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ABSTRACT 
Lung cancer is the leading cause of cancer-related death worldwide and breast cancer is the most 

diagnosed type of cancer. This thesis describes efforts to develop microphysiological models of 

drug-resistant non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). 

Microphysiological models of cancer should serve as assays capable of quantifying the 

differences in key properties of the tumor microenvironment that influence progression and 

metastasis in different individuals and during the course treatment-induced tumor evolution. We 

demonstrate that cisplatin resistance increases the expression of genes associated with 

mesenchymal transition, inflammatory cytokine production, and angiogenesis relative to parent 

NSCLC cells in 2D and 3D cultures of NSCLC cells. We then quantified the functional 

significance of these input tumor cell phenotypes using a microphysiological model of cancer-

induced angiogenesis. We found that cisplatin resistant phenotypes drive a significant increase in 

sprouting across multiple metrics, which could help explain the increased aggressivity and speed 

of progression in patients with recurrent NSCLC after cisplatin therapy. Using similar 

biochemical assays and microphysiological modeling approaches, we measured reduced 

expression of proinflammatory genes in TNBC cells with the ERK5 gene knocked out. Previous 

studies demonstrated reduced angiogenesis in a tumor xenograft model using the same ERK5-/- 

TNBC cells. We measured significantly reduced mRNA for the cytokines IL-1B and IL-6, both 

of which are strongly correlated with cancer angiogenesis. We then tested the hypothesis that 

ERK5 knockout would significantly decrease cancer-induced sprouting angiogenesis. Future 

work will focus on modeling more complex drug resistance scenarios in NSCLC and developing 
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microphysiological assays to define the impact of drug resistant tumor cell phenotypes on cancer 

angiogenesis, metastasis, and cachexia. In addition, we will continue to explore ERK5 as a target 

in TNBC, with a shift to focusing on quantifying individual responses to pharmacological 

inhibition of ERK5 in patient-derived models. 
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CHAPTER 1: INTRODUCTION 

Cancer represents one of the medicine’s tallest battles, accounting for nearly 19.3 million new 

cases and 10 million deaths, globally in 2020.1 Of all cancer types, breast and lung cancer are the 

two most commonly diagnosed cancers with an estimated 2.3 million new cases of breast cancer 

and 2.2 million new cases of lung cancer.1 Lung cancer encompasses two main types – non-small 

cell lung cancer (NSCLC) and small cell lung cancer (SCLC) – with NSCLC being further 

subdivided into lung adenocarcinoma, squamous cell carcinoma, and large cell carcinoma.2 Of 

all the NSCLC subtypes, lung adenocarcinoma is the most prevalent, accounting for 

approximately 40% of all total lung cancer cases3. Breast cancer is classified upon hormone 

receptor status and molecular characteristics. While there are numerous breast cancer subtypes, 

triple negative breast cancer (TNBC) is the most aggressive subtype with poorer clinical 

outcomes, accounting for nearly 15-20% of all breast cancer cases4. What makes TNBC 

particularly challenging to treat is that it lacks the expression of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).5 These 

figures highlight the urgency needed to develop better treatment options, which starts with 

engineering more physiologically relevant in vitro models that aid in drug development.  

Organs-on-a-chip (OoaCs) are widely known for being more physiologically relevant and high-

throughput than traditional tissue culture systems and animal models.6,7,8,9 In order for OoaCs to 

accurately recapitulate human physiology, many parameters (i.e., cells/tissues, ECM 

composition, fluidic conditions, and microenvironment interfaces) must be optimized7,10.  
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1.1: NON-SMALL CELL LUNG CANCER 

The primary cause of lung cancer is smoking, particularly in countries where smoking is a 

common habit11. While global efforts to curb tobacco help, other factors such as pollution, 

occupational carcinogens, second-hand smoking and genetic predisposition can also contribute to 

lung cancer.1,11 The 5-year overall survival rate for lung cancer varies depending upon tumor 

stage from 83% for stage IA to 36% for stage IIIA.11 Complete tumor resection is the most 

effective treatment option for stages I-II while later stage III-IV typically employ platinum-based 

doublet therapy.  

1.1A: CISPLATIN RESISTANCE 

Drug resistance in represents a major hurdle in the treatment of NSCLC, frequently leading to 

relapse and poor clinical outcomes12,13. Cisplatin (cis-diamminedichloroplatinum (II)) is one of 

the most popular platinum-based chemotherapies used for NSCLC14. Cisplatin treatment after 

five years leads to a 6.9% decrease in lung cancer associated deaths, compared to untreated 

control15.  

Cisplatin’s defined effects are not well understood but it’s known to cause DNA damage and 

induce apoptosis, thereby inhibiting growth and proliferation of cancer cells16. Initially, 

administration of cisplatin often leads to therapeutic success, however, many patients inevitably 

adopt resistance to cisplatin17. Resistance arises when cisplatin-treated cancer cells can 

proliferate and survive16. Cisplatin resistance is either intrinsic or rapidly adopted through a 

variety of mechanisms by cancer cells. Intrinsic cisplatin resistance is not well understood but 

can result from acute extracellular folate (vitamin B) deprivation18. Rapidly adopted cisplatin 
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resistance mechanisms can be categorized based on cellular target: pre-target, on-target, post-

target, and off-target. Targeting only one mechanism has poor efficacy in overcoming cisplatin 

resistance since it usually implicates a combination of mechanisms. However, understanding 

these mechanisms can provide a systematic approach towards overcoming cisplatin resistance17.  

 
Figure 1: Molecular mechanisms of cisplatin resistance. Mechanisms can be 
categorized by cellular target: pre-target, on-target, post-target, and off-target.13 

 

1.1B: EPITHELIAL-TO-MESENCHYMAL TRANSITION (EMT) 

Nearly 90% of all cancers originate from epithelial tissue, including NSCLC19. Epithelial cells 

are columnar shaped cells that line the basement membrane of several organs creating an apical-

basal polarity20. Neighboring epithelial cells along the basement membrane have a high degree of 

cell-to-cell adhesion with tight junctions and desmosomes20. Epithelial cells possess a high 

differentiation potential; however, they can detach from the basement membrane and migrate to 
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surrounding organs20. This dissemination of cancerous epithelial cells to distal organs is another 

part of tumor aggression that is a prospective therapeutic target. When malignant epithelial 

migrate, they often undergo a process called epithelial-to-mesenchymal transition (EMT) which 

leads to the loss of their cell-to-cell junctions and apical-basal polarity, adoption of stem cell-like 

features, and transition towards a mesenchymal cell phenotype21.  

Mesenchymal cells adopt a spindle-like shape with a front-to-back polarity20. They have a high 

migratory potential and are not highly differentiable like epithelial cells20. After an epithelial cell 

transitions into a mesenchymal phenotype, they can invade neighboring tissues where they can 

undergo the reverse of EMT called the mesenchymal-to-epithelial transition (MET) that allows 

them to re-initiate tumor metastasis22.  

 
Figure 2: An overview of EMT-associated changes in cell physiology.23 

 
EMT-contributed tumor colonization does not require a complete conversion to mesenchymal 

state, though21. A partial mesenchymal state is sufficient to initiate tumor metastasis21. There are 
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several subtypes of tumors that are associated with partial EMT stages24. These intermediate 

stages are consistent with the heterogeneous nature of tumor24. Cells that partially undergo EMT 

can revert to epithelial type cells via MET24. Once cells are fully mesenchymal it is potentially 

irreversible but this is largely dependent on cell type24. Moreover, complete mesenchymal 

transition is rarely observed in cancer19. 

EMT is a major contributor to drug resistance. Anti-tumor drugs are unable to target cells once 

they’ve become a cancer stem cell (CSC) via the EMT23. In addition to evading drug 

therapeutics, CSCs have the capacity to self-renew which leads to tumor relapse23. Several 

stimuli and signaling pathways contribute to EMT induction. For example, TGFB-SMAD 

signaling can be triggered by specific signals from stromal cells in the tumor microenvironment 

due to various inflammatory and hypoxic insults20.  

 
Figure 3: Overview of regulatory factors mediating EMT.25 
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1.1C: ANGIOGENESIS 

Angiogenesis, the process by which new blood vessels are formed from pre-existing vasculature 

and is well controlled in normal physiological processes such as wound healing26. However, it 

plays a critical role in the progression of tumor growth by supplying oxygen and nutrients to the 

tumor and its microenvironment. Angiogenesis both facilitates tumor growth and drives 

metastasis as newly formed vasculature provides the primary tumor routes for cancer cell 

dissemination to distal sites27. The initiation of angiogenesis is said to be dependent upon an 

angiogenic “switch,” which leads to a complex series of events, starting with the release of 

proangiogenic factors and endothelial cell activation. Modulation of this angiogenic switch is 

balanced by intrinsic pro-angiogenic and anti-angiogenic factors within the tumor 

microenvironment28.  

Quintessential growth factors such as vascular endothelial growth factor (VEGF) and fibroblast 

growth factor (FGF) not only contribute to angiogenesis, but also drive endothelial cell 

proliferation, migration, and tube formation29. 

 
Figure 4: The multistep process of angiogenesis.28  
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Since Folkman’s discovery in 1971, angiogenesis has emerged as a promising target for cancer 

treatment as targeting angiogenic pathways can inhibit tumor growth, suppress metastatic 

potential, and normalize tumor vasculature, thereby enhancing delivery and efficacy of other 

drug treatments26. For example, bevacizumab, a monoclonal antibody targeting VEGF, has 

demonstrated efficacy in combination with chemotherapy for the treatment of NSCLC30. Despite 

initial efficacy of anti-angiogenic treatments, resistance and the potential for tumor invasiveness 

remain significant challenges31. Further investigation into the complex interplay between tumor 

cells, the microenvironment, and angiogenic signaling is necessary in order to optimize anti-

angiogenic agents and improve outcomes for lung cancer patients. 

1.1D: CHALLENGES WITH RECAPITULATING DRUG RESISTANCE IN VITRO 

Several limitations are associated with the development of cisplatin-resistant A549s and these 

ultimately depend upon the investigator’s interest. Maintaining relevance to the clinic might 

seem like an obvious goal but this often necessitates lower drug concentrations that yield 

smaller, nearly imperceptible molecular changes. These lower drug concentrations are typically 

administered in pulsed treatments that are shorter in culture time as compared to high-level 

models and then reverted to drug-free media. Increasing drug concentrations reduces clinical 

relevancy but it magnifies various molecular pathways involved in toxicity and resistance. Even 

though clinically relevant models only maintain a nearly 2-5x fold increase in IC50 from parental 

cell line, resistance is often unstable and eventually lost after repeated repassaging. This presents 

a major concern for engineering high-throughput models that enable the screening of anti-

metastatic therapies.  
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High-level models lose their relevancy to the clinic due to their increased drug concentrations, 

typically resulting in a 20x fold increase in IC50 from parental cell line. Administering such a 

high dose of chemotherapy to a parental line in such a short period of time can lead to all cells 

dying. Therefore, doses are increased overtime in culture to reach such a stark increase in IC50. 

This has its limitations, though, as culturing these models can take up to 18 months which 

restricts high-throughput capacity. Moreover, maintaining these cells in culture with drug leads 

to highly stable resistance.  

 

Table 1: Comparison of two different models for culturing drug resistance, adapted from 
McDermott, M., et al. (2014).32 
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1.2: TRIPLE-NEGATIVE BREAST CANCER 

The exact cause of TNBC is not as well characterized as with lung cancer; however, genetic 

predisposition, hormonal factors, and environmental exposures have been proposed to contribute 

to TNBC development33. TNBC disproportionately affects younger women, African American 

women, and those with BRCA1 mutations5,34.  

The lack of ER, PR, and HER2 receptor expression limits treatment options for TNBC, and 

chemotherapies such as cisplatin, paclitaxel, and doxorubicin, among others, remain the standard 

treatment for TNBC; however, this often results in poorer clinical outcomes with nearly all 

women with metastatic TNBC ultimately die35,36.  

1.2A: EPITHELIAL-TO-MESENCHYMAL TRANSITION 

TNBC has been associated with increased EMT markers and enhanced migratory and invasive 

properties as compared to other breast cancer subtypes37,38. EMT helps us understand, in part, 

TNBC’s aggressive behavior, metastasis, and resistance to therapy37,38. Multiple pathways have 

been implicated in EMT induction in TNBC including transforming growth factor-beta (TGFB), 

Wnt/B-catenin, and Notch39.  

Given the significant role EMT plays in TNBC progression and metastasis, targeting key EMT 

regulators and signaling pathways presents a promising therapeutic strategy. Moreover, several 

drugs have been identified that can inhibit EMT that aid in the inhibition of TNBC progression 

and metastasis38.  

1.2B: ERK5 ROLE IN TNBC 
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Extracellular signal-regulated kinase 5 (ERK5), also known as mitogen-activated protein kinase 

7 (MAPK7), is a member of the mitogen-activated protein kinase family and plays an essential 

role in regulating cellular proliferation, survival, differentiation, and motility40. ERK5 signaling 

is activated in response to various stimuli, such as growth factors and cytokines41 Following 

initial activation of the ERK5 pathway with said stimuli, a cascade of intracellular kinases, 

including MAPK kinase 3 (MEKK3) and MAPK kinase 5 (MEK5) activate ERK5 via 

phosphorylation41. Activated ERK5 can translocate to the nucleus wherein it phosphorylates and 

regulates the activity of various transcription factors implicated in cellular proliferation, survival, 

and migration such as c-Myc, c-Fos, and MEF242.  

Recent studies have reported that ERK5 is overexpressed in a subset of TNBC types and its 

expression levels have been correlated with poorer clinical outcomes, including shorter overall 

survival, higher rates of distant metastasis43. Overexpression of ERK5 has also been associated 

with increased proliferation, migration, and invasion of TNBC cells in vitro, suggesting a role for 

ERK5 in the angiogenesis axis for TNBC40,43. Moreover, ERK5 has recently been implicated in 

the regulation of the ECM in TNBC tumor formation and deletion of ERK5 expression using 

CRISPR/Cas9 in TNBC has resulted in suppression of TNBC cell migration40. 

Taken together, ERK5 signaling in the progression of TNBC underscores the need for further 

investigation for ERK5 inhibitors as a potential therapeutic target against TNBC.   
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1.3: ROLE OF MICROPHYSIOLOGICAL SYSTEMS AND ORGAN-ON-A-CHIP 

MODELS IN ONCOLOGIC RESEARCH AND PERSONALIZED MEDICINE 

MICROPHYSIOLOGICAL SYSTEMS AND BIOLOGICAL MICRO-ELECTRO-

MECHANICAL SYSTEMS 

Microphysiological systems (MPS) are advanced in vitro models that aims to recapitulate the 

structural, functional, and physiological characteristics of human organs and tissues on a 

microfluidic scale44. These systems often integrate multiple cell types and cellular components 

within a 3D microenvironment and incorporate dynamic factors such as fluid flow, mechanical 

forces, and chemical gradients of signaling molecules to more accurately mimic in vivo 

conditions. Biological Micro-Electro-Mechanical Systems (BioMEMS) refer to a subset of 

MEMS technology that involve microscale electronic and mechanical systems to interface with 

biological systems to perform sensing, actuation, or both, for applications in diagnostics and drug 

delivery45.  

Early efforts in this field focused on leveraging microfabrication techniques from the 

microelectronics industry to create microscale devices capable of manipulating and 

characterizing biological samples in vitro46. MPS and BioMEMS have shown significant 

potential for providing more physiologically relevant in vitro platforms that closely mimic in 

vivo pathologies44. By recapitulating key cellular and tissue-level features, these systems enable a 

more accurate assessment complex pathophysiology that were otherwise difficult to assess in 

vitro without utilization of animal models47. Consequently, the insights gained from these models 

DocuSign Envelope ID: 79192713-F854-4B5F-9C07-4DD07C8FFA0D



20 

 

 

 

can pave the development of novel cancer therapeutics and inform the selection of patient-

specific treatments in efforts to improve clinical outcomes.  

1.3A: ORGANS-ON-A-CHIP 

Organs-on-a-chip (OoaCs) are a subset of MPS that focus on recapitulating the microarchitecture 

and function of specific organs44. These systems conventionally employ microfluidics, 

biomaterials, and cellular components to create a three-dimensional, dynamic, physiologically 

relevant environment that closely aligns with in vivo conditions48,49. Various OoaCs have been 

developed for various organs, including lung, liver, and heart, and have even been combined to 

model multi-organ interactions with significant physiological relevance48,50–52.  

 
Figure 5: Organ-on-a-chip models for cancer research7.  
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OoaCs have significantly accelerated drug discovery and development for being higher-

throughput than animal models44,53. This is largely in part due to their miniaturized and scalable 

nature, which facilitates the parallel assessment of multiple drug candidates, concentrations, and 

combinations54. Furthermore, microfluidics in OoaCs enable precise control over the cellular 

microenvironment which allow for the standardization and real-time monitoring of cellular 

responses to drug exposure and the assessment of pharmacokinetics and pharmacodynamics55,56. 

Not only do OoaCs provide great promise for streamlining and standardizing drug discovery 

pipelines, but OoaCs also reduce the cost and time associated with traditional in vitro and animal 

models53,54.  

1.3B: 3D PRINTING 

Much of the scalability and reproducibility of OoaCs is attributed to 3D printing techniques 

which facilitate the production of OoaCs with consistent, standardized designs57,58. Specifically, 

3D printing techniques, such as stereolithography, inkjet printing, and extrusion-based printing, 

enable the precise fabrication of OoaCs with intricate, multi-layered microstructures that closely 

mimic native tissue architecture and cellular interactions59,60.  

3D bioprinting can be employed to deposit cells, biomaterials, and ECM components layer-by-

layer, constructing OoaCs with spatially controlled organization of multiple cell types and ECM 

compositions, thus depicting the heterogeneity and structural complexity of human tissue60,61. 

This capability enhances the biological relevance of OoaCs while also allowing for the creation 

of patient-specific models, providing a more accurate platform for drug testing and development.  
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1.3C: SOFT-LITHOGRAPHY 

Soft-lithography techniques have also played a critical role in the fabrication of OoaCs. Soft 

lithography is a family of techniques that includes replica molding, microcontact printing, and 

microfluidic patterning while leveraging elastomeric materials such as polydimethylsiloxane 

(PDMS) to create intricate, microscale structures with high resolution and fidelity62,63. Replica 

molding is a technique that involves casting a liquid prepolymer onto a master mold to create a 

replica of the mold’s features; microcontact printing involves transferring patterns of self-

assembled monolayers or biomolecules from a stamp to a substrate62,63.  

In the context of OoaCs, soft lithography can be leveraged to design and fabricate microfluidic 

channels and compartments that simulate the complex vascular and interstitial networks found in 

native physiological tissues. These microscale features enable precise control over the nutrient 

delivery, excretion, and intercellular communication of the cellular microenvironment, thereby 

promoting the generation of physiologically relevant OoaCs44,64. 

1.3D: PERSONALIZED MEDICINE 

The intersection of MPS, OoaCs, 3D printing, and soft-lithography techniques provide a 

promising avenue for the development of patient-specific cancer models that can inform 

personalized medicine strategies7,44. For instance, patient-derived organoids and tumor-on-a-chip 

models have been utilized to assess individual drug responses and predict optimal therapeutic 

strategies in various types of cancer, including colorectal, breast, and lung cancer65–67. 

Additionally, OoaCs have been employed to investigate the role of stromal interactions with 

DocuSign Envelope ID: 79192713-F854-4B5F-9C07-4DD07C8FFA0D



23 

 

 

 

tumors and how they may influence drug resistance, thereby providing insights that may aid in 

the development of personalized combination therapies68.  

Moreover, the integration of OoaCs with single-cell sequencing, among other advanced 

analytical technologies, can provide critical insights on the molecular basis of patient tumor 

heterogeneity. Furthermore, the deployment of OoaCs in clinics and hospitals in a point-of-care 

fashion can further elucidate patient therapeutic response to specified drugs, thereby enabling 

real-time, data-driven clinical decision-making that allows providers the essential tools to 

optimize treatment strategies and minimize trial-and-error approaches69,70.  

1.4: OBJECTIVES 

When generating cisplatin-resistant lung adenocarcinoma tissues, we aim to focus on capturing 

characteristics in line with more mesenchymal and angiogenic cell populations, as both EMT and 

angiogenesis are associated with more aggressive forms of lung adenocarcinoma. This starts by 

validating an optimal treatment protocol that yields resistant cell populations in a relatively short 

period of time, when compared to longer month or yearlong protocols. It’s our aim that this 

shorter time will make recapitulating drug resistance in vitro higher throughput for organ-on-a-

chip applications. Furthermore, we aim to characterize parameters within said optimal treatment 

protocol that can be used for other researchers quality control when rapidly producing cisplatin-

resistant cells from parental A549s. We then aim to leverage our lab’s previously described 

double lane membrane-free organ-on-a-chip device to investigate differences in angiogenic 

sprouting between cisplatin-resistant and parental A549s. Following this, we hope to translate 

approaches from cisplatin-resistance in lung adenocarcinoma to validate ongoing work from our 
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collaborators finding that ERK5-/- tissues exhibit reduced vessel formation, relative to parental 

TNBC tumors, by finding less angiogenic sprouting in our double lane membrane-free organ-on-

a-chip. 
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CHAPTER 2: METHODS 

2.1: 2D CELL CULTURE 

Both parental A549 and MDA-MB-231 cells were obtained from American Type Culture 

Collection (CRM-CCL-185; CRM-HTB-26). A549 cells were cultured in F-12K culture medium 

(10% fetal bovine serum and 1% antibiotic-antimycotic) whereas MDA-MB-231 cells were 

cultured in DMEM media (10% fetal boxine serum, 1% antibiotic-antimycotic, 1% essential 

amino-acids, 1% non-essential amino acids, and 5uL insulin). Passage-matched MDA-MB-231 

cells were CRISPR/Cas9 knocked out for ERK5 by the Burow Lab at Tulane University. Human 

Lung Fibroblasts (HLF) were obtained from ATCC and were cultured in ATCC Fibroblast 

Growth Medium with 2% fetal bovine serum and 1% antibiotic-antimycotic. Human Umbilical 

Vein Endothelial Cells (HUVEC) were also obtained from ATCC and cultured in ATCC 

Vascular Endothelial Growth Medium, supplemented with Vascular Growth Kit with VEGF and 

1% antibiotic-antimycotic. All cell culture lines were incubated at 5% CO2 and 37ºC.  

2.2: ACUTE 96 HOUR CISPLATIN TREATMENT IN A549 CELLS 

Cisplatin (Selleckchem S1166) was dissolved in sterile deionized water and frozen at -80ºC in 

amber tubes. At time of cisplatin administration, aliquots were briefly thawed in water bath at 

37ºC. Once parent A549s were ~70% confluent, T25 flask is administered 25uM cisplatin 

directly from thawed stock into F-12K medium  

2.3: 3D SPHEROID CULTURE 

A549 spheroids were seeded at 1,000 cells/well in a 96 well round bottom plate (ThermoFisher 

262162) and cultured for 4 days in 100uL F12K media per well. MDA-MB-231 spheroids were 
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also seeded at 1,000 cells/well in a 96 well round bottom plate but after 24 hours, received 

additional 100uL DMEM media with 3ug/mL collagen type I (Corning 354236) and were 

centrifuged at 100g for 3 minutes after 24 hours from seeding to promote spheroid formation. 

Elplasia spheroids were seeded at 3,000 cells/well in a 96 well Elplasia microcavity plate 

(Corning 4442).  

2.4: REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (RT-qPCR) 

2.4A: RNA Isolation 

A549 and MDA-MB-231 RNA was stored at 4ºC for no more than 1 month in RNALater 

solution (Invitrogen AM7020). RNA Isolation of A549 and MDA-MB-231 tissues were 

performed in accordance with Qiagen’s RNeasy kit (ID: 74104). After RNA isolation, nanodrop 

spectrophotometer was used to measure RNA concentration and sample purity (260/280 and 

260/230 ratios). Samples with <95ng/uL concentration, and purity 260/280 and 260/230 outside 

2.0 ± 0.3 were excluded. RNA samples were stored in -80ºC until cDNA synthesis.  

2.4B: cDNA Synthesis 

cDNA synthesis using Quantabio qScript cDNA SuperMix (95048-100) was performed in a 

thermocycler under the following conditions: 25.0ºC for 5 min; 42.0ºC for 30 min; 85ºC for 5 

min; 4ºC hold. Following cDNA synthesis reaction, the 20uL cDNA sample was diluted 1:10 

with nuclease-free water and stored at -20ºC until RT-qPCR reaction.  

2.5C: Primer Design 

Gene-specific primers were designed using the Primer-BLAST tool from the National Center for 

Biotechnology Information (NCBI) with a maximum PCR product size of 200 and Tm = 60ºC ± 
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3ºC. Custom DNA Oligo primers were ordered from Integrated DNA Technologies with the 

following specifications: 25 nmole DNA Oligo; Standard Desalting Purification; LabReady 

(Normalized to 100uM in IDTE pH 8.0). Primer sequences are provided in Appendix A. 

Working primer was prepared by diluting 1:20 of both the forward and reverse DNA Oligo in 

nuclease-free water and stored at 4ºC.  

2.5D: RT-qPCR Reaction Setup 

Reactions were carried out using the Power SYBR Green Master Mix (Applied Biosystems, 

4368577) in a 96-well format. Each 20uL reaction consisted of 10uL Power SYBR Green Master 

Mix, 1uL Working Primer, 6uL nuclease-free water, and 3uL cDNA. All reactions were carried 

out on Applied Biosystems StepOnePlus PCR system. mRNA fold change were determined 

using the 2-∆∆CT method and statistical analysis were  performed using GraphPad Prism software.  

2.6: DEVICE FABRICATION 
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Figure 6: Double lane, membrane-free organ chip device schematic 
 

Clear resin molds were designed in Fusion360 and 3D printed using FormLabs Form 3B printer. 

Resin molds were then washed with isopropyl alcohol (IPA) three times for 20 minutes each 

using FormLabs Wash before being cured at 60ºC for 20 minutes with FormLabs Cure. The 

curing process typically results in slight warping of resin molds. To address this, while also 

removing volatiles, resin molds were baked at 130ºC for 2 hours and then immediately 

sandwiched between two 130ºC jewelers blocks overnight to flatten molds.  

Double lane, membrane-free organ chips were fabricated by using polydimethylsiloxane 

(PDMS) elastomer (Sylgard) in a 1:10 ratio of curing agent to elastomer. After PDMS was 

degassed, PDMS was poured onto molds and degassed before being baked at 60ºC for 12 hours. 

After PDMS cured, layers were bonded using spin coated PDMS on a Petri dish and allowed to 

dry for 24 hours. Following bonding, devices were sterilized via ultraviolet (UV) for 30 minutes 

before polydopamine (PDA) treatment. Vascular gel channels were treated with 5mg/mL PDA 

(Sigma Aldrich) for 3 hours with UV and then washed with ultrapure distilled water twice.  

2.7: VASCULAR GEL 

Vascular gel was prepared using HUVECs (density: 2×106 cells/mL), HLFs (density: 2×106 

cells/mL), 10X DMEM (DMEM:Final Volume = 75:1000), 1M NaOH (NaOH:DMEM = 1:2.5), 

collagen type I rat tail (final concentration: 2.2mg/mL), fibrinogen (final concentration: 

5mg/mL), and thrombin (Thrombin:Final Volume = 1:100). Vascular gel was maintained for a 

total of 10 days with media changes using VEGM media without VEGF every other day.  
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2.8: FLOW CYTOMETRY 

Media was collected in the middle of cisplatin treatment to collect floating dead cells in 

suspension, as well as at end point. At end point, cells were washed with 1mL sterile phosphate 

buffer saline and then trypsinized with 0.05% trypsin-EDTA and incubated at 37ºC for 6 

minutes. Then trypsinization was blocked with 2mL media and then contents were collected for 

centrifugation at 1000 rpm for 5 minutes. Cells were resuspended in 2mL non-sterile PBS and 

then split into 2 flow cytometry tubes with 1mL each. One tube was used as an unstained control 

and another tube was stained with DAPI at a 1:1000 dilution. Samples were centrifuged at 1000 

rpm for 5 minutes and then resuspended in 500uL non-sterile PBS.  

Table 2: Flow Cytometry Voltages 
 FSC SSC V450 

Voltage 682 268 429 
 
Flow cytometry was carried out using FACS Melody. Data was analyzed using FlowJo software. 

First forward scatter plot and side scatter plots were gated to exclude cell debris and doublets. 

This gated area represents the singlet cell population. Then this gated area was used to produce a 

plot of V450, for DAPI, versus side scatter. On this plot, three populations – Late Dead, Early 

Dead, and Live – were quantified based on relative cell size and permeability to DAPI. DAPI 

stains to the minor grooves of DNA in a concentration dependent manner. This means that DAPI 

can bind to smaller cells with more permeable membranes as opposed to larger cells with normal 

membrane permeability. Late Dead population is highly permeable to DAPI and its signal is 

higher than the Live population. Early Dead population is also permeable to DAPI but is larger 
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in size than Late Dead. Live population is not as permeable to DAPI as Early Dead and Late 

Dead populations but Live cell size is larger than Late Dead.  

 

Figure 7: Defining parameters of various populations evident in flow cytometry: Late Dead, 

Early Dead, and Live 

2.9: CRYSTAL VIOLET 

Cells were seeded at 1,000 cells/well and cultured in a 96 well plate until confluency, at which 

point they underwent our cisplatin treatment regimen. Following the treatment regimen, cells 

were fixed in 4% paraformaldehyde for 15 minutes and washed with Dulbeccos phosphate buffer 

solution (DPBS, Corning) prior to staining. Crystal violet (CV) solution (Sigma Aldrich V5265) 

was made at 1:10 in 10% methanol. The CV solution was added to the plate and incubated for 30 

minutes at room temperature. Cells were washed with DPBS until the solution ran clear and set 
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to dry overnight. Crystal violet was eluted with 33% acetic acid solution and read on a plate 

reader at 570nm. 

2.10: IMMUNOHISTOCHEMICAL STAINING 

Cell monolayers were seeded at 30,000 cells per well and cultured for 4 days. Monolayers were 

fixed in 4% PFA for 15 minutes and washed with DPBS prior to immunostaining. Samples were 

blocked and permeabilized for 20 minutes in 1% bovine serum albumin (BSA) and 0.1% Triton-

X, prepared in DPBS. Primary Ki-67 antibody (Rabbit polyclonal to Ki67 [abcam ab15580]), 

smooth muscle actin (Mouse monoclonal to alpha smooth muscle actin [abcam ab7817]), 

PRRX1 (Rabbit polyclonal to PRRX1 [Invitrogen PA5-106700]), and Gli1 (Mouse monoclonal 

to Gli1 [Santa Cruz sc-515751]) was added at 1:100 in 0.1% BSA prepared in DPBS and 

incubated at room temperature for 2 hours with gentle rocking. Primary active YAP1 (rabbit 

monoclonal to active YAP1 [abcam ab205270]) was added at 1:200. Samples were washed with 

DPBS and then secondary antibody (Alexafluor 488 donkey anti mouse IgG [abcam ab150105], 

Alexafluor 594 goat anti rabbit IgG [abcam 150080]), Hoescht 33432 [62249, Thermo Scientific 

62249]) and phalloidin was added at 1:500 in 0.1% BSA prepared in DPBS and incubated in the 

dark for 1 hour with gentle rocking. Samples were washed with DPBS before confocal imaging.  

After 5 days in culture, spheroids were washed with non-sterile PBS and then fixed in 4% 

paraformaldehyde for 24 hours at 2ºC. After fixing, spheroids were washed with three times over 

10 minutes with non-sterile PBS and then blocked and permeabilized in 3% bovine serum 

albumin and 0.05% Triton-X, prepared in PBS, for 30 minutes. Then spheroids were incubated 

with Ki67 primary antibody for 1 hour at room temperature and then placed in 2ºC for 18 hours. 
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After primary antibody incubation, spheroids were washed five times over 1 hour with non-

sterile PBS. Spheroids were then incubated with secondary antibodies Hoescht 33432, Ki67 and 

Phalloidin for 1 hour at room temperature. Afterwards, spheroids were washed four times over 

30 minutes at which point spheroids are ready to be imaged. 

At endpoint, vascular gels were fixed with 4% paraformaldehyde (PFA) for 1 hour at room 

temperature, and then 12 hours at 4ºC. After washing PFA three times over 15 minutes, Hoescht 

33432 (1:250), Phalloidin 488 (1:250), and Human Lectin UEA (1:100) in 1% bovine serum 

albumin and 0.2% Triton-X solution for 1 hour at room temperature on rocker and then 12 hours 

at 4ºC. After staining, vascular gels were washed five times with PBS over 3 hours on rocker.  

2.11: CONFOCAL IMAGING 

Samples were imaged in their respective plates using a Nikon Ti-2 Confocal Microscope at 10x 

objective on DAPI, FITC, and TRITC channels. All images were acquired using the same 

settings and images were denoised using Nikon’s proprietary software prior to image analysis. 

Specific image acquisition methods are mentioned within the appropriate subsections of these 

methods.  

2.12: Ki67, SPHEROID MORPHOLOGICAL, 2D MORPHOLOGY IMAGE ANALYSIS 

Ki67 quantification, spheroid morphology and 2D morphology were conducted using open-

source CellProfiler (Broad Institute, Cambridge, MA, USA) and project pipelines employed are 

available for public download at http://www.github.com/omarmkahmad/mse. Briefly, 20 slices 

in the Z-projection were captured for each spheroid with the top and bottom of the spheroid 

being identified using the FITC channel for phalloidin staining. After capturing images, MAX 
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intensity z-projections were made using ImageJ before importing into CellProfiler. CellProfiler 

outputted Solidity, Compactness, Form Factor, and Area metrics. Solidity is defined as The 

proportion of the pixels in the convex hull that are also in the object, i.e., 

ObjectArea/ConvexHullArea. Compactness is defined as Perimeter2/4*π*Area, related to Form 

Factor. A filled circle will have a compactness of 1, with irregular objects or objects with holes 

having a value greater than 1. Form Factor is defined as 4*π*Area/Perimeter2 and equals 1 for a 

perfectly circular object. The Area of the 2D max projected slice was also obtained to represent 

the cross-sectional area. 

2.13: ANGIOGENESIS IMAGE ANALYSIS 

Stained vascular gels were placed on glass slide and imaged on inverted Nikon C2 laser scanning 

confocal microscope equipped with Nikon DS-FI3 camera. A 6x1 stitched z-stack of each 

vascular gel was captured. Max intensity projection of z-stacks were initially denoised using 

Nikon’s proprietary denoise function and then exported as TIFFs for image analysis. Image 

analysis was conducted in MATLAB (R2021b). First, vascular network images were smoothed 

using an edge-preserving filter with a Gaussian kernel, and a threshold was applied to remove the 

remaining low-intensity noise. We then used a pretrained deep neural network from MATLAB’s 

Deep Learning toolbox to denoise each image, followed by use of adaptive histogram 

equalization to standardize contrast across the image set. Following this, we segmented pre-

processed images and quantified morphometric parameters using an open-source automated 

segmentation tool (REAVER). For quantification of angiogenic sprout growth, DIC images of 

the central channel of each chip were used to identify the boundary between the cancer spheroid 
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and vascular channel, and morphometric quantification was performed on the region of interest, 

bound by the gel interface and the tip of each sprout in the cancer spheroid channel.  

2.14: STATISTICAL ANALYSIS 

All statistical analysis were performed using GraphPad Prism version 9.2.0 for Mac, GraphPad, 

Software, San Diego, California, USA www.graphpad.com.  

2.14A: CELL SURVIVAL 

Ordinary one-way ANOVA with Dunnett’s multiple comparison test, using normalized parental 

A549 as control, was performed for % cell survival analysis. 

2.14B: 2D MORPHOLOGICAL ANALYSIS OF 2D AND 3D TISSUES 

Paired t-test between parent and cisplatin-resistant tissues were performed for analysis of nuclear 

and cellular area and diameter. 

2.14C: KI67 INDEX 

Paired t-test between parent and cisplatin-resistant tissues were performed for analysis of Ki67 

index. 

2.14D: MRNA GENETIC EXPRESSION  

Ordinary one-way ANOVA with Dunnett’s multiple comparison test, using parental A549 as 

control, was performed for analysis of mRNA fold change. 

2.14E: ANGIOGENIC SPROUTING 

Unpaired t-test of Vessel Area, Vessel Density, and Vessel Length was performed for analysis of 

varying parameters of angiogenic sprouting. 
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CHAPTER 3: RESULTS 

3.1: CYTOTOXICITY DOSE RESPONSE ASSESSMENT BY FLOW CYTOMETRY 

A549 lung adenocarcinoma cells treated with cisplatin over 96 hours, across two 48 hour 

intervals, yield cells that are more mesenchymal-like in morphology (Figure 8). This likely 

indicates that they are undergoing the epithelial-to-mesenchymal transition.   

Across all populations of cisplatin concentration, A549s morphology varied. 

 

Figure 8: A549 lung adenocarcinoma cells after 96 hour cisplatin treatment. (A) Parent 
A549s untreated. (B) A549s treated with 15uM. (C) A549s treated with 25uM. (D) 
A549s treated with 35uM. (D) A549s treated with 45uM. 

 
In 15uM population (Figure 8.B), A549s appear to maintain their epithelial morphology. 

However, in the 25uM (Figure 8.C) and 35uM populations (Figure 8.D), A549s start to show a 

more mesenchymal-like morphology. However, differences in the 25uM and 35uM populations 

show that 35uM also start to die more than the 25uM population, as indicated by the small 

circular cells. Moreover, in the 45uM population (Figure 8.E), A549s appear to mainly die from 
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such a high concentration of cisplatin. Therefore, 25uM was closely investigated based off these 

observations.  

 

Figure 9: Morphological changes in A549s treated with 25uM cisplatin across 96 hour 
treatment. (A) A549s covering approximately 70% of T25 surface area on the day of 
first cisplatin hit. (B) A549s after 48 hours from first cisplatin hit and day of second 
cisplatin hit. (C) A549s after 96 hours from initial cisplatin hit (48 hours after second 
cisplatin hit). (D) 20x magnification view of A549s covering approximately 70% of 
T25 surface area on the day of first cisplatin hit. (E) 20x magnification view of A549s 
after 96 hours from initial cisplatin hit.  

 
Figure 9.D shows that A549s treated with 25uM cisplatin over 96 hours appear mesenchymal in 

morphology. This mesenchymal morphology was not evident after the first drug hit (Figure 9.B) 

rather they still maintain an epithelial morphology. Therefore the morphological transition from 

epithelial to mesenchymal morphology likely occurs between 48 hours and 96 hours. 

DocuSign Envelope ID: 79192713-F854-4B5F-9C07-4DD07C8FFA0D



37 

 

 

 

 

Figure 10: Rise of rapidly proliferating small cell morphology after 96 hour 25uM 
cisplatin treatment in A549s. 

 
In addition to mesenchymal-like cells arising, rapidly proliferating smaller cells (Figure 10.E) 

also appear to arise in 25uM population after 96 hours. These smaller cell populations appear to 

join together and form a border of mesenchymal cells surrounding a smaller cell core. 
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Figure 11: Flow Cytometry data from 2D cultures of Parent, 15uM, 25uM, 35uM, and 45uM 
CisR A549s. Late Dead: Permeable to DAPI and Smaller Size than Live. Early Dead: 
Permeable to DAPI and Larger Size than Late Dead. Live: Not as Permeable to DAPI as Late 
Dead. Larger Size than Late Dead. 

To validate cell survival from cisplatin administration, Flow Cytometry (Figure 11) was 

conducted with DAPI staining at end point across n = 3 trials, consistent with the aforementioned 

cisplatin treatment regimen. Parent population yielded 74.16% cell survival whereas 15uM 

yielded 54.83%, 25uM yielded 35.91%, 35uM yielded 16.51%, and 45uM yielded 8.86% (Figure 

11). 25uM cell survival is the closest population to half of parental population.  

3.2: CYTOTOXICITY DOSE RESPONSE ASSESSMENT BY CRYSTAL VIOLET 

 Further validation of cell survival was validated using crystal violet staining (Figure 12). CV 

staining revealed similar trends in cell survival as flow cytometric analysis. 5uM population 

yielded 79.64% cell survival; 15uM population yielded 58.98% cell survival; 25uM population 

yielded 22.91% cell survival; 35uM population yielded 6.978% cell survival; 45uM population 

yielded 7.438% cell survival; and 55uM population yielded 7.358% cell survival.  
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Figure 12: Crystal violet staining from 2D cultures of Parent, 5uM, 15uM, 25uM, 35uM, 
45uM, and 55uM CisR A549s. 

 

3.3: 2D MORPHOLOGY OF CISPLATIN-RESISTANT TISSUES 

Following cisplatin dose validation, 2D morphology of cisplatin-resistant A549s were analyzed 

using Hoescht 33432, Phalloidin, and Ki67 immunostaining to assess cellular and nuclear area 

and diameter (Figure 13). Phalloidin stains for filamentous actin (F-actin), an essential 

cytoskeletal component in eukaryotic cells71. Ki67 is a nuclear protein associated with cellular 

proliferation and is widely used in clinics to assess tumor aggressivity72. Higher Ki67 expression 

often correlates with more aggressive tumor behavior and poorer clinical outcomes72. Cisplatin-

resistant tissues revealed drastically larger cellular and nuclear area and diameter (n=, p<0.0001) 

relative to parent tissues (Table 3). Additionally, cisplatin-resistant tissues had reduced Ki67 

expression relative to parent A549 tissues (Figure 14).  
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 Parent A549 Cisplatin-Resistant A549s 
Nuclei Area (um2) 171.75 366.06 
Nuclei Diameter (um) 14.26 21.00 
Cell Area (um2) 999.04 6034.91 
Cell Diameter (um) 33.14 84.61 

Table 3: Morphological results of parental and cisplatin-resistant A549 lung adenocarcinoma 
cells 

 

Figure 13: 2D morphology of parental and cisplatin-resistant A549 lung adenocarcinoma 
cells. Scale bar = 100um 

CisR

Parent A549
Hoescht
Phalloidin
Ki67

100um

DocuSign Envelope ID: 79192713-F854-4B5F-9C07-4DD07C8FFA0D



41 

 

 

 

 

Figure 14: Ki67 index of 2D parental and cisplatin-resistant A549 lung adenocarcinoma cells. 
Scale bar = 100um 

 

This increase in cellular area could be attributed to senescence, wherein after insulting DNA 

repair mechanisms with cisplatin, cells can grow too large73.  

3.4: 3D MORPHOLOGY OF CISPLATIN-RESISTANT TISSUES 

These results translated to the 3D tumor spheroids where Ki67 expression was lower in cisplatin-

resistant A549s relative to parent A549 spheroids (Figure 15). 

 

Figure 15: Ki67 index of parental and cisplatin-resistant A549 lung adenocarcinoma 
spheroids. Scale bar = 200um. 

CisR

Parent A549
Hoescht
Phalloidin
Ki67

100um
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Interestingly, cisplatin-resistant spheroids developed a dysmorphic morphology relative to the 

nearly spherical parent spheroids (Figure 16). 

 

Figure 16: 3D morphology of parental and cisplatin-resistant A549 lung adenocarcinoma 
spheroids. Scale bar = 200um 

3.5: GENETIC EXPRESSION OF CISPLATIN-RESISTANT TISSUES 

To elucidate the genetic underpinnings of these morphological changes, we quantified mRNA 

fold changes in a variety of genes implicated in cisplatin resistance and EMT. Additionally, we 

wanted to investigate the existence of any temporal factors following cisplatin administration 

that influenced chemoresistance. Therefore, we defined two populations – post-treatment and 

endpoint – to collect RNA (Figure 17). Post-treatment refers to tissues collected immediately 

following the 96 hour treatment regimen, whereas Endpoint refers to tissues collected at 

timepoint for functional assays. 

CisR

Parent A549

Hoescht
Phalloidin
Ki67

200um
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Figure 17: Collection of post-treatment and endpoint cisplatin-resistant tissues 
 

VEGFA expression was slightly downregulated (fold change = 0.75 ± 0.21) post-treatment and 

was upregulated at endpoint (fold change = 1.12 ± 0.90) relative to parent. IL8 (Interleukin-8) is 

associated with chemoresistance by promoting angiogenesis and inflammation in the tumor 

microenvironment in lung adenocarcinoma74. We found an upregulation of IL8 in both post-

treatment (fold change = 10.21 ± 6.84) and endpoint (fold change = 8.89 ± 8.19) tissues. aSMA 

(alpha-smooth muscle actin) upregulation has been associated with an aggressive phenotype and 

poorer prognosis, as well as chemoresistance, in lung adenocarcinoma75. aSMA was upregulated 

relatively consistently in both post-treatment (fold change = 8.37 ± 0.99) and endpoint (fold 

change = 8.35 ± 1.18) tissues. E-cadherin (CDH1) is a critical cell adhesion molecule and its 

downregulation is implicated in EMT, which is said to lead to chemoresistance in lung 

adenocarcinoma tissues54. CDH1 was upregulated at both timepoints with a markedly higher 

expression at endpoint (fold change = 1.56 ± 0.33) relative to post-treatment (fold change = 1.89 

± 0.58). 
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Figure 18: mRNA genetic expression panel of post-treatment and endpoint cisplatin-resistant 
A549 lung adenocarcinoma tissues 

TGFB1 (transforming growth factor receptor beta 1) is known for promoting EMT in lung 

adenocarcinoma and its upregulation is also linked to cisplatin resistance in lung 

adenocarcinoma76. TGFB1 expression was upregulated at both timepoints (post-treatment fold 

change = 1.56 ± 0.33; endpoint fold change = 1.88 ± 0.58) relative to parent A549s. EGFR1 

(epidermal growth factor receptor 1) is involved in cellular proliferation and is linked to cisplatin 

resistance in NSCLC77. EGFR1 expression at endpoint (fold change = 2.93 ± 0.94) was slightly 

higher than post-treatment (fold change = 2.27 ± 0.67). PDL1 (programmed death-ligand 1) 

expression within tumor cells can lead to immune evasion and has been associated with 

chemoresistance in lung adenocarcinoma78. PDL1 expression post treatment was upregulated 

(fold change = 1.59 ± 0.90) but was down regulated at endpoint (fold change = 0.95 ± 0.27). 
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MMP2 (matrix metalloproteinase 2) is involved in the degradation and remodeling of lung 

adenocarcinoma ECM, thereby promoting tumor invasion and metastasis and its upregulation has 

been implicated in cisplatin resistance in lung adenocarcinoma79. MMP2 expression post-

treatment was slightly upregulated (fold change = 1.09 ± 0.31) and further upregulated at 

endpoint (2.34 ± 0.61).  

 

Figure 19: mRNA genetic expression panel of 3D parental A549 and CisR A549 spheroids 
mRNA expression in cisplatin-resistant spheroids largely resembled that of 2D tissues with an 

exception for VEGFA, which had a high upregulation in cisplatin-resistant spheroids (fold 
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change = 7.17 ± 1.69) relative to parent spheroids. This is in stark contrast to 2D PCR data on the 

same tissues which had subtle differences in VEGFA. 

3.6: ANGIOGENIC SPROUTING OF CISPLATIN-RESISTANT TISSUES 

 

 

Figure 20: Cisplatin resistant A549s reveal more angiogenic sprouting, relative to parental 
A549s, evident by increased vessel area, vessel length, and vessel density in double lane 
membrane-free organ chip. Scale bar = 100um. 

This increased expression of VEGFA motivated us to investigate angiogenic sprouting in our 

vascularized double lane membrane-free organ chips. Herein, we found that cisplatin -resistant 
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tissues exhibited more angiogenic sprouting relative to parent A549s when assessing vessel area 

(CisR = 0.083, parent = 0.047, blank = 0.039), vessel length (CisR = 11143.4um, parent = 

4065.2um, and blank = 4433.75um), and vessel density (CisR = 36.96, parent = 17.32, and blank 

= 16.62). 

3.7: GENETIC EXPRESSION AND ANGIOGENIC SPROUTING OF ERK5-/- TISSUES 

 

Figure 21: mRNA genetic expression panel for parental and ERK5-/- MBA-MB-231 tissues 
We then attempted to expand this outside of cisplatin-resistance in NSCLC to TNBC.  

DocuSign Envelope ID: 79192713-F854-4B5F-9C07-4DD07C8FFA0D



48 

 

 

 

 

Figure 22: ERK5-/- tissues reveal reduced vessel length, relative to parental MDA-MB-231 
tissues in double lane membrane-free organ chip device. Scale bar = 1000um. 

We corroborated existing work from collaborators work showing that ERK5-/- in MDA-MB-231 

tissues reveals reduced angiogenic development relative to parental MDA-MB-231 tissues.  
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CHAPTER 4: DISCUSSION 

4.1: Generation of Cisplatin Resistant Lung Adenocarcinoma Tissues 

In this study, we successfully generated cisplatin-resistant lung adenocarcinoma from parental 

cell line A549 by leveraging a 96 hour drug treatment. Briefly, parental A549s were grown to 

near confluency at which point they were exposed to cisplatin doses for 48 hour increments for a 

total of 96 hours. The selection of 25uM as the appropriate cisplatin dose was based on flow 

cytometry and crystal violet analysis which revealed a 35.91% recovery relative to parental 

population yielding 74.16% cell survival (Figure 11). Previous work characterizing and 

generating cisplatin-resistant A549s have found similar percent proliferation for cisplatin dosing 

as our work; however, it is important to note that treatment times varied in these other 

protocols80,81. The initial advantage of our shorter drug protocol, relative to weeks and months 

long protocols, is to provide a higher throughput approach to recapitulating cisplatin-resistance 

in vitro for use in organs-on-a-chip. While long-term treatment protocols may allow for the 

investigation of more “stable” features of cisplatin resistance (i.e., cellular import and export of 

cisplatin), the increased exposure time allows for more genetic mutations to develop which 

moves away from physiological relevance of cisplatin treatment in the clinic. Previously 

described disadvantages of shorter term cisplatin resistant protocols mainly highlight how 

molecular changes are smaller and less discernable; however, it is our hope that genetic 

sequencing approaches coupled with multi-organ chips can help discern these molecular changes 

in short-term, physiologically similar cisplatin treatment regimens. 
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Our findings revealed that our cisplatin-resistant tissues displayed a larger cellular and nuclear 

area and diameter relative to parental A549s (Figure 13). Previous work describing alterations in 

cellular growth as a result of cisplatin-resistance also demonstrated that cisplatin-resistant tissues 

adopt mesenchymal characteristics, including increased CDH1 (E-cadherin) and TGFB117,82. In 

these findings, researchers have attributed this to changes that occur during EMT. Changes in 

cytoskeletal organization of these parental epithelial-type cells lead to a more elongated 

morphology, which we show in Figure 1017. Accompanying this is a resistance to apoptosis in 

the cisplatin-resistant tissues, which leads to an increase in cell size due to the accumulation of 

cellular components, as well as an increase in nuclear area as a result of changes in chromatin 

organization17. Furthermore, this also culminates into changes in cell cycle alterations when cells 

are spending more of their time in G1 (during which cellular and nuclear components are being 

synthesized), resulting in increases in cellular and nuclear sizes. This is corroborated by work 

specifically into the distribution of cisplatin-resistant A549s in differing phases of the cell cycle, 

which found a significant portion of cisplatin-resistant A549 cells remain in G1, relative to 

parental A549s, when compared to other phases of the cell cycle80 (Figure 23). 
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Figure 23: Cisplatin-resistant cells accumulate in the G1 phase of the cell cycles (Galluzzi 
2013) 

This is where we decided to investigate the genetic expression of various genes implicated in 

EMT and inflammation for both 2D and 3D cisplatin-resistant tissues (Figure 18). Our results 

from TGFB1, EGFR, and CDH1 mRNA expression in 2D cisplatin-resistant A549s are in line 

with previous bodies of work discussing EMT related genes83–85. Our work expanded upon 

extensive bodies of work by characterizing the differential expression in 3D tumor spheroids 

(Figure 24). This is critical considering tumor spheroids are more physiologically relevant tissue 

models of tumors in vivo for their ability to replicate complex cell-cell interactions that are not 

evident in 2D monolayers86.  
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Figure 24: Summary of differing mRNA fold changes for various genes implicated in EMT, 
inflammation, and angiogenesis in cisplatin-resistant lung adenocarcinoma 

Of note are the changes in VEGFA expression (1.1 vs 7.2), TGFB1 expression (1.5 to 5.5), and 

IL8 expression (8.9 to 3.4).  

In both 2D and 3D, we found our cisplatin-resistant A549s had a significant decrease in Ki67 

index (2D = 2.9; 3D = 2.8) relative to parental A549s (Figure 14 and 15). Other work80 

describing decreased proliferative potential of cisplatin-resistant A549s relative to parental 

A549s after 1 year aligns with our shorter treatment protocol highlighting reduced proliferative 

capacity. Previous work80 attributes this reduced proliferation in cisplatin-resistant tissues to 

DNA damage; however, we expand upon this explanation to claim that aggressivity is not solely 

defined by Ki67 index, but also by the resistant tissue’s enhanced invasive and migration 

capacity. This can be explained both by an adoption of a mesenchymal phenotype at the end of 

EMT. Unfortunately, no work at the time of publishing this describes microphysiological system 

models being leveraged for characterizing EMT in the context of drug resistance. Therefore, we 

decided to leverage our double lane membrane-free organ chip for angiogenic sprouting to 

investigate EMT in the context of cisplatin-resistance. In Figure 20, we showed that cisplatin-
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resistant tissues exhibit more angiogenic sprouting relative to parental A549s. Angiogenic 

sprouting gives way for resistant tumor cells to disseminate from the primary tumor site and 

travel to distant organs to initiate metastasis87. It is well established that increased metastasis is a 

critical hurdle for later stage NSCLC patients to grapple with as standard, first-line cisplatin 

therapy often fails leading to roughly 30-55% of NSCLC cases recurring11. To the best of our 

knowledge, a limited body of work exists that directly investigates angiogenic sprouting in 

cisplatin-resistant lung adenocarcinoma; however, work discussing the role of a certain 

microRNA (miR-93-5p) contributing to the angiogenic capabilities of cisplatin-resistant NSCLC 

by targeting the expression of specific inhibitors has been studied88.  

Future work into generating more physiologically relevant models of lung adenocarcinoma 

cisplatin-resistance may look specifically at how anti-angiogenic therapies can be optimized in 

conjunction with first-line cisplatin treatment to prevent tumor recurrence.  

 

4.2: Translation to ERK5-/- Triple-Negative Breast Cancer Tissues 

We wanted to apply our approach with the cisplatin-resistant lung adenocarcinoma tissues to 

another global leading type of cancer, triple-negative breast cancer. Our collaborators have 

recently shown that CRISPR/Cas9 deletion of the ERK5 gene in triple-negative breast cancer cell 

line MDA-MB-231 suppresses angiogenesis in tumor xenografts from mouse models40. Little has 

been reported on ERK5’s role in TNBC as its role has only recently been implicated; however, 

its proposed role in TNBC is said to mediate breast tumor formation through both cell intrinsic 

and extrinsic mechanisms by promoting EMT and pro-angiogenic growth factors.  
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Figure 25: Proposed mechanism for ERK5’s role in TNBC (Hoang 2020) 
 

Our objective was to corroborate data showing that ERK5-/- tumors exhibit less angiogenic 

sprouting than parental MDA-MB-231 tumors. We first started by characterizing the mRNA 

genetic expression of both ERK5-/- and MDA-MB-231 tissues across subsequent passages for 

various EMT and inflammatory genes (Figure 21).  

Interestingly, we found that, similar to with the cisplatin-resistant tissues in 2D, ERK5-/- tissues 

exhibited no significant change in mRNA expression of VEGFA. Moreover, we found that IL1A, 

IL1B, and IL6 expression was reduced in ERK5-/- tissues, which aligns with discussions on 

ERK5’s involvement in the regulation of pro-inflammatory cytokines crucial to the growth and 

survival of TNBC89,90. While we did not have time to characterize mRNA expression in 3D, and 

future studies from our lab will conduct this characterization in line with our methods for the 

cisplatin-resistant tissues, this outlines whether or not physiological relevance exists for 2D 

mRNA expression of VEGFA, as well as highlighting the need for 3D mRNA characterization, 

when looking at our angiogenic sprouting results.  
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While our initial experiments were confounded by the lack of locational control of spheroids in 

the cancer lane of our device, we found that devices with ERK5-/- spheroids had reduced vessel 

length relative to parental spheroids. Furthermore, this reduced vessel length in ERK5-/- devices 

had no statistically significant change to devices with no tumor spheroids, while parental MDA-

MB-231 spheroid devices had a statistically significant increase in vessel length relative to 

devices with no tumor spheroids.  

Taken together, the reduced vessel length from angiogenic sprouting experiments could be 

explained, in part, to the decreased IL1A, IL1B, and IL6 expression in ERK5-/- tissues. IL1A and 

IL1B in particular have been shown to stimulate the expression of angiogenic factor VEGFA and 

IL6 has been implicated in the promotion of angiogenesis in other cancer types26,91. Therefore, 

the reduction of these inflammatory genes may help explain the decrease in angiogenic sprouting 

due to a lack of promotion of angiogenic factors.  

 

4.3: Future Directions 

While our angiogenic sprouting assay opens a breadth of avenues for optimizing anti-angiogenic 

drug therapies in conjunction with cisplatin treatment, we believe further characterization and 

investigation is required to explore the role of additional signaling pathways implicated in drug 

resistance, EMT, and angiogenesis. Future research can include not only investigating different 

cytotoxic therapies in lung adenocarcinoma, but also for different cancer types. This could 

include the inclusion of more a more dynamic tumor microenvironment with additional stromal 

components and immune cells. Additionally with the advent of multi-organ chips, which our 
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research group is actively undertaking, the influence of other organ physiology on drug 

metabolism can be modeled to see how drug resistance, EMT, and angiogenesis manifests 

differentially. The inclusion of a more dynamic TME and the influence of other organs on said 

TME can paint a fully characterized picture of differing factors implicated in drug resistance, 

EMT, and angiogenesis. It is our hope that after such improvements are made, we can finally 

translate these platforms for personalized medicine application to tailor treatment plans to the 

unique genetic makeup of each patient’s cancer.  
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APPENDIX A: PRIMER SEQUENCES 

Gene Forward Sequence (5'-->3') Length 
(bp) 

Tm (ºC) Reverse Sequence Length 
(bp) 

Tm (ºC) 

GAPDH TTAAAAGCAGCCCTGGTGAC 20 55.5 CTCTGCTCCTCCTGTTCGAC 20 57.2 

VEGFA CGAGGGCCTGGAGTGTGT 18 59.9 CCGCATAATCTGCATGGTGAT 21 55.5 

IL8 GGTGCAGTTTGCCAAGGAG 19 56.9 TTCCTTGGGGTCCAGACAGA 20 57.9 

CDH1 AGGTGACAGAGCCTCTGGATAGA 23 59.4 TGGATGACACAGCGTGAGAGA 21 58.1 

aSMA CCGACCGAATGCAGAAGGA 19 57.4 ACAGAGTATTTGCGCTCCGAA 21 56.6 

TGFB1 TACCTGAACCCGTGTTGCTCTC 22 58.9 GTTGCTGAGGTATCGCCAGGAA 22 59.3 

EGFR1 AGGCACGAGTAACAAGCTCAC 21 57.3 ATGAGGACATAACCAGCCACC 21 57.0 

PDL1 CTGGCATTTGCTGAACGCAT 20 56.9 AGGTCTTCCTCTCCATGCAC 20 56.6 

IL1A TCATTGGCGTTTGAGTCAGC 20 59.13 CCTTCATGGAGTGGGCCATA 20 59.15 

IL1B GCAGAAGTACCTGAGCTCGC 20 60.8 CTTGCTGTAGTGGTGGTCGG 20 60.67 

CXCL8 AGCTCTGTGTGAAGGTGCAG 20 60.25 TTCCTTGGGGTCCAGACAGA 20 60.1 

IL6 GTCCAGTTGCCTTCTCCCTG 20 60.32 CTGAGATGCCGTCGAGGATG 20 60.32 

IL17A CTGTCCCCATCCAGCAAGAG 20 60.11 AGGCCACATGGTGGACAATC 20 60.32 

IL17RB TGCACAAATACGTGGTGGTCT 21 60.2 TACAAGGAGCAGCAGCCATC 20 60.11 

CXCL1 CTGGCTTAGAACAAAGGGGCT 21 60.27 TAAAGGTAGCCCTTGTTTCCCC 22 59.96 

CXCL2 TTCACAGTGTGTGGTCAACATTTC 24 60.14 TCGAAACCTCTCTGCTCTAACAC 23 60.06 

MMP2 TTTGAGTCCGGTGGACGATG 20 60.04 GCTCCTCAAAGACCGAGTCC 20 60.11 

MMP9 GCTGCATCCAGACTTCCTCAG 21 60.74 AGGTCCTGGCAATCCCTTTGTA 22 61.37 
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