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Abstract

Transfer learning has revolutionized the field of deep learning, allowing the utilization of pre-
trained models to address challenges such as limited training data and expensive computational
resources. However, the lack of interpretability and transparency in transfer learning methods poses
significant obstacles to their practical deployment and trustworthiness. This doctoral dissertation is
dedicated to enhancing the transparency and interpretability of visual domain adaptation, a critical
task of transfer learning, encompassing feature representation analysis and integration of multimodal
semantic knowledge. By addressing the cross-domain shift and providing human-friendly explana-
tions simultaneously, this research aims to provide deeper insights into the transfer learning process
and facilitate more interpretable and trustworthy outcomes for real-world applications.

We start by analyzing the distribution of learned feature representations in visual domain adap-
tation tasks with solely visual images available, to gain valuable insights into the transfer of knowl-
edge across different domains. By visualizing the learned features in the domain-invariant feature
space, we can observe how the boundaries between task-specific categories align in unsupervised
domain adaptation tasks. These insights derived from the analysis contribute to our efforts in ad-
dressing partial domain adaptation by measuring the similarities between features and filtering out
outlier categories and also support us in tackling fairness issues in imbalanced domain adaptation
with limited training data through the utilization of various feature generation strategies.

Moreover, we seek to utilize high-level semantic knowledge such as textual descriptions in
addition to images to enhance the explanations of domain adaptation. In this regard, we introduce the
Semantic-Recovery Open-Set Domain Adaptation (SR-OSDA) problem and propose a solution to
recover semantic descriptions for unseen categories in the target domain while accurately identifying
seen categories. By combining textual and visual data, we efficiently discover novel target classes
and provide human-friendly explanations with semantic attribute prediction.

Furthermore, in order to elucidate the inner workings of convolutional networks for visual fea-
ture extraction to enrich the high-level semantic explanation, we propose an interpretable driving
decision-making model which employs learnable concept-based visual prototypes to identify the
crucial regions and objects in ego-view images for driving actions and align the learned semantic
prototypes with human annotations to enable interpretable driving decision-making.

Finally, this dissertation presents an Interpretable Novel Target Discovery model that addresses
the SR-OSDA problem by combining interpretation strategies and multimodal semantic knowl-
edge. The model achieves interpretation through human-friendly multimodal semantic concept-
based visual prototypes and analysis of feature representations. The research provides valuable in-
sights for integrating AI systems across domains, promoting transparency, interpretability, and trust-
worthiness in decision-making. Overall, it contributes to the development of interpretable transfer
learning techniques, enhancing the understanding and practical application of deep learning models,
and fostering transparent and collaborative human-AI interactions.
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0
Introduction

0.1 Background

The rapid advancements in machine learning (ML) and deep learning (DL) have revolutionized nu-

merous domains, such as computer vision and natural language processing, by showcasing remark-

able breakthroughs thanks to the unprecedented capabilities of DL in understanding and extracting

information from vast and complex datasets [35, 16]. In recent times, the impressive performances

of diffusion models in computer vision and Large Language Models (LLM) in natural language

processing have garnered significant attention from both industry and academia to AI-Generated

Content (AIGC) [94, 108]. However, the practical applications of those large-scale DL models are

hindered by the inherent demands for large amounts of well-annotated training data and expensive

2



computing resources.

For instance, the training of GPT-4 relied on text databases sourced from the internet, including

about 570 GB of data, comprising 300 billion words extracted from books, webtexts, Wikipedia,

articles, and other written sources available online [94]. Unfortunately, during the early days of the

Covid-19 pandemic, the lack of well-annotated chest X-ray data from patients posed a significant

challenge, limiting the application of machine-learning techniques in disease detection. Moreover,

the training process of the Stable-Diffusion model necessitated the utilization of 256 Nvidia A100

GPUs on AmazonWeb Services, amounting to a total of 150,000 GPU-hours [108]. This substantial

computational requirement poses a barrier to deploying such large-scalemodels on edge devices with

limited processing power, such as cell phones and VR/AR headsets.

Transfer learning aims to overcome the limitations of machine learning and deep learning by

reducing training costs and minimizing reliance on large-scale training data, which can be difficult

to obtain [65, 77, 15]. This research area has been significant even before the emergence of deep

learning in the last two decades. A key challenge and objective of transfer learning is to address the

differences in data distribution between the source data used for training and the target data used for

testing, known as “domain shift.” Based on the specific problems being addressed, transfer learning

methods can be broadly categorized into two branches: data distribution disparity and label space

mismatch.

Domain Adaptation (DA) has become a prominent technique for addressing the disparity in vi-

sual data distribution between source and target datasets [68, 137, 163]. This approach offers an

effective solution to mitigate the challenges posed by such differences. Within the field of DA, two

primary categories of methods have emerged: feature-based andmodel-based approaches. Feature-

based transfer learning strategies focus on extracting a shared latent embedding space that encom-

passes both the source and target data. These strategies employ various techniques, includingmetric-

based training or adversarial optimization, to minimize the differences between the two domains in

the latent space. Differently, model-based methods capitalize on the knowledge acquired from a

trained model to facilitate adaptation to the target domain. Teacher-student architecture has shown to

be effective for domain adaptation in various tasks beyond visual image recognition [18, 91, 70, 17].

Moreover, label space mismatch refers to the challenge posed by the different label spaces
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present in the source training data and the target test data. Zero-shot learning (ZSL) is a com-

mon solution for addressing this type of problem. Most ZSL methods can be broadly categorized

as embedding-based and generative-based approaches [64, 101, 166]. Embedding-based methods

learn an embedding space that associates low-level visual features of seen classes with their corre-

sponding semantic vectors. This learned projection function is then used to recognize novel classes

by measuring the similarity between prototype representations and predicted representations of data

samples in the embedding space. Generative-basedmethods, on the other hand, learn amodel to gen-

erate images or visual features for unseen classes based on samples from seen classes and semantic

representations of both.

It is important to note that both of these two problems may occur in real-world tasks, and transfer

learning solutions must address all of them simultaneously. For instance, tasks such as open-set

domain adaptation and some generalized zero-shot learning involving more than one dataset present

challenges involving both data distribution disparity and label space mismatch [114, 128, 133, 82].

However, although transfer learning has gained numerous interests from both academia and

industry in the past decades and achieved impressive progress in various applications of transferring

knowledge across different datasets, two critical challenges have not received sufficient exploration

yet: label space mismatch and interpretation of the knowledge transfer.

In most conventional domain adaptation problems, the existence of novel categories in the target

domain is not considered. Open-set Domain Adaptation (OSDA) is one of the research problems that

the target domain contains novel classes never observed in the source domain, while most OSDA

solutions typically group them as one “unknown” category without further exploration [114, 81,

128]. It is worth noting that while Zero-shot Learning (ZSL) and Generalized Zero-shot Learning

(GZSL) seek to address the research of new categories not included in the training data, they struggle

with handling the data distribution disparity between the source and target domains. Additionally,

most of the GZSL methods rely on prior knowledge of the semantics of the novel categories in the

target data, which is not always practical in real-life situations [133, 82, 119, 32].

Furthermore, despite the countless transfer learning solutions and techniques proposed to ad-

dress various problems, transparency remains an open problem in this area. Interpretability is cru-

cial in machine learning and deep learning to enable the practical application of these techniques in
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real-life problems, particularly in risk-critical areas [52, 28, 83]. However, the motivation for the

interpretation of transfer learning has not received enough attention in this regard. An interpretable

transfer learning solution that provides trackable explanations and insights into the knowledge trans-

fer process can contribute to building responsible AI systems and efficiently solving real-life prob-

lems while benefiting from the advantages of transfer learning. It can also assist researchers in

understanding the reasoning behind the decision-making process of the model, enabling them to

diagnose errors and gain insights into how to further improve its performance.

This doctoral dissertation aims to enhance the transparency and interpretability of visual domain

adaptation tasks. It achieves this by analyzing visual feature representations, integrating multimodal

semantic knowledge, and addressing cross-domain data distribution and label space differences.

First of all, we analyze the feature representation distribution in a domain-invariant latent space,

gaining valuable insights into the domain adaptation process. For instance, by assessing the simi-

larities in features between the source and target domains, we can identify and exclude mismatched

categories across the two domains. This allows us to focus solely on aligning the shared classes dur-

ing domain adaptation. Next, by leveraging textual descriptions of high-level semantic attributes,

we discover and explain novel categories while aligning shared categories across domains. Fur-

thermore, to enhance interpretability, we propose an interpretable driving decision-making model

that uncovers convolutional networks within visual feature extraction networks. This model learns

concept-based visual prototypes aligned with human annotations and can identify action-inducing

regions in ego-view images, providing interpretable driving decision predictions. Finally, we com-

bine interpretable strategies and multimodal semantic knowledge to address the SR-OSDA problem,

aligning shared categories and discovering novel target classes. This work extends beyond open-set

domain adaptation and represents an initial step towards developing comprehensive and transparent

transfer learning techniques, unveiling the black-box nature of knowledge transfer across datasets

and tasks.

0.2 Definitions and Notations

This section formally defines transfer learning and domain adaptation while presenting categoriza-

tions for domain adaptation tasks under different conditions. It also introduces and explains impor-
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tant notations used throughout the dissertation for clarity and convenience.

0.2.1 Transfer Learning

In transfer learning problems, we define a domain D as comprising two key components: a feature

space X and a marginal probability distribution P(x), with x ∈ X . When dealing with a specific

domain D = {X ,P(x)}, a task consists of two fundamental elements: a label space Y and an

objective predictive function denoted as f (·), forming T = {Y, f (·)}. Although the predictive

function f (·) is not explicitly observable, it can be learned from the training data. The training data

itself is composed of pairs {xi, yi}, where xi ∈ X and yi ∈ Y. The predictive function f (·) is used

to determine the corresponding label y of a new input instance x, and this relationship can also be

represented as P(y|x) from a probabilistic perspective.

Let Ds be the source domain and Dt be the target domain. The source domain data, Ds =

{(xi
s, yis)}

ns
i=1, consists of ns input data xi

s ∈ Xs and corresponding labels yis ∈ Ys, drawn from

the source distribution Ps(x, y). Similarly, the target domain data, Dt = {(xi
t, yit)}

nt
i=1, comprises

nt samples with xi
t ∈ Rdt . Here, ns and nt represent the number of source and target samples,

respectively. Now we give the definition of transfer learning as:

Definition 1 (Transfer Learning): In the context of a source domain Ds and learning task Ts,

and a target domain Dt and learning task Tt, transfer learning improves the learning of the target

predictive function ft(·) in Dt by leveraging knowledge from Ds and Ts, even when Ds "= Dt or

Ts "= Tt.

Transfer learning settings can be categorized into three sub-settings: inductive transfer learning,

transductive transfer learning, and unsupervised transfer learning, depending on the relationships

between the source and target domains and tasks [97]. In inductive transfer learning, the target task

differs from the source task, regardless of whether the source and target domains are the same or

not. In transductive transfer learning, the source and target tasks are the same, but the domains differ.

Lastly, in unsupervised transfer learning, the target task is different from the source task, and there

are no labeled data available in both source and target domains during training.
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0.2.2 Domain Adaptation

In the context of transfer learning categorization, domain adaptation pertains to transductive transfer

learning, where the assumption is that the source and target tasks are identical (Ts = Tt), while the

source and target domains differ (Ds "= Dt). The underlying reason for domain divergence may

stem from variations in the feature space (Xs "= Xt) or distribution shift, where the feature space is

the same (Xs = Xt), but the data distributions differ (P(xs) "= P(xt)) [97, 139].

Most domain adaptation problems can be categorized based on the availability of labeled target

domain data during training:

• Unsupervised Domain Adaptation (UDA): Fully unlabeled target domain data.

• Semi-supervised Domain Adaptation (SSDA): Partially labeled target domain data and la-

bels.

• Supervised Domain Adaptation: Fully labeled target domain data and labels.

Moreover, based on the relationship between the label spaces of the source and target domains,

Ys and Yt, domain adaptation problems can be categorized as follows:

• Closed-set Domain Adaptation (CDA): Same label space for both source and target do-

mains, Ys = Yt.

• Open-set Domain Adaptation (OSDA): The source domain label space is a proper subset

of the target domain label space, Ys ⊂ Yt.

• Partial Domain Adaptation (PDA): The target domain label space is a proper subset of the

source domain label space, Yt ⊂ Ys.

• Universal Domain Adaptation (UniDA): No prior knowledge of the label spaces, Ys ? Yt.

This dissertation undertakes a comprehensive investigation into domain adaptation, commenc-

ingwith closed-set unsupervised domain adaptation to analyze feature representations in the domain-

invariant hidden space. The obtained insights serve as a cornerstone for addressing partial domain

adaptation through the measurement of feature similarities across domains and the generation of
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Table 1: Notations and Descriptions

Notation Description
Ds,Dt source / target domain
Ts, Tt source / target tasks
Xs,Xt source / target domain data space
Ys,Yt source / target domain label space
Cs,Ct number of categories in the source / target domain (Cs = |Ys|,Ct = |Yt|)
Xs,Xt source / target data input
ns, nt number of source / target samples
Ys,Yt source / target labels
xi
s,x

j
t source / target domain instance

Ps(xs),Pt(xt) source / target domain data distribution
zis, z

j
t source / target domain embedding features

yis, y
j
t source / target domain ground-truth label

fs(·), ft(·) source / target predictive function
ŷi
s, ŷ

j
t prediction of the source / target sample

synthetic features to address the challenge of scarce training data and labels. Furthermore, we ex-

plore open-set domain adaptation, striving to recover semantical descriptions of novel target domain

categories by leveraging multimodal semantic knowledge and an interpretable AI architecture. This

research aims to contribute valuable advancements to the field of domain adaptation and enhance

model generalization across diverse domains.

0.2.3 Notation and Descriptions

For convenience, a list of notations and their definitions are shown in Table 1.

0.3 Related Work

0.3.1 Unsupervised Domain adaptation (UDA)

Domain adaptation (DA) has been extensively studied recently, which casts light when there are

no or limited labels in the target domain and shows very promising performance in different vision

applications [163, 67, 78, 149, 62]. Closed-set domain adaptation is one of the most explored prob-

lems. Specifically, closed-set domain adaptation assumes that the categories in the target domain

are already seen in the source domain. Unsupervised domain adaptation (UDA) deals with prob-

lems when the source and target domains have identical label spaces [126, 20, 23, 43]. Most UDA
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solutions seek to mitigate the cross-domain distribution disparity via minimizing the cross-domain

marginal and conditional distribution divergence or learning domain-invariant representations in an

adversarial manner [126, 46, 12, 127, 162]. With the renaissance of deep neural networks, deep DA

methods successfully embed DA into deep learning pipelines by either minimizing an appropriate

distribution distance metric [75] or leveraging adversarial technologies to generate domain-invariant

representations [113, 15]. The cross-domain distribution discrepancy enlarged by traditional deep

learning models can be explicitly alleviated by incorporating various domain alignment strategies at

the top layers. To name a few, Domain Adaptation Network (DAN) applies multiple kernel MMD

distances on the last three task-specific layers to minimize the distribution difference [74]. Long et

al. [79] proposed a Joint Adaptation Network (JAN) and joint MMD criterion to solve the problem.

Another strategy is to leverage generative adversarial networks (GAN) [34] to couple the cross-

domain discrepancy in an adversarial manner [30, 113, 161, 163]. Such techniques aim to train a

domain discriminator to differentiate source and target samples, while the feature generator will de-

ceive the domain discriminator, such that the domain-invariant features will be produced. Ganin et

al. [31] proposed DANN to generate task-specific discriminative while domain-wise indiscrimina-

tive features. Tzeng et al. [130] presented ADDA for adversarial adaptation.

Both discrepancy and adversarial loss-based methods attempt to match the whole source and

target domain distribution completely, neither of them considers the target domain data structure

and task-specific decision boundaries. To address this, Saito et al. [113] adopted the task-specific

category decision boundaries and proposes a model with two classifiers as a discriminator to detect

the relationship between the source and target domain data (MCD). By maximizing the prediction

results of the two classifiers, the framework is able to screen out target samples that are near the cat-

egory decision boundaries and far from the source domain support. Following this, Lee et al. [62]

extended MCD and proposed a novel Wasserstein metric to capture the natural notion of dissimilar-

ity between the outputs of two task-specific classifiers. Most recently, Li et al. [67] claimed that

label distribution alignment is still not enough and proposed Joint Adversarial Domain Adaptation

(JADA) to explore a unified adversarial learning mechanism to align the cross-domain domain-

wise and class-wise distribution simultaneously. Unfortunately, existing works seek to maximize

the prediction difference between two same architecture classifiers to explore different task-specific
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knowledge, limiting the divergence of category decision boundaries captured across domains.

The cross-domain data distribution discrepancy, known as domain shift, is the main challenge

of domain adaptation. Plenty of works exploits the potential of deep neural networks to capture ex-

planatory attributes and domain-invariant features in recent years, which is conducive to mitigating

domain shift while transferring underlying knowledge across domains in domain adaptation tasks

[5, 22, 153]. Compared to traditional machine learning-based domain adaptation solutions, intro-

ducing deep architecture into domain adaptation promotes the generalization of frameworks dramat-

ically [38, 95]. Some researchers integrate high-order statistical properties of different domains into

a unified framework, such as maximum mean discrepancy (MMD), to align the data distribution

across domains, which successfully eliminates domain shift and achieves promising classification

performance on the target domain [74, 78]. By virtue of generative adversarial techniques, some

works involve a domain discriminator in the game to distinguish which domain the sample belongs

to while optimizing the generator and discriminator in an adversarial manner [31, 129, 67]. More-

over, the latest works rethink the domain adaptation problem from various perspectives and propose

dual-classifiers-based frameworks that seek to align not only domain-wise data distributions but also

classifier-class-specific boundaries [113, 62, 163].

0.3.2 Partial / Open-set Domain Adaptation (PDA/OSDA)

Different from UDA, Partial domain adaptation (PDA) is a special case of closed-set domain adap-

tation assuming that the target domain only covers a subset of the source domain label space, and

re-weighing source instances to eliminate the distraction caused by the source classes not shared

with the target domain is a typical strategy [46, 160, 9]. Moreover, Open-set Domain Adaptation

(OSDA) manages a more realistic situation when the target domain contains samples from classes

never seen in the source domain [98, 57, 104]. Many OSDA efforts aim to mitigate the negative

impact of unknown classes on target domain alignment by finding and rejecting the target domain

unknown categories data and assigning a single unknown label to them, and then only aligning the

shared categories samples across domains.

Selective Adversarial Network (SAN) explores multiple adversarial networks to weigh and se-

lect out the outlier categories source samples and down their transferring weights [8]. Partial Adver-
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sarial Domain Adaptation (PADA) extends SAN and pays more attention to class-level transferabil-

ity weighting on the source classifier [9]. Similarly, Importance Weighted Adversarial Nets (IWAN)

consider the sigmoid output of an auxiliary domain classifier as the indicator tomeasure the probabil-

ity of each source sample coming from the target domain [160]. Example Transfer Network (ETN)

further explains the discriminative information as the transferability quantification of the source do-

main samples, through which the irrelevant examples from outlier categories are down-weighted for

both the task-specific classifier and domain discriminator [10]. All the pioneering efforts achieve

impressive performance improvements over conventional domain adaptation approaches on PDA

tasks.

Although most existing PDA solutions seek to mitigate the negative transfer caused by outlier

source classes by re-weighting samples’ importance to reduce the distraction, they still train and

predict the entire source domain label space, which dilutes the contribution of discriminative infor-

mation within the shared categories across domains. Besides, some of them regard the prediction

of the target samples as pseudo labels to align cross-domain conditional distribution, which would

involve severe classification errors and mislead the optimizing direction of the model, especially at

the initial stage of training when the classifier cannot handle the differently distributed unlabeled

target domain samples.

Compared to classic closed set domain adaptation [152, 143, 142, 12, 127, 162, 126, 46, 44, 138],

Open-set DomainAdaptation (OSDA)manages amore realistic taskwhen the target domain contains

data from classes never present in the source domain [6, 104, 80, 98, 57, 27, 125, 3, 114]. Busto

et al. [99] attempts to study the realistic scenario when the source and target domain both include

exclusive classes from each other. Later on, Saito et al. [114] focus on the situation when the

source domain only covers a subset of the target domain label space and utilizes an adversarial

framework to generate features and recognizes samples deviating from the pre-defined threshold as

“unknown”. Instead of relying on the manually pre-defined threshold, [27] takes advantage of the

semantic categorical alignment and contrastive mapping to encourage the target data from known

classes to move close to the corresponding centroid while staying away from unknown classes. STA

adopts a coarse-to-fine weighting mechanism to progressively separate the target data into known

and unknown classes [72]. Most recently, SE-CC augments the Self-Ensembling technique to with
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category-agnostic clustering in the target domain [98].

0.3.3 Tranfer Learning with Mismatched Label Spaces

The demand for leveraging annotated data to recognize novel classes unseen in the training set moti-

vates a boom thread of research known as Zero-Shot Learning (ZSL) [42, 134, 14, 145, 60, 59, 1, 156,

25, 21]. Most existing ZSLworks explore the projection from the visual representation to class-level

semantic attributes or Word2vec as intermediates for searching novel categories. For instance, SOC

[96] maps the image features into the semantic space and then searches the nearest class embedding

vector. Differently, SSE [167] and JLSE [168] seek to embed both image and semantic features into

another common intermediate space. ZSL has been criticized for the restriction that test data must

come from classes that have never been seen in the training data. This can result in a bias towards

seen classes in inference, and the learned model cannot guarantee discrimination between the seen

and unseen categories when both exist in the test data. Generalized zero-shot learning (GZSL) seeks

to address a more realistic scenario when the target data to evaluate are drawn from both seen and

unseen categories [42, 116, 40, 40]. Specifically, [159] leverages label embeddings to learn latent

representations for images. On the other hand, [4] proposes a model to detect and estimate the prob-

ability of an input being from an unknown class. In practice, however, most existing generalized

zero-shot learning solutions require semantic knowledge of both seen and unseen classes in order to

construct discriminative relationships between all classes.

0.3.4 Interpretable Artificial Intelligence (XAI)

There are two general branches to interpreting deep neural networks from different perspectives:

post hoc techniques and interpret-by-design. Specifically, post hoc techniques seek to explain trained

neural networks, such as part-based methods [170, 173], saliency visualization [2, 28, 172], activa-

tion maximization to visualize neurons [90, 92], and deconvolution/up-convolution to explain lay-

ers [24, 158]. However, such post hoc explanations are not used by the original networks during

training and prediction, thus the interpretation may not be faithful to what the network computes

[110]. Differently, the interpret-by-design strategy aims to build inherently interpretable networks

enhancing the transparency and interpretability of the model. Prototypical part networks (ProtPNet)
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and following extension work use case-based reasoning with prototypes to explain the prediction

in the form of “this looks like that” via the similarity scores between an input image and learned

prototypes [11, 111, 110, 51, 89].

Building a transparent and interpretable model is crucial for safety-critical problems, such as

autonomous driving and medical diagnosis [93], [165]. Many efforts have been made to inter-

pret deep neural networks from different perspectives. Typically, researches include part-based

methods [170],[173], attributes-based methods [47],[50], saliency maps [2], [28], [172], activation

maximization [90], [92], deconvolution or upconvolution to explain layers [24], [158] and have

achieved inspiring progress to create human-interpretable black box models. However, such post-

hoc solutions have limited capability in enhancing transparency and interpretability. Alternatively,

prototype-based frameworks are proposed to build an inherently interpretable architecture [11],

[111], [110], [51], [89].

This dissertation focuses on addressing the unsupervised domain adaptation (UDA) problem

and introduces innovative solutions to handle imbalanced distributed source data, the partial domain

adaptation (PDA), and a new problem semantic-recovery open-set domain adaptation (SR-OSDA).

By analyzing feature representation distribution, the study supports the resolution of UDA with

imbalanced source data and PDA. Additionally, high-level semantic attributes are leveraged to im-

prove domain adaptation and discover novel categories in the target domain, inspired by the concept

of zero-shot learning. The dissertation further proposes a concept-based interpretable model that

simultaneously facilitates visual image to semantic attribute recovery and domain alignment, pro-

viding a transparent pipeline for effective SR-OSDA.

0.4 Dissertation Organization

In Chapters 1 & 2, we analyze the distribution of learned feature representations in both the source

and target domains for conventional domain adaptation tasks with only image data available, in order

to provide insights and explanations regarding the transfer of knowledge across domains. Specifi-

cally, We propose the Adversarial Dual Distinct Classifiers Network (AD2CN) to address the Unsu-

pervised Domain Adaptation (UDA) problem. By visualizing the learned features of both domains

in the domain-invariant feature space, we can observe the alignment of task-specific category bound-
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Figure 1: Organization of the dissertation and discussed problems.

aries across domains. Additionally, for the Partial Domain Adaptation (PDA) problem, where the

target domain contains a subset of the source domain label space, we introduce the Adaptively-

Accumulated Knowledge Transfer framework (A2KT) to address the mismatched label spaces and

data distribution disparities between domains by measuring the similarities of features from both

domains to explicitly align samples from categories shared across domains while filtering out sam-

ples from outlier categories only present in the source domain. Furthermore, leveraging the valuable

insights derived from the analysis of feature representations across different domains, we propose

several feature generation strategies to effectively tackle the fairness issue within the context of im-

balanced domain adaptation in Chapter 2. This problem becomes even more challenging when faced

with limited availability of training data from either the source or target domain.

In Chapter 3, we seek to leverage multimodal knowledge beyond only visual images to advance

the interpretation of the domain adaptation process. Specifically, we first present the novel Semantic-

Recovery Open-Set Domain Adaptation (SR-OSDA) problem, which brings the challenges of recov-

ering semantic descriptions for unseen categories exclusively present in the target domain, while ac-

curately identifying seen categories simultaneously. By involving the textual semantic descriptions

of the categories in addition to the visual images in the source domain, we get to efficiently discover
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novel target domain classes never observed in the source domain, and provide human-friendly ex-

planations with explicit semantic attributes prediction.

In Chapter 4, in order to enhance the interpretability of predicting semantic descriptions from

visual images, our objective is to elucidate the inner workings of convolutional networks for visual

feature extraction and establish a correspondence between the learned visual semantics and human

annotations. To achieve this, we introduce the Interpretable Action Decision-Making (InAction)

model. This model employs learnable concept-based visual prototypes to identify the regions and

objects in ego-view images that influence driving actions. Additionally, it aligns the learned semantic

prototypes with human annotations, thereby enabling interpretable decision-making in the context

of driving actions.

Finally, in Chapter 5, we combine all the interpretation strategies explored and present an In-

terpretable Novel Target Discovery model with multimodal semantic knowledge to address the SR-

OSDA problem. This model aligns the source and target domain data distributions while discovering

novel target categories never observed in the source domain. The interpretation of domain alignment

and novel category discovery is achieved using human-friendly multimodal semantic concept-based

visual prototypes and analysis of extracted feature representations. The insights gained from this

research have the potential to transform the integration of AI systems across various domains by en-

suring transparency, interpretability, and trustworthiness in decision-making processes. Ultimately,

this dissertation contributes to the development of interpretable transfer learning techniques, im-

proving the understanding and practical application of deep learning models, and fostering more

transparent and collaborative human-AI interactions.

The dissertation concludes with discussions on remaining challenges and future research direc-

tions, inviting further contributions to this field of study.
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1
Cross-Domain Adaptation via

Domain-invariant Feature Analysis

This chapter investigates the problem of visual domain adaptation and aims to provide insights into

explaining this phenomenon through domain-invariant feature analysis. The chapter introduces two

novel approaches: the Adversarial Dual Distinct Classifiers Network (AD2CN) and the Adaptively-

Accumulated Knowledge Transfer scheme (A2KT). In AD2CN, dual different-architecture classi-

fiers are employed to align domain distributions and category decision boundaries. On the other

hand, A2KT addresses partial domain adaptation challenges by promoting positive transfer and mit-

igating negative transfer, which is achieved through an adaptively-accumulated knowledge transfer

strategy. It is noteworthy that task-specific decision boundary is the boundary that separates differ-
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ent classes in a classification problem. It helps determine the class of a new data point based on its

features. In contrast, the conditional distribution is a statistical concept describing the probability

distribution of one variable given another. While not the same, the decision boundary is crucial for

approximating the conditional distribution in classification tasks. By presenting these approaches,

the chapter contributes to the understanding and advancement of visual domain adaptation with

identical and mismatched label spaces across domains.

1.1 Unsupervised Domain Adaptation (UDA)

Unsupervised Domain adaptation (UDA) attempts to recognize the unlabeled target samples by

building a learning model from a differently-distributed labeled source domain. Conventional UDA

concentrates on extracting domain-invariant features through deep adversarial networks. However,

most of them seek to match the different domain feature distributions, without considering the task-

specific decision boundaries across various classes. In this work, we propose a novel Adversarial

Dual Distinct Classifiers Network (AD2CN) to align the source and target domain data distribution

simultaneously with matching task-specific category boundaries. To be specific, a domain-invariant

feature generator is exploited to embed the source and target data into a latent common space with

the guidance of discriminative cross-domain alignment. Moreover, we naturally design two differ-

ent structure classifiers to identify the unlabeled target samples over the supervision of the labeled

source domain data. Such dual distinct classifiers with various architectures can capture diverse

knowledge of the target data structure from different perspectives. Extensive experimental results

on several cross-domain visual benchmarks prove the model’s effectiveness by comparing it with

other state-of-the-art UDA.

1.1.1 Summary of Contribution

In this work, we propose a novel Adversarial Dual Distinct Classifiers Network (AD2CN) with two

different-architecture classifiers, e.g., Neural Networks Classifier and Prototypical Classifier, to fa-

cilitate the alignment of both domain distributions and category decision boundaries (Fig. 1.1). To

our best knowledge, it is a pioneering work to explore dual different structure classifiers in domain
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Figure 1.1: Framework overview of our proposed model, where G(·) is the domain-invariant
embedding features generator, CN(·) denotes the fully-connected neural networks classifier (solid
line) and CP(·) means the prototypical classifier (dash line). Lm and Ldis are explored to align the
feature and prediction distribution differences across two domains and dual classifiers, respectively.

adaptation. The general idea is to explore adversarial training over two different architecture classi-

fiers on the output of one domain-invariant feature generator. To sum up, we highlight the three-fold

contributions of this work as follows:

• We exploit dual different architecture task-specific classifiers over source supervision to ex-

ploit the task-specific decision boundaries on the target domain. With different properties

of dual classifiers in prediction, we have a better chance of capturing ground-truth classifier

decision boundaries for the target domain.

• We propose a novel discriminative cross-domain alignment loss and Importance Guided Op-

timization strategy to mitigate the cross-domain mismatching. This will facilitate the process

of aligning the domain-invariant embedding features distribution across domains, and elimi-

nate the distraction of misestimated target samples at the beginning of optimizing.

• We adopt a discrepancy loss to maximally improve the prediction performance of dual classi-

fiers in coupling the cross-domain label distributions, which is trained in an adversarial way

with domain-invariant feature generator and dual classifiers. Thus, they can benefit from

each other to boost the target learning task.
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1.1.2 The Proposed Method

1.1.2.1 Preliminaries and Motivation

In unsupervised domain adaptation (UDA), the source domain Ds contains ns labeled data, and the

target domain Dt contains nt unlabeled data. The source and target domain data distributions are

different Ps(xs) "= Pt(xt), and the number of total categories are the same, i.e., Cs = Ct. We denote

C = Cs = Ct for simplicity in this section.

Recent domain adaptation works apply adversarial networks to generate domain invariant fea-

tures of the source and target domain samples, which will make the classifiers trained only on the

source domain data available on the target domain[30, 33, 161]. Most of them aim to match the

distribution of source and target domain completely, without considering the task-specific deci-

sion boundaries between different categories. Most recently, the idea of dual adversarial classifiers

[113, 62, 163, 67] has been explored to replace the original adversarial domain adaptation with a

binary domain discriminator. However, they obtain two same-type classifiers from scratch over la-

beled source data. This would limit the discriminative ability in target prediction since the same-type

classifiers would tend to have similar properties. Traditional neural networks classifier aims to fit

the training data by achieving optimal objective value, thus the learned classifier boundaries would

capture the global structure of the data to maximally separate different classes. Such a decision

boundary over source supervision cannot be well adapted to target samples in different distributions.

Therefore, two same-architecture neural network classifiers over source supervision are challenging

to diversify the decision boundaries.

This motivates us to explore two different architecture classifiers, and thus we propose a novel

adversarial dual classifiers network with two different structure classifiers to capture various data

distribution pattern and more diverse task-specific category boundaries from different perspectives,

and also promote the out of source support target samples detection process. Interestingly, the pro-

totypical classifier explores the local structure of the data since prototypes are used to assign labels

based on the similarity between samples and each prototype. The competition between two different

structure classifiers is more likely to diversify the decision boundaries to benefit from adversarial

training with domain-invariant generators.
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1.1.2.2 Adversarial Dual Distinct Classifiers Network

We first present the overall framework of our proposed adversarial dual classifier network in Fig. 1.1.

Given the labeled source and unlabeled target domain data, the domain invariant embedding features

are generated and aligned by the discriminative cross-domain alignment, then the dual classifiers,

which consist of two classifiers with different architectures, will promote the task-specific decision

boundaries further. G(·) is a feature extractor neural network used to take source and target domain

data as input and project into a shared embedding feature space, in which the target samples are close

to the support of the source domain data. The following two different structure classifiers, fully-

connected neural network classifier CN(·) and prototypical classifier CP(·), will capture diverse and

various task-specific categories knowledge on target domain from different perspectives.

1.1.2.2.1 Dual Classifiers Over Source Supervision Since Xs and Xt have different distribu-

tions, a domain-invariant feature generator G(·) is deployed to capture more enriched information

across source and target through hierarchical structures, followed by our dual classifiers, CN(·)

(fully-connected neural network classifier) and CP(·) (prototypical classifier). With the extracted

feature zis/t = G(xi
s/t) as input, we can calculate the corresponding probability prediction with two

classifiers CN(·) and CP(·) as ŷi
N/P,s/t = CN/P(z

i
s/t).

Specifically, CN(·) represents a multi-layer non-linear classifier, and CP(·) calculates the simi-

larity, such as cosine similarity, between the feature zit of the target sample and each category pro-

totype μc (i.e., class center). Subsequently, the output of the classifier CN/P(·) is normalized using

the Softmax(·) function across all categories, yielding the probability prediction. For each class, the

prototype is calculated by μc = 1
nct

∑nct
i=1 z

i(c)
t , where nct and z

i(c)
t denote the number of target samples

and extracted domain invariant feature belonging to class c, respectively. During initialization, the

source domain class centers in the feature space are taken as prototypes. Then we apply the CP(·)

prediction ŷi
P,t as the predicted pseudo label to target sample xi

t to get the category prototypes μc.

Subsequently, these prototypes are iteratively refined using the predictions made by CP(·) on the

target domain data. This refinement process helps the model adapt and improve its representation

of the target domain.

In order to obtain task-specific discriminative features from generator G(·), while keeping clas-
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sification performance on the source domain, we add the supervision from the source to learn the

parameters of CN(·) and G(·). Since CP(·) does not contain any trainable parameters, the supervi-

sion over CP(·) prediction on the source domain will optimize the parameters in the feature extractor

G(·). To this end, we aim tominimize the cross-entropy loss overYs and predicted labels fromCN(·)

and CP(·), defined as follows:

Ls =
1
ns

ns∑

i=1

L(ŷi
N,s, yis) +

1
ns

ns∑

i=1

L(ŷi
P,s, yis), (1.1)

where L is the cross-entropy loss. ŷi
N,s and ŷi

P,s are the probability outputs of classifier CN(·) and

CP(·), while yis is the ground-truth label of source sample xi
s, respectively.

1.1.2.2.2 Adversarial Dual Classifiers The dual classifiers are capable of recognizing target do-

main samples close to the support of the source domain. For those target domain samples which

are far from the source domain support, the two classifiers would tend to obtain different probability

outputs. To detect target samples outside of the support from source supervision, we propose to mea-

sure the disagreement of the classifiers prediction results with distribution discrepancy measurement

[62, 113].

Existing works exploit varying the dual classifiers by maximizing the divergence between the

predictions. However, the same classifier structure with slightly different random initializations

[113, 62] will weaken the ability to capture diverse task-specific knowledge and decision boundaries

from different perspectives. In our model, we build two different architecture classifiers, which are

more likely to capture the inconsistent information from various perspectives. Thus, adversarial

training would further enhance the target prediction performance, and the classifier discrepancy is

defined as:

Ldis = F(ŷi
N,t, ŷ

i
P,t), (1.2)

where ŷi
N/P,t represent the probability prediction obtained from the two classifiers for the sample xi

t

respectively. F(·, ·) denotes the discrepancy measurement function, e.g., SWD [62], which is able

to capture distribution geometric information to calculate the discrepancy between the probabil-

ity prediction distributions, and solve gradient vanishing problems occurred in adversarial learning
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methods. The loss function Ldis is used to train the framework in an adversarial training manner.

Specifically, the feature extractor G(·) is optimized to minimize the prediction difference between

CP(·) and CN(·), while the classifier CN(·) is trained to maximize Ldis.

1.1.2.2.3 Discriminative Cross-Domain Alignment So far, our model only aligns cross-domain

distributions in terms of label space, we further exploit feature distribution alignment to boost the

domain-invariant feature learning. Maximum Mean Discrepancy (MMD) has been sufficiently ex-

plored as a promising strategy to reduce the domain-wise distance between the mean of source and

target domain features, or class-wise distances between each class source and target features with

the pseudo labels for target samples [77]. The domain-wise MMD to measure marginal distribution

across domains is defined as H(Exi
s∼Ds [z

i
s] − Exj

t∼Dt
[zjt]) [77], where H(·) is the function used to

evaluate the distribution difference, which is L-2 norm in this work. Furthermore, existing works

[20] also seek to explore the class-wise MMD to align conditional distribution disparity across do-

mains:

Lc =
1
C

C∑

c=1

H
(
Exi

s∼Dc
s
[zis]− Exj

t∼Dc
t
[zjt]

)
, (1.3)

whereC denotes the total number of categories, zi/js/t denote the generated embedding representations

of source sample xi
s and target sample x

j
t belonging to class c.

However, conventional DA algorithms only seek tominimize the distribution difference between

source and target domains when samples are from the same class. We further propose to explicitly

take the information of different categories into account and measure the diff-class divergence across

domains defined as:

Ld =
1
C

1
C− 1

C∑

c=1

C∑

c′=1,
c′ "=c

H
(
Exi

s∼Dc
s
[zis]− Exj

t∼Dc′
t
[zjt]

)
, (1.4)

where the diff-class divergence Ld calculates the average distances of all different class center pairs

across domains. To sum up, our discriminative cross-domain alignment is defined asLm = Lc−Ld.

Due to the lack of target domain labels, we explicitly assign ŷi
P,t, the prediction of CP(·), as

pseudo labels to the target samples xi
t. Despite domain shift affecting prediction reliability on the
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target domain data, leveraging pseudo labels has proven effective in enhancing model training. It

is crucial that the target domain data shares some similarity in marginal and conditional distribu-

tion with the source domain. To achieve more effective knowledge transfer, we propose an Im-

portance Guided Optimization strategy. This strategy focuses on high-confidence predictions for

target samples during cross-domain alignment, disregarding lower-confident samples which could

lead to misleading optimizations. That is, only samples with {(xi
t, ŷ

i(c)
P,t ) | ŷi(c)P,t > σ,xi

t ∈ Dt} are

accepted to construct the cross-domain alignment Lm, where ŷ
i(c)
P,t is the CP(·) probability prediction

of xi
t belonging to class c, and σ ∈ [0, 1] is a constant threshold. It is noteworthy that we do not

impose always covering the whole label space during training since only considering those classes

with high-confident samples is prone to result in effective cross-domain alignment by avoiding too

many misclassified target samples, especially in the early training stage.

1.1.2.3 Overall Objective and Optimization

To eliminate the side effect of uncertainty on unlabeled target prediction, we also explore the entropy

minimization regularization [163, 75, 78]:

Lem = − 1
nt

nt∑

i=1

C∑

c=1

(ŷi
N,c log ŷ

i
N,c + ŷi

P,c log ŷ
i
P,c), (1.5)

where ŷi
N,c and ŷi

P,c denote the prediction of xi
t belonging to class c obtained by CN(·) and CP(·),

respectively.

To sum up, we integrate adversarial dual classifiers training and cross-domain discriminative

alignment together and propose our overall objective function as:

min
G

Ls + Lem + λ1Ldis + λ2Lm,

min
CN

Ls − λ1Ldis,

(1.6)

where λ1 and λ2 are hyper-parameters to balance the contribution of loss termsLdis,Lm, respectively.

Similar to the existing adversarial networks training strategy, we freeze the generator G(·) to

train classifiers, then freeze the parameters of the classifiers to update the generator G(·). It is note-
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worthy that only CN(·) contains trainable parameters because CP(·) only relies on the embedding

features produced by the generator G(·). Meanwhile, inspired by [113], in order to keep the per-

formance of the networks on the source domain and detect target samples far from source domain

support, we train our framework in three steps:

Step A.We train the feature generator G(·) and classifier CN(·) only on source domain Ds which is

the same as supervised learning tasks. Due to CP(·) does not have any trainable parameters, only

parameters in G(·) and CN(·) would be updated. Our model aims to detect target samples which are

outside of source support from those which are close to support of source domain, keeping good

ability and performance on classifying the source domain samples correctly is crucial and necessary.

The optimization objective is defined as min
G,CN

Ls.

Step B.We need to assign unlabeled target domain samples pseudo labels by classifiers we already

have. In our experiments, we explore the prediction results of CP(·) to obtain pseudo labels of the

target samples, which are experimentally proven to achieve better performance, and we will discuss

it in the ablation analysis section. We fix the feature generator G(·) and update the classifier CN(·)

to maximize the distribution discrepancy between the classification results of CN(·) and CP(·) on

the target domain, which can detect the target samples excluded by the source domain data support,

and we obtain the training objective function as min
CN

Ls − λ1Ldis.

Step C.We freeze the parameters of the classifier CN(·) and update generator G(·) to minimize the

distribution discrepancy between the predictions of CN(·) and CP(·) on the target domain, through

which bothCN(·) andCP(·) classifiers will havemore similar and correct prediction on target domain

samples. Furthermore, together with the discriminative cross-domain alignment, the generator G(·)

tends to couple the source and target domain closer but discriminative in the embedding feature

space. The optimization objective is min
G

Ls + Lem + λ1Ldis + λ2Lm.

These three steps repeat once in each iteration of our experiments. The generator G(·) and

classifier CN(·) are initialized and pre-trained on source domain data.
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Table 1.1: Comparisons of Recognition Rates (%) of Unsupervised Domain Adaptation on
Office+Home Dataset (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
Res-50 [35] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 51.2 59.9 46.1
DAN [74] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

RevGrad [30] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [79] 45.9 61.2 68.9 50.4 59.7 60.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
SE [29] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5
DSR [7] 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9

DWT-MEC [109] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
CDAN+E [75] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MCS [71] 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3
AFN [149] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

SymNets [163] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 81.6 67.6
BDG [152] 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7

Ours 57.4 77.3 80.0 63.4 76.4 76.4 64.2 52.4 80.7 69.6 57.2 83.9 69.9

Table 1.2: Comparisons of Recognition Rates (%) of Unsupervised Domain Adaptation on
Office-31 Dataset (ResNet-50).

Method Res-50 [35] DAN [74] RevGrad [30] JAN [79] MADA [100] CDAN+E [75] AFN [149] SymNets [163] BDG [152] Ours
A→W 68.4±0.2 80.5±0.4 82.0±0.4 86.0±0.4 90.0±0.1 94.1±0.1 90.1±0.1 90.8±0.1 93.6±0.4 93.6±0.3
D→W 96.7±0.1 97.1±0.2 96.9±0.2 96.7±0.3 97.4±0.1 98.6±0.1 98.6±0.2 98.8±0.3 99.0±0.1 98.9±0.2
W→D 99.3±0.1 99.6±0.1 99.1±0.1 99.7±0.1 99.6±0.1 100.0±0.0 99.8±0.0 100.0±0.0 100.0±0.0 99.8±0.0
A→D 68.9±0.2 78.6±0.2 79.7±0.4 85.1±0.4 87.8±0.2 92.9±0.2 90.7±0.5 93.9±0.5 93.6±0.3 95.4±0.3
D→A 62.5±0.3 63.6±0.3 68.2±0.4 69.2±0.3 70.3±0.3 71.0±0.3 73.0±0.2 74.6±0.6 73.2±0.2 74.9±0.3
W→A 60.7±0.3 62.8±0.2 67.4±0.5 70.70.5 66.4±0.3 69.3±0.3 70.2±0.3 72.5±0.5 72.0±0.1 75.0±0.5
Avg. 76.1 80.4 82.2 84.6 85.2 87.7 87.1 88.4 88.5 89.6

1.1.3 Experimental Results

1.1.3.1 Datasets & Experimental Setup

Office-Home [132] consists of 15,500 images from 65 categories in 4 different domains: Artistic

images (Ar), Clip Art (Cl), Product (Pr), and Real-World images (Rw). In total, by choosing any

two domains as one task, we can build 12 cross-domain tasks to evaluate our proposed model.

Office-31 contains 4,110 images of 3 domains: Amazon (A), Webcam (W), and DSLR (D) and each

domain consists of 31 categories. We evaluate our method on 6 cross-domain tasks to testify to the

validation of our model.

Comparisons. We compare our proposed method with several state-of-the-art unsupervised domain

adaptation models: Deep Adaptation Networks (DAN) [74], Reverse Gradient (RevGrad) [30], Joint

Adaptation Networks (JAN) [79], Self-Ensembling (SE) [29], Multi-adversarial Domain Adaptation

(MADA) [100], Conditional Adversarial Domain Adaptation Networks (CDAN) [75], Disentangled
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Semantic Representation (DSR) [7], Domain-specific Whitening Transform & Min-Entropy Con-

sensus (DWT-MEC) [109], MinimumCentroid Shift (MCS) [71], Adaptive Feature NormApproach

(AFN) [149], Domain Symmetric Networks (SymNets) [163], Bi-Directional Generation (BDG)

[152]. All our experiments follow standard unsupervised domain adaptation protocols: all labeled

source domain data and labels, as well as unlabeled target domain data are used for training. All

comparisons are back-boned with ResNet-50 or using ResNet-50 features [35].

Implementation Details. We implement our model with PyTorch and adopt ResNet-50[35] as the

backbone. Specifically, a ResNet-50 network is pre-trained on ImageNet [16] and fine-tuned on the

source domain, then applied to both source and target domain data to obtain the feature representation

with dimension 2,048 without the last fully connected layer. G(·) is a two-layer fully-connected

neural network, with hidden layer output as 1,024 followed by ReLU activation function, and the

dropout probability retaining is 0.5. The output embedding features zs/t dimension is 512. CN(·)

is a two-layer fully-connected neural network with 512 as the input and hidden layer dimension,

the output dimension is the same as the number of categories in the whole label space C. Cosine

similarity is accepted as the measurement metric (·, ·) in CP(·), and Softmax(·) function is applied to

the output ofCN(·) andCP(·) to get the probability prediction of the input sample. All parameters are

updatedwith Adam optimizer [55] and the learning rate is set as 0.001 onOffice-Home andOffice-31

datasets. G(·) and CN(·) are pre-trained and initialized on source domain data only with the learning

rate as 0.1 for 2,000 iterations. We deploy SWD distance [62] as the discrepancy measurement

function F(·, ·), and accept L-2 norm as H(·) to evaluate the distribution divergence. λ1 and λ2 are

fixed as 0.1 for all tasks. σ is set to be 0.03. For the prototypical classifier CP(·), we initialize the

class prototypes with the source domain features class centers μsc = 1
ncs

∑ncs
i=1 z

i
s, then update the

prototypes with target domain category centroids representation μtc = 1
nct

∑nct
j=1 z

j
t after obtaining the

target domain samples pseudo labels ŷP,t iteratively till reaching convergence or the max step (which

is set as 3), and return the last step CP(·) prediction. All results reported in Tables 1.1 and 1.2 are

the average of three random experimental results obtained by classifier CP(·), and we will discuss

the performances of CN(·) and CP(·) in the ablation study section.
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Figure 1.2: Ablation experiments about various loss terms contribution on Office+Home Dataset
(ResNet-50).

Figure 1.3: Accuracies of CN and CP on Office+Home. red and blue results are obtained with ŷN,t
as target pseudo labels for Lm, the others are based on ŷP,t as pseudo labels.

1.1.3.2 Comparison Results

Table 1.1 and Table 1.2 report the classification results on target domain data of our proposed model

and other comparative methods on Office-Home and Office-31 datasets respectively. All compar-

ison results are from their original paper or quoted from [58, 163, 152], as we adopt exactly the

same settings. It is noteworthy that our proposed model outperforms state-of-the-art methods on all

benchmark datasets in terms of average accuracy, and obtains the best or comparable performances

to the state-of-the-art domain adaptation methods in most cases. Although the Office-Home dataset

is more challenging than Office-31 due to more categories and samples, as well as significant dis-

tribution dissimilarity, our proposed model still improves the performance on most tasks, which

demonstrates the efficiency and effectiveness of our proposed framework.

DAN and JAN are both MMD-based methods, which seek to eliminate the cross-domain distri-

bution disparity and match the whole source and target domain to a shared domain-invariant feature

space. DAN attempts to align feature representations from multiple layers through a multi-kernel

variant of MMD. JAN aims to transfer joint distributions of multi-layers activation of the networks

across domains. With the help of additional domain adaptation terms (e.g., MMD), DAN and JAN

lead to a significant performance boost over the source-only-trained model (i.e., ResNet-50) on most

adaptation tasks.

RevGrad implements adversarial networks and applies gradient reversal layer to train a domain
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Table 1.3: CN v.s. CP accuracies (%) on Office+Home Ar → Cl

Balanced Imbalanced
Y Clock Helmet Knives Bed Couch Folder Marker Pen
ns 74 79 72 39 40 20 20 20
nt 60 69 53 98 64 99 71 99
CN 75.0 71.0 52.8 53.1 67.2 25.3 18.3 51.5
CP 73.3 69.6 49.1 55.1 68.8 28.3 21.1 53.5

Table 1.4: Comparisons of Dual Classifiers Structure Influence to Recognition Rates (%) of
Unsupervised Domain Adaptation on Office-31 Dataset (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Avg.
MCD [113] 88.6 98.5 100.0 92.2 69.5 69.7 86.5
SWD [62] 90.4 98.7 100.0 94.7 70.3 70.5 87.4
Ours (same) 93.3 98.8 100 94.7 72.4 73.6 88.8

Ours 93.6 98.9 99.8 95.4 74.9 75.0 89.6

discriminator. CDAN and MADA both exploit the multiplicative combination of feature embed-

dings and task-specific predictions as high-order representations to promote adversarial optimiza-

tion. SE studies the self-ensembling to boost the visual domain adaptation performance. DSR as-

sumes that the data generation process is controlled by the semantic latent variables and domain

latent variables independently, so employs a variational auto-encoder in order to reconstruct them.

MCS designs a unified framework without accessing the source data and iteratively assigns pseudo

labels to the target samples by an alternating minimization scheme.

DWT-MEC proposes domain alignment layers with feature whitening to match source and target

domain distributions and applies the Min-Entropy Consensus loss to unlabeled target data. AFN

proposes a novel Adaptive Feature Norm approach to adapting the source and target domain feature

norms to a specific range of values progressively. SymNets exploits novel adversarial classifiers

networks and a two-level domain confusion scheme driving the learning of categories invariant

intermediate features across domains. BDG bridges the source and target domain through consistent

classifiers interpolating two intermediate domains.

1.1.3.3 Ablation Analysis

In this section, we analyze the contribution and influence of several important terms and hyper-

parameters sensitivity in our proposed model.

First, we discuss the influence of each component in our framework. By removing one of Ldis,
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Figure 1.4: Ten Samples from Office-Home Ar→Cl. Y row denotes the ground-truth labels, CN row
shows the mis-classified labels, while CP means the correctly prediction.

Figure 1.5: t-SNE visualization of source and target samples features before (left column) and after
(right column) domain adaptation through our proposed model. (a) shows the task of Ar→Cl from

Office-Home and (b) reports the task of A→W from Office-31.

Lm, and Lem, while keeping other terms same as original AD2CN, we obtain three variants AD2CN

w/o Ldis, AD2CN w/o Lm, and AD2CN w/o Lem. From Fig. 1.2, we notice that all three compo-

nents contribute to improving the domain adaptation performance, while our proposed discrimina-

tive cross-domain alignment Lm plays a more crucial role than others, i.e., discrepancy and entropy

minimization loss.

Secondly, we compare the performances ofCN(·) andCP(·)while accepting ŷN,t or ŷP,t as target

domain pseudo labels forLm. From the results in Fig. 1.3, we observe that results with ŷP,t as pseudo

labels are better than the results with ŷN,t in most cases. Compared to CN(·), which is trained on

the source domain, CP(·) is based on the target prototypes and keeps better performance even in the

early training stage. Fig. 1.4 shows several test samples that CP(·) classifies correctly while CN(·)

cannot handle, which emphasizes the superiority of CP(·).

Thirdly, we discuss the necessity and effectiveness of two different types of classifiers in our

framework. Table 1.3 shows the selective target domain class-wise recognition accuracy on Office-

Home Ar→ Cl case produced by the two classifiers CN and CP in our proposed model, as well as the

number of samples in each class from the source and target domains. From the results, we notice that

for the categories having sufficient well-labeled source samples as well as balanced target domain
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Figure 1.6: Parameters sensitivity analysis on 4 different tasks from Office-Home dataset of (a) λ1
and (b) λ2

samples for training, CN have better performance than CP, while for other categories with imbal-

anced distribution across domains and insufficient labeled source samples for training, CP always

performs better than CN. The observation proves that for the imbalanced datasets, CN and CP have

different specialties for different categories with various cross-domain distributions. Moreover, we

show the comparison results of MCD [113], SWD[62], and our proposed model on the Office-31

dataset in Table 1.4. MCD and SWD are two dual classifier adversarial frameworks for domain

adaptation, but using two completely same structure neural networks classifiers. We also replace

the CN and CP in our proposed model with two same-structure neural network classifiers and report

the results as Ours(same). It is noteworthy that our proposed model achieves the best performance

in most cases as well as the average accuracy compared to other same classifier structure methods,

which proves the effectiveness and necessity of applying two distinct architecture classifiers.

Fourthly, we visualize the t-SNE embeddings (Fig. 1.5) of feature representations generated by

G(·) before and after the domain adaptation through our proposed model, in which each category

is represented as a cluster and different colors denote the different domains. Before adaptation, the

source and target domains are totally mismatched, while our method shows the promising ability to

make inter-class separated and intra-class clustered tightly.

Finally, we analyze the sensitivity of λ1 (Fig. 1.6 (a))and λ2 (Fig. 1.6 (b)) by listing four tasks

from Office-Home dataset (Ar→ Cl, Cl→ Pr, Pr→ Rw, Rw→ Ar). Specifically, we set the ranges

of λ1 and λ2 from 0.001 to 0.2 and evaluate one by fixing the other one as 0.1. From the results,

we notice the accuracy curves are almost flat and stable, which indicates our proposed model is not

sensitive to the values of λ1 nor λ2.
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1.1.4 Discussion and Limitation

This work introduces AD2CN, an unsupervised domain adaptation method aligning marginal and

conditional distributions across domains. It outperforms state-of-the-art techniques on cross-domain

visual benchmarks. However, a key limitation lies in the Importance Guided Optimization process,

where the threshold σ is a hyper-parameter. Finding the optimal value or selecting correctly predicted

target samples during training is crucial for real-life applications of this framework. Further research

in this area is needed to enhance its practical utility.

1.2 Partial Domain Adaptation (PDA)

Partial domain adaptation (PDA) attracts appealing attention as it deals with a realistic and chal-

lenging problem when the source domain label space substitutes the target domain. Most conven-

tional domain adaptation (DA) efforts concentrate on learning domain-invariant features to mitigate

the distribution disparity across domains. However, it is crucial to alleviate the negative influence

caused by the irrelevant source domain categories explicitly for PDA. In this work, we propose an

Adaptively-Accumulated Knowledge Transfer framework (A2KT) to align the relevant categories

across two domains for effective domain adaptation. Specifically, an adaptively-accumulated mech-

anism is explored to gradually filter out the most confident target samples and their corresponding

source categories, promoting positive transfer with more knowledge across two domains. Moreover,

a dual distinct classifier architecture consisting of a prototype classifier and a multilayer perceptron

classifier is built to capture intrinsic data distribution knowledge across domains from various per-

spectives. By maximizing the inter-class center-wise discrepancy and minimizing the intra-class

sample-wise compactness, the proposed model is able to obtain more domain-invariant and task-

specific discriminative representations of the shared categories data. Comprehensive experiments

on several partial domain adaptation benchmarks demonstrate the effectiveness of our proposed

model, compared with the state-of-the-art PDA methods.
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1.2.1 Summary of Contribution

In this work, we propose an Adaptively-Accumulated Knowledge Transfer scheme (A2KT) to man-

age partial domain adaptation challenges by simultaneously promoting positive transfer in the shared

label space while alleviating negative transfer caused by the outlier source categories. The general

idea is to gradually filter out confident task-relevant target samples and corresponding categories to

optimize both domain-wise distribution adaptation and class-wise distribution alignment. To sum

up, the contributions of this work are highlighted as follows:

• First of all, we propose an adaptively-accumulated knowledge transfer strategy to iteratively

weigh and filter out confident task-relevant target samples and corresponding categories under

the guidance of the source domain data for effective cross-domain alignment.

• Secondly, we explore two different types of task-specific classifiers to capture and transfer

intrinsic distribution knowledge across domains from various perspectives.

• Thirdly, we propose a cross-domain alignment loss function that is able to align the class-

level discrimination across domains and compact the sample-level distribution within the

same class.

1.2.2 The Proposed Method

1.2.2.1 Preliminaries and Motivation

In partial domain adaptation, the source domain label space Ys subsumes the target domain label

space Yt, i.e., Ys ⊃ Yt, partial domain adaptation attempts to predict unlabeled target samples with

the relevant source knowledge out of the entire well-labeled source domain.

To eliminate the influence of irrelevant source categories, existing partial domain adaptation

models mainly design a weighting strategy to select the relevant source categories for effective cross-

domain alignment with discrepancy loss [160] or adversarial loss [8]. To mitigate the conditional

distribution mismatch across two domains, most of them rely on the pseudo labels of target samples

assigned from a source-supervised neural network classifier. Due to the cross-domain distribution
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Figure 1.7: Illustration of the proposed model for partial domain adaptation, where the source
contains more categories than the target. Both source and target data are input to the feature
extractor G(·), then classified by multilayer perceptron classifier CN(·) and prototype classifier

CP(·). The prediction results of CP(·) are exploited to filter out confident target samples for further
alignment across domains. Each shape denotes one category, colored and grey shapes mean the

source and target samples respectively, while the colored but shaded shapes denote the filtered-out
target samples with assigned pseudo labels.

gap, such pseudo labels are not reliable, which would further hurt the cross-domain alignment, since

the neural network classifier fits perfectly for the source distribution while not for target distribution.

To address these issues, we consider not only detecting the irrelevant source categories to elimi-

nate the negative influence but also selecting the most confident target samples during cross-domain

alignment. Thus, our proposed model can adaptively select a subset of the target domain samples

that are highly affiliated with the source domain and corresponding categories to align across do-

mains. Moreover, the prototype classifier [121] is adopted to annotate the target samples via source

prototypes, since it can capture the intrinsic structure and semantic knowledge across source and tar-

get domain. Exploring the dual classifier architecture consisting of two different types of classifiers,

prototype classifier, and multilayer perceptron classifier, extends the ability of the proposed model

to reveal the task-specific knowledge from various perspectives.

1.2.2.2 Adaptively-Accumulated Knowledge Transfer

1.2.2.2.1 Building Diverse Source-Supervised Classifiers As shown in Figure 1.7, we follow the

architecture introduced in Section 1.1.2.2 to build the framework containing the feature extractor

G(·), neural network classifier CN(·) and teh prototype classifier CP(·). To maintain performance
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on the source domain, we preserve the supervision from the source by minimizing the cross-entropy

loss between the ground truth labels Ys and the predicted labels ŶN,s generated by the classifier

CN(·), as given by Eq. 1.1 as:

Ly =
1
ns

∑ns

i=1
L(ŷi

N,s, yis) (1.7)

Upon observation, we have noticed that the supervision provided to the modelCP(·) using the source

domain data has only a marginal impact on the performance of the partial task. Consequently, we

have decided to focus solely on the objective loss associated with the model CN(·), as it yields more

significant improvements in the partial task’s performance.

1.2.2.2.2 Adaptively Accumulating Cross-Domain Knowledge Empirical MaximumMean Dis-

crepancy (MMD) has been verified as a promising technique to minimize the cross-domain marginal

distribution difference [79]. Some very recent works also adopt pseudo labels for target domain data

in order to match the conditional distribution across-domain, byminimizing the distance between the

source and target domain class-wise embeddings from the same category [130]. However, aligning

all the target categories with the predicted label information is not effective since pseudo labels are

not reliable, especially under the PDA settings.

To alleviate the negative impact of misclassified pseudo labels to target domain samples, as well

as the outlier categories from source domain label space, we propose the Adaptively-accumulated

Knowledge Transfer strategy to discard those target samples with low prediction confidence. That

is, only samples with confidently predicted probability labels in

D̃t = {xi
t ∈ Dt | ŷi,c

P,t > p0}, (1.8)

are accepted to update the cross-domain alignment, where c is the pseudo label of xit, and ŷ
i,c
P,t is the

probability confidence from prototype classifier CP(·) of sample xi
t belonging to class c. p0 ∈ [0, 1]

is the threshold. It is noteworthy that we do not need to add another hyper-parameter to tune the

model, as the probability confidence measures the similarity between the target sample to the source

domain, we can let the model learn p0 adaptively by setting it as the average of initial probability

prediction produced by prototype classifier CP(·) of source domain samples belonging to ground-
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truth class, which is p0 = 1
ns
∑

xj
s∈Ds

ŷj,c
P,s, where c is the ground-truth label of source sample x

j
s. We

only explore highly-confident target samples into the cross-domain alignment. In other words, the

selected target samples may not cover the whole label space, which is reasonable and acceptable.

1.2.2.2.3 Preserving Inter-class Discrimination We treat the class-wise embeddings in a different

way. Instead of matching the source and target domain mean embeddings from the same category,

we seek to enlarge the distance between the source and target domainmean embeddings but from dif-

ferent classes. Specifically, we accept the L2 distance to measure the distribution difference between

two embeddings from two classes (ci, cj) and two domains (dk, dl):

Fci,cj,dk,dl = ‖μdk,ci − μdl,cj‖
2

=
∥∥∥

1
Ndk,ci

Ndk,ci∑

u=1

zudk,ci −
1

Ndl,cj

Ndl,cj∑

v=1

zvdl,cj

∥∥∥
2

(1.9)

whereZ ∈ Rd×(ns+nt) denotes the embedding featurematrix composed of {z1s , · · · , znss } and {z1t , · · · , z
nt
t },

and μdk/l,ci/j ∈ Rd denotes the class center of data from category ci/j domain dk/l.

It is noteworthy that dk and dl could be the same because we also seek to maximize the class-wise

distance between different categories within the same domain. On the contrary, ci and cj are always

different. The integrated inter-class discriminative alignment loss term includes TWO parts: (1)

Aligning within source/target domain (2) Aligning across domains, which is shown as Eq. (1.10):

Linter =λ1
( C∑

c=1

C∑

c′=1,
c′ "=c

Fc,c′,s,s

C(C− 1)
+

Ĉ∑

c=1

Ĉ∑

c′=1,
c′ "=c

Fc,c′,t,t

Ĉ(Ĉ− 1)

)

+
1
Ĉ

1
Ĉ− 1

∑Ĉ

c=1

∑Ĉ
c′=1,
c′ "=c

Fc,c′,s,t,

(1.10)

where λ1 is a hyper-parameter to balance the contribution of within-domain and between-domain

terms in Linter. It is noteworthy that here C is the number of categories in the whole domain label

space only when we align the inter-class discriminative distribution within source domain (Fc,c′,s,s),

i.e., C =| Ys |. In other situations (Fc,c′,s,t, Fc,c′,t,t), Ĉ is the number of categories of the filtered out

target domain subset D̃t, which may be smaller than the number of categories in the whole source
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Table 1.5: Comparisons of Recognition Rates (%) of Partial Domain Adaptation on Office-31
Dataset (ResNet-50).

Method A31→W10 A31→D10 W31→A10 W31→D10 D31→A10 D31→W10 Average
Source Only 75.59±1.09 83.44±1.12 84.97±0.86 98.09±0.74 83.92±0.95 96.27±0.85 87.05±0.94
DAN [74] 59.32±0.49 61.78±0.56 67.64±0.29 90.45±0.36 74.95±0.67 73.90±0.38 71.34±0.46
DANN [31] 73.56±0.15 81.53±0.23 86.12±0.15 98.73±0.20 82.78±0.18 96.27±0.26 86.50±0.20
ADDA [130] 75.67±0.17 83.41±0.17 84.25±0.13 99.85±0.12 83.62±0.14 95.38±0.23 87.03±0.16
RTN [62] 78.98±0.55 77.07±0.49 89.46±0.37 85.35±0.47 89.25±0.39 93.22±0.52 85.56±0.47

IWAN [160] 89.15±0.37 90.45±0.36 94.26±0.25 99.36±0.24 95.62±0.29 99.32±0.32 94.69±0.31
SAN [8] 90.90±0.45 94.27±0.28 88.73±0.44 99.36±0.12 94.15±0.36 99.32±0.52 94.96±0.36
PADA [9] 96.54±0.31 82.17±0.37 95.41±0.33 100.00±.00 92.69±0.29 99.32±0.45 92.69±0.29
DRCN [66] 90.80 94.30 94.80 100.00 95.20 100.00 95.90
ETN [10] 94.52±0.20 95.03±0.22 94.64±0.24 100.00±.00 96.21±0.27 100.00±.00 96.73±0.16
Ours(CN) 92.18±0.12 92.95±0.24 96.14±0.23 100.00±.00 95.92±0.32 100.00±.00 96.20±0.15
Ours(CP) 97.28±0.33 96.79±0.15 96.14±0.21 100.00±.00 96.13±0.17 100.00±.00 97.72±0.14

domain label space, due to the Adaptively-Accumulated Knowledge Transfer strategy we proposed

to filter out target samples with high prediction confidence.

1.2.2.2.4 Pursuing Intra-class Compactness Except for maximizing the inter-class distribution

distance within/across domains, we also seek to pursue more intra-class compactness. Specifically,

we develop an effective loss term to reduce the intra-class variation by minimizing the distance

between every two samples belonging to the same category from any domains, which is shown as:

Sc =
1

Nc(Nc − 1)
∑Nc

i=1

∑Nc
j=1
j"=i

‖zi − zj‖2, (1.11)

where Nc is the total number of samples belonging to class c from the source domain and filtered

out target samples. Thus, we further define the total loss of all intra-class sample-wise distance as:

Lintra =
λ2
C

∑C

c=1
Sc, (1.12)

where C is the number of categories in the source domain label space. It is noteworthy that for

the target domain, we still only align those samples filtered out with high confidence to reduce the

distraction of misclassification, while for samples from the source domain are always aligned over

the whole label space. λ2 is a hyper-parameter to balance the contribution of Lintra.
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Table 1.6: Comparisons of Recognition Rates (%) of Partial Domain Adaptation on Office-31
Dataset (VGG).

Method A31→W10 A31→D10 W31→A10 W31→D10 D31→A10 D31→W10 Average
Source Only 60.34±0.84 76.43±0.48 79.12±0.54 99.36±0.36 72.96±0.56 97.97±0.63 81.03±0.57
DAN [74] 58.78±0.43 54.76±0.44 67.29±0.20 92.78±0.28 55.42±0.56 85.86±0.32 69.15±0.37
DANN [31] 50.85±0.12 57.96±0.20 62.32±0.12 94.27±0.16 51.77±0.14 95.23±0.24 68.73±0.16
ADDA [130] 53.28±0.15 58.78±0.12 63.34±0.08 95.36±0.08 50.24±0.10 94.33±0.18 69.22±0.12
RTN [62] 69.35±0.42 75.43±0.38 82.98±0.36 99.59±0.32 81.45±0.32 98.42±0.48 84.54±0.38

IWAN [160] 82.90±0.31 90.95±0.33 93.36±0.22 88.53±0.16 89.57±0.24 79.75±0.26 87.51±0.25
SAN [8] 83.39±0.36 90.70±0.20 91.85±0.35 100.00±.00 87.16±0.23 99.32±0.45 92.07±0.27
PADA [9] 86.05±0.36 81.73±0.34 95.26±0.27 100.00±.00 93.00±0.24 99.42±0.24 92.54±0.24
ETN [10] 85.66±0.16 89.43±0.17 92.28±0.20 100.00±.00 95.93±0.23 100.00±.00 93.88±0.13
Ours(CN) 88.44±0.24 86.54±0.15 94.98±0.38 100.00±.00 94.98±0.21 99.32±0.18 94.04±0.19
Ours(CP) 90.48±0.23 90.38±0.38 95.19±0.16 100.00±.00 94.67±0.19 99.66±0.23 95.06±0.20

1.2.2.3 Overall Objective and Optimization

Entropy minimization regularization is adopted to eliminate the side effect caused by the uncertainty

of classifiers, due to the large domain shift and samples which are hard to transfer. Especially during

the early training stage, the target domain samples are easy to be assigned to wrong categories and

may deteriorate the optimization procedures. We also explore the entropy minimization regulariza-

tion as:

Lem = − 1
nt

∑nt

i=1

∑C

c=1
ŷi,c
N,t log ŷ

i,c
N,t, (1.13)

where C is the number of categories in source domain label space, nt is the number of samples from

the target domain.

To sum up, we propose our overall objective function as:

min
G,CN

Ly + Lintra − Linter + Lem. (1.14)

The whole framework consists of a feature generator G(·), a multilayer perceptron classifier

CN(·), and a prototype classifier CP(·). As CP(·) is non-parameter, so only G(·) and CN(·) are

optimized with the objective as Eq. (1.14). Specifically, Ly is calculated on the source domain data,

while Lem is based on the whole target domain. However, Lintra and Linter are only based on the

filtered-out target data, as well as the corresponding source data from the same categories as the

filtered target samples pseudo labels. It is important to note that the inter-class and intra-class losses

used here differ from the objective introduced in Section 1.1.2.2.3. The losses, denoted as Linter
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Table 1.7: Comparisons of Recognition Rates (%) of Partial Domain Adaptation on Office+Home
Dataset (ResNet-50).

Method Ar→ Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
Source Only 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
DAN [74] 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72
DANN [31] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82
ADDA [130] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82
RTN [62] 49.31 57.70 80.07 63.54 63.47 73.38 65.11 41.73 75.32 63.18 43.57 80.50 63.07

IWAN [160] 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56
SAN [8] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
PADA [9] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
DRCN [66] 54.00 76.40 83.00 62.10 64.50 71.00 70.80 49.80 80.50 77.50 59.10 79.90 69.00
ETN [10] 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45
Ours(CN) 61.41 83.81 86.36 64.15 74.12 75.15 67.22 55.44 83.88 72.15 60.22 83.59 72.29
Ours(CP) 62.54 83.92 86.69 65.44 74.96 75.04 67.40 55.14 84.37 73.25 60.51 84.09 72.78

and Lintra, are designed to minimize the distances between features belonging to the same category

while maximizing the distances between features from different categories, regardless of whether

they originate from the same or different domains. This optimization objective aims to enhance the

discrimination of features among different categories in the domain-invariant feature space.

1.2.3 Experiments

1.2.3.1 Implementation Details

Table 1.8: Comparisons of Recognition Rates (%) of Unsupervised Domain Adaptation on
Office+Home Dataset (ResNet-50).

Method Ar→ ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg.

No Adaptive
CN 51.79 70.42 79.40 56.16 62.97 70.40 60.42 48.15 76.75 66.08 63.94 76.58 65.26
CP 51.31 70.31 79.18 56.16 63.08 70.04 60.51 48.03 75.76 66.08 53.52 76.64 64.25

CN Guide
CN 62.09 81.01 83.60 60.75 64.48 65.27 65.20 53.52 84.76 71.23 56.39 80.06 69.03
CP 61.95 80.84 83.32 60.94 64.71 65.93 65.56 53.58 84.76 71.14 56.39 79.89 69.08

Same CN&CP
CN 56.75 80.06 87.36 60.20 64.99 76.97 65.75 55.14 83.27 69.30 55.08 82.18 69.75
CP 56.81 80.00 87.41 60.29 64.93 76.97 65.75 55.08 83.27 69.30 55.02 82.18 69.75

Ours
CN 61.41 83.81 86.36 64.15 74.12 75.15 67.22 55.44 83.88 72.15 60.22 83.59 72.29
CP 62.54 83.92 86.69 65.44 74.96 75.04 67.40 55.14 84.37 73.25 60.51 84.09 72.78

Comparisons: We compare the performance of our proposed method with several domain adap-

tation and the state-of-the-art partial DA methods such as: Deep Adaptation Network (DAN) [74],

Adversarial Discriminative Domain Adaptation (ADDA) [130], Residual Transfer Network (RTN)

[62], Importance Weighted Adversarial Nets (IWAN) [160], Selective Adversarial Network (SAN)

[8], Partial Adversarial Domain Adaptation (PADA) [9], Example Transfer Network (ETN) [10],

and Adaptive Feature Norm (AFN) [149]. Specifically, DAN applies multi-kernel MMD to match
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source and target domain distribution and learn transferable features across the domain. ADDA

combines the adversarial training idea and united weights sharing to generate domain invariant fea-

tures. RTN jointly adapts feature distribution as well as source and target classifiers via a deep

residual learning framework. IWAN and SAN select or re-weight outlier categories in the source

domain label space to alleviate the negative influence caused by those classes that are not in the target

domain label space. PADA, ETN, and AFN are state-of-the-art partial domain adaptation models.

Through down-weighting source domain data which is from outlier categories, PADA reduces the

negative transfer influence caused by outlier classes. ETN proposes a progressive weighting scheme

to quantify the transferability of source examples. AFN proposes a parameter-free approach to pro-

gressively adapt the source and target domain feature norms to a large range of values, which results

in significant transfer gains.

Implementation Details: For each source-target pair case, we finetune the ImageNet pre-trained

convolutional neural networks on the source domain and remove the last fully-connected layer as the

backbone network. Then we input the backbone networks output of all source and target domain data

into two dense layers with hidden layer output as 1,024 followed by ReLU activation and 0.1 dropout

probability as the feature extractor G(·). We accept ResNet-50 network [35] as the backbone of

Office-Home and Office-31, and also explore the performance of the VGG network as the backbone

[120] on the Offce-Home dataset. The output dimension of the generator G(·), as known as the

embedding features zx/t, is 512. The multilayer perceptron classifier CN(·) is a two-layer fully-

connected neural network where the hidden layer output dimension is 512, and the output size is

the number of source domain categories. For prototype classifier CP(·), we take cosine similarity

as the measurement function in (·, ·), and we directly take the source domain class centers as the

prototypes, because the feature generator update every epoch, so the prototypes are also updating

along with training. All experiments are implemented via PyTorch. We train the model for 100

epochs by Adam optimizer with learning rate as 0.0001, and report the last epoch results. p0 is

rounded to two decimal places. λ1 = 0.1 and λ2 = 0.5 on Office31 dataset, while λ1 = 0.01, λ2 = 2

on Office-Home. We will analyze the parameter sensitivity in Section 1.2.3.3.
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1.2.3.2 Comparison Results

In this section, we will comprehensively evaluate our proposed model with several baselines on

Office-31 and Office-Home benchmarks in terms of the target samples labels prediction accuracy to

manifest the effectiveness of our model.

Specifically, we observe that PDA methods (IWAN, SAN, PADA, DRCN, and ETN) achieve

better performance than standard DA efforts such as DAN, DANN, ADDA, and RTN. ETN achieves

much greater improvement because it introduces a method to quantify the source samples’ transfer-

ability. Our proposed method can still outperform all compared baselines on most partial domain

adaptation tasks and obtain the best average performance.

Table 1.5 reports the classification accuracy on the Office-31 dataset obtained by all baselines

and our model with ResNet-50 as the backbone of the feature extractor. It is noteworthy that the

prototype classifier CP(·) always generates better performance than the conventional multilayer per-

ceptron classifier CN(·). From the results, the prototype classifier achieves the best performance on

5 out of 6 tasks, compared to all the other baselines. To be specific, the average classification accu-

racy reaches the best performance 97.72% and reaches 100% accuracy on W31→ D10 and D31→

W10.

Moreover, we also explore the VGG network as the feature extractor backbone on Office-31

dataset and report the results in Table 1.6. Our proposed model achieves the best average perfor-

mance compared with other baselines. Specifically, compared to the best baseline performance

on task A31→W10, PADA, CN(·) and CP(·) improve the accuracy over 2% to 88.44% and 4% to

90.48%, respectively. It is noteworthy that the improvements of performance with VGG networks as

backbone is more significant than using ResNet-50, because the ResNet-50 is more advanced deep

convolutional neural networks model, which can generate more task specific discriminate features

than VGG networks.

Experiment results on the Office-Home dataset are stated in Table 1.7. Both CN(·) and CP(·)

obtain better performance against other baselines with significant improvements on average clas-

sification accuracy (1.84% and 2.33%). Moreover, our proposed method achieves more than 5%

accuracy increase compared to the state-of-the-art baseline, e.g., Ar→ Pr, Cl→ Pr, etc.
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Figure 1.8: tSNE visualization of the original features and generator G(·) output embedding
features after domain adaptation. (a) Office-Home dataset (Al → Cl) (b) Office-31 dataset

(Amazon → Webcam).
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Figure 1.9: Evaluate each loss term contribution on the Office-Home dataset by removing each
specific term while keeping other parts the same. (a) multilayer perceptron classifier CN(·) (b)

Prototype Classifier CP(·).

1.2.3.3 Ablation Analysis

First, visualize the generator G(·) output features before and after the domain adaptation process

on task Ar→Cl on Office-Home, and A→W on Office-31 dataset in the Fig. 1.8 (a) and (b). From

the results, we observe that our proposed method aligns the source and target domain samples with

respect to categories, and tights the compactness of the embedding features to each class center.

Secondly, we evaluate the contribution of every loss term in Eq. (1.14) by removing each specific

term while keeping other terms as the original framework. The results are shown in Fig. 1.9. It is

noteworthy that both Lintra and Linter make crucial contributions to the PDA tasks because these two

terms are aligning the data distribution inter-classes and intra-class. Ly keeps the model performance

on the source domain stable, while it has limited contribution to the PDA process, but cannot be

ignored. Lem helps to mitigate the negative transfer influence of the multilayer perceptron classifier

CN, especially at the beginning of the training stage.

Then, we monitor the training and optimization process of our model. Fig. 1.10 illustrates the
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Figure 1.10: Filtered out shared categories of the target domain of task A31 → W10 on the
Office-31 dataset.
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Figure 1.11: Parameters sensitivity analysis of (a) λ1 (b) λ2 on 4 different tasks from Office-Home
dataset.

process of the adaptively-accumulated knowledge transfer process. We choose case A31→W10 of

the Office-31 dataset and show the changing of the filtered-out high prediction confidence categories

used to align the data distribution across domains. In the beginning, high prediction target samples

only spread into only 6 classes, but then more and more categories are involved, and the number

finally reaches 11, while the total number of the target domain categories is 10. Although there is

an incorrect outlier class involved, the adaptive optimization strategy still significantly narrows the

range of the target domain label space.

Moreover, we implement several ablation experiments on the Office-Home dataset with differ-

ent training details to explore the contribution of our proposed model and optimization strategy, the

results are reported in Table 1.8. “No Adaptive” denotes the results without the adaptively accumu-

lating knowledge transfer and target samples filtering out process. From the results, compared to
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Target Samples

Ground Truth Flipflops Bucket DeskLamp AlarmClock FileCabinet Bed Clipboards Couch

C! Flipflops Bucket DeskLamp AlarmClock FileCabinet Bed DeskLamp Bed

"" Flipflops Bucket DeskLamp AlarmClcok FileCabinet TrashCan Clipboards Bed

Figure 1.12: Prediction of CN(·) and CP(·) for selected target domain samples (Pr → Rw)

Figure 1.13: Retrieved target images with the highest 10 prediction confidence by CP(·) (Pr → Rw).

our complete A2KTmodel results, we notice how important the adaptively accumulating knowledge

strategy is. “CN Guide” are the results when we use the CN probabilistic prediction to filter out high

confidence target samples for domain alignment, instead of CP. The way to decide the threshold is

the same as when we use CP. The results prove that the multilayer perceptron classifier CN and the

prototype classifier CP have different classification philosophies, and using CP probability predic-

tion to accumulate can boost the performance significantly. Finally, we explore the motivation of

adopting two different types of dual classifiers framework in our model by setting CN and CP both

the same structure multilayer perceptron classifiers, all other settings and training strategies are the

same as before, and the results are reported in “Same CN&CP.” From the results, we observe that for

some cases two same multilayer perceptron classifiers can get slightly better performance than our

model, e.g., Ar → Rw and Cl → Rw. However, for most cases and the average performance, our

model with different type classifiers outperforms much more. All the results with different training

strategies in Table 1.8 demonstrate the effectiveness and motivation of our model and optimization
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strategies.

We present the parameter sensitivity analysis in Fig. 1.11. We vary λ1 from 0.0001 to 0.05 and

λ2 from 1 to 3 on four cases on the Office-Home dataset (Ar → Pr, Ar → Rw, Pr → Ar, Rw → Cl)

to analyze if the model is sensitive to the change of the hyper-parameters. The results in Fig. 1.11

show that our model has great stability across cases of the two parameters λ1 and λ2.

Finally, we select several representative target samples from task Pr→Rw on Office-Home

dataset and show the predictions of CN(·) and CP(·) in Fig. 1.12. We notice that some cases only

CN(·) or CP(·) can handle, or even neither can predict correctly, which demonstrates the motivation

of combining two different type classifiers CN(·) and CP(·) in our proposed model. Besides, we

operate the image retrieval task by giving specific labels to retrieve the target samples. The 5 target

images with the highestCP(·) prediction confidence and 5 with the lowest in the retrieved images are

shown in Fig. 1.13. The different samples retrieved by CN(·) and CP(·) demonstrate the motivation

of integrating various classifiers.

1.2.4 Discussion and Limitation

This work presents a novel Domain-Invariant Feature learning framework for partial domain adap-

tation. The method uses the Adaptively-Accumulated Knowledge Transfer Optimization strategy

to select relevant target domain samples, leading to improved results compared to prior approaches

in extensive experiments on various benchmarks. However, determining an effective and robust

threshold (σ) for confident prediction on the target domain remains a significant challenge, particu-

larly when dealing with extremely imbalanced source domain data in the feature space. Consider a

scenario where certain categories have only a few samples that are tightly clustered around the class

center, while other classes have a larger number of samples but are sparsely distributed with signif-

icantly larger distances from their class center. In such cases, the threshold determination would be

heavily influenced by the distribution of categories with a larger number of samples, leading to poor

performance for the minority group categories.

Another limitation of the method is the expensive computational cost incurred by the objective

loss functions Linter and Lintra, which involve all samples in the source and target domains. This

computational burden becomes particularly pronounced when dealing with large-scale datasets. To
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make the approach more feasible for such datasets, it is crucial to devise an effective strategy to

reduce the computing complexity. One potential solution is to sample the source samples during

the training process, ensuring that each batch covers all source domain categories. By performing

loss calculations on these sampled batches and optimizing the model accordingly, the computational

overhead can be significantly mitigated.

1.3 Conclusion

In conclusion, this chapter has contributed to the understanding of visual domain adaptation by em-

ploying feature distribution analysis as a key interpretive tool. Through the proposed Adversarial

Dual Distinct Classifiers Network (AD2CN), the chapter has effectively aligned domain distribu-

tions and category decision boundaries, shedding light on the knowledge transfer process from the

source to the target domain. The utilization of dual different-architecture classifiers has provided

valuable insights into capturing ground-truth decision boundaries and improving prediction per-

formance. Furthermore, the chapter’s investigation into the Adaptively-Accumulated Knowledge

Transfer scheme (A2KT) has revealed important findings regarding the discovery of outlier classes

when the source and target domains possess different label spaces. By analyzing domain-invariant

feature distributions, this chapter has deepened our understanding of the underlying mechanisms in-

volved in visual domain adaptation. The insights gained from this analysis offer valuable guidance

for developing effective strategies and methodologies to address the challenges posed by domain

shifts in various visual recognition tasks.
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2
Domain Adaptation with Limited Training

Data using Feature Generation

We have discussed that domain adaptation methods enable deep neural networks to overcome limita-

tions due to scarce labeled data by leveraging knowledge from an external source domain. However,

the insufficiency of unlabeled target domain data severely limits the adaptation ability and knowl-

edge transfer effectiveness of existing domain adaptation models, giving rise to the problem of few-

shot domain adaptation (FSDA) [84, 86, 150]. FSDA faces two primary challenges: domain shift,

which refers to the difference in data distributions between domains and often results in negative

transfer during adaptation, and data imbalance, which occurs when the source and target domains

have disparate amounts of training data, leading to models that overfit to the abundant source data.
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Besides, to address the data imbalance in domain adaptation, some researchers have focused

specifically on imbalanced domain adaptation tasks. These methods aim to mitigate the negative

effects of data imbalance by assigning importance weights to each sample in the target domain [33,

160, 62, 163, 26, 54]. However, these strategies rely on the source classifier to assign the importance

weights, which can be unreliable in extreme cases where certain categories lack sufficient data for

training a reliable classifier. Consequently, maintaining performance on specific categories with

limited training data becomes crucial and challenging, giving rise to transfer fairness problems [117].

In this work, we focus on addressing the challenges of imbalanced domain adaptation and do-

main adaptation with limited training data. We aim to develop novel approaches that effectively

adapt models to target domains with data imbalance and overcome the limitations imposed by limited

labeled data in the target domain. By exploring the potential of class-wise adaptation and developing

techniques that account for data scarcity and imbalance, our goal is to improve the performance and

fairness of domain adaptation in practical settings.

2.1 Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation

Domain adaptation (DA) becomes an up-and-coming technique to address the insufficient or no an-

notation issue by exploiting external source knowledge. Existing DA algorithms mainly focus on

practical knowledge transfer through domain alignment. Unfortunately, they ignore the fairness is-

sue when the auxiliary source is extremely imbalanced across different categories, which results in

severely under-presented knowledge adaptation of the minority source set. In addressing the chal-

lenging imbalanced domain adaptation problem, we introduce the Towards Fair Knowledge Trans-

fer (TFKT) framework. Our framework centers on a novel cross-domain knowledge propagation

technique, guided by within-source and cross-domain structure graphs. This technique effectively

generates additional data for the minority source set, addressing the data imbalance issue. Addi-

tionally, we employ a cross-domain mix-up augmentation strategy to facilitate domain adaptation.

By combining these approaches, we aim to foster a more equitable and efficient knowledge transfer

process. Moreover, hybrid distinct classifiers and cross-domain prototype alignment are adopted

to seek a more robust classifier boundary and mitigate the domain shift. Such three strategies are

formulated into a unified framework to address the fairness issue and domain shift challenge. Ex-
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Figure 2.1: Illustration of the imbalanced domain adaptation task. The colored shapes denote
labeled but extremely imbalanced source domain data, in which some categories only contain few

samples, e.g., one-shot. The gray shapes are unlabeled target domain data.

tensive experiments over two popular benchmarks have verified the effectiveness of our proposed

model by comparing it to existing state-of-the-art DAmodels, and especially our model significantly

improves over 20% on two benchmarks in terms of overall accuracy.

2.1.1 Summary of Contribution

In this work, we consider the source fairness challenge in domain adaptation under the extreme

condition when the available source domain is extremely imbalanced as illustrated in Fig. 2.1, i.e.,

some source domain categories only contain a few labeled samples for training. Consequently, we

propose a novel Towards Fair Knowledge Transfer (TFKT) framework to guarantee faithful cross-

domain adaptation. The contributions of this work are summarized in four folds as follows:

• First of all, we propose knowledge propagation within the source domain and across source

and target domains with the weighted structure graph guidance to smooth the manifold and

alleviate the distraction caused by the undesired random few-shot samples belonging to the

source domain minority categories.

• Secondly, we exploit the cross-domain mix-up augmentation strategy based on the refined

data through knowledge propagation to achieve cross-domain alignment and eliminate the

domain shift.

• Thirdly, we enhance the faithful knowledge transfer by exploring dual-classifier mechanisms

and cross-domain alignment, to seek more robust task-specific classification boundaries and
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domain-invariant feature representation.

• Finally, we extensively evaluate our proposed model under various challenging but realistic

settings and compare the performance with state-of-the-art methods. The superior results,

even in extreme situation with only one labeled source sample available for some classes,

emphasize the effectiveness of our model.

2.1.2 The Proposed Method

2.1.2.1 Preliminaries and Motivation

In this work, we consider a challenging but realistic domain adaptation task involving a well-labeled

but extremely-imbalanced source domain training data. The source domain, denoted asDs, consists

of two subsets, a majority-setDm
s and a minority-setDf

s, where the majority-setDm
s have nms samples

available and each category consists of sufficient instances with annotations from the label spaceYm,

while the minority-set Df
s only contains nfs data drawn from P categories from label space Y f, with

limitedQ samples per class, and we describe it as PwayQ shot task. Zs/t = E(Xs/t),Zs/t ∈ Rns/t×d

is the source/target embedding representations extracted from pre-trained backbone network E(·),

where d is the embedding dimension. In the rest of this work, we choose ResNet-50 [35] pre-trained

on ImageNet [16] as the convolutional backbone and accept the output before the last fully-connected

layer as the embedding representation. Unlike the feature extractor G(·) introduced in Section 1.1,

the parameters of E(·) are frozen without training in our experiments to reduce computing costs. The

source and target domains are drawn from different distributions Ps and Pt, but lie in the same label

space Y = Ym ∪ Y f, thus the number of categories in the source and target domains are identical.

Some source domain categories only contain a few samples for training that will fail the conven-

tional unsupervised domain adaptation solutions, relying on plenty of well-labeled source domain

data for supervised training. The extremely imbalanced distribution will distract the optimization

direction and mislead the model overfitting to those classes with adequate training data while ignor-

ing the few-shot categories. We address such challenges by refining the embedding representations

of samples from few-shot categories through structure-guided knowledge propagation to eliminate

the undesired noise distraction, then synthesizing those few-shot categories to expand the feature
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Figure 2.2: Illustration of the fair knowledge transfer process, which is able to expand the feature
space of categories with a few labeled samples, and balance the decision boundaries. Different

shapes represent different categories, while colored and gray instances denote labeled source and
unlabeled target samples, respectively.

distribution space and avoid the imbalance issues, and finally exploring the dual classifier mecha-

nism to align the source and target domain and alleviate domain shift. The fair knowledge transfer

process can expand the feature space of minority set categories with few labeled training samples,

and smooth the decision boundaries (Fig. 2.2).

2.1.2.2 Towards Fair Knowledge Transfer

We first present an overview of our proposed framework (Fig. 2.3). Firstly, the source domain few-

shot category sample (zfs) is augmented to obtain refined embeddings (z̃fs/o) through the knowledge

propagation within the source and across domains under the guidance of weighted structure graphs

(Hs/o). Besides, the refined synthesized samples (z̃fs/o) are used to generate more synthesized in-

stances (ẑfm) to expand the feature space and fulfill the distribution gap across domains through

random combination. Finally, all the real and synthesized instances are mapped into a domain in-

variant space through the feature generator F(·), denoting the output features as f = F(z), guided

by the discriminative cross-domain alignment and source domain supervision objectives obtained

from the dual-classifier mechanism, consisting of a multi-layer neural network classifier CN(·) and

a prototypical classifier CP(·). We will discuss details about each part in the following sections.

2.1.2.3 Cross-domain Feature Augmentation (CDA)

2.1.2.3.1 Data Augmentation through Embedding Propagation The most challenging difference

between the extreme imbalanced domain adaptation and conventional domain adaptation tasks is
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Figure 2.3: Overview of our proposed framework, where both source and target raw images (xs/t)
are input to pre-trained deep convolutional neural networks E(·) to extract embedding

representations (zs/t). zms denotes the samples from the majority set categories, while zfs denotes
the samples from the source domain minority categories, and zt are the samples from the target
domain without labels. Hs is the weighted graph illustrating the structure of the source domain
data, while graph Ho is obtained based on the relationships between samples from the source

domain few-shot set and the target domain samples. z̃fs/o are the augmented refined embeddings
through knowledge propagation within the source domain and across domains, respectively, which
are used to generate more synthesized instances (ẑfm) through random combination to expand the
feature space and fulfill the distribution gap across domains. All real and synthesized embedding
instances are mapped into a domain invariant space through the feature generator F(·), denoting
the output features as fs/t. The dual-classifier scheme consists of a multi-layer neural network
classifier CN(·) and a prototypical classifier CP(·), which aims to preserve source supervision.

that some categories from the source domain only contain a few labeled samples for training. The

optimization process of previous domain adaptation solutions would be dominated and misled by the

majority set classes having sufficient training data and fail on the minority set categories. Besides,

the limited labeled samples from the minority set categories may lie far from the class center in the

feature space, which cannot represent the corresponding categories’ distribution characteristics. To

address this challenge, we first explore the augmentation strategy embedding propagationwithin the

source domain [107]. Specifically, for each source sample from the minority set Df
s, an interpolated

embedding is constructed through the combination of its neighbors with the knowledge propagated

under the guidance of a weighted graph. The goal of embedding propagation is to remove the noise

from the features and smooth the embedding manifold, which will benefit the generalization and

effectiveness of semi-supervised learning methods [122, 63, 107].

Firstly, we build a similarity adjacency matrix As ∈ Rns×ns for all samples in the source domain
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Ds, and each element in As is computed as:

Ai,j
s = exp(−

d2ij(s)
σ2s

) = exp(−‖zis − zjs‖2

σ2s
), (2.1)

in which dij(s) = ‖zis − zjs‖2 is the distance between two samples features zis and zjs, both from the

source domainDs, and σ2 is the scaling factor which is set as the standard deviation of the distances,

i.e., σ2 = Var(d2ij(s)), and A
kk
s = 0, ∀k [73]. Then based on the pair-wise similarity adjacency graph,

the Laplacian matrix can be obtained as:

Ls = D−1/2
s AsD

−1/2
s , (2.2)

where Dii
s =

∑
j A

ij
s . Then based on the propagator proposed in [174], the weighted knowledge

propagation graph within the source domain, denoted as Hs, can be calculated as:

Hs = (I− αLs)−1, (2.3)

where α ∈ R is a scaling factor which is fixed as 0.2 following [107], and I is the identity matrix.

Then for each sample zis from the source minority set Df
s, an interpolated embedding z̃is is con-

structed by the structure knowledge propagated from all its neighbors under the guidance of the

weighted propagation graph:

z̃is =
∑

xj
s∈Df

s
Hij
s z

j
s, (2.4)

in which z̃is share the same label as zis, and the augmented interpolated embeddings for all source

domain minority set samples make up the set D̃f
s = {z̃is|xi

s ∈ Df
s} lying in the identical label space

as Df
s. Since the constructed z̃is involves the structure information from the whole source domain,

so such knowledge propagation augmented samples can expand the corresponding category feature

space and eliminate the undesired noise from outliers.

2.1.2.3.2 Cross-domain Knowledge Propagation Except labeled source domain data, the unla-

beled target domain is also rich in the structure information corresponding to the source domain.

However, due to the domain shift, which is one of the main challenges in domain adaptation tasks
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caused by the different data distribution across domains, we cannot directly put the source and tar-

get domain data together and apply the knowledge propagation globally. Because the knowledge

propagation graph computed overall source and target domain data will be dominated by the rela-

tionship between samples from the same domain, while the structure knowledge between samples

across domains is easy to be ignored compared to the close relationship within the source/target

domain. Based on this, instead of directly combining the source and target domain together, we

propose the cross-domain knowledge propagation from the target domain Dt to the few-shot source

domain minority set Df
s.

Specifically, by putting the source domain minority setDf
s and the target domain dataDt together

making up a new dataset Do = Df
s ∪ Dt. The adjacency matrix Ao ∈ R(nfs+nt)×(nfs+nt) based on the

dataset Do is computed as:

Ai,j
o = exp(−

d2ij(o)
σ2o

) = exp(−‖zio − zjo‖2

σ2o
), (2.5)

where d2ij(o) = ‖zio − zjo‖2 is the distance between the samples zio and z
j
o, both from Do, the scaling

factor σ2o = Var(d2ij(o)), and Akk
o = 0, ∀k [73]. It is noteworthy that due to the different distri-

bution between the source and target domain, only considering the relationship between the given

source domain minority-set sample and the target domain may mislead the structure knowledge in

the adjacency matrix. So Ao keeps the structure knowledge about the corresponding relationships

among the source domain samples from minority set in Df
s ⊂ Do. In other words, Ao contains both

within-source and source-target structure information.

Similarly, the Laplacian matrix of Ao is computed as:

Lo = D−1/2
o AoD

−1/2
o , (2.6)

where Dii
o =

∑
j A

ij
o , and the weighted cross-domain knowledge propagation graph is calculated as:

Ho = (I− αLo)−1, (2.7)

in which α is fixed as 0.2 following [107], same as Eq. 2.3.
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Based on the cross-domain knowledge propagatorHo, for each sample zis from the source domain

minority set Df
s, a synthesized embedding x̃i

o is constructed by the combination of its neighbors in

the set Do under the guidance of the weighted knowledge propagation graph Ho:

z̃io =
∑

xj
o∈O

Hij
oz

j
o, (2.8)

where z̃io and zis have the same label. The augmented embeddings throughCross-domain Knowledge

Propagation raise the set D̃f
o = {z̃io|xi

s ∈ Df
s} to augment Df

s.

2.1.2.3.3 Cross-domainMix-upAugmentation Moreover, besides the extremely imbalanced dis-

tributed source domain data, the different data distribution across source and target domains is an-

other crucial challenge in imbalanced domain adaptation problems. Existing image generation strate-

gies designed for few-shot problems, such as F2GAN [39], train a generator with images from the

seen categories mapping a few conditional images to synthetic samples belonging to the same cat-

egory. Then the trained model translates the images from unseen categories to diverse images with

random interpolation coefficients. Such an augmentation strategy does not take advantage of the dis-

criminative knowledge in the annotated source domain data, and can not manage the cross-domain

distribution difference. Recent image recognition works reveal that the features deep in networks

are usually linearized, and various directions in the feature space correspond to some specific se-

mantic translations [131]. Such intriguing observation motivates the thoughts that translating one

sample along a specific feature direction results in new synthesized data with different semantics but

still lying in the same class. Moreover, Xu et al. [147] notice that in DA tasks, only samples from

the source and target domain alone are not sufficient to ensure domain-invariance at most parts of

latent space, which inspires us to generate synthesized data involving cross-domain information to

fulfill the gap between source and target domain, as well as guarantee domain-invariance in a more

continuous latent space.

However, due to the extremely imbalanced distribution in source domain and lacking of data

from some specific categories causes directly translating the information across domains is vulnera-

ble to negative transfer, especially when the available few-shot categories samples cannot represent

the specific class distribution characteristics because they may lie far from the class center in the fea-
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ture space. Thus aiming to implement amoderate augmentation strategywithout severelymisleading

under the imbalance domain adaptation situation, we seek to generate synthesized samples through

the feature level mix-up involving the augmented embeddings refined with knowledge propagation

within the source domain and across source and target domains, i.e., D̃f
s and D̃f

o.

Specifically, for each source domain sample xi
s ∈ Df

s drawn from the minority set categories,

two refined augmentation embeddings z̃is ∈ D̃f
s and z̃io ∈ D̃f

o are synthesized through the within-

source and cross-domain structure knowledge propagation, respectively. To explore the internal

information across domains, these two synthesized embeddings are linearly interpolated to fulfill

the feature space across domains and produce mix-up samples as:

ẑim = (1− γ)z̃is + γz̃io, (2.9)

where γ ∼ Beta(a, b) is to control the interpolation between the two embeddings (γ ∈ [0, 1], a, b >

0). Because z̃is and z̃io have identical class labels, the mixup samples are also assigned the same class

label. For each source domain minority set sample xi
s, k different mix-up samples with label yi

s, the

same label as xi
s, are generated with different randomly selected factor γ. The synthesized samples

created by the cross-domain mix-up augmentation constitute a new set denoted as D̂f
m = {ẑi(k)m |γk ∼

Beta(a, b)}, which is used to optimize the frameworks with corresponding class label.

It is noteworthy that our proposed Cross-domain Mix-up Augmentation is different from DM-

ADA proposed in [147]. Due to the extremely imbalanced distribution in the source domain caused

by the lack of labeled samples from the minority set categories, directly combining samples across

domains could produce fake samples leaning towards the majority set feature space severely. More-

over, the risk that the given few-shot samples lying far from the class center in the corresponding fea-

ture space will mislead the augmentation and domain alignment process. With our proposed strategy,

the interpolated samples are produced based on the refined embeddings obtained the within source

and across source and target domain knowledge propagation under the guidance of the weighted

graph, which can eliminate the undesired noise and distraction caused by outliers. Such a strategy

can balance the contribution of the majority and minority set during the domain adaptation process.
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2.1.2.3.4 Hybrid Distinct Classifiers In this study, we adopt the architecture introduced in Sec-

tion 1.1, which comprises a dual classifiers structure consisting of a multi-layer neural network

classifier CN(·) and a prototype classifier CP(·). The network classifier CN(·) takes the output of the

network F(·) as input and predicts the probabilities denoted by ŷN, whereas the prototype classifier

CP(·) also takes the output of the network F(·) as input and predicts the probabilities denoted by

ŷP. However, the imbalance domain adaptation problems we face present extreme class-wise dis-

tribution imbalance, making it impractical to train a promising classifier solely based on the limited

few-shot samples from the minority set. Despite leveraging knowledge propagation augmentation

and cross-domain mix-up strategies proposed in our work, the synthesized samples still fail to match

the efficiency of real labeled data from the majority set categories in the source domain. As a so-

lution, our approach relies on the prototype classifier CP(·) to recognize target samples based on

their similarity to category prototypes (class centers) instead of relying on the vast training data

used by CN(·). This eliminates the drawbacks caused by the insufficiency of training data from the

source domain’s minority set. Conversely, sufficient source domain training data allows us to train

a promising classifier for the majority set categories, enabling successful adaptation to the target

domain.

Similar as the observation in Section 1.2, we only apply supervision optimization to update the

parameters in generator F(·) and classifier CN(·) by minimizing the cross-entropy loss, which is

defined as:

Ms = − 1
ñs

∑ñs

i=1

∑C

c=1
1[c=yis] log ŷ

i,c
N,s, (2.10)

where ñs = ns + ñfs + ñfo + n̂fm, is the total number of samples including all real source domain data

(ns) as well as synthesized samples through the within source Embedding Propagation(ñfs), Cross-

domain Knowledge Propagation (ñfo), and Cross-domain Mix-up Augmentation(n̂fm).

2.1.2.4 Cross-domain Prototypes Alignment (CPA)

So far, we have sufficient well-labeled source domain majority-set samples, few-shot minority-set

real samples, together with the synthesized samples to make up the minority-set categories. In or-

der to simultaneously solve the domain distribution disparity problem and augment the minority
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set data, we adopt the discriminative cross-domain alignment learning objective intorduced in Sec-

tion 1.1.2.2.3, and involving all real and synthesized samples in both domains and all categories.

Specifically, for class c in the source domain minority set label space Y f, the amended class

prototype is calculated as:

μ̃cs =

∑

zis∈D
f(c)
s

f is +
∑

z̃is∈D̃
f(c)
s

f̃ is +
∑

z̃io∈D̃
f(c)
o

f̃ io +
∑

ẑim∈D̂
f(c)
m

f̂ im

nf(c)s + ñf(c)s + ñf(c)o + n̂f(c)m
, (2.11)

where f is/f̃ is/f̃ io/f̂ im are the output of the networkF(·)with zis/z̃is/z̃io/ẑim as input,D
f(c)
s /D̃f(c)

s /D̃f(c)
o /D̂f(c)

m

are the subset of samples belonging to class c drawn from Df
s/D̃f

s/D̃f
o/D̂f

m, respectively, while

nf(c)s /ñf(c)s /ñf(c)o /n̂f(c)m are the corresponding number of samples in each subset.

If all the source and target domain data are treated as a large batch during the augmentation

process, global structure information will be propagated within and across domains. If so, ñf(c)s =

ñf(c)o = 1 and n̂f(c)m = K in each training epoch. However, for large-scale benchmarks, it is inefficient

to deal with all data together and calculate the global knowledge propagation graph. Thus to handle

large-scale datasets and reduce the complexity, we can build episodes training strategy referring

to few-shot learning tasks [73, 85, 121]. Each episode consists of es source domain instances and

et instances from the target domain. For the source data in each episode, data from the majority

set Ym are randomly sampled without replacement (p examples per class), and data belonging to

the minority set Y f can be used multiple times in each training epoch due to the lack of data (q

examples per class), i.e., es = |Ym| ∗ p + |Y f| ∗ q. The computing complexity will be negligible

with the episodes training strategy since the size of each episode is small [73]. The source domain

prototypes are updated adaptively during training.

Based on the revised source domain class prototypes, the class-wise MMD can be calculated as:

Mc =
1
C
∑C

c=1
‖μ̃cs − μct ‖22, (2.12)

where μ̃cs is the revised source domain class c prototype, calculated on D̃c
s = {Df(c)

s , D̃f(c)
s , D̃f(c)

o D̂f(c)
o }

when class c belongs to the minority set categories. Due to the missing of the target domain samples

labels, we accept the CP(·) prediction ŷt
P as pseudo labels for target domain samples, and compute

57



Table 2.1: Comparisons of Recognition Rates (%) on Office-Home Dataset (5-shot).

Method DAN DM-ADA MCD SWD SymNets Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

Ar→Cl 22.1 57.1 43.6 5.13 20.2 14.4 14.5 32.7 25.7 15.3 47.3 35.0 13.9 39.6 30.3 47.7 52.9 50.9
Ar→Pr 30.5 71.7 55.1 2.35 28.2 17.8 26.6 49.9 40.5 20.1 67.1 48.2 36.5 64.4 55.4 71.3 74.0 72.9
Ar→Rw 42.0 77.5 62.7 4.31 37.1 23.5 35.1 51.3 44.6 30.9 70.8 54.2 40.8 71.8 58.2 72.0 77.2 75.0
Cl→Ar 15.7 60.6 40.4 6.52 20.3 14.1 17.8 28.3 23.6 11.8 46.2 30.8 9.60 58.7 37.2 57.3 60.6 59.1
Cl→Pr 25.7 72.0 52.7 0.00 29.3 17.5 6.50 67.0 42.7 2.20 38.5 23.9 12.3 67.1 46.6 65.1 74.8 70.9
Cl→Rw 18.4 73.2 51.1 0.00 28.1 16.4 15.2 12.8 13.8 4.10 34.3 21.7 20.4 66.1 48.4 69.3 74.7 72.5
Pr→Ar 22.0 57.0 41.3 1.01 23.8 13.6 27.4 14.0 20.0 28.2 39.0 34.2 18.1 51.0 37.8 60.9 58.8 59.8
Pr→Cl 20.2 52.3 40.0 5.85 27.1 19.0 4.50 35.1 23.4 3.90 36.5 17.8 7.30 40.9 26.5 46.0 51.4 49.3
Pr→Rw 42.6 77.8 36.1 3.42 43.4 26.8 36.7 54.1 46.9 13.4 74.6 49.2 38.4 70.9 58.6 72.6 80.5 77.2
Rw→Ar 26.5 68.2 49.5 6.52 41.2 25.6 27.0 44.0 36.4 25.1 60.8 44.8 27.4 65.4 50.0 63.0 66.3 64.9
Rw→Cl 25.0 60.9 47.1 2.05 31.0 19.9 4.10 35.9 23.7 3.00 50.5 32.3 14.9 46.8 33.3 49.9 54.9 53.0
Rw→Pr 38.8 84.9 66.3 1.29 55.6 33.8 32.2 59.0 48.2 7.60 50.9 33.5 30.7 81.0 60.8 76.8 84.0 81.1
Avg. 30.9 64.3 51.1 3.20 32.1 20.2 20.6 40.3 32.4 13.8 50.5 35.5 22.5 60.3 45.3 62.7 67.5 65.6

the average of the features predicted belonging to the same category as the corresponding prototype.

Beyond that, we extend to explicitly consider the data distribution among different classes across

domains, and maximize the inter-class divergence as:

Md =
1
C

1
C− 1

∑C

c=1

∑C
c′=1
c′ "=c

‖μ̃cs − μc
′
t ‖22, (2.13)

where the inter-class divergence Md evaluates the distances of all different class prototype pairs

across domains.

In contrast to the learning objective introduced in Section 1.1.2.2.3, where only real samples

were considered, Eq.2.12 and Eq.2.13 incorporate both real and synthesized samples to calculate the

prototypes/class-centers. Consequently, we refer to this approach as the Cross-Domain Prototype

Alignment (CPA) to distinguish it from the loss function presented in Section 1.1.2.2.3. Overall,

our discriminative Cross-Domain Prototype Alignment is proposed to minimize the cross-domain

intra-class prototypes distances, while maximizing the inter-class distances.

2.1.2.5 Overall Objective and Optimization

To sum up, by exploring the source supervision over the real and augmented instances, as well as

the discriminative cross-domain alignment, we have our overall objective function:

min
F,CN

Ms + λ(Mc −Md), (2.14)
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Table 2.2: Comparisons of Recognition Rates (%) on Office-Home Dataset (1-shot).

Method DAN DM-ADA MCD SWD SymNets Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

Ar→Cl 0.30 56.7 35.0 2.81 23.1 15.3 14.3 48.3 35.3 15.3 45.7 34.0 0.40 43.5 27.2 29.4 54.8 45.1
Ar→Pr 4.00 72.0 44.7 1.18 28.3 17.4 23.0 65.9 48.5 23.4 66.6 49.2 0.00 69.4 41.5 46.2 76.3 64.2
Ar→Rw 4.20 78.0 47.3 0.00 39.2 22.9 32.4 70.3 54.5 31.4 71.3 54.7 0.00 75.0 43.7 53.9 78.7 68.4
Cl→Ar 0.00 60.6 33.4 0.00 18.6 10.3 16.8 33.8 26.2 12.1 47.0 31.3 0.00 60.1 32.9 41.2 60.5 51.8
Cl→Pr 0.00 73.5 44.0 2.30 28.8 18.1 4.90 21.9 15.1 5.40 68.8 43.3 0.00 74.3 44.2 43.8 76.0 63.0
Cl→Rw 0.30 71.5 41.9 1.77 25.0 15.4 17.7 42.2 32.0 3.40 65.5 39.7 0.00 71.0 41.7 50.7 76.0 65.5
Pr→Ar 0.00 57.6 31.8 0.00 26.2 14.5 25.2 50.2 39.0 25.0 49.1 38.3 0.00 56.5 31.8 47.6 60.1 54.5
Pr→Cl 0.80 53.2 33.1 0.00 29.3 18.0 4.30 47.0 30.6 4.10 46.3 30.1 0.00 45.0 27.0 34.8 52.3 45.6
Pr→Rw 7.50 77.3 48.3 3.64 40.8 25.3 36.5 74.8 57.7 14.9 74.7 49.5 0.20 74.4 43.6 63.8 80.5 73.6
Rw→Ar 0.00 68.5 37.8 2.02 37.3 21.5 26.7 39.0 33.5 25.9 61.6 45.6 0.00 71.5 39.3 56.9 66.7 62.3
Rw→Cl 2.70 61.5 39.0 0.00 31.7 19.5 4.10 19.2 13.4 3.10 11.3 8.20 0.00 54.1 33.1 40.2 57.3 50.7
Rw→Pr 1.90 84.6 51.3 1.74 56.3 34.4 36.0 80.6 62.7 6.3 80.7 50.8 0.00 84.4 41.7 59.8 84.6 74.6
Avg. 1.80 67.9 40.6 1.29 32.0 19.4 20.2 49.2 37.4 14.2 57.3 39.6 0.10 64.9 37.3 47.4 68.7 59.9

where λ is a hyper-parameter to balance the contributions of different terms. We need to train the

generator F(·) to map both source and target domain samples to a shared domain-invariant embed-

ding feature space. It is noteworthy that the prototype classifier CP(·) is free of parameters. Inspired

by [113, 62], our training process consists of two steps:

Step A. We train the feature generator F(·) and neural networks classifier CN(·) over the source

supervision, including real and synthesized data. Keeping the performance on the source domain is

crucial for obtaining discriminative whilst domain-invariant embedding features. Moreover, due to

the lack of source domain minority-set samples, optimizing the whole model over the real samples as

well as the synthesized samples will benefit the performance on the minority-set categories, avoiding

the model overfitting to the majority-set classes. The optimization objective is listed as minF,CN Ms.

Step B.We freeze the parameters of classifier CN(·) and update the generator F(·), which will map

the source and target domain samples into a shared embedding feature space, where both source and

target samples from the same class will be distributed close to each other, while far from samples

belonging to other categories. The optimization objective is provided as minFMs + λ(Mc −Md).

2.1.3 Experiments

We evaluate our proposed model on two domain adaptation visual benchmarks, Office-31 and Of-

ficeHome, and compare the evaluation performances with several state-of-the-art domain adaptation

methods. Then we analyze the components of our framework in detail and explore the parameter

sensitivity.
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2.1.3.1 Datasets and Experimental Setting

ImplementationDetails: We implement ourmodel based on PyTorch. ImageNet pre-trainedResNet-

50 [35] without the last fully-connected layer is accepted as E(·) to obtain the embeddings zs/t. F(·)

is a two-layer fully-connected neural network with a hidden layer output dimension of 1,024 and

ReLU activation. The output of F(·) is the domain invariant features fs/t with dimension 512. CN(·)

is a two-layer fully-connected neural network classifier with a hidden layer dimension of 512. Cosine

similarity is accepted as the measurement function φ(·) in the prototype classifier CP(·). We take the

embedding features mean of the source domain samples belonging to each category as the initialized

prototype μcs which will be used by CP(·) for classification, while for the Cross-Domain Prototype

Alignment, we take the synthesized samples into account to update the prototype μcs → μ̃cs . All train-

able parameters are optimized by Adam optimizer with a learning rate of 0.001 for both Office-31

and Office-Home datasets. F(·) and CN(·) are initialized and pre-trained on the source domain with

a learning rate of 0.0001 for 2,000 epochs, while E(·) is fixed. λ is fixed as 0.1 for Office-Home,

while 0.01 for Office-31, γ ∼ Beta(2, 2), and k is fixed as 5, which will be discussed in the abla-

tion study section. To optimize hyper-parameter values, we follow the approach proposed in [74].

We construct a validation set with labeled source and unlabeled target data and train a binary do-

main classifier to distinguish between them. By jointly assessing source classifier error and domain

classifier error, we determine the parameters for each task. The assumption is that in the adapted

domain-invariant feature space, high source accuracy implies high target accuracy, and the domain

classifier should exhibit high error when recognizing domain labels. We also explore additional val-

idation techniques for hyper-parameter optimization and checkpoint selection, but these are beyond

the scope of this work [171, 112, 106].

We focus on two challenging extremely-imbalanced domain adaptation tasks as 1-shot and 5-

shot in our experiments. Specifically, for each domain transfer task, we randomly select 1 or 5

samples of each source domain minority-set category, together with all the rest labeled majority-set

source domain data as well as the unlabeled target domain samples for training. The first 10 and the

first 25 alphabetical classes are treated as the minority set in the Office-31 and Office-Home datasets,

respectively, the rest classes constitute the majority set. We randomly run the experiments 3 times

60



Table 2.3: Comparisons of Recognition Rates (%) on Office-31 Dataset (5-shot).

Method DAN DM-ADA MCD SWD SymNets Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

A→W 41.2 77.1 67.1 9.65 51.9 38.8 56.6 6.30 21.9 44.3 7.30 18.7 17.0 92.1 69.9 97.3 90.3 92.4
D→W 99.6 96.3 97.2 3.70 73.9 52.2 63.4 57.0 61.1 54.9 22.5 32.5 76.2 98.6 92.1 99.7 98.6 99.0
W→D 92.9 99.7 97.6 0.00 85.7 60.3 31.2 37.5 35.6 51.3 79.1 70.9 79.9 100 93.8 100 99.3 99.5
A→D 47.4 85.5 73.7 6.73 49.6 36.9 56.5 14.5 26.9 58.4 72.4 68.3 13.6 88.7 65.5 97.4 89.8 92.2
D→A 64.6 62.1 62.8 0.52 35.9 25.6 63.6 43.0 49.0 53.5 64.3 61.1 53.8 71.4 65.9 81.3 73.6 75.9
W→A 53.3 63.7 60.7 3.68 43.1 31.5 68.2 24.9 37.6 58.5 42.7 47.3 49.8 69.7 63.1 82.2 72.2 75.1
Avg. 66.5 80.7 76.5 4.05 56.7 40.9 56.6 31.0 38.7 53.5 48.1 49.8 48.4 86.8 75.1 93.0 87.3 89.0

Table 2.4: Comparisons of Recognition Rates (%) on Office-31 Dataset (1-shot).

Method DAN DM-ADA MCD SWD SymNets Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

A→W 0.00 76.3 53.7 4.11 50.3 36.0 55.7 4.30 20.2 41.3 72.3 62.7 0.00 91.1 64.2 85.7 88.2 87.5
D→W 48.9 96.2 82.2 0.00 71.8 49.6 63.0 24.5 36.4 45.1 96.8 80.8 0.90 98.4 69.7 97.0 98.8 98.2
W→D 37.7 99.7 80.5 0.00 76.3 53.7 35.7 99.4 80.6 38.3 99.7 81.6 0.00 99.7 68.8 97.2 99.5 98.8
A→D 0.00 83.7 57.8 0.00 49.3 34.7 57.1 14.5 27.1 52.6 75.9 69.0 0.00 93.6 64.7 85.1 89.2 88.0
D→A 26.8 63.4 52.7 0.00 40.8 28.9 67.4 18.0 32.4 53.0 46.3 48.3 0.00 68.3 47.9 79.7 74.1 75.8
W→A 12.7 64.5 49.4 0.00 38.4 27.1 65.4 32.4 42.1 56.8 61.9 60.4 0.00 67.5 47.5 80.4 72.1 74.5
Avg. 21.0 80.7 62.7 0.68 54.5 38.3 57.4 32.2 39.8 47.9 74.5 67.1 0.15 86.4 60.5 87.5 87.0 87.1

and report the average results of the 30th epoch. For each case, we report the results of CN(·) on

the target domain majority-set categories, while for the minority-set categories, we show the results

of CP(·), and the overall average performance is also based on these two results, as illustrated in

the Hybrid Distinct Classifiers. We will discuss the different specialties of CN(·) and CP(·) in the

ablation study section. All baselines are implemented with the official codes with hyper-parameters

tuning as instructed by the original papers. For all experiments results, wemark the best performance

on the minority set as blue, the best performance on the majority set as red, and the best overall

performance as bold.

2.1.3.2 Results and Comparisons

The classification results onOffice-Home andOffice-31 under 5-shot and 1-shot settings are reported

in Tables 2.1, 2.2, 2.3, and 2.4, respectively. Af meansminority-set accuracy, Am represents majority-

set accuracy, and Ao denotes the overall accuracy on the whole target domain.

From the results, it is obvious that our method significantly outperforms all the comparisons

on both two benchmarks under 4 challenging settings in terms of overall accuracy. Especially for

the performance of the minority set, our model achieves promising results while keeping reliable
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Table 2.5: Comparisons of Recognition Rates (%) on Office-31 Dataset (1-shot).

Shot 1 - shot 5 - shot

Method Source-only WDAN Ours Source-only WDAN Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

A→W 68.51 78.04 75.09 13.19 81.07 61.01 85.7 88.2 87.5 73.19 77.68 76.29 40.00 80.71 68.68 97.3 90.3 92.4
D→W 91.49 97.14 95.39 52.34 97.32 84.03 97.0 98.8 98.2 93.19 97.32 96.04 87.23 98.04 94.84 99.7 98.6 99.0
W→D 95.45 99.71 98.45 46.10 100.0 83.33 97.2 99.5 98.8 96.75 99.71 98.84 89.61 99.42 96.39 100.0 99.3 99.5
A→D 77.92 79.65 79.14 18.83 76.74 58.84 85.1 89.2 88.0 79.22 76.54 77.33 51.30 82.85 73.09 97.4 89.8 92.2
D→A 65.66 66.63 66.35 27.31 71.15 58.32 79.7 74.1 75.8 67.60 66.73 66.98 60.92 70.65 67.80 81.3 73.6 75.9
W→A 66.50 63.92 64.67 11.29 66.68 50.51 80.4 72.1 74.5 69.66 62.82 64.82 62.50 65.73 64.79 82.2 72.2 75.1
Avg. 77.59 80.85 79.85 28.18 82.16 66.01 87.5 87.0 87.1 79.94 80.13 80.05 65.26 82.90 77.60 93.0 87.3 89.0

Table 2.6: Comparisons of Recognition Rates (%) on Office-Home Dataset (1-shot).

Shot 1 - shot 5 - shot

Method Source-only WDAN Ours Source-only WDAN Ours

Acc Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao Af Am Ao

Ar→Cl 26.39 43.79 37.11 0.00 49.52 30.52 29.4 54.8 45.1 30.09 47.40 40.76 13.49 47.96 34.73 47.7 52.9 50.9
Ar→Pr 41.29 62.36 53.89 0.06 70.80 42.35 46.2 76.3 64.2 41.79 68.09 57.51 19.27 70.80 50.08 71.3 74.0 72.9
Ar→Rw 49.25 72.82 63.02 0.00 75.96 44.39 53.9 78.7 68.4 41.79 71.21 58.98 25.40 76.04 54.99 72.0 77.2 75.0
Cl→Ar 32.32 51.57 42.93 0.00 56.13 30.94 41.2 60.5 51.8 39.03 50.90 45.57 7.35 55.53 33.91 57.3 60.6 59.1
Cl→Pr 34.90 68.69 55.10 0.00 73.47 43.93 43.8 76.0 63.0 40.11 69.37 57.60 0.34 73.32 43.97 65.1 74.8 70.9
Cl→Rw 40.03 67.36 56.00 0.00 72.03 42.09 50.7 76.0 65.5 47.05 67.75 59.15 4.64 72.27 44.16 69.3 74.7 72.5
Pr→Ar 44.72 53.89 49.78 0.00 55.31 30.49 47.6 60.1 54.5 49.49 52.39 51.09 0.18 56.58 31.27 60.9 58.8 59.8
Pr→Cl 27.94 48.51 40.62 0.00 50.07 30.86 34.8 52.3 45.6 31.58 47.51 41.40 0.00 49.48 30.49 46.0 51.4 49.3
Pr→Rw 60.57 74.86 68.92 0.00 77.61 45.35 63.8 80.5 73.6 62.62 75.18 69.96 0.00 76.75 44.85 72.6 80.5 77.5
Rw→Ar 44.08 64.65 55.42 0.00 65.47 36.09 56.9 66.7 62.3 50.60 65.40 58.76 5.05 65.70 38.48 63.0 66.3 64.9
Rw→Cl 30.27 51.34 43.25 0.00 53.57 33.01 40.2 57.3 50.7 33.55 52.01 44.93 2.93 52.04 33.20 49.9 54.9 53.0
Rw→Pr 55.74 82.10 71.50 0.00 83.65 50.01 59.8 84.6 74.6 62.35 82.18 74.21 2.30 84.14 51.20 76.8 84.0 81.1
Avg. 40.63 61.83 51.13 0.01 65.30 38.34 47.4 68.7 59.9 44.17 62.45 54.99 6.75 65.05 40.94 62.7 67.5 65.6

performance on the majority set, which emphasizes the robustness of our model to manage the ex-

tremely imbalanced distribution challenges. On the contrary, conventional UDA solutions, e.g.,

DM-ADA [147] and SymNets [163], suffer from the source distribution imbalance problem, and

fail to perform well in the minority-set categories, due to no consideration of imbalance distribution.

For the Office-31 dataset 5-shot tasks, our model achieves 93.0% average accuracy on the minority-

set, which beats DAN over 26% and maintains 87.3% on the majority-set, which is higher than

SymNets. Furthermore, our model gets promising overall performance on the Office-31 dataset as

89.0%, which is even comparable to the state-of-the-art performance 88.4% achieved by SymNets,

which include more source domain minority set labeled samples for training [163]. Moreover, in

another extremely challenging case when only 1 sample is available for each category in the minor-

ity set, our model still gets reasonable results on the minority set as well as stable performance on

the majority set. It highly affirms the effectiveness and robustness of our method in dealing with
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domain adaptation problems in which the source domain data is extremely imbalanced and insuffi-

cient for training. From the results reported in Tables 2.1 - 2.4, we observe that the classification

accuracy of the proposed methods is much higher than the other compared baselines in most cases.

This justifies the efficacy of Cross-Domain Augmentation and Cross-Domain Prototype Alignment

in dealing with imbalanced domain adaptation challenges.

Figure 2.4: Contribution of the Cross-Domain Prototype Alignment (CPA) and the Cross-domain
Augmentation (CDA) strategy on Office-Home 25-way 5-shot tasks (a) CP(·) performance on

Minority-set and (b) CN(·) performance on Majority-set.

2.1.3.3 Comparison with Imbalanced DA Solution

To demonstrate the effectiveness of the proposed TFKT, we show more results of source-only hy-

brid classifiers and Weighted Maximum Mean Discrepancy (WDAN) [151]. Source-only hybrid

classifiers consider CN(·) on the target domain majority-set categories, while the results of CP(·)

on the minority-set. WDANmanages the domain adaptation with data distribution imbalance issues

through reweighing the importance of each source sample during the domain alignment process. We

re-implement WDAN with ResNet-50 [35] as the backbone, as the ResNets are the preferred base

networks contemporaneously *.

From the results in Tables 2.5 & 2.6, we observe that our TFKT beats all compared baselines in

most cases and achieves the best average results. WDAN obtains good performance in the original

imbalance situation claimed in [151], but it cannot handle the extreme situations when only 1 or 5

samples per class are available for training. In addition, we notice that the Source-only results also

*The original WDAN is implemented with LeNet [61], AlexNet [56], GoogleLeNet [123], and VGG16
[120] as the backbone.
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Figure 2.5: CN(·) and CP(·) performance comparison on Office-Home majority- and minority-set (a)
5-shot, (b) 1-shot.

Figure 2.6: Parameters sensitivity analysis of λ and k on the Office-Home selected tasks (a)(c)
1-shot, (b)(d) 5-shot.

surpass some conventional domain adaptation solutions, especially in the minority set, emphasizing

the contribution and benefits of involving the prototypical classifier CP(·). The proposed Hybrid

Distinct Classifiers framework can significantly counteract the negative effect caused by the training

data insufficiency.

2.1.3.4 Ablation Analysis

First of all, we evaluate the contribution of the Cross-domain Prototypes Alignment (CPA) and the

Cross-domain Augmentation (CDA) to our model by removing one of them and keeping all other

architectures and training strategies. In Fig.2.4, we remove CPA, or the CDA strategy, or both of

them and show the results on Office-Home as “w/o CPA”, “w/o CDA”, and “Source Only”, respec-

tively. Besides, the source domain minority set data is augmented by CDA to three kinds of synthetic

data D̃f
s, D̃f

o, and D̃f
m, through Data Augmentation through Embedding Propagation, Cross-domain

Knowledge Propagation, and Cross-domain Mix-up Augmentation, respectively. By removing each

one kind of synthetic data while keeping others, the results are reported as “w/o CDA_s”, “w/o

CDA_t”, “w/o CDA_mix”, respectively. Moreover, CPA consists of two loss terms, minimizing

class-wise MMD (Mc) and maximizing inter-class divergence (Md). We remove each one term

and the results are denoted as “w/o CPA_intra” and “w/o CPA_inter”, respectively. Fig.2.4 (a)
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Figure 2.7: Visualization of embedding features of the Office-31 dataset A→W 10-way 1-shot task,
including real and augmented fake samples. (a) Embeddings output from E(·) (b) Features output

from F(·)

claims the CP(·) performance on the target domain minority-set classes, and (b) shows the CN(·)

performance on the majority-set. From the results, we observe that both CPA and CDA strategies

benefit the fair cross-domain learning tasks, especially on the recognition performance on the mi-

nority set. It is reasonable that CN(·) performance on the majority-set is not promoted significantly

by CDA, because CDA only augments the minority-set categories. But the CPA strategy boosts the

CP(·) performance on the minority-set categories impressively.

Secondly, we compare the different classification specialties of CN(·) and CP(·) on different

subsets. In Fig.2.5, we show CN(·) and CP(·) recognition rate of the target domain majority-set and

minority-set categories on the Office-Home 25-way 5-shot tasks. The main difference between the

roles of neural network classifier CN(·) and prototypical classifier CP(·) is their classification ability

on theminority-set categories. The insufficiency of training data from themajority-set classes makes

the trained neural network classifier dominated by the majority set and fail on the minority set. On

the contrary, the prototype classifier is based on the estimated prototype from given samples per

category, which is decided by the quality of available data instead of the number of samples available.

From the results, we notice that for categories with sufficient well-labeled source samples for training

in the majority-set, CN(·) always obtains better performance than the prototype classifier CP(·), e.g.,

Pr→Cl. However, for those classes lacking training samples in the minority set, CP(·) can handle

it much better and achieve promising performance in most cases, e.g., Pr→Cl and Rw→Cl. The

generated samples contribute to refining the prototypes during training and benefit the classification

performance of CP(·). From the results, we notice that the improvement of CP(·) compared to CN(·)
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for the minority set is more significant in the 1-shot setting than the 5-shot. So the fewer source

domain minority-set data available for training, choosing CP(·) to recognize the minority set is more

reasonable and superior.

Thirdly, we analyze the parameter sensitivity of our model. Four hard-to-transfer tasks of the

Office-Home dataset are used for evaluation. The results are reported in Fig. 2.6. We can see

that transfer performance is not sensitive to the variance of hyper-parameter λ from 0.1 to 0.3, in

both 5-shot and 1-shot settings, which demonstrate the importance of the Cross-domain Prototype

Alignment. Moreover, we change the number k of generated fake samples in each class from 1 to 20.

Fig. 2.6(c) and (d) show that the results are not sensitive to the number of fake samples generated

by the Cross-domain Mix-up Augmentation after k = 5.

Finally, we evaluate the quality of the generated synthesized samples belonging to the minority-

set categories by drawing the t-SNE embeddings of all the real source and target samples, together

with the generated fake samples. The results are visualized in Fig. 2.7. The red star points are

the 1-shot set samples and the blue dots are the source domain majority set samples, gray dots

are the target domain data. The augmented fake data are represented as yellow dots. (a) shows

the output embeddings of network E(·), and (b) shows the output features of F(·). It is obvious

that the generated samples are very similar to the available source domain minority-set samples,

and the comparison between the chaos in (a) and organized data distribution in (b) demonstrate the

effectiveness of the proposed cross-domain augmentation and prototypes alignment strategies.

2.1.4 Discussion and Limitation

In this work, we introduced the Towards Fair Knowledge Transfer (TFKT) model to tackle fairness

challenges in highly imbalanced cross-domain learning scenarios. The proposed model employs

cross-domain feature augmentation, knowledge propagation, and prototype alignment to improve

classification performance on minority-set categories during domain adaptation, demonstrating sig-

nificant improvements over existing approaches in various experiments. One of the primary limi-

tations of the proposed solution is its applicability to large-scale datasets, which poses challenges

during implementation. A potential approach to address this limitation involves sampling the source

data in the training process to ensure that each batch contains all categories. Additionally, the
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framework may encounter difficulties in handling tasks with significant domain shifts, leading to

ineffective knowledge propagation across domains and generating irrelevant noisy samples, thereby

hindering optimization.

2.2 Marginalized Augmented Few-shot Domain Adaptation

Domain adaptation has recently drawn a lot of attention as it facilitates unlabeled target learning

by borrowing knowledge from an external source domain. Most existing domain adaptation solu-

tions seek to align feature representations between the labeled source and unlabeled target data.

However, the scarcity of target data easily results in negative transfer as it misleads the cross-

domain adaptation to the dominance of the source. To address the challenging few-shot domain

adaptation (FSDA) problem, in this work, we propose a novel Marginalized Augmented Few-shot

domain adaptation (MAF) approach to address the cross-domain distribution disparity and insuf-

ficiency of target data simultaneously. On one hand, Cross-domain Continuity Augmentation syn-

thesizes abundant intermediate patterns across domains leading to a continuous domain-invariant

latent space. On the other hand, sufficient Source-supervised Semantic Augmentation is explored

to progressively diversify the conditional distribution within and across domains. Moreover, the

proposed augmentation strategies are implemented efficiently via an expected transferable cross-

entropy loss over the augmented distribution instead of explicit data synthesis, and minimizing

the upper bound of the expected loss introduces negligible extra computing cost. Experimentally,

our method outperforms the state-of-the-art in various few-shot domain adaptation benchmarks,

which demonstrates the effectiveness and contribution of our work. Our source code is provided

at https://github.com/scottjingtt/MAF.git.

2.2.1 Summary of Contribution

In this work, we propose a Marginalized Augmented Few-shot domain adaptation (MAF) model to

alleviate the aforementioned issues, domain shift, and lack of target data, simultaneously. Specifi-

cally, MAF is inspired by the fact that there exist many different semantic transformation directions

in the deep feature space, and translating the deep feature of one sample along a specific direction
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can be represented as meaningful semantic altering in the original input space [140]. Thus, the lim-

ited target samples can be augmented with the guidance of the source domain conditional semantics,

estimating the target domain distribution and enhancing the generalizability of the target classifier.

Moreover, to alleviate the domain distribution disparity, we first estimate the features mean of each

class in the source/target domain as a domain-specific class-wise prototype equipped with the inte-

gration of various semantics of each corresponding category. Then, the source domain intra-class

feature covariances are transferred as semantic variations to the target domain progressively along

with the process of cross-domain continuity augmentation, diversifying the within and across do-

main features distribution. Our contributions are summarized as:

• Firstly, we propose a novel Marginalized Augmented Few-shot domain adaptation (MAF)

approach for the few-shot domain adaptation problem. Specifically, the source domain class-

wise semantics are progressively transferred to the target domain, diversifying the target dis-

tribution and enhancing the adaptation of the target classifier.

• Secondly, we derive the upper bound of the expected cross-entropy loss over the augmented

distribution. Through minimizing the upper bound of the expected loss, MAF is performed

efficiently as a lightweight module easily plugged into most existing domain adaptation mod-

els without noticeable extra computational cost.

• Finally, we demonstrate the effectiveness of the proposed model on various few-shot cross-

domain visual benchmarks. Our model outperforms the state-of-the-art by 2-3% in most

1-/3-shot domain adaptation tasks on average.

2.2.2 The Proposed Method

2.2.2.1 Preliminaries and Motivation

In few-shot domain adaptation (FSDA), The source domain Ds = {Xs,Ys} = {(xi
s, yis)}

ns
i=1 con-

tains ns labeled samples, and the target domain Dt = {Xt,Yt} = {(xj
t, y

j
t)}ntj=1 consists of a limited

number of annotated data, i.e., nt , ns. The source and target data are drawn from different dis-

tributions but identical label spaces with C categories. In test stage, the framework is evaluated on

additional unlabeled target domain data.
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Figure 2.8: Illustration of MAF framework, where G(·) is a shared convolutional feature extractor,
and Cs/t(·) is the source/target classifier.

The scarcity of tremendous target data for training fails conventional domain adaptationmethods

due to overfitting to the sufficient source domain. To address the challenges of domain shift and lack

of target data, we propose a Marginalized Augmented Few-shot domain adaptation (MAF) approach

to progressively transfer the source domain semantic knowledge to the target domain. Specifically,

we first estimate the features mean of each class in the source/target domain as domain-specific

class-wise prototypes, integrating overall semantic characteristics of the corresponding category in

the specific domain. Then,Cross-domain Continuity Augmentation (CCA) is developed to enrich the

inter-domain feature patterns with random linear interpolations between prototypes from the same

class across domains. Moreover, we propose Source-supervised Semantic Augmentation (SSA) to

progressively transfer the semantic knowledge of the source domain to the inter-domain feature space

around the synthesized intermediate prototypical patterns, and enrich the target domain distribution.

Finally, instead of explicitly generating a massive number of fake data, we derive the upper bound

of the expected cross-entropy loss on the augmented distribution. By minimizing the upper bound

of the expected loss, the proposed MAF can be implemented with negligible extra computational

cost involved, and applicable to be plugged into most existing domain adaptation models.

Different from prior few-shot learning and conventional domain adaptation methods, our pro-

posedMAF can simultaneously enrich the target domain distribution and eliminate the cross-domain

distribution disparity. Through progressively transferring the source domain distribution knowledge

to the target domain via synthesized intermediate sub-domains, the FSDA problem can be addressed.

Moreover, instead of explicitly generating an infinite number of fake samples, optimizing the frame-

work by minimizing the upper bound of the expected cross-entropy loss of the synthetic data saves

tremendous computing resources needed.
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2.2.2.2 Framework Overview

The overall framework of our proposed model is shown in Figure 2.8. Similar as the architecture

introduced in the prior works, we accept a dual-classifier adversarial network for domain adaptation,

which consists of a shared deep convolutional feature extractor G(·), and two classifiers Cs(·) and

Ct(·). The difference is that Cs(·) and Ct(·) are two same architecture neural networks classifiers.

For the purpose of mathematical simplicity, we use fs/t = G(xs/t), fs/t ∈ Rd to represent the output

of G(·) in this section. ηcs/t ∈ Rd denotes the feature prototype of class c in the source/target domain

and Σcs ∈ Rd×d is the class-specific conditional covariance matrix computed from the source domain

class c features. In addition, classifiersCs(·) andCt(·) are trained with both labeled source and target

domain data. For simplicity, one feature f = G(x) input to Cs/t(·), where x ∈ Ds ∪Dt is the input

image from source/target domain, the output logit vector of the classifier Cs/t(·) before the softmax

operation is denoted as vs/t ∈ RC, and ps/t ∈ [0, 1]C denotes the probability prediction after softmax

function, i.e., ps/t = Cs/t(f) = softmax(vs/t), and pis/t, i ∈ {1, · · · ,C} is the ith element of the

probability prediction vector ps/t.

Firstly, we apply supervised optimization on the labeled source and target data for both Cs(·)

and Ct(·) by minimizing the cross-entropy loss defined as:

LC
c = E(x,y)∼Ds∪Dt [− log(pys)− log(pyt )], (2.15)

where pys/t is the yth probability prediction produced by Cs/t(·) for sample x ∈ Ds ∪ Dt, y is the

ground-truth label.

Furthermore, to eliminate the domain shift across domains, we borrow the idea of dual adversar-

ial classifiers and apply the domain confusion loss to train the model in an adversarial manner, where

the outputs from Cs(·) and Ct(·) are used to discriminate domain class, without any additional do-

main discriminator network [164]. Specifically, the concatenated logits vector vst = [vs;vt] ∈ R2C

is input to a Softmax layer to obtain the normalized probability output pst ∈ [0, 1]2C. Then we cal-

culate ϕs =
∑C

i=1 pist and ϕt =
∑C

i=1 p
i+C
st as the probabilities of classifying an input sample x
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belonging to the source and target domains, respectively. The domain confusion loss is defined as:

LC
d = E(x,y)∼Ds [− log(ϕs)] +E(x,y)∼Dt [− log(ϕt)], (2.16)

through which the discriminator constructed byCs(·) andCt(·) is optimized to recognize the domain

class of the input samples.

On the contrary, in order to adversarially adapt the source and target domains, the generator

G(·) is optimized to fool the discriminator and map all data into a domain-invariant latent space, by

minimizing:

LG
d = E(x,y)∼Ds∪Dt [− log(ϕs)− log(ϕt)]. (2.17)

Moreover, we also leverage the normalized dual-classifier prediction pst to train the framework

with category-level confusion loss defined as:

LG
c = E(x,y)∼Ds∪Dt [− log(pyst)− log(py+C

st )], (2.18)

which can align the source and target domains with task-specific decision boundaries [113, 164]. It is

noteworthy that classifiers Cs(·) and Ct(·) are optimized to identify the domain label (e.g., source or

target) via minimizing Eq. (2.16), while the feature generator G(·) is optimized to fool the “domain

discriminator” constructed by Cs(·) and Ct(·) through minimizing Eq. (2.17) and Eq. (2.18). Thus,

Cs(·) is trained with the source domain supervision whileCt(·) is adapted to the target domain thanks

to the category-level adversarial domain adaptation training process.

So far, we build our cross-domain framework with dual adversarial classifiers. However, due

to the scarcity of sufficient unlabeled target data for training, the classifiers do not generalize well

to novel target samples for inference due to overfitting to the source domain. Next, we propose

two augmentation strategies to progressively transfer the source-supervised semantic knowledge to

the target domain, which will expand the target distribution and enhance the generalizability of the

framework.
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2.2.2.2.1 Cross-domain Continuity Augmentation (CCA) Recent domain adaptation explored

the cross-domain interaction and intermediate feature patterns across domains [148, 141]. However,

randomly combining the source and target samplesmay result in confusing synthetic data and distract

the task-specific boundaries. Thus, we propose the Cross-domain Continuity Augmentation (CCA)

with category-wise guidance. Specifically, we first estimate the features mean of each class for

the source/target domain as the prototype integrating overall class-specific semantic knowledge.

Then, random linear interpolations between the same class source and target domain prototypes are

exploited to generate abundant intermediate patterns between the two separate domains:

μ̂c = (1− λβ)ηcs + λβηct , (2.19)

where ηcs/t is the c-class conditional prototype of the source/target domain in the latent feature space,

λ ∼ Beta(a, b) with a, b > 0 is a random positive coefficient drawn from Beta distribution, and

β = (t/T)×β0 is a function of the current iteration t. As β is close to 0 at the early stage of adaptation,

the augmented samples are closely around the source prototypes, reducing the impact of significant

domain shift at the beginning of training. Along with the training progress, β gradually increases

towards β0, so the target domain prototypes play a more and more crucial role in the augmentation.

For each class c in the tth epoch, K augmented intermediate patterns are generated with random

combining coefficient λ, making up synthesized features D̂CCA = {(μ̂c(1), c), · · · , (μ̂c(K), c)}Cc=1 of

size CK, where μ̂c(k) is the kth augmented feature for class c.

However, the augmented features in D̂CCA are not directly used to optimize the framework, be-

cause only the linear interpolations between prototypes across domains are infeasible to explore all

possible feature transformation directions and meaningful semantic variations. The cross-domain

intermediate patterns are synthesized from the category-wise prototypes progressively and effec-

tively bridge the overall semantic bias across domains, thus we exploit the intermediate features

in D̂CCA as anchors for the progressive source-supervised class-wise semantics augmentation as

described below.

2.2.2.2.2 Source-supervised Semantic Augmentation (SSA) As aforementioned, certain trans-

lating directions in deep feature space represent meaningful semantic transformations in the original

72



input space [131, 140]. Thus, we explore to approximate the procedure and facilitate meaningful

cross-domain semantic knowledge transferring from the source domain to the target domain condi-

tioned on the synthesized cross-domain intermediate anchors in D̂CCA.

Technically, we randomly sample vectors σcs from a zero-mean multivariate normal distribution

N (0,Σcs) as the semantic transformation directions for the synthesized cross-domain intermediate

anchor, μ̂c(k) ∈ D̂CCA, to obtain augmented features f̃ ck = μ̂c(k) + ασcs , where α is a positive

coefficient to control the strength of semantic data augmentation. As the covariances are computed

dynamically during training, the estimation in the first few epochs is not quite informative when

the network is not well-trained. To address this issue, α = (t/T) × α0 is a function of the current

epoch t where T is the total number of epochs. Thus, α can reduce the impact of the incorrectly-

estimated covariances in the early training stage. Equivalently, we will have augmented samples

f̃ ck ∼ N (μ̂c(k), αΣcs), following a Gaussian distribution.

If each synthesized intermediate anchor μ̂c(k) is augmented for M times, an augmented set can

be formed as D̃SSA = {{(f̃ c(1)k , c), · · · , (f̃ c(M)
k , c)}Kk=1}Cc=1 of size MKC, where f̃ c(m)k is the mth

augmented feature given the synthesized intermediate anchor μ̂c(k). Then, the augmented features

are passed to the framework, which is optimized by minimizing the cross-entropy (CE) loss as:

Laug =
−1
CKM

C∑

c=1

K∑

k=1

M∑

m=1

log
( ew"

c f̃
c(m)
k +bc

∑C
j=1 e

w"
j f̃

c(m)
k +bj

)
, (2.20)

where W = [w1, · · · ,wC]( ∈ RC×d and b = [b1, · · · , bC]( ∈ RC can be the weight matrix and

biases for classifier Cs/t(·). Ideally, we would like M → ∞ and K → ∞, synthesizing infinite

augmented samples with different semantic covariances to train the framework.

Proposition I. Given synthesized samples D̃SSA ∈ RMKC, as M/K → ∞, the expected cross-entropy

loss L∞
aug is upper-bounded as L

∞
aug, which can be calculated as follows:

L∞
aug = EcEμ̂cEf̃ ck

[
− log

( ew"
c f̃ ck+bc

∑C
j=1 e

w"
j f̃ ck+bj

)]

≤ Ec

[
− log

( ew"
c ((1−β)ηcs+βηct )+bc

∑C
j=1 e

w"
j ((1−β)ηcs+βηct )+bj+A

)]
,

(2.21)

where A = α
2 (w

(
j −w(

c )Σcs(wj −wc).
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Proof . For kth anchor μ̂c(k) of class c, the augmented samples by SSA are D̃c(k)
SSA = (f̃ c(1)k , c), · · · , (f̃ c(M)

k , c)}

of sizeM, where f̃ c(m)k is the mth augmented feature given the synthesized intermediate anchor μ̂c(k).

Then the expected cross-entropy loss is defined as:

lim
M→∞

Lc(k)
aug =

1
M

M∑

m=1

− log
( ew"

c f̃
c(m)
k +bc

∑C
j=1 e

w"
j f̃

c(m)
k +bj

)

= Ef̃ ck

[
− log

( ew"
c f̃ ck+bc

∑C
j=1 e

w"
j f̃ ck+bj

)]

= Ef̃ ck

[
log(

C∑

j=1

e(w
"
j −w"

c )f̃ ck+(bj−bc))
]

≤ log
( C∑

j=1

Ef̃ ck

[
e(w

"
j −w"

c )f̃ ck+(bj−bc)
])

,

(2.22)

where inequality follows the Jensen’s inequality E[log(X)] ≤ log(E[X]) [41], as the logarithmic

function log(·) is concave. The upper-bound of limM→∞ Lc(k)
aug is obtained by leveraging themoment-

generating function MX(t) = E(etX), t ∈ R. Specifically, for f̃ c(m)k ∼ N (μ̂c(k), αΣcs) which is drawn

from aGaussian distribution, it is provable that (w(
j −w(

c )f̃
c(m)
k +(bj−bc) followsGaussian distribu-

tion, i.e., (w(
j −w(

c )f̃
c(m)
k +(bj−bc) ∼ N ((w(

j −w(
c )μ̂c(k)+(bj−bc), α(w(

j −w(
c )Σcs((wj−wc))).

Referring to the moment-generating function of Gaussian distribution: E[etX] = etμ+
1
2 σ

2t2 ,X ∼

N (μ, σ2), we have the upper bound limM→∞ Lc(k)
aug as:

lim
M→∞

Lc(k)
aug ≤ − log

( ew"
c μ̂c(k)+bc

∑C
j=1 e

w"
j μ̂c(k)+bj+A

)
, (2.23)

where A = α
2 (w

(
j −w(

c )Σcs(wj −wc). Moreover, as there are K synthesized intermediate anchor

μ̂c(k) generated by CCA, the overall expected cross-entropy loss for all augmented samples based on
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all possible anchors are:

L∞
aug = lim

M→∞
K→∞

Ec

[ 1
K

K∑

k=1

Lc(k)
aug

]

= EcEμ̂c
[
− log

( ew"
c μ̂c(k)+bc

∑C
j=1 e

w"
j μ̂c(k)+bj+A

)]

≤ Ec

[
log

( C∑

j=1

Eμ̂c [e(w
"
j −w"

c )μ̂c+(bj−bc)+A]
)]

.

(2.24)

As we know that μ̂c = (1− λβ)ηcs + λβηct = β(ηct − ηcs)λ+ ηcs , and λ ∼ Beta(a, b) follows Beta

distribution. Thus,

L∞
aug ≤ Ec

[
log

( C∑

j=1

Eμ̂c [e(w
"
j −w"

c )μ̂c+(bj−bc)+A]
)]

= Ec

[
log

( C∑

j=1

Eλ[eβ(w
"
j −w"

c )(ηct−ηcs)λ]eA+B
)]

,

(2.25)

where A = α
2 (w

(
j −w(

c )Σcs(wj −wc), B = (w(
j −w(

c )ηcs + (bj − bc).

As themoment-generating function of Beta distribution is defined as: E[etX] = 1+
∑∞

k=1(
∏k−1

r=0
a+r

a+b+r)
tk
k! ,X ∼

Beta(a, b). and a, b > 0, such that
∏k−1

r=0
a+r

a+b+r < 1, then we obtain E[etX] ≤ 1 +
∑∞

k=1
tk
k! = et,

thus the upper bound of L∞
aug is obtained as:

L∞
aug ≤ Ec

[
− log

( ew"
c ((1−β)ηcs+βηct )+bc

∑C
j=1 e

w"
j ((1−β)ηcs+βηct )+bj+A

)]
, (2.26)

2.2.2.2.3 Overall Objective By integrating the supervised cross-entropy loss of all labeled data,

the domain-level confusion loss, the category-level adversarial loss, and the upper-bound of the

expectation cross-entropy loss on the augmented distribution, we propose our overall objective as:

min
Cs,Ct

LC
c + LC

d + γL∞
aug, (2.27)

min
G

LG
c + LG

d , (2.28)
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Table 2.7: Accuracy (%) of Few-shot Domain Adaptation on Office-31

UDA 1-shot 3-shot

Method S-only SymNets T -only SymNets CDAN d-SNE Ours T -only CDAN d-SNE SymNets Ours
Dtr S U T ST ST ST ST T ST ST ST ST

A→W 68.40 90.80 69.72 80.92 80.77 83.22 86.29 85.59 82.40 90.87 90.44 94.21
D→W 96.70 98.80 67.23 97.23 97.49 93.71 99.24 88.16 98.36 95.29 98.57 99.75
W→D 99.30 (100.0) 69.74 99.73 99.77 99.36 100.0 88.37 100.0 98.27 99.53 100.0
A→D 68.90 93.90 75.97 91.12 85.23 83.69 89.95 86.63 86.91 88.61 91.77 95.18
D→A 62.50 (74.60) 50.09 62.39 67.18 67.36 69.12 66.84 68.35 73.26 74.04 73.80
W→A 60.70 72.50 52.46 60.88 65.45 69.16 66.49 69.56 66.45 72.46 73.45 74.97
Avg. 76.08 88.40 64.20 80.38 82.65 82.75 85.18 80.86 83.75 86.46 87.97 89.65

Table 2.8: Accuracy (%) of Few-shot Domain Adaptation on Office-Home

Method Dtr A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

U
D
A S-only S 34.90 50.00 58.00 37.40 41.90 46.20 38.50 31.20 60.40 53.90 41.20 59.90 46.13

SymNets U 47.70 72.90 (78.50) 64.20 71.30 (74.20) 64.20 48.80 (79.50) (74.50) 52.60 (82.70) 67.60

1-
sh
ot

T -only T 21.47 52.05 47.12 28.72 50.42 47.05 26.64 23.87 49.87 35.20 26.19 50.45 38.25
SymNets ST 41.47 65.01 69.88 55.25 60.80 62.63 52.16 38.97 68.56 64.48 45.21 74.83 58.27
CDAN ST 42.18 65.24 73.43 51.94 58.45 63.25 53.98 39.00 72.71 67.73 45.76 77.80 59.28
d-SNE ST 47.66 70.23 72.15 55.87 69.11 67.75 55.02 43.92 72.50 61.58 47.55 75.17 61.54
Ours ST 45.86 68.71 73.97 58.26 67.08 69.17 58.63 44.10 73.61 68.48 50.95 78.49 63.11

3-
sh
ot

T -only T 37.37 67.24 57.77 46.39 65.64 59.36 44.46 36.44 58.86 46.48 35.69 68.68 52.03
CDAN ST 43.45 67.64 74.43 55.78 61.80 64.29 57.07 42.49 73.21 68.36 46.86 79.29 61.22
SymNets ST 49.84 72.21 74.08 62.30 70.04 68.36 61.38 49.13 72.12 69.88 53.39 79.15 65.16
d-SNE ST 53.59 75.94 75.99 58.72 76.01 72.58 60.02 50.52 75.61 66.02 54.14 80.60 66.65
Ours ST 54.25 77.88 77.67 67.53 75.21 73.86 66.83 54.07 77.04 73.30 58.30 82.65 69.88

where γ determines the relative importance of our marginalized augmentation. Cs/t(·) and G(·) are

optimized alternatively until model converges.

Remark: Inspired by ISDA [140] with the semantic augmentation in the feature space, our MAF

aims to address the FSDA problem with different motivation and progressive semantic transfor-

mation strategy, as there exists a large domain shift in FSDA and limited unlabeled target data are

available. The proposed CCA and SSA can successfully bridge the domain gap by transferring the

source semantic knowledge to the target domain progressively along with the process of domain

adaptation. Besides, MAF is different from TSA [69], which focuses on transforming the source

samples towards the target data semantic directions and relies on sufficient unlabeled target data

during training, while lack of such target data is one of the main challenges in FSDA.
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Table 2.9: Comparisons of Accuracy (%) for FSDA on Digits

Method Dtr MNIST→SVHN MNIST→MNIST-M

CCSA ST 37.63 ± 3.62 78.29 ± 2.00
d-SNE ST 61.73 ± 0.47 87.80 ± 0.16

Ours ST 63.53 ± 0.28 88.52 ± 0.18

2.2.3 Experiments

2.2.3.1 Datasets and Experimental Setting

Office-31 is a popular domain adaptation benchmark with 31 categories from 3 different domains.

We follow the same protocol [150], and randomly select 20 samples per class from A, 8 samples per

class from D/W making up the source domain. For the target, we formulate 1- and 3-shot experi-

mental settings by randomly sampling 1 and 3 labeled samples per class, together with the labeled

source data to train the model, while evaluating the rest of the target domain samples.

Office-Home consists of more than 15,500 images drawing from 4 different domains belonging to

65 categories, constituting a much larger and challenging benchmark. We also randomly select 1-

and 3-shot target samples per class for the training process while keeping the rest of the target data

for test, and finally obtain 12 cases based on 12 source-target pairs under 1-shot and 3-shot settings,

respectively.

Implementation: We adopt ImageNet [16] pre-trained ResNet-50 [36] by removing the last fully-

connected layer as the feature generator G(·), and plug-in two parallel one-layer fully-connected

neural network as classifier Cs(·) and Ct(·), respectively. Due to the mini-batch strategy, the pro-

totypes and covariance matrix are computed in an online fashion by aggregating statistics from all

mini-batches [140]. We follow the annealing strategy of learning rate l as [164, 30]: lp = l0
(1+δp)q ,

where p is the progress of training epochs linearly changing from 0 to 1, l0 = 0.0001, δ = 10 and

q = 0.75, which is optimized to promote convergence and low error during training. Similarly, γ

progressively changes as γp = γ0 · ( 2
1+e(−ξ·p) − 1), in which ξ = 10. We follow [148] and accept

λ ∼ Beta(2.0, 2.0). α0 = 0.5, β0 = 1.0, and γ0 = 0.1 are selected via deeply embedded validation

and fixed for all experiments [154]. We define the max number epoch as 100, and observe that the

training loss is stable around 30th epoch for most tasks, so the results of the 30th epoch are reported.
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w/o CCAw/o SSAw/o Augmentation Ours

Figure 2.9: (a) Selected results on Office-31 produced by d-SNE and MAF with ResNet-101 as
backbone.(b) Variants evaluation of MAF by removing either one or both marginalized
augmentation strategies. (b-1) and (b-2) show the 1- and 3-shot results on Office-Home,

respectively.

Moreover, we notice that Cs(·) and Ct(·) achieve close results after the training is stable, and all

results reported in the paper are produced by classifier Ct(·).

Online Estimation: For the implementation details of calculating the source and target domain class

prototypes and source data covariance, because we cannot have all training data available at once

due to the limit of memory, during the mini-batch training, we estimate the source and target domain

prototypes ηcs/t, as well as the source domain covariance matrix Σcs of each category c in an online

fashion as:

ηc(t)s/t =
nc(t−1)
s/t ηc(t−1)

s/t + mc(t)
s/t μ

c(t)
s/t

nc(t−1)
s/t + mc(t)

s/t

,

Σc(t)s =
nc(t−1)
s Σc(t−1)

s + mc(t)
s Σ′c(t)s

nc(t−1)
s + mc(t)

s

+
nc(t−1)
s mc(t)

s (ηc(t−1)
s − μc(t)s )(ηc(t−1)

s − μc(t)s )(

(nc(t−1)
s + mc(t)

s )2
,

where we accept the mean of each category features as the class-specific prototype, resulting in ηc(t)s/t

and Σc(t)s as the estimates of features prototype and covariance matrix of the class c after the t-th

mini-batch, μc(t)s/t and Σ′c(t)s are the mean and covariance of class c features in the t-th mini-batch,

and nc(t)s/t = nc(t−1)
s/t +mc(t)

s/t and m
t
s/t denote the number of samples involved in all tmini-bathces and

specific t-th mini-batch, respectively.

It is noteworthy that the target domain data are limited, even only one sample per class available

in extreme cases, thus estimating the target domain covariance is infeasible.

Baselines: We compare our method with the source-only softmax classifier (S-only), target-only

nearest neighbor classifier (T -only), two unsupervised domain adaptation (UDA) methods (CDAN

[76] and SymNets [164]), and one state-of-the-art few-shot domain adaptationmethod (d-SNE [150]).

Specifically, for S-only, we fine-tune the ImageNet pre-trained ResNet-50 [36] only on the labeled
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Table 2.10: Accuracy (%) of Few-Shot Domain Adaptation with various
backbones on Office-31 (VGG16/ResNet-101), where * denotes the

ResNet-101 backbone.

Method Dtr A→D D→A D→W W→A Avg.
DRCN [33] U 67.10±0.30 56.00±0.50 96.40±0.30 54.09±0.50 68.40

KNN-Ad [118] U 84.10 58.30 96.40 63.80 75.65
I2I [87] U 71.10 50.10 96.50 52.10 67.45

G2A [115] U 87.70±0.50 72.80±0.30 97.90±0.30 71.40±0.40 82.45
SDA [129] ST 86.10±1.20 66.20±0.30 95.70±0.50 65.00±0.50 78.25
FADA [84] ST 88.20±1.00 68.10±0.60 96.40±0.80 71.10±0.90 80.95
CCSA [86] ST 89.00±1.20 71.80±0.50 96.40±0.80 72.10±1.00 80.95
d-SNE [150] ST 91.44±0.23 71.06±0.18 97.10±0.07 71.74±0.42 82.84

Ours ST 92.12±0.14 71.26±0.23 97.21±0.21 72.15±0.27 83.19
d-SNE* [150] ST 94.65 ± 0.38 75.51 ± 0.44 99.10 ± 0.24 74.20 ± 0.24 85.87

Ours* ST 95.22± 0.28 75.88 ±0.19 99.85 ±0.12 74.56 ± 0.23 86.38

Figure 2.10: Parameter
analysis

source domain, and evaluate it on the target domain. T -only is based on the features produced by

ImageNet pre-trained ResNet-50, and 1-/3-shot labeled target samples per class are used to infer the

rest of the target test data by Euclidean distance. For UDA, we follow the original UDA experimen-

tal pipeline with a labeled source and unlabeled target for training. The idea is to evaluate that FSDA

can outperform UDA by giving how many shots, which becomes very practical in privacy-related

applications. For d-SNE, we re-implement it with ResNet-50 following the experimental instruc-

tions described in the original paper. All experiments are repeated 5 times with randomly selected

labeled training data, then the average results are reported.

2.2.3.2 Comparison Results

All experimental results of our method and other baselines are reported in Table 2.7 to Table 2.8.

The best performances of 1-shot and 3-shot settings are marked as bold. The UDA results are

highlighted with (parentheses) when it is higher than the best 3-shot FSDA ones. However, the

UDA results are obtained with a massive number of unlabeled target data for training, which is not

a one-to-one comparison with other results. Dtr denotes the data used for training, S is source-only,

T is target-only, U is the original unsupervised domain adaptation setting with all unlabeled target

samples together with labeled source domain for training, and ST is few-shot domain adaptation

tasks training on the whole source domain and a few target samples with annotations.

From Table 2.7, we observe that for the domain pairs with small distribution differences, e.g.,
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Figure 2.11: Ablation study of task A→D with 3-shot on Office-31 dataset, where (a) analysis of
losses changing during training, (b) evaluation performance comparison of Cs(·) and Ct(·), and the
fused performance, denoted as CST, (c) analysis of the performance with different number of source
domain training data available, (d) comparison of optimizing the model with implicit and explicit

augmentation.

D→W and W→D, the source-only softmax classifier also achieves good performance. However,

for other domains with large domain distribution gaps, e.g., A→W, the source-only classifier cannot

handle the target domain evaluation anymore. Besides, the target-only nearest neighbor classifier

achieves poor performance on the target data evaluationwhen the labeled target data is limited, which

indicates that lack of training data cripples the capability of the model, especially suffering from

the unreliability of randomly selected training shots. Moreover, without sufficient unlabeled target

domain data for training, conventional unsupervised domain adaptation approaches fail to manage

the extreme scenario, especially when given only 1-shot target sample for training, SymNets even

gets similar results as source-only, e.g., W→A and D→A. d-SNE achieves better performance under

the 1-shot setting than SymNets, while SymNets achieves significant performance improvement

with only two more labeled target data per class given for training. Our proposed model improves

the average test performance by 2.43% and 1.68% under 1-shot and 3-shot settings, respectively,

compared to the second-best method.

Since Office-Home has much more data in each domain compared to Office-31 data, which

means under the few-shot domain adaptation setting given only 1- or 3-shot target data per class for

training, most existing solutions will be distracted and overfitting to the source domain distribution.

In Table 2.8, our proposed method achieves 1.57% and 3.23% average performance improvement

on 1-shot and 3-shot settings, respectively, compared to the best compared baseline.

We follow the settings of d-SNE [150] to apply our proposed model on the Digits dataset, and

report the results of the most two challenging tasks in Table 2.9. From the results, we observe the

superiority of our proposed model compared to other baselines.

Furthermore, we report the results of our proposed model with ResNet-101 as the architecture
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(a) (b) (c)

Figure 2.12: t-SNE visualization of features generated by different models of R→A 1-shot task
from Office-Home. (a) Source-only (b) d-SNE (c) Ours. Red circles represent source samples, while

blue triangles denote target domain test data.

on the Office-31 dataset and compare the results with d-SNE. Figure 2.9(a) lists four cross-domain

learning tasks including two challenging source-target pairs with extremely large domain shift, i.e.,

D → A and W→A. It can be observed that our model outperforms all the state-of-the-art bench-

marks including d-SNE with ResNet-101 as base network with 0.68% average improvement. Since

ResNet-101 is a more complex feature extractor, the performance improvements compared to other

baselines are relatively smaller than the results with ResNet-50 as the feature extractor. However,

the increase in performance still shows the effectiveness of our model.

It is worth mentioning that only with 3-shot target labeled samples per class, our proposed model

beats SymNets under the unsupervised domain adaptation settings requiring a large number of unla-

beled target domain samples for training. On the other hand, we notice that d-SNE achieves promis-

ing performance with only 1-shot per class target data available for training, while the UDA solution

(e.g., SymNets) achieves a significant performance boost with only two more target training data per

class under 3-shot settings. These observations demonstrate the importance of a few labeled target

data to address the challenges of domain adaptation.

2.2.3.3 Quantitative Analysis

Comparison of Different Augmentations: Firstly, to understand the contributions of the two dif-

ferent augmentation strategies, we report the performances of several variants on Office-Home in

Figure 2.9 (b-1) 1-shot (b-2) 3-shot. Specifically, we remove either one of the two augmentation

strategies (CCA and SSA), or both, while keeping other terms and training processes the same as

the original model. From the results, we notice that CCA and SSA both are crucial and contribute

to improving the evaluation performance from different perspectives.
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Class 9, R->A

(a) (b)

Source-Train

Continuity Augmentation

Semantic Augmentation

Target-Train

Target-Test

Figure 2.13: (a) Detailed visualization of synthesized samples generated by two different
augmentation strategies on Office-Home R→A 1-shot task. (b) The zoomed-in part shows the
category “candle”. Samples augmented by SSA (green dots) spread further and cover a larger

range around the cross-domain intermediate anchors produced by CCA (blue dots).

1-shot Model P R F1 Correct Predictions Wrong Predictions Wrong Retrievals

2-SNE 0.89 0.86 0.88

Ours 0.97 0.97 0.97

2-SNE 0.76 0.76 0.76

Ours 0.90 0.97 0.93

mouse mug scissors trashcan

trashcan trashcan trashcan projector monitor binder mouse  phone

monitor punchersphone

projectorchair

mouse trashcanmonitor monitor

Figure 2.14: Selected samples from class “speaker” on Office-31 A→W 1-shot with results
produced by d-SNE and our model.

Comparison of Various Backbones: We show more results on Office-31 3-shot tasks produced by

our method and other compared baselines with different backbones in Table 2.10, and the best results

with the same backbone are highlighted as bold. Specifically, the top part shows the results with

VGG-16 as backbone [120], and the bottom two rows are results based on ResNet-101 [37], denoted

as d-SNE* and Ours*. All compared results are directly copied from [150]. SDA introduces a

shared feature extractor for both source and target domains to improve the discriminative capabilities

of feature representations [129]. CCSA and FADA further involve the contrastive loss to create

a unified framework for supervised domain adaptation and generalization [103, 84]. d-SNE uses

stochastic neighborhood embedding techniques and a novel modified-Hausdorff distance to address

the supervised domain adaptation [150]. We observe that our method outperforms all compared

baselines with various backbones.

Parameter Analysis: There are three key parameters in the proposed MAF mode, α0 controls the

contribution of the source semantic knowledge during SSA augmentation, β0 balances the impor-

tance of overall semantic prototypes across the domain during CCA intermediate patterns synthesis,
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Figure 2.15: Confusion matrices on Office-31 A→W of d-SNE (left) and that of Ours (right). Some
classes are zoomed in for better visualization.

and γ0 decide the contribution of the synthesized distribution. Here we select different values of

each parameter for task A → W with 3-shot on the Office-31 dataset and report the results as Fig.

2.10. From Fig. 2.10, we observe that the results are stable regarding the values of the parameters

in a reasonable range.

Ablation Study: We deploy various ablation discussions about training convergence, comparison

of the dual classifiers, the influence of accessible training data, and the comparison of optimizing the

model with implicit and explicit data augmentation. And the results are shown in Fig. 2.11. From

Fig. 2.11(a), we observe that the training losses converge around 30th epoch, and the adversarial

optimization process of the domain discrimination losses LC
d and LG

d . In Fig. 2.11(b), we compare

the performance of Cs(·) and Ct(·) on the test data during the model training, and we notice that they

do not converge to the exactly same ones, although their performances are quite close along with

the training progress. Moreover, we compare the performance of our model given different sizes of

source samples for training, and the results are reported in Fig. 2.11(c). From the results, we observe

that more source data will benefit the cross-domain adaptation and improve the performance on the

target domain, but when the number is large enough, the improvement is not significant anymore.

Finally, we compare the performance of explicitly generating synthesized data to train the model

and implicitly optimizing the model with the upper bound of the expected cross-entropy loss of the

augmented data in Fig. 2.11(d). From the results, we can see that the performance improves along

with the increase of the number of synthesized data, which could reach a similar performance as what

is achieved by implicit augmentation. However, it is noteworthy that although the performances of

the two augmentation strategies become stable around a similar number of epochs, the time cost of

each epoch during training with explicit augmentation is massively more than implicit augmentation

(i.e., 3 hours/epoch V.S. 30 minutes/epoch), which is mainly due to the random sampling operations
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from a high-dimension multi-variant Gaussian distribution to produce synthesized samples.

2.2.3.4 Qualitative Analysis

Firstly, we show the t-SNE visualization of features of target data extracted from different mod-

els of 1-shot task R→A on Office-Home (Figure 2.12), to demonstrate the generalization ability of

the learned models. We observe that the embedding from our proposed model is more discrimina-

tive compared to the features produced by source-only ResNet-50 and d-SNE, and the within-class

samples across domains are more compact. Moreover, to visualize the effect of two augmentation

strategies, we also visualize the explicitly generated samples by CCA and SSA, and the embeddings

are shown in Figure 2.13 (a)(b). It is noteworthy that the augmented synthesized samples gener-

ated by the two mechanisms extend the range of the given 1-shot target sample in different and

complementary directions.

In addition, we visualize the confusion matrix of d-SNE and our model of task A→Won Office-

31 (Figure 2.15). We notice that our method improves on d-SNE results more than 30% for certain

classes, which supports the superiority of our proposedmodel for few-shot domain adaptation. Qual-

itatively, we further show selected samples from class “speaker” on the Office-31 dataset A→W task

in Figure 2.14 with different 1-shot target training samples to demonstrate the effectiveness of our

model compared to d-SNE. From the results, we observe that our model achieves better performance

on Precision (P), Recall (R), and F1-score (F1). Wrong Predictions show the “speaker” samples are

wrongly predicted as other classes, andWrong Retrievals denote the instances from other categories

are wrongly retrieved as “speaker”. Our model produces fewer wrong predictions and wrong re-

trievals with different annotated samples available for training, which attests to the robustness and

generalizability of our proposed framework.

2.2.4 Discussion and Limitation

This study proposes the Marginalized Augmented Few-shot (MAF) domain adaptation model, in-

corporating Cross-domain Continuity Augmentation (CCA) and Source-supervised Semantic Aug-

mentation (SSA). TheMAFmodel outperforms state-of-the-art methods on various few-shot domain

adaptation benchmarks. However, two main limitations hinder its application in large-scale real-life
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scenarios: the computationally expensive process of generating synthesized samples during train-

ing and the insufficient diversity of the generated samples. Addressing these limitations is crucial

for future work, necessitating the design of more diverse and efficient augmentation strategies to

enhance the few-shot domain adaptation process.

2.3 Conclusion

In conclusion, domain adaptation plays a crucial role in bridging the gap between labeled source

domains and unlabeled target domains, allowing the transfer of knowledge across different data dis-

tributions. However, the challenges of imbalanced domain adaptation and domain adaptation with

limited training data pose significant obstacles in achieving effective adaptation and maintaining

fairness. Existing approaches have made strides in mitigating the impact of data imbalance and

addressing few-shot domain adaptation, but more innovative solutions are needed. By developing

novel techniques that consider class-wise adaptation, data scarcity, and imbalance, we can enhance

the performance and fairness of domain adaptation methods in practical applications. Overcoming

these challenges will pave the way for more robust and reliable domain adaptation models that can

effectively handle real-world scenarios with limited data availability and imbalanced class distribu-

tions.
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3
Interpretable Multi-modal Transfer with

Semantic Textual Description

Open-set domain adaptation (OSDA) considers that the target domain contains samples from novel

categories unobserved in the external source domain. Unfortunately, existing OSDA methods al-

ways ignore the demand for information on unseen categories and simply recognize them as “un-

known” set without further explanation. This motivates us to understand the unknown categories

more specifically by exploring the underlying structures and recovering their interpretable semantic

attributes. In this work, we propose a novel framework to accurately identify the seen categories

in the target domain, and effectively recover the semantic attributes for unseen categories. Specif-

ically, structure-preserving partial alignment is developed to recognize the seen categories through
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domain-invariant feature learning. Attribute propagation over a visual graph is designed to smoothly

transit attributes from seen to unseen categories via visual-semantic mapping. Moreover, two new

cross-domain benchmarks are constructed to evaluate the proposed framework in the novel and prac-

tical challenge. Experimental results on open-set recognition and semantic recovery demonstrate the

superiority of the proposed method over other compared baselines.

3.1 Summary of Contribution

In recent years, domain adaptation (DA) attracts great interest to address the label insufficiency

or unavailability issues, which is the bottleneck to the success of deep learning models [35]. DA

casts light by transferring existing knowledge from a relevant source domain to the target domain

of interest via eliminating the distribution gap across domains [23, 99]. Most DA efforts focus on

the closed-set domain adaptation (CSDA) [23, 20], assuming the source and target domain share

identical label space, which is not always satisfied in real-world scenarios, since the target domain

may contain more than we know from the source domain. Following this, open-set domain adap-

tation (OSDA) has been widely studied given the source domain only covers a subset of the target

domain label space[114, 99, 72, 57]. Unfortunately, these pioneering OSDA attempts simply iden-

tify the known categories while leaving the remaining unobserved samples as an “unknown” outlier

set. Without any further steps, OSDA fails to discover what the unknown categories really are. In-

terestingly, the target domain may contain some exactly-new categories human beings never see

before. This motivates us to further analyze the unknown set more specifically and discover novel

categories.

In this work, we define such a problem as Semantic Recovery Open-Set Domain Adaptation

(SR-OSDA), where source domain is annotated with both class labels and semantic attribute anno-

tation, while the target domain only contains the unlabeled and unannotated data samples from more

categories. The goal of SR-OSDA is to identify the seen categories and also recover the missing se-

mantic information for unseen categories to interpret the new categories in the target domain. To our

best knowledge, this is a completely new problem in literature with no exploration. The challenges

now become two folds: (1) how to accurately identify seen and unseen categories in the target do-

main with well-labeled source knowledge; (2) how to effectively recover the missing attributes of
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Figure 3.1: Illustration of our proposed framework, where Xt contains some unseen categories from
Xs. Convolutional neural networks (e.g., ResNet [35]) are used as the backbone to extract visual
features Xs/t, which are further input to GZ(·) to learn domain-invariant features Zs/t through
partial alignment. GA(·) then maps Zs/t to semantic attributes As. Visual-semantic features are

fused for the final classification tasks, one is D(·) to identify seen/unseen from target data, and the
other C(·) to recognize all cross-domain data into Cs+1 classes (i.e., Cs seen + one unseen large

category).

unseen categories.

To this end, we propose a novel framework to simultaneously recognize the known categories

and discover new categories from the target domain as well as interpret them at the semantic level.

The general idea of our model is to learn domain-invariant visual features by mitigating the cross-

domain shift, and consequently build visual-semantic projection to recover the missing attributes of

unknown target categories. Our contributions are highlighted as follows:

• We are the first to address the SR-OSDA problem and propose a novel and effective solution

to identify seen categories and discover unseen ones.

• We propose structure preserving partial alignment to mitigate the domain shift when the target

covers larger label space than the source, and attributes propagation over a visual graph to

seek the visual-semantic mapping for better missing attribute recovery.

• Two new benchmarks are built for SR-OSDA evaluation. Our proposed method achieves

promising performance in both target sample recognition and semantic attribute recovery.

88



Table 3.1: Notations and Descriptions

Notation Description
Ds

t ,Du
t seen/unseen target set

nst , nut seen / unseen set samples number
Ys,As source domain labels / attributes
âis, â

j
t predicted source / target attributes

Rx,Rz, visual / embedding features prototypes
F i

s,F
j
t source / target joint representations

3.2 Motivations and Problem Definition

In this section, we illustrate our motivations and provide the problem definition of the semantic

recovery open-set domain adaptation.

Open-set domain adaptation tasks [99] focus on the scenario when the target domain contains

data from classes never observed in the source domain, which is more practical than the conven-

tional closed-set domain adaptation [23]. However, existing open-set domain adaptation efforts

simply identify those unseen target samples as one large unknown category and give up exploring

the discriminative and semantic knowledge inside the unknown set. The demand for further under-

standing the novel classes that only exist in the target domain motivates us to study how to recover

missing semantic attributes to explain the target data and discover novel classes, which leads to the

problem Semantic Recovery Open-Set Domain Adaptation (SR-OSDA) addressed in this work. The

main challenges of SR-OSDA lie in not only identifying the target samples in the unseen classes

but also providing the partitional structures of these samples with recovered semantic attributes for

further interpretation.

For better understanding, we clarify the problem with mathematical notations. The target do-

main is defined as Dt = {Xt} containing nt samples with visual features from Ct categories. The

auxiliary source domain Ds = {Xs,Ys,As} consists of ns samples from Cs classes with visual

featuresXs, labelsYs, and semantic attributesAs. For each source sample, the semantic attributes

ais = Ayis ,ais ∈ Rda are obtained from A, which consists of class-wise attributes of the source do-

main. SR-OSDA aims to recover the missing semantic attributes for the target data based on the

visual features and uncover novel categories never present in the source domain. Table 3.1 shows

several key notations and descriptions in the SR-OSDA setting in addition to Table 1.
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It is noteworthy that the source and target domains are drawn from different distributions. Be-

sides, the target data set covers all classes in the source domain, as well as K exclusive categories

only exist in the target domain, where K = Ct − Cs > 0. SR-OSDA is different from open-set

domain adaptation, which ignores recovering interpretable knowledge and discovering new classes

in the target domain. Moreover, the defined problem is different from generalized zero-shot learn-

ing [116], as we have no access to the semantic knowledge of the target domain unseen categories.

To our best knowledge, SR-OSDA is the first time proposed, aiming to discover novel target

classes via recovering semantic attributes from the auxiliary source data. In the following, we illus-

trate our solution to learn the relationship between the visual features and semantic attributes with

the guidance of the source data, which can be transferred to the target data and interpretably discover

unseen classes.

3.3 The Proposed Method

3.3.1 Framework Overview

To tackle the above SR-OSDA problem, we propose a novel target discovery framework (Figure

3.1) to simultaneously recognize the target domain data from categories already observed in the

source domain, and recover the interpretable semantic attributes for the unknown target classes from

the source. To achieve this, three modules are consequently designed to address the cross-domain

shift, semantic attributes prediction, and task-driven open-set classification. Specifically, the source

data are adapted to the target domain feature space through partial alignment while preserving the

target structure. A projector GA(·) bridging the domain invariant feature space zis/t and the semantic

attributes space ais/t is trained by the source data as well as the target data with confident pseudo

attributes. Moreover, the visual features will guide the attributes propagated from seen categories to

unseen ones, and the semantic attributes will also promote the visual features discrimination through

joint visual-semantic representation recognition for C(·) and D(·), where D(·) is a binary classifier

to identify seen and unseen target samples, and C(·) is an extended multi-class classifier with Cs+1

outputs.

Since the target data are totally unlabeled and all three modules rely on the label information
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in the target domain, we first discuss how to obtain the pseudo labels of target samples through

our design progressive seen-unseen separation stage. That is, we will assign target samples into Cs

observed categories and K unobserved categories. In the following, we introduce the progressive

seen-unseen separation and three key modules in our proposed framework.

3.3.2 Modules and Objective Function

Progressive Seen-Unseen Separation. Here we describe the initialization strategy to separate the

target domain data into seen and unseen sets based on the visual features space. Intuitively, part of

source-style target samples is promisingly identified by the well-trained source model, which is ac-

tually belonging to seen categories more probably. On the other hand, those target samples assigned

with even and mixed prediction probabilities across multiple classes tend to be unseen categories, as

no source classifier can easily recognize them. To achieve this, we apply the prototypical classifier

to measure the similarities between each target sample to all source class prototypes [121]. For each

target sample xi
t and the source Cs prototypes {μc|Cs

c=1}, the probability prediction is defined as:

p(yit = c|xi
t) =

exp
(
− d(xi

t, μc)
)

∑
c′ exp

(
−d(xi

t, μc)
) , (3.1)

where d(·) is the distance function. The highest probability prediction pit is adopted as the pseudo

label ỹit for xi
t. Next, we adopt a threshold τ to progressively separate all target samples into seenDs

t

and unseen sets Du
t . The number of samples in Ds

t and Du
t are denoted as nst and nut , respectively.

Specifically, we define τ the mean of the highest probability prediction of all target samples, i.e.,

τ = 1
nt
∑

xi
t∈Dt

pit. Based on that, we can build two sets:






xi
t ∈ Ds

t , pit ≥ τ

xi
t ∈ Du

t , pit < τ
. (3.2)

Since we only have the source prototypes in the beginning, they are not accurate to identify

seen and unseen sets due to the domain shift. Thus, we can gradually update the seen prototypes

by involving newly-labeled target samples from Ds
t as μc = (1− α)μc + α 1

ns(c)t

∑
xi
t∈D

s(c)
t

xi
t, where
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Ds(c)
t denotes a set of ns(c)t target samples predicted as ỹit = c confidently, and α is the small value

to control the mixture of cross-domain prototypes.

After obtaining all pseudo labels in the seen set Ds
t , we also need to explore more specific

knowledge in Du
t instead of treating it as a whole like OSDA [114]. To this end, we apply K-means

clustering algorithm to groupDu
t intoK clusters with the cluster center as {ηk1 , · · · , ηK}. In this way,

we can obtain all prototypes of seen and unseen categories as Rx = {μ1, · · · , μCs , ηk1 , · · · , ηK}. In

order to refine the pseudo labels of target samples, we adopt a K-means clustering algorithm with

centers initialized asRx over Xt until the results are converged.

To this end, we obtain all pseudo labels for target samples. We also assign semantic attributes

to seen target samples based on their pseudo label belonging to which source category. Next, we

explore structure preserving partial alignment, attribute propagation, and task-driven classification

to solve SR-OSDA.

Structure Preserving Partial Alignment. Due to the disparity between the source and target do-

mains’ label spaces, directly matching the feature distribution across domains is destructive. Con-

sidering our goal of uncovering the unseen categories in the target domain, preserving the structural

knowledge of the target domain data becomes even more crucial. Thus, instead of mapping the

source and target domains into a new domain-invariant feature space, we seek to align the source

data to the target domain distribution through partial alignment.

Specifically, with the help of the target domain pseudo labels Ỹt, for each class c in the pseudo

label space, which contains Cs + K categories, the prototype can be calculated as the class center

in the space of feature z can be calculated as Rc
z = Exi

t∈Dtz
i
t · 1ỹit=c. The prototypes Rz describe

the class-wise structural knowledge in the target domain in the z feature space. To solve the domain

disparity, we align each source sample to its specific target center and also keep away from other

target centers as:

LR
s =

1
ns

ns∑

i=1

|Rz|∑

c=1

(
1yis=cd(zis,Rc

z)−
1yis "=c

|Rz|− 1
d(zis,Rc

z)
)
, (3.3)

where Cs+K = |Rz| is the total number of prototypes inRz. Moreover, we deploy a similar loss to

make within-class target samples more compact while keeping between-class target samples more
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discriminative as:

LR
t =

1
nt

nt∑

i=1

|Rz|∑

c=1

(
1ỹit=cd(z

i
t,Rc

z)−
1ỹit "=c

|Rz|− 1
d(zit,Rc

z)). (3.4)

Such a loss function will make within-class target samples more compact while pushing away from

others.

These two loss functions help align source and target to obtain domain-invariant visual features

and also seek more discriminative knowledge over target samples. Then we obtain the objective of

structure preserving partial domain adaptation as LR = LR
s + LR

t .

Attributes PropagationwithVisual Structure. Since unseen target samples are totally without any

annotations either class label or semantic attributes, our goal is to recover their semantic attributes

via visual-semantic projector GA(·). However, only attributes knowledge of the classes seen in the

source domain is available for training, while the target samples from unseen categories have no

way to optimize the GA(·), which might lead the projector GA(·) towards bias to the seen categories

when dealing with unseen target class samples. To this end, we propose the mechanism of attribute

propagation to aggregate the visual graph knowledge into the semantic description projection, which

is beneficial to the attributes propagated from seen classes to unseen classes.

Specifically, for features zi = GZ(xi) of a training batch, the adjacency matrix A is calculated

as Aij = exp(−d2ij/σ2), where Aii = 0, ∀i, and dij = ‖zi − zj‖2 is the distance of (zi, zj). σ is a

scaling factor set as σ2 = Var(d2ij) as [107] to stabilize training. The attributes projected from visual

features are reconstructed as:

âi =
∑

j
WijGA

(
GZ(x

j)
)
, (3.5)

where L = D− 1
2AD− 1

2 , Dii =
∑

j Aij and W = (I − βL)−1, in which β ∈ R is a scaling factor

fixed as suggested by [107], and I is the identity matrix. After the semantic attributes propagation,

âis/t is refined as a weighted combination of its neighbors guided by the visual graph. This benefit

attributes projector from overfitting to the seen categories while removing undesired noise [107].

After the projected attributes refinement via attribution propagation, we optimize the attributes
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projector GA(·) on the seen categories across two domains:

LA =
1

Ns + Ns
t

∑

xi∈Ds∪Ds
t

Lbce(âi, ai), (3.6)

where Lbce(·) is the binary cross-entropy loss, andNs
t is the number of samples inDs

t . Each dimension

of the semantic attributes ai ∈ Rda represents one specific semantic characteristic, and âi describes

the predicted probability that the input sample has specific characteristics.

Visual-Semantic Fused Recognition. Since visual features and semantic attributes describe the

data distribution from different perspectives. To simultaneously leverage the multi-modality bene-

fits of visual and semantic descriptions, we explore the joint visual and semantic representation by

conveying the semantic discriminative information ai into the visual feature zi as f i = zi⊕ai, where

⊕ is concatenating zi and ai as joint feature f i.

It is noteworthy that during the training, several different semantic attributes are available in

different stages, e.g., ground-truth (ai), pseudo attributes (ãi), and predicted attributes (âi). We take

them all into account and will obtain various joint representations as:






F i
s = {f is, f̂ is}, xi

s ∈ Ds

F i
t = {f̃ it , f̂ it }, xi

t ∈ Ds
t

F i
t = {f̂ it }, xi

t ∈ Du
t

, (3.7)

where f is = zis ⊕ ais, f̃ it = zit ⊕ ãit, and f̂ is/t = zis/t ⊕ âis/t. All joint features in Fs and Ft are input into

the classifier C(·) and D(·) to optimize the framework.

To maintain the performance of classifier C(·) over supervision from source and target domains,

we construct the cross-entropy classification loss as:

LC =
1

Ns + Nt

∑

f i∈Ds∪Dt

Lce(C(f i), yi), (3.8)

where Lce(·) is the cross-entropy loss and yi denotes the Cs source labels and Cs + 1 target labels.

Moreover, we train a binary classifierD(·) to separate the target domain into seen and unseen subsets,
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Table 3.2: Statistical characteristics on D2AwA and I2AwA dataset

Dataset D2AwA I2AwA
Domain A P R I Aw
Role source target source target source target source target

#Images 9,343 16,306 3,441 5,760 5,251 10,047 2,970 37,322
#Attributes 85 85 85 85 85 85 85 85
#Classes 10 17 10 17 10 17 40 50

Table 3.3: Open-set domain adaptation accuracy (%) on D2AwA and I2AwA

Dataset D2AwA I2AwA
Task A→P A→R P→A P→R R→A R→P I→Aw

Method OS∗ OS% OS OS∗ OS% OS OS∗ OS% OS OS∗ OS% OS OS∗ OS% OS OS∗ OS% OS OS∗ OS% OS
OSBP [114] 49.6 10.8 46.0 74.2 13.6 68.7 76.0 9.1 69.9 63.3 6.9 58.2 90.1 13.7 83.2 55.9 10.6 51.7 67.6 7.5 66.2
STA [72] 60.1 33.0 57.6 85.5 10.8 78.7 90.2 5.7 82.5 82.8 7.4 76.0 88.5 7.2 81.1 66.9 13.5 62.0 51.5 45.5 51.4
AOD [27] 50.7 9.5 46.9 78.4 12.7 72.4 80.3 5.1 73.5 79.7 5.3 73.0 92.0 12.8 84.8 61.2 9.6 56.5 75.2 6.3 73.5
Ours(Init) 53.1 45.1 52.3 78.8 72.3 78.2 75.3 94.8 77.1 67.3 82.0 68.6 86.2 87.7 86.4 52.0 77.8 54.4 82.2 6.3 73.5
Ours(Vis) 54.1 76.1 56.1 75.4 70.3 75.0 69.5 98.5 72.1 57.4 83.1 59.7 88.3 98.8 89.2 58.7 91.2 61.6 48.2 70.3 48.7
Ours 62.8 47.2 61.4 90.9 71.4 89.1 79.2 98.5 81.0 78.3 83.7 78.8 94.9 90.5 94.5 61.2 80.4 63.0 83.2 70.2 82.8

which can be optimized by:

LD
t =

1
nt

∑

xi
t∈Dt

∑

f∈F i
t

Lbce(D(f), ψ(ỹit)), (3.9)

in which ψ(ỹit) indicates if the target sample xi
t is from the seen categories (ψ(ỹit) = 0, xi

t ∈ Ds
t ), or

from the unseen categories (ψ(ỹit) = 1, xi
t ∈ Du

t ).

Then we have our classification supervision objective on both source and target domain with

joint visual and semantic representations as LT = LC + LD
t .

Overall Objective Function. To sum up, we can obtain the overall objective function by integrating

the structure-preserving partial adaptation, semantic attributes propagation and prediction, and joint

visual-semantic representation recognition as:

min
GZ,GA,C,D

LT + λ1LR + λ2LA, (3.10)

where λ1 and λ2 are two trade-off parameters. Through minimizing the proposed objective, the se-

mantic descriptive knowledge is aggregated from the source data into the unlabeled target domain

through joint visual-semantic representation supervision and attribute propagation. Meanwhile, the

discriminative visual structure in the target domain is promoted by the cross-domain partial adapta-

tion.
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Table 3.4: Semantic Recovery Accuracy (%) on D2AwA and I2AwA

Dataset D2AwA I2AwA
Task A→P A→R P→A P→R R→A R→P I→Aw

Method S U H S U H S U H S U H S U H S U H S U H
Source-only 67.6 0.0 0.0 87.6 0.0 0.0 91.3 0.0 0.0 85.3 0.0 0.0 94.1 0.0 0.0 71.1 0.0 0.0 77.2 0.3 0.7
ABP [175] 68.1 0.0 0.0 87.9 0.0 0.0 91.7 0.0 0.0 83.6 0.0 0.0 94.4 0.0 0.0 70.0 0.0 0.0 79.8 0.0 0.0
TF-VAE [88] 70.4 0.0 0.0 88.4 0.0 0.0 85.1 0.0 0.0 79.6 0.0 0.0 96.4 0.0 0.0 72.5 0.0 0.0 62.8 0.0 0.0
ABP* [175] 64.5 6.4 11.7 86.0 5.9 11.1 84.0 24.4 37.8 81.3 12.7 21.9 93.8 16.2 27.6 67.6 7.9 14.1 78.0 13.4 22.9
TF-VAE* [88] 59.7 12.8 21.0 77.9 16.4 27.1 35.1 35.6 35.3 34.8 32.7 33.7 68.5 36.1 47.3 50.7 21.0 29.7 37.7 20.0 26.2

Ours 62.5 27.0 37.7 90.7 30.0 45.1 79.2 36.7 50.2 78.0 15.7 26.1 95.2 37.8 54.1 59.0 20.8 30.8 83.1 22.0 34.8

3.4 Experiments

3.4.1 Experimental Settings

Datasets. We construct two datasets for the novel SR-OSDA setting. (1) D2AwA is constructed

from the DomainNet dataset [102] and AwA2[144]. Specifically, we choose the shared 17 classes

between the DomainNet and AwA2, and select the alphabetically first 10 classes as the seen cate-

gories, leaving the rest 7 classes as unseen. The corresponding attribute features in AwA2 are used as

the semantic description. It is noteworthy that DomainNet contains 6 different domains, while some

of them barely share the semantic characteristics described by the attributes of AwA2, e.g., quick

draw. Thus, we only take the “real image” (R) and “painting” (P) domains into account, together

with the AwA2 (A) data for model evaluation. (2) I2AwA is collected by [176] consisting of 50 ani-

mal classes, and split into 40 seen categories and 10 unseen categories as [144]. The source domain

(I), includes 2,970 images from seen categories collected via the Google image search engine, while

the target domain comes from AwA2 (Aw) dataset for zero-shot learning with 37,322 images in all

50 classes [144]. We use the binary attributes of AwA2 as the semantic description, and only the

seen categories attributes of source data are available for training. Only one task I→Aw is evaluated

on I2AwA. Table 3.2 shows several statistical characteristics of D2AwA and I2AwA.

Evaluation Metrics. We evaluate our method in two aspects: (1) target sample recognition under

the open-set domain adaptation and (2) generalized semantic attribute recovery. For the first one,

we follow the conventional open-set domain adaptation studies [99, 114], recognizing the whole

target domain data into one of the seen categories or the “unknown” category. The standard open-

set domain adaptation average accuracy calculated on all the classes are reported as OS. Besides, we

report the average accuracy calculated on the target domain seen classes as OS∗, while for the target

96



domain unseen categories, the accuracy is reported as OS,. For semantic attribute recovery, we

compare the predicted semantic description with the ground-truth semantic attributes. Specifically,

we adopt a TWO-stage test: (a) identifying a test sample from seen or unseen set, (b) applying

prototypical classification with corresponding seen/unseen ground-truth attributes. We report the

performances on the seen categories and unseen categories as S and U, respectively, and calculate

the harmonic meanH [116], defined asH = 2×S×U/(S+U). Note that all results we reported are

the average of class-wise top-1 accuracy, to eliminate the influence caused by the imbalanced class.

Implementation. We use the pre-trained ResNet-50 [35] on ImageNet as the backbone and take the

second last fully connected layer as the featuresXs/t [16, 35]. GZ(·) is a two-layer fully connected

neural network with a hidden layer dimension of 1,024, and the output feature dimension is 512. C(·)

andD(·) are both two-layer fully connected neural networks classifiers with hidden layer dimension

of 256, and the output dimension of C(·) is Cs + 1, while the output of D(·) is just two dimensions

indicating seen or unseen classes. GA(·) is a two-layer neural network with a hidden layer dimension

of 256 followed, and the final output dimension is the same as the semantic attributes dimension

followed by the Sigmoid function. We employ the cosine distance for the prototypical classification,

while all other distances used in the paper are Euclidean distances. For simplicity, we adopt the

ground-truth novel classes number as K, and we notice that the results are not sensitive to the value

of K within a range. There are many cluster number estimation methods but out of scope in this

work. For parameters, we fix α = 0.001, β = 0.2, λ1 = 10−4, λ2 = 0.1, and the learning rate is

fixed as 10−3 for all experiments, and report the 100-th epoch results for all the experiments. The

source code of this work is available online*.

CompetitiveMethods. Since the problemwe address in this work is in a novel and practical setting,

wemainly compare two distinctive branches of baselines in terms of open-set domain adaptation and

zero-shot learning.

For open-set domain adaptation, we compare our method with OSBP [114], AOD [27], and STA

[72]. OSBP utilizes the adversarial training strategy to extract features for the target data, which is

recognized into seen/unseen classes by a pre-defined threshold [114]. AOD exploits the semantic

structure of open set data from categorical alignment and contrastive mapping to push the unknown

*https://github.com/scottjingtt/SROSDA.git
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(a) (b) (c) (d)

Figure 3.2: tSNE visualization of representations generated by (a) ResNet, (b) STA, and (c) Ours
on I2AwA. (d) shows the joint visual-semantic features proposed in our paper. Red circles denote

source data. Blue and gray triangles denote target domain seen and unseen classes.
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Figure 3.3: Ablation study of our proposed model on I2AwA by removing specific one of
structure-preserving partial alignment (w/o LR), binary classifier (w/o LD,) attributes propagation

(w/o AP), or joint visual-semantic representation (w/o VS).

classes away from the decision boundary [27]. Differently, STA adopts a coarse-to-fine mechanism

to progressively separate the known and unknown data without any manually set threshold [72].

For the semantic recovery tasks, we implement a source-only trained neural network, and two

zero-shot learningmethods, ABP [175] and TF-VAE [88] under our setting, as baselines. The source-

only model is a fully-connected neural network trained with only source domain ResNet-50 [35]

features available, which learns a projector mapping the visual features to semantic attributes. ABP

trains a conditional generator mapping the class-level semantic features and Gaussian noise to visual

features [175]. TF-VAE proposes to enforce semantic consistency at all training, feature synthesis,

and classification stages [88]. Besides, both ABP and TF-VAE are able to handle generalized zero-

shot learning problems given the semantic attributes from the whole target label space. We also

report ABP* and TF-VAE*, which take extra the semantics of unseen target categories as inputs.
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Figure 3.4: Selected samples from AwA2 dataset and attributes predicted by our method. The
black ones are correctly predicted attributes, red ones are wrong predictions, and the green ones
are wrong predictions but reasonable for the specific instance. “P” and “R” denote precision and

recall of the attributes prediction for each sample, respectively.

3.4.2 Algorithmic Performance

Table 3.3 shows the open-set domain adaptation accuracy on D2AwA and I2AwA. From the results,

we observe that our proposed method outperforms all compared baselines in terms of overall ac-

curacy on most tasks. Especially on task A→R, our model improves 10.4% over the second-best

compared method. The significant improvements come from our effective framework and the ex-

tra source semantic information. Note that in the classical open-set domain adaptation, none of the

semantic attributes are leveraged. For fair comparisons, we provide the initialized results based on

the visual features reported as “Ours(Init)” and further implement another variant of our method

with only visual features available for training, denoted as “Ours(Vis)”. The performance decrease

of “Ours(Vis)” proves the contribution and effectiveness of the semantic attributes for the open-set

domain adaptation. Moreover, our proposed method reaches promising results on the unseen classes

while keeping performance on the seen classes for all tasks. For example, STA achieves the best

overall accuracy on task P → A, but completely fails on the unseen categories and overfitting to

the seen classes. Such an observation emphasizes the superiority of our method in exploring target

domain unseen categories.

Table 3.4 show the semantic recovery accuracy on D2AwA and I2AwA, respectively. Within

the expectation, all ZSL methods fail to recognize the data from unseen categories and overfit to the

seen classes due to a lack of capacity on tackling the open-set setting. Our proposed method achieves

promising results in recognizing both seen and unseen categories, e.g., our method achieves 37.8%
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Figure 3.5: Confusion matrix of target samples from I2AwA. (a) shows the results of STA and (b)
lists ours. The unseen classes are zoomed in for better visualization.

accuracy for unseen class data while keeping 95.2% performance on seen classes for task R→A.

Moreover, our proposed method even outperforms the ABP* and TF-VAE*. They have access to

both the seen and unseen categorical attributes in the source and target domains, while our method

only employs the seen category attributes information in the source domain.

3.4.3 In-Depth Factor Exploration

In this subsection, we first visualize the representation from our model, explore the ablation study

of the proposed method, showcase several representative samples with the predicted attributes and

finally provide more details on the seen and unseen target categories by confusion matrix.

Representation Visualization. We show the t-SNE embeddings of I2AwA from different models in

Figure 3.2, where red circles denote source data, and blue and gray triangles denote target domain

seen and unseen classes, respectively. The embedding of our method shows that the same class
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samples across domains are more compact while discriminative inter classes than the representa-

tion produced by source only ResNet-50 [35] and STA [72]. Moreover, our embedding shows the

joint visual-semantic representations with more discriminative distribution and separates the unseen

categories from seen classes more clearly. Such an observation demonstrates the effectiveness of

the semantic attributes, which is not only beneficial to the unseen categories but also promotes the

quality of features of the seen classes.

Ablation Study. We dive into our complete method and several variants for open-set domain adap-

tation and semantic recovery tasks to understand the contribution of each specific design in our

framework. As shown in Figure 3.3, we have the following observations. (1) Compared to w/o R

which removes the structure-preserving partial alignment term LR, our method achieves significant

performance gains on the open-set domain task, especially for the seen categories. This demon-

strates the effectiveness of aligning the source data to the target domain while preserving the target

data’s structural characteristics. (2) Our method improves the performance D on both tasks com-

pared to w/o, which removes the binary classifier D(·) and only uses classifier C(·) to recognize

seen/unseen categories. We conclude that the binary classifier can refine the separation of seen and

unseen classes. (3) By removing the attributes propagation mechanism, the performance w/o de-

creases significantly on the semantic recovery tasks, especially for the unseen categories, proving

the contribution of attributes propagation for semantic recovery tasks and uncovering unseen classes.

(4) Our method outperforms the variant without constructing visual-semantic fusion w/o VS, which

only uses visual features for prediction. For both open-set domain adaptation seen classes and se-

mantic recovery unseen classes, validating the effectiveness of semantic knowledge to the visual

features in both preserving performance on seen classes and exploring unseen categories.

Qualitative Demonstration. To qualitatively illustrate the effectiveness of our method in discover-

ing novel classes and recovering missing semantic information, we further show several represen-

tative samples from the target domain unseen categories on I2AwA in Figure 3.4. For each sample,

we show some of the correct and wrong predicted attributes with corresponding prediction proba-

bilities. “P” and “R” indicate the precision and recall score of predicting attributes of each sample.

Moreover, some predicted attributes are wrong for the corresponding category but reasonable for

the specific image. From the results, we demonstrate the ability of our model in transferring seman-
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tic knowledge from the source domain into the target data and discovering novel classes through

missing semantic information recovery.

Confusion Matrix. We visualize the confusion matrix of STA and our method on I2AwA in Fig-

ure 3.5. STA only recognizes those target samples from unseen categories as unknown. On the

contrary, our proposed method can discover novel categories in the target domain. Surprisingly, the

accuracy of our method for the category “Giraffe” achieves 96.5%. Moreover, we also notice that

not just benefiting uncover unseen categories, but our method also enhances the accuracy of the seen

classes compared to STA.

3.4.4 Discussion and Limitation

In our study, we delved into a novel problem called “Semantic Recovery Open-Set Domain Adap-

tation” (SR-OSDA) and presented an efficient solution that tackles both domain adaptation and the

discovery of novel categories in the target domain. Nonetheless, we acknowledge some limitations

and challenges in our approach. Specifically, we observed that the proposed solution heavily relies

on the initialization of clustering results from the target domain data, which plays a crucial role in

both domain adaptation and semantic recovery. Additionally, we recognize the need for more ef-

fective and promising evaluation metrics to better measure the classification performance and the

quality of the recovered attributes in this new problem.

3.5 Conclusion

We addressed a novel and practical Semantic Recovery Open-set Domain Adaptation problem, which

aimed to discover target samples from classes unobserved in the source domain and interpreted

based on recovered semantic attributes. To this end, we proposed a novel framework consisting

of structure preserving partial alignment, attributes propagation via visual graph, and task-driven

classification over joint visual-semantic representations. Finally, two semantic open-set domain

adaptation benchmarks were constructed to evaluate our model in terms of open-set recognition and

semantic attribute recovery.

102



[49] Jing, Taotao, Haifeng Xia, Renran Tian, Hao-

ran Ding, Xiao Luo, Joshua Domeyer, Rini Sherony,

and Zhengming Ding. “InAction: Interpretable Ac-

tion Decision Making for Autonomous Driving.” In

Computer Vision–ECCV 2022: 17th European Con-

ference, Tel Aviv, Israel, October 23–27, 2022, Pro-

ceedings, Part XXXVIII, pp. 370-387. 2022.

4
Interpretable Decision-Making with

Learnable Visual Prototypes

Autonomous driving has attracted interest in interpretable action decision models that mimic human

cognition. Existing interpretable autonomous driving models explore static human explanations, ig-

noring the implicit visual semantics that are not explicitly annotated or consistent across annotators.

In this work, we propose a novel Interpretable Action decision-making (InAction) model to provide

an enriched explanation from both explicit human annotation and implicit visual semantics. First, a

proposed visual-semantic module captures the region-based action-inducing components from the

visual inputs, which learns the implicit visual semantics to provide a human-understandable explana-

tion in action decision-making. Second, an explicit reasoning module is developed by incorporating
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global visual features and action-inducing visual semantics, which aims to jointly align the human-

annotated explanation and action decision-making. Experimental results on two autonomous driving

benchmarks demonstrate the effectiveness of our InActionmodel for explaining both implicitly and

explicitly by comparing it to existing interpretable autonomous driving models. The source code is

available at https://github.com/scottjingtt/InAction.git.

4.1 Background and Summary of Contribution

Deep learning has recently accelerated the progress of autonomous through remarkable success in

computer vision tasks. Existing driving action decision systems can primarily be recognized to be

in two major groups, one is the pipelined framework [157] and the other is end-to-end system [52],

[146], [53], [135], [136], [124]. Specifically, pipelined systems decompose the problem into a se-

ries of smaller tasks, such as pedestrian trajectory planning and object detection. The final driving

action decision is made by relying on the performance of all the modules designed for the sub-tasks.

However, pipelined systems are vulnerable to inaccuracies in each sub-task module, which may

cause the entire system to perform unreliably if the interactions between modules are ignored. On

the contrary, end-to-end systems take advantage of the entire visual scene to directly predict driving

action, avoiding the loss of information caused by the intermediate decisions adopted in pipelined

systems.

Unfortunately, most end-to-end systems are complex deep neural network models, perform-

ing as a black box with opaque reasoning for human interpretation. In safety-critical domains,

such as autonomous driving and medical diagnosis, building a transparent and interpretable learn-

ing model has recently attracted attention beyond the performance alone [110]. Various interpre-

tation strategies have been explored to explain learning models, e.g., part-based methods [170],

[173], saliency maps [2], [28], [172], activation maximization to visualize neurons [90], [92], de-

convolution/upconvolution to explain layers [24], [158]. However, such post-hoc methods give a

superficial understanding of the black box models, rather than being a comprehensive interpretable

system [110]. Alternatively, prototypical visual explanations are incorporated in deep network ar-

chitecture for intrinsic interpretation and case-based reasoning [11], [111], [89], [83]. Most prior

prototype-based work explicitly explores the presence of prototypical parts, which are utilized to
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recognize objects. However, such strategies ignore the notion of spatial relationships, which is cru-

cial for tasks like driving decision making with complicated context and multiple objects.

For interpretable autonomous driving decision-making, Xu et al. [? ] proposed a new paradigm

to predict driving action based on finite action-inducing objects and generated a set of potential

explanations in a multi-task fashion. Unfortunately, there are four major limitations of this work

from an interpretability perspective. First, although the multi-task framework is supervised by both

driving action and a human-defined explanation, the proposedmodel does not interpret the reasoning

process of the prediction for black-box model. Second, the proposed BDD-OIA dataset annotates

the reasons for action into 21 explanations; however, it is impractical that the human-defined finite

explanation set can cover all possible scenarios considering the complex scene context and objects

input for autonomous driving action prediction tasks. For example, the explanation set in the BDD-

OIA dataset recognizes “obstacles on the right lane” as a reason for “cannot turn right”, which is not

accurate since different distances and locations of the obstacles could lead to different decisions for

drivers. Moreover, the logical reasoning process from the explanation to the driving action decision

is ambiguous, especially under a multi-label setting where all possible actions are annotated. For

instance, we notice that the proposed model predicts two explanations “traffic light is green” and

“obstacle: car”, but still predicts the action as “forward”, without any reasoning about how the

predicted explanation results in the action prediction. Last but not least, OIA estimates the driving

decision only based on the last frame of the observed sequence, ignoring the temporal information.

In this work, we propose a novel Interpretable Action decision-making (InAction) to provide

reasoning of action prediction from both explicit human annotation and implicit visual semantics

(Figure 4.1). Generally, we consider the explanation for action decisions from two perspectives to

compensate for the limitations of each method: existing human-annotated interpretation and AI-

based implicit visual hints. To sum up, our contributions are in three areas:

• First, we propose an inherently interpretable reasoning framework for autonomous driving

action prediction from both implicit visual semantics and explicit human annotation perspec-

tives.

• Second, the proposed Implicit Visual-Semantic Interpretation module interacts with the Ex-
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plicit Human-like Reasoning module by revealing action-inducing concepts, and the learned

implicit and explicit explanations compensate for the limitations of each other in predicting

the action decision.

• Finally, experimental results on two interpretable autonomous driving benchmarks demon-

strate the effectiveness of the proposed model by comparing it with existing models showing

enriched interpretation and reasoning.

4.2 The Proposed Framework

4.2.1 Motivation

For autonomous driving, beyond pursuing high performance, interpretability is needed for safety-

critical domains [93], [165]. This aims to imbue autonomous vehicles with reasoning abilities similar

to human drivers. Existing efforts mainly adopt human-annotated explanations to guide system

learning and generate human-understandable reasoning given the video inputs [? ], which skews the

model towards human annotation.

Unfortunately, human annotation has some drawbacks like insufficient explanation and incon-

sistent reasoning. Insufficient explanation means there are always implicit visual semantics not

annotated by finite human-defined explanation sets, which cannot be easily tracked through an end-

to-end system with visual inputs and explanation outputs. Inconsistent reasoning is particularly

challenging since different people have different explanations, especially for complicated scenarios,

leading to biases and insufficiency of the ground-truth annotation.

Motivated by this, we explore both the implicit visual-semantic interpretation and explicit human

annotation jointly and propose the Interpretable Action decision-making model (InAction), whose

goal is to enhance transparency and interpretability for autonomous driving action decision-making.

4.2.2 Framework Architecture

An overview of the proposed InAction framework is shown in Figure 4.1. The model consists of a

convolutional backbone G(·), and two interpretable action prediction modules—an implicit visual-

semantic module and an explicit human-annotated reasoning module—to predict driving action and
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Figure 4.1: Illustration of the proposed framework.

reasoning of the decision from different perspectives. Specifically, the implicit visual-semantic

module is denoted as GS(·), which takes the feature map per frame extracted by convolutional back-

bone as input to discover action-inducing concepts and the presence of learned semantic prototypes

as visual cues for following prediction. For the explicit reasoning module, global visual features

and the discovered action-inducing local regions are fused and input to two multi-task classifiers,

predicting the driving action and human-annotated explanations, denoted asCR(·) and FR(·), respec-

tively. Finally, the learned prototypical visual cues and predicted human-annotated explanations are

fused and input to a fully-connected layer without bias as the action predictor, denoted as CS(·). For

the input video sequence, such prediction is applied to each frame, with a temporal attention layer

employed to explore the contribution of each frame.

Mathematically, given an input video with m frames,X = {xi}mi=1, whose action label as ya ∈

A and human annotated explanation ye ∈ E, where Cact = |A| and Cexp = |E| are the numbers

of categories of actions and human-annotated explanations, respectively. For each frame x, the

convolutional backbone extracts the feature map f = G(x) with shape H × W × D, where W and

H denote the width and height, respectively, and D is the number of channels. For the clarity of

description, denoting all the patches in the feature map as Zx = {zi ∈ f}HWi=1, and the shape of each

patch zi is RD×1×1. The implicit visual-semantic module will slide over the whole feature map and

calculate the activation scores for all patches in the featuremapwith respect to the presence of learned

semantic prototypes. On the one hand, those regions primarily activated corresponding to specific
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prototypes are selected as action-inducing semantic regions and are fused with the global features

to predict the action and explicit human-annotated explanation. On the other hand, the limitations

of the activation map will be compensated by the predicted human-annotated explanations for the

action prediction.

Implicit Visual Semantic Interpretation

To explore the action-inducing local regions in the visual input, we assign mk semantic pro-

totypes for each action class k, resulting in m = mk × Cact prototypes in total, making up the

visual-semantic layer P = {Pk}|Cact
k=1, in which Pk = {pj}|mk

j=1, and pj denotes the semantic vi-

sual prototypes to be learned for predicting action class k. Given the convolutional output feature

map Zx and prototype pj, the visual-semantic layer will go though all patches zi ∈ Zx of the feature

map to compute the activation score between them:

sij = log
(‖zi − pj‖2 + 1
‖zi − pj‖2 + ε

)
, (4.1)

where ε is a small positive value, and the activation score sij represents how strongly a semantic

prototype is presented in the specific region of the input frame. The activation scores of all the

patches in the feature map produce an activation heat mapMj
x with shape H×W, identifying how

similar each part of the input frame is to one specific prototype pj. Calculating activation maps for

all prototypes results in an activation feature setMx = {Mj
x}mj=1,M

j
x ∈ RH×W.

Intuitively, the most important patches for making action decisions should be clustered around

semantically similar prototypes of each specific action category, and the clusters centered on pro-

totypes from different action categories are well separated. Thus, we also adopt a discriminative

prototype learning loss as:

Ld = λ1Ex∈X min
pj∈Pya

min
z∈Zx

‖z− pj‖2 − λ2Ex∈X min
pj /∈Pya

min
z∈Zx

‖z− pj‖2, (4.2)

where λ1 and λ2 are two hyper-parameters determining the contributions of the two loss terms. Min-

imizing Ld encourages that every input frame at least has one prototype from its own action strongly

activated in one of its latent feature map patches while maximizing the distances between the patches

and the prototypes from different classes. Such an optimization objective shapes the latent space into

108



a semantically meaningful clustering structure.

Explicit Human-annotated Reasoning

Compared to implicit region-based action-inducing prototype searching, human-annotated rea-

soning explains the driving decision in a more intuitive and abstract way. Normally natural language

annotation involves temporal and spatial knowledge from visual inputs, which provides a more high-

level explanation of the decision-making. Intuitively, such an explanation includes the global scene

understanding and corresponding action-inducing objects.

Inspired by OIA [? ], we propose an Explicit Human-annotated Reasoning module in a multi-

task fashion to jointly generate human-annotated explanations and predict action. Specifically, for

all the patches in the extracted feature map, we select top-N patches that activate any one of the

prototypes assigned to the same action class as the action-inducing local components, denoted as

Zlocal = {zl}Nl=1, where zl ∈ Zx. The activation scores denote the importance of such patches con-

tributing to the action decision-making. It is noteworthy that the action-inducing local components

Zlocal are the presence of specific learned semantic prototypes, thus are not limited to be objects

detected by the pre-trained object detection backbone, which is one of the limitations of OIA [? ].

The selected top-N most activated patches can represent various scene contexts, and environmental

information, in addition to human-defined objects. Furthermore, we consider that the global feature

map provides an overall understanding of the visual input and the information like environmental

status, e.g., “Road is clear”, and agent relationship, e.g., “There is a vehicle parking on the right”.

In this sense, the local action-inducing components are concatenated with the global features, then

input into the action predictor CR(·) and human-annotated explanation predictor FR(·).

Specifically, the global feature map Zx is processed with global average pooling and repre-

sented as a feature vector with the same dimension as each local patch zl, denoted as zglobal. Every

local patch zl is concatenated with the global feature zglobal producing the local-global fused feature

Zg⊕l = {zl ⊕ zglobal}Nl=1, where zl ∈ Zlocal, and ⊕ is concatenation operation. The local-global

feature is further vectorized and then input to the following action and explanation prediction net-

works, optimizing the important local components that are highly associated with both action and

explanation prediction. Eventually the predicted action and explanation are denoted as ŷR
a and ŷR

e ,

respectively.
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Considering the possible action decisions, we can explore making a prediction with only one

action or more than one action. If more than one action can be made, which is for a multi-label

prediction task, the prediction logits are normalized by sigmoid function to the range between 0 and

1. If only one action can be made, which is a multi-class single-label task, the prediction logits are

normalized by softmax function. Therefore, we formulate the multi-task learning objective of the

explicit reasoning module as:

Lr = L(ya, ŷ
R
a ) + L(ye, ŷ

R
e ), (4.3)

where L(·, ·) denotes the cross-entropy loss and binary cross-entropy loss for single-label and multi-

label prediction tasks, respectively.

Interpretable Decision Prediction So far, we design two kinds of explanations, i.e.,Mx and ŷR
e , for

the decision making from two different perspectives. In order for these two explanations to interact

and compensate for one another, the concatenated explanation vector ŷe = [Mx, ŷR
e ] is exploited to

a fully-connected layer CS(·) to predict the action decision ŷS
a = CS(ŷe).

It is noteworthy that driver action decision-making has more complicated scene contexts with

many different agents, which is different from other prototype-based interpretable object recogni-

tion only considering the presence of some specific prototypical parts [11], [89], [111], [83]. Thus,

the learned semantically meaningful prototypes that contribute to the final decision could be a part

of or a complete object, even a set of objects or an environment region, in the input frame. More-

over, the location of a specific prototype, and the relationships between it with other objects and the

environment, play crucial roles in determining the final action. Thus, rather than only choosing the

maximum activation score for each prototype in the corresponding activation heat map, the whole

activation feature set is considered for the fully-connected layer CS(·) to integrate the spatial and

relationship knowledge for predicting the action decision.

Similarly, we consider single-label and multi-label tasks with different activation functions, and

the learning objective of action prediction is defined as:

Ls = L(ya, ŷ
S
a), (4.4)

where L(·, ·) represents cross-entropy loss for multi-class single-label tasks, while it is the binary
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cross-entropy loss for multi-label prediction tasks.

Cross-module Fusion and Temporal Aggregation Two action decision predictions ŷR
a and ŷS

a are

obtained with different input knowledge. The former is based on visual features, while the latter

is based on explored explicit-and-implicit explanations. Thus, we accept two prediction logits fol-

lowed by the specific activation function for multi-label or single-label problems, making the final

aggregated action prediction, which is denoted as ŷa = ŷR
a + ŷS

a.

Moreover, for the video inputX = {xi}mi=1 with m frames, we make the decision prediction for

each frame xi ∈ X, resulting in a sequence of predictions {ŷ1
a, . . . , ŷ

m
a }. To find the most relevant

information (key frames) in the observed sequence, a temporal attention layer is developed with a

fully-connected layer followed by the Softmax activation function, generating the importance δi for

each frame xi. The objective with a temporal attention layer is defined as:

Lt = L(ya,
∑m

i=1
δiŷi

a), (4.5)

where L(·, ·) is cross-entropy loss or binary cross-entropy loss for single-label and multi-label pre-

diction tasks, respectively.

Overall Objective. To sum up, we integrate two explanation modules into our unified framework

and formulate the overall optimization objective as follows:

L = Ld + Lr + Ls + Lt, (4.6)

which includes two action decision classifiers and one explicit explanation predictor, and these two

action decision classifiers will compensate for each other as they are based on different knowledge.

In the test stage, we fuse the two predictions of action decisions to obtain a more robust output.

4.3 Experiments

4.3.1 Experimental Setup

Pedestrian Situated Intent (PSI) dataset [13] contains 110 about 15 seconds long videos with

30 fps, and each is annotated with one of three speed change actions (“maintain speed”, “slow
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Table 4.1: Statistics of BDD-OIA and PSI dataset

Dataset Action # Frame # Reasoning

BDD-OIA [? ]

Forward 12,491

21 [Human-defined]Stop/Slow Down 10,432
Turn Left 5,902
Turn Right 6,541

PSI [13]
Maintain Speed 5,800

29 [k-means clustered]Slow Down 4,925
Stop 1,177

down”, and “stop”) on frame level. The reasoning of the action decision is described in natural

language, which will be used as explanation knowledge in our experiments. We split all videos

into train/validation/test set with a ratio of 75%/5%/20%. We sample the tracks with a length of 15

frames, and the overlap ratio is 0.8 while predicting the 16th frame’s action and explanation. Sam-

ples in the PSI dataset are assigned one single label out of three actions, so we evaluate the model

by overall prediction accuracy and class-wise average accuracy for action prediction.

The original explanations are sentence-based, and each sentence contains descriptions of envi-

ronmental context and human behaviors. We first split the original sentences into segments reflecting

the environmental context or human behaviors. A syntactic dependency tree is applied to generate

the dependency tagging of words, and then a set of heuristic rules are adopted to group each sen-

tence into segments. Afterward, the pre-trained BERT [19] is used to generate embeddings for all

segments. The embedding of each segment is generated by averaging the embeddings of the words

within the sentence segment. Consequently, we apply k-means clustering to obtain k semantic cate-

gories (k = 29 in our experiment). Given an explanation, since it is split into multiple segments and

each might belong to different semantic categories, we generate k binary labels for each explanation

to represent its semantics. For the human-annotated explanation, we report the overall F1 score and

class-wise mean F1 score.

BDD-OIA dataset [? ] is a subset of BDD100K [155] consisting of 22,924 5-second video clips,

which were annotated with 4 action decisions (“move forward”, “stop/slow down”, “left turn”, and

“right turn”) and 21 human-defined explanations. Specifically, each video contains at least 5 pedes-

trians or bicycle riders and more than 5 vehicles. The videos are collected with complex driving

scenes to increase the scene diversity. Following the setting of [? ], only the final frame of each

video clip is used thus the temporal attention layer is neglected. As there are multiple possible action
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Table 4.2: Single-label action and multi-label explanation prediction on PSI dataset

Method Maintain Slow Stop act. Accall act. mAcc exp. F1all exp. mF1

OIA-global[? ] 0.540 0.774 0.537 0.635 0.617 0.178 0.119
OIA [? ] 0.693 0.622 0.463 0.643 0.593 0.189 0.110

Ours-f 0.703 0.771 0.641 0.719 0.704 0.277 0.203
Ours-v 0.717 0.776 0.672 0.734 0.722 0.285 0.223

choices for each sample, we evaluate the performance by F1 score for each specific action, overall

F1 score, and the class-wise average F1 score for both action and explanation prediction.

More statistics of the benchmarks are shown in Table 4.1.

Implementation Details. The Faster R-CNN [105] is pre-trained on the annotated images from

BDD100K [155] and set as the backbone, which is followed by two 3 × 3 convolutional layers

generating the global feature map with shape 7 × 7 × 256 for each input frame. For the implicit

visual semantic interpretation module, we assign mk = 6 prototypes with dimension 128 for each

action class, resulting in m = 24 prototypes for the BDD-OIA dataset, and m = 18 prototypes in

total for the PSI dataset. For our InAction model, we set N = 10 thus the top− 10 patches from the

input feature map with the smallest distances compared to all semantic prototypes are selected to be

fused with the global features for explicit human-annotated explanation and action prediction. The

feature map is input to two additional 1× 1 convolutional layers to reduce the channel dimension to

be the same as the prototype dimension and normalized by sigmoid function following [11] before

calculating the activation scores. The action predictor CS(·) based on the fused explanation vector is

one fully-connected layer without bias. We follow the same strategy of [11] to initialize and train the

model. For the explicit human-annotated reasoning module, the action decision predictor CR(·) is a

three-layer fully-connected neural network, and the explanation predictor FR(·) is a two-layer fully-

connected neural network. ReLU activation is used for all hidden layers. The model is optimized

by Adam optimizer with learning rate initialized as 10−3, and decayed by 0.1 every 10 epochs. For

simplicity, we set λ1 = 0.1 and λ2 = 0.01 by default for all experiments. We empirically fixmk = 6,

and we observe the results are not sensitive to it if mk > 3 on the validation set.
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Table 4.3: Multi-label action and explanation prediction on BDD-OIA dataset

Method F S L R act. F1all act. mF1 exp. F1all exp. mF1

Res-101[? ] 0.755 0.607 0.098 0.108 0.601 0.392 0.331 0.180
OIA[? ] 0.829 0.781 0.630 0.634 0.734 0.718 0.422 0.208
OIA∗[? ] 0.792 0.742 0.594 0.627 0.705 0.689 0.501 0.293

Ours(proposals) 0.795 0.743 0.597 0.613 0.706 0.687 0.558 0.332
Ours(global) 0.800 0.747 0.612 0.619 0.714 0.694 0.565 0.347
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G P

Explanations:
§ Follow traffic
§ No right lane
§ Obstacle: car

G P
Explanations:
§ Follow traffic
§ No right lane
§ Obstacle: car

G P

Explanations:
§ Red traffic light
§ Follow traffic
§ Obstacle: rider

G P
Explanations:
§ Red traffic light
§ Obstacle: rider
§ Obstacle: person

G P

Explanations:
§ Follow traffic
§ No left lane
§ Obstacle: car

G P
Explanations:
§ Follow traffic
§ No left lane
§ Obstacle: car

G P

Explanations:
§ Obstacle: car
§ Obstacles on right
§ Follow traffic

G P
Explanations:
§ Obstacle: car
§ Obstacles on right
§ Obstacles on left

G P

Explanations:
§ Follow traffic
§ Road is clear
§ Obstacles on right

G P
Explanations:
§ Follow traffic
§ Road is clear
§ Green traffic light

Figure 4.2: Selected comparison examples of action and explicit explanation prediction between
OIA and InAction on BDD-OIA dataset. G denotes the ground-truth annotation, and P shows the
predicted result from OIA/Ours. green predictions are True Positive, red are False Positive, and

gray are False Negative.

4.3.2 Comparison Results

We compare our proposed InAction model with the OIA method [? ] on the PSI and BDD-OIA

datasets, and the results are reported in Table 4.2 and Table 4.3. OIA model only adopts the last

frame of a sequence as input, thus we report two results produced by our model with only the last

frame or the whole observed video sequence as input, denoted as Ours-f and Ours-v in Table 4.2,

respectively. For experiments on BDD-OIA in Table 4.3, we reproduce the OIA model based on the

official implementation released by the author, denoted as OIA∗, in addition to the results reported

by OIA [? ]. The reproduced results of OIA on BDD-OIA are lower in action decision while better

in explanation in terms of F-1 score, compared with the reported OIA. Note that OIA adopts the de-

tected proposals generated by the backbone as local features. We utilize the implicit visual-semantic

prototypes learned from the global feature map and from the detected proposals, and report the re-
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Figure 4.3: Comparison of explanations produced by the implicit visual-semantic module and the
explicit human-annotated reasoning module for examples on BDD-OIA.

sults as Ours(global) and Ours(proposals), respectively. Specifically, to obtain Ours(proposals), we

extract the top-100 detected proposals features after the average pooling process into the same size

as the learned prototypes, then follow the same fusing strategy as aforementioned.

For the PSI results (Table 4.2), we notice that our proposed InAction model with only the last

frame as input outperforms OIA around 0.07 and 0.01 for the overall and class-wise mean action

prediction accuracy, respectively. When the whole video sequence is input to our model, the perfor-

mance is improved further by 0.015 and 0.018, respectively, demonstrating our model can benefit

from the temporal knowledge from the input sequence. The PSI dataset has an imbalanced distri-

bution and there are much fewer samples belonging to the category “Stop”, thus both OIA-global

and OIA∗ obtain worse performance in this category compared to “Main speed” and “Slow down”.

Surprisingly, our model is able to achieve better performance on this decision. Moreover, as OIA

adopts both global and local detection proposals as input for prediction, while InAction only uses

the global feature map we compare our model with another baseline OIA-global, which has the

same architecture with OIA excluding the local proposal branch. From the results, we observe that

OIA-global obtains worse overall performance compared to OIA and InAction.

From the BDD-OIA results (Table 4.3), we observe InAction can improve the action prediction

performance compared to the reproduced OIA. For the reason prediction, we notice that the repro-

duced results outperform the numbers reported in the OIA paper by around 0.08, and our proposed

method can further improve the overall F1 and class-wise mean F1 both over 0.5. This demonstrates

that our model works well in both action prediction and explanation reasoning. Moreover, we ob-
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Red Traffic Light

Vehicle@Right

Vehicle@Left

Figure 4.4: Visualizing prototypes by selecting the most similar patches from the training samples,
where each row shows one explanation.

serve that the results produced with prototypes learned on the global feature maps are better than

those based on the detected proposals. We argue that relying on the detected proposals will make the

model fail, and constrain the representative capabilities of learned semantic prototypes, compared

to exploring the implicit visual-semantic knowledge based on the whole input image.

4.3.3 Interpretability Analysis

Comparison with OIA.We present qualitative results in Figure 4.2 to demonstrate the interpretabil-

ity and transparency of the propose InAction model. For the same visual input, we compare both the

action and explanation prediction of OIA and our InAction. From the selected examples, we notice

that OIA made wrong action predictions while InAction can achieve correct results in some cases.

The only wrong prediction in the 3rd example is that both OIA and the explicit human-annotated

reasoning module in InAction recognize the white vehicle in front and predict the explanation as

“Obstacle: car”, then make the “Stop/Slow down” decision. However, the ground-truth action an-

notation does not contain this label. Such an observation demonstrates that insufficient explanation

and inconsistency reasoning always exists in the human-defined annotations, especially on single-

frame-based prediction tasks.

Compensation between Implicit and Explicit Interpretation. In Figure 4.3, we compare the gen-

erated explanations from the implicit and explicit modules for the same task. We notice that some

human-annotated reasoning is also captured by the implicit semantic prototypes, e.g., “Obstacles on

the right lane”. However, some explanations discovered by the implicit visual prototypes compen-
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sate for the lack of human annotation. For example, the vehicle on the left lane in the second-row

example is quite close but not annotated, and the ground-truth label is “forward” and “turn left”,

while fortunately, our model notices the obstacle on the left lane and predict “forward” only.

Implicit Visual Semantics Analysis.

Connection weights for action “Forward” Connection weights for action “Turn left”

Ground-truth: Forward/Turn left

Sigmoid(3.750)=0.977 Sigmoid(1.351)=0.794

Activation scores maps

!!(Forward) !""(Stop/Slow)

!"#(Turn left) !$%(Turn right)

"&!
'()*+), "&""
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Figure 4.5: Visualization of reasoning of the selected instance.

To illustrate the learned im-

plicit visual semantic prototypes

in an intuitive way, we visual-

ize the prototypes via the most

similar patches of images in the

BDD-OIA dataset [11]. Figure 4.4

shows the selected examples with

patches highly activated by spe-

cific semantic prototypes from ac-

tion decisions “Stop”, “Turn left”,

and “Turn right”. The most ac-

tivated patch of the given input

for selected prototypes is marked

by bounding boxes in the original

input, which represent the image

patches that InAction considers fo-

cusing on corresponding to specific prototypes. From the results, we observe that when the implicit

visual-semantic reasoning module slides over the whole input to obtain an activation map, these

three prototypes are represented as “Red traffic light”, “Vehicle at right”, and “Vehicle at left”, re-

spectively. Any region is strongly activated by one of the specific prototypes, or, in other words, one

of the prototypes presents strongly in the input frame, will play a crucial role in the final prediction.

Reasoning Process of InAction. Prior prototype-based models only observe the most strongly ac-

tivated region. However, driving action prediction has much more complicated scene context and

multiple objects involved as hints, so the spatial location of each prototype presence and the re-

lationships among different components make a crucial influence on the final decision prediction.
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Figure 4.5 shows the reasoning process of our InAction predicting the action decision for a test

sample, which is annotated as “Forward/Turn left”. Given the input frame, the implicit visual se-

mantic interpretationmodule compares every patch in the featuremap against the learned prototypes,

producing the activation score maps. The activation maps that are most strongly activated by pro-

totypes are shown as the top-right heatmaps in Figure 4.5, where p5,p11,p16,p23 are assigned to

action classes “Forward”, “Stop/Slow down”, “Turn left”, and “Turn right”, respectively. Although

m prototypes are assigned to C action decision resulting in mk prototypes per class during training,

all activation scores produced bym prototypes over the feature map of the input frame are multiplied

by the weight matrix in the last fully-connected layer CS(·) to generate the output prediction. The

weights in the fully-connected layer represent the connections between prototypes and the predicted

classes. In Figure 4.5, we select the weights (W) for class “Forward” and “Turn left” correspond-

ing to the selected prototypes, and show them after reshaping into the same shape as the activation

map. From the weights over different regions of the feature map/activation map, we observe that the

same prototype plays different roles for different action decisions. For example, components sim-

ilar to prototype p11 appearing in the top area of the view will make a negative contribution to the

prediction of “Forward”, while for the prediction of class “Turn left”, it will reduce the probability

of “Turn left” only when it appears at the top-left corner, otherwise, this prototype is comparably

neutral. Interestingly, the prototype shown in the first row of Figure 4.4 is prototype p11, which

represents “Red traffic light”.

4.3.4 Discussion and Limitation

We presented the InAction model, combining explicit human annotations and implicit visual se-

mantics to provide enriched explanations for action decision-making. Experimental results on au-

tonomous driving benchmarks validate its effectiveness. Despite its strengths, this work also reveals

certain limitations and challenges that require further investigation. For instance, the prototype-

based interpretation module and the use of all activation maps for prediction result in high compu-

tational costs during training. Additionally, there were observations of redundant prototypes with

minimal activation or learning during experiments. To address these issues, determining appropri-

ate semantic prototype initialization and relationships could enhance the learning of meaningful and
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promising interpretations.

4.4 Conclusion

In this work, we developed a novel Interpretable Action (InAction) decision-making model to pro-

vide enriched explanations from both explicit human annotation and implicit visual semantics per-

spectives. To implement this, two interpretable modules were proposed including a visual semantic

module and an explicit reasoning module. Specifically, the first module aimed to capture the region-

based action-inducing semantic concepts from the visual inputs, so that our model could automat-

ically learn the implicit visual cues to provide a human-understandable explanation. The second

module attempted to benefit from the human-annotated reasoning for action decision-making so

that our model was able to provide a more high-level interpretation by aligning visual inputs to hu-

man annotations. Experimental results on two autonomous driving benchmarks demonstrated the

effectiveness of our InAction model.
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Jing, Taotao, Haifeng Xia, Hongfu Liu, and Zheng-

ming Ding. “Interpretable Novel Target Discovery in

Open-set Domain Adaptation.” under review.

5
Interpretable Novel Target Discovery with

Multimodal Semantic Knowledge

Open-set domain adaptation (OSDA) considers a special domain adaptation problem in which the

target domain contains novel categories never appear in the well-labeled source domain. Unfortu-

nately, prior efforts on OSDA simply detect and recognize all novel categories as one “unknown”

group without further exploration. The demand for exploring these novel categories prompts us to

consider the underlying multi-class structure and semantic description of those unknown categories

in more detail. In this work, we propose a novel interpretable framework to accurately identify

the seen categories in the target domain and effectively recover the semantic knowledge of the un-

seen categories with attributes and visual interpretations, which is referred to as Semantic Recovery
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Open-Set Domain Adaptation (SR-OSDA). Specifically, the proposed framework includes an ex-

plicit attribute interpretable module and an implicit semantic interpretable module, which provide

insight into the process of domain adaptation and the discovery of new categories. Furthermore,

structure-preserving partial alignment is developed as a method of recognizing and aligning the visi-

ble categories across domainswith the aid of domain-invariant feature learning. The visual-structural

semantic attribute propagation is designed to provide smooth transitions from seen categories to un-

seen categories via visual-semantic mapping. Three new cross-domain SR-OSDA benchmarks are

constructed in order to evaluate the proposed framework in novel and practical challenges. Experi-

mental results and empirical analysis of our proposed solution to open-set recognition and semantic

recovery demonstrate its superiority over other state-of-the-art solutions. Our source code is avail-

able at https://github.com/scottjingtt/XSROSDA.

5.1 Summary of Contribution

In this work, we explore a novel problem named Semantic Recovery Open-Set Domain Adaptation

(SR-OSDA), where the source domain is annotated with both class labels and semantic attributes de-

scriptions, while the target domain consists of unlabeled data from categories seen and unseen in the

source domain. SR-OSDA aims to recognize the seen categories as well as recover the missing se-

mantic information of the samples from unseen categories while interpreting the domain adaptation

and discovering novel categories in the target domain. To our best knowledge, this is a completely

unexplored problem in literature with challenges including (1) how to effectively eliminate the do-

main shift across domains; (2) how to accurately identify seen and unseen categories in the target

domain; (3) how to explicitly recover the missing attributes of unseen data; (4) how to explain the

domain adaptation and novel categories discovery.

Overall, we present an interpretable framework that identifies and discovers novel categories

from a target domain simultaneously, while revealing domain adaptation along with the discovery

of novel categories, both at a semantic level and prototype level. Our main contributions are sum-

marized below:

• We are the first to study the SR-OSDA problem with an effective framework to identify seen
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categories and discover novel categories simultaneously.

• We present structure-preserving partial alignment and visual-based attribute propagation de-

signs to eliminate the domain shift and recover missing semantic attributes across domains.

• We propose an interpretable attributes prediction module to reveal the domain adaptation and

novel categories discovery process.

• Our proposed method achieves promising performance on both target recognition and seman-

tic recovery on three new protocols built for SR-OSDA evaluation.

This is an extension of our conference work [50] with the following improvements. First, we

enhance the model by proposing a prototype-based interpretable module to reveal the domain adap-

tation and novel categories discovery process. In this sense, we are able to interpret the learning

mechanism from two perspectives. Second, considering there are no existing benchmarks for the

new problem, we construct more evaluation benchmarks for the SR-OSDA problem to demonstrate

the effectiveness of the proposed model. Third, we provide more quantitative and qualitative anal-

yses to study knowledge transfer across visual and semantic spaces, which provides new insight to

understand the interpretation scheme.

The goal of SR-OSDA includes three parts: 1) Recognize the target data into Cs seen categories

and one unknown class, which is similar to the conventional OSDA problem. 2) Recover the se-

mantic descriptions At of the target data both seen and unseen classes. 3) Infer the class label of

target data from Ct = Cs + K categories by searching for the class with the most similar semantic

embedding. It is noteworthy that the semantic knowledge of target domain unseen categories is only

available during the test phase, while the training phase only has access to the semantic description

of classes seen in the source domain.

5.2 The Proposed Solution

In this section, we first illustrate the framework overview of the proposed methods addressing SR-

OSDA problem. Then we introduce the training strategy and learning objectives including progres-

sive target annotation initialization, structure-preserving partial alignment, visual-structural seman-
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Figure 5.1: Illustration of the proposed framework. Given the raw source and target images as
input, convolutional neural networks F(·) act as the backbone to extract the visual features. The
explicit semantic interpretable module (ExplicitModule) predicts the attributes by Ae(·) based on
the visual features. The implicit semantic interpretable module (ImplicitModule) explores visual
cues through learned prototypes P to justify the attributes predicted by Ai(·). The source and
target domain data from shared classes are aligned in the visual feature space through the

structure-preserving partial alignment module, while the target domain unseen categories data
discriminative structure is preserved. With the visual-structural attributes propagation
mechanism, visual features are used to promote predicted attributes from seen to unseen

categories. In the end, visual and semantic features are fused for the open-set task classifier C(·) to
be recognized as belonging to one of Cs + 1 categories.

tic attributes recovery, interpretable visual to semantic projection, and cross-modality representa-

tions fusion.

5.2.1 Framework Overview

We propose a framework illustrated in Figure 5.1 to jointly recognize the target domain data based

on categories already observed in the source domain, while also recovering the semantic attributes

for the unknown target classes through an interpretable prototype-based mechanism to tackle the

SR-OSDA problem. Specifically, there is one explicit attribute interpretable module (ExplicitMod-

ule) and one implicit semantic interpretable module (ImplicitModule) to predict the semantic at-

tributes based on visual input from different perspectives. Meanwhile, the source and target domain

data from shared categories are aligned in the target domain feature space through the structure-

preserving partial alignment to preserve the target domain discriminative structure. Moreover, the

visual features will guide the predicted attributes propagation from seen categories to unseen ones

with the visual-structural semantic attributes propagation, and the semantic attributes will promote

the visual features discrimination through the visual-semantic fused representation for open-set clas-
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sification supervision.

Mathematically, given one image x ∈ Ds/t, F(·) extracts the feature map F and feature vector

z as:

F = F(x), z = φ(F), (5.1)

where φ(·) is the pooling operation, z ∈ RD, andF ∈ RW×H×D. Then z andF are input to the explicit

attribute interpretable module and implicit semantic interpretable module to predict the semantic

attributes, respectively.

For the ExplicitModule, the extracted feature z for one of the source or target domain data is

input to the semantic attributes predictor Ae(·) to predict the attributes as:

â = Ae(z), (5.2)

which is followed by a Sigmoid function to obtain the probabilities that the input sample has each

specific attribute characteristic.

For the ImplicitModule, instead of bridging the visual and semantic feature space via black-

box neural networks, we further explore a prototype-based interpretable projector from the visual to

semantic space. Specifically, with m learned prototypes P = {pi}mi=1, the activation scores s ∈ Rm

on each extracted feature map F and the predicted attributes ã are obtained as:

s = S(F, P), ã = Ai(s), (5.3)

where S(·, ·) is the function calculating the activation scores of the learned prototypes on the feature

map of the input image, which will be described in Section 5.2.4. Then the activation scores are

input to a linear projector Ai(·) to predict the attributes ã.

Finally, to leverage the multimodality benefits of visual and semantic descriptions, we explore

the joint visual-semantic representation by conveying the semantic discriminative information into

the visual feature as ĥ = â⊕ z and h̃ = ã⊕ z, where ⊕ is the concatenating operation. Then both
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joint features are input to the open-set classifier C(·) and the output class labels are:

ŷ = C(ĥ), ỹ = C(h̃), (5.4)

where ŷ/ỹ denotes that the input sample is recognized from one of the Cs seen categories or the

unknown class.

5.2.2 Progressive Target Annotation Initialization

One of the key challenges of SR-OSDA is the lack of annotations of the target domain data, especially

the novel categories, and the discriminative distribution of the target data in the visual feature space

is the only information accessible for training. To leverage the target domain class-wise structural

knowledge and inspired by the impressive performance of exploring pseudo-labels in unsupervised

domain adaptation recently [12, 127, 162], we initialize the annotations for the target data only based

on the visual features. Intuitively, some target domain samples are distributed close to the source

domain, which can be confidently recognized by a well-trained source model. On the contrary,

those samples from unknown categories never present in the source domain tend to obtain even or

mixed prediction probabilities by the source model with low confidence, because no classifiers can

recognize them easily.

To achieve this, we first apply an adaptive nearest neighbor classification strategy to recog-

nize all target samples into one of Cs seen categories plus one “unknown” class in the latent em-

bedding space. Specifically, given Cs class centroids of the seen categories, denoted as {μc =

1
ncs

∑
zs∈Zc

s
zs|Cs

c=1}, where Zc
s denotes ncs features of source data from class c. Then probability pre-

diction of one target data zt ∈ Zt from class c is defined as:

p(c|xt) =
exp(−d(zt, μc))∑
c′ exp(−d(zt, μc′))

, zt ∈ Zt, (5.5)

where d(·, ·) is the distance function measuring the similarities in the visual feature space, i.e.,

d(zt, μc) = 1 − zt·μc
‖zt‖‖μc‖ . For each sample, we adopt category c with the highest probability pre-

diction as the pseudo label for zt, which is denoted as ȳt = argmax
c

p(c|xt). Then, we are able to
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separate the target domain data Dt in to seen subset D̄s
t and unseen subset D̄u

t as:






xt ∈ D̄s
t , p(ȳt|xt) ≥ τ

xt ∈ D̄u
t , p(ȳt|xt) < τ

, (5.6)

where the threshold τ is defined as the mean of the pseudo labels probabilities of all target samples,

i.e., τ = 1
nt
∑

xt∈Dt
p(ȳt|xt).

Since we only have access to the source data and ground-truth annotations, which are not suf-

ficient to identify the target data due to domain shift, we adaptively update the classes centroids by

involving newly-labeled target samples from D̄s
t as:

μc = (1− λ)μc + λ
1

ns(c)t

∑

xt∈D̄s(c)
t

zt, (5.7)

where D̄s(c)
t = {xt|xt ∈ Dt, ȳt = c} contains ns(c)t target samples predicted as category ȳt = c with

high confidence, and λ is a small value controlling the cross-domain mixture.

In addition to obtaining confident pseudo labels for target samples in the seen set D̄s
t , we also

need to explore the discriminative structure of data in D̄u
t . Thus, we apply K-means clustering

algorithm to group D̄u
t resulting in K clusters with cluster centers denoted as {ηk1 , ..., ηK}. Based

on the results, we obtain all classes and clustering centroids of both seen and unseen subsets as

Rz = {μ1, ..., μCs , ηk1 , ..., ηK}. In order to refine the pseudo labels of the target data, we adopt K-

means clustering algorithm with centers initialized asRz over Zt to obtain the target domain pseudo

labels as Ȳt = {ȳt|xt ∈ Dt, Rz} covers both Cs seen categories and K clusters.

With the obtained pseudo labels for all target samples, we also assign the corresponding semantic

attributes āt to each sample xt in the seen subsets D̄s
t based on the pseudo labels ȳt. The semantic

knowledge of the target data bridges the visual to semantic space while contributing to the structure-

preserving cross-domain alignment as described in Section 5.2.3.

5.2.3 Explicit Attribute interpretable Module

The ExplicitModule shares similarities with the framework introduced in Section 3.3.2. Conse-

quently, we adopt similar optimization objectives, namely, Structure Preserving Partial Alignment
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(LR) and Attributes Propagation with Visual Structure (Lex
A = LA). These objectives are utilized to

optimize the explicit attribute prediction branch, setting it apart from the implicit branch.

5.2.4 Implicit Semantic Interpretable Module

Moreover, the estimated attributes for both seen and unseen categories in the target domain byAe(·)

contribute to novel categories discovery with attribute-based explanation, however, the semantic-

to-visual projection is a black box lacking transparency and interpretation. Thus, we propose the

implicit semantic interpretable module (ImplicitModule), which is a prototype-based interpretable

module, to reveal representative visual cues for each specific attribute via learning corresponding

semantic prototypes based on the visual input. For each input image, the implicit visual-semantic

module will slide over all patches in the extracted feature map F and calculate the activation scores

with respect to the presence of learned semantic prototypes P. The regions most activated by the

learned prototypes are selected as semantic-inducing regions for predicting the attributes, while the

corresponding prototypes act as visual interpretations for the projection from visual to semantic

space.

Specifically, for each sample x ∈ Ds/t with semantic attributes a ∈ Rda , we assignmj prototypes

for each attribute element aj ∈ a, resulting in m = mj × da prototypes in total, denoted as P =

{Pj}daj=1, in whichPj = {pl
j}

mj
l=1, and p

l
j ∈ RD×1×1 is the lth learned semantic prototype for attribute

element j. Intuitively, prototypes inPj should capture the most relevant parts for identifying images

of attribute aj.

For one image input to the feature extractorF(·), the patches in the extracted feature mapFs/t ∈

RW×H×D are denoted asFs/t = {Fk
s/t}

HW
k=1. The shape of each patch is f

k
s/t ∈ RD×1×1. For one feature

map F and one prototype pl
j, pl

j will go through all patches f k ∈ F and compute the activation score

as:

slj = max
f k∈F

f k · pl
j

‖f k‖‖pl
j‖
, (5.8)

where the activation score slj is monotonically increasingwith respect to the similarity between f k and

pl
j. If the activation score slj is large, a patch in the latent feature map F is similar to the prototype

pl
j, denoting that the corresponding region in the input image contains a similar concept as what
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prototype pl
j represents.

The obtained activation scores produced by all prototypes P with respect to the input feature

map F is denoted as s = S(F,P) = {s1j , ..., s
mj
j |F,Pj}daj=1, which is then input to the attributes

projector Ai(·) with output as:

ã = Ai(s), (5.9)

where Ai(·) is a fully connected layer without bias with da output followed by Sigmoid activation,

predicting if each specific attribute characteristic exists in the input image or not.

Similar to Eq. (??) in Section 5.2.3, the visual-structural semantic attributes propagation strategy

is also applied to ãi as:

ãi =
∑

j
WijAi(si), (5.10)

where si is the prototype activation scores vector of sample xi in a training batch. Then the Implic-

itModule is optimized with the supervision of both source and target domain data as:

Lim
A = E

xs∈Ds

(
Lbce(ãs, as)

)
+ E

xt∈D̄s
t

(
Lbce(ãt, āt)

)
, (5.11)

where as is the source data ground-truth attributes, and āt is the target data attributes corresponding

to the pseudo-label.

Furthermore, if attribute aj ∈ a is true, at least one of themj prototypes inPj should be activated

significantly. In contrast, none of Pj should be activated if aj is False. Thus, the prototypes P are

learned with discriminative constraint as:

Lim
clst = E

x∈Ds∪D̄s
t

E
{Pj∈P|aj=1}

min
pl
j∈Pj

min
f k∈F

d(f k,pl
j),

Lim
sep = E

x∈Ds∪D̄s
t

E
{Pj∈P|aj=0}

min
pl
j∈Pj

min
f k∈F

d(f k,pl
j),

(5.12)

where d(f k,pl
j) = 1− f k·pl

j
‖f k‖‖pl

j‖
measures the distance between f k and pl

j. Intuitively, Lim
clst minimizes

the closes distance of the feature patch and prototype pair for every true attribute element of each

input sample, and Lim
sep maximize the distance of the patch and prototype pair for every attribute

element that does not exist in the input sample class.
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Clustering structures derived from such optimization objectives are semantically meaningful.

The overall learning objective for optimizing prototypes is as follows:

LP = Lim
clst − α1Lim

sep + α2
da∑

j=1

∑

pl
j /∈Pj

|w(j,l)
E |, (5.13)

where α1 and α2 are two hyper-parameters determining the contributions of the two loss terms,

respectively, and w(j,l)
E denotes the connection weights of Ai(·) between the lth prototype (pl

j) and

the jth attribute (aj). We optimize the weights of the last attributes predictor layer Ai(·) to obtain

sparse property which makes our model relies less on a negative reasoning process of the form

“this attribute element does not exist since it contains a patch that is not prototypical of the specific

attribute element” [11].

5.2.5 Overall Objective

To incorporate classification supervision into the fused visual-semantic features, we propose opti-

mizing the classifier via explicit and implicit branches in conjunction with the following open-set

classification objective:

Lex
C = E

xs∈Ds
ys∈Ys

Lce(ŷs,ψ(ys)) + E
xt∈D̄s

t
ȳt∈Ȳt

Lce(ŷt,ψ(ȳt)),

Lim
C = E

xs∈Ds
ys∈Ys

Lce(ỹs,ψ(ys)) + E
xt∈D̄s

t
ȳt∈Ȳt

Lce(ỹt,ψ(ȳt)),
(5.14)

where Lce(·, ·) is the cross-entropy loss, and ψ(y) indicates if y is from one of Cs seen categories or

the “unknwon” class in target domain, and ŷ = C(ĥ) and ỹ = C(h̃).

To sum up, we have our overall objective by integrating the joint visual-semantic representa-

tion recognition supervision for both explicit and implicit branches(Lex/im
C ), explicit and implicit

visual-semantic recovery (Lex/im
A ), structure-preserving partial alignment (LR), and discriminative
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Table 5.1: Statistics of evaluation benchmarks. (S: Source. T: Target)

Dataset Domain Role # Images # Attributes # Classes

DomainNet→ AwA

AwA S / T 9,343 / 16,306 85 10 / 17

Paint S / T 3,441 / 5,760 85 10 / 17

Real S / T 5,251 / 10,047 85 10 / 17

I→ AwA I / AwA S / T 2,970 / 37,322 85 40 / 50

DomainNet→ LAD

LAD S / T 13,322 / 19,744 253 40 / 56

Paint S / T 11,714 / 15,311 253 40 / 56

Real S / T 22,395 / 31,066 253 40 / 56

prototypes constraint (LP) to train the whole framework alternatively as:

min
F ,Ae,C

Lex
C + Lex

A + β1LR

min
F ,P,Ai,C

Lim
C + Lim

A + β2LP

, (5.15)

where β1 and β2 are two trade-off parameters. Through minimizing the loss illustrated in the first

row, the feature generator F(·), explicit visual-semantic projector Ae(·), open-set classifier C(·)

are optimized to aggregate the source data semantic descriptive knowledge into the unlabeled tar-

get domain in the latent embedding space via the joint visual-semantic representation supervision,

attributes prediction, and the cross-domain visual structure-preserving partial alignment. The pa-

rameters of prototypes P and the implicit attributes predictor Ai(·) are trained in addition.

Inference Stage. Given a target raw input first passing to the feature extractor F(·), the open-

set classifier C(·) then recognizes if the input sample is from one of the Cs seen categories or it

is unknown for OSDA. For the SR-OSDA problem, the classifier C(·) first recognizes if the input

sample is from one of the seen or unseen categories, then infer the class label from Ct = Cs + K

classes by searching for the class with the most similar ground-truth attributes.

5.3 Experiments

5.3.1 Benchmark Datasets

We construct three evaluation protocols for the SR-OSDA problem: (1) DomainNet → AwA is

constructed from the DomainNet dataset [102] and AwA2 dataset [144]. Specifically, there are 17

categories shared between these two datasets, from which the alphabetically first 10 categories are
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Table 5.2: Open-set domain adaptation (OSDA) accuracy (%) on DomainNet → AwA

Task AwA→ Paint AwA→ Real Paint→ AwA
Method OS∗ OS% OS OSH OS∗ OS% OS OSH OS∗ OS% OS OSH

OSBP [114] 49.6 10.8 46.0 17.7 74.2 13.6 68.7 23.0 76.0 9.1 69.9 16.2
STA [72] 60.1 33.0 57.6 42.6 85.5 10.8 78.7 19.2 90.2 5.7 82.5 10.7
AOD [27] 50.7 9.5 46.9 16.0 78.4 12.7 72.4 21.9 80.3 5.1 73.5 9.6
Ours (conf.) [50] 62.8 47.2 61.4 53.9 90.9 71.4 89.1 80.0 79.2 98.5 81.0 87.8
Ours (Expl.) 45.0 79.4 48.1 57.4 81.4 81.1 81.4 81.3 83.4 90.0 84.0 86.6
Ours (Impl.) 48.8 71.9 50.9 58.1 82.6 75.9 82.0 79.1 83.1 86.4 83.4 84.7

Task Paint→ Real Real→ AwA Real→ Paint
Method OS∗ OS% OS OSH OS∗ OS% OS OSH OS∗ OS% OS OSH

OSBP [114] 63.3 6.9 58.2 12.4 90.1 13.7 83.2 23.8 55.9 10.6 51.7 17.8
STA [72] 82.8 7.4 76.0 13.6 88.5 7.2 81.1 13.3 66.9 13.5 62.0 22.5
AOD [27] 79.7 5.3 73.0 9.9 92.0 12.8 84.8 22.5 61.2 9.6 56.5 16.6
Ours (conf.) [50] 78.3 83.7 78.8 80.9 94.9 90.5 94.5 92.7 61.2 80.4 63.0 69.5
Ours (Expl.) 78.7 78.3 78.7 78.5 91.7 93.1 91.8 92.4 52.8 72.7 54.6 61.2
Ours (Impl.) 77.7 78.1 77.8 77.9 92.6 89.3 92.3 90.9 58.7 59.0 58.7 58.9

Table 5.3: Semantic recovery open-set DA (SR-OSDA) accuracy (%) on DomainNet → AwA

Task AwA→ Paint AwA→ Real Paint→ AwA Paint→ Real Real→ AwA Real→ Paint
Method S U H S U H S U H S U H S U H S U H

ABP [175] 68.1 0.0 0.0 87.9 0.0 0.0 91.7 0.0 0.0 83.6 0.0 0.0 94.4 0.0 0.0 70.0 0.0 0.0
TF-VAE [88] 70.4 0.0 0.0 88.4 0.0 0.0 85.1 0.0 0.0 79.6 0.0 0.0 96.4 0.0 0.0 72.5 0.0 0.0
ABP* [175] 64.5 6.4 11.7 86.0 5.9 11.1 84.0 24.4 37.8 81.3 12.7 21.9 93.8 16.2 27.6 67.6 7.9 14.1
TF-VAE* [88] 59.7 12.8 21.0 77.9 16.4 27.1 35.1 35.6 35.3 34.8 32.7 33.7 68.5 36.1 47.3 50.7 21.0 29.7
Ours (conf.) [50] 62.5 27.0 37.7 90.7 30.0 45.1 79.2 36.7 50.2 78.0 15.7 26.1 95.2 37.8 54.1 59.0 20.8 30.8
Ours (Expl.) 42.4 36.4 39.2 81.3 38.5 52.2 73.8 68.0 70.8 75.9 57.6 65.5 91.4 54.2 68.1 50.2 36.1 42.0
Ours (Impl.) 44.2 38.2 41.0 81.0 45.9 58.6 73.7 59.6 65.9 65.9 59.8 62.7 91.2 54.9 68.5 53.5 35.5 42.7

selected as the seen classes across domains, while the rest 7 categories are unseen categories that only

exist in the target domain. The corresponding attribute features about the shared 17 categories from

the AwA2 dataset are used as semantic descriptions. In view of the fact that some domains in the

DomainNet dataset barely share common semantic characteristics as images in the AwA2 dataset,

such as quick draw, we only take the “real image” (Real) and “Painting” (Paint) into account, together

with the AwA2 data (AwA) for evaluation. (2) I→AwA is collected by [176] consisting of 50 animal

classes, and split into 40 seen categories and 10 unseen categories as [144]. The source domain (I),

includes 2,970 images from seen categories collected via the Google image search engine, while the

target domain comes from the AwA2 (AwA) dataset for zero-shot learning with 37,322 images in

all 50 classes [144]. We use the binary attributes of AwA2 as the semantic description, and only one

task I→AwA is evaluated. (3)DomainNet→ LAD is based on the data from Domainnet [102] and

LAD [169]. LAD is a large-scale attribute dataset consisting of 78,017 images from 230 classes. We

131



Table 5.4: Open-set domain adaptation (OSDA) accuracy (%) and semantic recovery open-set
domain adaptation (SR-OSDA) accuracy(%) on I → AwA

OSDA SR-OSDA
Method OS∗ OS% OS OSH Method S U H
OSBP [114] 67.6 7.5 66.2 13.5 ABP [175] 79.8 0.0 0.0
STA [72] 51.5 45.5 51.4 48.3 ABP* [175] 78.0 13.4 22.9
AOD [27] 75.2 6.3 73.5 11.6 TF-VAE* [88] 37.7 20.0 26.2
Ours (conf.) [50] 83.2 70.2 82.8 76.1 Ours (conf.) [50] 83.1 22.0 34.8
Ours (Expl.) 81.7 70.8 81.4 75.9 Ours (Expl.) 78.7 32.1 45.6
Ours (Impl.) 82.6 71.8 82.4 76.9 Ours (Impl.) 79.2 33.9 47.5

Table 5.5: Open-set domain adaptation (OSDA) accuracy (%) on DomainNet → LAD

Task LAD→ Paint LAD→ Real Paint→ LAD
Method OS∗ OS% OS OSH OS∗ OS% OS OSH OS∗ OS% OS OSH

OSBP [114] 31.5 89.5 32.9 46.6 49.3 84.3 50.2 62.2 25.2 86.1 26.7 39.0
STA [72] 45.3 67.9 45.9 54.4 75.1 31.4 74.1 44.3 73.7 27.8 72.5 40.3
AOD [27] 35.2 85.5 36.4 49.8 51.4 79.6 52.1 62.5 34.3 74.0 35.3 46.9
Ours (conf.) [50] 41.1 79.8 42.1 54.3 77.7 79.8 77.8 78.7 54.8 85.6 55.5 66.8
Ours (Expl.) 49.5 87.4 50.5 63.2 82.3 68.9 82.0 75.0 81.6 67.8 81.3 74.1
Ours (Impl.) 53.1 80.7 53.8 64.1 83.3 64.2 82.8 72.5 82.0 70.3 81.7 75.7

Task Paint→ Real Real→ LAD Real→ Paint
Method OS∗ OS% OS OSH OS∗ OS% OS OSH OS∗ OS% OS OSH

OSBP [114] 23.5 80.0 24.9 36.3 55.4 84.7 56.1 67.0 39.9 82.2 40.9 53.7
STA [72] 69.8 19.4 68.5 30.3 87.6 19.8 85.9 32.2 54.7 52.2 54.7 53.5
AOD [27] 25.0 75.2 26.2 37.5 49.9 80.0 50.6 61.5 40.1 79.7 41.0 53.3
Ours (conf.) [50] 53.8 83.9 54.5 65.6 89.7 79.4 89.5 84.3 47.6 75.9 48.3 58.5
Ours (Expl.) 82.2 50.2 81.4 62.4 91.0 83.2 90.8 86.9 59.8 75.9 60.2 66.9
Ours (Impl.) 82.1 50.3 81.3 62.4 91.0 83.6 90.8 87.1 62.4 76.1 62.8 68.6

select the 56 categories shared betweenDomainNet and LAD to evaluate themodel. In the sameway,

the first 40 alphabetically listed categories are seen, while the rest 16 remain as unseen. LAD also

provides more diverse semantic attribute descriptions, and we adopt 253 out of 359 binary attributes

found in the seen categories as the semantic description, whereas the remaining 106 attributes are

ignored. It is noteworthy that only the attributes of the seen categories are accessible during the

training phase, the semantic information about unseen categories is only available for testing.

5.3.2 Implementation Details

In this work, ResNet-50 [35] without the last fully-connected layer pre-trained on ImageNet is

adopted as the convolutional backbone F(·). Before input to the ExplicitModule, the output of

the convolutional backbone is input to a pooling layer followed by two fully-connected layers to
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Table 5.6: Semantic recovery open-set DA (SR-OSDA) accuracy (%) on DomainNet → LAD

Task LAD→ Paint LAD→ Real Paint→ LAD Paint→ Real Real→ LAD Real→ Paint
Method S U H S U H S U H S U H S U H S U H

ABP [175] 62.2 0.0 0.0 85.2 0.0 0.0 83.4 0.0 0.0 80.9 0.0 0.0 92.0 0.0 0.0 65.8 0.0 0.0
TF-VAE [88] 62.9 0.0 0.0 82.3 0.0 0.0 68.8 0.0 0.0 68.5 0.0 0.0 92.4 0.0 0.0 67.7 0.0 0.0
ABP* [175] 57.2 11.7 19.5 83.3 12.2 21.3 81.4 12.0 20.9 78.8 14.2 24.1 91.5 3.2 6.2 64.7 1.2 2.3
TF-VAE* [88] 49.0 13.5 21.2 67.4 18.7 29.2 54.4 13.7 21.8 54.2 16.2 25.0 89.0 4.3 8.3 65.2 2.9 5.5
Ours (conf.) [50] 48.0 32.8 39.0 72.3 40.0 51.5 61.3 32.0 42.1 55.2 28.8 37.9 69.9 35.1 46.7 41.0 17.0 24.1
Ours (Expl.) 44.6 22.6 30.0 78.9 26.6 39.8 76.9 36.0 49.1 80.8 23.3 36.1 87.9 33.8 48.8 56.0 20.9 30.4
Ours (Impl.) 51.7 22.2 31.1 79.7 25.3 38.4 72.2 36.3 48.4 78.9 27.0 40.2 88.7 32.2 47.3 59.7 18.9 28.7

reduce the dimension to 512, while before input to the ImplicitModule, the backbone output is input

to two add-on convolutional layers with filter size as 1× 1 to reduce the number of channels of the

feature map to 512.

For the ExplicitModule, Ae(·) and C(·) are both two-layer fully-connected layer neural net-

works with the output dimension as the number of attributes (85 for DomainNet → AwA and I →

AwA, while 253 for DomainNet → LAD) and the number of seen categories plus one unknown

class (Cs + 1), respectively. The hidden layer output dimensions of both Ae(·) and C(·) are 256

and the activation function is ReLU, and the last layer output of Ae(·) and C(·) are followed by

Sigmoid and Softmax, respectively. For ImplicitModule, the prototype layer P consists of da proto-

types group Pj = {pl
j}

mj
l=1 where mj = 3 for each attribute element aj ∈ a, and the shape of pl

j is

1 × 1 × 512. In addition, the activation scores of prototypes observed in the input image are input

to one-layer fully-connected layer without bias as Ai(·) followed by a Sigmoid function to predict

the attributes probabilities. We employ cosine distances for all distance measurement operations

d(·, ·). The framework is optimized by SGD optimizer, and the learning rate for parameters except

the backbone is initialized as l0 = 10−3 with annealing strategy lp = l0
(1+δp)q , where p is the progress

of training epochs linearly changing from 0 to 1, δ = 10 and q = 0.75, which is optimized to pro-

mote convergence and low error during training [163], while the learning rate for the convolutional

backbone is one-tenth of other layers. We construct a validation set consisting of a subset of the

rest target data to apply early-stop during training, and the hyper-parameters are empirically set as

λ = 0.001, α1 = 0.1, α2 = 0.001, β1 = 0.1, β2 = 0.1 for all tasks.
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5.3.3 Evaluation Metrics

To evaluate the capability of the proposed model on the SR-OSDA task recovering semantic de-

scriptions of the target domain both seen and novel categories, we construct two evaluation metrics

to quantitatively measure the performance.

Open-set Domain Adaptation. The conventional open-set domain adaptation protocol is followed,

with the target domain data being broken down intoCs seen categories plus one “unknown” category

[114, 99, 72, 57]. The class-wise average accuracy on the target domain seen categories are reported

as OS∗, while the class-wise average accuracy for the target domain “unknown” group samples is

denoted as OS, to alleviate the influence of the test data imbalance. Besides, the average accuracy

over Cs + 1 seen plus the “unknown” class is reported as OS. Moreover, we observe that the overall

accuracy is dominated by the performance on the seen classes, thus the harmonic mean is calculated

as OSH = 2×OS∗×OS%
OS∗+OS% to fairly evaluate the overall performance of the model on the whole label

space.

Semantic Recovery OSDA. To evaluate the quality of recovered missing semantic descriptions to

the target data, we infer the predicted class label of the target data from the whole label space of

Ct = Cs + K categories by searching the category with the most similar ground-truth attributes as

recovered semantic attributes. The class-wise average classification accuracy on the seen and unseen

categories are denoted as S and U, respectively. Moreover, the harmonic mean H = 2×S×U
S+U is also

reported as the overall performance on the whole label space.

5.3.4 Competitive Methods and Results

We compare our model with different baselines on the three datasets. Specifically, “Ours (conf.)”

denotes the our conference version [50], while “Ours (Expl.)” and “Ours (Impl.)” report the results

calculated based on the attributes predicted by “ExplicitModule” and “ImplicitModule”, respectively.

5.3.4.1 Open-set Domain Adaptation

For conventional open-set domain adaptation (OSDA) problem, we compare our model with several

state-of-the-art open-set domain adaptation methods: OSBP [114], AOD [27], and STA [72]. OSBP
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(a) OSDA (b) SR-OSDA

Ours (Impl.)

Figure 5.2: Analyses about the contribution of each loss term to our model (ImplicitModule) for
task Real → AwA on DomainNet → AwA.

utilizes the adversarial training strategy to extract features from the target data, which is recognized

into seen/unseen classes by a pre-defined threshold [114]. AOD exploits the semantic structure of

open set data from categorical alignment and contrastive mapping to push the unknown classes away

from the decision boundary [27]. Differently, STA adopts a coarse-to-fine mechanism to progres-

sively separate the known and unknown data without any manually determined threshold [72]. The

results are reported in Table 5.2, Table 5.4, and Table 5.5 for DomainNet → AwA, I → AwA, and

DomainNet→ LAD, respectively.

From the results, we observe that the proposed interpretable framework achieves comparable

performance to our conference work, outperforming all compared baselines in terms of overall and

harmonic mean accuracy on most tasks. Especially for task Real → LAD on DomainNet → LAD

in Table 5.5, our interpretable model further improves the performance achieved by the conference

version and outperforms the best-compared baseline over 4.9% and 20.1% in terms of OS and OSH,

respectively. The significant improvements come from our effective framework and the additional

source of semantic information. Moreover, our proposed method reaches promising results on the

unseen classes while keeping performance on the seen classes for all tasks. For example, OSBP

achieves the best accuracy on unknown classes for task Paint→LAD, but fails on the seen categories

classification, resulting in unsatisfactory results OS and OSH. Such an observation emphasizes the

superiority of our method in exploring target domain seen and unseen categories simultaneously.
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5.3.4.2 Semantic Recovery Open-set Domain Adaptation

For the novel semantic recovery open-set domain adaptation (SR-OSDA) problem, we compare our

model with the latest zero-shot learning (ZSL) and generalized zero-shot learning (GZSL) methods,

ABP [175] and TF-VAE [88], under our setting. ABP trains a conditional generator mapping the

class-level semantic features and Gaussian noise to visual features [175]. TF-VAE proposes to en-

force semantic consistency at all training, feature synthesis, and classification stages [88]. Besides,

both ABP and TF-VAE are able to handle generalized zero-shot learning problems given the seman-

tic attributes from the whole target label space. We also report ABP* and TF-VAE*, which take the

extra semantics of unseen target categories as inputs. It is noteworthy that for ZSL models, only the

data and corresponding class labels, as well as category attributes, are available for training, while

for GZSL models, class labels and corresponding semantic attributes of both seen and unseen cate-

gories are known in the training stage. The results are reported in Table 5.3, Table 5.4, and Table 5.6

for DomainNet→ AwA, I→ AwA, and DomainNet→ LAD, respectively.

Within the expectation, all ZSLmethods fail to recognize data from unseen categories and overfit

the seen classes as a result of a lack of ability to handle an open-set setting.

Our proposedmethod achieves promising results in recognizing both seen and unseen categories.

Specifically, our method achieves the best overall accuracy of 68.5% with improved unseen classes

data accuracy to 54.9% while keeping 91.2% performance on seen classes for task Real → AwA.

Moreover, our proposed method even outperforms ABP* and TF-VAE*, although they have access

to both the seen and unseen categorical attributes from two domains, while our method only employs

the seen categories attribute information in the source domain.

5.3.5 Quantitative Analysis

Ablation Study. We compare our complete model with several variants for open-set domain adap-

tation and semantic recovery open-set domain adaptation tasks to analyze the contribution of each

design in our framework, the sensitivity to the hyper-parameters, and the influence of the number of

trainable prototypes. (1) First, to explore the contribution of LP, LR, Lim
sep, and the L1 regularization

of the classifier Ai(·) weights, we set the weights of these loss terms as 0 and evaluate the trained
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Figure 5.3: Parameters sensitivity analyses of our model (ImplicitModule) for task Real → AwA
on DomainNet → AwA dataset.

model for task Real → AwA on DomainNet → AwA dataset, and the results generated by Implic-

itModule are shown in Fig. 5.2. From the results, we notice that the structure-preserving partial

alignment module plays a crucial role in both seen and unseen categories’ performance. (2) Second,

to analyze the sensitivity of the proposed model to selected hyper-parameters, we vary one of α1, β1,

and β2 from 0.01 to 1, or α2 from 1e−4 to 1, while keeping the others as default values in our complete

model, and report the results as the first 4 rows in Fig. 5.3. It is noteworthy that the performance

is not significantly sensitive to the hyper-parameters values in a reasonable range. (3) Moreover, to

study the influence of the number of trainable prototypesmj assigned to the ImplicitModule, we vary
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F1 Score – Ours (Expl.) F1 Score – Ours (Impl.)

Figure 5.4: Analyses of F1 scores of attributes prediction on different attribute groups for task
LAD → Real on DomainNet → LAD dataset.

mj in [1, 2, 3, 6, 10], and report the results as the bottom row in Fig. 5.3. From the results, we notice

that only assigning one prototype for each attribute (mj = 1), the model can perform similarly as

more prototypes are assigned for task OSDA. However, for the SR-OSDA results, we observe that

more prototypes lead to better results, especially for the novel (U) categories as well as the overall

performance (H). It is noteworthy that techniques such as prototype selection, pruning, and sharing

strategies are applicable to the proposed model [11, 51, 111].

Attributes Predictability. In Fig. 5.4, we recognize the 253 semantic attributes into several groups

describing different types of semantic characteristics of the corresponding category following LAD

[169], then report the average F1 scores of predicted attributes from selected groups. From the

results, we notice that the model performs better on some attributes groups describing visual charac-

teristics, e.g., “wing.” However, for some non-visual patterns, the prediction becomes harder only

based on images.

ConfusionMatrix. We compare the confusion matrices obtained by the results generated by the Im-

plicitModule in this work, denoted asOurs(Impl.), and the conference version, denoted asOurs(Conf.).

From the results in Figure 5.5, we notice that the learnable semantic prototypes of the implicit in-

terpretable module benefit the attributes recovery and novel categories discovery. For example,

Ours(Impl.) recognizes 5 out of 10 novel categories (50 classes in total), while Ours(Conf.) only

recognizes 3 novel categories with accuracies over 30%.
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Figure 5.5: Confusion matrix comparison between Ours (Conf.) and Ours (Impl.) on I → AwA
dataset.

5.3.6 Qualitative Visualization

Interpretation of Learned Prototypes. To conceptually visualize the learned prototypes in the Im-

plicitModule, we collect samples from both source and target domain with patches most strongly

activated by prototype pl
j ∈ Pj assigned for the jth attribute, and display selected results with activa-

tionmaps in Fig. 5.6. From the results, we observe the learned prototypes can discover corresponding

semantic characteristics from different classes, e.g., the prototype learned for the attribute “Furry”

discovers such information from cats and dogs. However, we also observe some cases where the

prototypes are not learned as expected, e.g., the bottom row in Fig. 5.6 shows the prototype owe to

represent the “Two-wheel” attribute, but focuses on the top tube of the bicycle frame, although the

F1 score of the corresponding attribute prediction is 0.93. Thanks to the interpretable ImplicitMod-

ule, we are able to reveal the black box of the attributes predictor, improving the transparency and
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LAD Real

Furry
0.96/0.89/0.92

Hairless
0.96/0.81/0.88

Acicular
0.96/0.81/0.88

Feather
0.97/0.87/0.92

Sweet
0.86/0.94/0.90

Two wheels
1.00/0.87/0.93

Figure 5.6: Visualization of selected learned prototypes for specific attribute via the nearest
samples in LAD and Real domains on DomainNet → LAD dataset. The first column lists the
selected attributes and the prediction Precision / Recall/ F1 are reported below the attribute

names.

trustworthiness of the framework.

Semantic Recovery forNovel Categories. In this study, we seek to recover semantic attributes from

seen categories for novel categories with the same characteristics. In Fig. 5.7, the selected attributes

occur in both seen and novel classes in the target domain, and we display some examples with

the attention map generated by the most activated prototypes corresponding to specific attributes.

For example, in the first column, the learned prototype successfully recognizes the “stripes” on the

butterfly and tiger, although the class “tiger” is not known in the training stage.

5.3.7 Discussion and Limitation

This study focuses on exploring a visual prototype-based module to understand the convolutional

layers better and establish an interpretable projection connecting visual images with semantic at-

tributes. However, certain limitations and challenges have been identified for future improvements.

Specifically, we need to consider the hierarchical structure of high-level semantic descriptions for

different category characteristics to enhance representative prototype learning during domain adap-

tation. Additionally, effectively leveraging implicit high-level semantic information from visual

140



Stripes Green White Window Door

Se
en

 C
at

eg
or

ie
s

N
ov

el
 C

at
eg

or
ie

s

Figure 5.7: Comparison of the recovered attributes and the corresponding activation maps
produced by the same learned prototypes between seen and novel categories. All samples are

selected from the target domain of task LAD → Real on DomainNet → LAD dataset.

appearances is crucial for improving classification in the target domain. Furthermore, incorporating

the spatial relationships of different prototypes’ appearances is important for accurate classification

based on multiple parts and local patterns.

5.4 Conclusion

In this work, we explored a novel and practical Semantic Recovery Open-Set Domain Adaptation

(SR-OSDA) problem identifying target domain data from categories seen in the source domain and

recovering the semantic information of the classes unobserved in the source domain with explicit at-

tribute and implicit semantic interpretation. To this end, we proposed a novel framework consisting

of an explicit attribute interpretable module and an implicit prototype-based semantic interpretable

module optimized by structure-preserving partial alignment, visual-structural semantic attributes

propagation, task-driving classification over joint visual-semantic representations, and discrimina-

tive prototypes regularization. Finally, three semantic recovery open-set domain adaptation bench-
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marks were newly constructed to evaluate our model in terms of open-set recognition and semantic

attribute recovery.
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6
Conclusion and Future Directions

In this dissertation, we have made substantial contributions towards addressing the challenges posed

by domain shift and lack of interpretability in visual domain adaptation. Our objective was to im-

prove the accuracy, transparency, and interpretability of transfer learning models. To accomplish

this, we explored the interpretation of visual domain adaptation from feature representation analysis

to the utilization of multimodal semantic knowledge.

Throughout this study, we presented innovative solutions and frameworks to tackle various

transfer learning challenges and explain the domain adaptation process by analyzing the learned

domain-invariant feature representations in the latent space. In the context of unsupervised domain

adaptation, we proposed the Adversarial Dual Distinct Classifiers Network (AD2CN). This network

effectively aligned the data distributions of the source and target domains while preserving category
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boundaries. Building upon this, we introduced the Adaptively-Accumulated Knowledge Transfer

framework (A2KT) to address the label spacemismatch problem in partial domain adaptation (PDA).

A2KT aligns relevant categories across domains while eliminating the cross-domain data distribution

differences. Furthermore, we developed the Augmented Multi-modality Fusion (AMF) framework

to transfer knowledge across different modalities and from seen to unseen categories in the con-

text of generalized zero-shot sketch-based image retrieval (GZS-SBIR). This framework efficiently

generalized seen concepts to unobserved ones, enhancing the applicability of transfer learning. Ad-

ditionally, we proposed the Interpretable Action Decision-Making (InAction) model to improve the

interpretability of autonomous systems, particularly in the context of action decision-making in au-

tonomous vehicles. InAction aligns human-annotated explanations with the decision-making pro-

cess, promoting transparency.

Finally, for the first time, we addressed the Semantic-Recovery Open-Set Domain Adaptation

(SR-OSDA) problem by presenting a novel framework that accurately identified seen categories in

the target domain and recovered semantic attributes for unseen categories. By unraveling the black-

box nature of the domain adaptation, this framework provided valuable insights into the knowl-

edge transfer between source and target data with different label spaces. Moreover, we proposed

an interpretable framework that employed semantic concept-based visual prototypes to uncover the

knowledge transferred across domains.

In conclusion, this dissertation contributes to the development of comprehensive and transparent

transfer learning techniques that tackle the challenges of domain shift and lack of interpretability.

We have presented innovative solutions and frameworks to enhance the accuracy, transparency, and

interpretability of transfer learning models. By fostering collaboration between humans and AI, our

work paves the way for the development of responsible and trustworthy AI systems, contributing to

advancements in various domains. The insights gained from this research endeavor have the poten-

tial to transform the field, ensuring a more transparent and reliable approach to transfer learning.

While this dissertation has made significant progress, several challenges and avenues for future

research remain. Further exploration is necessary to align the source and target domains with signif-

icant domain shift while preserving performance and equipping the interpretation to the knowledge

transfer process. Additionally, integrating ethical considerations and fairness into transfer learning
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frameworks is an important direction for future investigation. Moreover, Large Language Models

(LLMs) have made remarkable strides in recent years, showing exciting possibilities in the integra-

tion of visual input and intelligence acquired from vast amounts of language data. These advance-

ments hold immense potential for enhancing knowledge transfer in an open-vocabulary world, all

while ensuring that human-friendly explanations are provided simultaneously.
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