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This work is a collec.on of three manuscripts that use novel methodological approaches in 

causal inference and dimensionality reduc.on on different classes of Alzheimer’s disease 

data. The overarching aim of this disserta.on is to inves.gate complementary perspec.ves 

that may improve the health of the popula.on affected by Alzheimer’s disease and related 

demen.as, which is deemed to grow in number and public health relevance globally in the 

near future.  

The first manuscript inves.gates the opportunity for drug repurposing of 

acetylcholinesterase inhibitors, a medica.on normally prescribed to Alzheimer’s pa.ents, in 

the treatment of certain cardiovascular disease. The second manuscript evaluates the effect 

of dual x-ray absorp.ometry bone density scans on the likelihood of subsequent hip fracture 

in the Alzheimer’s disease popula.on, where osteoporosis is a highly incident comorbidity. 

The third manuscript presents an algorithm for dimensionality reduc.on and an applica.on 

of set theory on pairwise classifica.on problems to iden.fy significant predictors of 

Alzheimer’s disease progression. 

The novelty of this work lies in the use of random treatment date genera.on, in combina.on 

with random sampling with replacement, to es.mate the average treatment effect on the 

treated in the first two manuscripts. In the third manuscript, a novel algorithm is presented, 

which improves performance over the sparse-group lasso by adding a forward selec.on step 

on an external valida.on set of features. 

Taken together, this work aims to contribute to the methodological advancement of 

sta.s.cal approaches for coefficient es.ma.on in the context of causal inference, as well as 

to the empirical iden.fica.on of elements that can be translated into ac.onable policies, on 

one hand, or u.lized in clinical seFngs as part of diagnos.c biomarkers, on the other. 
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PAPER 1 

Drug repurposing in Alzheimer’s disease: the case of acetylcholinesterase inhibitors use for 

acute coronary syndrome preven.on 

 

Abstract 

Alzheimer’s disease (AD) is the most common cause of demen.a, a neurodegenera.ve 

disease that affects cogni.ve func.ons, including memory, speech and mobility. In Louisiana, 

heart disease, including acute coronary syndrome (ACS), is oUen an incident comorbidity of 

AD pa.ents. Exploring the opportunity for drug repurposing, we used Louisiana Medicare 

claims data to es.mate the average treatment effect on the treated (ATT) of 

acetylcholinesterase inhibitors (ChEIs) prescrip.on on the likelihood of subsequent ACS. We 

found that in our sample ChEIs decreased the likelihood of filing an ACS claim during the 

observa.on period by 0.56 percentage points (-.0056; CI: -.0091 to -.0021), or -6.18% over 

baseline value. Results are sta.s.cally significant and robust across all models, stra.fied 

over outpa.ent and inpa.ent claim types, and successfully passed placebo tests. This 

evidence should be considered in clinical decisions regarding ChEIs u.liza.on and further 

assessed in pa.ents with and without Alzheimer’s disease and related demen.a diagnoses. 

 

Keywords: drug repurposing, acetylcholinesterase inhibitors, Alzheimer’s disease, acute 

coronary syndrome 

 

 

 

 

 

 

 

 

 

 

 



Introduc7on 

Alzheimer’s disease (AD) is the most common cause of demen.a, a neurodegenera.ve 

disease that affects cogni.ve func.ons, including memory, speech and mobility (Kumar, 

2022). It is es.mated that in 2022 as many as 6.5 million Americans were living with 

Alzheimer’s disease (CDC). Lower natality rates, extended lifespan, and the resul.ng ageing 

popula.on will foster this trend in the future. OUen, AD pa.ents have comorbidi.es that 

may worsen their clinical condi.on further. Wang (2018a) found that mul.morbidity is 

common in AD, and may be par.ally due to common risk factors, as depression, 

cardiovascular disease, osteoporosis, and diabetes mellitus. Also, AD and heart disease have 

common risk factors:  Stampfer (2006) showed that cardiovascular risk factors are also risk 

factors for demen.a, including hypertension, high LDL cholesterol, low HDL cholesterol and 

especially diabetes.  

Although there s.ll is no cure for AD, acetylcholinesterase inhibitors (ChEIs) are a drug 

commonly prescribed to Alzheimer’s disease and other demen.a pa.ents to curb the 

symptoms of the cogni.ve decline. Acetylcholinesterase inhibitors inhibit 

acetylcholinesterase and hence increase cholinergic transmission. Acetylcholinesterase 

inhibitors func.on to decrease the breakdown of acetylcholine and increase both the levels 

and dura.on of ac.ons of acetylcholine found in the central and peripheral nervous system 

(Colović, 2013). Three drugs belonging to this class have been approved by FDA to treat AD 

so far: donepezil (Aricept), rivas.gmine (Exelon), and galantamine (Razadyne). They are also 

used off-label for other causes of demen.a such as Lewy body and vascular demen.a. 

Drug repurposing describes the iden.fica.on of new ‘off-label’ medica.ons that can be used 

for a disease or medical condi.on that they are not formally approved to treat. In this 

regard, previous studies have associated ChEIs use with reduced risk of heart disease. Using 

claims data from the Na.onal Health Insurance Database in Taiwan, Wu and colleagues 

(2015) found use of ChEIs to be associated with a lower incidence of acute coronary 

syndrome (ACS) compared to the matched reference cohort, with an adjusted hazard ra.o 

for ACS in AD pa.ents treated with ChEIs equal to 0.836 (95% confidence interval, 0.750 to 

0.933; p < 0.001). Isik's meta-analysis and systema.c review (2018) found that ChEIs therapy 

may be associated with nega.ve chronotropic and hypertensive effects but also with lower 

risk of cardiovascular events. In a sample of 6,070 pa.ents with AD, Hsiao et al. (2021) found 

that ChEIs users had a significantly lower risk of cardiovascular events than nonusers (hazard 



ra.o: 0.57; 95% CI: 0.51 to 0.62). In a propensity score matching (PSM) study using data 

from the Na.onal Health Insurance Research Database of Taiwan, Hsieh et al. (2022) found 

that ChEIs users exhibited a significantly lower incidence of new-onset heart failure 

compared with untreated (HR 0.48; 95% CI 0.34–0.68, p < 0.001). 

The objec.ve of this study is to evaluate the associa.on between ChEIs prescrip.on and the 

likelihood of subsequent ACS in a sample of Louisiana Medicare beneficiaries. This is the first 

study of its kind to be conducted on the Louisiana Medicare popula.on. The results of this 

study are relevant given the high incidence of both demen.a and heart disease in the 

elderly popula.on of Louisiana. The findings of this study add an important contribu.on to 

the literature inves.ga.ng the effect of ChEIs on ACS risk. 

 

Methods 

We used propensity score methods for bias reduc.on to compare treatment group to a non-

randomized control group, as described in Dehejia (2002) and D’Agos.no (1998). We then 

used a weighted linear regression to es.mate the impact of ChEIs on risk of ACS. Weigh.ng 

by odds was used to es.mate the average treatment effect on the treated (ATT). With 

weigh.ng by the odds, treated individuals receive a weight equal to 1 and comparison 

individuals receive a weight equal to their propensity score (ρi), converted to the odds scale 

(= ρi / (1 – ρi) (Hirano et al., 2003). This weigh.ng effec.vely up-weights comparison 

individuals whose measured covariate values (propensity scores) best match those of the 

treated individuals and down-weights comparison individuals whose measured covariate 

values are dissimilar from treated individuals. One way of thinking about weigh.ng by the 

odds is that the comparison individuals are first weighted to the en.re popula.on, using 1 / 

(1 – ρi), and are then weighted to the treatment group, using ρi. (Harder et al, 2010). 

Propensity scores were es.mated using the psmatch2 command in Stata 17. This command 

employs a logis.c regression model, where the treatment assignment serves as the 

dependent variable. The relevant covariates, determined based on the examined literature, 

were included as independent variables. The es.mated propensity scores represent the 

probability of receiving the treatment condi.onal on the observed covariates. 

To assess the comparability of treated and control samples, we computed the standardized 

difference between treated and control groups across variables. Balance diagnos.cs were 

conducted using the psbalance command in Stata. The psbalance command examines the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936698/#R24


distribu.on of covariates between the treated and control groups aUer weigh.ng and 

provides sta.s.cal tests and graphical displays to assess balance. The balance diagnos.cs 

ensure that the weighted groups are comparable and reduce the poten.al for bias due to 

confounding. We assumed that an acceptable standardized difference would be lower than 

10% (Aus.n, 2008). The func.onal form of the psmatch2 model was modified by including 

interac.on terms and higher order polynomials un.l sa.sfactory standardized differences 

were obtained for all variables. 

 

Finally, the ATT was es.mated using the weighted sample. The differences in the outcome 

variable between the treated and control groups were computed and tested for sta.s.cal 

significance using a t-test. Sensi.vity analyses were also conducted to examine the 

robustness of the results and assess the poten.al impact of unobserved confounders and 

individual-level fixed effects were included in the model to control for .me-invariant 

unobservables. 

To allow for an es.ma.on of the likelihood of fracture occurring aUer the bone density test 

in both treated and untreated groups, the following algorithm was implemented. First, for 

each year in the observa.on period, the distribu.on of treatment dates in the treated 

sample was tabulated. Then, in the untreated sample, a numerical variable was created 

using a random number generator and the sample was sorted. The tabulated treatment 

dates distribu.on from the treated group was assigned to the sorted untreated sample. The 

process was repeated itera.vely for all months included in the observa.on period. By doing 

so, treatment dates based on the distribu.on of treatment dates from the treated sample 

were assigned to the untreated group. Random assignment of treatment dates in the 

untreated was therefore constrained to the treatment dates distribu.on in the treated 

popula.on. Finally, to ensure standard errors were adjusted for the random assignment of 

treatment dates, we implemented the procedure inside a bootstrap algorithm with 

replacement with 10,000 itera.ons over the en.re analy.cal sample. 

This method allowed for the es.ma.on of the ATT, ensuring reliable causal inferences about 

the treatment’s impact on the outcome variable. 

To confirm the internal validity of our findings, we conducted a placebo test by running the 

same regressions on outcomes that were hypothesized to be unaffected by ChEIs use. To 



perform this test, we sampled from the universe of Louisiana Medicare beneficiaries with AD 

and analysed all inpa.ent and outpa.ent claims where ICD9/10 codes were unrelated to 

heart disease, cardiovascular disease, or Alzheimer’s disease. Finally, we es.mated the 

probability of filing an inpa.ent or outpa.ent claim following ChEIs treatment. 

 

Data 

Our data is drawn from the Louisiana Medicare beneficiaries popula.on. We obtained 

Medicare claims data from the Centers for Medicare & Medicaid Services (CMM) and we 

restricted our sample to beneficiaries who were con.nuously enrolled from 2014 to 2018, 

stra.fying over inpa.ent and outpa.ent data. In total, 45,396 pa.ents with AD were 

selected, based on the ICD-9/10 codes in Albrecht (2019). Then, we restricted our sample to 

those beneficiaries that filed at least one AD-related claim every year, from 2014 to 2018. A 

subset of 26,535 con.nuously enrolled beneficiaries was kept. Finally, pa.ents were 

included in the final analy.cal sample if their es.mated probability of receiving treatment 

were falling within the area of common support in the propensity score matching algorithm. 

The average age of the beneficiaries included in the study was 78.32 years in the treated 

group and 78.74 years in the untreated group. Females were 69.27% in the treated group 

and 61.65% in the untreated group. Black or African American beneficiaries were 26.02% in 

the treated group and 23.30% in the untreated group. As for comorbidi.es, in the treated 

group 7.93% ever had an acute myocardial infarc.on diagnosis at the .me of ChEIs 

treatment, 82.58% ever had anemia, 17.19% asthma, 23.82% atrial fibrilla.on, 6.79% breast 

cancer, 4.06% colorectal cancer, 0.96% endometrial cancer, 1.58% lung cancer, 5.38% 

prostate cancer, 81.10%  cataract, 50.78% conges.ve heart failure, 58.22% chronic kidney 

disease, 44.21% chronic obstruc.ve pulmonary disease (COPD), 74.36% depression, 52.24% 

diabetes, 27.41% glaucoma, 13.07% hip or femur fracture, 88.81% hyperlipidemia, 20.25% 

hyperplasia, 96.14% hypertension, 41.93% hypothyroidism, 71.05% ischemic heart disease, 

36.69% osteoporosis,  80.43% rheumatoid arthri.s and 39.56% transient ischemic aOack. In 

the treated group, at the .me of treatment, 31.54% ever had a cholesterol medica.on 

prescrip.on, 12.44% a diabetes medica.on prescrip.on and 27.30% an an.-hypertension 

medica.on prescrip.on. 

Finally, in the treated group, 4.53% of the overall sample had a pre-ChEIs ACS diagnosis. 

 



Results 

Table 1 shows the covariate means stra.fied by treatment status and weigh.ng. 

Standardized differences are included. In the crude, unweighted, sample, the only covariate 

with a standardized difference exceeding the 10% threshold was sex, as female accounted 

for 69.27% of the sample in the treated popula.on and 61.65% in the untreated, with a 

standardized difference of 11.37%. However, aUer weigh.ng by odds, the two groups 

became comparable. In the adjusted weighted sample, all demographics and comorbidi.es 

covariates had a standardized difference below 1%. Standardized difference in pre-ChEIs ACS 

was 1.99% in the overall sample, 1.29% in the inpa.ents sample and 2.26% in the outpa.ent 

sample. 

 

Table 1. Bootstrap weighted means with standardized differences, by treatment status and weigh9ng. a 

 

Model Crude Adjusted 

 
Untreated 
(N=10,902) 

Treated 
(N=15,633) 

Standardized 
difference 

Untreated  
(N=10,901) 

Treated  
(N=15,631) 

Standardized 
difference 

 Mean Mean Δ Mean Mean Δ 

Demographics:       
Age 78.32 78.74 .0322 78.66 78.62 -.0022 

Age above 80 .4551 .4379 -.0245 .4370 .4379 .0012 
Female .6165 .6927 .1137 .6919 .6927 .0013 

Black or African American .2330 .2602 .0446 .2592 .2602 .0016 
 
Comorbidi2es:       

Acute myocardial infarcRon .0874 .0793 -.0207 .0794 .0793 -.0002 
Anemia .8212 .8258 .0085 .8244 .8258 .0027 
Asthma .1755 .1719 -.0066 .1718 .1719 .0003 

Atrial fibrillaRon .2650 .2382 -.0438 .2377 .2382 .0007 
Cancer, breast .0656 .0679 .0065 .0676 .0679 .0006 

Cancer, colorectal .0442 .0406 -.0126 .0404 .0406 .0007 
Cancer, endometrial .0084 .0096 .0086 .0096 .0096 .0000 
Cancer, lung .0233 .0158 -.0383 .0159 .0158 -.0007 

Cancer, prostate .0701 .0538 -.0478 .0541 .0538 -.0009 
Cataract .7956 .8110 .0274 .8107 .8110 .0007 

CongesRve heart failure .5126 .5078 -.0068 .5063 .5078 .0020 
Chronic kidney disease .6002 .5822 -.0258 .5819 .5822 .0004 

COPD .4509 .4421 -.0125 .4418 .4421 .0005 
Depression .6847 .7436 .0923 .7438 .7436 -.0003 
Diabetes .5153 .5224 .0101 .5222 .5224 .0003 

Glaucoma .2700 .2741 .0066 .2746 .2741 -.0007 
Hip fracture .1387 .1307 -.0164 .1300 .1307 .0016 

Hyperlipidemia .8727 .8881 .0335 .8879 .8881 .0003 
Hyperplasia .2496 .2025 -.0797 .2029 .2025 -.0006 



Hypertension .9570 .9614 .0157 .9609 .9614 .0016 

Hypothyroidism .4108 .4193 .0123 .4201 .4193 -.0011 
Ischemic heart disease .7170 .7105 -.0102 .7107 .7105 -.0003 

Osteoporosis .3477 .3669 .0282 .3659 .3669 .0014 
Rheumatoid arthriRs  .7968 .8043 .0132 .8035 .8043 .0014 

Transient ischemic a]ack .4059 .3956 -.0149 .3961 .3956 -.0008 
 
Concomitant medica2ons: 
Cholesterol meds 
Diabetes meds 
Hypertension meds 

 
.3132 
.1303 
.2743 

 
.3154 
.1244 
.2730 

.0032 
-.0124 
-.0020 

.3149 

.1237 

.2738 

.3154 

.1244 

.2730 

.0007 

.0015 
-.0013 

Excluded covariates:       
Pre-treatment ACS  
All .0418 .0453 .0124 .0397 .0453 .0199 

InpaRent .0164 .0176 .0063 .0153 .0176 .0129 
OutpaRent .0400 .0441 .0150 .0379 .0441 .0226 
a Variable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the 
difference between the means divided by the standard deviaRon of treated and untreated groups. ComorbidiRes refer to 
events occurring before the treatment date. Excluded covariates were not used in the calculaRon of the propensity scores. 
 
Table 2 shows the probability of ACS diagnosis in a cohort of Medicare beneficiaries with a 

diagnosis of Alzheimer’s disease, con.nuously enrolled from 2014 to 2018. We found that in 

our sample ChEIs therapy was significantly associated with a reduced risk of ACS. 

ChEIs therapy decreased the likelihood of filing an ACS claim during the observa.on period 

by 0.56 percentage points (-.0056; CI: -0091 to -.0021). Restric.ng the sample to inpa.ent 

claims only, ChEIs therapy was associated with a 0.50 percentage points decrement in the 

probability of ACS diagnosis (-.0028; CI: -.0046 to -.0010). In outpa.ent claims, ChEIS 

treatment reduced the likelihood of ACS diagnoses by 0.69 percentage points (-.0022; CI: -

.0036 to -.0008). 

At baseline, the untreated group had a mean ACS diagnosis probability of 0.0908 (SD = 

.2840). This was equal to 0.0330 (SD = .1775) for inpa.ents and 0.0886 (SD = .2809) in 

outpa.ent claims. The largest percent decrease over baseline value was found in inpa.ent 

claims. The percent decrease in inpa.ent claims was 8.57% (-8.57; CI: -14.71 to -3.26) while 

the percent decrease in outpa.ent claims was 2.61% (-2.61; CI: -5.32 to -0.49). Finally, in the 

overall sample, the percent decrease in the probability of ACS diagnosis associated with 

ChEIs treatment was 6.18% (-6.18; CI: -11.60 to -1.97). Results are sta.s.cally significant and 

robust across three models, stra.fied over outpa.ent and inpa.ent claim types. 

 

 

 



Table 2. Probabili9es of acute coronary syndrome diagnosis in the observa9on period, by claim type. a 
 ACS diagnosis 
 All Inpatient Outpatient 
 b (95% CI) b (95% CI) b (95% CI) 
ChEIs -.0056 

(-.0091 to -.0021) 
-.0028 

(-.0046 to -.0010) 
-.0022 

(-.0036 to -.0008) 
Baseline b .0908 .0330 .0886 
% increase over baseline -6.18 -8.57 -2.61 
person-months 1,591,920 1,591,740 1,591,920 
N 26,532 26,529 26,532 

a  Coefficients were calculated using linear regression models with weighRng by odds. All regression models controlled for 
demographics, comorbidiRes, concomitant medicaRons, Rme fixed-effects, and pre-treatment ACS admission variables, 
outlined in Table 1. Beneficiaries outside the area of common support were excluded from the analysis, hence the 
differences in N. 
b Mean ACS diagnosis probability in the untreated. 
 

Figure 1 shows the area of common support by treatment status. The propensity score is 

displayed on the x-axis while the frequency is on the y-axis. The common support func.ons 

are smooth and the balancing property of the algorithm is sa.sfied. Beneficiaries outside of 

the area of common support were dropped in the linear regression models.  

 

Figure 1. Propensity score matching: area of common support a 

 

a block # = 30.  Propensity Score mean = .5891   sd = .0474  min = .4329  max = .6959 .  



To further assess the robustness of our results, we conducted a placebo test using outcomes 

that are hypothesized to be unaffected by the treatment. As described above, we ran a 

linear regression with weigh.ng by odds. This .me, the outcome was probability of a non-

heart-disease diagnosis. Results describe the probability of non-heart related diagnosis in 

the post-treatment observa.on period. Table 3 shows that none of the three models 

resulted in a significant beta coefficient of the treatment effect in this placebo test, in line 

with our expecta.ons. 

 

Table 3. Placebo test: probabili9es of any non-heart related disease diagnosis in the observa9on period a 

 
 Non-ACS diagnosis 
 All Inpatient Outpatient 
 b (95% CI) b (95% CI) b (95% CI) 
ChEIs -.003 

(-.006 to .002) 
-.008 

(-.015 to .008) 
-.006 

(-.013 to .003) 
Baseline b .023 .028 .085 
% increase over baseline -12.54 -27.73 -7.45 
person-months          1,591,980  1,591,320        1,591,860  
N 26,533 26,522 26,531 

a  Coefficients were calculated using linear regression models with weighRng by odds. All regression models controlled for 
demographics, comorbidiRes, concomitant medicaRons and pre-treatment ACS admission variables, outlined in Table 1. 
Beneficiaries outside the area of common support were excluded from the analysis, hence the differences in N. 
b  Mean ACS diagnosis probability in untreated. 

 

Discussion and Limita7ons 

This study found a nega.ve rela.onship between cholinesterase inhibitors therapy and 

acute coronary syndrome in the Medicare popula.on of Louisiana from 2014 to 2018, in line 

with the findings emerging from previous published literature. Results are significant, in the 

hypothesized direc.on and in line with previous literature inves.ga.ng the rela.onship 

between acetylcholinesterase inhibitors use and cardiac condi.ons. 

In animal models, the rela.onship between cholinergic ac.vity and heart disease has been 

previously inves.gated. Yang et al. (2019) show that ChEIs therapy regulates glucose 

metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in a 

mice model. Oikawa et al. (2021) describe reduced vagus nerve ac.vity in gene.cally 

modified ChATKD mice possibly due to impaired cardiac nitric oxide produc.on, which 

provides a possible biological explana.on for the hypothesized recovery of the cholinergic 

system and non-neuronal cardiac cholinergic system (NNCCS) augmenta.on observed in 

donepezil users. A significant and nega.ve rela.onship between ChEIs therapy and heart 



disease is confirmed by other animal models such as in Durand et al. (2014), Sabino et al. 

(2013) and Li et al. (2013), where it is shown to improve cardiocirculatory func.on and long-

term survival in rats with chronic heart failure. 

Clinical trials and observa.onal studies also inves.gated the rela.onship between ChEIs and 

heart condi.ons in humans. Androne et al. (2003) summarize the results of clinical trial 

NCT01415921, where heart rate recovery aUer comple.on of exercise was found to be 

significantly greater aUer the administra.on of ChEIs than placebo. Sangale. et al. (2021) 

present the results of a clinical trial study observing that low-dose galantamine alleviates 

oxida.ve stress, alongside beneficial an.-inflammatory, and cardio-metabolic effects in 

subjects with metabolic syndrome. Dewland et al. (2007) find that, in a randomized 

controlled trial seFng, sedentary adults ChEIs therapy decreased res.ng heart rate and 

increased postexercise heart rate recovery at one minute. In their review ar.cle, Roy et al. 

(2015) discuss relevant literature that implicate acetylcholine as a major regulator of cardiac 

remodeling and provide support for the no.on that enhancing cholinergic signaling in 

human pa.ents with cardiac disease can reduce morbidity and mortality. Serra et al. (2008) 

find that, in pa.ents with chronic heart failure, ChEIs therapy was well tolerated, leading to 

improved hemodynamic profile during dynamic exercise. In a sample of sixty pa.ents with 

ischemic heart disease and mild cogni.ve impairment, Wang et al. (2018b) show that 

donepezil administra.on resulted in significant reduc.on in mean heart rate and the lowest 

heart rate and prolonga.on of PR and RR intervals, whereas it had no significant effects on 

QRS dura.on. Khuanjing et al. (2020) discuss the possible mechanisms involved in the role of 

acetylcholinesterase inhibitors in acute myocardial infarc.on and heart failure remedia.on, 

sugges.ng that novel therapeu.c approaches which moderate parasympathe.c ac.vi.es 

could be beneficial in the case of cardiovascular disease. Similarly, Olshansky et al. (2008) 

discuss the pathophysiology and poten.al implica.ons for therapy of the parasympathe.c 

nervous system and heart failure. Finally, Kaushik et al. (2018) report evidence from the 

literature that ChEIs treatment, prescribed for cogni.ve impairment, can reduce the load of 

medica.ons in pa.ents with AD by also addressing cardiovascular, gastrointes.nal, and 

other comorbidi.es. Taken together, these findings from previous literature support the 

interpreta.on of our results.  

Acute coronary syndrome is characterized, among others, by heart palpita.ons whereas 

cholinesterase inhibitors are not indicated in pa.ents with low heartbeat. However, reverse 



causality could s.ll be a poten.al source of bias. We have taken specific measures to avoid 

it: first, we controlled for pre-treatment ACS episodes. Then, we used propensity scores with 

weigh.ng by odds and ensured that pre-treatment comorbidi.es associated with heart 

condi.ons had a negligible standardized difference before proceeding with the regression 

model: these included pre-treatment atrial fibrilla.on, transient ischemic aOack, ischemic 

heart disease and hypertension. Finally, we included only beneficiaries that were 

con.nuously enrolled for the whole observa.on period, and we captured the presence of 

comorbidi.es for at least one year prior to the treatment date.  

In this study, we used a doubly-robust es.mator to evaluate the associa.on between ChEIS 

prescrip.on and ACS risk and es.mate the average treatment effect on the treated (ATT). To 

adjust for pre-treatment observable differences, we weighted by odds and we dropped 

par.cipants whose distribu.ons were lying outside of the area of common support. We 

included in the model all known comorbidi.es at the .me of treatment, as well as 

demographic characteris.cs. This es.mator is unbiased if at least one between the 

propensity score model and the outcome regression model is correctly specified. The 

propensity score captures the contribu.ons of observables on the probability of receiving 

treatment. This es.mator is superior to either simple linear regression or simple propensity 

score matching es.mators. In this applica.on, this approach helps mi.gate poten.al 

selec.on bias arising from non-random treatment assignment. This ensures that the treated 

and untreated samples are balanced on observable characteris.cs. However, we could not 

control for any .me-varying unobservable characteris.cs. Also, there might be omiOed 

variables that would alter the propensity score algorithm results, which we are not aware of. 

Analysing claims data, we used drugs prescrip.ons as a proxy to model drugs consump.on. 

However, we have no informa.on on the propor.on of medica.on prescrip.ons that 

translated into actual medica.on consump.on. We had a 5-year observa.on period, ranging 

from 2014 to 2018. Considering this, the pre- and post-treatment observa.on period may be 

limited. However, we address this limita.on by including in the study only those Medicare 

beneficiaries that were con.nuously enrolled for the whole length of the observa.on 

period. Another limita.on of this study is that our results provide no informa.on on the 

subject-specific effect of ChEIs on ACS risk: we es.mated the average treatment effect, but 

further stra.fica.on based on gene.c informa.on or other clinical criteria is strongly 

warranted before providing individual counselling.  



It is es.mated that one in every four deaths in the US, about 659,000 people every year, can 

be aOributed to heart disease. Heart disease costs the United States about $363 billion each 

year from 2016 to 2017 (Virani, 2021). If off-label medica.ons could help reduce the risk of 

heart disease, this could have important public health implica.ons. The generalizability of 

our findings to different popula.ons and other seFngs should be further assessed within a 

randomized, double-blind placebo controlled clinical trial, enrolling pa.ents with relevant 

comorbidi.es including Alzheimer’s disease and related demen.a. 

 

Conclusion  

There is moun.ng evidence on the possible role of ChEIs in reducing risk of heart disease. In 

this cohort of Louisiana Medicare beneficiaries with AD, we found that ChEIs users were 

significantly less likely than non-users to develop acute coronary syndrome, a type of 

vascular-related heart condi.on. This evidence should be considered in clinical decisions 

regarding ChEIs u.liza.on in AD pa.ents, and comorbidity care should be integrated into 

current management for pa.ents with AD. Further research should inves.gate whether 

prescrip.on of ChEIs to prevent ACS risk could be jus.fied in non-AD pa.ents, and a 

thorough cost-effec.veness analysis should be conducted considering both known and 

poten.al adverse effects of the interven.on. 
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PAPER 2 

 

Bone density scan reduces risk of fracture among Medicare beneficiaries with Alzheimer’s 

disease and related demen.a 

 

 

 

Abstract 

 

Alzheimer’s disease and related demen.a (ADRD) is associated with an increased risk of 

fractures, due to cogni.ve decline, balance dysfunc.on and mobility limita.ons. 

Osteoporosis and other comorbidi.es associated with older age can increase the risk of 

fractures. Dual-energy X-ray absorp.ometry (DXA) scan is a tool used to evaluate bone 

mineral density and enables clinicians to assess an individual's fracture risk. Using a linear 

regression model with bootstrap standard errors and weigh.ng by odds, this study evaluates 

the average treatment effect on the treated (ATT) of DXA in reducing likelihood of 

subsequent hip and femur fracture in the ADRD Medicare popula.on of Louisiana between 

2014 and 2018. In the analy.cal sample, DXA was associated with a 30.09% reduc.on in the 

likelihood of fractures among ADRD beneficiaries and a 33.92% among non-ADRD 

beneficiaries. DXA was also significantly associated with osteoporosis medica.on 

prescrip.on in both samples. Taken together, our study reinforces the significance of 

incorpora.ng bone density tes.ng into rou.ne care for Medicare beneficiaries with 

demen.a. 
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Introduc7on 

 

Fractures pose a significant health concern worldwide, leading to pain, disability, and 

increased mortality rates, par.cularly among the elderly popula.on. Osteoporosis, a 

condi.on characterized by low bone mass and structural deteriora.on of bone .ssue, is a 

primary risk factor for fractures. Pa.ents with Alzheimer’s disease and related demen.a 

(ADRD) are at an increased risk of falls and fractures, which can be mainly aOributed to 

osteoporosis and reduced bone mineral density (BMD) (Wang et al., 2014). 

To address this pressing issue, numerous diagnos.c tools have emerged, with bone density 

tests standing at the forefront. These tests, such as Dual-energy X-ray Absorp.ometry (DXA), 

provide valuable informa.on about bone mineral density (BMD) and enable clinicians to 

assess an individual's fracture risk. While the u.lity of bone density tests in diagnosing 

osteoporosis is well-established, their effec.veness in preven.ng fractures remains a topic 

of ongoing research and debate.  

This manuscript aims to inves.gate the impact of bone density tests on fracture preven.on 

among ADRD and non-ADRD Medicare beneficiaries, exploring their poten.al as a valuable 

tool in reducing fracture incidence, enhancing clinical decision-making, and formula.ng 

preven.ve strategies. Drawing from the exis.ng literature and analyzing claims data 

obtained from the Centers for Medicare and Medicaid Services (CMS), this study seeks to 

shed light on the crucial role of bone density tests in the realm of fracture preven.on, 

ul.mately contribu.ng to evidence-based healthcare prac.ces and improved pa.ent 

outcomes.  

ADRD is an independent risk factor for fracture, hence the importance of inves.ga.ng the 

occurrence of fracture in both ADRD and non-ADRD popula.ons, and trace comparisons 

between the two groups. Several independent risk factors in ADRD pa.ents have been 

associated with increased fracture risk. Cogni.ve decline was found to be independently 

associated with bone loss in a prospec.ve popula.on-based study employing mixed-effect 

models (Bliuc et al., 2021). In turn, bone loss, characterized by decreased bone density and 

strength, causes bones to be more suscep.ble to fractures (Kea.ng et al., 2005). 

Furthermore, there is a well-established associa.on between mobility decline and 

worsening demen.a in individuals with ADRD. As demen.a progresses, it oUen leads to 

various cogni.ve impairments, affec.ng memory, thinking, and problem-solving abili.es. 



Simultaneously, physical abili.es, including mobility and gait, tend to deteriorate (Tolea et 

al., 2016). As the cogni.ve and physical impairments progress in individuals with ADRD, 

balance dysfunc.on becomes more prevalent and can significantly impact their overall well-

being and safety (Hill, 2009). These factors found in ADRD, as cogni.ve impairment, balance 

issues and mobility limita.ons, can all lead to increased fracture risk. 

Beyond factors that are related to ADRD, there exist other independent risk factors, or 

comorbidi.es, that have been associated with increased fracture risk. These risk factors 

include rheumatoid arthri.s (Xue et al., 2017), diabetes mellitus (Valderrábano et al., 2018), 

chronic pulmonary disease (Ionescu et al., 2003), bone cancer (Tsuzuki, 2017), lung cancer 

(Oliveira et al., 2018), cancer to the liver (Vestergaard et al., 2009), bladder cancer (Gupta et 

al., 2014), prostate cancer (Melton et al., 2012), cardiovascular disease (Veronese et al., 

2017) and chronic kidney disease (Nickolas et al., 2008). 

Bone density tests have an important role in the evalua.on of individuals at risk of 

osteoporosis, and in helping clinicians advise pa.ents about the appropriate use of 

osteoporosis treatment (Blake et al., 2007). Bone density tests have been confirmed as an 

effec.ve tool for fracture preven.on in selected popula.ons (Suarez-Almazor et al., 2022) 

but no study to date has directly inves.gated the effect of bone density tests in effec.vely 

reducing hip fracture risk in the ADRD popula.on. 

Studying fracture occurrences in ADRD and non-ADRD popula.ons not only sheds light on 

the vulnerability of demen.a pa.ents to fractures but also emphasizes the importance of 

targeted preven.ve interven.ons for this at-risk group. This study inves.gates the effect of 

bone density tes.ng in reducing risk of hip fracture in the US Medicare popula.on with a 

diagnosis of Alzheimer’s disease and related demen.a, taking into account observed 

comorbidi.es at the .me of the interven.on. We further include an analysis on the non-

ADRD popula.on to elucidate different causal paOerns across different groups. 

 

 

Methods 

 

We used a weighted linear regression to es.mate the impact of DXA on risk of hip and femur 

fracture. Weigh.ng by odds was used to es.mate the average treatment effect (ATT). With 

weigh.ng by the odds, treated individuals receive a weight equal to 1 and comparison 



individuals receive a weight equal to their propensity score (ρi), converted to the odds scale 

(= ρi / (1 – ρi) (Hirano et al., 2003). This weigh.ng effec.vely up-weights comparison 

individuals whose measured covariate values (propensity scores) best match those of the 

treated individuals and down-weights comparison individuals whose measured covariate 

values are dissimilar from treated individuals. One way of thinking about weigh.ng by the 

odds is that the comparison individuals are first weighted to the en.re popula.on, using 1 / 

(1 – ρi), and are then weighted to the treatment group, using ρi. (Harder et al, 2010). 

Propensity scores were es.mated using the psmatch2 command in Stata 17. This command 

employs a logis.c regression model, where the treatment assignment serves as the 

dependent variable. The relevant covariates, determined based on the examined literature, 

were included as independent variables. The es.mated propensity scores represent the 

probability of receiving the treatment condi.onal on the observed covariates. 

To assess the comparability of treated and control samples, we computed the standardized 

difference between treated and control groups across variables. Balance diagnos.cs were 

conducted using the psbalance command in Stata. The psbalance command examines the 

distribu.on of covariates between the treated and control groups aUer weigh.ng and 

provides sta.s.cal tests and graphical displays to assess balance. The balance diagnos.cs 

ensure that the weighted groups are comparable and reduce the poten.al for bias due to 

confounding. We assumed that an acceptable standardized difference would be lower than 

10% (Aus.n, 2008). The func.onal form of the psmatch2 model was modified by including 

interac.on terms and higher order polynomials un.l sa.sfactory standardized differences 

were obtained for all variables. 

 

Finally, the ATT was es.mated using the weighted sample. The differences in the outcome 

variable between the treated and control groups were computed and tested for sta.s.cal 

significance using a t-test. Sensi.vity analyses were also conducted to examine the 

robustness of the results and assess the poten.al impact of unobserved confounders and 

individual-level fixed effects were included in the model to control for .me-invariant 

unobservables. 

To allow for an es.ma.on of the likelihood of fracture occurring aUer the bone density test 

in both treated and untreated groups, the following algorithm was implemented. First, for 

each year in the observa.on period, the distribu.on of treatment dates in the treated 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936698/#R24


sample was tabulated. Then, in the untreated sample, a numerical variable was created 

using a random number generator and the sample was sorted. The tabulated treatment 

dates distribu.on from the treated group was assigned to the sorted untreated sample. The 

process was repeated itera.vely for all months included in the observa.on period. By doing 

so, treatment dates based on the distribu.on of treatment dates from the treated sample 

were assigned to the untreated group. Random assignment of treatment dates in the 

untreated was therefore constrained to the treatment dates distribu.on in the treated 

popula.on. Finally, to ensure standard errors were adjusted for the random assignment of 

treatment dates, we implemented the procedure inside a bootstrap algorithm with 

replacement with 10,000 itera.ons over the en.re analy.cal sample. 

This method allowed for the es.ma.on of the ATT, ensuring reliable causal inferences about 

the treatment’s impact on the outcome variable. 

 

Data 

 

To iden.fy the ADRD sample, we first considered all Medicare beneficiaries with at least one 

ADRD ICD-9/10 claim in the five-year period from 2014 to 2018, based on the ICD-9/10 

codes in Albrecht (2019), resul.ng in 45,396 beneficiaries. Then, we restricted the sample to 

those that were con.nuously enrolled in the 5-year period, looking at whether they had at 

least one claim in each of the years considered. This resulted in a sample of 26,535 

beneficiaries. Finally, to limit poten.al reverse causality bias, we excluded all beneficiaries 

that ever had an osteoporosis medica.on prescrip.on before their first bone density test on 

records. The final ADRD sample consisted of 20,262 Medicare beneficiaries. 

We used a similar approach to iden.fy the non-ADRD analy.cal sample. We first considered 

all Medicare beneficiaries with at least one non-ADRD ICD-9/10 claim in the observa.on 

period, resul.ng in 1,197,810 beneficiaries. Then, we restricted the sample to those who 

had at least one claim in each of the five years in the observa.on period, resul.ng in 

863,497 beneficiaries. Finally, we excluded those who had an osteoporosis medica.on 

prescrip.on prior to their osteoporosis test. The final non-ADRD analy.cal sample consisted 

of 631,305 beneficiaries. 

 

 



Results 

 

Table 1 shows the covariate means stra.fied by treatment status and weighted by odds. 

Standardized differences were used to determine whether the treated and control samples 

are comparable. Several covariates had a standardized difference higher than 10% in the 

crude unweighted sample. At the .me of DXA, average age had a standardized difference of 

-12.11%. Sex had a standardized difference of -49.15%. Black or African American ethnicity 

had a standardized difference of -11.96%. Breast cancer and prostate cancer had 

standardized differences of 17.99% and -11.84%, respec.vely. Cataract diagnoses had a 

standardized difference of 17.43%. Conges.ve heart failure had a a standardized difference 

of -11.19%. Hyperlipidemia had a standardized difference of 12.05%. Hyperplasia had a a 

standardized difference of -34.64%. Osteoporosis had a standardized difference of 44.22%. 

Rheumatoid arthri.s and osteoarthri.s had a standardized difference of 16.08%. AUer 

weigh.ng by odds, the two groups became comparable, as all standardized differences were 

below the threshold of 10%. Hip or femur fracture was the variable with the highest 

standardized difference aUer weigh.ng, equal to -7.28%. The standardized differences 

suggest that treated and untreated groups were balanced aUer weigh.ng by odds of 

treatment. The common support graph is shown in Figure A1 in the Appendix, providing a 

visual representa.on of the balance achieved aUer weigh.ng by odds. 

 

Table 1. Bootstrap weighted means, with standardized differences, ADRD beneficiaries. a 
 

 Crude Adjusted 

 
Untreated 
(N=16,429) 

Treated 
(N=3,833) 

Standardized 
difference 

Untreated  
(N=16,429) 

Treated  
(N=3,832) 

Standardized 
difference 

 Mean Mean Δ Mean Mean Δ 

Demographics:       

Age 80.67 79.33 -.1211 78.92 79.31 .0327 
Male .4000 .1171 -.4915 .1146 .1172 .0056 

Black or African American .2600 .1944 -.1196 .1964 .1944 -.0035 
 
 Comorbidi2es:       

Acute myocardial infarcRon .0890 .0681 -.0572 .0727 .0681 -.0128 
Anemia .8285 .8072 -.0391 .8172 .8072 -.0181 
Asthma .1667 .2069 .0731 .2110 .2069 -.0071 

Atrial fibrillaRon .2584 .2285 -.0492 .2284 .2286 .0003 
Cancer, breast .0534 .1255 .1799 .1282 .1255 -.0056 



Cancer, colorectal .0428 .0425 -.0009 .0414 .0425 .0039 

Cancer, endometrial .0075 .0125 .0358 .0114 .0125 .0076 
Cancer, lung .0190 .0198 .0043 .0203 .0198 -.0024 

Cancer, prostate .0697 .0329 -.1184 .0314 .0329 .0061 
Cataract .7937 .8836 .1743 .8808 .8836 .0063 

CongesRve heart failure .5247 .4459 -.1119 .4556 .4460 -.0136 
Chronic kidney disease .6009 .5573 -.0626 .5692 .5572 -.0171 
Chronic obstrucRve 
pulmonary disease .4476 .4263 -.0303 .4335 .4264 -.0101 

Depression .7146 .7172 .0041 .7294 .7171 -.0194 
Diabetes .5313 .4720 -.0841 .4865 .4721 -.0204 

Glaucoma .2706 .3063 .0557 .3028 .3064 .0055 
Hyperlipidemia .8738 .9249 .1205 .9273 .9248 -.0067 

Hyperplasia .2661 .0851 -.3464 .0819 .0851 .0081 
Hypertension .9599 .9611 .0045 .9632 .9611 -.0076 
Hypothyroidism .4011 .4688 .0969 .4741 .4687 -.0077 

Ischemic heart disease .7213 .7096 -.0184 .7161 .7096 -.0102 
Osteoporosis .2698 .5640 .4422 .5770 .5639 -.0187 
Rheumatoid arthriRs and 
osteoarthriRs .7885 .8732 .1608 .8768 .8734 -.0072 
Transient ischemic a]ack .4080 .3741 -.0491 .3867 .3742 -.0183 
 
Excluded comorbidi2es 
Hip or femur fracture .1303 .1231 -.0151 .1590 .1232 -.0728 
       

a Variable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the 
difference between the means divided by the standard deviaRon of treated and untreated groups. ComorbidiRes refer to 
events occurring before the bone density test date. Excluded comorbidiRes were not used in the calculaRon of the 
propensity scores. 
 
 

Table 2 shows the crude and the adjusted sample means with standardized differences for 

the non-ADRD analy.cal sample. As with the ADRD sample, aUer weigh.ng by odds, the 

standardized differences decreased below the threshold of 10% in all instances. Hip fracture 

was not used in the calcula.on of propensity scores but, aUer including all other variables 

and weigh.ng by odds of treatment, it maintained a standardized difference of 5.70%, below 

the threshold of 10%, thus allowing for comparison between untreated and treated groups. 

The common support graph is shown in Figure A2 in the Appendix. By comparing the 

informa.on in Table 1 and Table 2, it can be no.ced that treated ADRD beneficiaries were on 

average older than non-ADRD beneficiaries (79.33 vs 71.93) and had a significantly higher 

prevalence of pre-interven.on hip and femur fracture (12.31% vs 2.34%).  

 

 



Table 2. Bootstrapped weighted means, with standardized differences, non-ADRD beneficiaries a 
 

 Crude Adjusted 

 
Untreated 

(N=530,834) 
Treated 

(N=100,471) 
Standardized 

difference 
Untreated 

(N=530,834) 
Treated 

(N=100,471) 
Standardized 

difference 

 Mean Mean Δ Mean Mean Δ 

Demographics:       
Age 68.96 71.93 .1919 72.7400 71.9298 -.0540 

Male .5293 .0926 -.7566 .0846 .0926 .0199 
Black or African American .2959 .1991 -.1596 .1950 .1991 .0074 
 
 Comorbidi2es:       
Acute myocardial 
infarcRon .0366 .0361 -.0021 .0372 .0361 -.0041 

Anemia .3649 .5783 .3094 .6091 .5783 -.0443 
Asthma .0921 .1677 .1601 .1746 .1677 -.0130 
Atrial fibrillaRon .0928 .1360 .0962 .1447 .1360 -.0177 

Cancer, breast .0222 .1103 .2545 .1236 .1103 -.0293 
Cancer, colorectal .0186 .0266 .0380 .0285 .0266 -.0082 

Cancer, endometrial .0035 .0114 .0653 .0127 .0114 -.0087 
Cancer, lung .0097 .0148 .0330 .0161 .0148 -.0071 
Cancer, prostate .0420 .0193 -.0931 .0182 .0193 .0062 

Cataract .3894 .7537 .5599 .7706 .7537 -.0281 
CongesRve heart failure .1931 .2543 .1041 .2712 .2543 -.0272 

Chronic kidney disease .2397 .3646 .1941 .3849 .3646 -.0296 
Chronic obstrucRve 
pulmonary disease .1988 .2902 .1512 .3089 .2902 -.0289 

Depression .2719 .4312 .2394 .4485 .4312 -.0246 
Diabetes .2981 .3822 .1259 .3975 .3822 -.0221 
Glaucoma .1365 .2462 .1991 .2581 .2462 -.0195 

Hyperlipidemia .5495 .8621 .5163 .8792 .8621 -.0361 
Hyperplasia .1524 .0517 -.2384 .0474 .0517 .0142 

Hypertension .6364 .8738 .4061 .8958 .8738 -.0486 
Hypothyroidism .1613 .3790 .3577 .4011 .3790 -.0320 

Ischemic heart disease .3576 .5034 .2104 .5219 .5034 -.0263 
Osteoporosis .0668 .4463 .6821 .4800 .4463 -.0479 
Rheumatoid arthriRs and 
osteoarthriRs .4001 .7347 .5075 .7607 .7347 -.0423 
Transient ischemic a]ack .1055 .1580 .1101 .1678 .1580 -.0189 
 
Excluded comorbidi2es 
Hip or femur fracture .0198 .0234 -.0411 .0164 .0136 -.0570 

       
a Variable means in unweighted (crude) and weighted (adjusted) models. Standardized differences were calculated as the 
difference between the means divided by the standard deviaRon of treated and untreated groups. ComorbidiRes refer to 
events occurring before the bone density test date. Excluded comorbidiRes were not used in the calculaRon of the 
propensity scores. 
 

Table 3 shows the probability of hip fracture in a cohort of Medicare beneficiaries with a 

diagnosis of ADRD compared to those without ADRD. The table includes two sets of 



probabili.es: unweighted and adjusted treatment effects (ATT) for both ADRD and non-

ADRD groups, con.nuously enrolled from 2014 to 2018. The probabili.es are associated 

with bone density tests and are presented with their corresponding confidence intervals (CI). 

The baseline probabili.es for both ADRD and non-ADRD groups are also provided. The 

coefficients in the table were calculated using linear regression models with bootstrap 

standard errors and weighted by odds. The models controlled for demographics, 

comorbidi.es, and pre-treatment outcome variables. Beneficiaries outside the area of 

common support were excluded from the analysis.  

We found that in our sample having had a bone density test was associated with a reduced 

subsequent risk of hip fracture. AUer applying to the outcome a factor of one thousand, the 

interven.on was associated with a reduc.on of .542 percentage points (-1.246 to -.312) in 

the probability of ever having had a fracture during the observa.on period for ADRD 

beneficiaries, or a 30.09 percent decrease over baseline. On the other hand, the 

interven.on was associated with a reduc.on of .114 percentage points (-.214 to -.022) in the 

probability of ever having had a fracture during the observa.on period for non-ADRD 

beneficiaries, or a reduc.on of 33.92% over baseline value. 

 
Table 3. Probabili9es of hip fracture in the observa9on period a 
 

 ADRD Non-ADRD 
 Unweighted ATT Unweighted ATT 
Bone density test b 
(Normal-based 95% CI) 

-.542 
(-1.246 to -.312) 

-.585 
(-1.352 to -.144) 

-.121 
(-.415 to -.135) 

-.114 
(-.214 to -.022) 

Baseline c 1.945 1.944 .336 .336 
% increase over baseline -27.86 -30.09 -36.01 -33.92 
person-months 1,215,720 1,215,660 37,878,300 37,878,300 
N 20,262 20,261 631,305 631,305 

a Coefficients were calculated using linear regression models with bootstrap standard errors and weighRng by odds. All 
regression models controlled for demographics, Rme-fixed effects, comorbidiRes and pre-treatment outcome variables. 
Beneficiaries outside the area of common support were excluded from the analysis, hence the differences in N.  
b The outcome variable was rescaled by a factor of 1,000 to ease readability of coefficients. 
c Mean hip fracture probability in untreated 
 
 
To shed light on the causal pathway linking bone density test and decreased likelihood of hip 

and femur fractures, we inves.gated the effect of the interven.on on osteoporosis 

medica.ons prescrip.on. Table 4 presents the probabili.es of osteoporosis medica.on 

prescrip.on in the observa.on period for ADRD and non-ADRD beneficiaries. The table 

includes two sets of probabili.es: unweighted and adjusted treatment effects (ATT) for both 



ADRD and non-ADRD groups. The probabili.es are associated with bone density tests and 

are presented with their corresponding confidence intervals (CI).  

The coefficients in the table were calculated using linear regression models with bootstrap 

standard errors and weighted by odds. The regression models controlled for demographics, 

comorbidi.es, and pre-treatment outcome variables. Beneficiaries outside the area of 

common support were excluded from the analysis. The outcome variable, represen.ng the 

probability of osteoporosis medica.on prescrip.on, was rescaled by a factor of 1,000. 

Results are significant and in the expected direc.on for both the ADRD (.016 to .021) and the 

non-ADRD (.046 to .107) samples. The baseline probabili.es for both ADRD and non-ADRD 

groups are set to zero since all beneficiaries with an osteoporosis medica.on prescrip.on in 

the pre-period were excluded from the analysis. 

 
Table 4. Probabili9es of osteoporosis medica9on prescrip9on in the observa9on period, ADRD beneficiaries a 
 

 ADRD Non-ADRD 
 Unweighted ATT Unweighted ATT 
Bone density test b 
(Normal-based 95% CI) 

.031 
(.029 to .033) 

.020 
(.016 to .021) 

.065 
(.042 to .093) 

.077 
(.046 to .107) 

Baseline c 0 0 0 0 
% increase over baseline - - - - 
person-months 1,215,720 1,215,660 37,878,300 37,878,300 
N 20,262 20,261 631,305 631,305 

a Coefficients were calculated using linear regression models with bootstrap standard errors and weighRng by odds. All 
regression models controlled for demographics, comorbidiRes and pre-treatment outcome variables. Beneficiaries outside 
the area of common support were excluded from the analysis, hence the differences in N.  
b The outcome variable was rescaled by a factor of 1,000 to ease readability of coefficients. 
c All beneficiaries with an osteoporosis medicaRon prescripRon in the pre-period were excluded from the analysis. 
 

 
 
Discussion 

This study builds upon exis.ng literature and provides robust evidence suppor.ng the 

benefits of bone density tests in Medicare beneficiaries with demen.a. Consistent with prior 

research, our findings demonstrate that bone density tests are associated with a significant 

reduc.on in hip fracture risk among individuals with demen.a. This associa.on underscores 

the importance of early iden.fica.on of individuals at a higher risk of fractures, allowing for 

targeted preven.ve measures and interven.ons to mi.gate the substan.al burden of hip 

fractures in this vulnerable popula.on. 

Moreover, our study contributes to the growing body of evidence highligh.ng the posi.ve 

impact of bone density tests on osteoporosis treatment implementa.on in individuals with 



demen.a. Our findings align with previous studies and suggest that bone density tes.ng 

serves as a catalyst for appropriate management and treatment of osteoporosis in this 

popula.on. By iden.fying those at risk and ini.a.ng .mely interven.ons, bone density tests 

can poten.ally improve the healthcare outcomes of individuals with demen.a and reduce 

the associated morbidity and mortality. 

We used an inverse probability of treatment effects es.mator with weigh.ng by odds, 

combining outcome regression with weighing by propensity score, and we applied a 

bootstrap program with replacement to ensure that random assignment of treatment dates 

in the untreated group would not introduce es.ma.on bias in the results. This approach is 

meant to produce robust es.mates. However, there are several limita.ons that should be 

considered when evalua.ng the results. First, the propensity scores were calculated using 

observable variables which were available in the Centers for Medicare and Medicaid Services 

dataset. In the regression model, we were only able to control for observables. We limited 

poten.al bias in our es.mates introduced by unobservables, by controlling for individual-

level fixed effects, but we cannot exclude unobserved heterogeneity between beneficiaries 

that received the interven.on and those who did not. If more advantaged pa.ents were 

more likely to receive the bone density scan, and had lower propensity towards the 

likelihood of hip fracture in the post-treatment period, then our results are biased away 

from zero. Another limita.on is that our observa.on period was limited to five years only, 

which may reduce our capability to explore any effects of the interven.on occurring beyond 

this period. Finally, the limited observa.on period may have limited our ability to correctly 

iden.fy and exclude from the sample all those beneficiaries that had ever received an 

osteoporosis medica.on prescrip.on at the .me of the treatment. However, we mi.gated 

this poten.al bias by including pre-treatment osteoporosis diagnosis in the propensity 

scores calcula.on used in the weighted sample.  

 

Conclusion 

Taken together, our study reinforces the significance of incorpora.ng bone density tes.ng 

strategies into rou.ne care for Medicare beneficiaries with demen.a. The observed 

associa.ons between bone density tests, reduced hip fracture risk, and increased 

prescrip.on of osteoporosis medica.ons highlight the poten.al of these tests to enhance 



the overall healthcare management of this vulnerable popula.on. Future research should 

focus on exploring the cost-effec.veness and long-term outcomes of implemen.ng bone 

density tes.ng strategies in individuals with demen.a, further strengthening the evidence 

base for informed clinical decision-making and policy development. 
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Appendix 
 
Figure A1. Common support graph in ADRD analy.cal sample 

  
 
Figure A2. Common support graph in non-ADRD analy.cal sample 
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Interpretable machine learning in Alzheimer's disease: a Forward Sparse-Group Lasso model 

 

 

 

 

Abstract 

Stochas.c classifica.on problems in Alzheimer's disease can be used to iden.fy biomarkers 

of cogni.ve decline within a set of labelled brain regions of interest (ROIs). Using normalized 

fMRI data, we propose a novel classifica.on algorithm designed as a linear combina.on of 

Sparse-Group Lasso and AUC-based forward selec.on models. The proposed approach, 

deemed forward sparse group lasso (FSGL), combines regulariza.on methods with forward 

selec.on on a valida.on set, and uses set theory on joint distribu.ons to iden.fy predictors 

of disease staging. Sta.s.cal tests suggest that our FSGL algorithm improves predic.on 

accuracy over the naïve SGL algorithm implementa.on. We demonstrated that in this 

applica.on FSGL can achieve a significantly beOer performance than SGL. Consistent with 

previous literature, we further demonstrate that this approach could iden.fy right 

hippocampal subiculum and presubiculum to be the most significant unique predictors of 

severe Alzheimer’s disease progression. 

 

Keywords: regulariza.on, forward selec.on, Alzheimer’s disease, hippocampal asymmetry 

 

 

 

 

 

 

 

 

 



Introduc7on 

Appropriate disease staging is crucial to inform .mely therapy and adequate pa.ent 

management in Alzheimer’s disease. Iden.fying the most relevant disease progression 

predictors in cross-sec.onal data can improve diagnos.c accuracy in case of high censoring 

or short observa.on period (Therriault et al., 2022). When machine learning is employed in 

the context of clinical decision making, interpretable algorithms are essen.al to discern 

crucial predictors, aiding comprehension of influen.al factors driving model decisions. 

Interpretable machine learning holds a paramount significance in modern data-driven 

domains due to its pivotal role in deciphering the underlying insights within complex 

predic.ve models. In the realm of data science, where intricate algorithms are employed to 

analyse and predict outcomes, the ability to interpret these models is crucial for 

understanding the factors driving predic.ons. By unveiling the "black box" nature of 

advanced algorithms, interpretable machine learning provides valuable insights into the 

rela.onships between variables and the decision-making process of the model (Molnar, 

2020). This transparency not only enhances our understanding of the model's inner 

workings but also fosters trust and acceptance among stakeholders, facilita.ng informed 

decision-making in clinical seFngs. 

At the heart of interpretable machine learning lies the impera.ve to iden.fy significant 

predictors accurately. In a mul.tude of applica.ons, the goal is not solely to make 

predic.ons, but also to understand which variables contribute the most to those predic.ons. 

In the context of healthcare, pinpoin.ng the influen.al factors enables clinicians to focus 

their aOen.on on specific variables that have the most impact (Ahmad et al., 2018). This 

knowledge aids in alloca.ng resources efficiently, designing targeted interven.ons, and 

tailoring strategies that leverage the most salient features. Without interpretability, the risk 

of relying on arbitrary or irrelevant predictors could lead to misguided decisions that fall 

short of capturing the true essence of the problem at hand. 

Dimensionality reduc.on plays a significant role in enhancing the interpretability of machine 

learning models. In complex datasets with numerous features, it can be challenging to grasp 

the rela.onships and influences driving predic.ons. By reducing the number of features, 

these methods create a simplified representa.on that is easier to visualize and comprehend, 



thus aiding in the interpreta.on of model behavior. Dimensionality reduc.on and features 

selec.on have been widely employed in several disease areas to predict likelihood of disease 

or disease progression. Li et al. (2016) illustrated an approach to signal processing and 

feature selec.on for atrial fibrilla.on detec.on in a noisy environment. Du et al. (2022) 

developed a feature selec.on model to assist clinicians in screening at risk pa.ents who may 

benefit from early gesta.onal diabetes preven.on strategies. Jain et al. (2018) presented a 

comprehensive overview of various feature selec.on methods for chronic disease 

predic.on. Polat et al. (2017) assessed wrapper and filter approaches for feature selec.on 

and dimensionality reduc.on in a chronic kidney disease dataset. Dimensionality reduc.on 

and features selec.on have found several other applica.ons, including in the domains of 

genomics (Hauskrecht et al., 2007; Xing et al., 2001) and brain segmenta.on and 

classifica.on (Kong et al., 2014; Zhang et al., 2011). 

Several methods have been proposed to select the most important features in disease 

classifica.on problems. Of these, regulariza.on methods have gained popularity as some of 

the most reliable methods for features selec.on. Several regulariza.on techniques have 

been proposed. These methods are commonly used in machine learning and sta.s.cs to 

handle high-dimensional data and perform feature selec.on by introducing regulariza.on 

penal.es. They are par.cularly useful when dealing with situa.ons where the number of 

features is large compared to the number of observa.ons. 

Lasso stands for "Least Absolute Shrinkage and Selec.on Operator." It is a regulariza.on 

technique that adds the absolute values of the coefficients as a penalty term to the loss 

func.on during model training (Tibshirani, 1996). In standard linear regression, the goal is to 

find the coefficients that minimize the sum of squared differences between predicted and 

actual values. However, when there are correlated predictors, the es.mated coefficients can 

become sensi.ve to small changes in the data, leading to unstable and inaccurate 

predic.ons. Lasso regression introduces a regulariza.on term to the tradi.onal linear 

regression objec.ve func.on. L1 regulariza.on adds the absolute values of the coefficients 

to the loss func.on, encouraging sparsity in the feature selec.on, effec.vely shrinking some 

coefficients to exactly zero. Lasso is par.cularly useful for feature selec.on because it tends 

to select a subset of the most important features, making the resul.ng model more 

interpretable and reducing the risk of overfiFng. (1) 
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Ridge regression, also known as Tikhonov regulariza.on or L2 regulariza.on, is a linear 

regression technique designed to address mul.collinearity or high correla.on between 

predictor variables, and prevent overfiFng in predic.ve models (Hoerl et al., 2000). The 

regulariza.on term is propor.onal to the square of the magnitude of the coefficients, 

effec.vely constraining their values to smaller but non-zero coefficients. By doing so, ridge 

regression encourages the model to not only fit the data but also to keep the coefficients 

small. This has the effect of shrinking the coefficients of less influen.al predictors towards 

zero, which can help mi.gate the impact of mul.collinearity and reduce model complexity. 

(2) 
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Elas.c-Net combines both L1 (Lasso) and L2 (Ridge) regulariza.on. It addresses some of the 

limita.ons of Lasso, such as selec.ng only one variable among highly correlated variables 

(Zou et al., 2005). Elas.c-Net allows for both feature selec.on (sparse solu.ons) and 

handling mul.collinearity by adding a combina.on of L1 and L2 penal.es to the loss 

func.on. The balance between L1 and L2 penal.es is controlled by a parameter, allowing for 

flexible tuning. (3) 
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Group Lasso extends Lasso to incorporate grouping informa.on among features. Instead of 

penalizing individual coefficients, it penalizes en.re groups of coefficients together (Yuan et 

al, 2006). This is par.cularly useful when features are naturally grouped, such as in 

genomics, where genes oUen belong to the same pathways or biological processes. Group 



Lasso encourages feature selec.on at the group level, effec.vely selec.ng en.re groups of 

features, which can help capture higher-level rela.onships in the data. (4) 
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Sparse Group Lasso combines the principles of both Group Lasso and Lasso. It extends the 

concept of group sparsity to include individual feature sparsity within each group (Simon et 

al., 2013). This allows for simultaneous selec.on of relevant groups and individual features 

within those groups. Sparse Group Lasso is beneficial when you want to capture both the 

overall structure of groups and the specific importance of individual features. (5) 
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Forward selec.on is a feature selec.on technique commonly used in machine learning and 

sta.s.cs. It involves building a predic.ve model itera.vely by adding one feature at a .me 

from a pool of available features (SuOer et al., 1993). The primary objec.ve of forward 

selec.on is to incrementally iden.fy the most relevant and informa.ve features that 

contribute to the predic.ve power of the model while aiming to improve model 

performance. 

The main steps of forward selec.on can be described as follows. (i) Ini.aliza.on: the process 

starts with an empty set of selected features. (ii) candidate feature selec.on: all available 

features that have not yet been selected are considered as candidates. The algorithm 

evaluates the poten.al of each candidate feature to improve the model's performance. (iii) 

Feature evalua.on: for each candidate feature, a model is trained using the currently 

selected features along with the candidate feature. The model's performance is evaluated 

using a predefined metric such as accuracy, mean squared error, or another appropriate 

metric depending on the problem. (iv) Feature selec.on: the candidate feature that leads to 

the most significant improvement in model performance is selected and added to the set of 

selected features. This step is crucial, as it focuses on iden.fying features that contribute the 

most to the model's predic.ve power. (v) Itera.on: steps 3 and 4 are repeated itera.vely, 

with the algorithm evalua.ng the remaining candidate features and selec.ng the one that 

provides the most improvement in performance. This process con.nues un.l a stopping 



criterion is met, such as reaching a predefined number of selected features or observing a 

decline in performance improvement. (vi) Final model: once the itera.on is complete, the 

selected set of features forms the final feature subset for the model. This subset is used to 

build the final predic.ve model, which can be evaluated on unseen data. 

In this paper, we propose a method to iden.fy clinically relevant features for Alzheimer’s 

disease staging using pairwise classifica.on models on disjoint cross-sec.onal sets and we 

provide clinical interpreta.on and valida.on. The objec.ve of this work is to describe a 

method to retain the minimum number of clinically relevant Alzheimer’s disease predictors 

while preserving model accuracy. The method we propose, deemed forward sparse-group 

lasso (FSGL), is a linear combina.on of sparse-group lasso and forward selec.on, and it 

makes use of an external valida.on set in the itera.on algorithm. We demonstrate that FSGL 

is superior to the naïve sparse-group lasso (SGL) implementa.on in this applica.on. 

Univariate feature selec.on has several limita.ons when used on its own. In this work, 

however, we show its poten.al when used in combina.on with state-of-the-art 

regulariza.on methods and an external valida.on set. We discuss the findings and provide 

an interpreta.on of the underlying biological mechanisms. Finally, we highlight the 

limita.ons of the proposed approach in the context of the iden.fica.on of significant ROIs in 

Alzheimer’s disease progression. 

 

 

Methods 

Sparse group lasso inherently encourages sparsity in feature selec.on, but combining it with 

a forward selec.on step allows for a more granular selec.on of features. This stepwise 

approach can help fine-tune and select specific subsets of features, poten.ally leading to a 

more interpretable final model.  

In Sparse Group Lasso, if correlated features belong to the same group, the penalty imposed 

by the group lasso encourages sparsity within these groups, effec.vely selec.ng only a 

subset of features from each group. By penalizing en.re groups, it indirectly addresses 

correla.on within those groups. However, there is no way to instruct SGL to select a certain 

feature over another highly correlated feature. The process of selec.ng, within a set of 



highly correlated features, the most important ones to be retained in the model is inherently 

random and can possibly exclude relevant features for clinical evalua.on and diagnosis. 

The method we propose is a linear combina.on of sparse-group lasso (SGL) and a univariate 

forward selec.on loop on an external valida.on set, deemed forward sparse-group lasso 

(FSGL). This method allows to restore poten.al clinically relevant features excluded by 

sparsity in the SGL selec.on process. 

The minimiza.on problem is the one of a naïve SGL with a further condi.on. The set of 

selected features F in the FSGL model must be include r rows and q* columns, whereas the 

naïve SGL implementa.on includes the same rows and q columns. The FSGL set of features 

FFSGL is a subset of the SGL feature set FSGL. 

The FFSGL features set is ini.alized to be iden.cal to the FSGL features set and the itera.on 

counter k is ini.alized to be equal to 0. At every new itera.on, an addi.onal feature q+ is 

added un.l the value of the object func.on J becomes lower than or equal to the value of 

the same func.on in the previous itera.on. (6) 
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𝑠. 𝑡. 			𝐹-	×	/∗
0123  , 𝐹-	×	/123 	, 	𝑞 ∈ 𝑞∗                                                                                                    . 

 
Where: 
 

                         (6) 
 
We chose logis.c regression as a puta.ve classifier in the base model to avoid possible 

confounding effects due to hyperparameters seFngs, which might be present in other 

classifiers (e.g. SVM). To test the value of the object func.on in itera.on k + 1 against the 



same in itera.on k, we use the area under the precision-recall curve (AUC-PR), because it is 

an appropriate metric to iden.fy relevant features in that it is insensi.ve to class imbalance 

(Saito et al., 2015).  

The forward sparse group lasso algorithm, therefore, is a procedure that aims to iden.fy the 

locally op.mal selec.on of features q* including the subset of sparse group lasso features, 

plus addi.onal features that marginally improve the AUC metric. The dataset is split into 

train, valida.on and test. Then, each of the components is normalized by subtrac.ng the 

mean and dividing by the standard devia.on. The naïve results are calculated by fiFng the 

model using all available features. Itera.ons are run over the sparse group lasso (SGL) 

penalty parameter and the SGL algorithm is used for features selec.on. The best SGL 

selec.on of features is iden.fied using a valida.on set. Results for SGL are calculated on the 

test set. Finally, addi.onal features are itera.vely added on to the SGL selec.on un.l the 

AUC value in a given itera.on k is higher than the AUC value in the previous itera.on k-1 in 

the valida.on set. Results for the forward sparse group lasso (FSGL) are calculated on the 

test set using the iden.fied selec.on of features. Algorithm 1 describes the procedure to 

obtain the locally op.mal set of features denoted as 𝐹-×/∗
0123. 

 
Algorithm 1 Forward Sparse-Group Lasso Algorithm 
1:  procedure 𝐹!×#∗

$%&' 
2:  for random_state in random(1, 1000000, size = 50000)) { 
3:    # dataset split: train/validation/test 
4:    x_train, x_validataion, x_test = split(0.8, 0.1, 01, random_state) 
5:    # normalize data 
6:    subtract.mean(train, validataion, test) 
7:    divide.std(train, validataion, test) 
8:    # calculate naïve results (training vs test, all features) 
9:    model.fit(x_train, y_train) 
10:   model.predict(x_test) à Naïve_AUC (test set) 
11:   # select SGL features 
12:   SGL_AUC_list = [] 
13:   for penalty in random(0, 1, size = 100) { 
14:     x_train_SGL_selected = SGL(x_train, penalty) 
15:     model.fit(x_train_SGL_selected, y_train) 
16:     model.predict(x_validation) à SGL_AUC (validation set) 
17:     SGL_AUC_list = SGL_AUC_list.append(SGL_AUC) 
18:   } 
19:   sorted_SGL_AUC_list = sort(SGL_AUC_list, ascending = FALSE) 
20:   Fk = x_train_SGL_selected.sorted_SGL_AUC_list[[1]] 
21:   # calculate SGL results (training vs test, SGL features) 
22:   model.fit(Fk, y_train) 
23:   model.predict(x_test) à SGL_AUC (test set) 
24:   # forward selection loop 
25:   FSGL_AUC_list = [] 
26:   k = 0 
27:   while Fk.AUC > Fk-1.AUC  
28:     for each q in colnames(x_train) if q not in colnames(Fk) { 
29:       Fk = Fk.append(q) 



30:       model.fit(Fk, y_train) 
31:       model.predict(x_validation) à FSGL_AUCk (validation set) 
32:       FSGL_AUC_list = FSGL_AUC_list.append(FSGL_AUC) 
33:     }   
34:     sorted_FSGL_AUC_list = sort(FSGL_AUC_list, ascending = FALSE) 
35:     Fk = Fk.sorted_FSGL_AUC_list[[1]] 
36:     if FSGL_AUCk ≤ FSGL_AUCk-1 { 
37:       return(Fk) 
38:     } 
39:     k = k + 1 
40:   # calculate FSGL results (training vs test, FSGL features) 
41:   model.fit(Fk, y_train) 
42:   model.predict(x_test) à FSGL_AUC (test set) 
43:   𝐹!×#∗

$%&' = Fk 
44: } 
45: end of procedure 
46: return(𝐹!×#∗

$%&') 
 
 
 
 
 
Data 

We used the UCSF - Cross-Sec.onal FreeSurfer (5.1) dataset available from ADNI. The 

dataset consists of 4,896 observa.ons and 341 brain imaging features from ADNI1, ADNI GO 

and ADNI2. We restricted our sample to observa.ons from ADNI2 only, obtaining a sample 

of 4,202 observa.ons. Next, we dropped 269 observa.ons that failed the overall quality 

check, resul.ng in 3,933 observa.ons. We then merged the dataset with the ADNIMERGE 

dataset to obtain the current diagnosis at the .me of the brain scan. We dropped 837 

observa.ons that could not be matched or that resulted in missing diagnosis, obtaining a 

sample of 3,096 observa.ons. We sorted the observa.ons by pa.ent ID and exam date, and 

kept only the first observa.on for each subject, which resulted in 935 unique subjects. We 

dropped 5 subjects that were missing mul.ple variables. Finally, we dropped 11 variables 

that were missing mul.ple subjects. Our final dataset is comprised of 930 unique subjects 

and 330 brain imaging features and 1 labels outcome variable. The diagnoses were as 

follows: 319 cogni.vely normal (CN), 459 mild cogni.ve impairment (MCI) and 152 demen.a 

(AD). 

All 330 brain imaging features were comparted into six groups, selected based on ROIs 

anatomical regions on the UCSFFSX51_DICT_08_01_14 data dic.onary from ADNI: frontal 

lobe, temporal lobe, parietal lobe, occipital lobe, limbic system and subcor.cal areas, insular 

cortex.  



 We then split the dataset in two parts, holding 20% of observa.ons from each class in a 

separate dataset used for external valida.on. The final dataset consists of 255 CN, 367 MCI 

and 122 AD subjects. The external valida.on dataset includes 64 CN, 92 MCI and 30 AD 

subjects. 

Table 1 describes the analy.cal sample. Average age was 73.04 in the CN sample, 71.90 in 

the MCI sample and 74.07 in the AD sample. Female pa.ents were 54.71% in the CN sample, 

43.42 in the MCI sample and 38.09 in the AD sample. In the CN sample, 6.28% of the 

pa.ents were Black or African American, 2.19% in the MCI sample and 2.72% in the AD 

sample. Those who had never goOen married were 5.66% in the CN sample, 3.07% in the 

MCI sample and 0.68% in the AD sample. Pa.ents in the CN sample had 16.58 years of 

educa.on, those in the MCI sample 16.18 years and those in the AD sample 15.75 years. The 

ADAS13 average score was 8.83 in the CN sample, 14.76 in the MCI sample and 30.01 in the 

AD sample. The number of pa.ents with one APOE ε4 alleles were 27.35% in the CN sample, 

36.84% in the MCI sample and 49.65% in the AD sample, while the number of pa.ents with 

two APOE ε4 alleles were 2.20% in the CN sample, 9.86% in the MCI sample and 20.40% in 

the AD sample. 

 

Table 1. Analy.cal sample descrip.ve sta.s.cs 

 Diagnosis 

 CN MCI AD 
Age 73.04 71.90 74.07 
Female 0.5471 0.4342 0.3809 
Black or African American 0.0628 0.0219 0.0272 
Never married 0.0566 0.0307 0.0068 
EducaNon (years) 16.58 16.18 15.75 
ADAS13 score 8.83 14.76 30.01 
Number of APOE ε4 alleles: 
Zero 0.7044 0.5328 0.2993 
One 0.2735 0.3684 0.4965 
Two 0.0220 0.0986 0.2040 
N 319 459 152 
    

 
 
 
 
 



Results 

Table 1 presents the mean number of features and AUC over 50,000 model itera.ons for 

three dis.nct pairwise comparisons. In the HC vs AD comparison, the SGL algorithm 

iden.fied 26.05 (± 16.47) significant features achieving an average AUC of 93.06% (± 4.07%), 

while the FSGL model iden.fied 28.08 (± 16.79) significant features, achieving an average 

AUC equal to 93.38% (± 3.97%). In the HC vs MCI comparison, the SGL algorithm iden.fied 

25.97 (± 26.35) significant features achieving an average AUC of 63.92% (± 6.31%), while the 

FSGL model iden.fied 29.89 (± 26.88) significant features, achieving an average AUC equal to 

64.10% (± 6.84%). In the MCI vs AD comparison, the SGL algorithm iden.fied 24.89 (± 21.86) 

significant features achieving an average AUC of 79.82% (± 6.41%), while the FSGL model 

iden.fied 28.68 (± 22.36) significant features, achieving an average AUC equal to 80.06% (± 

5.87%). On a Welch’s t-test, all three models had a p-value lower than 0.0001, rejec.ng the 

null hypothesis of FSGL AUC mean being equal or lower than SGL AUC mean. 

In the HC vs AD classifica.on algorithm, the most frequently added features in the FSGL 

model were right parahippocampal surface area, right parahippocampal cor.cal volume and 

right paracentral thickness average. In the HC vs MCI classifica.on algorithm, the most 

frequently added features in the FSGL model were third ventricle subcor.cal volume, right 

choroid plexus subcor.cal volume and right superior parietal cor.cal volume. Finally, in the 

MCI vs AD classifica.on algorithm, the most frequently added features in the FSGL was right 

parahippocampal cor.cal volume, right cerebellum subcor.cal volume and leU transverse 

temporal thickness average. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Mean number of features, AUC, standard devia.on, and t-test results of FSGL and 

reference models 

 
 HC vs AD HC vs MCI MCI vs AD 
 NAÏVE SGL FSGL NAÏVE SGL FSGL NAÏVE SGL FSGL 

Number of Features 
(std. dev.) 

330 
(0.00) 

26.05 
(16.47) 

28.08 
(16.79) 

330 
(0.00) 

25.97 
(26.35) 

29.89 
(26.88) 

330 
(0.00) 

24.89 
(21.86) 

28.68 
(22.36) 

AUC 0.9401 
(0.0376) 

0.9306 
(0.0407) 

0.9338 
(0.0397) 

0.6045 
(0.0727) 

0.6392 
(0.0631) 

0.6410 
(0.0684) 

0.8110 
(0.0657) 

0.7982 
(0.0641) 

0.8006 
(0.0587) 

  p<0.0001  p<0.0001  p<0.0001 
Most frequently 
added feature 

 'ST103SA' (4.76%)  'ST127SV' (2.52%)  'ST103CV' (2.51%) 

Second most 
frequently added 
feature 

 'ST103CV' (2.88%)  'ST80SV' (1.92%)  'ST77SV' (2.14%) 

Third most 
frequently added 
feature 

 'ST102TA' (2.80%)  'ST116CV' (1.67%)  'ST62TA' (2.06%) 

Notes: AUC=Area under the ROC curve; standard devia9on in brackets. Sta9s9cal t-tests conducted on 50,000 
itera9ons results. Frequency of addi9onal features u9liza9on in FSGL model in brackets. 'ST103SA' - Surface Area 
(aparc.stats) of RightParahippocampal, 'ST103CV' - Cor9cal Volume (aparc.stats) of RightParahippocampal, 
'ST102TA' - Thickness Average (aparc.stats) of RightParacentral, 'ST127SV' - Subcor9cal Volume (aseg.stats) of 
ThirdVentricle, 'ST80SV' - Subcor9cal Volume (aseg.stats) of RightChoroidPlexus,  'ST116CV' - Cor9cal Volume 
(aparc.stats) of RightSuperiorParietal, 'ST77SV' - Subcor9cal Volume (aseg.stats) of RightCerebellum,  'ST62TA' - 
Thickness Average (aparc.stats) of LegTransverseTemporal 
 
 
Table 2 shows the probability of ranking among the top three most important features in the 

HC vs AD classifica.on over 50,000 runs of the model. LeU presubiculum ranked first in 

47.84% of cases, second in 48.24% of cases and third in 3.92% of occurrences. LeU 

subiculum ranked third in 12.24% of cases. Right presubiculum ranked second in 0.96% of 

cases and third in 10.00% of cases. LeU hippocampus ranked first in 2.96% of cases, second 

in 15.92% of cases and third in 64.00% of cases. Right hippocampus ranked third in 2.96% of 

.mes. Right entorhinal ranked first in 49.20% of .mes, second in 34.88% of .mes, and third 

in 6.88% of .mes. 

 
 
 
 
 
 
 
 
 
 



Table 2. Probability (%) of ranking among the top three most important features in FSGL HC 
vs AD  
               classifica.on model 

ROIs 
HC vs AD 

First Second Third 
ST136HS Presubiculum L 47.84 48.24 3.92 
ST137HS Subiculum L - - 12.24 
ST144HS Presubiculum R - 0.96 10.00 
ST29SV Hippocampus L 2.96 15.92 64.00 
ST88SV Hippocampus R - - 2.96 
ST83TA Entorhinal R 49.20 34.88 6.88 
TOTAL 100.00 100.00 100.00 

 

Table 3 shows the probability of ranking among the top three most important features in the 

HC vs MCI classifica.on over 50,000 runs of the model. LeU lateral occipital ranked second 

0.76% of cases, leU superior frontal ranked third in 2.48% of cases, right lateral occipital 

ranked third in 0.76% of cases, right superior parietal ranked third in 1.24% of cases, leU 

presubiculum ranked third in 2.76% of cases. LeU subiculum ranked first in 12.76% of cases, 

second in 42.48% and third in 15.80% of cases. LeU tail ranked first in 1.24% of cases. LeU 

posterior cingulate ranked third in 1.24% of cases. Right precuneus ranked third in 1.24% of 

cases. LeU hippocampus ranked first in 56.48% of cases, second in 31.72% of cases, and third 

in 11.80% of cases. LeU inferior lateral ventricle ranked third in 0.76% of cases. Right 

hippocampus ranked third in 4.00% of cases. Right inferior lateral ventricle ranked first in 

23.04% of cases, second in 11.04% of cases and third in 33.52% of cases. Right thalamus 

ranked second in 1.24% of cases. LeU postcentral ranked third in 0.76% of cases. Right 

entorhinal ranked first in 6.48% of cases, second in 12.76% of cases and third in 14.96% of 

cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Probability (%) of ranking among the top three most important features in FSGL HC 
vs MCI  
               classifica.on model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 4 shows the probability of ranking among the top three most important features in the 

MCI vs AD classifica.on over 50,000 runs of the model. LeU presubiculum ranked first in 

49.16% of runs, second in 33.36% of runs and third in 14.64% of runs. Right presubiculum 

ranked first in 25.36% of cases, second in 25.80% of cases, third in 8.84% of cases. Right 

subiculum ranked third in 1.68% of cases. LeU amygdala ranked second in 2.00% of cases 

and third in 6.52% of cases. Right cerebellum ranked third in 2.32% of cases. Right temporal 

pole ranked third in 2.00% of cases. LeU fusiform ranked second in 1.16% of cases. LeU 

middle temporal ranked first in 9.16% of cases, second in 8.20% of cases, third in 22.32% of 

cases. Right entorhinal ranked first in 16.32% of cases, second in 28.32% of cases, and third 

in 40.84% of cases. Right inferior parietal ranked second in 1.16% of cases. LeU banks of the 

superior temporal sulcus ranked third in 0.84% of cases. 

 
 
 
 
 
 
 

ROIs HC vs MCI 
First Second Third 

ST35CV LateralOccipital L - 0.76 - 
ST56CV SuperiorFrontal L - - 2.48 
ST94CV LateralOccipital R - - 0.76 
ST116CV SuperiorParietal R - - 1.24 
ST136HS Presubiculum L - - 2.76 
ST137HS Subiculum L 12.76 42.48 15.80 
ST138HS Tail L 1.24 - 8.68 
ST50SA PosteriorCingulate L - - 1.24 
ST111SA Precuneus R - - 1.24 
ST29SV Hippocampus L 56.48 31.72 11.80 
ST30SV InfLateralVentricle L - - 0.76 
ST88SV Hippocampus R - - 4.00 
ST89SV InfLateralVentricle R 23.04 11.04 33.52 
ST120SV Thalamus R - 1.24 - 
ST49TA Postcentral L - - 0.76 
ST83TA Entorhinal R 6.48 12.76 14.96 
TOTAL 100.00 100.00 100.00 



Table 4. Probability (%) of ranking among the top three most important features in FSGL MCI 
vs AD   
               classifica.on model 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 represents the joint probabili.es of ranking first over 150,000 algorithm runs, in 

three pairwise comparisons.  LeU hippocampal subcor.cal volume (7.68%), hippocampal 

subfields volume of leU subiculum (4.25%) and hippocampal subfields volume of leU tail 

(0.41%) ranked first in the HC vs MCI classifica.on model only. Subcor.cal volume of leU 

hippocampus (19.81%) ranked first in the HC vs MCI and the HC vs AD models. Hippocampal 

subfields volume of right presubiculum (8.45%) and thickness average of leU middle 

temporal (3.05%) ranked first in the MCI vs AD classifica.on model only. Hippocampal 

subfields volume of leU presubiculum (32.33%) ranked first in both MCI vs AD and HC vs AD 

set. Thickness average of right entorhinal (24.01%) ranked first in all three models. 

Therefore, the four predictors of mild disease are iden.fied in the HC vs MCI set not 

included in the MCI vs AD set: leU hippocampal subcor.cal volume, hippocampal subfields 

volume of leU subiculum, hippocampal subfields volume of leU tail and subcor.cal volume 

of leU hippocampus. Similarly, the three predictors of severe disease are iden.fied in the 

MCI vs AD set not included in the HC vs MCI set: hippocampal subfields volume of right 

presubiculum, thickness average of leU middle temporal and hippocampal subfields volume 

of leU presubiculum. Brain networks represen.ng these rela.onships are represented in 

Figure 2: yellow dots represent predictors associated with milder disease, red dots represent 

predictors associates with more severe disease, whereas orange dots are shared nodes in 

the network. Figure S1-S6 in the appendix provide similar informa.on in rela.on to the joint 

probabili.es of ranking second and third in 150,000 model itera.ons: similar paOerns are 

ROIs MCI vs AD 
First Second Third 

ST136HS Presubiculum L 49.16 33.36 14.64 
ST144HS Presubiculum R 25.36 25.80 8.84 
ST145HS Subiculum R - - 1.68 
ST12SV Amygdala L - 2.00 6.52 
ST77SV Cerebellum R - - 2.32 
ST119TA TemporalPole R - - 2.00 
ST26TA Fusiform L - 1.16 - 
ST40TA MiddleTemporal L 9.16 8.20 22.32 
ST83TA Entorhinal R 16.32 28.32 40.84 
ST90TA InferiorParietal R - 1.16 - 
ST13TS Bankssts L - - 0.84 
TOTAL 100.00 100.00 100.00 



highlighted, with right hippocampus volume varia.on being uniquely and significantly 

associated with more severe disease. 

 

Figure 1. Joint probabili.es of ranking first over 150,000 itera.ons 
 

 
  
Notes:  
ST29SV - SubcorRcal Volume (aseg.stats) of LefHippocampus. -25.03 -20.74 -10.13 [Song, 2019]  
ST40TA - Thickness Average (aparc.stats) of LefMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011]  
ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018] 
ST89SV - SubcorRcal Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *]   
ST136HS - Hippocampal Subfields Volume of LefPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *] 
ST137HS  - Hippocampal Subfields Volume of LefSubiculum. -20.00, -19.00, -17.00 [Palomero-Gallagher, 2020 *] 
ST138HS - Hippocampal Subfields Volume of LefTail. -25.00, -35.00, -1.00 [Rorden, 2007 *] 
ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020] 
The asterisk "*" indicates further authors' elaboraRon on referenced publicaRon. 
 
 
 
 
 
 
 
 
 
 
 



Figure 2. First-ranking ROIs distribu.on in Axial, SagiOal and Coronal views 
 

 
 
Notes. Clockwise from top to boOom leU: Axial, SagiOal and Coronal views. The brain 
networks were generated using BrainNet Viewer (hOp://www.nitrc.org/projects/bnv/) (Xia 
et al., 2013). Red dots represent ROIs associated with more severe disease. Yellow dots 
represent ROIs associates with milder disease. 
 
 
Simulated Data Experiment 
 
Finally, a simulated experiment was executed to replicate the feature selection 

process within a dataset containing a blend of clinically significant variables 

exhibiting strong correlations with other statistically significant variables. 

A dataset comprising 10000 observations and 400 variables was created. The 

variables were synthetized to emulate ADNI fMRI data ranges and distributions. 



Within this dataset, 100 variables were chosen at random to have a highly correlated 

paired feature labelled as clinically significant. As a result, specific variables were 

identified as clinically significant, while the remaining variables retained their initial 

randomized nature. Figure 3 shows the correlation matrix of all 430 features. It 

displays the correlation coefficients between variables. Each cell in the matrix 

represents the correlation between two variables. The correlation coefficient 

quantifies the strength and direction of the linear relationship between two variables. 

It ranges between -1 and 1, where 1 indicates a perfect positive linear relationship (as 

one variable increases, the other also increases proportionally). -1 indicates a perfect 

negative linear relationship (as one variable increases, the other decreases 

proportionally). 0 indicates no linear relationship between the variables. 

The diagonal contains perfect correlations (always 1) since it compares the variables 

with themselves and with their ‘clinically significant‘ copies. 

 

Figure 3. Synthe.c Data Correla.on Matrix 

 
 



SGL algorithm was applied to introduce sparsity and identify relevant features. 

Similarly, FSGL was used to identify the significant features, using SGL and a 

combination of univariate forward selection steps, as described above. Iterations 

were set to be equal to 1,000. Within the pool of selected features, those labelled 

‘clinically significant’ were counted and standard error computed. 

SGL algorithm identified 9.64 (CI: 7.81 to 11.46) clinically relevant features while FSGL 

could identify 12.33 (CI: 10.74 to 13.91) clinically relevant features. 

 

Figure 4. Clinically relevant features iden.fied by FSGL and SGL 

  
 
Discussion and Limita7ons 
 
In this study, we introduced a novel algorithm, designed as a linear combina.on of the 

regulariza.on method sparse group lasso (SGL) and a sequen.al forward selec.on step on 

an external valida.on set, and deemed it Forward Sparse Group Lasso (FSGL). We showed 

that this method improves the predic.on accuracy of the model significantly across the 

three models considered. We then u.lized the results of pairwise diagnoses classifica.on 

models within a set theory framework to iden.fy predictors that are exclusively associated 

with either milder or more severe disease. Further, we illustrated in a synthe.c dataset the 

ability of FSGL to iden.fy a greater number of clinically relevant features with respect to SGL. 



This suggests that the approach we proposed is par.cularly useful when there exist clinically 

significant features that are highly correlated with other sta.s.cally significant features, and 

hence may be discarded by the SGL regulariza.on algorithm. The introduc.on of a forward 

selec.on step addresses this issue by restoring clinically significant features in the pool of 

variables used for clinical assessment and disease staging. 

 

In this sample of 930 ADNI par.cipants, including 152 AD pa.ents, 459 MCI and 319 

cogni.vely normal individuals, leU hippocampus atrophy was linked to both mild and severe 

cogni.ve decline: we iden.fied both leU and right hippocampi volume to be strong 

predictors of disease. However, right hippocampus atrophy was the most frequent unique 

predictor of progression from MCI to AD: we iden.fied right hippocampus volume, in the 

subiculum and presubiculum subfields, to be uniquely associated with full-blown 

Alzheimer’s disease. This is consistent with the clinical observa.on of the fact that deficits in 

verbal memory are usually seen in the MCI stage, associated with leU hippocampal volume 

(Bonner-Jackson et al., 2015), whereas deficits in visual memory, associated with right 

hippocampal volume (Huang et al., 2022), usually present themselves at later stages. 

 

These findings are supported by other peer-reviewd studies. In a stepwise discriminant 

analysis predic.ng progression to Alzheimer's disease, Galton et al. (2005) found that leU 

hippocampus atrophy was associated with a 63.6% sensi.vity while right hippocampus 

atrophy was associated with a 90.9% sensi.vity. In a study on MCI to AD progression, 

Herukka (2008) found that the volume of right hippocampus exhibited sensi.vity of 87.5%, 

while the volume of the leU hippocampus had a sensi.vity of 75.0%. In a magne.c 

resonance study analyzing MCI progression of 220 subjects, right presubiculum subfield 

volume was not significantly different between the nega.ve controls and the non-conver.ng 

MCI group, but it was significantly different between the nega.ve controls and the 

conver.ng MCI group (Guo et al., 2020).  

 

In BoFno et al. (2002), leU hippocampus volume could significantly differen.ate between 

MCI and HC and also between MCI and AD; right hippocampus volume could iden.fy AD 

versus MCI, but was not significant in predic.ng HC versus MCI. Bozzali et al. (2006) found a 

reduc.on in gray maOer density in the right hippocampus, but not in the leU hippocampus, 



in MCI converters as opposed to nonconverters. Similarly, Chételat et al. (2005) found the 

right posterior hippocampus to be a significant predictor of MCI progressors versus MCI 

stable pa.ents. Hämäläinen et al. (2007) found the right hippocampus to be a predictor of 

conversion in MCI pa.ents, but a similar paOern was not iden.fied with respect to the leU 

hippocampus. In Petrella et al. (2006), the authors found decreased ac.vity in the leU 

hippocampus of MCI par.cipants as compared with HC, but not in the right hippocampus. 

 

The proposed approach combines regulariza.on methods with forward selec.on on a 

valida.on set, and uses set theory on joint distribu.ons to iden.fy predictors of disease 

staging. The proposed approach can be computa.onally efficient for small to medium-sized 

feature sets and can provide insights into the rela.ve importance of different features. 

However, this approach also has several limita.ons: it might lead to subop.mal solu.ons if 

the order in which features are added affects the final selec.on. It does not consider the 

interac.ons between features, which can limit its effec.veness in capturing complex 

rela.onships. 

 

Other limita.ons of this approach include the fact that FSGL requires more computa.onal 

resources and it is slower than SGL, although this could become more sustainable with the 

increasing computa.onal power and decreasing costs of HPC machines. Also, forward 

selec.on is best applied only when the ini.al number of features is reduced, e.g. using PCA 

or using ROIs instead of voxel-level brain data. Another important limita.on resides in the 

fact that SGL, on which FSGL is built, randomly chooses which variable(s) to drop among a 

group of correlated variables, which could have poten.ally unpredictable implica.ons for 

the clinical validity of the findings and the generalizability of the method in clinical seFngs. 

However, as a proof of concept, although computa.onally intensive, this method can 

achieve a beOer performance than the state-of-the-art approach. 

 

 

Conclusion 

In this work, we have used a novel algorithm, deemed forward sparse group lasso (FSGL), as 

a linear combina.on of sparse group lasso (SGL) and forward selec.on on a valida.on set, to 



then iden.fy predictors of disease staging within a set theory framework. We demonstrated 

that in this applica.on FSGL can achieve a significantly beOer performance than SGL. 

Consistent with previous literature, we further demonstrated that this approach was able to 

iden.fy right hippocampal subiculum and presubiculum to be the most significant and 

unique predictors of severe Alzheimer’s disease progression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 
Figure S1. Most important features: probability of ranking second over 150,000 itera.ons 
 
 

 
Notes: 
ST120SV - SubcorRcal Volume (aseg.stats) of RightThalamus. 6, -16, -6 [Androulakis, 2017] 
ST12SV - SubcorRcal Volume (aseg.stats) of LefAmygdala. -18, -4, -12 [Peters, 2013] 
ST136HS - Hippocampal Subfields Volume of LefPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *] 
ST137HS - Hippocampal Subfields Volume of LefSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *] 
ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *] 
ST26TA - Thickness Average (aparc.stats) of LefFusiform. -29, -57, -14 [Zhang, 2016] 
ST29SV - SubcorRcal Volume (aseg.stats) of LefHippocampus. -25.03, -20.74, -10.13 [Borchardt, 2015] 
ST35CV - CorRcal Volume (aparc.stats) of LefLateralOccipital. -30, -90, 6 [Heckendorf, 2016] 
ST40TA - Thickness Average (aparc.stats) of LefMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011] 
ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018] 
ST89SV - SubcorRcal Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *] 
ST90TA - Thickness Average (aparc.stats) of RightInferiorParietal. 52, -42, 50 [Rojas, 2018] 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S2. Second-ranking ROIs distribu.on in Axial, SagiOal and Coronal views 
 

 
Notes. Clockwise from top to boOom leU: Axial, SagiOal and Coronal views. The brain 
networks were generated using BrainNet Viewer (hOp://www.nitrc.org/projects/bnv/) (Xia 
et al., 2013) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S3. Joint probability of ranking third most important feature over 150,000 itera.ons 
 

 
Notes: 
ST111SA - Surface Area (aparc.stats) of RightPrecuneus. 0, -49, 40 [Androulakis, 2017] 
ST116CV - CorRcal Volume (aparc.stats) of RightSuperiorParietal. 30, -55, 58 [Li, 2012] 
ST119TA - Thickness Average (aparc.stats) of RightTemporalPole. 52, 20, -18 [Androulakis, 2017] 
ST12SV - SubcorRcal Volume (aseg.stats) of LefAmygdala. -18, -4, -12 [Peters, 2013] 
ST136HS - Hippocampal Subfields Volume of LefPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *] 
ST137HS - Hippocampal Subfields Volume of LefSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *] 
ST138HS - Hippocampal Subfields Volume of LefTail. -25.00, -35.00, -1.00 [Rorden, 2007 *] 
ST13TS - Thickness Stardard DeviaRon (aparc.stats) of LefBankssts. -53, -51, 14 [Pitcher, 2020] 
ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *] 
ST145HS - Hippocampal Subfields Volume of RightSubiculum. 19.5, -17.5, -35 [Palomero-Gallagher, 2020 *] 
ST29SV - SubcorRcal Volume (aseg.stats) of LefHippocampus. -25.03, -20.74, -10.13 [Borchardt, 2015] 
ST30SV - SubcorRcal Volume (aseg.stats) of LefInferiorLateralVentricle. -20, -25, 35 [Rorden, 2007 *] 
ST40TA - Thickness Average (aparc.stats) of LefMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011] 
ST49TA - Thickness Average (aparc.stats) of LefPostcentral. -42.46, -22.63, 48.92 [Borchardt, 2015] 
ST50SA - Surface Area (aparc.stats) of LefPosteriorCingulate. 1, -61, 38 [Hur, 2021] 
ST56CV - CorRcal Volume (aparc.stats) of LefSuperiorFrontal. -18.45 34.81 42.2 [Borchardt, 2015] 
ST77SV - SubcorRcal Volume (aseg.stats) of RightCerebellumWM. 12 -66 -48 [Stoodley, 2012] 
ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018] 
ST88SV - SubcorRcal Volume (aseg.stats) of RightHippocampus. 29.23 -19.78 -10.33 [Borchardt, 2015] 
ST89SV - SubcorRcal Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *] 
ST94CV - CorRcal Volume (aparc.stats) of RightLateralOccipital.   [Heckendorf, 2016] 
The asterisk "*" indicates further authors' elaboraRon on referenced publicaRon. 
 
 
 
 
 
 
 



Figure S4. Third-ranking ROIs distribu.on in Axial, SagiOal and Coronal views 
 

 
 
Notes. Clockwise from top to boOom leU: Axial, SagiOal and Coronal views. The brain 
networks were generated using BrainNet Viewer (hOp://www.nitrc.org/projects/bnv/) (Xia 
et al., 2013) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S5. Joint probability of ranking in the first three most important features over 150,000 
itera.ons 
 

 
Notes: 
ST111SA - Surface Area (aparc.stats) of RightPrecuneus. 0, -49, 40 [Androulakis, 2017] 
ST116CV - CorRcal Volume (aparc.stats) of RightSuperiorParietal. 30, -55, 58 [Li, 2012] 
ST119TA - Thickness Average (aparc.stats) of RightTemporalPole. 52, 20, -18 [Androulakis, 2017] 
ST120SV - SubcorRcal Volume (aseg.stats) of RightThalamus. 6, -16, -6 [Androulakis, 2017] 
ST12SV - SubcorRcal Volume (aseg.stats) of LefAmygdala. -18, -4, -12 [Peters, 2013] 
ST136HS - Hippocampal Subfields Volume of LefPresubiculum. -16.00, -19.00, 18.50 [Palomero-Gallagher, 2020 *] 
ST137HS - Hippocampal Subfields Volume of LefSubiculum. -20.00, -19.00, -17 [Palomero-Gallagher, 2020 *] 
ST138HS - Hippocampal Subfields Volume of LefTail. -25.00, -35.00, -1.00 [Rorden, 2007 *] 
ST13TS - Thickness Stardard DeviaRon (aparc.stats) of LefBankssts. -53, -51, 14 [Pitcher, 2020] 
ST144HS - Hippocampal Subfields Volume of RightPresubiculum. 17.00, -18.00, -20.50 [Palomero-Gallagher, 2020 *] 
ST145HS - Hippocampal Subfields Volume of RightSubiculum. 19.5, -17.5, -35 [Palomero-Gallagher, 2020 *] 
ST26TA - Thickness Average (aparc.stats) of LefFusiform. -29, -57, -14 [Zhang, 2016] 
ST29SV - SubcorRcal Volume (aseg.stats) of LefHippocampus. -25.03 -20.74 -10.13 [Borchardt, 2015] 
ST30SV - SubcorRcal Volume (aseg.stats) of LefInferiorLateralVentricle. -20, -25, 35 [Rorden, 2007 *] 
ST35CV - CorRcal Volume (aparc.stats) of LefLateralOccipital. -30, -90, 6 [Heckendorf, 2016] 
ST40TA - Thickness Average (aparc.stats) of LefMiddleTemporal. -44.00, -67.00, -19.00 [Crone, 2011] 
ST49TA - Thickness Average (aparc.stats) of LefPostcentral. -42.46, -22.63, 48.92 [Borchardt, 2015] 
ST50SA - Surface Area (aparc.stats) of LefPosteriorCingulate. 1, -61, 38 [Hur, 2021] 
ST56CV - CorRcal Volume (aparc.stats) of LefSuperiorFrontal. -18.45 34.81 42.2 [Borchardt, 2015] 
ST77SV - SubcorRcal Volume (aseg.stats) of RightCerebellumWM. 12 -66 -48 [Stoodley, 2012] 
ST83TA - Thickness Average (aparc.stats) of RightEntorhinal. 25.00, -2.00, -33.00 [Konishi, 2018] 
ST88SV - SubcorRcal Volume (aseg.stats) of RightHippocampus. 29.23 -19.78 -10.33 [Borchardt, 2015] 
ST89SV - SubcorRcal Volume (aseg.stats) of RightInferiorLateralVentricle. 20, -25, 35 [Rorden, 2007 *] 
ST90TA - Thickness Average (aparc.stats) of RightInferiorParietal. 52, -42, 50 [Rojas, 2018] 
ST94CV - CorRcal Volume (aparc.stats) of RightLateralOccipital. 40, -72, -10 [Heckendorf, 2016] 
 
 
 
 



Figure S6. Third-ranking ROIs distribu.on in Axial, SagiOal and Coronal views 

 
 
Notes. Clockwise from top to boOom leU: Axial, SagiOal and Coronal views. The brain 
networks were generated using BrainNet Viewer (hOp://www.nitrc.org/projects/bnv/) (Xia 
et al., 2013) 
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