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Abstract 

In the last two decades, topological data analysis (TDA) has started to become part 

of the data science toolkit. In this thesis, we study topological methods to address 

the challenges in developing provable shape reconstruction techniques. We focus 

on the topological and geometric reconstruction of a (hidden) geodesic subspace 

of !RN from a finite, noisy point-cloud sampled around it. We use the Cech and 

Vietoris-Rips complexes to devise novel and provable reconstruction algorithms. 

Our reconstruction technique leverages the intrinsic length metric induced by the 

geodesics on a geodesic space. We recognize the distortion and convexity radius as 

new sampling parameters for a successful reconstruction. For a geodesic subspace 

with finite distortion and positive convexity radius, we guarantee a correct compu­

tation of its homotopy and homology groups from a Hausdorff-close sample. Being 

inspired by the practical applications in road-network or map reconstruction, we 

also consider the geometric reconstruction of embedded metric graphs. To take our 

study of metric graphs one step further, we delve into a discrete Morse theoretic 

approach for the geometric reconstruction of graphs from a non-uniform sample 

with outliers. We survey the recent density-based developments, and propose an 

improved noise model that leads to a more efficient algorithm for better geometric 

guarantees. The Gromov-Hausdorff distance has been proposed as a robust frame­

work for shape comparison. We investigate the pivotal challenges pertaining to 

the efficient computation of the distance measure between two Euclidean sets. We 



advance our understanding of the distance by answering an open question posed 

recently. In effect, our findings give rise to an O{nlogn}-time approximation algo­

rithm with an approximation factor of ( 1 + ¾) . 
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Chapter 1 

Introduction 

The beginning is the most important part of the work. 
- Plato, The Republic 

This introductory chapter sets the stage for the chapters ahead. Along with delin­

eating our general motivation behind the problems considered, this chapter serves 

as the manifesto of this thesis. We take the readers on a quick tour to catch a bird's­

eye view of the major inspirations and contributions of the corpus. We spare the 

readers of the mathematical details in this introduction, hoping to make the ride as 

gentle as possible. 

Section 1.1 introduces the readers to the field of topological data analysis- the area 

where we think our contributions are best recognized. With a brief introduction to 

the realm of shape reconstruction and some of the pivotal challenges, the section 

also lays out our motivation behind the type of problems we consider in this work. 

The summary of our contributions is bestowed in Section 1.2. 
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1.1 Motivation 

The success of computer science and engineering in developing sophisticated tech­

nologies to acquire and store large amounts of complex data has overwhelmed-as 

well as intrigued-the curious minds from almost all fields of science. With increas­

ing CPU clock-speed, data sampling-rates have become unprecedented. Alongside, 

there have been constant efforts to develop database designs to suit diverse data­

structures, and to enhance storage, query, and portability considerably. As a result, 

large data repositories are being produced and made available for analysis. In the 

last two decades, such a turn of advancements in the data-world has brewed indus­

trial incentives, as well as sheer attention from academic researchers. 

In the early days of science, one would stare at a physical or chemical process for 

a long time in the hope to unveil its nature and cause. Instruments used for such 

observations were primitive, hence the tabulated data were erroneous. Analysis 

of data-spatial and time-series-has always been an inseparable part of science. 

In spite of its power, data had been disparagingly conceived of as a mere tool for 

science-never been considered a science itself. 

In the last two decades, the emergence of data of astronomical volume and great 

complexity brought about a new school of thought: data-driven and data-centered 

research. Data has become a science now. Unlike the old times, the objective 

has now become to obtain knowledge about the data, rather than from the data. 

Researchers from all fields of science are lending themselves to organizing, de­

noising, and analyzing data. Such an invitation was naturally extended to topolo­

gists and geometers as well. Computational topology-and its subfield topological 

data analysis-started to become part of the data science toolkit. 

Topological data analysis (TOA) is a growing field of study that helps address data 
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analysis questions. TDA is deemed a better alternative to traditional statistical ap­

proaches when the data inherit a topological and geometric structure. Examples of 

such data include medical images of brain-tumors, 30 point-clouds scanned around 

a geometric shape, GPS locations sampled from vehicles on a road-network. 

In such real-world applications, the data approximate a (hidden) geometric shape. 

In the last decade, topological and geometric reconstruction of a hidden shape from 

a point-cloud sample has received increasing attention. Notable developments have 

been made to encompass shapes of various types: smooth manifolds [5,6], compact 

sets with positive weakfeature size [7-9], geodesic spaces [3], metric graphs [10-

12], etc. 

The challenges in developing provable and efficient shape reconstruction algorithms 

come from the noise present in the sample. As with the type of shape, reconstruction 

techniques change considerably with the type of noise present in the sample. A 

commonly assumed noise model is Hausdorff noise, where data are assumed to be 

sampled from a very-thin tubular neighborhood of the underlying shape. Shape 

reconstruction faces additional challenges under non-Hausdorff noise, where the 

data is non-uniform and noisy with distant outliers. Although the literature of shape 

reconstruction expanded relatively wide in the former realm, reconstruction under 

non-Hausdorff noise is not yet well-understood. 

We undertake the reconstruction problem of Euclidean geodesic subspaces under 

Hausdorff noise. Using Rips and Cech complexes, we develop novel and provable 

reconstruction techniques-both topological and geometric. Our investigation is 

also extended to the reconstruction of road-networks (viewed as metric graphs) 

under non-Hausdorff type noise that more closely reflect real data. Road-networks 

are special types of geodesic spaces. And, a great amount of spatial GPS data is 

publicly available for analysis. Although many map construction algorithms work 
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well in practice, most of them suffer from the lack of theoretical guarantees. We take 

a discrete Morse theoretic approach, accounting for a more realistic noise model. 

Along with reconstruction, our investigation also reaches to an equally important 

domain of topological data analysis: shape comparison. Being a natural distance 

measure between two metric spaces, Gromov-Hausdorff distance is receiving a fair 

amount of attention as a robust framework for shape comparison and matching 

(13]. We advance our understanding of Gromov-Hausdorff distance between Eu­

clidean subsets by solving an open problem posed in [14], addressing some of the 

major challenges pertaining to its efficient computation. 

1.2 Contributions of this Thesis 

The contribution of this work straddles between topological data analysis and corn• 

putational geometry. Euclidean shape reconstruction claims the lion's share of our 

work; whereas, only the last chapter is devoted to shape comparison. Here we give 

a quick preview of the major developments that entail our investigation. Chapter 2 

makes our readers (re)acquainted with the basic and relevant notions from topol­

ogy and geometry. As the title of this thesis alludes, the work is divided into two 

logical parts: reconstruction (Chapter 3-Chapter 6) and comparison (Chapter 7). 

In Chapter 3-following a brief introduction to the domain of shape reconstruction­

we present our result on smooth curve reconstruction. We also introduce here some 

of the important developments and techniques in the reconstruction of compact 

subsets of Euclidean spaces. 

We develop our topological reconstruction techniques for geodesic subspaces (Def­

inition 4.2.1 ) in Chapter 4. One of the major contributions of this work is to re­

construct geodesic subspaces of RN, both topologically and geometrically. In our 
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pursuit, we recognize distortion (Definition 7.2.4) and convexity radius (Defini­

tion 4.2.4) as new sampling parameters. These sampling parameters are very nat­

ural properties of geodesic spaces, and they are not very difficult to estimate. Also, 

when comparing with wfs, convexity radius and distortion appears to be more sta­

ble under small perturbations of the underlying space. 

In Section 4.3 and Section 4.4, our main topological reconstruction results for a 

geodesic subspace X of IR: N are presented. If the distortion is finite and the convex­

ity radius is positive, the persistent homology of both the Cech and Vietoris-Rips 

filtration of the sample are shown to successfully capture the homology and homo­

topy groups of X as proved in Theorem 4.3.4 and Theorem 4.4.5 respectively. 

Theorem 4.3.4 (Reconstruction via Rips Filtration). Let X be a geodesic subset of !RN 

with a positive convexity radius p and finite distortion £,. Let S be a finite subset of IR N, 

and let £ be a positive number such that 

Then, for any non-negative integer k, the homology group Hk(X) is isomorphic to the 

image of the homomorphism induced by the simplicial inclusion 

Theorem 4.4.5 (Reconstruction via Cech Filtration). Let X be a geodesic subset of !RN 

with a positive convexity radius p and finite distortion &. Let S be a finite subset of !RN, 

and let £ be a positive number such that 

Then, for any non-negative integer k, the homology group Hd X) i.s isomorphic to the 
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image of the homomorphism induced by the simplicial inclusion 

Taking the investigation one step further in Chapter 5, we present our geometric 

reconstruction results for metric graphs (Definition 5.3.1). We consider the geo­

metric reconstruction of geodesic subspaces. We construct a complex on the sample 

as our geometric reconstruction of the space of interest. Theorem 5.2.3 establishes 

the isomorphism of their fundamental groups. As an interesting application in Sec­

tion 5.3, we consider the geometric reconstruction of embedded graphs of IR:2 . In 

Theorem 5.3.4, we compute a homotopy equivalent geometric complex in the same 

ambient space that is also Hausdorff-close to X. Since the sample S can be taken to 

be finite, our result gives rise to an Algorithm 1 for the geometric reconstruction of 

planar embedded graphs. 

Theorem 5.3.4 (Geometric Reconstruction of Embedded Graphs). Let G be a con­

nected embedded graph in IR2. Let b be the length of the shortest simple cycle of G, and 

let b be its distortion. Let S ~ IR2 and £ > 0 be such that dtt ( G, S) < f < 46nto+zi · 

Then, the shadow of R ;(0(S), denoted G, has the same homotopy type as G. Moreover, 

we have 

We extend our study of metric graphs in Chapter 6 to consider a discrete Morse 

theoretic approach to their geometric reconstruction. Following the trail of the 

recent development in [15], we investigate the application of discrete Morse theory 

([16]) to develop provable and efficient algorithms for geometric reconstruction 

of embedded graphs. We propose an improved threshold-based noise model to 

account for more realistic use cases and to achieve better geometric reconstruction 
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guarantees. 

Finally, we devote Chapter 7 to address the computational aspects of Gromov­

Hausdorff distance (Definition 7.2.2) for Euclidean subsets. Our major contribu­

tion is to provide a satisfactory answer to the quest of understanding the relation 

between dH,iso (Definition 7.3.1 ) and d GH when X, Y are compact subsets of Jil 

equipped with the standard Euclidean metric. At the same time, we keep our 

broader goal of addressing the challenges in computing Gromov-Hausdorff dis­

tance in higher Euclidean dimensions. We introduce and explore some of the nice 

structural properties of nearest neighbor correspondence (Definition 7.3.5) in con­

nection to dG H; see Lemma 7.3.6, Theorem 7.3.7. In Theorem 7.4.3, we show 

that dH,iso(X, Y) :s; ~d GH( X, Y) for any compact X, Y C !R1• For subsets of the 

real line, it was believed for a long time that dGH = dH,iso• Providing an answer 

to the open question posed by the authors of [1 4], we show in Theorem 7.4.11 

that this is, in fact, not true by showing that the bound ~ in Theorem 7.4.3 is 

tight. Since dH,iso{X, Y) can be computed in O(nlogn)-time ([17]), our result ef­

fectively gives rise to an O(nlogn)-time algorithm to approximate d GH( X, Y) for 

finite X, Y c R 1 with an approximation factor of ( 1 + ¾). 

Today is only one day in all the days that will ever be. But what will happen in all 
the other days that ever come can depend on what you do today. It's been that way all 

this year. It's been that way so many times. 
-Ernest M. Hemingway 
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Chapter2 

Preliminaries on Topology 

Point set topology is a disease from which the human race will soon recover. 
-Henri Poincare 

Concepts and tools from topology-especially algebraic topology- inspire our meth• 

odologies and results. In order to better appreciate the contribution of this work, 

our readers are expected to have a basic understanding of algebraic and combi­

natorial topology. Concepts-like simplicial complexes, nerve lemma, homology, 

homotopy groups-make appearances throughout the work. The purpose behind 

squirreling away these important notions in the very beginning is two-fold: to make 

the thesis self-contained, and to allow readers skip or skim through the chapter at 

their own discretion. 

In this chapter, we provide some useful notations and classical results from algebraic 

and combinatorial topology. We give a brief overview here; for more detailed and 

complete treatment, we refer the interested readers to [18- 20]. 



9 

Section 2.1 presents the important concepts from algebraic topology: homotopy 

of maps, fundamental group, and higher homotopy groups. In Section 2.3, we 

describe the notions from the simplicial category. 

Remarks 2.0.1. Unless otherwise stated, a space means a topological space, and a 

map between two topological spaces is assumed to be continuous. 

2.1 Homotopy 

The intuitive concept of continuously deforming a shape into another shape is em­

bodied in the notion of homotopy. 

Definition 2.1.1 (Homotopy). Let f, g : X ~ Y be maps. A map H : X x I ----"t Y is 

called a homotopy between f and g if for all x E X, 

H(x, 0) = f(x), and H(x, 1) = g(x). 

the maps f and g are called homotopic, denoted as f ~ g. 

We state that the relation of homotopic maps is an equivalence relation. An inter­

ested reader is encouraged to take a detour to [20, p.24] for the proof. 

We now define a more general notion: homotopy relative to a subset A C X. For 

maps f, g : X ----'t Y that agree on a subset A c X, if there exists a homotopy H : 

X x I ----'t Y such that H( a, t ) = f ( a ) for a E A, then f, g are called homotopic 

relative to A. We write f ~ g rel A. For A = 0, we are back to our usual homotopy, 

and we simply call f and g homotopic. 

Finding a homotopy between maps can sometimes be a non-trivial task. In case of 

convex subsets of a vector space, however, the straight-line homotopy is a popular 

choice (see Example 2.2.1). 
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Example 2.1.2 (Straight-line Homotopy). Let X be any topological space and Y c m:N 

be convex. Then, any two maps f, g : X --t Y are homotopic. Using the fact that Y is 

convex, we can use the straight-line homotopy H : X x I ---t Y defined by 

H(x, t ) = tf(x ) + (1 t )g(x ). 

□ 

The concept of homotopy gives rise to the definition of continuous deformation of 

spaces via homotopy equivalence. 

Definition 2.1.3 (Homotopy Equivalence). A map f : X --:} Y is called a homotopy 

equivalence if there exists another map g : Y ---t X such that 

g o f '.'.:::'. 1 x and f o g ~ 1 y. 

We note that g is also a homotopy equivalence. In this case, the spaces X and Y 

are called homotopy equivalent or said to have the same homotopy type. Like homo­

topy of maps, homotopy equivalence between spaces is also an equivalence relation. 

The relation is weaker than homeomorphism; however, strong enough to force two 

homotopy equivalent spaces to share the same homotopy and homology groups. 

See Example 2.1.5 for an example. 

We conclude this section with a very special case: when the inclusion A ~ X is a 

homotopy equivalence. The space X is thought to be continuously deformable to 

the subset A. 

Definition 2.1.4 (Deformation Retract). Let A be a subset of a space X, and let i 

denote the inclusion map. If there exists a map r : X --t A such that i ~ r rel A, 

then X is said to deformation retract or retraction onto A. 
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Example 2.1.5 (Homeomorphism and Deformation Retration). Consider the (com­

pact) Mobius band Mand the unit circle 51
. They are definitely not homeomorphic­

punctured Mis not contractible, whereas punctured 51 is. However, Mis homotopy 

equivalent to 51 because there is a deformation retraction of M to its center circle. 

[_J 

2.2 Homotopy Groups 

In this section, we touch upon the basics of fundamental group and higher homo­

topy groups. 

2.2.1 The Fundamental Group 

With the concept of homotopy at our disposal, we can now define the fundamental 

group 7r1 (X1 x0 ) of a space X at a base-point x0 E X. The underlying set of the group 

is defined to be the homotopy classes ofloops y: I ---t X on X with y (O) = y (l ) = x0, 

where the homotopies H are required to follow H ( 01 t ) = H (1 1 t ) = x0 for all t E I. 

The homotopy class of a loopy is denoted by (y]. We illustrate the concept of loop 

homotopy in Example 2.2.1. 

C 

Figure 2.1: Three loops y 1 , y 2, and TJ are are based at x0 on the hollow cylinder C. 

Example 2.2.1 (Loops on Cylinder). We take the (hollow) cylinder C as show in 

Figure 2.1. Three loops are considered at the base-point x0 . The two (blue) loops 
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yi, Yz are homotopic, i.e., [y d = [y z] . Unlike them, the (red) loop 11 does not wrap 

around C. So, [11] =/; [y i] . 

The cylinder is homotopy equivalent to a circle, consequently n 1 (§1, x0 ) = Z; follow 

[21] for a proof. The class [11] provides the identity element, and [y d is a generator 

of the cyclic fundamental group of S. □ 

In order to turn the set n 1 (X, Xo) into a group, we first define the binary operation: 

composition of loops. Given two loops Y1i Y2 : I -----t X with Y1(O} = y i( l ) = Yz(O) = 

yz( 1) = x0, define their composition 

{

YI (2s ), 
(Y1 • Y2H s) = 

Y2(2s 1 ), 

s E [0, ½] 

s E(½,1 ] . 

The operation respects the homotopy equivalence relative to the base Xo- Therefore, 

the operation extends to homotopy classes of loops, i.e., the operation [y i] . IY2l = 

[Y1 • Y2J on 1t1 (X, Xo) is well-defined. Now, it is a matter of following the definition 

to check that {n 1(X, x0) , . ) is, in fact, a group ([20, p.46]). This group is called 

the fundamental group of X at the base-point x0. The fundamental group becomes 

independent of the base-point if X is path-connected. See any of the references 

mentioned before for the computation of fundamental groups of widely used topo­

logical spaces. 

2.2.2 Higher Homotopy Groups and Whitehead's Theorem 

To generalize the definition of the fundamental group, we define higher homotopy 

groups nkf X, x0 ) for any k ~ 0. Let Jk = (0, 1 ]k denote the k-dimensional unit cube. 

We also let a Jl: denote the boundary of IN. For k ~ 2 and base-point Xo E X, we 

first define nk(X, x0) to be the set of homotopy classes of maps f : Jk -----t X with 
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f(cHk) = {x0}, where the homotopies H(x, t ) follow H(x, t) = xO for all t E I and 

XE ark. 

For k = 0, in the degenerate case, 1° can be taken to be just a point, so a r0 = 0. 

Therefore, no(X, x0 ) is the set of the path-connected components of X. 

Fork 2: 1 and f, g: I" -+ X with f(aik) = g(olk) = {x0}, we define the composition 

S1 E [0, ½] 

S1 E [h 1] . 

One can also check that under composition, nk(X, x0 ) forms a group: the k-dimensional 

homotopy group of X at the base-point xo. 

If cp: X ~ Y such that f(x0) = 'Y o, then it induces a homomorphism cp. : n"( X, x0) -+ 

nk(Y, -y0 ) defined by cp ([yl) = [cp(y )] . It can be proven that cp* is well-defined and is 

a homomorphism. 

We conclude our discussion on homotopy groups by stating the prestigious White­

head's theorem. 

Theorem 2.2.2 (Whitehead [18]). Let X, Y be connected CW-complexes. If a map 

f : X -+ Y induces isomorphisms f * : nk(X, x0} -+ n1c(Y) for all k 2: 0, then f is a 

homotopy equivalence. 

Furthermore, if X is a subcomplex of Y and f is the inclusion map, then X is a 

deformation retraction of Y. 

2.3 Simplicial Complexes 

The combinatorial analog of a topological space, often used in algebraic and com­

binatorial topology, is an abstract simplicial complex. 
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2.3.1 Abstract Simplicial Complex 

An abstract simplicial complex 1C consists of a set V(1C) and a collection :F(1C) of 

finite non-empty subsets of V{1C) such that 

(i) each singleton subset of V (1C) belongs to :F(1C), and 

(ii) if er is an element of :F( 1C), then so are all its non-empty subsets. 

The elements of V(1C ) are called the vertices of 1C and elements of :F(1C) are called 

the simplices of K. If a simplex er E :F( 1C ) has ( q + 1) elements, it is called a q­

simplex (or the dimension of er is q or dim( er) = q). A q-simplex er is also sometimes 

denoted as rr(q l . 

If-rlP- 1 1 
·~ cr1P1

, then -r is called aface of er, written as -r < er. If-r < er, then er is 

called a co-face of -r. When there is no possibility of confusion, the abstract simplicial 

complex is sometimes abbreviated to "complex". 

Example 2.3.1 (Abstract Simplicial Complex). To give an example of an abstract 

simplicial complex 1C, take the vertex set 

and the simplices 

The complex has four 0-simplices, four 1-simplices, and one 2-simplex; see Fig­

ure 2.2. 
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eo, 
v, 
0 

voe I 
e 12 

eo2: 
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Figure 2.2: The blue points constitute the vertex set of the abstract simplicial complex. The red edges 
denote the 1-simplices, and the green triangle denote the 2-simplex. The union, in the subspace 
topology of the plane, is the associated geometric complex. 

2.3.2 Simplicial Maps and Contiguity 

Let K1 -t K2 be abstract simplicial complexes. A map ct> : V(K 1) to V(K2), also 

called a vertex map, is said to induce a simplicial map ct> : K1 -t K2 if ct>( er) E .r( K2) 

whenever er E F(K1 ). A simplicial map between abstract simplicial complexes is the 

combinatorial analogue of a continuous map between topological spaces. Likewise, 

contiguous simplicial maps play the role of homotopic maps in the combinatorial 

world. Two simplicial maps ct> ,, cl>z : K 1 ~ K 2 are called contiguous if for every 

simplex er1 E K 1 there exists cr2 € K 2 such that ct> 1 ( er1) U cl>2{ er,) ~ az. 

Although abstract simplicial complexes have enough combinatorial structure to de­

fine simplicial homology and homotopy, they are not topological spaces. For an 

abstract simplicial complex K, one can define its underlying topological space de­

noted IKI, to be the union of the formal convex-hulls of its simplices. As a set, IKI 
is the space of all functions ex : V(K) -t [O, l l, also called barycentric coordinates, 

satisfying the following two properties: 

(i) supp {ex) := {v E V(K} I cx(v) -=/= O} E :F(K ) 

(ii) L ex(v) = 1. 
vEV(JCl 
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The details on the topologies on j ,q and their relations can be found in [19, 20]. 

In this work, we use the standard metric topology on l1CI. Naturally, a simplicial 

map¢: 1C1 -+ 1C2 induces a continuous map 1¢ t : l1Cd -+ l1C2I defined by 

1¢l(a Hv) = L a (v). 
vEV (K:1 t 

As one expects, the contiguous simplicial maps induce homotopic continuous maps 

between their respective underlying topological spaces; see (20] for a proof. 

2.3.3 Cech and Vietoris Rips Complexes 

Consider a subspace A of a metric space (M, d} and a positive scale L 

The nerve (defined in Section 2.4) of the collection of open £-balls centered on the 

points of A is known as the Cech Complex of A at a scale L For X <;;; IR N under 

the standard Euclidean metric, we denote it simply by Ct(X). In the case when 

A ~ X under the length metric (X, dL) (defined in Chapter 4), we denote the Cech 

complex by C~(A). 

The Vietoris-Rips Complex is an abstract simplicial complex having a k-simplex for 

every set of (k + 1) points in A of diameter less than L It is clear from the definition 

that explicit knowledge about the entire metric space (M, d) is not needed to com­

pute the complex. Unlike the Cech complex, the Vietoris-Rips complex is completely 

determined by the restriction of the metric to the subset A. For X ~ R N under the 

standard Euclidean metric, we denote it simply by 'RA X) . In the case when A ~ X 

under the length metric (X, dd , we denote the Cech complex by 'R,~(A }. 
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2.4 Nerve Lemma 

Most of the proofs in this work depend on the Nerve Lemma or a modification 

thereof. An open cover U = {UdieA of a topological space X is called a good 

cover if all finite intersections of its elements are contractible. The nerve of U, de­

noted N(U), is defined to be the simplicial complex having A as its vertex set, and 

for each non-empty k-way intersection Ui, n Ui2 n ... 11 Uik, the subset {i.1, i.2, ... , i.r.:.} 

is a simplex of N(U). Under the right assumptions, the nerve preserves the homo­

topy type of X, as stated by the following fundamental result. 

Lemma 2.4.1 (Nerve Lemma [22]). Let U = {Ui)leA be a good open cover of a 

para-compact topological space X. Then, the underlying topological space IN (U }I is 

homotopy equivalent to X. 

Remarks 2.4.2. A homotopy equivalence h : X ~ IN(U) I in the Nerve Lemma is 

usually constructed with the help of a partition of unity { <PiliEA subordinate to the 

locally finite open cover U (c.f. [18]). Specifically, for x E X, h{x) is defined as 

follows: 

h (x) = L <Pd x)vh X E X, (2.1) 
i e'A 

where vi denotes the vertex of N (U ) corresponding to the cover element Ut. And, 

each <Pi : X ~ [O, 1] is a continuous function satisfying the following two require­

ments: (i) supp( cpd ~ Ui, for all i E A, and (ii) .L,eA <Pi( x) = 1, for all x € X. 
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Chapter3 

Introduction to Shape Reconstruction 

It is the mark of an educated mind to rest satisfied with the degree of precision which 
the nature of the subject admits and not to seek exactness where only an 

approximation is possible. 
-Aristotle 

This chapter presents the basic concepts and challenges of Euclidean shape recon­

struction. Along with some of the important developments in applying topological 

tools to shape reconstruction, we also discuss their limitations. In light of the short­

comings, the discussion motivates our methodologies, and helps the reader discern 

the importance of our contribution, which is presented in Chapter 4, Chapter 5, and 

Chapter 6. 

3.1 Motivation 

With the advent of modem sampling technologies, such as GPS, sensors, medical 

imaging, etc., Euclidean point-clouds are becoming widely available for analysis. 
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In the last decade, the problem of reconstructing an (unknown) Euclidean shape, 

from a (noisy) sample around it, has received far and wide attention both in the­

oretical and applied literature; see [5, 7- 9, 23, 24]. The nature of such a recon­

struction attempt can commonly by classified as being topological or geometric. A 

topological reconstruction is usually attributed to inferring the significant topolog­

ical features-such as homology and homotopy groups-of the hidden shape of 

interest. A much stronger paradigm is a geometric reconstruction, where one is 

interested in computing, from the sample, a homotopy equivalent shape that is 

geometrically "close" to the ground truth. 

The nature of the problem and the techniques of the solution change depending on 

the type of the shape X and the sample S considered, as well as how their "close­

ness" is measured. The most natural distance measure between two abstract metric 

spaces is the Gromov-Hausdorff distance (Definition 7.2.2), it measures how much 

two metric spaces are "metrically close". The reconstruction of a geodesic met­

ric space X from another metric space S, that is Gromov-Hausdorff close to X, is 

considered both in [25, 26]. For a Euclidean shape X and a Euclidean sample S, 

however, the sample density is usually quantified by their Hausdorff distance (Def­

inition 3.1. 1). 

Definition 3.1.1 (Directed Hausdorff Distance). For any two compact subsets X, Y 

of a metric space ( Z1 dz), the directed Hausdorff distance from X to Y, denoted 

d~(X, Y), is defined by 

sup inf dz ( x1 -y ). 
xEX yEY 

Unfortunately, the directed Hausdorff distance is not symmetric. To retain sym­

metry, the Hausdorff distance is defined in the following way: 

Definition 3.1.2 (Hausdorff Distance). For any two compact subsets X, Y of a metric 
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space {Z, dz ), their Hausdorff distance, denoted d~ (X, Y), is defined by 

To keep our notations simple, we drop the superscript when it is understood that Z 

is taken to be a Euclidean space and X, Y are Euclidean subsets equipped with the 

standard Euclidean metric I · I. 
The definition immediately imply that dH{A, B) < E {=:::} A( c Band B( c A, 

where 

A ( := LJ IB( a, c:). 
ae A 

For the Hausdorff-type reconstruction of Euclidean shapes, see [5, 7- 9]. These re­

sults do not apply when considering shapes beyond the class of Euclidean subman• 

ifolds and shapes that do not have a positive weak feature size (defined later in 

Subsection 3.4.1). This chapter briefly surveys some of the important and related 

developments in shape reconstruction from point-clouds using topological meth­

ods. Table 3.1 presents a list of some of the most related results alongside our 

contribution. 

3.2 Manifold Reconstruction 

The most well-behaved spaces are smooth Euclidean (compact) sub-manifolds. Ex­

amples include smooth, closed curves of !RN , the smoothly embedded n-dimensional 

sphere §n, etc. Geometric and topological inference about an unknown manifold 

from point samples is commonly known as manifold learning. 

Smooth Euclidean sub•manifolds-being free of topological anomalies, like punc­

tures, corners, singularities-seem deceptively easy to reconstruct. The authors of 
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Table 3.1: Reconstruction results. Parameters (params.) are: normal injectivity radius (To ), weak 
feature size (wfs), reach (µ), shorted edge length (b), global reach (E.), smallest turning angle (tX), 

distortion (6), and convexity radius (p). 

Authors Shape X ~ Params Conditions on Sample S Reconstruction Result 
]RN 

Niyogi et al. manifolds 'T e < ;-iT and S c X is SE deformation retracts 
[SJ 1-dense to X 

Chazal, compact sets wfs dH (X,S ) < £ < llfst ) Im(i. ) :::::: H. (X"' ), where 
Lieutier i : Sc --4 S3 ' and tX is suf-
[9] ficiently small 

Chazal, compact sets wfs dH [X, S) < e < i wfs(X), Im{i.) :::::: H.(X" ), where 
Oudot [7] S is finite i: 'RE (S) --4 'R-4c( S ), tX is 

sufficiently small 

Attali et al. compact sets µ dH (X, S) ::; £ < "cech(µ)R C,. (S) is homotopy 
(27] equivalent to x11 for 

Tl E (0, R) 

Anjaneya metric graphs b, r Sis an (e, R)-approximation, homeomorphic graph 
et al. (11] l~ c < b < min{¾, !(b - 2e )} 

Wasserman metric graphs µ of S is !-dense in X"', isomorphic pseudo-
et al. (28] each 0 < r + 6 < l - 2cr, and graph 

edge, 0 < 6 < f(b, tX, T, E.., CT) 
E.., (X, 

b,T 

Theorem 4.3.4 geodesic 6,p dH (X, S) < ¼ < Zli (J~+Zl Im{i.):::::: H. (X), where 
subspaces i 'R-, (S) --4 

'R,½ (3b+ I )r ( 5 ) 

Theorem S.3.4 planar metric 6,b d~i(X,S ) < 1 < 46 (1:6+2 ) Hausdorff-close, homo-
graphs topy 

equivalent graph 

[5] were the first to successfully apply geometric and topological tools to manifold 

reconstruction from a dense point-cloud. The novelty lies in providing provable 

guarantees of correct reconstruction and introducing a new sampling parameter: 

normal injectivity radius; see Definition 3.2.1. 

Definition 3.2.1 (Normal Injectivity Radius [5]). Let M be a compact smooth n­

manifold embedded in RN. The normal injectivity radius Tis defined as the largest 

number r having the property: the open normal bundle of M of radius r is embed­

ded in RN. 
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The normal injectivity radius is a property of the embedding, rather than the 

manifold. It follows from the definition that -r of a sphere of radius R is R. 

Figure 3.1: Consider the unknown manifold M to be a circle § 1 of unit radius embedded in R1 . The 
injectivity radius is 1. The sample points are shown in black. For a radius smaller than , = I, the 
union of (green) Euclidean balls around them is shown to be homotopy equivalent to the shape. The 
picture has been generated using www.smajhi.com/shape- reconstruction. 

In [5], the authors consider the union of Euclidean balls of sufficiently small radius 

around a dense sample S; see Figure 3. 1. The density of a sample is quantified by 

the following notion of £-density. 

Definition 3.2.2 (t:-dense Sample). For positive£ > 0 and X ~ ~ N, a subset S of !RN 

is called r-dense if Xis covered by the £-thickening S l of S, i.e., 

Here IIB(s, r) denotes the£ radius Euclidean ball centered at the points. 

We now state the main manifold reconstruction result of [SJ. 

Theorem 3.2.3 (Manifold Reconstruction [SJ). Let M be a smooth submanifold 

of JR N with the normal injectivity radius 't'. Let S c M be an f -dense sample and O < 
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£ < J-r. Then, the union u = u,q ES IIB( x, £ } deformation retracts to M. Therefore, 

homology of U equals homology of M. 

We first present a sketch of the proof of Theorem 3.2.3, and make a few remarks 

on the conditions of the theorem. For a point p E M, let us denote the tangent 

space and the normal space at p by Tp and NP respectively. Let us also define the 

fiber 7C
1 (p) to be Np nu. It has been argued that 7'{ I (p) becomes path-connected 

if £ < JT and the sample is ½-dense. Finally, the required deformation retraction 

is devised along those fibers. 

The obligatory /i factor comes as a side-effect of the technique used. However, the 

result seems to hold without the factor and for just an £-dense sample. In Figure 3.2, 

the unknown manifold is taken to be a smooth planar curve. The fiber at the point 

p is not path-connected, so the technique of the proof is not applicable in this case. 

However, the result still holds. 

In Section 3.3, we use a different approach for a stronger reconstruction of the 1-

dimensional case: smooth (closed) curve of ~ N, but under conditions weaker than 

those of Theorem 3.2.3. 

3.3 Smooth Curve Reconstruction 

We consider M to be a closed, smooth curve embedded in JRN. The homology of M 

is not very interesting here, as M is homotopy equivalent to a circle. Although the 

homotopy type of a closed one-manifold is not very interesting, our homeomorphic 

approximation sheds light on the geometric embedding of the (hidden) manifold. 

Also, our proof works even in the bad case shown earlier in Figure 3.2 . 
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p 

Vz 

Figure 3.2: The part of the manifold is shown in blue. The Euclidean balls of radius £ < T around 
v1, v2 are shown in grey. The fiber (red perpendicular) at pis disconnected. A case where the proof 
of [5] does not work, however the result holds true. Note that the sample is not 1 dense. 

Theorem 3.3.1 (Geometric Reconstruction of Smooth Curves). Let M be a closed, 

smooth curve in R N and let -r be its normal injectivity radius. Let O < e ::; -r, and 

let S c M be an £-dense sample. Then, the medial axi.s of S' is homeomorphic to M. 

As a consequence, S' and M are homotopy equivalent, since the author of [29] 

have shown that any bounded open subset of Euclidean space is homotopy equivalent 

to its medial axis. 

Proof We denote the curve by y : I -----t M with y (O) = y { 1) = x0. Let us also 

denote the tubular neighborhood of M by ME. We now enumerate the points of S 

by {x1, x2, ... 1 xd, where xi = y ( td and t i ::; t i+ 1; see Figure 3.3. 

Now, {ti} introduces a partition Mi of y, where Mi = y ((ti, tH1J) and i E 

{l, ... , k}. 

Observe that, each IIB(x i, £)-the ball around xi-touches the tubular neighbor-
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hood M t exactly at two points, say u i and l1. Let's denote Ni = Uili, the nor­

mal passing through the sample point Xt, These special normal lines partition the 

tubular neighborhood into k regions {Mfli• 

Figure 3 .3: The part M f of the !_,mooth curve between the sample points x, and x, _., 1 is shown in 
blue. The red segment denotes M,. 

Let's introduce M to be the piecewise linear curve joining xi's in the respective order 

and Mi = xixi+ 1. We show that M is homeomorphic to M. 

-Observe that M is also the medial axis of St . Within Mf we introduce a homeomor-

phism between Mi and M, locally, and extend it globally so that it retains continuity 

since they agree on each N,. 

We define a homeomorphism <Pi : Mi --i Mt for each Mf in the following way. If we 

draw a perpendicular l at any point z on rvt, we show that l cuts Mi, the manifold 

at exactly one pointy and define <P,{x) := y. As a consequence, this proves that M, 

is a continuous graph on Mt, hence a homeomorphism. 

On the contrary, let's assume that there is a perpendicular L at a point x on M, that 
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-intersects Mt at least two points z1 and z2 • We arrive at a contradiction by showing 

that there is a point z on Mi such that the normal Tz at z is parallel to M i. 

Without the loss of generality, we assume that L cuts the manifold at both z1 and z 2. 

We note that z, and z2 are points on the manifold and tangents Tz1 and Tz2 are not 

parallel to L By continuity of the tangents of M we conclude that there exists a 

point z on Mi such that Tz is parallel to L Consequently, the normal Nz at z is 

parallel to Mt. 

Now, we arrive at a contradiction in either of the following cases: 

(1) If length of Mi ~ £, then £-radius normal, Nz n Mt, at z intersects either Ni 

or Ni+ 1. This contradicts the fact that T is the injectivity radius. 

(2) If length of Mi > £, then £-radius normal, Nz: n MC, at z lies completely in 

the interior of Mt. And, that's a contradiction because the boundary of each 

£-radius normal lies on the boundary of the tubular neighborhood ME of the 

manifold. 

Therefore, cl>i is a well-defined, invertible continuous map on a compact domain, 

hence a homeomorphism. Since, cp/s agree on the boundary of each M1, we glue 

them to get a global homeomorphism cp : M ~ M. This completes the proof. O 

We conclude our discussion on the reconstruction of smooth manifolds by pointing 

out a few limitations of the normal injectivity radius approach, which led us to take 

a more robust approach to reconstruction in the following chapters. 

Manifolds with Dents. The normal injectivity radius T decides both the radius of 

the balls around the sample and the sample density. From a practical standpoint, a 

very small T makes the implementation of the results difficult. However, it is very 
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susceptible to small dents on the manifold: T can drop significantly if a small noise 

is assumed to exist as a dent on the manifold. 

Noisy Sample. Also, the results are only valid when the sample points are com­

ing directly from the manifold. In practice, the density of the sample is seldom a 

concern, noise is what makes the inference a challenge. We have covered recon­

struction results that assume the finite sample is perfect: sample points lie directly 

on the manifold. A more robust reconstruction result should be able to handle noisy 

samples. 

Non-manifolds. The shapes that we often encounter in real-world problems are 

not manifolds. The manifold reconstruction techniques do not apply in such cases; 

see Figure 3.4 for an example. Moreover, the definition of the normal injectivity 

radius heavily depends on the fact that the manifold is smoothly embedded. There 

is no natural way to extend the definition of -r to non-smooth manifolds or non­

manifolds. 

Because of its applications in data analysis and growing challenges, reconstruction 

of a general compact, Euclidean subset from a noisy sample has been receiving 

increasing attention in the last decade. The next section quickly surveys the devel­

opments made and challenges faced in the realm of compact set reconstruction. 

3.4 Compact Set Reconstruction 

Although much success has been made for Euclidean submanifolds, the topological 

and geometric reconstruction of spaces beyond this regime is not well-understood. 

As shown in Figure 3.4 for a (non-manifold) shape with branching, the union of 

Euclidean balls of sufficiently small radius around a dense sample is not always 

guaranteed to deformation retract to the shape. 
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We first discuss the successful topological reconstruction attempt of [8, 9] using the 

notion of weak feature size. 

Figure 3.4: The (hidden) compact set X (shown in blue) is not a manifold- X is a bouquet of two 
circles. The sample S (the black points) is dense, however the union of balls s~ is not homotopy 
equivalent to X. We see an extra 1-cycle formed right beneath the branching point. 

3.4.1 Weak Feature Size 

A sampling theory for general compact sets was developed in [7, 9]. The authors 

introduced the notion of weak feature size (wfs) for a compact subset of JRN as its 

distance from the set of critical points of the distance function. The authors consider 

the wfs of the compact shape in their sampling condition. In order to compute the 

homology groups of the unknown shape, a persistence-based treatment ([7]) on 

filtrations of the point cloud is used. 

Although the results encompass spaces beyond smooth submanifolds of !RN, they do 

not apply to a large class of compact sets that have a zero wfs or spaces whose wfs is 
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not defined. Embedded trees, i.e., acyclic graphs are examples of spaces whose 

wf s is undefined, for their complements do not have any bounded component. For 

an example of a space with zero wfs, consider the space X in Figure 3.S(a) . The top 

part of the space X is the graph of a rectifiable curve y : [O, 11 -) 2 such that, when 

restricted to the segment [ n: 1 , ¾] , it is a half-circle with the segment as its diameter. 

For this space, the set of critical points of the distance function is an infinite set with 

an accumulation point at (O, 0). Consequently, wfs( X) = 0. However, X has a finite 

distortion and a positive convexity radius. So, our approaches presented in Chapter 

4 encompass such a case. 

((a)) The space X is a compact Euclidean subspace with 
wfs(Xl = 0. The critical points of the distance function 
are shown in blue; they accumulate at (0, 01. However, 
X has a finite distortion and a positive convexity radius. 

(1.0) 

• • 

((b)) The blue dots show the critical points of the dis­
tance function. The small bump on the boundary intro• 
duces an additional critical point, hence the wf s drops 
drastically under such a small noise. However, the con• 
vexity radius and distortion remain almost the same. 

Figure 3.5: Zero wfs and wfs under small noise 

The results of [7 , 9] require the underlying space to have a positive wf s. Unfortu­

nately, for a large class of shapes that frequently interest topological data analysts, 

wfs is not defined or wfs vanishes; examples include embedded graphs and simpli­

cial complexes. In order to elude such difficulty, the authors of [8] introduce the 

notion of µ-reach to replace wf s. However, choosing a suitable µ so that the µ•reach 

is positive is not always clear. 

We also note that a small Hausdorff perturbation may inflict a big fluctuation on the 

wfs. In Figure 3.S(b), the small bump on the circle introduces a new critical point, 
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hence reducing the wfs of the circle significantly. 

In comparison, the reconstruction results in [7~9] compute the homology groups 

of a small offset xcx of X, rather than of X itself. In Figure 3.6, we see a compact 

set X, where any small thickening is not homotopy equivalent to X. In our setting, 

however, we reconstruct the space X itself upto homotopy type. 

(O, O) (1, O) 

Figure 3.6: The compact set X has a positive wfs, but X and X"' do not have the same homotopy 
type for any Cl'. > 0. The space X is contractible whereas Xe,; has the homotopy type of a circle. 

3.4.2 Cech and Vietoris-Rips Complex-based Reconstruction 

In shape reconstruction, the use of various simplicial complexes built on the point­

clouds is becoming increasingly popular; see for example [27, 30, 31]. The most 

common of them are Vietoris-Rips and Cech complexes. In this work, we use filtra­

tions of both of them, and we recognize the distortion and convexity radius of X 

to be the most natural sampling parameters when geodesic subspaces of !RN are 

considered; see Section 4.2 for their formal definitions. The distortion quantifies 

the maximum ratio of the length metric to the standard Euclidean metric. 

Consider a (compact) subset X of JRN and a finite Euclidean sample S around it. 

In the most desirable scenario, we aim to compute a geometric complex X that 

is homotopy equivalent to X. If such a strong reconstruction goal is elusive, we 

resort to computing only the homotopy and homology groups of X from S. In 

such a pursuit, we ask the most fundamental question: for what scale £ and under 

what density condition on S are the Cech or Vietoris-Rips complexes of S homotopy 

equivalent to X? In [SJ, the authors provide a very satisfying answer when X is 
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Figure 3.7: On the left, a sample (shown in gray) around a planar circle (thick blue) is considered. 
For a small scale, the Vietoris-Rips complex, whose shadow is shown in red, correctly reflects the 
homotopy type of the circle. On the right, a reasonably dense sample around a planar lemniscate 
is considered. However, the Vietoris-Rips complex in this case fails to capture the correct one~ 
dimensional Betti number. We see an extra l-cycle (containing the green edge) introduced just 
above the four-way intersection. The pictures were generated using the shape reconstruction library 
available on www.smajhi.com/shape -reconstruction. 

a smooth submanifold. For sufficiently small scale t: > 0 and sufficiently dense 

sample S, the authors show that the union of Euclidean balls around the sample 

points has a deformation retraction onto X. As a consequence of the Nerve Lemma 

(Lemma 2.4.1), the Cech complexC,(S) of Sis homotopy equivalent to X. When Xis 

a planar circle, the result is demonstrated in Figure 3.7. The Vietoris-Rips complex 

also behaves similarly in the manifold case; see [31]. These results can also be 

extended, under some restrictions, to spaces with positive reach; see [27]. 

3.5 Discussions 

Although much success has been made for Euclidean shapes with positive reach, the 

homotopy type reconstruction of spaces beyond this regime is not well-understood. 

As shown in Figure 3.7 for a (non-manifold) space with branching, the existence of 

such a small scale t: is not always guaranteed for neither the Vietoris-Rips complex 

nor the Cech complex. A very small e may introduce anomalous features, whereas 

a large £ may potentially destroy a significant feature. In Chapter 4, we consider 

a persistence-based approach with filtrations of these combinatorial complexes of 



the sample S, and use it to compute the homology and homotopy groups of X. The 

idea is to start with a scale £ so that the Vietoris-Rips complex (or Cech complex) 

contains all the homological features of X, along with some unwanted features or 

"noise", as shown in Figure 3.7. A bigger scale £
1 is then carefully conjured up so 

that the noise features of the former complex become trivial in the (larger) complex 

at this scale. Such an idea of looking at two different scales £ and £' in order to 

rule a homological feature significant pervades the developments in Chapter 4 and 

Chapter 5. 

The difference between a simpleton and an intelligent man, according to the man 
who is convinced that he is of the latter category, is that the former wholeheartedly 

accepts all things that he sees and hears while the latter never admits anything except 
after a most searching scrutiny. He imagines his intelligence to be a sieve of closely 

woven mesh through which nothing but the finest can pass. 
-R. K. Narayan 



Chapter4 

Topologi.cal Reconstruction of Geodesic Subspaces 

Geometry has two great treasures; one is the Theorem of Pythagoras; the other, the 
division of a line into extreme and mean ratio. The first we may compare to a 

measure of gold; the second we may name a precious jewel. 
- Johannes Kepler 

We gave a brief introduction to the growing field of topological shape reconstruc­

tion in Chapter 3. The discussion has also shed some light on the challenges a 

non-manifold shape particularly brings forth. This chapter introduces geodesic sub­

spaces (see Definition 4.2.1), and presents our methods to reconstruct them. As we 

will see-the class of such spaces encompasses smooth submanifolds, along with 

a large class of compact sets that are important from the topological data analysis 

standpoint. 

This chapter presents our contribution to the reconstruction of geodesic spaces from 

a Hausdorff-close, finite sample. Following the formal definition in Section 4.2, 

we discuss two important concepts: distortion (Subsection 4.2.1) and convexity 



radius (Subsection 4.2.2). In Section 4.3 and Section 4.4, we discuss topological 

reconstruction using Vietoris-Rips and Cech complexes, respectively. 

4.1 Introduction 

In many applications, a point-cloud approximates a geodesic subspace (see Defi­

nition 4.2.1) of Euclidean space. Examples include GPS trajectory data sampled 

around a road-network, which can be thought of as a graph in R.2, earthquake data 

sampled around an embedded graph inside the earth, or 3D scans of a simplicial 

complex. The spaces of interest in such applications do not always enjoy a manifold 

structure or have a desired positive wf s. However, the intrinsic geodesics of such 

shapes enjoy a rich geometric structure. The length metric dL (defined in Section 

4.2) turns them into geodesic subspaces of !RN. In this work, we consider both 

topological and geometric reconstruction of a geodesic subspace (X, dL} of RN from 

a Hausdorff-dense, finite, noisy Euclidean sample (S, lj-11). 

Our reconstruction approach is similar to [7], which is based on the wf s of the un­

derlying space. However, the use of partition of unity, for example, in the proof 

of Theorem 4.4.5, makes our methods very different. The novelty of this paper 

is discerned by the introduction of distortion and convexity radius as sampling 

parameters-as opposed to the typically used concepts, like reach or wfs. As a 

consequence, the results apply to a different (generally larger) class of spaces that 

includes smooth submanifolds of RN, finite embedded graphs, higher dimensional 

simplicial complexes, etc. Our geometric reconstruction technique in Chapter 5 also 

brings a robust and new approach to topological graph reconstruction. 



4.2 Geodesic Subspaces 

Let l' : I = [O, 1] ---t IR N be a (continuous) path. The length of l' is defined as: 

k 

sup L, 111'( ti d - y ( td 11 , 
i= l 

where the supremum is taken over all partitions P = {O = to, ... , t i ., til ... 1 tk = 1) 

of I. Furthermore, l' is called rectifiable if L(y ) < oo. 

For a path-connected subset X ~ RN, we call the restriction of the standard Eu­

clidean metric 11 ·11 to X the induced metric on X. We define the length metric, some­

times called the geodesic metric, dL: X x X ---t IR by 

dd x, y) = inf L(y ), 
v:IO, 1 l➔X 

where the infimum is taken over all (continuous) paths l': I ---t X from x toy. 

Definition 4.2.1 (Geodesic Subspace). We call X ~ RN a geodesic subspace if 

between any pair of points x, y E X, there always exists a rectifiable path on X 

whose length is dd x, y ). In other words, the infimum in the definition of d l is 

realized. 

For a compact subset X of !RN with a finite distortion, that we define now, is in 

fact a geodesic subspace. 

4. 2.1 Distortion 

The concept of distortion was first introduced by M. Gromov in the context of 

knots on Riemannian manifolds in [32-34]. Since then, various questions regard­

ing bounds on distortion, both lower and upper, of embedded spaces interest re­

searchers in the field of geometry and topology. We follow the book ([34]) by 



Figure 4.1: The union X of the falling segments in the figure is known as the infinite broom. The 
topology of (X, I· II ) is strictly finer than the length metric topology of rx, dl }. In the latter topology, 
it is locally path-connected; whereas; the former is not. 

Gromov to define distortion here. For an X ~ RN, let us consider the identity 

map f : (X, 11 ·11) ----1 (X, dL) . The distortion of X is defined by the best Lipschitz 

constant off. More formally, we have the following definition. 

Definition 4.2.2 (Distortion). The distortion of X ~ RN is defined by 

i;: dd x, y ) 
u = sup ---. 

x,yEX,x#y llx - 'Y II 

In general, the distortion is bounded below by 1 and above by +oo, and both the 

bounds can be achieved. The lower bound is attained when X is a straight line 

segment. On the other extreme, if X is a planar cusp: the union of points ( x, -y ) E R2 

such that x2 = y3, we have & = + oo. For more on distortion, see [34, 35]. 

Remarks 4.2.3 (Equivalence of Topologies). We reconstruct the length metric space (X, dd 

in Section 4.3 and Section 4.4. Under the finite distortion condition, however, 

we note that the topology of (X, dd is equivalent to the induced metric topol-

ogy (X, II ·II). The equivalence of the two topologies is a direct consequence of the 

following inequalities: 

llx - y lJ ::; dd x, y ) .$ &llx -Y II, where x, -y E X. (4.1) 



We also note that the equivalence of the topologies does not generally hold if 

the distortion of X is not finite. For an example, let X c IR2 to be the union of planar 

line segments { [ ( 0, 0), ( cos TI, sin ~D]} iEM' as shown in Figure 4.1. Such a space is 

also known as infinite broom. We see that the distortion of the space is infinite by 

considering the sequence Qi = ( cos TI, sin TI) of points on the right end of the spokes 

of the broom: 
. dL( ( 0, 1 ), Q i) 

hm ---=-------....;_ = oo. 
i-+oo 11(0, 1) - Qdl 

The Euclidean metric topology, in this case, is strictly finer than the length metric 

topology, as (X, dL) is locally path-connected, but (X, 11 ·11) is not. 

4.2.2 Convexity Radius 

In our reconstruction technique, the convexity radius of the underlying geodesic 

subspace plays an important role. We start with its formal definition from [36]. 

Although the concept is defined for general length spaces, here we restrict ourselves 

to only geodesic subspaces. Here, Bd x, r} denotes the ball of radius r around x E X 

in the dL metric. 

Definition 4.2.4 (Convexity Radius). We define the convexity radius, denoted p, of 

a geodesic subspace X ~ !RN to be the supremum of all r > 0 with the following two 

properties: for any x E X and y, y ' E IIBd x, r} , 

(i) there exists a unique length-minimizing geodesic path joining y and 1:1 ', and 

this path lies entirely inside !Bdx, r}. 

(ii) this unique geodesic is continuous with respect to its endpoints. 

For example, the convexity radius of a sphere of radius R is¾- Also, the convexity 

radius of an embedded graph is } , where b is the length of its smallest simple cycle. 

It is well-known that the convexity radius of a compact Riemannian manifold is 



positive. The definition of convexity radius immediately implies the following fact, 

which we use later for our reconstruction results. 

Lemma 4.2.5. Let X ~ JRN be a geodesic subspace with a positive convexity radius 

p, and let O < E < p. Let A ~ X be £-dense w.r.t the dL metric. Then, the Cech 

complex C~( A ) is homotopy equivalent to X. 

Proof Since E < p, an £-radius (metric) ball is contractible using condition (ii) of 

Definition 4.2.4, also so is any finite intersection of £-balls. The reason is we can 

define a homotopy along the unique length-minimizing path joining any point of 

the ball to its center. Now, the density assumption implies that the collection of £­

balls around A is a cover of (X, dL) . Hence, it is a good cover. By the Nerve Lemma 

(Lemma 2.4.1), we conclude that C~{A l is homotopy equivalent to X. □ 

We consider the problem of topological reconstruction of a geodesic subspace X 

of !RN from a noisy sample S. 

Remarks 4.2.6. From now on, unless otherwise stated, we assume that the underly­

ing shape X has a positive convexity radius and a finite distortion, also the sample S 

is a finite subset of lR N. 

We show that both Cech and Vietoris-Rips filtrations of S can be used to compute 

the homology and homotopy groups of X. Before we treat each type of complex 

separately in Section 4.3 and Section 4.4, we show how the Vietoris-Rips and Cech 

complexes behave under Hausdorff perturbation. 

Lemma 4.2.7 (Hausdorff Distance and Complexes). Let A, B ~ IRN, and £ be a 

positive number such that dH(A, B) < £. Then for any ex > 0, there exist simplicial 

maps 



and 

such that for every vertex a E A, we have II a - E.,i (a) II < £ for i = 1, 2. Moreover, such 

simplicial maps are unique, up to contiguity. 

Proof. By the definition of Hausdorff distance and since d1-4(A, B) < c. , there exists 

a (possibly non-unique, non-continuous) map l.,: A - I B such that Ha - l.(a )II < £. 

We show that this vertex map extends to a simplicial map between both Cech and 

Vietoris-Rips complexes. 

Let er= {a0, ai, ... , ad beak-simplex of C"'(A ). By definition, there exists a z E RN 

such that II ai - zll < e< for all i E {O, 1, ... , k}. From the triangle inequality we then 

have, II E.,( ad zll ~ II E.( ad- adl + II ai - zll < £ + e<. So, { E.,( ao), · · · , E.,( at)} is a simplex 

of C"'H(B ). Hence, l. extends to a simplicial map E.,1 between the Cech complexes. 

To argue for the uniqueness of the simplicial map, let us assume that 11 is another 

simplicial map with the property that for every vertex a E A, we have Ila 11( a) II < 

£. Again from the triangle inequality, we have Hn(a,} zll < £ + e<. So, l.1( cr) u 11(cr) 

is a simplex of CIXH ( B). Hence, E.1 and 11 are contiguous. 

For the Vietoris-Rips complex part, we follow a similar argument. Let 

er = {a0, a 1, ••. , ad beak-simplex of 'R."'(A). By definition, the diameter of er is not 

greater thane<. From the triangle inequality, we have IIE.(ad - E.,(a;)II ~ II E..(ad 

adl + ll ai- a i II + Il l.( a i)- adl < 2£+ e<. So, {E,( ao) , .. • , E..( ak)} is a simplex of R-"'+ie (A ). 

Hence, l., extends to a simplicial map E.,2 between Vietoris-Rips complexes. l! 

4.3 Homology Groups via Vietoris-Rips Filtration 

We use the following fundamental result from [25] to compute the homology groups 

of X from a filtration of Vietoris-Rips complexes on a finite sample. 



Theorem 4.3.1 (Homotopy Equivalence [25]). Let X be a geodesic subspace with a 

positive convexity radius p. For O < f. < p, then there exists a homotopy equivalence 

Note that 'R; (X) is usually an infinite Vietoris-Rips complex on the entire space X. 

As a quick corollary of this result, we show the following: 

Corollary 4.3.2. Let X be a geodesic subspace with a positive convexity radius p. For 

0 < E.
1 ~ E. < p, the inclusion i : 'R;,(X) <-+ 'R~(X) induces isomorphisms on 

homology and homotopy groups. 

Proof It follows from the construction of the map T in [25] that the following 

diagram commutes: 

X 

The maps T and T' are homotopy equivalences from Theorem 4.3.1, and T' is the 

restriction of T. Hence, i induces isomorphisms on the homology and homotopy 

groups. □ 

The (hidden) space X is equipped with both the Euclidean metric IHI and the 

geodesic metric dL; whereas, the sample S only has the Euclidean metric, as geodesics 

do not exist in a discrete set. In order to achieve our result, we use certain simplicial 

maps to compare 'R~(X), 'R.(X), and 'R.(S). 

Lemma 4.3.3 (Euclidean and Intrinsic Rips Complexes). Let X a geodesic subspace 

of R N with a finite distortion 6. Then for A ~ X and any positive number ex, we have 

the following simplicial inclusions 



"T-"-

Proof The fact that ll x - -y ll ::; dd x, y } implies the first inclusion 'R~(A ) e..._____.; 

'Ra(A ). Similarly, dd x, y )::; bllx - -y ll implies the second inclusion. □ 

Theorem 4.3.4 (Reconstruction via Rips Filtration). Let X be a geodesic subset of !RN 

with a positive convexity radius p and finite distortion o. Let S be a finite subset of JRN, 

and let t be a positive number such that 

Then, for any non-negative integer k, the homology group Hd X) is isomorphic to the 

image of the homomorphism induced by the simplicial inclusion 

Proof We derive the following chain of simplicial maps: 

The first map cp1 is the composition of the simplicial inclusion 'R\ (X) ~ 'R1 (X) 

from Lemma 4.3.3 and the simplicial map 'R1(X) -} 'Rc( S) from Lemma 4.2.7, 

thanks to the assumption d.-.(S, X) < ¼. 

Similarly, starting with 'R~(S) and composing maps from Lemma 4.2.7 and 

Lemma 4.3.3, respectively, we get the second simplicial map cf>2. The other two 

maps cp3 and cp4 are obtained repeating the exact same argument for a given scale. 

From Lemma 4.2.7, we first note that the composition cp3 o <t>2 is contiguous to the 

inclusion: 



' ""' 

Therefore, they induce homotopic maps on the respective underlying topological 

spaces. Consequently, we have (¢ 3 o ¢ 2). = j •. We first argue that ¢ 2. is surjective 

and ¢ 3 • is injective. 

By the choice of the simplicial maps in Lemma 4.3.3 and Lemma 4.2.7, we observe 

that ¢ 2 o ¢1 is contiguous to the inclusion 

By Corollary 4.3.2, the inclusion induces isomorphism on homology, hence so does 

¢
2 

o ¢
1

. In particular, ( ¢
2 

o ¢
1 

) .. is surjective. Hence, we have ¢
2

., is surjective, 

and ¢i. is injective. 

Also, ¢4 o ¢ 3 is contiguous to the inclusion 

which induces an isomorphisms on homologies. Therefore, ¢
3

• induces an injective 

homomorphism. 

Since we have j. = ¢ 3. o¢ 2• and ¢2. is surjective, the image of j. is the image of ¢>3 •• 

On the other hand, we know that Im( ¢
3

. ) is isomorphic to H. ( 'R-\, 
6

(X)) / Ker( ¢
3

• ) . 

As we have already shown that ¢
3

• is injective, its kernel is trivial. Therefore, 

the image of j. is isomorphic to 'R1_6(X). Since ~' b < p, Theorem 4.3.1 implies 
2 

that 'R1_
6
(X) is, in fact, homotopy equivalent to X. This completes the proof. 0 

z 

The above reconstruction result works also for an infinite sample S. In applica­

tions, however, we are computationally constrained to use only finite samples. 
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4.4 Homology Groups via Cech Filtration 

The reconstruction of homology groups via the Vietoris-Rips filtration 

(Theorem 4.3.4) was due to the homotopy equivalence theorem by Hausmann [25]. 

In this subsection, we use Cech filtrations to obtain similar reconstruction results. 

The Nerve Lemma (Lemma 2.4.1) is used here as the Cech alternative to the Haus­

mann's theorem. Like the Vietoris-Rips case, we still use different simplicial maps 

to compare C!(X), C.(X), and C.{S). Unfortunately due to the technical assumption 

on the local-finiteness of the open cover in the Nerve Lemma, the (infinite) Cech 

complex C; (X) is no longer guaranteed to be homotopy equivalent to X. In order to 

elude such a technical difficulty in the Cech case, a different technique of proof is 

adapted. The approach involves a (controlled) variant of the partition of unity; see 

Lemma 4.4.3. 

Lemma 4.4.1 (Euclidean and Intrinsic Cech Complexes). Let X a geodesic subspace 

of R N with a finite distortion o. Then for A ~ X and any positive number ex, we have 

the following simplicial inclusions 

Proof The fact that llx YII :5 dd x, y ) implies the first inclusion. 

On the other hand, for any x, y E X we have dL ( x, y ) :5 o ll x -- y 11 - Let u = {x0, ... , xd 

be a simplex of C.:i:{ A). Then llx1 xdl < 2cx, consequently dd xii x;) < 2ocx for all 

1 :5 i.1 j :5 k. This implies 

k 

{xo, X i, •.. , xd c n IIBdxi, 2bcx), 
i 0 

where B1(x1, r } denotes the r-ball centered at x, in the metric {X, dL) . Therefore 



er E Cho: (A), and this verifies the second inclusion. D 

We begin with a lemma that is analogous to Corollary 4.3.2 in the Cech regime; 

the result will find its use in the proof of Theorem 4.4.5. 

Lemma 4.4.2 (Inclusion of Covers). Let U = {UihE!i. and U ' = {UUiEA be good open 

covers of a para-compact topological space X such that Ui i; U[ for each i.. Then, the 

inclusion 

i.: N (U ) ~ N (U ') 

induces isomorphisms on the homology and homotopy groups of the respective geomet­

ric complexes. 

Proof. Consider the following diagram: 

IN (U )I 
i. 

jN (U ' )I 

~ 
;, 

h ' , , 
, , , , 

X 

where the map h = .L. cpiui is obtained from an arbitrary partition of unity {cpd 

subordinate to U. By the Nerve Lemma (Lemma 2.4.1), his a homotopy equiva­

lence ([18]). Since Ui ~ U{, the partition of unity {cpd is also subordinate to U ' . 

We can then choose the homotopy equivalence h' to be h. Therefore, the diagram 

commutes. Since the maps hand h ' are homotopy equivalences, we conclude that i. 

induces an isomorphism on homology and homotopy groups. [J 

We now prove the following extension of the partition of unity. 

Lemma 4.4.3 (Controlled Partition of Unity). Let {Ud and {Vd be open covers of a 

paracompact, Hausdorff space X such that Vi ~ Ui for each i.. Then, there exists a 

partition of unity { <pJ subordinate to {Ui} such that Vi ~ supp <pi ~ Ui for all i.. 



Proof. Since X is a paracompact Hausdorff space, we know that X is normal (see, 

e.g., [37]). Since X is normal and Vi <;;; Ui for each i, there exists open subset W l 

such that Vi <;;; Wi and Wi <;;; Ui. Note that {Wd is also a locally finite cover of X. 

Now, (X - Wd and Vi are closed, disjoint subsets of X. Using Urysohn's Lemma (see 

[37]), for each i, we choose a continuous function \Vi : X --4 [O, 1] such that 

So, we have supp <Vi ~ Wi ~ Ui. Also, Vi s; supp <Vi for each i.. 

Because the collection {Wd is a locally finite cover of X, the sum \l' = L t Wi is 

finite at every point, and also \l' is nowhere zero. We can then normalize to get our 

desired partition of unity. 

□ 

We now use the controlled partition of unity to prove the following important 

lemma. 

Lemma 4.4.4 (Commuting Diagram). Let X1 Y be paracompact, Hausdorff spaces 

with a continuous map f : X - I Y. Let U = {Ut} and V = {Vt} be good, locally finite, 

open covers of X and Y respectively, such that 

(a) n t Vi # 0 implies ni Ui # 0, i.e., we have the simplicial inclusion j : N (V ) -t 

N(U) that sends the vertex corresponding to Vl to the vertex corresponding to U1, 

(b) f ••1 (Vil <;;; U[/or all i. 



Then, the following diagram commutes, up to homotopy: 

IN{V)I ~-- IN (U)I 

hv l f l hx 

Y-------X 

where hx, hv are homotopy equivalences from (2.1) . 

Proof We make use of the controlled partition of unity lemma to prove our result. 

Let us choose a partition of unity {ct> i) subordinate to (VJ One can choose h v so 

that for each y E Y 

hy(y ) = _L q>l(y )v1, 
l 

where vi is the vertex of N(V) corresponding to Vi. 

Since {f 1(Vd} is an open cover of X with f - 1(Vd ~ Ui for each i, by Lemma 4.4.3 

we can choose a partition of unity {wd subordinate to {Ud such that for each i 

Also, choose hx such that for each x E X 

hx(x) = _L wd x)\.li, 
i 

where u i is the vertex of N(U) corresponding to Ui. 

To see that the diagram commutes, up to homotopy, it suffices to show that (jo hvof ) 

is homotopic to hx, We start with a point x0 E X 

(j o hv o f)(xo) = j( _L ct>i(f(xo))vi) = _L 4>i( f (xo)) j(vd = _L ct> d f{xo))U\, 
i i i 



On the other hand, hx (xo) = L i Wi(x0 )u i. Now if ¢i(f (x0)) is non-zero for some i, 

then f ( x
0

) E Vi, and consequently x
0 

E f 1 

( Yd ~ U
1

. From our choice of the support 

of 'Vi, Wt(x0 ) has to be non-zero. This shows that both (j o h v o f )( x0 ) and hx(x0 ) 

lie in an (open) simplex of Af(V ). Due to convexity of simplices, the following 

(straight-line) homotopy is well-defined: 

F(x, t ) = L. {tlJ,1( x) + (1 - t )¢i (x )I u 1. 

i 

to see that (j o hv o f ) is homotopic to h x. n 

Now we are in a position to prove our reconstruction result for Cech complexes. 

Theorem 4.4.5 (Reconstruction via Cech Filtration). Let X be a geodesic subset of RN 

with a positive convexity radius p and finite distortion &. Let S be a finite subset of RN, 

and let £ be a positive number such that 

Then, for any non-negative integer k, the homology group Hd X) is isomorphic to the 

image of the homomorphism induced by the simplicial inclusion 

Proof. We first note from dH(X, S) <£and Lemma 4.2.7 that there is a map E...: S ----t 

X such that for each s E X, 

11s - l,(s)II < £. (4.2) 

Let X' = l,(S). Then (4.2) implies dH(S1 X' ) < £, hence d11 (X, X' ) < )£ by the 

triangle inequality. 



We now derive the following chain of simplicial maps: 

The first map ¢ 1 is the composition of the simplicial map C£( S) '-------+ C2£{X') from 

Lemma 4.2.7 (due to dH( S,X') < £) and the simplicial inclusion C2£{ X') '-------t 

C}6,(X' ) from Lemma 4.4.1 . 

Similarly, starting with C}<'it(X1
} and composing maps from Lemma 4.4.1 and 

Lemma 4.2.7, respectively, we get the second simplicial map ¢ 2. The other map ¢ 3 

is also obtained repeating the exact same argument for a different scale. 

We first observe that the choice of simplicial maps in Lemma 4.4.1 and Lemma 4.2. 7 

makes ( ¢ 1 o¢ 1) contiguous to the given natural inclusion j of Ce(S) into C2.sr46 ,. 11t (S). 

We now consider the following diagram: 

(4.3) 

to show the diagram commutes, up to homotopy. We first explain the horizontal 

maps in the bottom row of (4.3). Since dH( X, S) < e, we get the first inclusion X ~ 

s~. The three vertical maps are homotopy equivalences that come from the Nerve 

Lemma (Lemma 2.4.l ) for various good open covers as constructed in Lemma 4.4.4. 

The first vertical map h 1 is obtained for the open cover U 1 = {JIB( x, £ HxES of S' 

by Euclidean balls. The other two vertical maps, h2 and h3 , are corresponding 

to the (intrinsic) covers U2 and U 3 of (X, dL) by the intrinsic balls of radii 26e 

and 46 (26 + 1)£ respectively. The assumption 46(26 + 1 )£ < p implies that they 



are indeed good (intrinsic) covers of X. Therefore, by Lemma 4.2.5 we get the 

homotopy equivalences h2 and h3. 

Apply Lemma 4.4.4 to each of the rectangles in the diagram ( 4.3) to show that the 

diagram is homotopy commutative, and therefore it commutes on the homology 

level. The commutativity would then imply that cp1 induces a surjective homo­

morphism and cp2 induces an injective homomorphism on the homology groups, 

implying Im{cp2. o ct>i.l = Im(cp2.) = HkfX) on the k-th homology group. Also, we 

note that cpz o <t>1 is homotopic to the given simplicial inclusion j. 

To see that the first rectangle commutes, we consider the covers u, and U2 of S ( 

and (X, dL) . Note that for any x E S, the choice of l,( x) implies that i 1 (JIB( x, £)) = 

IIB( x, £) n X ~ IIBd l.(x), 25t:) . Consequently, IIB(x, £) n X ~ IIBL(l.(x), 45£). A similar ar­

gument also applies to the other rectangle. Therefore by Lemma 4.4.4, the diagram 

( 4.3) commutes. r--

4. 5 Discussions 

We remark that Theorem 4.3.4 and Theorem 4.4.5 can be formulated in terms of 

any natural functor 

F : Top ~ Grp. 

In particular, the results extend immediately to homology groups H. ( • ; G) with 

coefficients in any abelian group G, or homotopy groups n.( . ). 



Chapters 

Reconstruction of Metric Graphs 

We have the duty of formulating, of summarizing, and of communicating our 
conclusions, in intelligible form, in recognition of the right of other free minds to 

utilize them in making their own decisions. 
- Sir R. A. Fisher 

In Chapter 4, we used filtrations of both the Cech and the Vietoris-Rips complexes 

to compute the homology and homotopy groups of our hidden geodesic subspace X 

from a noisy sample S around it. The results fail, however, to produce a topolog­

ical space that faithfully carries the topological features of X. To remedy this, we 

consider the problem of geometric reconstruction of geodesic subspaces of ocN. In 

Section 5.2, we introduce a new metric d i on S. We then show in Theorem 5.2.3 that 

the Vietoris-Rips complex of ( Sl d t) and X have isomorphic fundamental groups. In 

Section 5.3, we further use this complex for the geometric reconstruction of embed­

ded graphs. Finally, in Section 5.4, we conclude our investigation of metric graphs 

with a probabilistic analysis under random sampling. We estimate the smallest 

sample size needed to guarantee a given probability of reconstruction. 



5.1 Introduction 

In the last decade, both abstract and embedded metric graphs are considered for 

reconstruction; see (10- 12]. In [11], the authors consider an abstract metric 

graph and a sample that is close to it under the Gromov-Hausdorff metric (Defini­

tion 7 .2.2), and reconstruct the structure of the metric graph along with the metric 

on it. In a more recent work [12], the authors show a statistical treatment of metric 

graph reconstruction. They consider an embedded metric graph and a Euclidean 

sample around it. The Gromov-Hausdorff proximity used in (11 ] is replaced by the 

density assumption. The algorithm presented in [1 1] only reconstructs the con­

nectivity of the vertices of the underlying metric graph and outputs an isomorphic 

pseudo-graph. 

And lastly, we mention in (10, Lemma 6.1], where the first Betti number of an ab­

stract metric graph is computed by considering the persistent cycles in the Vietoris­

Rips complexes of a sample that is very close to it, with respect to the Gromov­

Ha usdorff distance. In Gromov-Hausdorff type reconstruction schemes, a small 

Gromov-Hausdorff distance between the graph and the sample guarantees a suc­

cessful reconstruction. These methods are not a good choice when embedded 

graphs in ~ N are considered. Also, none of the above-mentioned works give a 

geometrically close embedding for the reconstruction. Whereas our technique, 

presented in Section 5.3, can successfully reconstruct embedded graphs from a 

Hausdorff-close sample. 

5.2 Recovery of Fundamental Group 

For any fixed c. > 0, we first consider the Euclidean Vietoris-Rips complex 'R.t( S) on 

the sample S. In general, 'R.t(S) is not guaranteed to be homotopy equivalent to X; 



as shown in Figure 5.1. This is not surprising, because the Euclidean metric on S, 

used to compute the complex, can be very different from the length metric d l on X. 

Our goal is to approximate d l by the shortest path metric, denoted d, , on the one­

skeleton of 'R~ ( S). Let us denote the one-skeleton of 'R~ ( S) by G •. Since 'Rt ( S} is an 

abstract simplicial complex, G. inherits the structure of an abstract graph. However, 

we turn its underlying topological space I Ge I into a metric graph by defining the 

metric dt in the following way: the metric, when restricted to an edge (s, t ), is 

isometric to a real interval of length 11 s - t JI . 

Figure 5.1: We implement Algorithm 1 on a Lissajous G with ~, ( G ) = 8. On the left, the Euclidean 
Vietoris-Rips complex 'R...: (S) (in red) a t a scale f = 65 on a dense sample S of size 150 fails to 
capture the homotopy type, as its f31 = 9. On the right, the shadow G (green) of 'R..5 6c ( S) is shown 
to correctly reconstruct G. The pictures were generated using the shape reconstruction webapp 
available on www.smajhi. com/ shape- reconstruct ion. 

We show in Lemma 5.2.1 that d e approximates the metric dL, which the Euclidean 

sample is oblivious to. For any positive scale oc., we denote the Vietoris-Rips com­

plex of S in the d , metric by 'R~{S). The following lemma helps us to compare 

the metric d f with the standard Euclidean metric II· II and the length metric dL in 

Lemma 5.2.2. 

Lemma 5.2.1 (Minimal Covering of Paths). Let X be a geodesic subspace of RN. 

Let S c;; IR N and £ > 0 such that d H ( X, S) < j . For any path y joining any two 



points x, y E X, we can find a sequence { ai}f=o ~ S with II ai-1-1 - adl < E such that 

l:- 1 

.L_ llai+l - adl < 3l(y ). 
i • O 

Moreover, ao and ak can be chosen to be any points with Hx- aoll < 1 and lly - aKII < j. 

Proof Since dH(X, S) < j , there exists a0 E S such that llx - aoll < 1. We now 

iteratively define the sequence {ai} ~ S, along with a sequence {t d~ c [O, 1) that 

defines a partition of (0, 1 ]. We set t0 = 0. Assuming both ai and t i are defined, we 

define t l -1- 1 E (0, 1 I in the following way: if y ( [t ii 1 I) n ollh1 ( ad -=I-= 0, we set 
3 

Otherwise, if y ([tb 1]) n olIBi.d ad = 0, set t i+l = 1. Since dH( S, X) < 1, we set 
3 

ai t l E S to be a point in S such that lly (t i+d - ai+1II < f. The procedure forces t i+I 

to be strictly greater than t ,, hence { td defines a partition of (0, 1 ]. Therefore, 

k k k l k 

l (y ) = .L, l {y t11L,11 .. i1 ) ~ .L,lly (t d - y (t i+, )II ~ .L, 1 2: 
3 

.L,ll ai+I ai ll-
i O 1• 0 i=O i 0 

We also note that 

£ 2 £ 
n 1 II < 3 + 3 = E. 

D 

Analogous to Lemma 4.2.7, we get the following useful simplicial maps. 

Lemma 5.2.2 (Vietoris-Rips Inclusion by d~)- Let X be a geodesic subspace X £; !RN. 

Let S ~ !RN and£ > 0 be such that dH[X, S) < J- For any ex > 0, 



(i) there exists a natural simplicial inclusion 

(ii) there exists a simplicial map 

induced by the vertex map l, that sends a vertex x E X to s E S such that llx - sI1 < 

Proof of (i). follows immediately from the definition of the metric d ( . [_J 

Proof of (ii). By Lemma 4.2.7, there is a vertex map l,: X S such that for each x E 

X we have Ux - l,(x )II < f • 

We show that the map extends to a simplicial map. Let cr = {xol x1 l • • • , xk} be 

a k-simplex of 'R~(X). Then, dd xi! Xj) :$ a for all i, j. Now by Lemma 5.2.1, there 

exists a path joining l,(xd and l,(xi) in G,, moreover dt( l,(xd , l,(x j)) < 3<X. So, l.(cr) 

is a simplex of 'R3«(S). Hence, the vertex map extends to a simplicial map. 0 

We now show that the fundamental group of the Vietoris-Rips complex on S 

under the metric d( is isomorphic to that of X. We tolerate the sloppiness from 

ignoring the basepoint. 

Theorem 5.2.3 (Fundamental Group). Let X be a connected geodesic subspace of !RN 

with a positive convexity radius p and a finite distortion 5. Let S <;: ]RN and E. > 0 

be such that dH(Xl S) < 1 < ons~+W Then, the fundamental group of n.;,6(S) is 

isomorphic to the fundamental group of X. 

Proof. We derive the following chain of simplicial maps: 



The map <P1 is the composition of the simplicial map R ((S) --► R ,ll (X) from 
.l 

Lemma 4.2.7 and the simplicial inclusion 'R.¥ (X) ~ 'R.¥ (S) using Lemma 4.3,3 

for ex = 5
3' , thanks to the assumption dH(S1 X) < f. By a similar composition but at 

different scale of 56£, we get q>4. We also obtain <Pz from Lemma 5.2.2 and 4>3 from 

Lemma 5.2.2. 

We argue that <Pz induces the desired isomorphism on the fundamental groups. 

Since £ < ops~+zi , we have already seen in Theorem 4.3.4 that the simplicial 

map q>4 o q>3 o <Pz induces an isomorphism on all homotopy groups. Therefore, ¢ 2 

induces an injective homomorphism on the homotopy groups, particularly the fun­

damental group of X. 

We now show that the induced homomorphism is also surjective on the fundamental 

groups by showing that <Pz o <P1 induces a surjection. As observed in Theorem 4.3.4, 

it suffices to show the surjection for the the natural inclusion i : R , ( S) <-----------+ 

R;0J S), because i is contiguous to <Pio q>1. 

We start with a loop 11 in R t~£(S). We can assume that 11 is made up of edges 

(one-simplices) of 'R.~0 • • Let us consider an edge CJ = {a, b} in 11, then we have 

d( ( a, b) ::; 56£. By the definition of d., there must be a sequence of points a = 
xo, xi, • • • , xk = b such that for each i, the segment [xi, xi + il is an edge of R ( ( S). 

Moreover, we observe for later that the diameter of the whole set {x0, • • • , xd in 

the d, metric is not greater than 5t:6. 

Figure 5.2: The red one-simplex [a, b] of 'R.56c (S) is shown to be pushed off to a path a = 
xo, x 1, • • • , Xk = b in 'R.( ( S ). All the nodes form a simplex (shown in green) in 'R.s6, ( S }. 

Now, we define a loop rt' in R ,(S) by replacing each edge [a, bl in l1 with the 



path joining the points in the sequence a = xo1 x 11 • • • 1 xk = b consecutively, as 

shown in Figure 5.2. We note that TJ 1 is indeed a loop in 'R.((S). We now show 

that (¢2 o ¢ 1 HTJ' ) is homotopic to the loop TJ in 'R.56((S). As observed before, {a = 

Xo, ••• ) Xk = b} is a simplex of 'R.sbe(S). We can then use a (piece-wise) straight line 

homotopy that maps each edge (a, bl of TJ to the subpath [a = x0, xilU· • •U [x k - l! x k = 

b) of TJ'. Hence, [TJ') is, in fact, a pre-image of [TJ). This shows, in turn, that ¢ 2 

induces a surjective homomorphism on n 1• This completes the proof. LJ 

5.3 Reconstruction Algorithm 

We finally turn our attention to the geometric reconstruction of embedded graphs. 

We start with the formal definition of an embedded graph. 

Definition 5.3.1 (Embedded Metric Graph). An embedded metric graph G is a 

subset of RN that is homeomorphic to a 1-dimensional simplicial complex, where 

the length metric d l is the shortest path distance on G. 

We simply call them embedded graphs. We also note that if G has finitely many 

vertices and b is the length of its shortest simple cycle, then the convexity radius p 

is *· In this paper, we always assume that G is a planar graph, i.e., N = 2 and it has 

finitely many vertices. We consider the shadow of the Vietoris-Rips complex 'R.!(S} 

considered in Section 5.2. 

Definition 5.3.2 (Shadow of a Complex). Let A be a subset of ]RN, and let K, 

be an abstract simplicial complex whose vertex set is A. For each simplex er = 

{xi, x2, ••. , xd E K, we define its shadow, denoted Sh(cr), as the convex-hull of the 

Euclidean point set { x 1i x21 ... 1 xd. The shadow of K, in lR N, denoted by Sh( K, ) , is 

the union of the shadows of all its simplices, i.e., Sh(K ) := U Sh(cr). 
crEX:. 

We, therefore, have the following natural projection map p : IK I -+ Sh(K ). In 

general, Sh(K) may not have the same homotopy type as IK I. However, as proved 
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in [38], the fundamental group of the Vietoris-Rips complex of a planar point set 

is isomorphic to the fundamental group of its shadow. In [39], the authors further 

the understanding of shadows of Euclidean Rips complexes. In the case of planar 

graphs and 1C = 'R.~(S), we prove a similar result now. 

Lemma 5.3.3 (Shadow). Let G be a connected embedded graph with a positive con• 

vexity radius p and a finite distortion 6. Let S i; IR2 and £ > 0 be such that 

dH{ G, S) < J < 6(1~ ~21' Then, the shadow projection p: l'R-s(o (S) I ---t Sh('R-t o{S)) 

induces isomorphism on the fundamental groups. 

Proof From Theorem 5.2.3, we have the following chain of simplicial maps: 

We have shown that cp1 induces an isomorphism on 1t1 . As we have also noted that 

( cp4 o cp3 o cf>2 ) induces an isomorphism on all homotopy groups. So, we conclude 

first that cp3 induces an injective homomorphism on n, . 

Now, we consider the following commutative diagram: 

'R.,(S) i 
'R-sbi: ( S) 

cp3 
'R.soE ( S) 

l p [v (5.1) 

J2 
Sh( 'R.56( ( S)) Sh('R.so( ( S)) 

where i is contiguous to the composition (¢ 2o ct> 1 ) , and p, pare the natural (shadow) 

projections. 

We show that the induced map p. is an isomorphism on the fundamental groups. 

From the commutativity of the diagram (5.1), we note that p. is an injection on 

1C1, since cp3. is injective and p. is also injective on 1t1 by [38]. For surjectivity, we 

follow the same lifting argument presented in [38]. l] 
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As a consequence of Lemma 5.3.3, we finally present our main geometric recon• 

struction result. 

Theorem 5.3.4 (Geometric Reconstruction of Embedded Graphs). Let G be a con­

nected embedded graph in R2
. Let b be the length of the shortest simple cycle of G, and 

let 6 be its distortion. Let S ~ IR2 and £ > 0 be such that dH(G, $) < j < 4611 ~o+i i · 

Then, the shadow of'R.1r0 (S), denoted G, has the same homotopy type as G. Moreover; 

we have 

Proof. As noted before, the convexity radius of G is ¾- Therefore by Lemma 5.3.3, 

the shadow G and G have isomorphic fundamental groups. Since the higher homo­

topy groups are trivial, we conclude that they are homotopy equivalent. 

For the Hausdorff distance, we note that er ~ Sh( cr) for any cr ~ S. So, 

dH (cr,Sh(cr)) ~ diam(cr}. As a consequence, dH( G,S ) :::; 56£. By the triangle in-

equality, we then conclude the result. □ 

Based on Theorem 5.3.4, we devise the following algorithm for the geometric re­

construction of (planar) embedded graphs. For a demonstration, see Figure 5.1. 

The algorithm takes O(k3)-time if the sample S has at most k points. 

Algorithm 1 Graph Reconstruction Algorithm 

Require: Finite sample S ~ IR2, £ > 0, 6, and b 
Ensure: dH ( G, S) < 1 < 4611; 0+2, 

1: Initialize G ~ 0 
2: Compute the one-skeleton of 'R..r ( S) 
3: Compute (S, dr ) 
4: for all {a, b, c} ES do 
5: if dr{a, b) < 56£ and dc(b, c) < 56£ and df( c, a ) < 56£ then 

~ ~ 
6: G ~ G U CONVEX-HULL ( {a, b, c}) 
7: end if 
8: end for 
9: return G 
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5.4 Random Sampling and Length Estimate 

We now consider a finite sample S = {x1, ••• , xn} that is sampled at random from G. 

Our reconstruction results in Theorem 4.4.5, Theorem 4.3.4 have the primary as­

sumption that the Euclidean thickening of S covers the graph G. A randomly drawn 

sample may fail to meet such a condition. However, given the chance of covering­

we estimate a lower bound on the sample size. We first need the following lemma 

from [5]: 

Lemma 5.4.1. Let { Ai} for i = 1, ... , l be a finite collection of measurable sets and let 
I 

µ be a probability measure on LJ A l such that for all 1 $ i $ l, we have µ(Ad > a. 
i= l 

Let S = {xii ... , Xn} be a set of n i.i.d. draws according to µ. Then if n 2:: ¾ ( log l + 

log½) we are guaranteed that with probability > 1 A, the following is true 

S n Ai ~ 0 for all 1 $ i ::5 l. 

For a positive number £, suppose we cover G by Euclidean £-balls. Let {!J 11 ••• , !id 

be the set of points on G such that balls ~('~Ji,£ ) form minimal cover of G. Here l 

is the £-covering number C( £) of G. Also, the £-packing number P(£) is the maxi­

mum number of non-overlapping sets of the form {lli(x, r) n G) that can be packed 

inside G. The following inequality have been shown in [5]. 

Before we prove the final theorem of this section, we show a technical result in 

the following lemma. 

Lemma 5.4.2 (Length Estimate). If p E G and O < £ < J~. Then l(N) > £, 

where N = G n JIB( p, £) and b is the length of the shortest edge of G. 
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Proof. Let plies on an edge e of G and the endpoints of e are v 1 and Vz. We claim 

that e intersects the boundary of B(pl £ ) . If we assume the contrary, then the entire 

edge e must lie inside N. This implies that dd v 1, v2 ) S: bllv1 v2 II $ '5 (2£) < b, 

i.e., the length of the edge e is smaller than b, which is a contradiction. Therefore, 

there is a point q E e such that IIP - q II = £ and the segment y of e joining p to q 

lies inside N. Since l (y ) 2: IIP - qll = £,we have l (N) 2: L D 

Now, we present the final result of this section. 

Theorem 5.4.3 (Random Sampling for Graph). Let O < £ < 2b6 and S = {x1, . .. , xn} i;;; 

G be a set of n i.i.d. draws according to the unifonn probability measure on G. If 

2 l{G) (i 4 l{G) l 1) n 2: og + og~ , 
€ € I\ 

with a probability > { 1 - A) we have that G i;;; S£. Here l (G) denotes the total length 

of the graph G. 

Proof Consider A = {y 1, ••• , -y i} i;;; G such that the Euclidean ½-balls around A form 

a minimal cover of G. We choose Ai= IIB( -y i, 1) n Gin order to apply Lemma 5.4.1 

in our setting. As shown in Lemma 5.4.2, l(Ad 2: ½. So, we can choose ex = l t(GI. 

To estimate the ½-covering number l, we use the inequality P(2r ) ~ C(2£ ) ~ 

P( £ ), to conclude l ~ P( ¼ ). On the other hand, as the packing number is realized 

by non-overlapping sets of vol at least ¼, we have 

l(G) 2: L (¾) 
Pi¼I 

to get l ~ P(¼) ~ 4 
'!Gl . Using this lower bound on l in Lemma 5.4.1, we conclude 

the result. [J 
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5.5 Discussions 

In this work, we successfully reconstruct the topology of general geodesic spaces. 

We also reconstruct the geometry of an embedded graph. Currently, the output 

of such geometric reconstruction is a thick region around the hidden graph; see 

Figure 5.1. One can consider a post-processing step to prune the output shadow G 

in order to output an embedded graph that is isomorphic to the hidden graph G. A 

natural extension of our work is to consider the geometric reconstruction of higher­

dimensional simplicial complexes. Unlike the graphs, such a space may have non­

trivial homotopy groups. We have seen that the output of Algorithm 1 computes the 

fundamental group correctly. However, it is not clear whether the higher homotopy 

groups of the output are also isomorphic to the respective homotopy groups of 

the underlying space. 

We know what we are, but know not what we may be. 
-William Shakespeare, Hamlet 
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Chapter6 

Discrete Morse Theory in Graph Reconstruction 

Religion is a luxury, which India, in its present condition, cannot possibly afford. 
India will never be free until the Hindus and Moslems are as rabidly enthusiastic 

about their religion as we are about the Church of England. If I were an Indian 
millionaire, I would leave all my money for the endowment of an Atheist mission. 

- Aldous Huxley, Benares 

In our investigation into geodesic shape reconstruction so far, we have studied the 

topological reconstruction of geodesic subspaces in Chapter 4, with a full geometric 

reconstruction of metric graphs in Chapter 5. We have been successfully forging 

ideas from metric geometry with topological tools- like Vietoris-Rips Complexes, 

Nerve Lemma, etc- to develop provable shape reconstruction techniques. Main­

taining the same spirit, we now consider a discrete Morse theoretic approach to the 

geometric reconstruction of metric graphs. 

Road-networks or maps are modeled as embedded metric graphs. And, a great 

amount of spatial GPS data is publicly available for analysis. Graph reconstruc­

tion from noisy samples has been studied extensively in the last decade; see e.g., 
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[10- 12, 15,40-42]. Although many map construction algorithms work well in prac­

tice, most of them suffer from the lack of theoretical guarantees. Along with recon­

struction guarantees, providing good embedding is also desired. 

One can typically classify noise models for reconstruction problems into two cate­

gories: Hausdorff noise and non-Hausdorff noise. The sample S may not lie exactly 

on the metric graph G of interest, however S is sampled from a very small offset 

of G. In this case, the Hausdorff distance between the sample and ground truth 

is assumed to be very small. We call such a noise Hausdorff noise. The situation 

becomes different in the presence of outliers in S. If outliers in S are far away 

from G, they contribute to an uncontrollably large Hausdorff distance. We study 

how discrete Morse theory can lend itself to developing an efficient algorithm for 

the geometric reconstruction of Euclidean graphs under non-Hausdorff type noise. 

In Section 6.1, following the general motivation, we briefly discuss the density­

based approach to graph reconstruction. Then, we give a brief introduction to dis­

crete Morse theory in Section 6.2, along with its connection to persistent homology. 

Section 6.3 presents our proposed noise model and our reconstruction algorithm. 

6.1 Motivation 

We assume that the hidden graph G is contained in a planar, rectangular grid Q of 

pixels in the plane. In the density•based reconstruction approach, a density func­

tion p : Q ~ R is first computed from the (finite) sample S c 0. One can define 

p on the planar grid in several ways. A histogram computation or a kernel density 

estimation (KDE) ( [ 43]) are usually very popular and easy to implement in practice. 

Then, an appropriate threshold is chosen to get a thickened graph as the super-level 

set of the density at the threshold. Some algorithms work by choosing this thresh­

old empirically, whereas others, e.g., [ 42], use systematic topological techniques 
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to choose a set of thresholds just big enough to capture the desired topological 

changes in the sub-level set filtration dictated by the density function. While most 

of the previous approaches gained success in practice, not much has been proved 

theoretically to guarantee the desired topological or geometric correctness. 

Our work is inspired by the recent development by Dey et al. [1 S]. The authors use 

discrete Morse theory to extract the cycles of the underlying graph G from a density 

function. They show that if the density function satisfies a noise model, which the 

authors call an ( w, 13, v )-approximation, then the output G of their algorithm has 

the same homotopy type as G. However, the noise model is too simplistic to locate 

the branchings of G. Also, the results of [15] fail to capture the leaves or the "hairs" 

of G, resulting in a large Hausdorff distance between G and G. 

In order to overcome the above-mentioned limitations of the algorithm developed 

in [15], we propose a two-threshold based noise model for the density function that 

is more practical and that can localize all vertices of G. Using different thresholds 

for the graph vertices and the graph edges, we develop a more efficient algorithm 

(Algorithm 2) that can output a reconstruction that is also geometrically very close 

to G. We prove in Theorem 6.3.1 that the output of our algorithm successfully 

captures both the topology and geometry of the underlying graph G. 

6.2 Discrete Morse Theory 

Morse theory-in its original form-was first introduced by Marston Morse ([44]). 

The smooth Morse theory analyzes the topology of smooth manifolds through the 

lens of well-behaved, real-valued smooth functions on the manifold, called Morse 

functions. Each Morse function gives rise to a CW-complex that has the same ho­

motopy type as the manifold, whose cells are in one-to-one correspondence with 

the critical points of the function. Morse inequalities (strong and weak) and Morse-
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Smale complex are just two among many other far-reaching and important conse­

quences of the theory. We encourage an interested reader to follow [ 44, 45] for a 

more detailed treatment on the subject. 

In many applied fields, like TDA, the topology of a simplicial complex also needs to 

be analyzed. Robin Forman's discrete Morse theory ([16]) has successfully brought 

(smooth) Morse theory into the combinatorial world of simplicial complexes and 

simplex-wise maps. Discrete Morse theory has recently been gaining popularity in 

data science. Areas of successful application include simplification of persistent ho­

mology computation [46], de-noising point-clouds [47], grey-scale image analysis 

[ 48, 49], and graph reconstruction [1 S]. We adapt discrete Morse theory to our 

setup and leverage Morse cancellation, stable and unstable manifolds to aid the 

extraction of features of a (hidden) metric graph from a finite sample. 

We touch upon the basic definitions and relevant results from discrete Morse theory. 

We refer the readers to [16, 45, 50] for an in-depth introduction to the elegant 

subject. We start with the definition of a discrete Morse function. 

Definition 6.2.1 (Forman's Discrete Morse Function [50]). Let 'JC be a simplicial 

complex. A simplex-wise function p : 'JC ---t JR is called a discrete Morse function on 

'JC if, for every p-simplex u f Pl in 'JC, we have 

l{-r'P 11 < cr'P1 : f (-r) ~ f (cr)}I::; 1, and 

The above definition takes a while to grasp. The basic idea is the faces of a simplex 

must be assigned strictly greater values by p, with at most one exception. Likewise, 

the co-faces of a simplex must be assigned strictly smaller values, with at most one 
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exception. So, each simplex of IC is allowed at most one exception at all. See 

Figure 6.1 for an example. 

2 3 

1 
2 

5 

7 

0 6 4 

Figure 6.1: The simplicial complex IC consists of four vertices, five edges, and a (green) triangle. The 
values assumed by the simplex-wise function f are shown by the simplices. The thick, red edge has 
an exception, the red vertex. Consequently, the red vertex has an exception, the red edge. Therefore, 
f is a valid discrete Morse function on JC 

A curious reader might wonder: does there always exist a discrete Morse function 

on a given complex IC? And, the answer is yes-one can take f ( o-1P1) := p. The 

function, however, is not a very good discrete Morse function because it has many 

critical simplices. 

Definition 6.2.2 (Critical Simplex). Let IC be a simplicial complex and f : IC --+ lR 

be a discrete Morse function. A simplex o-fvl in IC is called a critical simplex if 

and 

The critical simplices are simplices with no exceptions. A simplex is called reg­

ular if it is not critical. In Figure 6. l , the red edge and the red vertex are regular, 

and all other simplices are critical. 
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Definition 6.2.3 (Discrete Vector Field). Let 1(, be a simplicial complex. A dis­

crete vector field V on 1(, is a collection of pairs ( crrpi 1 't1P+ 11) of simplices of 1(, such 

that cr1P1 < Tip+ 11, and each simplex of 1(, appears in at most one of such pairs. 

A pair ( criPl, 't(pt-l l) € Vis also called and visualized by an arrow, of which cr and 

'tare the tail and the head, respectively; see Figure 6.2. A simplex is called critical 

if it does not appear in any of the pairs of V. 

2 3 

2 
4 

6 

2 
0 6 4 

Figure 6.2: The simplicial complex K consists of five vertices, seven edges, and a (green) triangle. 
The discrete vector field V has four (red) arrows or pairs of simplices. Also, the values of a discrete 
Morse function f : K a are shown so that Vr is the induced gradient vector field off. Note the 
V-path that starts at the top blue vertex and ends at the bottom blue vertex. 

Definition 6.2.4 (Induced Gradient Vector Field). Let f be a discrete Morse function 

on a simplicial complex K. The induced gradient vector field V, is defined as follows: 

With the definition of a discrete vector field under our belts, we now define the 

concept of a V-path. 

Definition 6.2.5 (V-path). Let V be a discrete vector field on a simplicial com­

plex K. AV-path or gradient path is a sequence of simplices 
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h O ( M rp+1J) V d tpl !p +li f II. {O } w ere r > , Ti , eri E an Ti+ 1 < cri or a t E , ... , r . 

We consider the example of Figure 6.2 to illustrate the concept. 

We now define (discrete) Morse cancellation, which provides a systematic way to 

reduce the number of critical simplices in a gradient vector field. 

Definition 6.2.6 (Morse Cancellation). Let V be a gradient vector field on K., 

and suppose that T (pJ and cr1P+ 11 are two critical simplices such that there exists 

a unique V-path 

-Ti p ] er(p tl] 'T"(p l cr{p+ ll cr(p + I ) 'T"(p l •o , 0 , • 1 1 I , • • • , r , • 

with To < er. Define a new gradient vector field V by reversing the arrows; see Fig­

ure 6.3. 

Figure 6.3: The effect of cancelling the V-path shown in Figure 6.2 is described. The new gradient 
field V is shown by the red arrows. Note that V has two fewer critical simplices! 

Finally, for a critical simplex er, we define its stable manifold to be the union of 

the V-paths that end at er. Similarly, we define its unstable manifold to be the union 

of the V-paths that start at er. For more details see [15, 16). 

6.2.1 Persistence-Guided Morse Cancellation 

In practical applications, we often consider an injective function f : V (IC ) --t JR on 

the vertex set of K.. For any er E K., we can extend the map to a simplex-wise map 



on K, in the following way: 

f ( er) := max{f(vd}, 
O< i!5p 

where er = {v0, vi, ... , vp} is a p-simplex of K. 
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The function f may not be a discrete Morse function. However, f is an example of a 

PL-function. One can define a strict total-ordering'-<' of the simplices of K, by using 

f and then the face relation '<' in case of a tie. A lower-star filtration 

on K, is defined by'-<', where k = the number of simplices in K. 

A popular strategy to remove topological features associated with the "noise" present 

in f is to consider a lower-star filtration ([15]), and let persistent homology ([Sl]) 

guide the Morse cancellations. We refer the readers to [15, 50, 52, 53] for more 

details. In our work, however, we use the style and notations of (1 5). 

Suppose that we run persistence on a lower-star filtration, and denote by Pr(K, ) 

the resulting persistence pairs. For a pair ( cr, -r) E Pr(K), its persistence Pers( cr, -r) 

is defined by f (T) - f{cr). As a consequence of using a lower-star filtration, every 

simplex in K, participates in a persistence pair. 

6.3 Reconstruction Algorithm 

We first discuss the noise model we propose for the density function p, then follows 

the analysis and proof of correctness of our algorithm (Algorithm 2). For ease of 

presentation, we define the noise model in the smooth set-up. 

Let Q be a planar rectangle, and let G be a finite embedded graph embedded in­

side n. Let w be a small positive number such that Gw, the w-offset of G, is 
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contained in O and has a deformation retraction onto G. For each vertex v of G, 

we call the w-ball centered at v the vertex region of v. Now, let vw be the union of 

all vertex regions of G. 

We call a density function p : 0 -t IR an (u,, 13 1, 132, v)-approximation of G if 

((3 1, 131 + v], if X E Vw 

p(x) E (132,132 + v], if x € Gw - vw 

[O, v), otherwise 

where 131 > 13i + 2v, 131 > 2v. In this case, we call 131 and 132 the thresholds for p. We 

assume our density function is an ( w, /3 1, /3 2., v )-approximation. In practice, these 

four parameters are unknown. However, in our algorithm, we use a cut-off 6 such 

that v < 6 < min (132 v, 131 - 132 v ) and is assumed to be known to us. 

In order to reconstruct G, the density is expected to assume very large values in­

side Gw relative to the outside region. Here, a small noise or perturbation v has 

been assumed. The thresholds make this noise model close to real-world applica­

tions involving the extraction of road-networks from GPS trajectory data. Because 

points along trajectories make the density higher near the intersections than the 

edges, this noise model enables us to correctly reconstruct not only the topology 

but also the geometry of G as shown in Theorem 6.3.1. 

6.3.1 Analysis of Algorithm 

In light of our proposed noise model, we devise Algorithm 2 for the geometric 

reconstruction. We start with a discretization K, of the planar rectangle 0. For 

example, K, can be a planar two-dimensional cubical complex. Let the density 

function p : K -, JR be an (w, l31, 132, v)-approximation and let cutoff v < 6 < 

min(/32 - v,131 - 132 - v). Our goal is to construct a discrete vector field Von K, 
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Algorithm 2 Graph Reconstruction Algorithm 
Require: The discretized domain IC, density function p : IC ---1 R, and threshold & 
Ensure: The reconstructed graph G 

1: Initialize V as the trivial vector field on IC 
2: Initialize G = 0 
3: Run zero-dimensional persistence to get the persistence pairs P(IC) 
4: for all (v, e) E P{IC) with Pers(v, e) < & do 
5: Try to perform a Morse cancellation for the pair 
6: Update V 
7: end for 
8: for all (v, e) E P(IC} with Pers(v, e) :2:: & do 
9: G = GU {unstable manifold of e} 

10: end for 
~ 

11: return G 

that is associated to a discrete Morse function that is much simpler than p. This 

way, we clean the density function from the noise administered by v. We initial­

ize V with the initial vector field IC in which all simplices are critical. In order to 

remove non-genuine critical simplices, we run zero-dimensional persistence on a 

lower-star filtration of IC defined by f = - p, and denote by P(IC) the persistence 

pairs. Then, for each (vertex-edge) persistence pair {v, e) E P(IC) with persistence 

smaller than 6, we try to perform Morse cancellation of the Morse pair ( cr, T) to up­

date V. After the cancellations are done, the output V is a cleaner discrete gradient 

field on IC. The resultii:ig V only contains genuine critical points, i.e., for each graph 

vertex we have a critical vertex v of IC in its vertex region and for each edge of G 

we have a critical edge e in V. All these critical vertices and edges will be contained 

in G w. Moreover, these critical vertices and edges are characterized by their persis­

tence being larger than 6. Therefore, to extract the edges of G we consider each 

edge of IC with persistence ~ 6 and compute their unstable manifolds. The union 

of their unstable manifolds is the reconstruction G. 

We note that Algorithm 2 runs only zero-dimensional persistence. The algorithm 

presented in [15], however, uses both zero-dimensional and one-dimensional per-
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sistence computations. Therefore, our algorithm avoids the complexity of matrix 

multiplication, and runs only in O{k log k)-time, where k is the total number of 

vertices and edges in the grid JC. 

The two thresholds help us to localize the critical vertices of the discrete gradient 

field inside the vertex regions. The output G has the same homotopy type as G as 

shown in the following theorem. 

Theorem 6.3.1 (Graph Reconstruction). Let G be a connected, embedded planar 

graph contained in rectangular grid Q, and let the simplicial complex JC be a dis­

cretization of Q. If p : JC --t R. is an ( w, (311 (32, Y )-approximation of G, then the 

output G of Algorithm 2 has the same homotopy type as G. Moreover, dH (G, G):::; w. 

Proof We prove the homotopy type by showing that G and G have the same first 

Betti numbers, as the homotopy type of a connected graph is completely character­

ized by its first Betti number. 

After the termination of Algorithm 2, by the assumption on the density function, 

for each graph vertex v' of G, we have exactly one critical vertex v of JC inside the 

vertex region of v'. This vertex v is the local maximum of p inside the vertex region 

of v'. For the persistence pairings in P(JC) with persistence larger than 6, a vertex 

v of JC has to be paired with either +oo or with a critical edge e of JC from the 

edge region of a graph edge e' of G. And, e' will be incident to v', as illustrated 

in Figure 6.4. Now, for each critical edge e of JC, e must lie inside one of the edge 

regions of G. Moreover, for each each e' of G we have exactly one critical edge e 

of JC. For the pairings of P(JC) with persistence larger than 6, each edge e is either 

paired with a vertex v from the vertex region of an incident edge or a triangle from 

the complement of Gw. 

The one-to-one correspondence of the edges of G and the critical edges of 1C and 

the vertices of G and the critical vertices of 1C in V, shows that the stable manifold 
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Figure 6.4: A graph G with vertex and edge regions. Critical edges and their stable manifolds are 
shown in green. 

of a critical edge e of K. that lies in the edge region of a graph edge e' of G is a path 

in Gw joining the critical vertices of the vertex regions of the end-points of e'. This 

concludes that G and G have the same first Betti numbers. Also, since the critical 

vertices and edges are localized inside the corresponding regions we conclude that 

CJ 

6.4 Discussions 

With our proposed noise model, we have successfully recovered the topology and 

geometry of the underlying graph. Compared to [15], we improve the running­

time by avoiding higher-dimensional persistence computations. In addition, our 

algorithm produces Hausdorff-close embedding under our noise model. For graphs, 

however, a better quality guarantee would be a small (edge-wise) Frechet distance 

between the reconstruction and the ground truth. A better noise model that allows 

for such a guarantee can be a natural next step. Our reconstruction works for pla­

nar graphs, the question of higher-dimensional shape reconstruction using discrete 

Morse theory still remains open. 
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Chapter7 

Computing Gromov-Hausdorff Distance in Euclidean Spaces 

Most people believe the mind to be a mirror, more or less accurately reflecting the 
world outside them, not realizing on the contrary that the mind is itself the principal 

element of creation. 

-Rabindranath Tagore 

Thus far, our focus of exploration has been the reconstruction of shapes. We turn 

our attention, in this final chapter, to the comparison of shapes. As noted earlier, 

a reliable shape reconstruction technique is always complemented with good re­

construction guarantees. Topological invariants, such as Betti numbers, homotopy­

type, persistence diagrams, etc, are some popular choices for such guarantees. In 

the area of metric shape reconstruction, Gromov-Hausdorff distance provides a nat­

ural framework for reconstruction guarantees: how much the reconstruction and 

the (hidden) shape of interest are metrically-close; see [10, 11 , 28] for example. 

As a robust framework for shape comparison and recognition ([13, 54]), we inves­

tigate the questions pertaining to the computation of the Gromov-Hausdorff dis-
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tance, particularly between Euclidean subsets. Our work is primarily motivated by 

developing an efficient algorithm to compute Gromov-Hausdorff distance between 

compact sets X, Y c Rd. 

Section 7.1 presents our motivation and some major, related developments. We 

state the formal definition and some important properties of Gromov-Hausdorff dis­

tance in Section 7.2. We then bring our focus particularly onto Gromov-Hausdorff 

distance between Euclidean subsets. In Section 7.3, we introduce the concept of 

Hausdorff distance under Euclidean isometries; discuss how it interplays with the 

Gromov-Hausdorff distance, and explore some of the nice structural properties of 

nearest neighbor correspondences (Definition 7.3.5). Finally, in Section 7.4, we 

dive deep into our approximation techniques for the efficient computation of the 

Gromov-Hausdorff distance on the real line. 

7 .1 Motivation 

The Gromov-Hausdorff distance was first introduced by M. Gromov in ICM 1979 

(see Berger [55]). The notion, although it emerged in the context of Riemannian 

metrics, proves to be a natural distance measure between any two metric spaces. 

Based on the notion of Hausdorff distance, the distance compares two metric spaces 

by quantifying how metrically similar they are. In the last decade, the concept 

surfaced its usefulness in shape matching and topological data analysis. 

In shape recognition and comparison, shapes are regarded as metric spaces that are 

deformable under a class of transformations. Depending on the application in ques­

tion, a suitable class of transformations is chosen, then the dissimilarity between the 

shapes are defined by a suitable notion of distance measure that is invariant under 

the desired class of transformations. For comparing Euclidean shapes under Eu-
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clidean isometry, the use of Gromov-Hausdorff distance is proposed and discussed 

in [13,54,56,57]. 

7 .1.1 Related Work 

The concept of Gromov-Hausdorff distance has been spawning a multitude of re­

search directions. Naturally, the scope of the topic has grown wide and vast-both 

in theory and applications alike. In this work, we investigation the challenges re­

lated to the efficient computation of the distance. We first briefly lay out some of 

the very interesting and pivotal developments addressing its computational aspects. 

As we will see, a straight-forward computation of the Gromov-Hausdorff distance 

between two metric spaces containing at most k points takes 0(2k)-time. Except 

for a few extremely simple configurations with just a handful of points, a generic 

polynomial-time computational scheme is not yet known. The last decade stands 

witness to some major developments addressing the NP-hardness questions related 

to the computation of Gromov-Hausdorff distance. 

For a minimization problem, like computing the Gromov-Hausdorff distance, the 

exact solution sopt may be difficult to compute. In an attempt to solve such an 

optimization problem, an algorithm is sometimes devised to output an approximate 

solution Sappx instead. Such an algorithm is called an approximation algorithm with 

an approximation factor p > 1 if Sopt :5 Sappx :5 PSopt• The algorithm is also often 

called a p-approximation to the minimization problem. 

We take this opportunity to quickly bring up another related and crucial concept 

from complexity theory: the notion of NP-hardness of a (discrete) problem. We 

spare the readers here of the mathematical definition of the NP-hard class of prob­

lems. Instead, we give here a brief and gentle overview. The class P is defined to 
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be the collection of problems that are known to be solvable by an algorithm whose 

running time is polynomial in the input size. Some decision problems, however, 

may not be known to be solved in polynomial time, but checking whether a given 

solution does solve an instance of the problem can be done in polynomial time. This 

class is known as NP. It's believed by many computer scientists including myself, at 

least at the time of writing this thesis, that P ~ NP. An NP-hard problem is defined 

to be at least as hard as any NP problem. An interested reader is referred to [58], 

one of the best references on such an intricate topic like complexity theory. 

The authors of [59] show an NP-hardness result for approximating the Gromov­

Hausdorff distance between metric trees. A metric tree is a metric space that has the 

topology of a contractible I-dimensional simplicial complex. If X and Y are metric 

trees, [59] proves that it is NP-hard to approximate dGH{X, Y) by an approximation 

factor < 3. The authors use the distortion based definition (Lemma 7.2.5) of the 

Gromov-Hausdorff distance to establish their results. 

For Euclidean subsets, the question of a polynomial-time algorithm is still vastly 

open. Although the distance measure puts Euclidean shape matching on a robust 

theoretical foundation [13, 54], the question of computing the Gromov-Hausdorff 

distance efficiently, or even an approximation thereof, still remains elusive. In [57], 

the author shows that computing the distance is related to various NP-hard prob­

lems and studies a variant of Gromov-Hausdorff distance. 

As noted before, the computation of Gromov-Hausdorff distance leads to minimiz­

ing the additive distortion (Definition 7.2.4) over all correspondences between the 

sets. For completion, we mention here a parallel line of developments ([14,58,60]) 

related to minimum multiplicative distortion (see [60] for a definition) over the bi­

jections between Euclidean subsets of the same cardinality. The authors of [58] 

prove the decision problem of finding a minimum (multiplicative) distortion bijec-
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tion in three-dimensional Euclidean space is NP-hard. In [60], the authors present 

a polynomial-time algorithm to find the minimum distortion bijection between two 

subsets of the real line, provided that the sets have a distortion less than 5 + 2 v'S. 

For large distortion in the real line, the distortion problem is still shown to be hard 

in [14]. 

The authors of [14] introduce the additive distortion-the one used in Gromov­

Hausdorff distance-and demonstrate a polynomial-time 2-approximation algorithm 

for the real line case ( d = 1). An open problem is also posed in [14 J: are there 

polynomial-time approximations to find the minimum bijective distortion withing a 

factor less than 2? 

All these NP-hardness results provoke the natural curiosity about the computational 

hardness of Gromov-Hausdorff between Euclidean subsets. Let d 2: 1 and X, Y ~ JRd 

be compact sets, equipped with the standard Euclidean metric. Our knowledge of 

efficient computational schemes of dGH (X, Y) is still sufficiently scanty. We pose the 

following open questions: 

(i) Is there an algorithm to compute dGH(X, Y) exactly in polynomial-time? 

(ii) If not, can we find a polynomial-time approximation algorithm for dGH(X, Y), 

possibly with a reasonably small approximation factor? 

(iii) If not, is it NP-hard to approximate dGH(X, Y), like the metric graph case? 

The above questions set the pitch of our investigation into the computation of d GH 

in Euclidean spaces. 



79 

7 .2 Gromov-Hausdorff Distance and Distortion 

The notion of Gromov-Hausdorff distance is closely related to the notion of Haus­

dorff distance (Definition 3.1.1). We follow Gromov's book([61]) to define the dis­

tance. The primary definition uses the concept of an isometry or distance.preserving 

map between metric spaces. 

Definition 7.2.1 (Isometry). A map f: (X, dx) --t (Y, dv) is called an isometry if 

We immediately note that an isometry f is injective, and that f: X --t f (X) is a home­

omorphism. 

We are now in a place to define the Gromov-Hausdorff distance formally. Unlike the 

Hausdorff distance, the Gromov-Hausdorff distance can be defined between two 

abstract metric spaces (X, dx) and (Y, dv) that may not share a common ambient 

space. We start with the following formal definition: 

Definition 7.2.2 (Gromov-Hausdorff Distance [61]). The Gromov-Hausdorff dis­

tance, denoted dGH(X, Y), between two metric spaces (X, d,d and (Y, dv) is defined 

to be 

dGH{X, Y) = inf d~(f{X), g(Y)), 
f:X->Z 
g:Y Z 

z 

where the infimum is taken over all isometries f : X --t Z, g : Y --t Z and metric 

spaces (Z, dz). 

The definition of Gromov-Hausdorff distance may not seem very natural at the first 

glance-it deserves a bit of explanation. As mentioned earlier, The definition works 
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for abstract metric spaces X and Y, without requiring them to be embedded in a 

common ambient metric space. In order to anatomize Definition 7.2.2, we first 

observe that the maps f, g are embedding X and Y, respectively, into a common 

metric space {Z, dz). Since f, g are isometries, the subsets f(X}, g(Y) of Z are iso­

metric to X and Y respectively. For the curious reader: such a Z, where both X, Y 

can be isometrically embedded, always exists; one can take Z = X LJ Y for instance. 

As f(X} and g(Y) are subsets of Z, their Hausdorff distance d~ (f (X), g(Y)) can now 

be considered. The Gromov-Hausdorff distance is defined to minimize (if mini­

mum exists) this d~ ( f( X), g (Y}), subject to all isometries f, g and ambient metric 

space (Z, dz}. As a consequence, Gromov-Hausdorff distance is a distance measure 

between abstract metric spaces X and Y that is also invariant under any isomet­

ric transformations of X or Y. A detour to [57, 61, 62] is suggested for a detailed 

treatment on the definitions and properties of Gromov-Hausdorff distance. 

In order to present an equivalent definition of the Gromov-Hausdorff distance that 

is computationally viable, we first define the notion of a correspondence. 

Definition 7.2.3 (Correspondence [36]). A correspondence C between any two 

(non-empty) sets X and Y is defined to be a subset C c;; X x Y with the following 

two properties: 

i) for any x E X, there exists any E Y such that (x, y ) E C, and 

ii) for any 'Y E Y, there exists ax E X such that (x, y ) E C. 

A correspondence C is a special relation that assigns all points of both X and Y a 

corresponding point. If the sets X and Y in the Definition 7.2.3 are equipped with 

metrics dx and dv, respectively, we can also define the distortion of the correspon• 

dence C. 
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Definition 7.2.4 ((Additive) Distortion of Correspondence). Let C be a correspon-

dence between two metric spaces {X, dx ) and (Y, dv ), then its distortion, denoted Dist( C), 

is defined to be 

sup ldx{xh x2) dv(Y1, Y2) I 
(x1,y1 l,fx2,Yz )EC 

The distortion Dist(C) is sometimes called the additive distortion as opposed to 

the multiplicative distortion; see [60] for a definition. For non-empty sets X, Y, 

we denote by C(X, Y) the set of all correspondences between X and Y. We note 

the following relation, which can be used to give an equivalent definition of the 

Gromov-Hausdorff distance via correspondences. For a proof of the following, the 

readers are encouraged to see [62]. 

Lemma 7.2.5. For any two compact metric spaces {X, dx) and (Y, dv), the following 

holds: 

dGH(X, Y) = -
2
1 

inf Dist(C). 
C~C!X,Yl 

The combinatorial wrinkle in the alternative definition unveils the genuine com­

plexity entailed in the computation of Gromov-Hausdorff distance. For two finite 

metric spaces X, Y containing at most n points, the computation takes 0 (2n)-time 

by trying out all possible matchings between the points of X and Y. 

7 .3 Gromov-Hausdorff Distance in Euclidean Spaces 

With the basic definitions now at our disposal, we make our readers acquainted with 

a related notion dH,iso(X, Y) here, and list a few of its relevant consequences. The 

notion was first introduced in [56]. In this section, we also introduce the concept of 

nearest neighbor correspondences, present some of its properties, then illuminate 

the trail that has led us to the pinnacle of our findings of Section 7.4. 
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7 .3.1 Hausdorff Distance under Euclidean Isometry 

For any dimension d 2: 1, a Euclidean isometry T : !Rd -----) ]Rd is defined to be a map 

that preserves the distance, i.e., 

When d = 1, the map T can only afford to be a translation or a reflection (flip). 

In d = 2, a Euclidean isometry is characterized by a combination of a translation, a 

rotation by an angle, and a mirror-reflection. For more about Euclidean isometries, 

see [63]. We denote by £(Rd} the set of all isometries of ]Rd. 

Definition 7.3.1 (Hausdorff under Isometry). For any two compact subsets X, Y of 

JR d, we define 

We immediately note that d1-uso induces a pseudo-metric on the set of compact sub­

sets of JRd; dH,iso(X, Y) = 0 ==> X is congruent to Y. 

Remarks 7.3.2. If X, Y are subsets of JR 1 with at most n point, the authors of [17] 

prove that the computation of d H,iso( X, Y) takes O(nlogn). 

The dH,iso(X, Y) minimizes the Hausdorff distance over only Euclidean isometries; 

whereas dG H( X, Y) considers minimizing over all isometries and all embeddings for 

X and Y-not just Euclidean. The observation quickly yields the following inequal­

ity: 

It is most natural to wonder if they are, in fact, equal. To our disappointment, 
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we can contrive the following configuration in IR2 to show the contrary in Exam­

ple 7.3.3. 

Example 7.3.3 (dGH < dH,lso in IR2
). Let us consider two finite sets X, Y c IR2 as 

shown in Figure 7.1 . We take X = {xi, xz, XJ , x41 xs}, Y = {yi, Yz, YJ , 1J4, ys}, and x , = 

Yi, Xz = yz. In a moment's reflection, we see that the b]ue edges give us the 

distortion-minimizing optimal correspondence: 

with dist(Copd = h + c Consequently, dG'1 (X, Y) = h t E . On the other hand, d11,i;.o( X, Y) = 
h. 

Y4 X3 r Ys 

i 
h 

~~ r-+ 
X1 = Y1 X4 ~ X5 X2 = y2 

C( h + € h+€ 

Figure 7.1: The points of X and Y are shown in green and yellow respectively. The optimal corre­
spondence is shown by the blue edges and the nearest neighbor correspondence is shown by the red 
edges. 

The authors show in [56] the following bounds, relating d11,tso and d GH between 

two compact subsets X, Y of ]Rd . 

(7.1) 

where M = max { diameter(X), diameter(Y)} and c~ is a constant that depends only 

on the dimension d. In the inequality (7 .1), note the upper bound depends on the 
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diameter of the input sets X and Y. For d ~ 2, such a dependence is unavoidable. 

See Figure 7.1 . 

In dimension d = 2 and beyond, we just saw that there are examples where both 

the bounds shown in (7.1) are tight. This leaves us with d = 1, the compact subsets 

of the real line. For a long time, it was believed, by the deceptively simple structure 

of the real line, that dGH = d H,iso• If it was true, we could compute dGH in near­

linear time; see Remark 7.3.2. However, the following sophisticated construction 

shows that the conjecture is false. 

Example 7.3.4 (dGH < dH,iso in IR 1
). In this example, we show that for any given 

Gromov-Hausdorff distance 6 > 0, there exist X, Y C IR 1 such that dH,iso( X, Y) = 

6 + i. As a consequence, dGH(X, Y) < dH,iio(X, Y). 

X1 X XO 

.~ 
, X r 
' ' 

! 6 
·I ' 

- ------------------------ ----Yo Y y' 

Figure 7.2: The points of X and Y are shown in green and yellow respectively. The optimal corre­
spondence is shown by the red edges. The optimal correspondence is not crossing free. 

The subsets X, Y are taken as shown in Figure 7.2. We note that dH{X, Y) = 6 

Now, we claim that dH,iso(X, Y) = 6 + }. For a proof of our claim, we present in 

Table 7.1 the summary of d H( X, Y + Ll), which considers translations of Y by an 

amount Ll E R1
• We also note that a translation of - Y does not help to reduce 

the Hausdorff distance. 

By our observation in the above example, we are intrigued by the quest of find­

ing the tight upper bound for (7 .1) in lR 1• A better and constant upper bound is 

presented in Section 7.4, along with the proof that the bound is tight. 
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~ ~ 
,1 dH(X,Y+.1) d H(Y + .1, X} dH(X, y + ,1) 

(- oo, O) - ( yo, x') >& + §. 
8 

0 (x,y') (-yo, x') 6 + §_ 
8 

( 0, i) - (-yk, x), (-yk, xk) E (6 + i, 6 + ¾) 
6 (x, y), (x, y') - 6 + §_ 8 4 

( i, ¾) ( x, -y) - 6 + §_ 
8 

0 ( x, y) (y', Xo) 6 + §_ 4 8 

( ¾, 00) - (y 11 Xo} > 6 + §_ 
8 

Table 7.1: A summary of dH (X, Y + ~) is recorded for~ E R. In the second and third columns, 
the directed Hausdorff distances are achieved for the shown pairs of points. The other columns are 
self-explanatory. 

7 .3.2 Nearest Neighbor Correspondence 

To conclude our discussion of this section, we lastly present our line of investigation 

into Hausdorff correspondences. As noted previously, in Example 7 .3.3 and Exam­

ple 7.3.4, dG 1-1( X 1 Y } i= d H,iso( X, Y ) in general. However, we take the analysis one 

step further, and ask in Theorem 7.3. 7 if there exists an isometry T such that the 

Hausdorff correspondence between X and T(Y) is an optimal correspondence that 

minimizes the distortion. 

Among many possible correspondences, the following correspondence is particu­

larly interesting when considered two Euclidean subsets. 

Definition 7.3.5 (Nearest Neighbor Correspondence). For any two compact sub­

sets X, Y ~ R_N, we define the nearest neighbor correspondence CNN to be the 

relation defined the nearest neighbors of points of X and Y. More precisely, 

CNN = {(x, y ) E X x YI (xis a nearest neighbor of yin X) 

or {-y is a nearest neighbor of x in Y)}. 
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Since X and Y are compact, the nearest neighbors exist. Hence, the induced relation 

is a correspondence. The following important structural property follows from the 

definition. 

Lemma 7.3.6 (Crossing). For any two compact Xl Y c ~1
, the nearest neighbor 

correspondence CNN is free of crossings. 

Proof Let us consider two edges e = (x, y ) and e' = (x', y' } in CNN with x < x' . 

Without loss of generality, we assume that y is a nearest neighbor of x. In order to 

show that e cannot cross e', we assume the contrary: y' < y. Now, we consider the 

following cases based on the position of y with respect to x. In each case we show 

that neither y' is a nearest neighbor of y' nor x' is a nearest neighbor of x'. 

Case 1 (y ~ x): In this case, a nearest neighbor of x' cannot be smaller than y. 

Hence, y' cannot be its nearest neighbor. Also for y' < y, its nearest neighbor has 

to be also smaller than x, hence x' cannot be its nearest neighbor either. 

Case 2 (x < -y): A nearest neighbor of x' cannot be smaller than -y. Hence, -y' cannot 

be its nearest neighbor. Since -y ' < y, we have y ' $ x in this case. Therefore, a 

nearest neighbor -y I has to be smaller than x. So, x I cannot be its nearest neighbor. 

Cl 

We wrap up this section with our final result of this section in the following theorem. 

Theorem 7.3.7 (Crossing). Ford ~ 1, there exist compact subsets X, Y c !Rd such 

that CNN between X and T(Y) is not an optimal correspondence for any Euclidean 

isomet,y T E [ (!Rd) . 

Proof For d 2: 2, we refer the readers to Example 7.3.3. The optimal correspon• 

dence C op t between X, Y is shown by the blue edges. And, the CNN is shown by the 
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red edges. We also note here that there does not exist any non-trivial Euclidean 

isometry T such that Copt becomes the nearest neighbor correspondence. 

In the case d = 1, we use Xi Y from Example 7.3.4. The optimal correspondence Copt 

is shown by the red edges. However, Copt must have crossings- even when one 

considers the reflection of Y. By Lemma 7.3.6, Copt cannot be produced by any 

nearest neighbor correspondence. D 

7 .4 Gromov-Hausdorff Distance in IR 1 

This section is devoted to our main result (Theorem 7.4.3) on approximating the 

Gromov-Hausdorff distance between subsets of the real line. Unless stated other­

wise, in this section, we assume that Xi Y are compact subsets of ~ 1
, and both are 

equipped with the standard Euclidean metric denoted by I • I• 

In IR 1, we visualize X x Y on the disjoint union of two real lines in R2 and a corre­

spondence C E C{Xi Y} by edges between the corresponding points; see Figure 7.3. 

Such a two dimensional visualization comes in handy for the proofs. 

Definition 7.4.1 (Crossing). For a correspondence C E CfXi Y), we say a pair of 

edges (xi, y i) , (x2, y2 ) E C are crossing if they cross in the usual sense, i.e., either 

of the following happens x1 < x2 but y , > Y2 or x , > x2 but y1 < y2; see Figure 7.3. 

7 .4.1 A 2-Approximation 

Theorem 7.4.2 (Approximation of the Gromov.Hausdorff Distance). For any two 

compact subsets Xi Y of IR 1, we have the following 



((a)) An Example Correspondence 
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~ ¥-a! 
I 
I 
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((b)) The Standard Configuration 
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Figure 7.3: On the left, the (sorted) X = {x 1, x2} and Y = {y 1, y 2, y3} are identified as subsets of the 
top and the bottom lines respectively. The points of X are shown in green, and the points of Y are 
shown in yellow. We visualize the correspondence C = {(x1, y 1 }, (x2 , y 2 ) , (x2, !!3H by the red edges 
between the respective points. Also, the edges (x 1, y ,) and [x2 , y 2 ) are crossing. On the right, the 
distortion D of a correspondence is attained by the pairs (x ' , y ') and [x, y ). 

Proof Let C be any correspondence between two compact subsets X, Y of lR 1• There 

exists a pair of relatives {x, -y ), ( x' 1 -y '} E C such that I Ix xi 1-Y -y ' 11 = D, where 

D is the distortion of C. Without loss of generality, we assume that x :::;: x' and 

[x - x' I ~ IY - y'I· Then, there exists an R1-isometry such that, when applied on Y, 

the pairs look like Figure 7.4. From now on, we assume this configuration for any 

given correspondence C. 

We must show that for any correspondence C with distortion 0, there exists a Eu­

clidean isometry T € £ (R1) such that 

Let us denote xL = minX and xR = maxX. We also assume that (xL, -y1 ), (x R, -y2) E C 

for some !Ji, Yz E Y. 

Without loss of generality, we can assume that the edges { xL, y 1 }, ( x R, y1 ) do not 

cross, i.e., y, :::;: yz. This may require to flip Yonce, but applying such an isometry 

is distortion-safe. We can further assume that X L = y 1, which may require an 

additional translation. See Figure 7.4. 



89 

I 
Yl 

Figure 7.4: This standard alignment is assumed for C in this proof. We may need to apply a Euclidean 
isometry on Y so that {x t , y i) and (xR, y11 do not cross and XL = y 1. 

Case 1 (No Crossings): In this case, we claim that dM(X, Y) ~ D. To see the claim, 

consider any edge (p, q) E C. Since, the edge does not cross (xL, 1:1 1 ), we must 

have Iv- qi :S D. So, dH(X, Y) ::S D. 

Case 2 (Narrow Crossings): Let us assume that there is at least an edge that crosses 

the edge (xL, 1:J i}. We now let 

£ 1 = max {(x xd I the edge (x, 1:1 ) E C crosses (xL, 1:1 1) for some y E Y}, 

and 

£ 2 = max {(1:11 1:1 ) I the edge (x, y ) E Ccrosses{xt, y i) for some x E X}. 

We first observe that £h £1 > 0. In this case, we note that both £1, £2 :S D. We claim 

that dtt(X, Y) :S D. 

To see that cC(x, Y) ::S D, consider an x E X. If x :S Xt + £1, then we have lx - 1:1d ::S 

D. And, we note that (x.1:1 ) cannot cross (xL, 1:1 1), hence we have Ix - y l ~ D. 

-1 
To show that dtt(Y, X) ~ D, we take any € Y. If y < 1:1 1, then we have 11:1 - xd :S D. 

If y > 1:1,, we consider x E X such that {x, 1:1 ) E C. Then, {x, 1:1 ) does not cross 
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( xL, Y1 ). Therefore, Ix y j ~ D. This proves the claim. 

Case 3 (Wide Crossings): The last case deals with the scenario of having at least 

one edge crossing the edge (x L, y i) . Let £1 , £2 be defined as in the previous case. 

Then, either £1 > D or £2 > D. In this case, we pick T to be the translation of R 1 to 

the right by D and argue that dH(X, T (Y)) :S D. 

Since the edge (xR, Y2) does not cross (x L, y i) , we first note that lxR Yz l < D. 

Therefore, £ 1 + £2 :S 20. 

To see that ~ (X, T(Y)) :S D, consider an x E X. If x :S XL+ £1, then we still have 

Ix - (y 1 + D )I :S D. If x > XL+ £ 1, then consider (x, y ) E C. The edge (x, y ) does 

not cross (xL, y,), hence we have Ix -- y l :S D. Since £1 + £2 > D, we have y :s; x. 

Hence, l(Y + D) xi ~ D. 

--t 
Now to show that dH(T(Y),X) ~ D, we take any E Y. Ify < y 1, then we have 

IY - xLI :S D. If y > y , , we consider x E X such that (x, y ) E C. Then, (x, y } does 

not cross (xL, y i). Therefore, Ix - y l :S D. This proves the claim. 

[J 

For a correspondence C E C(X, Y) between two compact sets with Dist(C) = D, 

there exists a pair of edges (x' , y 1), {x, y ) E C such that ll x - x' I - IY - y ' I I = D. 

We can further assume, without loss of generality, that x ~ x' and (x x') :S 

!Y - y 'I- Then, there exists an isometry T E £ ( IR 1 ) such that the edges ( x', T( y ' )) 

and (x, T(y )) do not cross and (x' - T{y ')) = (T(y ) - x) = ¥: see Figure 7.3. 

From now on, we always assume this standard configuration for any given compact 

X, Y c IR I and a correspondence C between them. 
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7 .4.2 The Tight Approximation 

Now, we present in Theorem 7.4.3 our main result of this section. We also know 

that dct1(X, Y) :S d.H,iso( X, Y) for any compact X, Y C Rd; see [56]. Together with 

this, Theorem 7.4.3 thus gives us the approximation algorithm for <lGtt with an 

approximation factor of (1 + ¼) . Later in Theorem 7.4.11, we also show that the 

upper bound of Theorem 7.4.3 is tight. 

Theorem 7.4.3 (Approximation of Gromov-Hausdorff Distance). For any two com­

pact X, Y C IR I we have 

Proof. In order to prove the result, it suffices to show that for any correspondence 

C E C(X, Y) with Dist(C) = D, there exists a Euclidean isometry T E £ [1R1
) such 

that 

Depending on the crossing behavior, we classify a given correspondence into three 

main types: no double crossing, wide crossing, and no wide crossing, and we divide 

the proof for each type into Theorem 7.4.5, Theorem 7.4.9, and Theorem 7.4.10 

respectively. [l 

We start with the definition of a double crossing edge. 

Definition 7.4.4. An edge in a correspondence C E C(X, Y) is said to be double 

crossing if it crosses both the (designated) edges ( x', -y ' ) and ( x, -y ); see Figure 7 .6. 

In the following theorem, we consider the case when there is no double crossing 

edge in C. 



Theorem 7.4.5 (No Double Crossing). For a correspondence C E C(X, Y) without 

any double crossing, there exists a value ti E JR such that 

where D = Dist(C}. 

Proof In the trivial case, when dH(X, Y) $ i D, we take ti = 0. So, we assume the 

non-trivial case that dH(X, Y) > iD, Therefore, there exists either i) a0 E X with 

min ja0 - b l > ¥ or ii) bo E Y with min la - bol > ¥, or both. 
bE' Y aex 

We first note that such an a0 cannot belong to [x', x], where Dist(C) = jl !:J -

y ' I - Ix x'I I· If it did, then for any edge ( ao, t) E C, we would have t E [y ', y] and 

Ja0 - t l $~ because then either jJ ao- x'J-lt !:!' II 2 ¥ or jJao - xl Jt - y jl 2 ¥, 
In fact, a0 has to belong to A or A' as defined below (see Figure 7.5): 

A = {p E X n (x + D, oo) I there exists q E Y n [y', y] with (p, q) E C}, 

A' = {p E X n (- 001 x' - D ) I there exists q E Y n [y', y] with (p, q ) E C}. 

Similarly if b0 exists, it has to belong to either B or B': 

B = {q E Y n (y ', y - D ) I there exists p E X n [x, oo) with (p, q ) E C}, 

B' = {q E Y n (y ' + D, y } I there exists p E X n [x, oo} with (p, q ) E C}. 

We now argue it suffices to study only the following three cases. If either A ,/; 0 or 

A' =I- 0, we can assume, without loss of generality, that A =/- 0 and use Case (1) and 

Case (2). Now if we have A = A' = 0 and either B =/- 0 or B' =/- 0, we can assume, 

without loss of generality, that B =/- 0 and use Case (3). For each of these cases, we 

will choose a positive ti $ 3f and show that dH(X, Y + ti) $ ¥ + 1-As a result, 



t-
x' )( P I 

Zi I.t , -­
A Po 

---- ----....-----,-- -----.------,>---------4 

( 

y' 
t-

I<- TJ / -ot ,.. € -+I 

I>-¥----¥ ---- !J -i 
ii- 11 -lj 

q a B 
- t-

- ,_ ---~------➔ 

Figure 7.5: The no double crossing case is shown. The sets A and B are subsets of the top and 
bottom thick, blue intervals, respectively. 

Case 1 (A :/= 01 B = 0): We denote Po = maxA and £ = Po x - D. We also let 

qo E Y n h::1', y ) such that (-po, qo) E C; let t' = (y - q0) . In this case, we choose 

We first observe that (p0 x' ) ~ (q0 - y'). From the distortion of the pair (x', y' ) 

and (p0, q0), and noting that (p0 - x'} 2: (q0 - y' ), we get 

In particular, E' ::; D. Now from the distortion of the pair (x, 1:1 } and (p0, q0), we 

also get 

This implies that t' 2: £. Combining this with E + E' ::; D, we obtain£ ~ ¥-

In order to show d H(X 1 Y + .1) ::; ¥+~'we consider the following partition of the 
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real line into intervals: 

Il1 = ( - oo, qo + ~ ~ ] , Il2 = [ qo + ~ - ~, qo + ~ + ~ ] , 

Il3 = [qo+ ~ + ~ ,Po] , and Il4 = [po, oo). 

For an arbitrary point a E X from any of the above intervals, we show that there 

exists a point b E Y such that la - {b + ~ )I :S (¥ + 1), 

Let a E Il1 n X and b E Y such that (a, b) E C. From~ < £ ::; £', it follows that 

a < x. We first note that (a, b) cannot cross (x, 11 ). If a E [x', xl, then (a, b} does 

not cross (x, y ) because of its distortion bound with the edge (x', -y' ). Now if a < x', 

then ( a, b ) does not cross ( x, -y ), otherwise ( a, b) would be a double crossing edge. 

Now, we argue that (a, b) cannot cross (p0 , q0 ) either. We assume the contrary that 

(a, b) crosses (p0 , q0 ) . Since (a, b) does not cross (x,-y ), we have (b qo) :$ £'.So, 

we get the following contradiction: 

As a consequence if b ::; a, then it follows from the distortion of the pair ( a , b ) and 

( x, ll) that ( a b ) ::; ¥- If b > a, from the distortion of the pair ( a, b) and ( p0 , q0 ) 

we get b - a ::; ¥ - (£ + £1). In either case, we conclude that la - (b + ~)I ::; ¥, 
since~ < £. 

For a E H211 X we have la - (qo + ~ )I :S ¥-



For a E Il3 n X, the distance I a {-y +~)I is maximized when a is the right endpoint 

of the interval Il3. Therefore, 

If { a, b ) E C with a E "'4 n X, we have a > Po = max A. Therefore, ( a, b) does not 

cross (x, -y ). Also, it cannot cross (x', -y ') because of our assumption of no double 

crossing. By an argument similar to Il1, we conclude la - (b + ~)I ::; ¥-

-, 
In order to show d11 (Y + ~. X) ::; ¥ + 1, we consider the following partition of the 

real line into intervals: 

For an arbitrary point b E Y from any of the above intervals, we now show that 

there exists a point a in X such that la - bl :::; (¥ + 1)-

Since B = 0, for any b E :r,, n Y with edge { a, b ) E C, the edge cannot cross ( x, -y ) 

or (Po, qo). Therefore, I a ( b + ~) I ::; ¥ as before. 

For b E :1i n Y, the distance jx - (b + ~ ) I is maximum at the endpoints of :T2. 
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Therefore, 

Now, let b E ..73n Y and ( a, b) € C. Because of the distortion bound D with the edges 

(x, y ) and (p0, q0 ) , a moment's reflection reveals that a E (Po - D - ½, x + D + ½) = 

(x + ½, p0 ½). So, the distance la - lb d )I is maximum when b in one of the 

endpoints of ..73 and a the other endpoint of the interval ( x + ½, p0 - I). Therefore, 

[ a - ( b + d ) I ~ max { I ( x + I ) - ( Y ; + d) I, I ( Po - l) - ( Y + d ) I } 

= max { ~ -1, ~ + ~} = ~ + ~. 

For b E .:h n Y, the distance I p0 - ( b + d ) I is maximum when b is one of the endpoints 

of the interval J4. So, 

Similarly, for b E ..75 n Y, an edge ( a, b ) E C cannot cross ( p0 , q0 ) because of the 

distortion bound. Following the argument for IT 1, we condude I a ( b + 6 ) I ~ ~ + 1-

Case 2 (A = 01 B =I- 0): We denote q, = min B and rt = y D - q, . We also let 

v, E Y n (x, oo) such that (p 11 q i) E C and rt '= v, x. We show, in this case, that 

dH(X, Y + 6 ) ~ ¥ + 1 for 6 = ¾11. In this case, we choose 6 = ¾rt• 

We first observe that (p 1 - x' ) ~ (q1 - y ' ). Therefore, from the distortion of the pair 



(x' , y ' ) and (p, , q 1) we get 

D 2: i(P1 - x ' ) - (q1 - y')I = (p, - x') - (q, - y'), since (p1 - x') 2: (q1 - y') 

= [ ( X - X 
1

) + l1 '] - [ ~ + ( X - X 
1

) - ~ - l1] = T} 
1 + '1 • 
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In particular, 11' :S 0. Now from the distortion of the pair (x, y) and (P li q, ), we 

also get 

D 2: 10 + n - 11'1 = o + n - n'. 

This implies that 11' 2: Tl, Combining this with fl + Tl' S D, we get Tl S ¥-

In order to show cC ( X, Y + .1) S ¥ + 1, we consider the following intervals of the 

real line: 

ll 1 = ( - oo, q 1 + .1 - ~] , llz = [ q 1 + ,1 - ~ 1 X] Il3 = [ X, X + i] 
Il4 = [ x + i, y + .1 - ~ ] , and lls = [ y + .1 - ~ , oo) 

By the symmetry of the problem, we follow the arguments presented in Case (1) 

for .Js, .J4, .J3, .Jz, and .J1 to conclude the same about the nearest neighbor distances 

for n,, Ilz, ll3 , ll4, and Il5 , respectively. 

Now, in order to show ~(Y + .1, X) S ¥ + 1, we consider the following intervals: 

.J1 = ( - 00, q i) I .Jz = [ q 1, p I - ~ ,1] I 

.J3 = [v, - ~ .1,p , + ~ .1] , and .J4 = [v1 + ~ - .1, oo) • 



Again by the symmetry of the problem, we follow the arguments presented in Case 

(1) for Il4 , IT3, 2, and IT 1 to conclude the same about the nearest neighbor distances 

for .:Tt, J2, .:13 , and .:T.i respectively. 

Case 3 (A 'F 0, B ¥: 0): In this case, we take .1 = ¾ max{£, ri} and consider all the 

intervals from Case (1) and Case (2) to conclude that dH(X, Y + .1) $ ¥ + 1· 

Now, we undertake the task of finding a suitable isometry/ alignment when there is 

a double crossing in C. In this case, we may have to consider flipping Y to construct 

such an isometry. We always flip Y about the midpoint of x and x' and denote the 

image by Y. We first present two technical lemmas. 

Lemma 7.4.6. Let (p, q ) E C be a double crossing; see Figure 7.6. If we denote 

h = (x x' ), £1 = (p - x), and £2 = (y' - q), then we have the following: 

ii) t:1 - t:2 ::S D - h, 

iii) h $ ¥, and 

iv) IP - ci l $ ¥ - h, where q denotes the reflection of q about the midpoint of x and 

x'. 

Proof. i) Let us assume the contrary, i.e., £1 < £2 + h. Then, the distortion for the 

pairs ( x, y ) and ( p, q) becomes 

IE.z + D + h - £1 I = £2 + h + D - £1 > D. 

This contradicts the fact that the distortion of C is D. Therefore, we conclude 

that t:1 - E.z ~ h. 



X1 X p 
"---------__,:)-----<):---------

D , 
jw-1-- 7 

~ €2 -+1 

~€}--II 

ijt h--- ~ ---,j 

Figure 7.6: A double crossing (p, q ) is shown. 
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ii) Since from (i) we have t: 1 2: t: 2, from the distortion for the pairs (p, q) and 

(x' , y '), we have 

(7.2) 

So, £ 1 - £2. ~ D h. 

iii) From (ii) we have £2 + D 2: £ 1• Hence, the distortion for the pairs ( p, q) and 

(x, y ) implies 

(7.3) 

Adding (7.2) and (7.3), we get 2h s D. Hence, h S ¥-

iv) If p > q, then 

_ D ( ) D D h 
-p - q = t: 1 - 2 - £2 ~ D - h - z - £2 ~ z · 

Otherwise, 

Therefore, Iv - q I ~ ¥ - h. 

[ ] 

In our pursuit of constructing the right isometry, we first define a wide (double) 
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crossing. We show in Theorem 7.4.9, that we need to flip Yin the presence of such 

a wide crossing. 

Definition 7.4.7 (Wide Crossing). A crossing edge (p, q) E C is called a wide cross­

ing if either p or q lie outside (x' - D, x + D); see Figure 7.7. 

Before presenting Theorem 7.4.9, we make an important observation first in the 

following technical lemma. 

Lemma 7.4.8 (Wide Crossing). Let there be a wide crossing {p, q) E C and an edge 

(po, q
0

) E C such that Po > x Dandy' < q
0 

< y. If we denoter. = p
0 

- x - D, 

r.' = y - q0 and h = x x', then we haver.' ~ h. 

Proof We prove by contradiction. Let us assume that r.' < h. In Figure 7.7, we 

have shown two possible positions of p. In each of the following cases, we arrive at 

a contradiction. 

Figure 7. 7: A wide crossing ( p, q) is shown. Both the cases are shown in bright red. 

Case 1 (p < x' - D): From the distortion of the pair (p, q) and (p0, q0 ), we have 
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Since by assumption h > c:' and from Lemma 7.4.6 we have £ 1 2:: c:2 , we get 

Case 2 (p > p0): From the distortion of the pair ( p, q) and ( p0, q0 ) , we get 

Since D - (c: 1 - c:2 ) 2:: hand h > c:', we have 

Case 3 (x + D < p < p0): Again from the distortion of the pair (p, q) and (p0, q0) , 

we get 

£2 + - + h + -D (D 
2 2 

We get £2 $ t . So, c: ' 2:: c: 2:: tz 2:: t1 + h - D 2:: h. 

Therefore, c: ' 2:: h . [J 

Theorem 7.4.9 (Wide Crossing). Let C be a correspondence between two compact sets 

X, Y ~ IR 1 with distortion D. If there is a wide crossing {p, q} E C, then there exists a 

value ~ E IR such that 

where Y denotes the reflection of Y about the midpoint of x and x1
• 

Proof We first note from Lemma 7.4.6 that h = x - x' :S ¥, IP - ci l :S (¥ - h) . 

Let us define 

A = {p E X n (x + D, oo) I there exists q E Y n [y1, yJ with (p1 q) E C}, 
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and 

A' = {p E X n (- 001 x' - D) I there exists q E Y n [-y', y ] with (p, q) € C}. 

" x' X P l A Po 
~,-

I<-- l'I I ---,f !+-€-'I 

\ I+--- D D h 
I) tJ ¥ --i 2 T 2 T 

I 

It- Tl ~ e' --<I 
I 

I 

+- - - ~, q q1 B y <io y 

p x' X ~ j A Po 
◄ '-{ ,t.......___ ;:, - -----,-+ 

\ 
I<-- T1 / --<I I+- € -'I 

I+--- D u ,j,_ h D D ¥ ----.i 2 2 2 -2 
I I 

It- T1 11/ € I ---,f I I - ~ ',> 

q ci1 B y cfo y' 

Figure 7.8: The correspondence with a wide crossing is shown. The sets A and Bare subsets of the 
thick, dark blue regions on top and bottom respectively. In the bottom, we show the configuration 
when Y is flipped about the midpoint of x and x '. 

Case 1 (A =I- 0): Let p0 = max A and£ = p0 x D. We now define 

B = {q E Y n [1:J, oo) I there exists p E X n (x, oo) with (p, q) E C}. 

Let us also define q1 = max B, Tl = q1 y, and let there exists edge (p 11 q 1) E C with 

Tl' = p1 - x. Comparing with the edge (x, y), we get Tl' ~ Tl• Because of the distortion 

bound with the wide crossing edge, we must have Tl ~ ~- From Lemma 7.4.8, we 

also have £1 = (1:J - qo) ~ h. 

If we take .1 = ¾ max{c:, Tl}, we argue that 
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-----1 ~ 
In order to show that d H(X, Y + .1) :::; ¥ + 1, we define the following intervals: 

( ~ D] [~ D '] rr [ , ~ D] Il1 = -oo, q1 + .1 2 Il2 = q, + .1 - 2 , x 3 = x, qo + .1 + 2 , 

ll4 = [ <To + .1 + ~,Po] , and :s = [po, oo). 

For a E (Il , u Il5) n X and an edge (a, b) E C, the edge has to be a double crossing 

edge because of the distortion bound with the wide crossing edge. So after the flip, 

the edge (a, b) does not cross {p0, <To ) or (p 1, qi) . As a result, when a ~ b, we 

have ( a - b) :::; ( ¥ - h) as shown in Lemma 7.4.6 and (b - a) :::; (¥ max{£, ri }) 

otherwise. Therefore, ja - {b + .1)1 :S ¥· 

For a E Il2 n X we have 

For a E Il3 n X, we have 

For a E H.a n X we have 

la - (i ' + .1)1 :::; max { lqo + ~ i'I, IPo - i' 61} 
= max { I ~ - ( D + h £')I, I ~ + £ .11 } 

= max { I ~ - ( £' - h ), , I ~ + ~ I} :::; ~ + ~. 
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In order to show that d H(Y + L1, X) :S ¥ + 1, we define the following intervals: 

( - ) [- 1 0 ] ,.,,_ [ 1 0 - 2L1] Jl = - 001 ql 1 JZ = qi, X + 2 - L1 1 J3 = X + 2 - L1, 'Y 1 3 1 

[ - 2~ -J [- D ] [ D ) J4 = 'Y' 3 , 'Y' , .Js = y ', Po + 2 L1 , and J6 = Po + 2 - 6, oo • 

For .J1, .J2, .:h, .Js, and .J6 we use routine arguments used in Case (1) of Theo­

rem 7.4.5. As a new situation, we only consider .J3 here. For b E .J3 n Y we have 

Case 2 (A = 0): In this case, we assume, without loss of generality, that f\1 $ n2; 

see Figure 7.9. When considering Y, we first note from the distortion bound with 

(p, q) that f\1, 112 :S (¥ - h). 

If h > 3f , then n, > ¥- We take L1 = (111 - 11~ - ¥) , and we argue that 

In order to show that d H(X, Y + L1) :S ¥+¥,we define the following intervals: 

( _ 0 ] [ - 0 '] [ 1 1 0 ] Il 1 = oo, q I + L1 - 2 l Il2 = q 1 + 6 2 I X , Il3 = X l X + 8 + 6 l 

[ 
1 D D ] [ D - 50 ] Il4 = x + 8 + ~, x - 8 + 6 , Ils = x - 8 + L1, 'Y' - 8 + 6 , and 

Ils = [ y' + ~ + ~, 00) , 

For H1 and Il5, we use the arguments from Case (1). 



105 

P P 2 x' x Pl - --~--------.----..-~~--~ .• -- ......... -------..-----
1<- Tl 2 -"4 ~ Tl ( ---<I 

D D h u D Q I<--- 2· - - - z ---- _ __,...._ T - - - 2 ---- -r ----lj 

lt TJ2 ~ 
------- -----------'---~-

qi 82 y' 

p P2 x' X Pl 
~ --r-· 

~ 
> .,. ... ~ 

\ 
l<- TJ2 1'-TJ1 -ll ' 

I<--- Q u D D D 
2 f It • "''' T T 2 ----lj 

l<- TJ I -ti I< TJ2 ~ ~-- - ;:. ...... _ , 
q q 1 8 1 y y' B i ,fa 

Figure 7.9: Wide crossing exists, and both A = 0, A' = 0 

For a E Il2 n X, we get 

A similar argument holds also for (3, Is. 

For a E Il4 n x, let b E [y', y] n Y such that ( a, b) E C. If a ~ b, then by the distortion 

bound with (x, 1:J ) we have (a - x') 5 {b - y '). So, 

I ~ I D D If a 5 b, we argue by symmetry that (b + ~) a 5 1 + 8 . 
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-4 -
In order to show that d H(Y + L\, X) ::; ¥+ ¥,we define the following intervals: 

J1 =( 001 q,l ,J2 =(q1, x'],J3= [x',x' + ~ - .!\] 

J 4 = [ x' + ~ - d, x + ~ - L\] , J s = [ x + ~ - d , qz] , and J6 = [ qz, oo) . 

The analysis for n., 82, Il3, Il4 are similar to Case (1). We note for Js that I (qi+ L\) 

p, I = ~ + TJz - 11; + ~ :::; ¥ + 112 - TJ , + ~ = ¥ + 112 - 111 + (T11 - ri2 - ¥) :S ¥-

If h ::; 3~ , then 111 2: j. We take L\ = (¥ - 11 1), and we argue that 

We use the same intervals as Case (1). With this new~, the only changes in the 

calculations appear in !3. We show Il3 here. 

This completes the proof for wide crossing. !] 

In order to complete our analysis of various types of correspondences, we show 

now that a flip is not required if there is no wide crossing in C. 

Theorem 7.4.10 (No Wide Crossing). Let C be a correspondence between two com-
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pact sets X, Y c IR 1 with distortion D. If there are double crossings but not wide, then 

there exists a value Li E IR such that 

Proof. We assume that there are double crossings in C, but none of them are wide; 

see Figure 7.10. 

~ ..,.. 
---n2---

X ... 
P1 A po 

r T- -------:>--t 
I 

o _____ o 
-- T T ¥ h D _____ D 

~ ---T T ---
~ €2 -fl ~ 1<-- f I ~ n 1 -ti ,,,. 

- - __:) ....;.... 

tjo ~ 8 2 q2 

Figure 7 .10: No wide crossing exists 

Case 1 (A =J 0, B2 = 0): This case is similar to Case (1) and Case (3) of Theo­

rem 7.4.5. 

Case 2 (A -=I- 0, B2 -=I- 0): If TJ 1 ~ £, then we note that dH(X, Y) < ¥- This is the 

trivial case. So, we assume that TJ 1 < L 

From the distortion of the pair (p0, q0 ) and (p2, q2) , we have 

D 2: ( TJ2 + h + D + £) - { TJ 1 + f. ') . 

So, we get TJ.z + £ + h ~ TJ 1 + £ '. 

We take Li = £ TJ i . We first consider the following intervals: 

ll1 = ( oo, y' + Li - ~] , ll2 = [y' + Li - ~, x'] ll3 = [x', x], 

ll4 = [ x, qo + ~ + Li] , Ils = [ qo + ~ + Li, Po] , and ll6 = [po, oo}. 
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The intervals similar to Il2, Il3, IT., , Il5 are considered already in Theorem 7.4.5. We 

show that if p2 E Il1 n X, then any edge (p2, q2) E C cannot cross {x', -y' ), con­

sequently IP2 - ( q2 + .1) I ~ ¥· If we assume the contrary, then the edge has to 

be a double crossing; see Figure 7.10. Since p2 is assumed to be in Il1, we have 

( rtz ¥) > ( ¥ - .1) . This would imply 

---? 
This is a contradiction. Therefore, d H(X, Y + .1) ~ ¥-

Ford H(Y + 6 1 X), the arguments are similar to Theorem 7.4.5. 

Case 3 (A = 0): In this case, we choose .1 = ¾ max{t1 1, E2} and conclude the result 

using arguments similar to Case (2) in Theorem 7.4.9. 

This concludes the proof. □ 

We conclude this section by showing in Theorem 7.4.11 that the bound of Theo­

rem 7.4.3 is a tight upper bound in the following sense: 

Theorem 7 .4.11 (Tightness of the Bound). For any O < r. < ¼ and £, > 0, there exist 

compact X, Y c Ill with dcH(X, Y) = 6 and 

Proof It suffices to assume that £ = .. ,2~ ~ 11 for some k E N. We now take (sorted) 

with distances as shown in Figure 7.11 . As a result, we also have (-y l - x) = 4i£6 

and (xk - -yd = 26 + 4(k - i + 1 )d5, 'vi E {O, 1,2, • • • , k}. 
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• ' 

------ ----+--~5---+--- ----+-------,, • 

.. " 

,_ __ ----+--~~\--+--- ----+---- ------+--- --------< 

Figure 7.11: This picture demonstrates the configuration of X and Y. The correspondence C is shown 
using the red edges. In the bottom, X and Y, the reflection of Y about the midpoint of x and x 1, are 
shown, along with the correspondence C by the red edges. 

To prove our claim that d H,40(X, Y) = (¾ - £} o, we consider translating both Y 

and Y, the reflection of Y about the midpoint of x and x'. 

When translating Y, we note that the smallest Hausdorff distance of 3f is achieved 

for a translation of Y by an amount of ½ to the right. For this amount of translation, 

i' becomes the midpoint of x and xo, where y' is the reflection of -y' about the 

midpoint of x and x'. And all the other points of Y are at distance at least SOB from 

X. 

Now, we consider translating Y by an amount 6 E R. We first observe that 

dH(X, Y) = 26, and the distance is attained by x0 and -y. Now, a translation of Y to 

the left is only going to increase the Hausdorff distance dH ( X, Y + 6 ). Taking this 

argument one step further we get the following analysis as we vary 6: 

If 6 E (- oo, 3} + £0), then the pair (x0, -y ) gives 
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For 6 = 3,: + c:6, we get xo - (1J + 6 ) = (~ - t:) 6. Also, 1Jk + 6 x = (¾ t:) 6 and 

xk - (1Jk + 6 ) = (¾ - c:) 6 + 4c:6. So, dH( X, Y + 6 ) = (i c:) 6, which is attained by 

lxo - 11k l· 

Following this pattern, we conclude that d H( X, Y + 6 ) > (¾ - c:) 6, except for 

6 = !6 + c:6 + 4ic:6 for i E {O, 1, 2, • • • , k}. Therefore, dH,iso(X, Y) = (~ - £) 6. We 

summarize our analysis in Table 7.2. 

ti. 
---I 
d 1-1{X, Y+ 

---I 
d 1-1 (Y + ti., X) d11 (X,Y + ti. ) 

ti. ) 

(- oo, 3j + d)) (xo, y} - > (¾ - e)6 

.lo + £6 
4 (xo , y) (yk,x ), (y, xi.: ) (¾ - e) 6 

(3j + £6, 3}' + £6 + 4e6) - (!Jk, x), (yk, xk ) > (¾ - t:)6 

36 + £0 + 4£0 - (yk l Ix), (1:Jk, Xk ) (¾ e) 6 4 

. . . .. . . .. . .. 

(31 + £6 + 4i£6, 3J + £6 + 4(i + l )ro) - (Yk- i , x ), (yk i ,Xk ) > (¾ - £)6 

3
4
6 + £6 + 4 (i + 1)£6 - (Yk - i - 1, x ), (¾ - e)6 

(!Jk i , Xk ) 

. . . . . . . .. . . . 

3j + £6 + 4kdi [x, Yol (yo, x) ( ¾ - t: )6 

(3l + et> + 4kf: o, oo) {x, Yo l - >(¾ - t:)6 

Table 7.2: A summary of dH (X, Y + ti.) is recorded for ti. E R. In the second and third columns, 
the directed Hausdorff distances are achieved for the shown pairs of points. The other columns are 
self-explanatory. 

With the dH,iso(X, Y) computed, we now define the following correspondence C 

between X and Y: 

C = { ( Xi, yd I i E {O, 1, · .. , k}} U { ( x ', 1J 1 ), ( x, 1J )}. 

The distortion of C is evidently 26. Moreover, we observe that C is an optimal 

correspondence. Therefore, dGH (X, Y} = 6. l] 
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7. 5 Discussions 

In our investigation, we focus on approximating Gromov-Hausdorff distance by the 

Hausdorff distance for subsets of R1• The use of d H,iso yields an approximation 

algorithm with a tight factor. We do not know, however, if other algorithms can 

be devised with a better approximation factor. We believe that the problem of 

computing the Gromov-Hausdorff distance or even approximating it by a factor less 

than ¾ in JR I is NP-hard. The question of a polynomial-time approximation algorithm 

for subsets of !Rd is still open for d ~ 2. 

J travel not to go anywhere, but to go. I travel for travel's sake. The great affair is to 
move. 

-Robert Louis Stevenson, Travels with a Donkey in the Cevennes 
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regular simplex, 66 

shadow, 56 
simplex, 14 
simplices, 14 
simplicial complex, 14 
simplicial map, 15 
space, 9 

underlying topological space, 15 
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vertex, 14 
vertex map, 15 
vertices, 14 
Vietoris-Rips complex, 16 

weak feature size, 28 
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