)-Mo(5)-Mo(4)56.74(3) 112.95(4) Se(33)-Mo(7)-Se(31)Se(16)-Mo(5)-Mo(4)96.04(4)Se(33)-Mo(7)-Se(27) 112.44(4)Se(17)-Mo(5)-Mo(4)116.90(4)Se(31)-Mo(7)-Se(27)83.54(4) 126.75(4) 83.17(4) Se(24)-Mo(5)-Mo(4)Se(33)-Mo(7)-Se(28) Se(31)-Mo(7)-Se(28) Se(15)-Mo(5)-Mo(4)57.90(3) 136.99(5)Se(23)-Mo(5)-Mo(4)142.79(4) 53.74(4)Se(27)-Mo(7)-Se(28) Mo(6)-Mo(5)-Mo(4)59.57(3) Se(33)-Mo(7)-Se(32) 83.81(4) Se(20)-Mo(6)-Se(16) 113.01(4)Se(31)-Mo(7)-Se(32) 53.67(4) Se(27)-Mo(7)-Se(32) Se(20)-Mo(6)-Se(18)112.99(4) 136.91(5)Se(16)-Mo(6)-Se(18)82.62(4) Se(28)-Mo(7)-Se(32) 166.19(5)Se(20)-Mo(6)-Se(26) 80.17(4) Se(33)-Mo(7)-Se(35) 83.27(4) Se(16)-Mo(6)-Se(26)132.03(4)Se(31)-Mo(7)-Se(35) 131.49(5)Se(18)-Mo(6)-Se(26) 136.63(4) Se(27)-Mo(7)-Se(35) 134.05(5) 84.21(4) 88.29(4) Se(20)-Mo(6)-Se(17)Se(28)-Mo(7)-Se(35) Se(16)-Mo(6)-Se(17) 53.85(3) Se(32)-Mo(7)-Se(35) 85.60(4) Se(18)-Mo(6)-Se(17)136.25(4)Se(33)-Mo(7)-Se(34)154.21(5) 84.17(4) 86.86(4) Se(26)-Mo(6)-Se(17)Se(31)-Mo(7)-Se(34) Se(20)-Mo(6)-Se(19)84.46(4) Se(27)-Mo(7)-Se(34) 85.05(4) Se(16)-Mo(6)-Se(19)135.91(4) Se(28)-Mo(7)-Se(34) 93.45(4) Se(18)-Mo(6)-Se(19)53.49(3)Se(32)-Mo(7)-Se(34)96.26(4)Se(26)-Mo(6)-Se(19)89.42(4) Se(35)-Mo(7)-Se(34) 71.06(4) Se(17)-Mo(6)-Se(19)167.79(5) Se(33)-Mo(7)-Mo(9)56.45(3)151.92(4) Se(20)-Mo(6)-Se(25)Se(31)-Mo(7)-Mo(9) 57.15(3) Se(16)-Mo(6)-Se(25)89.21(4) Se(27)-Mo(7)-Mo(9)97.06(4) Se(18)-Mo(6)-Se(25)85.71(4) Se(28)-Mo(7)-Mo(9) 117.42(4)57.79(3) 72.04(4) Se(26)-Mo(6)-Se(25)Se(32)-Mo(7)-Mo(9)96.64(4) 125.62(4) Se(17)-Mo(6)-Se(25)Se(35)-Mo(7)-Mo(9) 91.22(4) Se(19)-Mo(6)-Se(25)Se(34)-Mo(7)-Mo(9)143.20(4)56.37(3) Se(20)-Mo(6)-Mo(4)56.55(3)Se(33)-Mo(7)-Mo(8) 96.74(4) Se(31)-Mo(7)-Mo(8) 96.71(4) Se(16)-Mo(6)-Mo(4)Se(18)-Mo(6)-Mo(4)57.08(3) Se(27)-Mo(7)-Mo(8) 56.86(3) 125.79(4) Se(26)-Mo(6)-Mo(4)Se(28)-Mo(7)-Mo(8)58.07(3) 118.01(4) Se(32)-Mo(7)-Mo(8) 117.25(4)Se(17)-Mo(6)-Mo(4)Se(19)-Mo(6)-Mo(4)58.28(3) Se(35)-Mo(7)-Mo(8) 127.78(4)Se(25)-Mo(6)-Mo(4)140.88(4)Se(34)-Mo(7)-Mo(8) 140.80(4)56.42(3) 59.83(3) Se(20)-Mo(6)-Mo(5)Mo(9)-Mo(7)-Mo(8)57.17(3) 112.53(4) Se(16)-Mo(6)-Mo(5)Se(33)-Mo(8)-Se(27) Se(18)-Mo(6)-Mo(5)97.12(4) Se(33)-Mo(8)-Se(29) 112.79(4)122.42(4)83.68(4) Se(26)-Mo(6)-Mo(5)Se(27)-Mo(8)-Se(29) Se(17)-Mo(6)-Mo(5) 58.01(3) Se(33)-Mo(8)-Se(37) 82.41(4) Se(19)-Mo(6)-Mo(5)118.26(4) Se(27)-Mo(8)-Se(37)132.97(5) Se(25)-Mo(6)-Mo(5)145.28(4)Se(29)-Mo(8)-Se(37) 133.18(5)

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

Se(33)-Mo(8)-Se(30) 84.25(4) Se(32)-Mo(9)-Se(30) 167.09(5)137.06(5) Se(39)-Mo(9)-Se(30) 86.65(4) Se(27)-Mo(8)-Se(30)53.59(3) Se(29)-Mo(8)-Se(30)Se(33)-Mo(9)-Se(38) 154.23(5)Se(37)-Mo(8)-Se(30)86.70(4) Se(29)-Mo(9)-Se(38) 86.80(4) 82.83(4) 85.21(4) Se(33)-Mo(8)-Se(28) Se(31)-Mo(9)-Se(38) Se(27)-Mo(8)-Se(28)53.61(3) Se(32)-Mo(9)-Se(38) 93.22(4) 136.90(4)71.73(4) Se(29)-Mo(8)-Se(28) Se(39)-Mo(9)-Se(38) Se(37)-Mo(8)-Se(28)87.05(4) Se(30)-Mo(9)-Se(38) 95.97(4) Se(30)-Mo(8)-Se(28) 166.28(5) Se(33)-Mo(9)-Mo(8) 56.45(3) Se(33)-Mo(8)-Se(36) 57.17(3) 153.92(5) Se(29)-Mo(9)-Mo(8) Se(27)-Mo(8)-Se(36)87.51(4) Se(31)-Mo(9)-Mo(8) 96.70(4) Se(29)-Mo(8)-Se(36) 84.87(4) Se(32)-Mo(9)-Mo(8) 117.51(4)Se(37)-Mo(8)-Se(36)71.58(4) Se(39)-Mo(9)-Mo(8) 125.72(4)Se(30)-Mo(8)-Se(36) 92.19(4) Se(30)-Mo(9)-Mo(8) 57.89(3) 97.39(4) 143.13(5) Se(28)-Mo(8)-Se(36) Se(38)-Mo(9)-Mo(8) Se(33)-Mo(8)-Mo(9) 56.52(3) Se(33)-Mo(9)-Mo(7) 56.31(3) Se(27)-Mo(8)-Mo(9)97.32(4)Se(29)-Mo(9)-Mo(7)96.96(4) 56.90(3) Se(29)-Mo(8)-Mo(9)Se(31)-Mo(9)-Mo(7) 56.83(3) 125.78(4) Se(32)-Mo(9)-Mo(7) 57.76(3) Se(37)-Mo(8)-Mo(9)Se(30)-Mo(8)-Mo(9)58.12(3) Se(39)-Mo(9)-Mo(7) 126.31(4)Se(28)-Mo(8)-Mo(9)117.12(4)Se(30)-Mo(9)-Mo(7)117.65(4)Se(36)-Mo(8)-Mo(9)140.35(4)Se(38)-Mo(9)-Mo(7) 140.77(4)Se(33)-Mo(8)-Mo(7) 56.30(3) Mo(8)-Mo(9)-Mo(7)60.12(3)Se(27)-Mo(8)-Mo(7) 57.02(3) Se(2)-Se(1)-Mo(2)64.70(4)Se(29)-Mo(8)-Mo(7)96.72(4) Se(2)-Se(1)-Mo(1)64.40(4)Se(37)-Mo(8)-Mo(7)126.12(4)Mo(2)-Se(1)-Mo(1)66.12(4)117.80(4)61.91(4) Se(30)-Mo(8)-Mo(7)Se(1)-Se(2)-Mo(1)57.55(3) Se(28)-Mo(8)-Mo(7)Se(1)-Se(2)-Mo(2)61.48(4)Se(36)-Mo(8)-Mo(7)143.85(4)Mo(1)-Se(2)-Mo(2)64.28(4)Mo(9)-Mo(8)-Mo(7)60.05(3)Se(4)-Se(3)-Mo(2)64.49(4)Se(33)-Mo(9)-Se(29) 112.99(4) Se(4)-Se(3)-Mo(3)64.17(4)Se(33)-Mo(9)-Se(31) 112.50(4) Mo(2)-Se(3)-Mo(3) 65.78(4)Se(29)-Mo(9)-Se(31) 82.95(4) Se(3)-Se(4)-Mo(3)62.03(4)83.71(4) 61.76(4)Se(33)-Mo(9)-Se(32)Se(3)-Se(4)-Mo(2)Se(29)-Mo(9)-Se(32)136.27(4)Mo(3)-Se(4)-Mo(2) 64.21(3)Se(31)-Mo(9)-Se(32)53.56(4) Se(6)-Se(5)-Mo(3)64.49(4)82.57(4) Se(33)-Mo(9)-Se(39)Se(6)-Se(5)-Mo(1)64.78(4)132.83(5) 65.39(3)Se(29)-Mo(9)-Se(39)Mo(3)-Se(5)-Mo(1)

133.86(5)

87.64(4)

84.07(4)

53.60(4)

136.26(5)

Se(5)-Se(6)-Mo(3)

Se(5)-Se(6)-Mo(1)

Mo(3)-Se(6)-Mo(1)

Mo(3)-Se(7)-Mo(1)

Mo(3)-Se(7)-Mo(2)

62.05(4)

61.90(4)

63.70(3)

66.83(3)

67.06(4)

Se(31)-Mo(9)-Se(39)

Se(32)-Mo(9)-Se(39)

Se(33)-Mo(9)-Se(30)

Se(29)-Mo(9)-Se(30)

Se(31)-Mo(9)-Se(30)

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

Mo(1)-Se(7)-Mo(2)67.32(4)Se(29)-Se(30)-Mo(8) 61.86(4)C(1)-Se(8)-Mo(1) 88.0(3) 61.54(4)Se(29)-Se(30)-Mo(9) 88.9(3) C(1)-Se(9)-Mo(1) Mo(8)-Se(30)-Mo(9) 64.00(3)C(10)-Se(10)-Mo(2) 88.1(3) Se(32)-Se(31)-Mo(7)64.47(4)88.5(3) Se(32)-Se(31)-Mo(9) 64.34(4)C(10)-Se(11)-Mo(2) C(19)-Se(12)-Mo(3) 87.7(3) Mo(7)-Se(31)-Mo(9) 66.02(3)C(19)-Se(13)-Mo(3) 88.2(3)Se(31)-Se(32)-Mo(7) 61.85(4)Se(15)-Se(14)-Mo(4)64.93(4)Se(31)-Se(32)-Mo(9) 62.09(4)Se(15)-Se(14)-Mo(5)64.85(4)Mo(7)-Se(32)-Mo(9) 64.45(4)Mo(4)-Se(14)-Mo(5) 66.41(3)Mo(7)-Se(33)-Mo(8) 67.33(4)Se(14)-Se(15)-Mo(5)61.56(4)Mo(7)-Se(33)-Mo(9) 67.24(3)Se(14)-Se(15)-Mo(4)61.46(4)Mo(8)-Se(33)-Mo(9) 67.04(4)Mo(5)-Se(15)-Mo(4) 64.22(3)C(55)-Se(34)-Mo(7) 89.0(3) Se(17)-Se(16)-Mo(6) 64.26(4)C(55)-Se(35)-Mo(7) 89.4(3) 64.42(4)87.5(3) Se(17)-Se(16)-Mo(5)C(64)-Se(36)-Mo(8) Mo(6)-Se(16)-Mo(5) 65.91(3) C(64)-Se(37)-Mo(8) 88.6(3) Se(16)-Se(17)-Mo(6)61.90(4)C(73)-Se(38)-Mo(9) 87.6(3) 61.93(4) 88.8(3) Se(16)-Se(17)-Mo(5)C(73)-Se(39)-Mo(9) 64.34(3)119.6(8) Mo(6)-Se(17)-Mo(5) C(1)-N(1)-C(2)Se(19)-Se(18)-Mo(4) 64.90(4)C(1)-N(1)-C(6)122.8(8) Se(19)-Se(18)-Mo(6)64.56(4)C(2)-N(1)-C(6)117.4(7)Mo(4)-Se(18)-Mo(6) 65.63(3)C(10)-N(2)-C(15)120.9(9) Se(18)-Se(19)-Mo(6) 61.95(4)C(10)-N(2)-C(11)119.3(9) Se(18)-Se(19)-Mo(4) 61.65(4)C(15)-N(2)-C(11)117.3(8) C(19)-N(3)-C(24) Mo(6)-Se(19)-Mo(4) 63.76(3)121.8(8)Mo(6)-Se(20)-Mo(4) 66.97(3)C(19)-N(3)-C(20)120.7(8)67.33(3)117.2(7)Mo(6)-Se(20)-Mo(5) C(24)-N(3)-C(20)67.48(3) 122.2(8)Mo(4)-Se(20)-Mo(5) C(28)-N(4)-C(29)87.5(3) C(28)-Se(21)-Mo(4) C(28)-N(4)-C(33)120.3(8)117.4(8) C(28)-Se(22)-Mo(4) 88.5(3) C(29)-N(4)-C(33)87.9(3) 120.8(8) C(37)-Se(23)-Mo(5) C(37)-N(5)-C(38)C(37)-Se(24)-Mo(5) 89.0(3) C(37)-N(5)-C(42) 121.4(8)C(46)-Se(25)-Mo(6) 87.9(3) C(38)-N(5)-C(42)117.9(8) 88.7(3) 122.3(8) C(46)-Se(26)-Mo(6) C(46)-N(6)-C(51)Se(28)-Se(27)-Mo(8)64.76(4)C(46)-N(6)-C(47)119.1(8) Se(28)-Se(27)-Mo(7) 64.27(4)C(51)-N(6)-C(47)118.5(8) 66.13(3)121.8(8) Mo(8)-Se(27)-Mo(7) C(55)-N(7)-C(56)61.99(4)121.0(8) Se(27)-Se(28)-Mo(7) C(55)-N(7)-C(60)Se(27)-Se(28)-Mo(8)61.63(4)C(56)-N(7)-C(60)117.2(8)Mo(7)-Se(28)-Mo(8) 123.1(9)64.38(3)C(64)-N(8)-C(69)Se(30)-Se(29)-Mo(9) 64.86(4)C(64)-N(8)-C(65)121.3(8)Se(30)-Se(29)-Mo(8) 64.54(4)C(69)-N(8)-C(65) 115.6(8) Mo(9)-Se(29)-Mo(8) 65.93(4)C(73)-N(9)-C(74)121.2(8)

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN'Bu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

| C(73)-N(9)-C(78)    | 120.1(8)  | C(36)-C(34)-C(35)    | 112.2(9)  |
|---------------------|-----------|----------------------|-----------|
| C(74)-N(9)-C(78)    | 118.6(8)  | C(36)-C(34)-C(33)    | 109.4(9)  |
| N(1)-C(1)-Se(8)     | 124.4(7)  | C(35)-C(34)-C(33)    | 112.9(9)  |
| N(1)-C(1)-Se(9)     | 124.7(7)  | N(5)-C(37)-Se(23)    | 124.3(7)  |
| Se(8)-C(1)-Se(9)    | 110.9(5)  | N(5)-C(37)-Se(24)    | 124.1(7)  |
| N(1)-C(2)-C(3)      | 113.1(8)  | Se(23)-C(37)-Se(24)  | 111.6(4)  |
| C(4)-C(3)-C(5)      | 113.2(10) | N(5)-C(38)-C(39)     | 112.6(10) |
| C(4)-C(3)-C(2)      | 114.1(9)  | C(41)-C(39)-C(38)    | 117.7(13) |
| C(5)-C(3)-C(2)      | 111.2(9)  | C(41)-C(39)-C(40)    | 113.9(12) |
| N(1)-C(6)-C(7)      | 112.3(8)  | C(38)-C(39)-C(40)    | 105.0(13) |
| C(9)-C(7)-C(8)      | 111.4(9)  | C(43B)-C(42)-N(5)    | 115.3(14) |
| C(9)-C(7)-C(6)      | 110.9(9)  | N(5)-C(42)-C(43A)    | 113.2(10) |
| C(8)-C(7)-C(6)      | 111.7(8)  | C(44A)-C(43A)-C(45A) | 112.5(16) |
| N(2)-C(10)-Se(10)   | 123.9(8)  | C(44A)-C(43A)-C(42)  | 114.3(14) |
| N(2)-C(10)-Se(11)   | 124.5(8)  | C(45A)-C(43A)-C(42)  | 107.5(15) |
| Se(10)-C(10)-Se(11) | 111.6(5)  | C(42)-C(43B)-C(45B)  | 109(2)    |
| N(2)-C(11)-C(12)    | 114.9(9)  | C(42)-C(43B)-C(44B)  | 104(2)    |
| C(14)-C(12)-C(13)   | 110.3(9)  | C(45B)-C(43B)-C(44B) | 111(3)    |
| C(14)-C(12)-C(11)   | 106.9(9)  | N(6)-C(46)-Se(25)    | 125.5(7)  |
| C(13)-C(12)-C(11)   | 112.6(9)  | N(6)-C(46)-Se(26)    | 123.4(7)  |
| N(2)-C(15)-C(16)    | 115.1(9)  | Se(25)-C(46)-Se(26)  | 111.1(5)  |
| C(15)-C(16)-C(17)   | 112.3(9)  | N(6)-C(47)-C(48)     | 112.3(8)  |
| C(15)-C(16)-C(18)   | 107.7(10) | C(50)-C(48)-C(47)    | 111.6(9)  |
| C(17)-C(16)-C(18)   | 110.3(10) | C(50)-C(48)-C(49)    | 112.1(9)  |
| N(3)-C(19)-Se(12)   | 125.2(7)  | C(47)-C(48)-C(49)    | 109.9(9)  |
| N(3)-C(19)-Se(13)   | 124.0(7)  | N(6)-C(51)-C(52B)    | 112.7(12) |
| Se(12)-C(19)-Se(13) | 110.8(5)  | N(6)-C(51)-C(52A)    | 113.4(10) |
| N(3)-C(20)-C(21)    | 115.1(8)  | C(53A)-C(52A)-C(54A) | 106.1(17) |
| C(22)-C(21)-C(20)   | 114.3(8)  | C(53A)-C(52A)-C(51)  | 108.4(15) |
| C(22)-C(21)-C(23)   | 110.2(9)  | C(54A)-C(52A)-C(51)  | 109.1(16) |
| C(20)-C(21)-C(23)   | 108.0(9)  | C(51)-C(52B)-C(54B)  | 114(2)    |
| N(3)-C(24)-C(25)    | 117.1(8)  | C(51)-C(52B)-C(53B)  | 110(2)    |
| C(26)-C(25)-C(24)   | 113.3(8)  | C(54B)-C(52B)-C(53B) | 115(2)    |
| C(26)-C(25)-C(27)   | 110.7(9)  | N(7)-C(55)-Se(34)    | 125.2(7)  |
| C(24)-C(25)-C(27)   | 109.2(9)  | N(7)-C(55)-Se(35)    | 124.3(7)  |
| N(4)-C(28)-Se(21)   | 123.6(7)  | Se(34)-C(55)-Se(35)  | 110.5(5)  |
| N(4)-C(28)-Se(22)   | 124.4(8)  | N(7)-C(56)-C(57)     | 112.4(9)  |
| Se(21)-C(28)-Se(22) | 112.0(5)  | C(58)-C(57)-C(59)    | 111.8(12) |
| N(4)-C(29)-C(30)    | 114.0(8)  | C(58)-C(57)-C(56)    | 112.4(10) |
| C(32)-C(30)-C(29)   | 113.3(9)  | C(59)-C(57)-C(56)    | 106.5(11) |
| C(32)-C(30)-C(31)   | 110.8(9)  | N(7)-C(60)-C(61A)    | 112.2(10) |
| C(29)-C(30)-C(31)   | 107.9(9)  | N(7)-C(60)-C(61B)    | 116.1(15) |
| N(4)-C(33)-C(34)    | 113.0(8)  | C(63A)-C(61A)-C(60)  | 114.8(16) |

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:
| C(63A)-C(61A)-C(62A) | 107.3(17) |
|----------------------|-----------|
| C(60)-C(61A)-C(62A)  | 107.6(16) |
| C(63B)-C(61B)-C(60)  | 106(3)    |
| C(63B)-C(61B)-C(62B) | 117(3)    |
| C(60)-C(61B)-C(62B)  | 104(3)    |
| N(8)-C(64)-Se(36)    | 125.1(8)  |
| N(8)-C(64)-Se(37)    | 123.5(7)  |
| Se(36)-C(64)-Se(37)  | 111.4(5)  |
| C(66A)-C(65)-N(8)    | 111.8(10) |
| N(8)-C(65)-C(66B)    | 117.6(10) |
| C(68A)-C(66A)-C(65)  | 132.0(19) |
| C(68A)-C(66A)-C(67A) | 112(2)    |
| C(65)-C(66A)-C(67A)  | 107.1(16) |
| C(68B)-C(66B)-C(67B) | 120(2)    |
| C(68B)-C(66B)-C(65)  | 132(2)    |
| C(67B)-C(66B)-C(65)  | 107.3(16) |
| N(8)-C(69)-C(70)     | 112.6(8)  |
| C(72)-C(70)-C(71)    | 111.9(10) |
| C(72)-C(70)-C(69)    | 113.3(9)  |
| C(71)-C(70)-C(69)    | 109.0(9)  |
| N(9)-C(73)-Se(38)    | 124.4(7)  |
| N(9)-C(73)-Se(39)    | 123.9(7)  |
| Se(38)-C(73)-Se(39)  | 111.7(4)  |
| N(9)-C(74)-C(75)     | 113.6(9)  |
| C(77)-C(75)-C(74)    | 114.4(10) |
| C(77)-C(75)-C(76)    | 113.1(11) |
| C(74)-C(75)-C(76)    | 107.1(10) |
| N(9)-C(78)-C(79)     | 113.2(9)  |
| C(80)-C(79)-C(81)    | 111.3(10) |
| C(80)-C(79)-C(78)    | 108.1(11) |
| C(81)-C(79)-C(78)    | 113.4(10) |

**Table A.69, Cont'd.** Bond angles (deg.) for  $[Mo_3Se_7(Se_2CN^iBu_2)_3]I$ . Symmetry transformations used to generate equivalent atoms:

| Atom   | $U^{11}$ | $U^{22}$ | <i>U</i> <sup>33</sup> | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|--------|----------|----------|------------------------|----------|----------|----------|
| I(1)   | 49(1)    | 34(1)    | 53(1)                  | -5(1)    | 4(1)     | -13(1)   |
| I(2)   | 40(1)    | 45(1)    | 25(1)                  | 0(1)     | -5(1)    | -14(1)   |
| I(3)   | 31(1)    | 24(1)    | 42(1)                  | 8(1)     | 3(1)     | -3(1)    |
| Mo(1)  | 23(1)    | 20(1)    | 24(1)                  | -1(1)    | 1(1)     | 3(1)     |
| Mo(2)  | 30(1)    | 25(1)    | 23(1)                  | -3(1)    | 5(1)     | 1(1)     |
| Mo(3)  | 22(1)    | 19(1)    | 23(1)                  | -1(1)    | 3(1)     | 2(1)     |
| Mo(4)  | 19(1)    | 11(1)    | 21(1)                  | 0(1)     | 1(1)     | -1(1)    |
| Mo(5)  | 21(1)    | 13(1)    | 18(1)                  | 0(1)     | 2(1)     | -3(1)    |
| Mo(6)  | 21(1)    | 12(1)    | 20(1)                  | -1(1)    | 4(1)     | -1(1)    |
| Mo(7)  | 22(1)    | 21(1)    | 25(1)                  | 6(1)     | 2(1)     | -2(1)    |
| Mo(8)  | 23(1)    | 23(1)    | 23(1)                  | 7(1)     | 1(1)     | -2(1)    |
| Mo(9)  | 22(1)    | 22(1)    | 26(1)                  | 9(1)     | 1(1)     | -1(1)    |
| Se(1)  | 32(1)    | 31(1)    | 30(1)                  | -6(1)    | -1(1)    | -1(1)    |
| Se(2)  | 41(1)    | 36(1)    | 28(1)                  | 3(1)     | -4(1)    | 2(1)     |
| Se(3)  | 34(1)    | 21(1)    | 33(1)                  | -4(1)    | 5(1)     | 4(1)     |
| Se(4)  | 28(1)    | 29(1)    | 37(1)                  | -4(1)    | 8(1)     | 6(1)     |
| Se(5)  | 25(1)    | 23(1)    | 29(1)                  | -1(1)    | 4(1)     | 0(1)     |
| Se(6)  | 28(1)    | 24(1)    | 25(1)                  | -3(1)    | 4(1)     | 2(1)     |
| Se(7)  | 27(1)    | 23(1)    | 24(1)                  | 1(1)     | 3(1)     | 0(1)     |
| Se(8)  | 24(1)    | 22(1)    | 51(1)                  | -3(1)    | -1(1)    | 2(1)     |
| Se(9)  | 26(1)    | 22(1)    | 40(1)                  | 1(1)     | -1(1)    | 1(1)     |
| Se(10) | 46(1)    | 37(1)    | 30(1)                  | -10(1)   | 11(1)    | -7(1)    |
| Se(11) | 46(1)    | 33(1)    | 28(1)                  | -5(1)    | 12(1)    | -5(1)    |
| Se(12) | 28(1)    | 25(1)    | 33(1)                  | 7(1)     | -2(1)    | -3(1)    |
| Se(13) | 27(1)    | 21(1)    | 31(1)                  | 3(1)     | -2(1)    | 0(1)     |
| Se(14) | 20(1)    | 22(1)    | 24(1)                  | 3(1)     | 1(1)     | -2(1)    |
| Se(15) | 26(1)    | 22(1)    | 23(1)                  | -4(1)    | 5(1)     | 4(1)     |
| Se(16) | 30(1)    | 17(1)    | 24(1)                  | -3(1)    | 2(1)     | -7(1)    |
| Se(17) | 34(1)    | 13(1)    | 27(1)                  | 2(1)     | 3(1)     | -1(1)    |
| Se(18) | 25(1)    | 20(1)    | 19(1)                  | 1(1)     | 3(1)     | -3(1)    |
| Se(19) | 21(1)    | 20(1)    | 28(1)                  | 5(1)     | 4(1)     | -4(1)    |
| Se(20) | 20(1)    | 14(1)    | 20(1)                  | -1(1)    | 0(1)     | -1(1)    |
| Se(21) | 33(1)    | 15(1)    | 31(1)                  | 4(1)     | -6(1)    | -1(1)    |
| Se(22) | 33(1)    | 13(1)    | 34(1)                  | -1(1)    | -9(1)    | -2(1)    |
| Se(23) | 25(1)    | 36(1)    | 25(1)                  | 5(1)     | 0(1)     | -12(1)   |
| Se(24) | 26(1)    | 24(1)    | 20(1)                  | 3(1)     | 1(1)     | -6(1)    |
| Se(25) | 33(1)    | 25(1)    | 26(1)                  | -4(1)    | 6(1)     | 6(1)     |
| Se(26) | 26(1)    | 23(1)    | 30(1)                  | -5(1)    | 1(1)     | 5(1)     |
| Se(27) | 23(1)    | 25(1)    | 31(1)                  | 5(1)     | 0(1)     | -3(1)    |

**Table A.70**. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

 $U^{33}$  $U^{13}$  $U^{11}$  $U^{22}$  $U^{23}$  $U^{12}$ Atom Se(28) 27(1) 25(1)34(1)9(1) -4(1)2(1)Se(29) 26(1)23(1)28(1)6(1)2(1)-2(1)27(1)27(1)33(1) 8(1) 0(1)Se(30) 6(1)Se(31) 27(1)26(1)29(1)12(1)2(1)-2(1)Se(32) 33(1) 34(1)24(1)7(1)-1(1)-3(1)2(1)Se(33) 24(1)23(1)26(1)7(1)-3(1)10(1)Se(34) 29(1) 23(1)42(1)2(1)-6(1)Se(35) 28(1)23(1)41(1)4(1)7(1)-6(1)0(1)-10(1)Se(36) 37(1) 31(1)27(1)6(1)-2(1)Se(37) 33(1) 29(1)26(1)10(1)-8(1)-4(1)Se(38) 28(1)26(1)38(1) 12(1)-3(1)25(1) 26(1)44(1)12(1)-5(1)-4(1)Se(39) 25(4) N(1) 19(4) 29(5) -4(4)-1(4)3(3)N(2) 39(5) 34(5) 19(5) -3(4)5(4)0(4)N(3) 27(4)23(4)26(5)3(4)-1(4)1(3)N(4) 33(5) 22(4)22(5)3(4)3(4)0(4)N(5) 23(4)27(5)32(5)5(4)5(4)-8(3)N(6) 29(4)24(4)26(5)2(4)6(4)7(4)N(7) 25(4)28(5)31(5) 6(4)1(4)0(4)N(8) 23(4)36(5) 25(5)6(4)-4(4)-2(4)N(9) 25(4)24(4)28(5)1(4)-1(4)3(3)C(1) 17(5)19(5) 1(4)-6(4)41(6) 0(4)C(2) 26(5)36(6) -6(5)5(4)16(5) -5(4)C(3) 25(6)-5(5)39(6) 48(7)-5(5)5(5)C(4) 70(9) 72(10) 30(7)1(7)-6(6) -6(8)C(5) 34(6) 60(8)30(6) -8(6)-3(5)-5(6)C(6) 36(6) 22(5)27(6)4(5)-1(5)8(4) C(7) 38(6) 27(6)38(7) -6(5)11(5)-2(5)C(8) 44(7)43(7)40(7)-7(6)-4(6)-9(6)C(9) 63(8) 40(7)59(9) -22(6)13(7)-2(6)C(10)42(6) 42(7)26(6)-3(5)5(5) 2(5)43(7) C(11) 54(7)23(6)-12(5)10(5)-2(6)-10(5)-1(5)C(12) 47(7)44(7)27(6)1(6)-9(6) C(13) 50(7)37(7)42(7)8(6) 0(5)C(14) 68(9) 45(8) 78(11) -15(7)-2(8)-9(7)C(15) 57(7)36(7)28(6)-1(5)16(5)-2(6)C(16) 55(7)36(6) 26(6)-2(5)1(5)-4(5)C(17) 42(7)50(8) 46(8)-17(6)-5(6)6(6) C(18) 66(9) 68(10)60(9) -1(8)15(7)-18(8)

**Table A.70, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ .

 $U^{13}$  $U^{22}$  $U^{23}$  $U^{12}$  $U^{11}$  $U^{33}$ Atom C(19) 21(5) 24(5)18(5) -8(4)3(4)6(4) 29(5) 3(4)C(20) 32(6) 20(5)-2(4)0(4)29(5) 27(6)43(7)12(5)0(5)-4(4) C(21) C(22) 51(7)27(6)48(8)1(5)6(6) 8(5) C(23) 39(6) 35(7) 58(8) 9(6) -1(6)-7(5)C(24) 20(5)25(5)32(6) -3(4)-7(4)1(4)23(5) 31(6) 44(7)-1(5)-2(5)C(25) 4(4)C(26) 38(6) 39(6) 28(6)3(5)7(5) 8(5) 70(9) -2(6)C(27) 35(6) 40(7)-7(6) -10(5)C(28) 36(6) 10(5)34(6) 8(4) 7(5) 4(4)43(6) 9(4) 8(4) C(29) 11(5)31(6) 6(5)C(30) 77(9) 15(5)31(7) -1(5)2(6)-3(5)C(31) 87(10) 42(8) 48(8) 3(6) 12(7)18(7)C(32) 58(8) 34(7)61(9) -1(6)28(7)-9(6)C(34) 54(7)13(5)52(8) 0(5)-5(6)-6(5)54(7)21(6)38(7) 5(5) 6(6) -2(5)C(35) 73(9) -10(7)C(36) 44(8)55(9) -15(7)3(7)C(37) 31(5) 19(5) 17(5)4(4)20(4)-2(4)C(38) 26(5) 52(7)37(7)15(6) 4(5)-17(5)25(6) 70(11) -19(10)C(39) 125(14)4(7)-5(8)97(13) C(40) 25(7)190(20)-10(13)-7(8)-21(10)C(41) 51(10) 200(20)-24(14)31(12) 2(9)81(13) C(42) 39(6) 46(7)26(6)7(5) 0(5)-16(5)C(46) 27(6)-5(4)13(4)-2(4)32(5)13(5)40(6) 28(6) 24(6)6(5) 15(5)14(5)C(47) C(48) 41(6) 38(6) 34(7)10(5)18(5)16(5)C(49) 66(8) 51(8) 38(7)5(6) 18(6) 15(7)C(50) 50(7) 49(8) 63(9) 32(7)21(7)5(6) C(51) 22(5)29(6) 39(7)5(5) 0(5)2(4)C(55) 35(6) 30(6) 30(6) 0(5)-2(5)-3(5)C(56) 29(6) 40(6) 37(7)-1(5)11(5)-6(5)26(7) C(57) 56(8) 45(8) 52(8) -14(6)-9(6)75(11) 92(11) 54(10)25(8) 3(8) -13(9)C(58) 43(10) -19(10)C(59) 83(11) 102(13)91(13) 1(11)C(60) 34(6) 22(6)57(8) -13(5)7(5) -9(5)C(64) 24(5)35(6) 33(6) 16(5)-4(4)1(4)C(65) 35(6) 42(7)20(6)5(5) 5(5) -6(5)C(69) 25(5) 40(6) 33(6) 17(5) 1(5)-5(5)2(5) C(70) 38(6) 47(7)32(7)12(5)0(5)

**Table A.70, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ .

| Atom  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
|-------|----------|----------|----------|----------|----------|----------|
| C(71) | 73(9)    | 54(8)    | 32(7)    | 17(6)    | -1(6)    | -11(7)   |
| C(72) | 59(8)    | 71(9)    | 48(8)    | 25(7)    | -2(7)    | 26(7)    |
| C(73) | 10(4)    | 38(6)    | 23(5)    | 2(5)     | 1(4)     | 5(4)     |
| C(74) | 21(5)    | 34(6)    | 38(6)    | 14(5)    | -2(4)    | 6(4)     |
| C(75) | 48(7)    | 70(9)    | 39(8)    | 23(7)    | 0(6)     | -1(7)    |
| C(76) | 95(11)   | 97(12)   | 42(9)    | 40(8)    | 6(8)     | 11(10)   |
| C(77) | 100(12)  | 109(13)  | 21(7)    | -10(8)   | 5(7)     | 3(10)    |
| C(78) | 25(5)    | 36(6)    | 40(7)    | -2(5)    | -9(5)    | -3(5)    |
| C(79) | 34(6)    | 55(8)    | 50(8)    | 9(6)     | 4(6)     | -6(6)    |
| C(80) | 56(9)    | 60(10)   | 131(15)  | 25(10)   | 19(9)    | -18(7)   |
| C(81) | 54(8)    | 67(10)   | 74(10)   | -5(8)    | 37(7)    | -6(7)    |

**Table A.70, Cont'd.** Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ .

| H atom          | Х     | у     | Z    | U(eq) |
|-----------------|-------|-------|------|-------|
| H(2A)           | 5907  | 9756  | 5908 | 31    |
| H(2B)           | 6023  | 8615  | 5939 | 31    |
| H(3)            | 6249  | 8513  | 5409 | 45    |
| H(4A)           | 6275  | 9775  | 5045 | 86    |
| H(4B)           | 6634  | 9974  | 5343 | 86    |
| H(4C)           | 6137  | 10539 | 5323 | 86    |
| H(5A)           | 5375  | 9518  | 5415 | 62    |
| H(5B)           | 5444  | 8375  | 5485 | 62    |
| H(5C)           | 5548  | 8809  | 5131 | 62    |
| H(6A)           | 6542  | 10915 | 5850 | 34    |
| H(6R)           | 7064  | 10611 | 5971 | 34    |
| H(7)            | 6287  | 10502 | 6407 | 41    |
| H(8A)           | 7275  | 10711 | 6556 | 64    |
| H(8B)           | 6983  | 9712  | 6586 | 64    |
| H(8C)           | 6867  | 10612 | 6821 | 64    |
| H(9A)           | 6458  | 12081 | 6601 | 81    |
| H(9B)           | 6289  | 12119 | 6227 | 81    |
| H(9C)           | 6840  | 12223 | 6321 | 81    |
| H(11A)          | 9086  | 4849  | 4158 | 48    |
| H(11B)          | 8630  | 4668  | 4377 | 48    |
| H(12)           | 9161  | 3751  | 4755 | 48    |
| H(12)<br>H(13A) | 9859  | 3100  | 4537 | 64    |
| H(13B)          | 9900  | 4267  | 4527 | 64    |
| H(13C)          | 9772  | 3673  | 4202 | 64    |
| H(14A)          | 8936  | 3014  | 4118 | 96    |
| H(14B)          | 8597  | 2963  | 4427 | 96    |
| H(14C)          | 9072  | 2322  | 4420 | 96    |
| H(15A)          | 9296  | 7053  | 4536 | 48    |
| H(15B)          | 9197  | 6529  | 4195 | 48    |
| H(16)           | 9922  | 5672  | 4250 | 47    |
| H(17A)          | 10100 | 6869  | 4810 | 69    |
| H(17B)          | 10473 | 6123  | 4656 | 69    |
| H(17C)          | 10005 | 5717  | 4826 | 69    |
| H(18A)          | 9856  | 7220  | 3970 | 97    |
| H(18B)          | 10383 | 7016  | 4104 | 97    |
| H(18C)          | 10044 | 7752  | 4294 | 97    |
| H(20A)          | 9268  | 4529  | 7199 | 32    |
| H(20B)          | 9698  | 4975  | 7409 | 32    |
| H(21)           | 10252 | 4220  | 7073 | 40    |
| H(22A)          | 9480  | 3364  | 6720 | 63    |

**Table A.71**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $Å^2$  x 10<sup>3</sup>) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

| H atom | Х     | у     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(22B) | 10028 | 3099  | 6671 | 63    |
| H(22C) | 9835  | 4163  | 6576 | 63    |
| H(23A) | 9556  | 2908  | 7323 | 66    |
| H(23B) | 9998  | 3345  | 7524 | 66    |
| H(23C) | 10085 | 2585  | 7235 | 66    |
| H(24A) | 10024 | 6430  | 7278 | 31    |
| H(24B) | 9832  | 7055  | 6976 | 31    |
| H(25)  | 10550 | 5601  | 6932 | 39    |
| H(26A) | 10169 | 5780  | 6427 | 52    |
| H(26B) | 10696 | 6211  | 6408 | 52    |
| H(26C) | 10253 | 6937  | 6437 | 52    |
| H(27A) | 10650 | 7686  | 6977 | 73    |
| H(27B) | 11078 | 6995  | 6869 | 73    |
| H(27C) | 10866 | 6901  | 7227 | 73    |
| H(29A) | 8380  | 3685  | 8068 | 34    |
| H(29B) | 8122  | 2736  | 7923 | 34    |
| H(30)  | 7758  | 3950  | 8432 | 49    |
| H(31A) | 7911  | 2588  | 8773 | 88    |
| H(31B) | 8391  | 2882  | 8594 | 88    |
| H(31C) | 8089  | 1961  | 8470 | 88    |
| H(32A) | 7126  | 3292  | 8106 | 76    |
| H(32B) | 7112  | 2934  | 8476 | 76    |
| H(32C) | 7306  | 2218  | 8200 | 76    |
| H(33A) | 7280  | 3825  | 7444 | 34    |
| H(33B) | 7505  | 2811  | 7563 | 34    |
| H(34)  | 7919  | 4118  | 7104 | 47    |
| H(35A) | 8344  | 2322  | 7312 | 57    |
| H(35B) | 8537  | 3381  | 7413 | 57    |
| H(35C) | 8553  | 3037  | 7041 | 57    |
| H(36A) | 7605  | 2185  | 6974 | 86    |
| H(36B) | 7749  | 2994  | 6712 | 86    |
| H(36C) | 7273  | 3120  | 6916 | 86    |
| H(38A) | 9583  | 11060 | 6908 | 46    |
| H(38B) | 9639  | 11220 | 6525 | 46    |
| H(39)  | 9918  | 9496  | 6872 | 88    |
| H(40A) | 10706 | 10092 | 6816 | 157   |
| H(40B) | 10385 | 10870 | 7003 | 157   |
| H(40C) | 10508 | 11036 | 6628 | 157   |
| H(41A) | 9742  | 9036  | 6358 | 167   |
| H(41B) | 10298 | 8932  | 6435 | 167   |

**Table A.71, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $Å^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

| H atom | Х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(41C) | 10106 | 9827  | 6220 | 167   |
| H(42A) | 8743  | 9691  | 6255 | 44    |
| H(42B) | 9171  | 10376 | 6145 | 44    |
| H(43A) | 8254  | 11044 | 6369 | 43    |
| H(44A) | 9022  | 12289 | 6250 | 66    |
| H(44B) | 8772  | 12123 | 6593 | 66    |
| H(44C) | 8488  | 12649 | 6301 | 66    |
| H(45A) | 8099  | 11520 | 5859 | 79    |
| H(45B) | 8389  | 10527 | 5807 | 79    |
| H(45C) | 8648  | 11559 | 5765 | 79    |
| H(43B) | 9102  | 11720 | 6199 | 43    |
| H(44D) | 8091  | 11319 | 6325 | 66    |
| H(44E) | 8330  | 12380 | 6341 | 66    |
| H(44F) | 8452  | 11589 | 6617 | 66    |
| H(45D) | 8818  | 10614 | 5726 | 79    |
| H(45E) | 8781  | 11778 | 5700 | 79    |
| H(45F) | 8327  | 11152 | 5800 | 79    |
| H(47A) | 5936  | 11821 | 8400 | 37    |
| H(47B) | 6458  | 11467 | 8503 | 37    |
| H(48)  | 6135  | 9910  | 8650 | 45    |
| H(49A) | 6282  | 11114 | 9052 | 77    |
| H(49B) | 5849  | 10425 | 9152 | 77    |
| H(49C) | 5748  | 11497 | 9011 | 77    |
| H(50A) | 5243  | 10814 | 8526 | 80    |
| H(50B) | 5302  | 9804  | 8719 | 80    |
| H(50C) | 5447  | 9872  | 8345 | 80    |
| H(51A) | 5538  | 10919 | 7923 | 36    |
| H(51B) | 5906  | 10596 | 7651 | 36    |
| H(52A) | 5786  | 12598 | 7885 | 40    |
| H(53A) | 5571  | 12892 | 7323 | 72    |
| H(53B) | 5229  | 12067 | 7466 | 72    |
| H(53C) | 5663  | 11766 | 7239 | 72    |
| H(54A) | 6479  | 11891 | 7421 | 85    |
| H(54B) | 6620  | 12273 | 7778 | 85    |
| H(54C) | 6411  | 13019 | 7512 | 85    |
| H(52B) | 6349  | 11473 | 7529 | 40    |
| H(53D) | 5674  | 11030 | 7226 | 72    |
| H(53E) | 5880  | 12070 | 7119 | 72    |
| H(53F) | 5417  | 12013 | 7340 | 72    |
| H(54D) | 6141  | 13195 | 7550 | 85    |

**Table A.71, Cont'd**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

| H atom | Х    | у     | Z     | U(eq) |
|--------|------|-------|-------|-------|
| H(54E) | 6431 | 12723 | 7849  | 85    |
| H(54F) | 5872 | 12907 | 7877  | 85    |
| H(56A) | 3974 | 7384  | 9585  | 42    |
| H(56B) | 3774 | 8477  | 9605  | 42    |
| H(57)  | 4133 | 8672  | 10133 | 61    |
| H(58A) | 4476 | 7385  | 10404 | 111   |
| H(58B) | 4752 | 7530  | 10069 | 111   |
| H(58C) | 4373 | 6666  | 10104 | 111   |
| H(59A) | 3522 | 6993  | 10094 | 137   |
| H(59B) | 3334 | 8094  | 10064 | 137   |
| H(59C) | 3565 | 7715  | 10399 | 137   |
| H(60A) | 4941 | 9541  | 9620  | 46    |
| H(60B) | 4431 | 9705  | 9776  | 46    |
| H(61A) | 4630 | 9880  | 9097  | 53    |
| H(62A) | 4553 | 11549 | 9175  | 118   |
| H(62B) | 4907 | 11175 | 9457  | 118   |
| H(62C) | 4364 | 11403 | 9537  | 118   |
| H(63A) | 3840 | 9421  | 9135  | 94    |
| H(63B) | 3861 | 10553 | 9039  | 94    |
| H(63C) | 3749 | 10240 | 9405  | 94    |
| H(61B) | 3903 | 10084 | 9586  | 53    |
| H(62D) | 4730 | 11299 | 9488  | 118   |
| H(62E) | 4422 | 11265 | 9812  | 118   |
| H(62F) | 4205 | 11745 | 9487  | 118   |
| H(63D) | 4397 | 9659  | 9023  | 94    |
| H(63E) | 4123 | 10681 | 8993  | 94    |
| H(63F) | 3834 | 9701  | 9067  | 94    |
| H(65A) | 5406 | 5389  | 7084  | 39    |
| H(65B) | 5661 | 5956  | 6794  | 39    |
| H(66A) | 6022 | 4521  | 7192  | 38    |
| H(67A) | 6020 | 3563  | 6705  | 71    |
| H(67B) | 5641 | 4361  | 6584  | 71    |
| H(67C) | 5549 | 3747  | 6909  | 71    |
| H(68A) | 6638 | 5452  | 6936  | 80    |
| H(68B) | 6582 | 4469  | 6727  | 80    |
| H(68C) | 6654 | 4412  | 7114  | 80    |
| H(66B) | 6060 | 5602  | 6605  | 38    |
| H(67D) | 6045 | 3960  | 6447  | 71    |
| H(67E) | 5587 | 4653  | 6439  | 71    |
| H(67F) | 5659 | 3881  | 6728  | 71    |

**Table A.71, Cont'd**. Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters ( $Å^2 x 10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.

| H atom | X    | У    | Z     | U(eq) |
|--------|------|------|-------|-------|
| H(68D) | 6645 | 4456 | 6748  | 80    |
| H(68E) | 6646 | 5404 | 6977  | 80    |
| H(68F) | 6622 | 5523 | 6589  | 80    |
| H(69A) | 6387 | 6963 | 6945  | 39    |
| H(69B) | 6321 | 7568 | 7274  | 39    |
| H(70)  | 5652 | 7530 | 6746  | 47    |
| H(71A) | 6270 | 9094 | 6928  | 79    |
| H(71B) | 5900 | 9117 | 6629  | 79    |
| H(71C) | 6347 | 8396 | 6621  | 79    |
| H(72A) | 5274 | 7802 | 7251  | 89    |
| H(72B) | 5210 | 8701 | 7005  | 89    |
| H(72C) | 5587 | 8769 | 7300  | 89    |
| H(74A) | 8165 | 3837 | 9538  | 37    |
| H(74B) | 7681 | 3410 | 9387  | 37    |
| H(75)  | 7256 | 3892 | 9838  | 63    |
| H(76A) | 8092 | 2833 | 10028 | 117   |
| H(76B) | 7633 | 2361 | 9856  | 117   |
| H(76C) | 7600 | 2792 | 10217 | 117   |
| H(77A) | 8091 | 4734 | 10108 | 115   |
| H(77B) | 7603 | 4612 | 10297 | 115   |
| H(77C) | 7630 | 5324 | 9989  | 115   |
| H(78A) | 8316 | 5501 | 9557  | 40    |
| H(78B) | 7952 | 6277 | 9403  | 40    |
| H(79)  | 8169 | 5786 | 8872  | 55    |
| H(80A) | 8545 | 7125 | 9128  | 123   |
| H(80B) | 8896 | 6604 | 8879  | 123   |
| H(80C) | 8956 | 6420 | 9262  | 123   |
| H(81A) | 8789 | 4748 | 8774  | 97    |
| H(81B) | 8443 | 4171 | 9012  | 97    |
| H(81C) | 8920 | 4657 | 9153  | 97    |

**Table A.71, Cont'd**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for [Mo<sub>3</sub>Se<sub>7</sub>(Se<sub>2</sub>CN<sup>*i*</sup>Bu<sub>2</sub>)<sub>3</sub>]I.