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This work is a collection of three manuscripts that use novel methodological approaches in
causal inference and dimensionality reduction on different classes of Alzheimer’s disease

data. The overarching aim of this dissertation is to investigate complementary perspectives
that may improve the health of the population affected by Alzheimer’s disease and related
dementias, which is deemed to grow in number and public health relevance globally in the

near future.

The first manuscript investigates the opportunity for drug repurposing of
acetylcholinesterase inhibitors, a medication normally prescribed to Alzheimer’s patients, in
the treatment of certain cardiovascular disease. The second manuscript evaluates the effect
of dual x-ray absorptiometry bone density scans on the likelihood of subsequent hip fracture
in the Alzheimer’s disease population, where osteoporosis is a highly incident comorbidity.
The third manuscript presents an algorithm for dimensionality reduction and an application
of set theory on pairwise classification problems to identify significant predictors of

Alzheimer’s disease progression.

The novelty of this work lies in the use of random treatment date generation, in combination
with random sampling with replacement, to estimate the average treatment effect on the
treated in the first two manuscripts. In the third manuscript, a novel algorithm is presented,
which improves performance over the sparse-group lasso by adding a forward selection step

on an external validation set of features.

Taken together, this work aims to contribute to the methodological advancement of
statistical approaches for coefficient estimation in the context of causal inference, as well as
to the empirical identification of elements that can be translated into actionable policies, on

one hand, or utilized in clinical settings as part of diagnostic biomarkers, on the other.
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PAPER 1

Drug repurposing in Alzheimer’s disease: the case of acetylcholinesterase inhibitors use for

acute coronary syndrome prevention

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, a neurodegenerative
disease that affects cognitive functions, including memory, speech and mobility. In Louisiana,
heart disease, including acute coronary syndrome (ACS), is often an incident comorbidity of
AD patients. Exploring the opportunity for drug repurposing, we used Louisiana Medicare
claims data to estimate the average treatment effect on the treated (ATT) of
acetylcholinesterase inhibitors (ChEls) prescription on the likelihood of subsequent ACS. We
found that in our sample ChEls decreased the likelihood of filing an ACS claim during the
observation period by 0.56 percentage points (-.0056; Cl: -.0091 to -.0021), or -6.18% over
baseline value. Results are statistically significant and robust across all models, stratified
over outpatient and inpatient claim types, and successfully passed placebo tests. This
evidence should be considered in clinical decisions regarding ChEls utilization and further

assessed in patients with and without Alzheimer’s disease and related dementia diagnoses.

Keywords: drug repurposing, acetylcholinesterase inhibitors, Alzheimer’s disease, acute

coronary syndrome



Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, a neurodegenerative
disease that affects cognitive functions, including memory, speech and mobility (Kumar,
2022). It is estimated that in 2022 as many as 6.5 million Americans were living with
Alzheimer’s disease (CDC). Lower natality rates, extended lifespan, and the resulting ageing
population will foster this trend in the future. Often, AD patients have comorbidities that
may worsen their clinical condition further. Wang (2018a) found that multimorbidity is
common in AD, and may be partially due to common risk factors, as depression,
cardiovascular disease, osteoporosis, and diabetes mellitus. Also, AD and heart disease have
common risk factors: Stampfer (2006) showed that cardiovascular risk factors are also risk
factors for dementia, including hypertension, high LDL cholesterol, low HDL cholesterol and
especially diabetes.

Although there still is no cure for AD, acetylcholinesterase inhibitors (ChEls) are a drug
commonly prescribed to Alzheimer’s disease and other dementia patients to curb the
symptoms of the cognitive decline. Acetylcholinesterase inhibitors inhibit
acetylcholinesterase and hence increase cholinergic transmission. Acetylcholinesterase
inhibitors function to decrease the breakdown of acetylcholine and increase both the levels
and duration of actions of acetylcholine found in the central and peripheral nervous system
(Colovi¢, 2013). Three drugs belonging to this class have been approved by FDA to treat AD
so far: donepezil (Aricept), rivastigmine (Exelon), and galantamine (Razadyne). They are also
used off-label for other causes of dementia such as Lewy body and vascular dementia.

Drug repurposing describes the identification of new ‘off-label’ medications that can be used
for a disease or medical condition that they are not formally approved to treat. In this
regard, previous studies have associated ChEls use with reduced risk of heart disease. Using
claims data from the National Health Insurance Database in Taiwan, Wu and colleagues
(2015) found use of ChEls to be associated with a lower incidence of acute coronary
syndrome (ACS) compared to the matched reference cohort, with an adjusted hazard ratio
for ACS in AD patients treated with ChEls equal to 0.836 (95% confidence interval, 0.750 to
0.933; p < 0.001). Isik's meta-analysis and systematic review (2018) found that ChEls therapy
may be associated with negative chronotropic and hypertensive effects but also with lower
risk of cardiovascular events. In a sample of 6,070 patients with AD, Hsiao et al. (2021) found

that ChEls users had a significantly lower risk of cardiovascular events than nonusers (hazard



ratio: 0.57; 95% Cl: 0.51 to 0.62). In a propensity score matching (PSM) study using data
from the National Health Insurance Research Database of Taiwan, Hsieh et al. (2022) found
that ChEls users exhibited a significantly lower incidence of new-onset heart failure
compared with untreated (HR 0.48; 95% Cl 0.34-0.68, p < 0.001).

The objective of this study is to evaluate the association between ChEls prescription and the
likelihood of subsequent ACS in a sample of Louisiana Medicare beneficiaries. This is the first
study of its kind to be conducted on the Louisiana Medicare population. The results of this
study are relevant given the high incidence of both dementia and heart disease in the
elderly population of Louisiana. The findings of this study add an important contribution to

the literature investigating the effect of ChEls on ACS risk.

Methods

We used propensity score methods for bias reduction to compare treatment group to a non-
randomized control group, as described in Dehejia (2002) and D’Agostino (1998). We then
used a weighted linear regression to estimate the impact of ChEls on risk of ACS. Weighting
by odds was used to estimate the average treatment effect on the treated (ATT). With
weighting by the odds, treated individuals receive a weight equal to 1 and comparison
individuals receive a weight equal to their propensity score (pi), converted to the odds scale
(= pi/ (1 —pi) (Hirano et al., 2003). This weighting effectively up-weights comparison
individuals whose measured covariate values (propensity scores) best match those of the
treated individuals and down-weights comparison individuals whose measured covariate
values are dissimilar from treated individuals. One way of thinking about weighting by the
odds is that the comparison individuals are first weighted to the entire population, using 1 /
(1 - pi), and are then weighted to the treatment group, using pi. (Harder et al, 2010).
Propensity scores were estimated using the psmatch2 command in Stata 17. This command
employs a logistic regression model, where the treatment assignment serves as the
dependent variable. The relevant covariates, determined based on the examined literature,
were included as independent variables. The estimated propensity scores represent the
probability of receiving the treatment conditional on the observed covariates.

To assess the comparability of treated and control samples, we computed the standardized
difference between treated and control groups across variables. Balance diagnostics were

conducted using the psbalance command in Stata. The psbalance command examines the


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936698/#R24

distribution of covariates between the treated and control groups after weighting and
provides statistical tests and graphical displays to assess balance. The balance diagnostics
ensure that the weighted groups are comparable and reduce the potential for bias due to
confounding. We assumed that an acceptable standardized difference would be lower than
10% (Austin, 2008). The functional form of the psmatch2 model was modified by including
interaction terms and higher order polynomials until satisfactory standardized differences

were obtained for all variables.

Finally, the ATT was estimated using the weighted sample. The differences in the outcome
variable between the treated and control groups were computed and tested for statistical
significance using a t-test. Sensitivity analyses were also conducted to examine the
robustness of the results and assess the potential impact of unobserved confounders and
individual-level fixed effects were included in the model to control for time-invariant
unobservables.

To allow for an estimation of the likelihood of fracture occurring after the bone density test
in both treated and untreated groups, the following algorithm was implemented. First, for
each year in the observation period, the distribution of treatment dates in the treated
sample was tabulated. Then, in the untreated sample, a numerical variable was created
using a random number generator and the sample was sorted. The tabulated treatment
dates distribution from the treated group was assigned to the sorted untreated sample. The
process was repeated iteratively for all months included in the observation period. By doing
so, treatment dates based on the distribution of treatment dates from the treated sample
were assigned to the untreated group. Random assignment of treatment dates in the
untreated was therefore constrained to the treatment dates distribution in the treated
population. Finally, to ensure standard errors were adjusted for the random assignment of
treatment dates, we implemented the procedure inside a bootstrap algorithm with
replacement with 10,000 iterations over the entire analytical sample.

This method allowed for the estimation of the ATT, ensuring reliable causal inferences about

the treatment’s impact on the outcome variable.

To confirm the internal validity of our findings, we conducted a placebo test by running the

same regressions on outcomes that were hypothesized to be unaffected by ChEls use. To



perform this test, we sampled from the universe of Louisiana Medicare beneficiaries with AD
and analysed all inpatient and outpatient claims where ICD9/10 codes were unrelated to
heart disease, cardiovascular disease, or Alzheimer’s disease. Finally, we estimated the

probability of filing an inpatient or outpatient claim following ChEls treatment.

Data

Our data is drawn from the Louisiana Medicare beneficiaries population. We obtained
Medicare claims data from the Centers for Medicare & Medicaid Services (CMM) and we
restricted our sample to beneficiaries who were continuously enrolled from 2014 to 2018,
stratifying over inpatient and outpatient data. In total, 45,396 patients with AD were
selected, based on the ICD-9/10 codes in Albrecht (2019). Then, we restricted our sample to
those beneficiaries that filed at least one AD-related claim every year, from 2014 to 2018. A
subset of 26,535 continuously enrolled beneficiaries was kept. Finally, patients were
included in the final analytical sample if their estimated probability of receiving treatment
were falling within the area of common support in the propensity score matching algorithm.
The average age of the beneficiaries included in the study was 78.32 years in the treated
group and 78.74 years in the untreated group. Females were 69.27% in the treated group
and 61.65% in the untreated group. Black or African American beneficiaries were 26.02% in
the treated group and 23.30% in the untreated group. As for comorbidities, in the treated
group 7.93% ever had an acute myocardial infarction diagnosis at the time of ChEls
treatment, 82.58% ever had anemia, 17.19% asthma, 23.82% atrial fibrillation, 6.79% breast
cancer, 4.06% colorectal cancer, 0.96% endometrial cancer, 1.58% lung cancer, 5.38%
prostate cancer, 81.10% cataract, 50.78% congestive heart failure, 58.22% chronic kidney
disease, 44.21% chronic obstructive pulmonary disease (COPD), 74.36% depression, 52.24%
diabetes, 27.41% glaucoma, 13.07% hip or femur fracture, 88.81% hyperlipidemia, 20.25%
hyperplasia, 96.14% hypertension, 41.93% hypothyroidism, 71.05% ischemic heart disease,
36.69% osteoporosis, 80.43% rheumatoid arthritis and 39.56% transient ischemic attack. In
the treated group, at the time of treatment, 31.54% ever had a cholesterol medication
prescription, 12.44% a diabetes medication prescription and 27.30% an anti-hypertension
medication prescription.

Finally, in the treated group, 4.53% of the overall sample had a pre-ChEls ACS diagnosis.



Results

Table 1 shows the covariate means stratified by treatment status and weighting.

Standardized differences are included. In the crude, unweighted, sample, the only covariate

with a standardized difference exceeding the 10% threshold was sex, as female accounted

for 69.27% of the sample in the treated population and 61.65% in the untreated, with a

standardized difference of 11.37%. However, after weighting by odds, the two groups

became comparable. In the adjusted weighted sample, all demographics and comorbidities

covariates had a standardized difference below 1%. Standardized difference in pre-ChEls ACS

was 1.99% in the overall sample, 1.29% in the inpatients sample and 2.26% in the outpatient

sample.

Table 1. Bootstrap weighted means with standardized differences, by treatment status and weighting. ®

Model Crude Adjusted
Untreated Treated Standardized Untreated Treated Standardized
(N=10,902) (N=15,633) difference (N=10,901) (N=15,631) difference
Mean Mean A Mean Mean A

Demographics:

Age 78.32 78.74 .0322 78.66 78.62 -.0022
Age above 80 4551 4379 -.0245 4370 4379 .0012
Female .6165 .6927 1137 .6919 .6927 .0013
Black or African American .2330 .2602 .0446 .2592 .2602 .0016
Comorbidities:

Acute myocardial infarction .0874 .0793 -.0207 .0794 .0793 -.0002
Anemia .8212 .8258 .0085 .8244 .8258 .0027
Asthma 1755 1719 -.0066 1718 1719 .0003
Atrial fibrillation .2650 .2382 -.0438 .2377 .2382 .0007
Cancer, breast .0656 .0679 .0065 .0676 .0679 .0006
Cancer, colorectal .0442 .0406 -.0126 .0404 .0406 .0007
Cancer, endometrial .0084 .0096 .0086 .0096 .0096 .0000
Cancer, lung .0233 .0158 -.0383 .0159 .0158 -.0007
Cancer, prostate .0701 .0538 -.0478 .0541 .0538 -.0009
Cataract .7956 .8110 .0274 .8107 .8110 .0007
Congestive heart failure .5126 .5078 -.0068 .5063 .5078 .0020
Chronic kidney disease .6002 .5822 -.0258 .5819 .5822 .0004
COPD .4509 4421 -.0125 4418 4421 .0005
Depression .6847 .7436 .0923 .7438 .7436 -.0003
Diabetes .5153 .5224 .0101 .5222 .5224 .0003
Glaucoma .2700 2741 .0066 .2746 .2741 -.0007
Hip fracture .1387 .1307 -.0164 .1300 .1307 .0016
Hyperlipidemia .8727 .8881 .0335 .8879 .8881 .0003
Hyperplasia .2496 .2025 -.0797 .2029 .2025 -.0006



Hypertension .9570 9614 .0157 .9609 .9614

Hypothyroidism .4108 14193 .0123 4201 4193
Ischemic heart disease .7170 .7105 -.0102 .7107 .7105
Osteoporosis 3477 .3669 .0282 .3659 .3669
Rheumatoid arthritis .7968 .8043 .0132 .8035 .8043
Transient ischemic attack 4059 .3956 -.0149 .3961 .3956

Concomitant medications:

Cholesterol meds .3132 .3154 .0032 .3149 .3154
Diabetes meds .1303 1244 -.0124 1237 1244
Hypertension meds 2743 .2730 -.0020 .2738 .2730
Excluded covariates:

Pre-treatment ACS

All .0418 .0453 .0124 .0397 .0453
Inpatient .0164 .0176 .0063 .0153 .0176
Outpatient .0400 .0441 .0150 .0379 .0441

.0016
-.0011
-.0003
.0014
.0014
-.0008

.0007
.0015
-.0013

.0199
.0129
.0226

a Variable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the
difference between the means divided by the standard deviation of treated and untreated groups. Comorbidities refer to
events occurring before the treatment date. Excluded covariates were not used in the calculation of the propensity scores.

Table 2 shows the probability of ACS diagnosis in a cohort of Medicare beneficiaries with a
diagnosis of Alzheimer’s disease, continuously enrolled from 2014 to 2018. We found that in
our sample ChEls therapy was significantly associated with a reduced risk of ACS.

ChEls therapy decreased the likelihood of filing an ACS claim during the observation period
by 0.56 percentage points (-.0056; Cl: -0091 to -.0021). Restricting the sample to inpatient
claims only, ChEls therapy was associated with a 0.50 percentage points decrement in the
probability of ACS diagnosis (-.0028; Cl: -.0046 to -.0010). In outpatient claims, ChEIS
treatment reduced the likelihood of ACS diagnoses by 0.69 percentage points (-.0022; Cl: -
.0036 to -.0008).

At baseline, the untreated group had a mean ACS diagnosis probability of 0.0908 (SD =
.2840). This was equal to 0.0330 (SD = .1775) for inpatients and 0.0886 (SD = .2809) in
outpatient claims. The largest percent decrease over baseline value was found in inpatient
claims. The percent decrease in inpatient claims was 8.57% (-8.57; Cl: -14.71 to -3.26) while
the percent decrease in outpatient claims was 2.61% (-2.61; Cl: -5.32 to -0.49). Finally, in the
overall sample, the percent decrease in the probability of ACS diagnosis associated with
ChEls treatment was 6.18% (-6.18; Cl: -11.60 to -1.97). Results are statistically significant and

robust across three models, stratified over outpatient and inpatient claim types.



Table 2. Probabilities of acute coronary syndrome diagnosis in the observation period, by claim type. ?

ACS diagnosis

All Inpatient Outpatient
b (95% Cl) b (95% ClI) b (95% Cl)
ChEls -.0056 -.0028 -.0022
(-.0091 to -.0021) (-.0046 to -.0010) (-.0036 to -.0008)
Baseline ® .0908 .0330 .0886
% increase over baseline -6.18 -8.57 -2.61
person-months 1,591,920 1,591,740 1,591,920
N 26,532 26,529 26,532

a Coefficients were calculated using linear regression models with weighting by odds. All regression models controlled for
demographics, comorbidities, concomitant medications, time fixed-effects, and pre-treatment ACS admission variables,
outlined in Table 1. Beneficiaries outside the area of common support were excluded from the analysis, hence the

differences in N.
b Mean ACS diagnosis probability in the untreated.

Figure 1 shows the area of common support by treatment status. The propensity score is
displayed on the x-axis while the frequency is on the y-axis. The common support functions
are smooth and the balancing property of the algorithm is satisfied. Beneficiaries outside of

the area of common support were dropped in the linear regression models.

Figure 1. Propensity score matching: area of common support ?
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To further assess the robustness of our results, we conducted a placebo test using outcomes
that are hypothesized to be unaffected by the treatment. As described above, we ran a
linear regression with weighting by odds. This time, the outcome was probability of a non-
heart-disease diagnosis. Results describe the probability of non-heart related diagnosis in
the post-treatment observation period. Table 3 shows that none of the three models
resulted in a significant beta coefficient of the treatment effect in this placebo test, in line

with our expectations.

Table 3. Placebo test: probabilities of any non-heart related disease diagnosis in the observation period ?

Non-ACS diagnosis

All Inpatient Outpatient
b (95% Cl) b (95% Cl) b (95% Cl)
ChEls -.003 -.008 -.006
(-.006 to .002) (-.015 to .008) (-.013 to .003)
Baseline ® .023 .028 .085
% increase over baseline -12.54 -27.73 -7.45
person-months 1,591,980 1,591,320 1,591,860
N 26,533 26,522 26,531

a Coefficients were calculated using linear regression models with weighting by odds. All regression models controlled for
demographics, comorbidities, concomitant medications and pre-treatment ACS admission variables, outlined in Table 1.
Beneficiaries outside the area of common support were excluded from the analysis, hence the differences in N.

b Mean ACS diagnosis probability in untreated.

Discussion and Limitations

This study found a negative relationship between cholinesterase inhibitors therapy and
acute coronary syndrome in the Medicare population of Louisiana from 2014 to 2018, in line
with the findings emerging from previous published literature. Results are significant, in the
hypothesized direction and in line with previous literature investigating the relationship
between acetylcholinesterase inhibitors use and cardiac conditions.

In animal models, the relationship between cholinergic activity and heart disease has been
previously investigated. Yang et al. (2019) show that ChEls therapy regulates glucose
metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in a
mice model. Oikawa et al. (2021) describe reduced vagus nerve activity in genetically
modified ChATKD mice possibly due to impaired cardiac nitric oxide production, which
provides a possible biological explanation for the hypothesized recovery of the cholinergic
system and non-neuronal cardiac cholinergic system (NNCCS) augmentation observed in

donepezil users. A significant and negative relationship between ChEls therapy and heart



disease is confirmed by other animal models such as in Durand et al. (2014), Sabino et al.
(2013) and Li et al. (2013), where it is shown to improve cardiocirculatory function and long-
term survival in rats with chronic heart failure.

Clinical trials and observational studies also investigated the relationship between ChEls and
heart conditions in humans. Androne et al. (2003) summarize the results of clinical trial
NCT01415921, where heart rate recovery after completion of exercise was found to be
significantly greater after the administration of ChEls than placebo. Sangaleti et al. (2021)
present the results of a clinical trial study observing that low-dose galantamine alleviates
oxidative stress, alongside beneficial anti-inflammatory, and cardio-metabolic effects in
subjects with metabolic syndrome. Dewland et al. (2007) find that, in a randomized
controlled trial setting, sedentary adults ChEls therapy decreased resting heart rate and
increased postexercise heart rate recovery at one minute. In their review article, Roy et al.
(2015) discuss relevant literature that implicate acetylcholine as a major regulator of cardiac
remodeling and provide support for the notion that enhancing cholinergic signaling in
human patients with cardiac disease can reduce morbidity and mortality. Serra et al. (2008)
find that, in patients with chronic heart failure, ChEls therapy was well tolerated, leading to
improved hemodynamic profile during dynamic exercise. In a sample of sixty patients with
ischemic heart disease and mild cognitive impairment, Wang et al. (2018b) show that
donepezil administration resulted in significant reduction in mean heart rate and the lowest
heart rate and prolongation of PR and RR intervals, whereas it had no significant effects on
QRS duration. Khuanjing et al. (2020) discuss the possible mechanisms involved in the role of
acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation,
suggesting that novel therapeutic approaches which moderate parasympathetic activities
could be beneficial in the case of cardiovascular disease. Similarly, Olshansky et al. (2008)
discuss the pathophysiology and potential implications for therapy of the parasympathetic
nervous system and heart failure. Finally, Kaushik et al. (2018) report evidence from the
literature that ChEls treatment, prescribed for cognitive impairment, can reduce the load of
medications in patients with AD by also addressing cardiovascular, gastrointestinal, and
other comorbidities. Taken together, these findings from previous literature support the
interpretation of our results.

Acute coronary syndrome is characterized, among others, by heart palpitations whereas

cholinesterase inhibitors are not indicated in patients with low heartbeat. However, reverse



causality could still be a potential source of bias. We have taken specific measures to avoid
it: first, we controlled for pre-treatment ACS episodes. Then, we used propensity scores with
weighting by odds and ensured that pre-treatment comorbidities associated with heart
conditions had a negligible standardized difference before proceeding with the regression
model: these included pre-treatment atrial fibrillation, transient ischemic attack, ischemic
heart disease and hypertension. Finally, we included only beneficiaries that were
continuously enrolled for the whole observation period, and we captured the presence of
comorbidities for at least one year prior to the treatment date.

In this study, we used a doubly-robust estimator to evaluate the association between ChEIS
prescription and ACS risk and estimate the average treatment effect on the treated (ATT). To
adjust for pre-treatment observable differences, we weighted by odds and we dropped
participants whose distributions were lying outside of the area of common support. We
included in the model all known comorbidities at the time of treatment, as well as
demographic characteristics. This estimator is unbiased if at least one between the
propensity score model and the outcome regression model is correctly specified. The
propensity score captures the contributions of observables on the probability of receiving
treatment. This estimator is superior to either simple linear regression or simple propensity
score matching estimators. In this application, this approach helps mitigate potential
selection bias arising from non-random treatment assignment. This ensures that the treated
and untreated samples are balanced on observable characteristics. However, we could not
control for any time-varying unobservable characteristics. Also, there might be omitted
variables that would alter the propensity score algorithm results, which we are not aware of.
Analysing claims data, we used drugs prescriptions as a proxy to model drugs consumption.
However, we have no information on the proportion of medication prescriptions that
translated into actual medication consumption. We had a 5-year observation period, ranging
from 2014 to 2018. Considering this, the pre- and post-treatment observation period may be
limited. However, we address this limitation by including in the study only those Medicare
beneficiaries that were continuously enrolled for the whole length of the observation
period. Another limitation of this study is that our results provide no information on the
subject-specific effect of ChEls on ACS risk: we estimated the average treatment effect, but
further stratification based on genetic information or other clinical criteria is strongly

warranted before providing individual counselling.



It is estimated that one in every four deaths in the US, about 659,000 people every year, can
be attributed to heart disease. Heart disease costs the United States about $363 billion each
year from 2016 to 2017 (Virani, 2021). If off-label medications could help reduce the risk of
heart disease, this could have important public health implications. The generalizability of
our findings to different populations and other settings should be further assessed within a
randomized, double-blind placebo controlled clinical trial, enrolling patients with relevant

comorbidities including Alzheimer’s disease and related dementia.

Conclusion

There is mounting evidence on the possible role of ChEls in reducing risk of heart disease. In
this cohort of Louisiana Medicare beneficiaries with AD, we found that ChEls users were
significantly less likely than non-users to develop acute coronary syndrome, a type of
vascular-related heart condition. This evidence should be considered in clinical decisions
regarding ChEls utilization in AD patients, and comorbidity care should be integrated into
current management for patients with AD. Further research should investigate whether
prescription of ChEls to prevent ACS risk could be justified in non-AD patients, and a
thorough cost-effectiveness analysis should be conducted considering both known and

potential adverse effects of the intervention.
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PAPER 2

Bone density scan reduces risk of fracture among Medicare beneficiaries with Alzheimer’s

disease and related dementia

Abstract

Alzheimer’s disease and related dementia (ADRD) is associated with an increased risk of
fractures, due to cognitive decline, balance dysfunction and mobility limitations.
Osteoporosis and other comorbidities associated with older age can increase the risk of
fractures. Dual-energy X-ray absorptiometry (DXA) scan is a tool used to evaluate bone
mineral density and enables clinicians to assess an individual's fracture risk. Using a linear
regression model with bootstrap standard errors and weighting by odds, this study evaluates
the average treatment effect on the treated (ATT) of DXA in reducing likelihood of
subsequent hip and femur fracture in the ADRD Medicare population of Louisiana between
2014 and 2018. In the analytical sample, DXA was associated with a 30.09% reduction in the
likelihood of fractures among ADRD beneficiaries and a 33.92% among non-ADRD
beneficiaries. DXA was also significantly associated with osteoporosis medication
prescription in both samples. Taken together, our study reinforces the significance of
incorporating bone density testing into routine care for Medicare beneficiaries with

dementia.

Keywords: Alzheimer’s disease, osteoporosis, bone mineral density, DXA



Introduction

Fractures pose a significant health concern worldwide, leading to pain, disability, and
increased mortality rates, particularly among the elderly population. Osteoporosis, a
condition characterized by low bone mass and structural deterioration of bone tissue, is a
primary risk factor for fractures. Patients with Alzheimer’s disease and related dementia
(ADRD) are at an increased risk of falls and fractures, which can be mainly attributed to
osteoporosis and reduced bone mineral density (BMD) (Wang et al., 2014).

To address this pressing issue, numerous diagnostic tools have emerged, with bone density
tests standing at the forefront. These tests, such as Dual-energy X-ray Absorptiometry (DXA),
provide valuable information about bone mineral density (BMD) and enable clinicians to
assess an individual's fracture risk. While the utility of bone density tests in diagnosing
osteoporosis is well-established, their effectiveness in preventing fractures remains a topic
of ongoing research and debate.

This manuscript aims to investigate the impact of bone density tests on fracture prevention
among ADRD and non-ADRD Medicare beneficiaries, exploring their potential as a valuable
tool in reducing fracture incidence, enhancing clinical decision-making, and formulating
preventive strategies. Drawing from the existing literature and analyzing claims data
obtained from the Centers for Medicare and Medicaid Services (CMS), this study seeks to
shed light on the crucial role of bone density tests in the realm of fracture prevention,
ultimately contributing to evidence-based healthcare practices and improved patient
outcomes.

ADRD is an independent risk factor for fracture, hence the importance of investigating the
occurrence of fracture in both ADRD and non-ADRD populations, and trace comparisons
between the two groups. Several independent risk factors in ADRD patients have been
associated with increased fracture risk. Cognitive decline was found to be independently
associated with bone loss in a prospective population-based study employing mixed-effect
models (Bliuc et al., 2021). In turn, bone loss, characterized by decreased bone density and
strength, causes bones to be more susceptible to fractures (Keating et al., 2005).
Furthermore, there is a well-established association between mobility decline and
worsening dementia in individuals with ADRD. As dementia progresses, it often leads to

various cognitive impairments, affecting memory, thinking, and problem-solving abilities.



Simultaneously, physical abilities, including mobility and gait, tend to deteriorate (Tolea et
al., 2016). As the cognitive and physical impairments progress in individuals with ADRD,
balance dysfunction becomes more prevalent and can significantly impact their overall well-
being and safety (Hill, 2009). These factors found in ADRD, as cognitive impairment, balance
issues and mobility limitations, can all lead to increased fracture risk.

Beyond factors that are related to ADRD, there exist other independent risk factors, or
comorbidities, that have been associated with increased fracture risk. These risk factors
include rheumatoid arthritis (Xue et al., 2017), diabetes mellitus (Valderrabano et al., 2018),
chronic pulmonary disease (lonescu et al., 2003), bone cancer (Tsuzuki, 2017), lung cancer
(Oliveira et al., 2018), cancer to the liver (Vestergaard et al., 2009), bladder cancer (Gupta et
al., 2014), prostate cancer (Melton et al., 2012), cardiovascular disease (Veronese et al.,
2017) and chronic kidney disease (Nickolas et al., 2008).

Bone density tests have an important role in the evaluation of individuals at risk of
osteoporosis, and in helping clinicians advise patients about the appropriate use of
osteoporosis treatment (Blake et al., 2007). Bone density tests have been confirmed as an
effective tool for fracture prevention in selected populations (Suarez-Almazor et al., 2022)
but no study to date has directly investigated the effect of bone density tests in effectively
reducing hip fracture risk in the ADRD population.

Studying fracture occurrences in ADRD and non-ADRD populations not only sheds light on
the vulnerability of dementia patients to fractures but also emphasizes the importance of
targeted preventive interventions for this at-risk group. This study investigates the effect of
bone density testing in reducing risk of hip fracture in the US Medicare population with a
diagnosis of Alzheimer’s disease and related dementia, taking into account observed
comorbidities at the time of the intervention. We further include an analysis on the non-

ADRD population to elucidate different causal patterns across different groups.

Methods

We used a weighted linear regression to estimate the impact of DXA on risk of hip and femur

fracture. Weighting by odds was used to estimate the average treatment effect (ATT). With

weighting by the odds, treated individuals receive a weight equal to 1 and comparison



individuals receive a weight equal to their propensity score (pi), converted to the odds scale
(= pi/ (1 —pi) (Hirano et al., 2003). This weighting effectively up-weights comparison
individuals whose measured covariate values (propensity scores) best match those of the
treated individuals and down-weights comparison individuals whose measured covariate
values are dissimilar from treated individuals. One way of thinking about weighting by the
odds is that the comparison individuals are first weighted to the entire population, using 1 /
(1 - pi), and are then weighted to the treatment group, using pi. (Harder et al, 2010).
Propensity scores were estimated using the psmatch2 command in Stata 17. This command
employs a logistic regression model, where the treatment assignment serves as the
dependent variable. The relevant covariates, determined based on the examined literature,
were included as independent variables. The estimated propensity scores represent the
probability of receiving the treatment conditional on the observed covariates.

To assess the comparability of treated and control samples, we computed the standardized
difference between treated and control groups across variables. Balance diagnostics were
conducted using the psbalance command in Stata. The psbalance command examines the
distribution of covariates between the treated and control groups after weighting and
provides statistical tests and graphical displays to assess balance. The balance diagnostics
ensure that the weighted groups are comparable and reduce the potential for bias due to
confounding. We assumed that an acceptable standardized difference would be lower than
10% (Austin, 2008). The functional form of the psmatch2 model was modified by including
interaction terms and higher order polynomials until satisfactory standardized differences

were obtained for all variables.

Finally, the ATT was estimated using the weighted sample. The differences in the outcome
variable between the treated and control groups were computed and tested for statistical
significance using a t-test. Sensitivity analyses were also conducted to examine the
robustness of the results and assess the potential impact of unobserved confounders and
individual-level fixed effects were included in the model to control for time-invariant
unobservables.

To allow for an estimation of the likelihood of fracture occurring after the bone density test
in both treated and untreated groups, the following algorithm was implemented. First, for

each year in the observation period, the distribution of treatment dates in the treated
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sample was tabulated. Then, in the untreated sample, a numerical variable was created
using a random number generator and the sample was sorted. The tabulated treatment
dates distribution from the treated group was assigned to the sorted untreated sample. The
process was repeated iteratively for all months included in the observation period. By doing
so, treatment dates based on the distribution of treatment dates from the treated sample
were assigned to the untreated group. Random assignment of treatment dates in the
untreated was therefore constrained to the treatment dates distribution in the treated
population. Finally, to ensure standard errors were adjusted for the random assignment of
treatment dates, we implemented the procedure inside a bootstrap algorithm with
replacement with 10,000 iterations over the entire analytical sample.

This method allowed for the estimation of the ATT, ensuring reliable causal inferences about

the treatment’s impact on the outcome variable.

Data

To identify the ADRD sample, we first considered all Medicare beneficiaries with at least one
ADRD ICD-9/10 claim in the five-year period from 2014 to 2018, based on the ICD-9/10
codes in Albrecht (2019), resulting in 45,396 beneficiaries. Then, we restricted the sample to
those that were continuously enrolled in the 5-year period, looking at whether they had at
least one claim in each of the years considered. This resulted in a sample of 26,535
beneficiaries. Finally, to limit potential reverse causality bias, we excluded all beneficiaries
that ever had an osteoporosis medication prescription before their first bone density test on
records. The final ADRD sample consisted of 20,262 Medicare beneficiaries.

We used a similar approach to identify the non-ADRD analytical sample. We first considered
all Medicare beneficiaries with at least one non-ADRD ICD-9/10 claim in the observation
period, resulting in 1,197,810 beneficiaries. Then, we restricted the sample to those who
had at least one claim in each of the five years in the observation period, resulting in
863,497 beneficiaries. Finally, we excluded those who had an osteoporosis medication
prescription prior to their osteoporosis test. The final non-ADRD analytical sample consisted

of 631,305 beneficiaries.



Results

Table 1 shows the covariate means stratified by treatment status and weighted by odds.
Standardized differences were used to determine whether the treated and control samples
are comparable. Several covariates had a standardized difference higher than 10% in the
crude unweighted sample. At the time of DXA, average age had a standardized difference of
-12.11%. Sex had a standardized difference of -49.15%. Black or African American ethnicity
had a standardized difference of -11.96%. Breast cancer and prostate cancer had
standardized differences of 17.99% and -11.84%, respectively. Cataract diagnoses had a
standardized difference of 17.43%. Congestive heart failure had a a standardized difference
of -11.19%. Hyperlipidemia had a standardized difference of 12.05%. Hyperplasia had a a
standardized difference of -34.64%. Osteoporosis had a standardized difference of 44.22%.
Rheumatoid arthritis and osteoarthritis had a standardized difference of 16.08%. After
weighting by odds, the two groups became comparable, as all standardized differences were
below the threshold of 10%. Hip or femur fracture was the variable with the highest
standardized difference after weighting, equal to -7.28%. The standardized differences
suggest that treated and untreated groups were balanced after weighting by odds of
treatment. The common support graph is shown in Figure Al in the Appendix, providing a

visual representation of the balance achieved after weighting by odds.

Table 1. Bootstrap weighted means, with standardized differences, ADRD beneficiaries. 2

Crude Adjusted
Untreated Treated Standardized Untreated Treated Standardized
(N=16,429) (N=3,833) difference (N=16,429) (N=3,832) difference
Mean Mean A Mean Mean A

Demographics:
Age 80.67 79.33 -.1211 78.92 79.31 .0327
Male .4000 1171 -.4915 .1146 1172 .0056
Black or African American .2600 .1944 -.1196 .1964 .1944 -.0035
Comorbidities:
Acute myocardial infarction .0890 .0681 -.0572 .0727 .0681 -.0128
Anemia .8285 .8072 -.0391 .8172 .8072 -.0181
Asthma .1667 .2069 .0731 .2110 .2069 -.0071
Atrial fibrillation .2584 .2285 -.0492 .2284 .2286 .0003

Cancer, breast .0534 1255 .1799 .1282 .1255 -.0056



Cancer, colorectal .0428 .0425 -.0009 .0414 .0425 .0039

Cancer, endometrial .0075 .0125 .0358 .0114 .0125 .0076
Cancer, lung .0190 .0198 .0043 .0203 .0198 -.0024
Cancer, prostate .0697 .0329 -.1184 .0314 .0329 .0061
Cataract .7937 .8836 .1743 .8808 .8836 .0063
Congestive heart failure .5247 4459 -.1119 .4556 4460 -.0136
Chronic kidney disease .6009 .5573 -.0626 .5692 .5572 -.0171
Chronic obstructive

pulmonary disease 4476 4263 -.0303 4335 4264 -.0101
Depression .7146 7172 .0041 7294 7171 -.0194
Diabetes .5313 4720 -.0841 4865 4721 -.0204
Glaucoma .2706 .3063 .0557 .3028 .3064 .0055
Hyperlipidemia .8738 .9249 .1205 9273 .9248 -.0067
Hyperplasia .2661 .0851 -.3464 .0819 .0851 .0081
Hypertension .9599 9611 .0045 .9632 9611 -.0076
Hypothyroidism 14011 4688 .0969 4741 4687 -.0077
Ischemic heart disease 7213 .7096 -.0184 7161 .7096 -.0102
Osteoporosis .2698 .5640 4422 .5770 .5639 -.0187
Rheumatoid arthritis and

osteoarthritis .7885 .8732 .1608 .8768 .8734 -.0072
Transient ischemic attack .4080 3741 -.0491 .3867 .3742 -.0183

Excluded comorbidities

Hip or femur fracture .1303 1231 -.0151 .1590 1232 -.0728

aVariable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the
difference between the means divided by the standard deviation of treated and untreated groups. Comorbidities refer to
events occurring before the bone density test date. Excluded comorbidities were not used in the calculation of the
propensity scores.

Table 2 shows the crude and the adjusted sample means with standardized differences for
the non-ADRD analytical sample. As with the ADRD sample, after weighting by odds, the
standardized differences decreased below the threshold of 10% in all instances. Hip fracture
was not used in the calculation of propensity scores but, after including all other variables
and weighting by odds of treatment, it maintained a standardized difference of 5.70%, below
the threshold of 10%, thus allowing for comparison between untreated and treated groups.
The common support graph is shown in Figure A2 in the Appendix. By comparing the
information in Table 1 and Table 2, it can be noticed that treated ADRD beneficiaries were on
average older than non-ADRD beneficiaries (79.33 vs 71.93) and had a significantly higher

prevalence of pre-intervention hip and femur fracture (12.31% vs 2.34%).



Table 2. Bootstrapped weighted means, with standardized differences, non-ADRD beneficiaries ®

Crude Adjusted
Untreated Treated Standardized Untreated Treated Standardized
(N=530,834) (N=100,471) difference (N=530,834) (N=100,471) difference
Mean Mean A Mean Mean A
Demographics:
Age 68.96 71.93 .1919 72.7400 71.9298 -.0540
Male .5293 .0926 -.7566 .0846 .0926 .0199
Black or African American .2959 .1991 -.1596 .1950 .1991 .0074
Comorbidities:
Acute myocardial
infarction .0366 .0361 -.0021 .0372 .0361 -.0041
Anemia .3649 .5783 .3094 .6091 .5783 -.0443
Asthma .0921 1677 .1601 1746 1677 -.0130
Atrial fibrillation .0928 .1360 .0962 1447 .1360 -.0177
Cancer, breast .0222 .1103 .2545 .1236 .1103 -.0293
Cancer, colorectal .0186 .0266 .0380 .0285 .0266 -.0082
Cancer, endometrial .0035 .0114 .0653 .0127 .0114 -.0087
Cancer, lung .0097 .0148 .0330 .0161 .0148 -.0071
Cancer, prostate .0420 .0193 -.0931 .0182 .0193 .0062
Cataract .3894 .7537 .5599 .7706 .7537 -.0281
Congestive heart failure 1931 .2543 .1041 2712 .2543 -.0272
Chronic kidney disease .2397 .3646 .1941 .3849 .3646 -.0296
Chronic obstructive
pulmonary disease .1988 .2902 1512 .3089 .2902 -.0289
Depression 2719 4312 .2394 4485 4312 -.0246
Diabetes .2981 .3822 .1259 .3975 .3822 -.0221
Glaucoma .1365 .2462 .1991 .2581 .2462 -.0195
Hyperlipidemia .5495 .8621 .5163 .8792 .8621 -.0361
Hyperplasia .1524 .0517 -.2384 .0474 .0517 .0142
Hypertension .6364 .8738 4061 .8958 .8738 -.0486
Hypothyroidism .1613 .3790 .3577 14011 .3790 -.0320
Ischemic heart disease .3576 .5034 .2104 .5219 .5034 -.0263
Osteoporosis .0668 4463 .6821 .4800 4463 -.0479
Rheumatoid arthritis and
osteoarthritis 14001 7347 .5075 .7607 7347 -.0423
Transient ischemic attack .1055 .1580 .1101 .1678 .1580 -.0189
Excluded comorbidities
Hip or femur fracture .0198 .0234 -.0411 .0164 .0136 -.0570

aVariable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the
difference between the means divided by the standard deviation of treated and untreated groups. Comorbidities refer to
events occurring before the bone density test date. Excluded comorbidities were not used in the calculation of the
propensity scores.

Table 3 shows the probability of hip fracture in a cohort of Medicare beneficiaries with a

diagnosis of ADRD compared to those without ADRD. The table includes two sets of



probabilities: unweighted and adjusted treatment effects (ATT) for both ADRD and non-
ADRD groups, continuously enrolled from 2014 to 2018. The probabilities are associated
with bone density tests and are presented with their corresponding confidence intervals (Cl).
The baseline probabilities for both ADRD and non-ADRD groups are also provided. The
coefficients in the table were calculated using linear regression models with bootstrap
standard errors and weighted by odds. The models controlled for demographics,
comorbidities, and pre-treatment outcome variables. Beneficiaries outside the area of
common support were excluded from the analysis.

We found that in our sample having had a bone density test was associated with a reduced
subsequent risk of hip fracture. After applying to the outcome a factor of one thousand, the
intervention was associated with a reduction of .542 percentage points (-1.246 to -.312) in
the probability of ever having had a fracture during the observation period for ADRD
beneficiaries, or a 30.09 percent decrease over baseline. On the other hand, the
intervention was associated with a reduction of .114 percentage points (-.214 to -.022) in the
probability of ever having had a fracture during the observation period for non-ADRD

beneficiaries, or a reduction of 33.92% over baseline value.

Table 3. Probabilities of hip fracture in the observation period ?

ADRD Non-ADRD

Unweighted ATT Unweighted ATT
Bone density test b -.542 -.585 -.121 -.114
(Normal-based 95% Cl) (-1.246 to -.312) (-1.352 to -.144) (-.415 to -.135) (-.214 to -.022)
Baseline © 1.945 1.944 .336 .336
% increase over baseline -27.86 -30.09 -36.01 -33.92
person-months 1,215,720 1,215,660 37,878,300 37,878,300
N 20,262 20,261 631,305 631,305

a Coefficients were calculated using linear regression models with bootstrap standard errors and weighting by odds. All
regression models controlled for demographics, time-fixed effects, comorbidities and pre-treatment outcome variables.
Beneficiaries outside the area of common support were excluded from the analysis, hence the differences in N.

b The outcome variable was rescaled by a factor of 1,000 to ease readability of coefficients.

¢ Mean hip fracture probability in untreated

To shed light on the causal pathway linking bone density test and decreased likelihood of hip
and femur fractures, we investigated the effect of the intervention on osteoporosis
medications prescription. Table 4 presents the probabilities of osteoporosis medication
prescription in the observation period for ADRD and non-ADRD beneficiaries. The table

includes two sets of probabilities: unweighted and adjusted treatment effects (ATT) for both



ADRD and non-ADRD groups. The probabilities are associated with bone density tests and
are presented with their corresponding confidence intervals (Cl).

The coefficients in the table were calculated using linear regression models with bootstrap
standard errors and weighted by odds. The regression models controlled for demographics,
comorbidities, and pre-treatment outcome variables. Beneficiaries outside the area of
common support were excluded from the analysis. The outcome variable, representing the
probability of osteoporosis medication prescription, was rescaled by a factor of 1,000.
Results are significant and in the expected direction for both the ADRD (.016 to .021) and the
non-ADRD (.046 to .107) samples. The baseline probabilities for both ADRD and non-ADRD
groups are set to zero since all beneficiaries with an osteoporosis medication prescription in

the pre-period were excluded from the analysis.

Table 4. Probabilities of osteoporosis medication prescription in the observation period, ADRD beneficiaries ®

ADRD Non-ADRD

Unweighted ATT Unweighted ATT
Bone density test b .031 .020 .065 .077
(Normal-based 95% Cl) (.029 to .033) (.016 to .021) (.042 to .093) (.046 to .107)
Baseline ¢ 0 0 0 0
% increase over baseline - - - -
person-months 1,215,720 1,215,660 37,878,300 37,878,300
N 20,262 20,261 631,305 631,305

a Coefficients were calculated using linear regression models with bootstrap standard errors and weighting by odds. All
regression models controlled for demographics, comorbidities and pre-treatment outcome variables. Beneficiaries outside
the area of common support were excluded from the analysis, hence the differences in N.

b The outcome variable was rescaled by a factor of 1,000 to ease readability of coefficients.

¢ All beneficiaries with an osteoporosis medication prescription in the pre-period were excluded from the analysis.

Discussion

This study builds upon existing literature and provides robust evidence supporting the
benefits of bone density tests in Medicare beneficiaries with dementia. Consistent with prior
research, our findings demonstrate that bone density tests are associated with a significant
reduction in hip fracture risk among individuals with dementia. This association underscores
the importance of early identification of individuals at a higher risk of fractures, allowing for
targeted preventive measures and interventions to mitigate the substantial burden of hip
fractures in this vulnerable population.

Moreover, our study contributes to the growing body of evidence highlighting the positive

impact of bone density tests on osteoporosis treatment implementation in individuals with



dementia. Our findings align with previous studies and suggest that bone density testing
serves as a catalyst for appropriate management and treatment of osteoporosis in this
population. By identifying those at risk and initiating timely interventions, bone density tests
can potentially improve the healthcare outcomes of individuals with dementia and reduce
the associated morbidity and mortality.

We used an inverse probability of treatment effects estimator with weighting by odds,
combining outcome regression with weighing by propensity score, and we applied a
bootstrap program with replacement to ensure that random assignment of treatment dates
in the untreated group would not introduce estimation bias in the results. This approach is
meant to produce robust estimates. However, there are several limitations that should be
considered when evaluating the results. First, the propensity scores were calculated using
observable variables which were available in the Centers for Medicare and Medicaid Services
dataset. In the regression model, we were only able to control for observables. We limited
potential bias in our estimates introduced by unobservables, by controlling for individual-
level fixed effects, but we cannot exclude unobserved heterogeneity between beneficiaries
that received the intervention and those who did not. If more advantaged patients were
more likely to receive the bone density scan, and had lower propensity towards the
likelihood of hip fracture in the post-treatment period, then our results are biased away
from zero. Another limitation is that our observation period was limited to five years only,
which may reduce our capability to explore any effects of the intervention occurring beyond
this period. Finally, the limited observation period may have limited our ability to correctly
identify and exclude from the sample all those beneficiaries that had ever received an
osteoporosis medication prescription at the time of the treatment. However, we mitigated
this potential bias by including pre-treatment osteoporosis diagnosis in the propensity

scores calculation used in the weighted sample.

Conclusion

Taken together, our study reinforces the significance of incorporating bone density testing
strategies into routine care for Medicare beneficiaries with dementia. The observed
associations between bone density tests, reduced hip fracture risk, and increased

prescription of osteoporosis medications highlight the potential of these tests to enhance



the overall healthcare management of this vulnerable population. Future research should
focus on exploring the cost-effectiveness and long-term outcomes of implementing bone
density testing strategies in individuals with dementia, further strengthening the evidence

base for informed clinical decision-making and policy development.
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Appendix
Figure A1. Common support graph in ADRD analytical sample
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PAPER 3

Interpretable machine learning in Alzheimer's disease: a Forward Sparse-Group Lasso model

Abstract

Stochastic classification problems in Alzheimer's disease can be used to identify biomarkers
of cognitive decline within a set of labelled brain regions of interest (ROls). Using normalized
fMRI data, we propose a novel classification algorithm designed as a linear combination of
Sparse-Group Lasso and AUC-based forward selection models. The proposed approach,
deemed forward sparse group lasso (FSGL), combines regularization methods with forward
selection on a validation set, and uses set theory on joint distributions to identify predictors
of disease staging. Statistical tests suggest that our FSGL algorithm improves prediction
accuracy over the naive SGL algorithm implementation. We demonstrated that in this
application FSGL can achieve a significantly better performance than SGL. Consistent with
previous literature, we further demonstrate that this approach could identify right
hippocampal subiculum and presubiculum to be the most significant unique predictors of

severe Alzheimer’s disease progression.

Keywords: regularization, forward selection, Alzheimer’s disease, hippocampal asymmetry



Introduction

Appropriate disease staging is crucial to inform timely therapy and adequate patient
management in Alzheimer’s disease. Identifying the most relevant disease progression
predictors in cross-sectional data can improve diagnostic accuracy in case of high censoring
or short observation period (Therriault et al., 2022). When machine learning is employed in
the context of clinical decision making, interpretable algorithms are essential to discern

crucial predictors, aiding comprehension of influential factors driving model decisions.

Interpretable machine learning holds a paramount significance in modern data-driven
domains due to its pivotal role in deciphering the underlying insights within complex
predictive models. In the realm of data science, where intricate algorithms are employed to
analyse and predict outcomes, the ability to interpret these models is crucial for
understanding the factors driving predictions. By unveiling the "black box" nature of
advanced algorithms, interpretable machine learning provides valuable insights into the
relationships between variables and the decision-making process of the model (Molnar,
2020). This transparency not only enhances our understanding of the model's inner
workings but also fosters trust and acceptance among stakeholders, facilitating informed
decision-making in clinical settings.

At the heart of interpretable machine learning lies the imperative to identify significant
predictors accurately. In a multitude of applications, the goal is not solely to make
predictions, but also to understand which variables contribute the most to those predictions.
In the context of healthcare, pinpointing the influential factors enables clinicians to focus
their attention on specific variables that have the most impact (Ahmad et al., 2018). This
knowledge aids in allocating resources efficiently, designing targeted interventions, and
tailoring strategies that leverage the most salient features. Without interpretability, the risk
of relying on arbitrary or irrelevant predictors could lead to misguided decisions that fall

short of capturing the true essence of the problem at hand.

Dimensionality reduction plays a significant role in enhancing the interpretability of machine
learning models. In complex datasets with numerous features, it can be challenging to grasp
the relationships and influences driving predictions. By reducing the number of features,

these methods create a simplified representation that is easier to visualize and comprehend,



thus aiding in the interpretation of model behavior. Dimensionality reduction and features
selection have been widely employed in several disease areas to predict likelihood of disease
or disease progression. Li et al. (2016) illustrated an approach to signal processing and
feature selection for atrial fibrillation detection in a noisy environment. Du et al. (2022)
developed a feature selection model to assist clinicians in screening at risk patients who may
benefit from early gestational diabetes prevention strategies. Jain et al. (2018) presented a
comprehensive overview of various feature selection methods for chronic disease
prediction. Polat et al. (2017) assessed wrapper and filter approaches for feature selection
and dimensionality reduction in a chronic kidney disease dataset. Dimensionality reduction
and features selection have found several other applications, including in the domains of
genomics (Hauskrecht et al., 2007; Xing et al., 2001) and brain segmentation and

classification (Kong et al., 2014; Zhang et al., 2011).

Several methods have been proposed to select the most important features in disease
classification problems. Of these, regularization methods have gained popularity as some of
the most reliable methods for features selection. Several regularization techniques have
been proposed. These methods are commonly used in machine learning and statistics to
handle high-dimensional data and perform feature selection by introducing regularization
penalties. They are particularly useful when dealing with situations where the number of

features is large compared to the number of observations.

Lasso stands for "Least Absolute Shrinkage and Selection Operator.” It is a regularization
technique that adds the absolute values of the coefficients as a penalty term to the loss
function during model training (Tibshirani, 1996). In standard linear regression, the goal is to
find the coefficients that minimize the sum of squared differences between predicted and
actual values. However, when there are correlated predictors, the estimated coefficients can
become sensitive to small changes in the data, leading to unstable and inaccurate
predictions. Lasso regression introduces a regularization term to the traditional linear
regression objective function. L1 regularization adds the absolute values of the coefficients
to the loss function, encouraging sparsity in the feature selection, effectively shrinking some
coefficients to exactly zero. Lasso is particularly useful for feature selection because it tends
to select a subset of the most important features, making the resulting model more

interpretable and reducing the risk of overfitting. (1)
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Ridge regression, also known as Tikhonov regularization or L2 regularization, is a linear
regression technique designed to address multicollinearity or high correlation between
predictor variables, and prevent overfitting in predictive models (Hoerl et al., 2000). The
regularization term is proportional to the square of the magnitude of the coefficients,
effectively constraining their values to smaller but non-zero coefficients. By doing so, ridge
regression encourages the model to not only fit the data but also to keep the coefficients
small. This has the effect of shrinking the coefficients of less influential predictors towards

zero, which can help mitigate the impact of multicollinearity and reduce model complexity.

(2)
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Elastic-Net combines both L1 (Lasso) and L2 (Ridge) regularization. It addresses some of the

Where

limitations of Lasso, such as selecting only one variable among highly correlated variables
(Zou et al., 2005). Elastic-Net allows for both feature selection (sparse solutions) and
handling multicollinearity by adding a combination of L1 and L2 penalties to the loss
function. The balance between L1 and L2 penalties is controlled by a parameter, allowing for

flexible tuning. (3)
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Group Lasso extends Lasso to incorporate grouping information among features. Instead of
penalizing individual coefficients, it penalizes entire groups of coefficients together (Yuan et
al, 2006). This is particularly useful when features are naturally grouped, such as in

genomics, where genes often belong to the same pathways or biological processes. Group



Lasso encourages feature selection at the group level, effectively selecting entire groups of

features, which can help capture higher-level relationships in the data. (4)
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Sparse Group Lasso combines the principles of both Group Lasso and Lasso. It extends the
concept of group sparsity to include individual feature sparsity within each group (Simon et
al., 2013). This allows for simultaneous selection of relevant groups and individual features
within those groups. Sparse Group Lasso is beneficial when you want to capture both the

overall structure of groups and the specific importance of individual features. (5)
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Forward selection is a feature selection technique commonly used in machine learning and
statistics. It involves building a predictive model iteratively by adding one feature at a time
from a pool of available features (Sutter et al., 1993). The primary objective of forward
selection is to incrementally identify the most relevant and informative features that
contribute to the predictive power of the model while aiming to improve model

performance.

The main steps of forward selection can be described as follows. (i) Initialization: the process
starts with an empty set of selected features. (ii) candidate feature selection: all available
features that have not yet been selected are considered as candidates. The algorithm
evaluates the potential of each candidate feature to improve the model's performance. (iii)
Feature evaluation: for each candidate feature, a model is trained using the currently
selected features along with the candidate feature. The model's performance is evaluated
using a predefined metric such as accuracy, mean squared error, or another appropriate
metric depending on the problem. (iv) Feature selection: the candidate feature that leads to
the most significant improvement in model performance is selected and added to the set of
selected features. This step is crucial, as it focuses on identifying features that contribute the
most to the model's predictive power. (v) Iteration: steps 3 and 4 are repeated iteratively,
with the algorithm evaluating the remaining candidate features and selecting the one that

provides the most improvement in performance. This process continues until a stopping



criterion is met, such as reaching a predefined number of selected features or observing a
decline in performance improvement. (vi) Final model: once the iteration is complete, the
selected set of features forms the final feature subset for the model. This subset is used to

build the final predictive model, which can be evaluated on unseen data.

In this paper, we propose a method to identify clinically relevant features for Alzheimer’s
disease staging using pairwise classification models on disjoint cross-sectional sets and we
provide clinical interpretation and validation. The objective of this work is to describe a
method to retain the minimum number of clinically relevant Alzheimer’s disease predictors
while preserving model accuracy. The method we propose, deemed forward sparse-group
lasso (FSGL), is a linear combination of sparse-group lasso and forward selection, and it
makes use of an external validation set in the iteration algorithm. We demonstrate that FSGL

is superior to the naive sparse-group lasso (SGL) implementation in this application.

Univariate feature selection has several limitations when used on its own. In this work,
however, we show its potential when used in combination with state-of-the-art
regularization methods and an external validation set. We discuss the findings and provide
an interpretation of the underlying biological mechanisms. Finally, we highlight the
limitations of the proposed approach in the context of the identification of significant ROIs in

Alzheimer’s disease progression.

Methods

Sparse group lasso inherently encourages sparsity in feature selection, but combining it with
a forward selection step allows for a more granular selection of features. This stepwise
approach can help fine-tune and select specific subsets of features, potentially leading to a
more interpretable final model.

In Sparse Group Lasso, if correlated features belong to the same group, the penalty imposed
by the group lasso encourages sparsity within these groups, effectively selecting only a
subset of features from each group. By penalizing entire groups, it indirectly addresses
correlation within those groups. However, there is no way to instruct SGL to select a certain

feature over another highly correlated feature. The process of selecting, within a set of



highly correlated features, the most important ones to be retained in the model is inherently
random and can possibly exclude relevant features for clinical evaluation and diagnosis.

The method we propose is a linear combination of sparse-group lasso (SGL) and a univariate
forward selection loop on an external validation set, deemed forward sparse-group lasso
(FSGL). This method allows to restore potential clinically relevant features excluded by
sparsity in the SGL selection process.

The minimization problem is the one of a naive SGL with a further condition. The set of
selected features F in the FSGL model must be include r rows and g* columns, whereas the
naive SGL implementation includes the same rows and g columns. The FSGL set of features
FFSGLis a subset of the SGL feature set F5¢t.

The FPCL features set is initialized to be identical to the F°¢ features set and the iteration
counter k is initialized to be equal to 0. At every new iteration, an additional feature g” is
added until the value of the object function J becomes lower than or equal to the value of

the same function in the previous iteration. (6)
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We chose logistic regression as a putative classifier in the base model to avoid possible
confounding effects due to hyperparameters settings, which might be present in other

classifiers (e.g. SVM). To test the value of the object function in iteration k + 1 against the



same in iteration k, we use the area under the precision-recall curve (AUC-PR), because it is
an appropriate metric to identify relevant features in that it is insensitive to class imbalance

(Saito et al., 2015).

The forward sparse group lasso algorithm, therefore, is a procedure that aims to identify the
locally optimal selection of features g* including the subset of sparse group lasso features,
plus additional features that marginally improve the AUC metric. The dataset is split into
train, validation and test. Then, each of the components is normalized by subtracting the
mean and dividing by the standard deviation. The naive results are calculated by fitting the
model using all available features. Iterations are run over the sparse group lasso (SGL)
penalty parameter and the SGL algorithm is used for features selection. The best SGL
selection of features is identified using a validation set. Results for SGL are calculated on the
test set. Finally, additional features are iteratively added on to the SGL selection until the
AUC value in a given iteration k is higher than the AUC value in the previous iteration k-1 in
the validation set. Results for the forward sparse group lasso (FSGL) are calculated on the
test set using the identified selection of features. Algorithm 1 describes the procedure to

obtain the locally optimal set of features denoted as FfXSg*L.

Algorithm 1 Forward Sparse-Group Lasso Algorithm

1: procedure F0F

2 for random state in random(l, 1000000, size = 50000)) {

3 # dataset split: train/validation/test

4: X train, x validataion, x test = split (0.8, 0.1, 01, random state)
5: # normalize data

6: subtract.mean (train, validataion, test)

7 divide.std(train, validataion, test)

8: # calculate naive results (training vs test, all features)
9: model.fit (x train, y train)

10: model.predict (x_test) => Naive AUC (test set)

11: # select SGL features

12:  SGL AUC list = []

13: for penalty in random(0, 1, size = 100) {

14: x train SGL selected = SGL(x train, penalty)

15: model.fit (x train SGL selected, y train)

16: model.predict (x_validation) = SGL AUC (validation set)
17: SGL AUC list = SGL AUC list.append (SGL AUC)

18: }

19: sorted SGL AUC list = sort(SGL_AUC list, ascending = FALSE)
20: Fx = x_train SGL selected.sorted SGL AUC list[[1]]

21: # calculate SGL results (training vs test, SGL features)
22: model.fit (Fx, y train)

23: model.predict(x test) = SGL AUC (test set)

24: # forward selection loop

25:  FSGL AUC list = []

26: k =0

27 while Fk.AUC > Fk_l.AUC

28: for each g in colnames(x train) if g not in colnames (Fyx) {
29: Fx = Fx.append(q)




30: model.fit (Fx, y train)

31: model.predict (x_validation) => FSGL AUCyx (validation set)
32: FSGL AUC list = FSGL _AUC list.append(FSGL_AUC)

33: }

34: sorted FSGL AUC list = sort(FSGL AUC list, ascending = FALSE)
35: Fx = Fx.sorted FSGL AUC list[[1]]

36: if FSGL AUCkx < FSGL AUCk: {

37: return (Fx)

38: }

39: k=k+1

40: # calculate FSGL results (training vs test, FSGL features)
41: model.fit (Fx, y train)

42 model.predict (x_test) = FSGL AUC (test set)

43:  FEF = By

44: }

45: end of procedure

46: return (Fffgf)

Data

We used the UCSF - Cross-Sectional FreeSurfer (5.1) dataset available from ADNI. The
dataset consists of 4,896 observations and 341 brain imaging features from ADNI1, ADNI GO
and ADNI2. We restricted our sample to observations from ADNI2 only, obtaining a sample
of 4,202 observations. Next, we dropped 269 observations that failed the overall quality
check, resulting in 3,933 observations. We then merged the dataset with the ADNIMERGE
dataset to obtain the current diagnosis at the time of the brain scan. We dropped 837
observations that could not be matched or that resulted in missing diagnosis, obtaining a
sample of 3,096 observations. We sorted the observations by patient ID and exam date, and
kept only the first observation for each subject, which resulted in 935 unique subjects. We
dropped 5 subjects that were missing multiple variables. Finally, we dropped 11 variables
that were missing multiple subjects. Our final dataset is comprised of 930 unique subjects
and 330 brain imaging features and 1 labels outcome variable. The diagnoses were as
follows: 319 cognitively normal (CN), 459 mild cognitive impairment (MCl) and 152 dementia
(AD).

All 330 brain imaging features were comparted into six groups, selected based on ROls
anatomical regions on the UCSFFSX51_DICT_08_01_14 data dictionary from ADNI: frontal
lobe, temporal lobe, parietal lobe, occipital lobe, limbic system and subcortical areas, insular

cortex.



We then split the dataset in two parts, holding 20% of observations from each class in a
separate dataset used for external validation. The final dataset consists of 255 CN, 367 MCI
and 122 AD subjects. The external validation dataset includes 64 CN, 92 MCl and 30 AD
subjects.

Table 1 describes the analytical sample. Average age was 73.04 in the CN sample, 71.90 in
the MCl sample and 74.07 in the AD sample. Female patients were 54.71% in the CN sample,
43.42 in the MCl sample and 38.09 in the AD sample. In the CN sample, 6.28% of the
patients were Black or African American, 2.19% in the MCl sample and 2.72% in the AD
sample. Those who had never gotten married were 5.66% in the CN sample, 3.07% in the
MCI sample and 0.68% in the AD sample. Patients in the CN sample had 16.58 years of
education, those in the MCl sample 16.18 years and those in the AD sample 15.75 years. The
ADAS13 average score was 8.83 in the CN sample, 14.76 in the MCl sample and 30.01 in the
AD sample. The number of patients with one APOE €4 alleles were 27.35% in the CN sample,
36.84% in the MCl sample and 49.65% in the AD sample, while the number of patients with
two APOE €4 alleles were 2.20% in the CN sample, 9.86% in the MCl sample and 20.40% in

the AD sample.

Table 1. Analytical sample descriptive statistics

Diagnosis
CN MCI AD

Age 73.04 71.90 74.07
Female 0.5471 0.4342 0.3809
Black or African American 0.0628 0.0219 0.0272
Never married 0.0566 0.0307 0.0068
Education (years) 16.58 16.18 15.75
ADAS13 score 8.83 14.76 30.01
Number of APOE €4 alleles:

Zero 0.7044 0.5328 0.2993
One 0.2735 0.3684 0.4965
Two 0.0220 0.0986 0.2040

N 319 459 152




Results

Table 1 presents the mean number of features and AUC over 50,000 model iterations for
three distinct pairwise comparisons. In the HC vs AD comparison, the SGL algorithm
identified 26.05 (+ 16.47) significant features achieving an average AUC of 93.06% (+ 4.07%),
while the FSGL model identified 28.08 (+ 16.79) significant features, achieving an average
AUC equal t0 93.38% (+ 3.97%). In the HC vs MCI comparison, the SGL algorithm identified
25.97 (+ 26.35) significant features achieving an average AUC of 63.92% (+ 6.31%), while the
FSGL model identified 29.89 (+ 26.88) significant features, achieving an average AUC equal to
64.10% (+ 6.84%). In the MCl vs AD comparison, the SGL algorithm identified 24.89 (+ 21.86)
significant features achieving an average AUC of 79.82% (+ 6.41%), while the FSGL model
identified 28.68 (+ 22.36) significant features, achieving an average AUC equal to 80.06% (+
5.87%). On a Welch'’s t-test, all three models had a p-value lower than 0.0001, rejecting the
null hypothesis of FSGL AUC mean being equal or lower than SGL AUC mean.

In the HC vs AD classification algorithm, the most frequently added features in the FSGL
model were right parahippocampal surface area, right parahippocampal cortical volume and
right paracentral thickness average. In the HC vs MClI classification algorithm, the most
frequently added features in the FSGL model were third ventricle subcortical volume, right
choroid plexus subcortical volume and right superior parietal cortical volume. Finally, in the
MCI vs AD classification algorithm, the most frequently added features in the FSGL was right
parahippocampal cortical volume, right cerebellum subcortical volume and left transverse

temporal thickness average.



Table 1. Mean number of features, AUC, standard deviation, and t-test results of FSGL and

reference models

HC vs AD HC vs MCI MCl vs AD
SGL FSGL NAIVE SGL FSGL NAIVE SGL FSGL
Number of Features 26.05 28.08 330 25.97 29.89 330 24.89 28.68
(std. dev.) (16.47) (16.79) (0.00) (26.35) (26.88) (0.00) (21.86) (22.36)
AUC 0.9306 0.9338 0.6045 0.6392 0.6410 0.8110 0.7982 0.8006
(0.0407) (0.0397) (0.0727) (0.0631) (0.0684) (0.0657) (0.0641) (0.0587)
p<0.0001 p<0.0001 p<0.0001
Most frequently 'ST103SA' (4.76%) 'ST127SV' (2.52%) 'ST103CV' (2.51%)

added feature

Second most
frequently added
feature

'ST103CV' (2.88%)

'ST8OSV' (1.92%)

'ST77SV' (2.14%)

Third most
frequently added
feature

'ST102TA' (2.80%)

'ST116CV' (1.67%)

'ST62TA' (2.06%)

Notes: AUC=Area under the ROC curve; standard deviation in brackets. Statistical t-tests conducted on 50,000
iterations results. Frequency of additional features utilization in FSGL model in brackets. 'ST103SA'" - Surface Area
(aparc.stats) of RightParahippocampal, 'ST103CV' - Cortical Volume (aparc.stats) of RightParahippocampal,
'ST102TA' - Thickness Average (aparc.stats) of RightParacentral, 'ST127SV' - Subcortical Volume (aseg.stats) of
ThirdVentricle, 'ST80SV' - Subcortical Volume (aseg.stats) of RightChoroidPlexus, 'ST116CV' - Cortical Volume
(aparc.stats) of RightSuperiorParietal, 'ST77SV' - Subcortical Volume (aseg.stats) of RightCerebellum, 'ST62TA' -
Thickness Average (aparc.stats) of LeftTransverseTemporal

Table 2 shows the probability of ranking among the top three most important features in the

HC vs AD classification over 50,000 runs of the model. Left presubiculum ranked first in

47.84% of cases, second in 48.24% of cases and third in 3.92% of occurrences. Left

subiculum ranked third in 12.24% of cases. Right presubiculum ranked second in 0.96% of

cases and third in 10.00% of cases. Left hippocampus ranked first in 2.96% of cases, second

in 15.92% of cases and third in 64.00% of cases. Right hippocampus ranked third in 2.96% of

times. Right entorhinal ranked first in 49.20% of times, second in 34.88% of times, and third

in 6.88% of times.



Table 2. Probability (%) of ranking among the top three most important features in FSGL HC
vs AD
classification model

HCvs AD

ROIs First Second  Third
ST136HS Presubiculum L 47.84 48.24 3.92
ST137HS Subiculum L - - 12.24
ST144HS Presubiculum R - 0.96 10.00
ST29SV Hippocampus L 2.96 15.92 64.00
ST88SV Hippocampus R - - 2.96
ST83TA Entorhinal R 49.20 34.88 6.88
TOTAL 100.00 100.00 100.00

Table 3 shows the probability of ranking among the top three most important features in the
HC vs MCI classification over 50,000 runs of the model. Left lateral occipital ranked second
0.76% of cases, left superior frontal ranked third in 2.48% of cases, right lateral occipital
ranked third in 0.76% of cases, right superior parietal ranked third in 1.24% of cases, left
presubiculum ranked third in 2.76% of cases. Left subiculum ranked first in 12.76% of cases,
second in 42.48% and third in 15.80% of cases. Left tail ranked first in 1.24% of cases. Left
posterior cingulate ranked third in 1.24% of cases. Right precuneus ranked third in 1.24% of
cases. Left hippocampus ranked first in 56.48% of cases, second in 31.72% of cases, and third
in 11.80% of cases. Left inferior lateral ventricle ranked third in 0.76% of cases. Right
hippocampus ranked third in 4.00% of cases. Right inferior lateral ventricle ranked first in
23.04% of cases, second in 11.04% of cases and third in 33.52% of cases. Right thalamus
ranked second in 1.24% of cases. Left postcentral ranked third in 0.76% of cases. Right
entorhinal ranked first in 6.48% of cases, second in 12.76% of cases and third in 14.96% of

cases.



Table 3. Probability (%) of ranking among the top three most important features in FSGL HC
vs MClI
classification model

ROIs HC vs MCI

First Second Third
ST35CV LateralOccipital L - 0.76 -
ST56CV SuperiorFrontal L - - 2.48
ST94CV LateralOccipital R - - 0.76
ST116CV SuperiorParietal R - - 1.24
ST136HS Presubiculum L - - 2.76
ST137HS Subiculum L 12.76 42.48 15.80
ST138HS Tail L 1.24 - 8.68
ST50SA PosteriorCingulate L - - 1.24
ST111SA Precuneus R - - 1.24
ST29SV Hippocampus L 56.48 31.72 11.80
ST30SV InflLateralVentricle L - - 0.76
ST88SV Hippocampus R - - 4.00
ST89SV InfLateralVentricle R 23.04 11.04 33.52
ST120SV Thalamus R - 1.24 -
ST49TA Postcentral L - - 0.76
ST83TA Entorhinal R 6.48 12.76 14.96
TOTAL 100.00 100.00 100.00

Table 4 shows the probability of ranking among the top three most important features in the
MCI vs AD classification over 50,000 runs of the model. Left presubiculum ranked first in
49.16% of runs, second in 33.36% of runs and third in 14.64% of runs. Right presubiculum
ranked first in 25.36% of cases, second in 25.80% of cases, third in 8.84% of cases. Right
subiculum ranked third in 1.68% of cases. Left amygdala ranked second in 2.00% of cases
and third in 6.52% of cases. Right cerebellum ranked third in 2.32% of cases. Right temporal
pole ranked third in 2.00% of cases. Left fusiform ranked second in 1.16% of cases. Left
middle temporal ranked first in 9.16% of cases, second in 8.20% of cases, third in 22.32% of
cases. Right entorhinal ranked first in 16.32% of cases, second in 28.32% of cases, and third
in 40.84% of cases. Right inferior parietal ranked second in 1.16% of cases. Left banks of the

superior temporal sulcus ranked third in 0.84% of cases.



Table 4. Probability (%) of ranking among the top three most important features in FSGL MCI
vs AD

classification model

ROIs MCl vs AD

First Second Third
ST136HS Presubiculum L 49.16 33.36 14.64
ST144HS Presubiculum R 25.36 25.80 8.84
ST145HS Subiculum R - - 1.68
ST12SV Amygdala L - 2.00 6.52
ST77SV Cerebellum R - - 2.32
ST119TA TemporalPole R - - 2.00
ST26TA Fusiform L - 1.16 -
STAOTA MiddleTemporal L 9.16 8.20 22.32
ST83TA Entorhinal R 16.32 28.32 40.84
ST90TA InferiorParietal R - 1.16 -
ST13TS Bankssts L - - 0.84
TOTAL 100.00 100.00 100.00

Figure 1 represents the joint probabilities of ranking first over 150,000 algorithm runs, in
three pairwise comparisons. Left hippocampal subcortical volume (7.68%), hippocampal
subfields volume of left subiculum (4.25%) and hippocampal subfields volume of left tail
(0.41%) ranked first in the HC vs MClI classification model only. Subcortical volume of left
hippocampus (19.81%) ranked first in the HC vs MCl and the HC vs AD models. Hippocampal
subfields volume of right presubiculum (8.45%) and thickness average of left middle
temporal (3.05%) ranked first in the MCl vs AD classification model only. Hippocampal
subfields volume of left presubiculum (32.33%) ranked first in both MCl vs AD and HC vs AD
set. Thickness average of right entorhinal (24.01%) ranked first in all three models.
Therefore, the four predictors of mild disease are identified in the HC vs MCl set not
included in the MCI vs AD set: left hippocampal subcortical volume, hippocampal subfields
volume of left subiculum, hippocampal subfields volume of left tail and subcortical volume
of left hippocampus. Similarly, the three predictors of severe disease are identified in the
MCI vs AD set not included in the HC vs MCI set: hippocampal subfields volume of right
presubiculum, thickness average of left middle temporal and hippocampal subfields volume
of left presubiculum. Brain networks representing these relationships are represented in
Figure 2: yellow dots represent predictors associated with milder disease, red dots represent
predictors associates with more severe disease, whereas orange dots are shared nodes in
the network. Figure S1-S6 in the appendix provide similar information in relation to the joint

probabilities of ranking second and third in 150,000 model iterations: similar patterns are



highlighted, with right hippocampus volume variation being uniquely and significantly

associated with more severe disease.

Figure 1. Joint probabilities of ranking first over 150,000 iterations

Mild disease

HC vs MCI HC vs AD

ST29SV
[19.81%]

ST89SV [7.68%]
ST137HS [4.25%]
ST138HS [0.41%]

ST83TA
[24.01%)]

ST136HS

[32.33%)]

ST144HS [8.45%]
ST40TA [3.05%]

Severe disease

MCI vs AD

Notes:

ST29SV - Subcortical Volume (aseg.stats) of LeftHippocampus. -25.03 -20.74 -10.13 [Song, 2019]

STAOQTA - Thickness Average (aparc.stats) of LeftMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011]

ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018]

ST89SV - Subcortical Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *]

ST136HS - Hippocampal Subfields Volume of LeftPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *]
ST137HS - Hippocampal Subfields Volume of LeftSubiculum. -20.00, -19.00, -17.00 [Palomero-Gallagher, 2020 *]
ST138HS - Hippocampal Subfields Volume of LeftTail. -25.00, -35.00, -1.00 [Rorden, 2007 *]

ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020]
The asterisk "*" indicates further authors' elaboration on referenced publication.



Figure 2. First-ranking ROIs distribution in Axial, Sagittal and Coronal views
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Notes. Clockwise from top to bottom left: Axial, Sagittal and Coronal views. The brain
networks were generated using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia
et al., 2013). Red dots represent ROIs associated with more severe disease. Yellow dots
represent ROIs associates with milder disease.

Simulated Data Experiment

Finally, a simulated experiment was executed to replicate the feature selection
process within a dataset containing a blend of clinically significant variables
exhibiting strong correlations with other statistically significant variables.

A dataset comprising 10000 observations and 400 variables was created. The

variables were synthetized to emulate ADNI fMRI data ranges and distributions.



Within this dataset, 100 variables were chosen at random to have a highly correlated
paired feature labelled as clinically significant. As a result, specific variables were
identified as clinically significant, while the remaining variables retained their initial
randomized nature. Figure 3 shows the correlation matrix of all 430 features. It
displays the correlation coefficients between variables. Each cell in the matrix
represents the correlation between two variables. The correlation coefficient
quantifies the strength and direction of the linear relationship between two variables.
It ranges between -1 and 1, where 1 indicates a perfect positive linear relationship (as
one variable increases, the other also increases proportionally). -1 indicates a perfect
negative linear relationship (as one variable increases, the other decreases
proportionally). 0 indicates no linear relationship between the variables.

The diagonal contains perfect correlations (always 1) since it compares the variables

with themselves and with their ‘clinically significant’ copies.

Figure 3. Synthetic Data Correlation Matrix
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SGL algorithm was applied to introduce sparsity and identify relevant features.
Similarly, FSGL was used to identify the significant features, using SGL and a
combination of univariate forward selection steps, as described above. Iterations
were set to be equal to 1,000. Within the pool of selected features, those labelled
‘clinically significant” were counted and standard error computed.

SGL algorithm identified 9.64 (Cl: 7.81 to 11.46) clinically relevant features while FSGL
could identify 12.33 (Cl: 10.74 to 13.91) clinically relevant features.

Figure 4. Clinically relevant features identified by FSGL and SGL
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Discussion and Limitations

In this study, we introduced a novel algorithm, designed as a linear combination of the
regularization method sparse group lasso (SGL) and a sequential forward selection step on
an external validation set, and deemed it Forward Sparse Group Lasso (FSGL). We showed
that this method improves the prediction accuracy of the model significantly across the
three models considered. We then utilized the results of pairwise diagnoses classification
models within a set theory framework to identify predictors that are exclusively associated
with either milder or more severe disease. Further, we illustrated in a synthetic dataset the

ability of FSGL to identify a greater number of clinically relevant features with respect to SGL.



This suggests that the approach we proposed is particularly useful when there exist clinically
significant features that are highly correlated with other statistically significant features, and
hence may be discarded by the SGL regularization algorithm. The introduction of a forward
selection step addresses this issue by restoring clinically significant features in the pool of

variables used for clinical assessment and disease staging.

In this sample of 930 ADNI participants, including 152 AD patients, 459 MCl and 319
cognitively normal individuals, left hippocampus atrophy was linked to both mild and severe
cognitive decline: we identified both left and right hippocampi volume to be strong
predictors of disease. However, right hippocampus atrophy was the most frequent unique
predictor of progression from MCI to AD: we identified right hippocampus volume, in the
subiculum and presubiculum subfields, to be uniquely associated with full-blown
Alzheimer’s disease. This is consistent with the clinical observation of the fact that deficits in
verbal memory are usually seen in the MCI stage, associated with left hippocampal volume
(Bonner-Jackson et al., 2015), whereas deficits in visual memory, associated with right

hippocampal volume (Huang et al., 2022), usually present themselves at later stages.

These findings are supported by other peer-reviewd studies. In a stepwise discriminant
analysis predicting progression to Alzheimer's disease, Galton et al. (2005) found that left
hippocampus atrophy was associated with a 63.6% sensitivity while right hippocampus
atrophy was associated with a 90.9% sensitivity. In a study on MCI to AD progression,
Herukka (2008) found that the volume of right hippocampus exhibited sensitivity of 87.5%,
while the volume of the left hippocampus had a sensitivity of 75.0%. In a magnetic
resonance study analyzing MCI progression of 220 subjects, right presubiculum subfield
volume was not significantly different between the negative controls and the non-converting
MCI group, but it was significantly different between the negative controls and the

converting MCl group (Guo et al., 2020).

In Bottino et al. (2002), left hippocampus volume could significantly differentiate between
MCI and HC and also between MCI and AD; right hippocampus volume could identify AD
versus MCI, but was not significant in predicting HC versus MCI. Bozzali et al. (2006) found a

reduction in gray matter density in the right hippocampus, but not in the left hippocampus,



in MCI converters as opposed to nonconverters. Similarly, Chételat et al. (2005) found the
right posterior hippocampus to be a significant predictor of MCl progressors versus MCI
stable patients. Himaladinen et al. (2007) found the right hippocampus to be a predictor of
conversion in MCI patients, but a similar pattern was not identified with respect to the left
hippocampus. In Petrella et al. (2006), the authors found decreased activity in the left

hippocampus of MCI participants as compared with HC, but not in the right hippocampus.

The proposed approach combines regularization methods with forward selection on a
validation set, and uses set theory on joint distributions to identify predictors of disease
staging. The proposed approach can be computationally efficient for small to medium-sized
feature sets and can provide insights into the relative importance of different features.
However, this approach also has several limitations: it might lead to suboptimal solutions if
the order in which features are added affects the final selection. It does not consider the
interactions between features, which can limit its effectiveness in capturing complex

relationships.

Other limitations of this approach include the fact that FSGL requires more computational
resources and it is slower than SGL, although this could become more sustainable with the
increasing computational power and decreasing costs of HPC machines. Also, forward
selection is best applied only when the initial number of features is reduced, e.g. using PCA
or using ROIs instead of voxel-level brain data. Another important limitation resides in the
fact that SGL, on which FSGL is built, randomly chooses which variable(s) to drop among a
group of correlated variables, which could have potentially unpredictable implications for
the clinical validity of the findings and the generalizability of the method in clinical settings.
However, as a proof of concept, although computationally intensive, this method can

achieve a better performance than the state-of-the-art approach.

Conclusion

In this work, we have used a novel algorithm, deemed forward sparse group lasso (FSGL), as

a linear combination of sparse group lasso (SGL) and forward selection on a validation set, to



then identify predictors of disease staging within a set theory framework. We demonstrated
that in this application FSGL can achieve a significantly better performance than SGL.
Consistent with previous literature, we further demonstrated that this approach was able to
identify right hippocampal subiculum and presubiculum to be the most significant and

unique predictors of severe Alzheimer’s disease progression.



Appendix

Figure S1. Most important features: probability of ranking second over 150,000 iterations

Mild disease

HC vs MCI HC vs AD

ST137HS [14.16%]
ST89SV [3.68%]
ST120SV [0.41%]

ST35CV [0.25%]

ST295V
[15.88%]

ST83TA
[25.32%]

ST144HS
[8.92%]

ST136HS [27.20%]
STA0TA [2.73%]
ST125V [0.67%]
ST26TA [0.39%]
ST9OTA [0.39%]

Severe disease

MCIvs AD

Notes:

ST120SV - Subcortical Volume (aseg.stats) of RightThalamus. 6, -16, -6 [Androulakis, 2017]

ST12SV - Subcortical Volume (aseg.stats) of LeftAmygdala. -18, -4, -12 [Peters, 2013]

ST136HS - Hippocampal Subfields Volume of LeftPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *]
ST137HS - Hippocampal Subfields Volume of LeftSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *]
ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *]
ST26TA - Thickness Average (aparc.stats) of LeftFusiform. -29, -57, -14 [Zhang, 2016]

ST29SV - Subcortical Volume (aseg.stats) of LeftHippocampus. -25.03, -20.74, -10.13 [Borchardt, 2015]

ST35CV - Cortical Volume (aparc.stats) of LeftLateralOccipital. -30, -90, 6 [Heckendorf, 2016]

STAOQTA - Thickness Average (aparc.stats) of LeftMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011]

ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018]

ST89SV - Subcortical Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *]

ST90TA - Thickness Average (aparc.stats) of RightInferiorParietal. 52, -42, 50 [Rojas, 2018]



Figure S2. Second-ranking ROIs distribution in Axial, Sagittal and Coronal views

Notes. Clockwise from top to bottom left: Axial, Sagittal and Coronal views. The brain
networks were generated using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia
et al., 2013)



Figure S3. Joint probability of ranking third most important feature over 150,000 iterations

Mild disease

HC vs MCI

HC vs AD

ST295V
[25.27%]

ST89SV [11.17%]
ST138HS [2.89%]

STS6CV [0.83%] ST137HS
ST1115A [0.41%] [9.35%]
ST116CV [0.41%] ST88SV

ST50SA [0.41%] [2.32%]
ST30SV [0.25%]
ST49TA [0.25%]

ST94CV [0.25%]

ST83TA
[20.89%]
ST136HS
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ST144HS
[8.45%]

ST125V [2.17%]
STAOTA [7.44%)]
ST119TA [0.67%]
ST13TS [0.28%]

ST145HS [0.56%)]
ST775V [0.77%]

Severe disease

MCI vs AD

Notes:

ST111SA - Surface Area (aparc.stats) of RightPrecuneus. 0, -49, 40 [Androulakis, 2017]

ST116CV - Cortical Volume (aparc.stats) of RightSuperiorParietal. 30, -55, 58 [Li, 2012]

ST119TA - Thickness Average (aparc.stats) of RightTemporalPole. 52, 20, -18 [Androulakis, 2017]

ST12SV - Subcortical Volume (aseg.stats) of LeftAmygdala. -18, -4, -12 [Peters, 2013]

ST136HS - Hippocampal Subfields Volume of LeftPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *]
ST137HS - Hippocampal Subfields Volume of LeftSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *]
ST138HS - Hippocampal Subfields Volume of LeftTail. -25.00, -35.00, -1.00 [Rorden, 2007 *]

ST13TS - Thickness Stardard Deviation (aparc.stats) of LeftBankssts. -53, -51, 14 [Pitcher, 2020]

ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *]
ST145HS - Hippocampal Subfields Volume of RightSubiculum. 19.5, -17.5, -35 [Palomero-Gallagher, 2020 *]
ST29SV - Subcortical Volume (aseg.stats) of LeftHippocampus. -25.03, -20.74, -10.13 [Borchardt, 2015]
ST30SV - Subcortical Volume (aseg.stats) of LeftinferiorLateralVentricle. -20, -25, 35 [Rorden, 2007 *]

STAOTA - Thickness Average (aparc.stats) of LeftMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011]
STA9TA - Thickness Average (aparc.stats) of LeftPostcentral. -42.46, -22.63, 48.92 [Borchardt, 2015]

ST50SA - Surface Area (aparc.stats) of LeftPosteriorCingulate. 1, -61, 38 [Hur, 2021]

ST56CV - Cortical Volume (aparc.stats) of LeftSuperiorFrontal. -18.45 34.81 42.2 [Borchardt, 2015]

ST77SV - Subcortical Volume (aseg.stats) of RightCerebellumWM. 12 -66 -48 [Stoodley, 2012]

ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018]

ST88SV - Subcortical Volume (aseg.stats) of RightHippocampus. 29.23 -19.78 -10.33 [Borchardt, 2015]
ST89SV - Subcortical Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *]
ST94CV - Cortical Volume (aparc.stats) of RightLateralOccipital. [Heckendorf, 2016]

The asterisk "*" indicates further authors' elaboration on referenced publication.



Figure S4. Third-ranking ROIs distribution in Axial, Sagittal and Coronal views

Notes. Clockwise from top to bottom left: Axial, Sagittal and Coronal views. The brain
networks were generated using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia
et al.,, 2013)



Figure S5. Joint probability of ranking in the first three most important features over 150,000
iterations
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ST34TA [0.09%]
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Notes:

ST111SA - Surface Area (aparc.stats) of RightPrecuneus. 0, -49, 40 [Androulakis, 2017]

ST116CV - Cortical Volume (aparc.stats) of RightSuperiorParietal. 30, -55, 58 [Li, 2012]

ST119TA - Thickness Average (aparc.stats) of RightTemporalPole. 52, 20, -18 [Androulakis, 2017]

ST120SV - Subcortical Volume (aseg.stats) of RightThalamus. 6, -16, -6 [Androulakis, 2017]

ST12SV - Subcortical Volume (aseg.stats) of LeftAmygdala. -18, -4, -12 [Peters, 2013]

ST136HS - Hippocampal Subfields Volume of LeftPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *]
ST137HS - Hippocampal Subfields Volume of LeftSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *]
ST138HS - Hippocampal Subfields Volume of LeftTail. -25.00, -35.00, -1.00 [Rorden, 2007 *]

ST13TS - Thickness Stardard Deviation (aparc.stats) of LeftBankssts. -53, -51, 14 [Pitcher, 2020]

ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *]
ST145HS - Hippocampal Subfields Volume of RightSubiculum. 19.5, -17.5, -35 [Palomero-Gallagher, 2020 *]
ST26TA - Thickness Average (aparc.stats) of LeftFusiform. -29, -57, -14 [Zhang, 2016]

ST29SV - Subcortical Volume (aseg.stats) of LeftHippocampus. -25.03 -20.74 -10.13 [Borchardt, 2015]
ST30SV - Subcortical Volume (aseg.stats) of LeftinferiorLateralVentricle. -20, -25, 35 [Rorden, 2007 *]
ST35CV - Cortical Volume (aparc.stats) of LeftLateralOccipital. -30, -90, 6 [Heckendorf, 2016]

STAOTA - Thickness Average (aparc.stats) of LeftMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011]
STA9TA - Thickness Average (aparc.stats) of LeftPostcentral. -42.46, -22.63, 48.92 [Borchardt, 2015]

ST50SA - Surface Area (aparc.stats) of LeftPosteriorCingulate. 1, -61, 38 [Hur, 2021]

ST56CV - Cortical Volume (aparc.stats) of LeftSuperiorFrontal. -18.45 34.81 42.2 [Borchardt, 2015]

ST77SV - Subcortical Volume (aseg.stats) of RightCerebellumWM. 12 -66 -48 [Stoodley, 2012]

ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018]

ST88SV - Subcortical Volume (aseg.stats) of RightHippocampus. 29.23 -19.78 -10.33 [Borchardt, 2015]
ST89SV - Subcortical Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *]
ST90TA - Thickness Average (aparc.stats) of RightInferiorParietal. 52, -42, 50 [Rojas, 2018]

ST94CV - Cortical Volume (aparc.stats) of RightLateralOccipital. 40, -72, -10 [Heckendorf, 2016]



Figure S6. Third-ranking ROIs distribution in Axial, Sagittal and Coronal views

Notes. Clockwise from top to bottom left: Axial, Sagittal and Coronal views. The brain
networks were generated using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia
et al., 2013)
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