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Abstract 

The Monte Carlo Bootstrap resampling method is among the most useful tools for 

accurate confidence interval computation.  An inherent flaw of the method though, is its 

use of Monte Carlo resampling.  Monte Carlo resampling relies on random resampling 

from the original sample in order to generate a confidence interval.  Using random 

resampling, however, causes a method to yield different results nearly every time the 

method is performed on the same data.  Further Monte Carlo resampling introduces 

simulation error.  Simulation error occurs because for each draw each sample point has a 
1

𝑛
 

probability of being chosen, and inevitably, some sample points randomly contribute to the 

sampling distribution more frequently than others.   

The Efficient Bootstrap Sample Design method for a sample of size 𝑛 (EBSD(𝑛)) 

has been created to address these inefficiencies inherent to the Monte Carlo Bootstrap1.  

EBSD(𝑛) eliminates simulation error using principles of BIBD.  The construction of this 

design allows for a fixed, systematic approach of constructing replicable confidence 

interval results.   

The motivation of this work was to compare the accuracy of confidence intervals 

applied on EBSD(𝑛) to the accuracy of confidence intervals applied on the Monte Carlo 

Bootstrap.  In order to do this, confidence interval methods type-1 error rate was computed 

for methods commonly applied on the Monte Carlo Bootstrap and for methods applied on 

EBSD(𝑛). Two types of methods applied on EBSD(𝑛) were tested for accuracy.  (i) A new 

confidence interval method called E-skew and (ii) Confidence interval methods that are 

applied commonly on the Monte Carlo Bootstrap but instead were applied on EBSD(𝑛).   



Both (i) and (ii) performed relatively accurately for specific types of probability 

distributions and statistics studied.  Further, the new method E-skew was measured to be 

in statistically significant agreement with the  𝐵𝐶𝑎 and Bootstrap-t algorithms using the 

Kappa statistic.  This suggested E-skew could provide similar accuracy to these methods 

in a real data context while also benefitting from the advantages of EBSD(𝑛). 
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Notation 

This section references notation that will appear throughout the course of the dissertation 

below; the notation will also be defined when it first appears in the section where it is 

introduced. 

Generic Statistical Inference Notation 

 𝑛 references the size the sample for data points collected from the population of 

interest  

 𝜃 is the estimate of the true population parameter 𝜃 from the sample.  For 

example, 𝜃 could be 𝑋̅ computed from the sample where 𝜃 = 𝜇.   

 𝑠2  =  (𝑛 −  1)−1  ∑(𝑋𝑖 −  𝑋̅)2  is the usual sample variance, and 𝜎̂2 = 

(𝑛 )−1  ∑(𝑋𝑖 −  𝑋̅)2 = (𝑛 −  1) 𝑠2/𝑛 is the population variance.  

 𝑡1−
𝛼

2
,𝑛−1 denotes the t-statistic for the 1 −

𝛼

2
 level confidence interval on 𝑛 − 1 

degrees of freedom.  

 𝑂 (
1

√𝑛
) signifies first order convergence.   

 𝑂 (
1

𝑛
)  signifies second order convergence.    

The Monte Carlo Bootstrap 

 B is the number of resamples in a bootstrap or permutation distribution.  

 𝜃𝑖
∗ is the estimate of the population parameter from the 𝑖𝑡ℎ bootstrap resample. 

 𝜽̂𝐵
∗  is the bootstrap sampling distribution of 𝜃 
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 𝜃̅𝐵
∗  is the mean of the 𝐵 bootstrap estimates from the bootstrap sampling 

distribution, i.e. 𝜃̅𝐵
∗  = 

1

𝐵
∑ 𝜃𝑖

∗.   

 The mean of the bootstrap distribution is 𝜃̅𝐵
∗  or  𝑋̅∗ 

 the standard deviation of the bootstrap distribution (the bootstrap standard error) 

is 𝑠𝐵  =  √(𝐵 −  1)−1  ∑(𝜃∗
𝑖 −  𝜃∗̂̅̅ ̅)2 

Monte Carlo Bootstrap Probability Vector Definitions 

 ∑ 𝑷̅∗𝑖𝐵
𝑖=1 /𝐵 represents the average probability for each sample point across the B 

bootstrap resamples. 

 𝑇𝑄𝑈𝐴𝐷(𝑃∗) =  𝑐0 + (𝑃∗ − 𝑃0)𝑇𝑈 + (
1

2
)(𝑃∗ −  𝑃0)𝑇𝑉(𝑃∗ −  𝑃0) is the quadratic 

statistic based on the weighted 𝑃∗ vector, where 𝑐0 is the original 𝜃 estimate from 

the sample, 𝑈 is an n-vector satisfying ∑ 𝑈𝑖
𝑛
1 = 0 and 𝑉 is an 𝑛 × 𝑛 symmetric 

matrix satisfying ∑ 𝑉𝑖𝑗𝑖  = ∑ 𝑉𝑖𝑗𝑗  = 0 for all 𝑖, 𝑗.  Further 𝑃∗ is defined as vector of 

probabilities (𝑃1
∗, … 𝑃𝑛

∗)𝑇 satisfying 0 ≤ 𝑃𝑖
∗ ≤ 1 and ∑ 𝑃𝑖

∗𝑛
1 = 1 and where 𝑃0 is 

defined as the probability vector of each element being equally likely to be chosen 

from the original sample: 𝑃0 =(
1

𝑛
,

1

𝑛
 , … ,

1

𝑛
)𝑇. 

The Monte Carlo Bootstrap Bias Estimates 

 𝑏(𝜃) is the bias of the estimate 𝜃 from the true population parameter 𝜃 

 While 𝑏(𝜃), is an estimate of the true bias 𝑏(𝜃) using information from the sample 

 𝜃𝑏𝑟 = 𝜃 − 𝑏(𝜃) is the bias reduced estimate of 𝜃 where 𝜃 is reduced 

by an estimate of the bias 𝑏(𝜃). 
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 𝑇(𝑷̅∗) is the statistic computed on the average weighted proportion of elements 𝑷̅∗ 

where 𝑷̅∗ = 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅
𝐵 = 𝜃̅𝐵

∗  – 𝑇(𝑷̅∗), is defined as the bootstrap estimate of bias for 

the estimator  𝜃 

𝑩𝑪𝒂 Algorithm 

 𝑧0̂ = Φ−1((∑ 𝜃𝑖 < 𝜃)/𝐵)𝐵
𝑖=1  is the bias adjustment component for the Monte 

Carlo bootstrap 𝐵𝐶𝑎 interval 

 𝑎̂ = 
∑ (𝜽̂(.)−𝜽̂𝒊)𝟑𝒏

𝒊=𝟏

6(∑ ((𝜽̂(.)−𝜽̂𝒊)𝟐𝒏
𝒊=𝟏 )𝟑/𝟐 is the estimate of acceleration for the bootstrap 𝐵𝐶𝑎 interval 

Bootstrap-t Algorithm 

 𝑡∗
𝐵 =  

 𝜃̂𝐵
∗ − 𝜃̂

𝑠̂
𝜃∗̂

𝐵

 is the t-statistic computed for the bth bootstrap resample.  𝑠̂𝜃∗̂
𝐵
 is the 

sample standard deviation for the bth bootstrap resample for a statistic 𝜃𝐵
∗ . 

 𝑡∗
(1− 

α

2
) is the element of the 1 −  

α

2
 percentile from the ordered bootstrap 

sampling distribution 

The Jackknife 

 𝜃𝐽(.) = 
1

𝑛
 ∑ 𝜃𝑗𝑖

∗̂ 𝑛
𝑖=1 , is the jackknife estimate of the population parameter 𝜃, where it 

is the average of the 𝜃𝑗𝑖
∗̂ jackknife samples.  

 𝜃𝑗𝑖

∗  is the ith jackknife estimate where the ith element is removed from the sample. 

 𝜎̂𝜃̂𝑗

2
 = 

𝑛−1

𝑛
∑ (𝜃(−i) − 𝜃(.))2𝑛

𝑖=1  is defined as the jackknife estimate of variance for 

the estimator 𝜃 
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 𝑏𝑖𝑎𝑠̂𝑗𝑎𝑐𝑘 = (𝑛 − 1) ∗ (𝜃𝐽(.) − 𝜃) is defined as the jackknife estimate of bias for 

the estimator 𝜃 

EBSD(𝒏) 

 Correspondingly, from the EBSD method we have 𝜃𝑖
∗ as before where 𝜃̅𝐸

∗  = 

1

4𝑛2+1
∑ 𝜃𝑖

∗.   
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Chapter 1: Background and Significance 

1.1 Background 

Resampling methods are a subset of procedures used in statistics which involve 

drawing multiple new samples called resamples from the original data.  Resampling 

methods are computer intensive and have become easier to implement as computing 

power has increased.  These methods have advantages as they are useful in computing 

confidence intervals in many non-standard cases.  For example, if the size of the sample 

is small and the population of interest is non-normal, non-parametric resampling methods 

can produce more accurate confidence intervals than normal theory methods do2.  

Further, many sample statistics have statistically intractable properties that resampling 

methods are equipped well to deal with.  Although many resampling methods exist the 

non-parametric Monte Carlo Bootstrap method is perhaps the most widely used.   

In the standard Monte Carlo Bootstrap although there is only one sample, 

resampling on this original sample with replacement is performed 𝐵 times.  For each of 

these 𝐵 resamples the statistic of interest is computed to generate a Bootstrap sampling 

distribution.  The Bootstrap sampling distribution is then used to compute a confidence 

interval for the statistic of interest.   

One may ask, how many Bootstrap resamples are enough to provide accurate 

parameter estimation?  Commonly the number of Bootstrap resamples varies from 200 to 

10,000.   More than 5,000 bootstrap resamples are recommended to prevent undue 

variation in confidence interval’s implied p-values3.   
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1.2 Introduction to the Problem 

The Monte Carlo Bootstrap has two flaws.  First the method has an inherent level 

of random repetition because each sample is generated by sampling with replacement 

from the original sample.  This causes the original sample points to not be evenly 

represented in the resulting Bootstrap sampling distribution.  Second, one user may 

choose to specify a different number of resamples than another. Consequently, both of 

these issues can cause different users to yield different results using the same data.  

Therefore, a method that provides the benefits of the Bootstrap, eliminates 

simulation error and fixes the size of the sampling distribution should be of benefit to the 

statistician.  The Efficient Bootstrap Sample Design method  for a sample of size 𝑛 

(EBSD(𝑛)) simultaneously provides these qualities1.    

The construction of EBSD(𝑛) is a systematic approach for Bootstrap sample 

creation.  This subset of all Bootstrap samples has a resulting variance of 𝑋̅’s that is the 

same as the variance of 𝑋̅’s from the complete enumeration of all possible samples.  This 

subset of Bootstrap samples and the resulting sampling distribution for the statistic of 

interest can be used to estimate unknown parameters and is particularly helpful in the 

case of small sample sizes. 

EBSD(𝑛) although advantageous in eliminating previous issues inherent with the 

Monte Carlo Bootstrap, also introduces a new issue: What confidence interval method 

should be used on the resulting EBSD(𝑛) sampling distribution?  Confidence interval 

methods, previously derived to be used on a Bootstrap sampling distribution, may not 

work as well using a EBSD(𝑛) sampling distribution.   
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In considering an algorithm that may perform well using EBSD(𝑛) one must 

understand problems Bootstrap methods grapple with.  Common Bootstrap confidence 

interval methods are typically categorized into one of two confidence interval method 

convergence types: first order convergence methods and second order convergence 

methods.  When analyzing non-normal data, first order convergence methods require 

larger sample sizes to converge to the correct pre-specified nominal error rates than do 

second order convergence methods4.  Another issue, and this issue can be dealt with in a 

variety of ways is the issue of estimation of non-linear statistics.  Second order Bootstrap 

methods like the Bootstrap-t perform can be less computationally efficient when the 

statistic computed is not the sample mean.  For example, if there is no closed form 

solution for the sample variance of the statistic of interest the Bootstrap-t requires double 

bootstrapping which increases the total number of Bootstrap resamples to be performed.  

Therefore, a method that can adjust for non-normality and perform accurately and 

efficiently for non-linear statistics using the EBSD(𝑛) sampling distribution would be of 

interest and is the motivation for this work. 

This dissertation will be broken into five chapters.  In chapter 2, a literature 

review of the most used resampling method for confidence interval computation, the 

Bootstrap, will be presented.  As a part of the literature review estimator bias, Monte 

Carlo bias, variance estimation, and transformation invariance are discussed.  After 

discussing the issues raised by using the Monte Carlo Bootstrap method, confidence 

interval techniques that correct for these issues are presented.   

Chapter 3 proposes the new approach, the E-skew method, for dealing with non-

normal data and non-linear statistics when using EBSD(𝑛).  Chapter 4 discusses the 
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results and how the E-skew method and other methods commonly used with the Monte 

Carlo Bootstrap but applied on EBSD(𝑛) compare to common first and second order 

Monte Carlo Bootstrap methods.  The focus of the results is confidence interval 

performance measured by one-sided error rate.  Further a real data example is presented 

to compare the performance of the E-skew method to common Bootstrap methods in a 

practical context.  Finally, in chapter 5 the most important results from this work will be 

summarized.  Further in chapter 5, motivation for additional research will be discussed 

with the possibility of further improving the methods laid out here.  
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Chapter 2: Literature Review 

This chapter will discuss the concepts of parameter estimation and confidence 

interval computation mainly through the lens of resampling methods.  Section 2.1 

contains a discussion on the theory of sampling distributions and how the population 

sampling distribution is related to the non-parametric Bootstrap sampling distribution.  In 

section 2.2, the parametric Bootstrap is discussed as basis of comparison with the non-

parametric Bootstrap, though the non-parametric Bootstrap is of primary focus in this 

dissertation.  Next in section 2.3 statistical bias is discussed.  Here two forms of bias are 

of focus: 

 Bias introduced by a biased estimator; if the estimator produces a biased estimate 

for the population parameter, the Bootstrap can be used to estimate the amount of 

bias via the bias function 𝑏(𝜃).   

 Random bias introduced by the Monte Carlo Bootstrap; each element is not 

equally represented due to random resampling; some elements are chosen over 

others by chance from the original sample.  

In the remainder of section 2.3, methods to measure and mitigate the bias 

introduced by the Bootstrap are discussed.  In section 2.4 variance estimation is discussed 

both in terms of computation of the variance estimate and in terms of measuring the 

quality of the estimate.  In section 2.5 many commonly used confidence interval methods 

are presented along with a description of each method; a discussion of the strengths and 

weaknesses of each method are also detailed.  
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2.1 Bootstrap Theory and the non-Parametric Bootstrap Sampling Distribution 

Among resampling techniques, the Bootstrap is one of the most common and has 

prompted many types of confidence intervals. As mentioned in the previous chapter in 

the Monte Carlo Bootstrap, we draw 𝑛 observations with replacement from the original 

data and perform this resampling 𝐵 times to generate a non-parametric Bootstrap 

sampling distribution for the statistic of interest. We compute the statistic of interest 𝜃 

and use the non-parametric Bootstrap sampling distribution to generate a confidence 

interval around 𝜃 at the desired 1 −
𝛼

2
 level.   

The non-parametric Bootstrap sampling distribution is used as an estimate of the 

true population sampling distribution.  This principle is at the core of our general 

approach in statistics, we estimate what we do not know from the information we have 

and often do this using the plug-in-principle5.   

A common form of the plug-in-principle is in computation of the standard error 

from the mean of the sample; the formula for the standard error is of course 
𝜎

√𝑛
 but in 

practice we do not know the true value for 𝜎 so instead we estimate 𝜎 by computing 𝑠2 

the unbiased estimator of 𝜎2.  In the Bootstrap instead of estimating an individual 

population parameter using an unbiased estimator we estimate the entire sampling 

distribution by plugging in an estimate for it, the non-parametric Bootstrap sampling 

distribution3. In other words, the sampling distribution of 𝜃 can be estimated by the non-

parametric Bootstrap sampling distribution and then can be used to yield an accurate 

confidence interval for 𝜃.  
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 In fact, the central limit theorem dictates as 𝑛 →  ∞ the sampling distribution of 

𝜃 and the non-parametric Bootstrap sampling distribution 𝜽̂𝑩
∗  in limit are bell shaped and 

approximately normally distributed.  Further, if the distribution of 𝜃 is not dependent on 

other unknown parameters the non-parametric Bootstrap sampling distribution offers a 

better approximation to the true population sampling distribution than does the 

approximation from the central limit theorem6.  

For many statistics 𝜃, the sample standard deviation of 𝜃 is difficult to compute.  

We use the standard deviation to measure the uncertainty of the estimate 𝜃; this allows us 

to compute a confidence interval for 𝜃.  When computation of the standard deviation is 

intractable the non-parametric Bootstrap distribution allows us to bypass this problem.  In 

this way the non-parametric Bootstrap resampling method facilitates confidence interval 

computation and has prompted the derivation of several confidence interval methods. 

2.2 The Parametric Bootstrap 

In the non-parametric Bootstrap, we generate 𝐵 samples from 𝑿 and define 𝑃𝜃̂, 

the probability distribution function (PDF) of 𝜃, to be the Bootstrap sampling distribution 

𝜃𝐵
∗ .  Instead, with the parametric Bootstrap 𝑃𝜃̂ is defined by a PDF based on a parametric 

assumption of the population the data was drawn from.  Most commonly 𝑃𝜃̂ is assumed 

to be from a normal model 𝑁(𝜃, 
𝜎̂2

𝑛
) where 𝜃 and  

𝜎̂2

𝑛
 are estimated via maximum 

likelihood estimation. Once the maximum likelihood parameters are estimated 𝐵 samples 

are drawn from this parametric model based on our underlying assumption of normality 

and the same techniques are then applied to these 𝐵 samples as they would in the non-

parametric case7.  Of course, one does not need to assume a normal model to perform a 
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parametric Bootstrap.  Any statistical distribution can be chosen if it properly models the 

data of interest. 

2.3 Bias 

Choosing the right estimator is integral to confidence interval accuracy.  The 

more bias introduced by the estimator the less accurate the interval will be.  For 

resampling methods, bias can be introduced by using a biased estimator, by the 

resampling method (i.e. from Monte Carlo random error), or both.  Further resampling 

methods can be used to estimate the amount of bias introduced by the estimator.  In this 

section bias is introduced first by considering the case where no resampling is performed.  

In this case bias is measured in the original estimator by making distributional 

assumptions; distributional assumptions allow bias to be defined by a bias function.  The 

bias function can then be used to negate the bias introduced in the original estimator.  

Although it may seem like removing bias would always be desirable, depending on the 

estimator it can do more harm than good.   

Although we may be able to define the bias introduced, trying to eliminate it 

using a bias function can be problematic.  Following a discussion of the issue with 

implementing bias reduction, methods to assess bias from estimators and resampling 

methods are listed.  Methods better at estimating bias converge to the bias in limit as  

𝐵 →  ∞ at a smaller number of resamples and perform well for a greater number of 

estimators.  

Bias Adjustment and the Effect on Mean Square Error 
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Estimating and negating bias from an estimator can lead to a more accurate 

estimator however this is not always the case. Before discussing methods for estimating 

bias using resampling techniques, the theoretical bias of an estimator when no resampling 

performed is considered. Bias and mean square error are both important to consider for 

an estimator 𝜃 and are defined below.  

By making distributional assumptions on the population from which 𝜃 is drawn, 

the bias of the estimator can be defined functionally.  If 𝑏(𝜃), the bias of the estimate 𝜃 

from the true population parameter, is non-zero then bias is defined as6: 

𝑏(𝜃) =  𝐸𝜃(𝜃) - 𝜃 

This means if 𝑏(𝜃) > 0, it implies 𝐸𝜃(𝜃) ≢  𝜃 and the 𝜃 distribution is not 

centered on the unknown value of 𝜃.  Instead, it is biased by the amount 𝑏(𝜃) where 𝑏(𝜃) 

is defined as an unknown function of 𝜃. In theory, if we desire to eliminate bias, although 

𝑏(𝜃) is unknown, we can estimate 𝑏(𝜃) with 𝑏(𝜃).  Then, the estimate 𝜃 can simply have 

it’s bias removed by subtracting 𝑏(𝜃) seen below where 𝜃𝑏𝑟 is the bias corrected 

estimate6:  

𝜃𝑏𝑟 = 𝜃 − 𝑏(𝜃) 

Bias correction can lead to additional variability in the estimate of the parameter 

due to additional variability introduced by 𝑏(𝜃), i.e., 𝑏(𝜃) is not necessarily equal to 𝑏(𝜃). 

Although the increased variability impacts the mean square error, the direction of the 

impact on the mean square error varies depending on the estimator; it can cause the mean 

square error to be larger or smaller depending on the variability introduced by 𝑏(𝜃)6.  If 
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using 𝑏(𝜃) in the computation of 𝜃𝑏𝑟 leads to an increase in the mean square error of the 

estimate of 𝜃, it trades one problem in for another.   

In the following sections below we attempt to estimate the bias function 𝑏(𝜃) 

using resampling methods as bias reduction techniques are rampant in parameter 

estimation.  However, that discussion is preempted with this section to note this does not 

always lead to greater confidence interval accuracy. Theoretically, functional effective 

bias reduction is dependent on making proper assumptions about the distribution of the 

population parameter which may not be known.   

Bootstrap Bias Corrected Estimate  

When using resampling methods there are multiple approaches to bias estimation 

and bias adjustment. In practice when choosing to use the Bootstrap we do not know the 

bias function 𝑏(𝜃) but we can still use the Bootstrap to estimate the bias function without 

the knowledge of 𝑏(𝜃).  As we already know we can get a sampling distribution of 

estimates 𝜃1
∗̂, . . ., 𝜃𝐵

∗̂  from the Bootstrap and we can then calculate the average of these 

estimates6:  

𝜃̅𝐵
∗    = 

1

𝐵
 ∑  𝜃𝑖

∗𝐵
𝑖=1  

Therefore an accurate approximation of 𝑏(𝜃) should be 2𝜃 - 𝜃̅𝐵
∗ .  The greater the 

number of iterations (𝐵) we perform the more accurate this approximation will be and 

since computing power is cheap attaining sufficiently large 𝐵 should be readily 

attainable4. The Bootstrap bias corrected estimate above is defined as6: 

𝜃𝑏𝑟
∗ = 𝜃 − (𝜃̅𝐵

∗ −  𝜃)) = 2𝜃 − 𝜃̅𝐵
∗  . 
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For large enough 𝐵 this will be indistinguishable from 𝜃𝑏𝑟 and be as if the 

estimate of the bias when the function 𝑏(𝜃) is known. This of course is dependent on the 

sample taken and the estimator used.  If the sample taken is not representative or the 

population assumption is incorrect this correction and the others discussed will only 

provide limited parameter estimation improvement6.   

Better Bootstrap Bias Estimate   

A bias corrected Bootstrap estimate that minimizes bias at smaller sample sizes 

faster than the Bootstrap bias corrected estimate is called the better Bootstrap bias 

estimate; defined as8: 

𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅
𝐵 = 𝜃̅𝐵

∗  – 𝑇(𝑷̅∗) , 

𝑷𝟎, is a vector with a uniform probability, 1/𝑛, of picking each sample point if 

resampling from the original data.  Further 𝑷∗𝟏 is the proportion of times each sample 

point is selected from the first resample.  Thus 𝑃̅∗ = ∑ 𝑷̅∗𝑖𝐵
𝑖=1 /𝐵 represents the average 

probability for each sample point across the 𝐵 resamples.  This bias estimate converges 

faster than the Bootstrap bias corrected estimate and therefore is considered a preferable 

method8.  Because computing power is cheap the inferiority of the Bootstrap bias 

corrected estimate can simply be made by increasing the number of resamples 𝐵8. It is 

worth mentioning here using a confidence interval method requiring double 

bootstrapping (bootstraps of each Bootstrap resample), like the Bootstrap-t method, could 

add more than a minimal amount to the run time8. 

The Jackknife estimate of Bias  
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The Jackknife was the original computer-based method for estimating bias and 

standard errors. To perform the Jackknife from a sample of size 𝑛, from a data set 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛), the Jackknife sample 𝒙𝑖 is defined as 𝒙 with data point 𝑖 removed.  Hence  

𝒙(𝑖) =  (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛), 

The Jackknife estimate of bias is then8:  

𝑏𝑖𝑎𝑠̂𝑗𝑎𝑐𝑘 = (𝑛 − 1) ∗ (𝜃𝐽(.) − 𝜃), where 𝜃𝐽(.) = 
1

𝑛
 ∑ 𝜃𝑖

∗̂ 𝑛
𝑖=1  . 

This formula breaks down when the statistic is unsmooth like the sample median, 

but it works well for smooth plug-in statistics like the mean or the ratio of means, more 

technically if 𝜃 = 𝑇(𝑃∗) is twice differentiable8.   

This formula is derived based on the quadratic statistic: 

𝑇𝑄𝑈𝐴𝐷(𝑃∗) =  𝑐0 + (𝑃∗ − 𝑃0)𝑇𝑈 + (
1

2
)(𝑃∗ −  𝑃0)𝑇𝑉(𝑃∗ −  𝑃0) 18 

Where 𝑐0 is the original 𝜃 estimate from the sample, 𝑈 is an n-vector satisfying 

∑ 𝑈𝑖
𝑛
1 = 0 and 𝑉 is an 𝑛 × 𝑛 symmetric matrix satisfying ∑ 𝑉𝑖𝑗𝑖  = ∑ 𝑉𝑖𝑗𝑗  = 0 for all 𝑖, 𝑗.  

Further 𝑃∗ is defined as vector of probabilities (𝑃1
∗, … 𝑃𝑛

∗)𝑇 satisfying 0 ≤ 𝑃𝑖
∗ ≤ 1 and 

∑ 𝑃𝑖
∗𝑛

1 = 1 and where 𝑃0 is defined as the probability vector of each element being 

equally likely to be chosen from the original sample9: 

𝑃0 =(
1

𝑛
,

1

𝑛
 , … ,

1

𝑛
)𝑇. 

This approximation agrees closely with the ideal Bootstrap estimate 𝑏𝑖𝑎𝑠̂∞ and it 

does so with far fewer samples than is required for the Bootstrap.  Ultimately, the method 

in this section and the previous two are all trying to approximate the ideal  𝑏𝑖𝑎𝑠∞
8. 
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Balanced Bootstrap 

In multiple sections above, the Bootstrap was used to estimate the bias function 

𝑏(𝜃) for an estimator of the true population parameter.  In some cases, we know the 

estimator is an unbiased estimate of the true population parameter, for example we know 

𝑋̅ is an unbiased estimator of µ i.e. 𝐸(𝑋̅) = µ. Although this is the case, bias is still 

introduced from Monte Carlo resampling when generating the Bootstrap sampling 

distribution.  Random resampling does not guarantee each sample point is given equal 

weight and this random error creates bias.  

One approach to eliminating this issue is eliminating this Monte Carlo error 

through the balance Bootstrap procedure10. Instead of randomly resampling, 𝐵 copies of 

the original sample are created, and this string of 𝑛 ∗ 𝐵 samples is permuted.  The 

permutation is meant to mimic the variation created by using Monte Carlo Bootstrap 

resampling while retaining the property that each element is represented an equal number 

of times.  After the permutation, the string is split into 𝐵 successive samples which can 

be used to generate a Bootstrap sampling distribution10.  The Monte Carlo bias 

elimination referred to here is considered first order bias reduction or first order balance.   

A second approach to generating a balanced design is performed by generating n 

copies each of size 𝑛 from the original sample10. The resulting matrix is a randomized 

block design where not only is each element represented 𝑛-times but also column balance 

is obtained; each element is represented only once in each column10.  Then to achieve 𝐵 

resamples we create 𝑘 randomized block designs, where 𝐵 = 𝑛 ∗ 𝑘.  This column 
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balancing is useful for complex non-linear statistics10. This is also considered first order 

balance. 

Example First Order Balance 

Take the original sample to be the integers 1, 2, 3, 4, 5.  Now say we generate 10-

copies of this original sample and concatenate the resamples in a string hence our string 

is:  

12345123451234512345123451234512345123451234512345 

In the first first-order balanced Bootstrap method discussed, we randomly 

permute this string and results in the string:  

43542143415454313555113313422412515431232125432252 

We then have the resulting matrix of resamples where 𝑖 denotes the 𝑖th column 

and 𝐵 denotes the 𝐵th resample: 

Table 1. Random 

Permutation Design 

𝑖 
B 1 2 3 4 5 

1 4 3 5 4 2 

2 1 4 3 4 1 

3 5 4 5 4 3 

4 1 3 5 5 5 

5 1 1 3 3 1 

6 3 4 2 2 4 

7 1 2 5 1 5 

8 4 3 1 2 3 

9 2 1 2 5 4 

10 3 2 2 5 2 

In the second first-order balanced Bootstrap method discussed again we again 

have the original string: 

12345123451234512345123451234512345123451234512345 
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But we first partition this string into two identical strings of length 25: 

 1234512345123451234512345 

 1234512345123451234512345 

Because the original sample is of length 5 and we create n-copies as mentioned 

above.  We split the original string into two strings of length 25 because the string length 

is now the square of the original sample size.  This allows two randomized block designs 

to be created, one example of this is displayed below: 

Table 2. Randomized Block 

Design 

Design 𝑖 

1 B 1 2 3 4 5 

 1 3 2 4 5 3 

 2 4 3 3 2 4 

 3 2 4 5 1 2 

 4 1 1 2 3 5 

 5 5 5 1 4 1 

2       

 6 5 2 4 4 5 

 7 4 3 5 2 2 

 8 2 5 3 5 3 

 9 3 4 2 1 4 

 10 1 2 1 3 1 

Generally, a design is said to be 𝑟 ordered balanced if all 𝑛𝑟possible sequences 

are represented an equal number of times10.  I.e., if 𝑟=2 second order balance means all 

possible pairs (1, 2), (1, 3) etc... occur an equal number of times for any 𝑟=2 columns10.  

Second order balance is discussed further below. 

Second-Order Balanced Bootstrap 

Second order balance requires all 𝑛2 values occur with equal frequency for every 

possible pair of columns10. Two separate approaches can be used to obtain second order 
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balance (1) using orthogonal Latin squares and (2) using balanced incomplete block 

design.  

A Latin square is a randomized block design of size 𝑛2 where each element from 

the sample occurs exactly one time for each row and each column.  For the Latin square 

approach take the first column to be (1, . . , 1, 2, … ,2, 𝑛, . . , 𝑛) and the second column to be 

(1, 2, 3, 4, 5, … . , 1, 2, … , 𝑛) then for any other column 𝑗, the equal pair condition is 

obtained with each of columns one or two if the elements in the remaining columns 

correspond to those in a Latin square. If the same can be said for columns, 3, … , 𝑛 then 

each of the remaining possible pairs of columns must also correspond to a Latin square.  

Further this also implies the successive Latin squares must be orthogonal.  A complete 

design must have 𝑛 − 2 orthogonal Latin squares and is only available if 𝑛 is a power of 

a prime number. In this case to obtain second order balance the number of bootstraps 

must be B ≥ 𝑛2.  A proof yielding exact second order correctness is shown in Hinkley et 

all10. 

In the balanced incomplete block design method, we have 𝐵 = 𝑘𝑛 blocks where 

each block retains the size of the original sample.  Two primary conditions must be met 

for the transpose of the incidence matrix are (1) the diagonal elements of the concordance 

matrix 𝑁𝑁′ are all equal to 𝑘(2𝑛 − 1) and (2) the off diagonal elements are all equal to 

𝑘(𝑛 − 1).   In deriving the design initially 𝑘 blocks are chosen.  Then to create the 

second set of 𝑘 blocks, the index of the initial set of 𝑘 blocks is modified by adding 1.  

This process is repeated cyclically for index modifications of size 2 through (𝑛 − 1) to 

generate the 𝑘𝑛 total blocks10. 



17 

 

Both the Latin square and BIBD methods yield variance approximations correct 

to the order (1/𝑛) as if performing Taylor Expansion10.  The BIBD method is a good 

primer before talking about EBSD(𝑛) as it is used to derive second order balance for 

EBSD(𝑛). 

2.4 Variance Estimation 

After generating resamples using either the Monte Carlo Bootstrap or another 

resampling process the next step is to determine the range of values at a significance level 

α the parameter may take.  The uncertainty of the parameter can be obtained by 

estimating the variance of the statistic of interest.  Suppose we obtain an estimate 𝜃 of the 

true parameter; the variance of the estimator 𝜃 is defined as 𝜎𝜃̂
2 . Variance estimates 

assess the quality of the estimate 𝜃 and are used to construct a confidence interval around 

𝜃.  Particularly if the distribution of 𝜃 is approximately normally distributed the 

estimated variance should provide an accurate assessment on the certainty of the 

estimate. A commonly used method the Bootstrap-t method can be used to optimize the 

effectiveness of variance in cases where the data is not approximately normally 

distributed.  In this section three types of variance estimation procedures are mentioned, 

the variance substitution method, the Jackknife method, and the Bootstrap 

implementation of the substitution method.  Following the discussion of these variance 

estimation methods, the Jackknife-after-Bootstrap is discussed as a tool for measuring the 

quality of the variance estimate.  

Substitution Variance Estimation 
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An obvious variance estimation approach is to calculate the variance of the 

statistic simply by using the formula for the variance of the statistic based on the data 

from the original sample with no resampling used11.   

An obvious example of this is estimating the variance of the mean in a one sample 

problem.  In this case the variance of the mean statistic would be calculated by estimating 

the variance of the sample mean using the traditional formula (𝑛 −  1)−1  ∑(𝑋𝑖 −  𝑋̅)2 .   

Jackknife Variance Estimation  

When 𝑿 represents a random sample of size 𝑛, i.e., 𝑿 = (𝑋1, . . . , 𝑋𝑛), the jack 

knife method can be used to provide such variance estimation. Let 𝜃(−i)  denote the 

estimate 𝜃  and 

𝜃(.)  = 
1

𝑛
 ∑ 𝜃(−i) 

𝑛
𝑖=1  . 

The variance 𝜎𝜃̂𝐽

2 is then estimated by the Jackknife method via11 

𝜎̂𝜃̂𝐽

2
 = 

𝑛−1

𝑛
∑ (𝜃−𝑖𝑖

∗̂ − 𝜃(.))2𝑛
𝑖=1  

This approach to variance estimation provides an accurate estimate for the sample 

mean statistic when the data is approximately normally distributed, but it does not for all 

statistics and distributional types.  For example, if 𝜃 and 𝜃 are the population and sample 

median, the Jackknife estimate is inaccurate for large samples11.  Also, for vectors 

generated from more complex probability structures Jackknife variance estimates are not 

as accurate or effective12. 

Bootstrap Variance Estimation  
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Although a functional form for σ𝜃̂
2 , the sample variance, would be ideal for any 

sample statistic, often a functional form for the variance of the sample statistic is not 

available.  The Bootstrap method provides a very simple algorithm for getting accurate 

approximations to σ̂𝜃̂
2 11.  

Let the statistic of interest be 𝜃 with variance σ𝜃̂
2 , and let 𝜽̂𝑩

∗  be the Bootstrap 

sampling distribution with variance σ𝜃∗̂
𝐵

2 .  For each Bootstrap generated sample there is a 

𝜃∗
𝐵 generated by calculating the statistic from the Bootstrap sample.  Thus, we yield 

Bootstrap sample estimates 𝜃∗
1, , . . . , 𝜃∗

𝐵,  and can compute the variance of these 

Bootstrap estimates as  

𝑠2
𝐵 =  σ̂𝜃̂𝐵

2  = 
1

𝐵−1
∑ (𝜃𝑖

∗
− 𝜃̅∗)2𝐵

𝑖=1  where 𝜃̅𝐵
∗  = 

1 

𝐵
 ∑ 𝜃𝑖

∗𝐵
𝑖=1 . 

Hence an unbiased estimate of σ𝜃̂
2  is the sample variance of the Bootstrap 

sampling distribution whose accuracy can be controlled by selecting large 𝐵11.  Thus σ̂𝜃̂𝐵

2  

can be considered a substitution variance estimate of σ̂𝜃̂
2 .  Take for example estimating 

the sample mean using 𝜃 = 𝑋̅.  We know: 

𝜎𝑋̅
2 = 

𝜎2

𝑛
, 

where 𝜎 is the standard deviation of 𝑋̅. The substitution principle would estimate  𝜎2/𝑛 

by 𝜎̂2/𝑛, where: 

𝜎̂2 = 
1

𝑛
∑ (𝑋𝑖 − 𝑋)2𝑛

𝑖=1  . 

This 𝜎̂2 is the variance of 𝑋̅, which places probability 1/𝑛 on each of the 𝑋𝑖. 

Instead of using the sample formula to compute 𝜎𝑋̅
2, the Bootstrap variance estimation 
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method generates 𝐵 samples, of size 𝑛 each, and computes the 𝐵 sample averages 

𝑋̅1
∗, . . . , 𝑋̅𝐵

∗  of these samples11. For large 𝐵 the sample variance  

𝜎̂𝑋̅𝐵

2  =
1

𝐵−1
∑ (𝑋̅𝑖

∗ − 𝑋̿∗)2𝐵
𝑖=1  , where  𝑋̿∗ = 

1

𝐵
∑ 𝑋̅𝑖

∗𝐵
𝑖=1  

will then be an accurate approximation of 𝜎̂2/𝑛.   

It is not necessary to conduct this many simulations and compute the sample 

variance for the mean from such a large number of Bootstrap sample.  We can just 

compute the sample variance using the formula for the variance of the sample mean. 

However, for statistics other than the sample mean this approach is not always available, 

whereas the Bootstrap method is applicable universally for the variance of any sample 

statistic of interest11.   

Jackknife-after-Bootstrap 

The Jackknife-after-Bootstrap method can also be an efficient estimate of the 

uncertainty of the standard error generated from the Bootstrap.   

Consider an example from Efron and Tibshirani’s An Introduction to Bootstrap 

on page 11 of the textbook are 7 sample points for survival time in days of mice 

following a test surgery which is considered the treatment group.  

Table 3. Survival Time (Days) Treatment group Mouse Data 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 𝑿𝟕 
94 197 16 38 99 141 23 

The Jackknife-after-Bootstrap estimation for the standard error of the sample 

statistic is systematically achieved from each sample point by only considering those 

resamples from the Bootstrap that exclude that sample point. For example, for 𝑿𝟏 =94 

only those resamples from the Monte Carlo Bootstrap that do not include this sample 
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point are considered and then for each resample considered the statistic of interest is 

calculated. Thus 𝑠𝑒̂𝑏(1) is the sample standard deviation of 𝜃(𝑖1), 𝜃(𝑗1), … , 𝜃(𝑘1) for the 

first element from the sample where resamples 𝑖, 𝑗, 𝑘 do not include the first sample 

element (94). Then, in this case, 𝑠𝑒̂𝑏(𝑖𝑒), … , 𝑠𝑒̂𝑏(𝑘𝑒), where 𝑠𝑒̂𝑏(.)= √
σ̂

𝜃̂
2

𝑛−1
 are computed in a 

similar way for each of the remaining elements, respectively13.  

Once these seven standard errors have been computed we take the sample 

variance of these 7 values to obtain 𝑠𝑒̂𝑗𝑎𝑐𝑘(𝑠𝑒̂𝑏).  This resulting standard error can be 

measured against the standard error generated from the Monte Carlo Bootstrap. 

Particularly at a smaller number of Bootstrap resamples, the Jackknife-after-Bootstrap is 

an overestimate13. 

2.5 Confidence Bounds 

Below, several Bootstrap confidence interval methods will be discussed along 

with the strengths and weaknesses of each.  The t-interval with Bootstrap estimated 

standard error, the percentile method and the basic percentile method will be introduced 

first.  These commonly used methods each are first order accurate and have inefficiencies 

when compared to more accurate second order methods.  

After introducing these methods, the second order accelerated bias corrected 

method and the Bootstrap-t method will be discussed.  The theory used in the accelerated 

bias corrected method is used as motivation for the confidence intervals proposed for 

EBSD(𝑛).  The Bootstrap-t produces the most accurate upper limit one-sided error rate 

intervals for positively skewed data when the statistic is the sample mean3.   
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Monte Carlo Bootstrap Confidence Interval Methods 

Percentile Method 

The percentile method simply uses the 𝛼/2 and (1 −  
𝛼

2
)  percentiles of the Monte 

Carlo Bootstrap sampling distribution for the 1 −  𝛼  two-sided confidence interval.  The 

percentile method is a first order method.  Percentile intervals can be truncated at small 

sample sizes based on normal theory assumptions3.  When the statistic computed is 

biased in nature the percentile interval is affected by bias twice in computation.  First 

from the computation of the original statistic and second by a biased Monte Carlo 

Bootstrap distribution derived from a biased statistic3.  If skewness exists in the 

underlying data, the percentile interval fails to properly compensate for the asymmetry.  

When skewness in the data exists, the interval needs to reach many standard errors to the 

right or left depending on the asymmetry3.  Even though the percentile method has a level 

of asymmetry it has only approximately 1/3 the level of asymmetry provided by the 

skewness corrected t-interval method (derived from asymptotic means)3. 

Another issue in using the percentile method is if one is calculating an interval for 

the sample mean 𝑋̅ at small sample sizes.  The percentile interval does not extend far 

enough out on either end, i.e. it is too narrow3.  This is because for the sample mean 𝑋̅ the 

percentile interval is using normal theory and the implied 𝜎̂2 is (
1

𝑛
) ∗ ∑  (𝑋𝑖 − 𝑋̅)2 rather 

than 𝑠2.  Therefore, on this fact alone the percentile interval is short by a factor 

√(𝑛 − 1)/(𝑛).  Further because the algorithm assumes 𝑋̅ is drawn from symmetric data 
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this implies the use of  𝑧𝛼/2 ∗ 𝜎̂/√𝑛 in place of 𝑡𝛼

2
,𝑛−1 ∗ 𝑠̂/√𝑛 and further truncates the 

size of the interval3. 

Despite these issues of bias and skew the percentile method does have one 

advantage; it is transformation invariant.  This is an advantageous property because it 

says no matter the method used the results will be the same, i.e. the results are 

independent of the way the probability model for the data is parametrized.  

T-interval with Monte Carlo Bootstrap Estimated Standard Error Method 

This method estimates the variance of the statistic by calculating the variance of 

the Monte Carlo Bootstrap distribution. The degree of the Monte Carlo error effects the 

resulting confidence interval and will vary depending upon the samples selected from the 

Monte Carlo Bootstrap. 

𝐶. 𝐼. = 𝜃 ± 𝑡1−
𝛼

2
,𝑛−1*𝑠̂𝐵, 𝑠̂𝐵 = √

1

𝐵−1
∑ (𝜃𝑖

∗ − 𝜃̅∗)2𝐵
𝑖=1 , where 𝜃̅∗  = 

1

𝐵
∑ 𝜃𝑖

∗𝐵
𝑖=1

3 

The t-interval with Bootstrap standard error is a first order accurate method.  In 

the case of the sample mean this interval offers little advantage over non-resampling 

methods and the use of the standard t-interval3.  This first order method also has a few 

additional issues worth mentioning.  First the method is not transformation invariant; if 

one applies a strictly increasing transformation 𝜃 , 𝑔(𝜃), one will yield at least slightly 

different coverage probabilities for 𝑔−1(𝑔(𝜃𝑈)) than for 𝜃𝑈
3. This could lead to a 

difference in interpretation when indirectly inferring from the interval! Second the 

confidence interval is shortened by a factor of √(𝑛 − 1)/(𝑛) because the empirical 

distribution has theoretical variance 𝜎̂2 = (
1

𝑛
) ∗ ∑  (𝑥𝑖 − 𝑥̅)2 rather than 𝑠2.  Finally, if 
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skew exists in the data the t-interval requires a large sample size to converge to the 

correct coverage probabilities and it converges even more slowly than the percentile 

method mentioned in the previous section3. 

One advantage however is the amount of bias introduced by the interval. As 

discussed previously, if bias exists in the underlying statistic there is no mechanism to 

correct for this bias.  Although this is the case, the method only applies one copy of bias 

in the computation of the confidence interval: the bias inherent in the computation of the 

original statistic 𝜃3. 

Basic Method 

The basic percentile confidence interval method is like the percentile method 

except it corrects for simple bias in the underlying statistic.  It is the mirror image of the 

percentile confidence interval in that it reaches as far above 𝜃 as the percentile reaches 

below3. The basic confidence interval is of the form3: 

[𝐹*-1 (Φ(2𝑧0 − 𝑧1)), 𝐹*-1 (Φ(2𝑧0 + 𝑧1))] 3 

where, 

𝑧0 = Φ−1(𝐹∗(𝜃)), 𝑧1 = Φ−1(1 − 𝛼)) and 

𝐹∗(.) = the Monte Carlo Bootstrap sampling distribution for the parameter of interest. 

If the only underlying issue in the data is simple bias the basic percentile method 

will appropriately fix the issue and provide more accurate confidence bounds than the 

percentile method.  However, there are two major problems with this approach.  First the 

Monte Carlo Bootstrap sampling distribution of 𝜃∗ − 𝜃 is highly dependent on the 
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distribution of 𝜃.  This implies 𝜃∗ is a good approximation for 𝜃 - 𝜃, precisely when 𝜃 = 

𝜃3.  This is problematic because it requires our sample to perfectly represent the 

population parameter based on the sample statistic.  Second, if any skewness exists in the 

data or the statistic is non-linear in nature the bias correction causes the interval to be 

asymmetric in the wrong direction3.   

The basic percentile interval is considered to use the wrong pivot, 𝜃∗ − 𝜃, 

“forward” whereas Efron’s percentile uses the wrong pivot “backwards” 3.  The issue 

with both approaches of course is one is choosing a statistic that is not pivotal.  A pivotal 

statistic is one whose distribution is independent of the population parameter3.  In the 

following sections we will look at methods attempting to correct these problems 

mentioned so far.  

Bias-Corrected Accelerated Adjusted Percentile Method 

When our estimate 𝜃 consistently underestimates or overestimates the target 𝜃 a 

bias correction might help matters in computing confidence intervals. This led Efron to 

propose the following bias corrected accelerated adjusted percentile Bootstrap method. It 

is as easily implemented as the ordinary percentile method and it generally improves 

accuracy14. Transformation invariance is maintained, but there is a somewhat arbitrary 

link to the normal distribution14. However, for not so small samples a case can be made 

the normal approximation is appropriate when dealing with properly transformed 

estimates. Below is the general definition of the bias corrected accelerated percentile 

method, and it is noted exact coverage can be obtained when the distribution of 𝜃 only 

depends on 𝜃 assuming some other normalizing conditions apply14. 
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The bias adjustment is a median bias adjustment derived from the Monte Carlo 

Bootstrap distribution and the Jackknife procedure is often used to estimate the 

acceleration. The bias-corrected, accelerated adjusted (𝐵𝐶𝑎) confidence interval is 

computed in the form15: 

[𝜃(𝛼1)
∗
, 𝜃(𝛼2)

∗
] 

where  

𝛼1 = Φ(𝑧0̂ + 
𝑧0̂+ 𝑧(𝛼/2)

1−𝑎̂(𝑧0̂+ 𝑧(𝛼/2))
), 𝛼2 = Φ(𝑧0̂ +  

𝑧0̂+ 𝑧(1−𝛼)/2

1−𝑎̂(𝑧0̂+ 𝑧(1−𝛼)/2)
), 𝑎̂ = 

∑ (𝜽̂(.)−𝜽̂𝒊)𝟑𝒏
𝒊=𝟏

6(∑ ((𝜽̂(.)−𝜽̂𝒊)𝟐𝒏
𝒊=𝟏 )𝟑/𝟐 and, 

𝑧0̂ = Φ−1((∑ 𝜃𝑖
∗ < 𝜃)/𝐵)𝐵

𝑖=1  

The estimate 𝑎̂ is derived as an estimate of the skew in the data to ensure accurate 

confidence intervals when the sample is not approximately normally distributed.  The 

median bias is the 𝑧0̂ statistic calculated above.  In choosing the percentile to be taken 

from the Monte Carlo Bootstrap distribution 𝛼1 and 𝛼2 percentiles are chosen to reflect 

this adjustment for bias and skewness.  Under regularity conditions, the 𝐵𝐶𝑎 coverage 

errors can be shown to converge on the order 1/𝑛, implying the confidence interval is 

second order accurate15. 

Bias-Corrected Accelerated Adjusted Percentile Method Continued: ABC Method 

A minor disadvantage of using the Bootstrap as a means of generating confidence 

intervals is the computational burden of generating tens of thousands of bootstraps and 

sub-bootstraps.  The ABC method for computing confidence intervals does not depend on 

generating resamples and rather approximates the 𝐵𝐶𝑎 interval by computing numerical 

derivatives16.  
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The ABC confidence limit for 𝜃, denoted 𝜃𝐴𝐵𝐶[1 − 𝛼], is constructed as follows: 

𝑤 ≡  𝑧̂0 +  𝑧(1−𝛼),  𝜆 ≡  
𝑤

(1−𝑎̂𝑤)2 ,  𝛿 ≡  𝑇̇(𝑷0), 𝜃𝐴𝐵𝐶[1 − 𝛼] = 𝑇(𝑷0 +
𝜆𝛿̂

𝜎̂
 ) 20  

where 𝑷0 =(
1

𝑛
,

1

𝑛
 , … ,

1

𝑛
)𝑇, and the function is defined as16 

𝑇𝑖̇ = lim
𝜖→0

𝑇((1− 𝜖)𝑷0+𝜖𝒆𝑖)−𝑇(𝑷0)

𝜖
 

The ABC procedure computes the constants 𝑧̂0 and 𝑎̂ generated with the 𝐵𝐶𝑎 but 

rather than doing so using Bootstrap replications it does so through numerical second 

derivatives16. 

The acceleration constant 𝑎̂ is 1/6 times the standardized skewness of the 

empirical influence components20: 

𝑎̂ = 
∑ 𝑇̇𝑖

3𝑛
𝑖=1

6(∑ 𝑇̇𝑖
2𝑛

𝑖=1 )3/2 
 where, 𝑇̇ = 

lim
𝜖 ⇁0

𝑇((1−𝜖)𝑷0+𝜖𝒆𝑖)−𝑇(𝑷0)

𝜖
 

Bootstrap-t Method 

The Bootstrap-t method also provides better confidence intervals in the case of 

skewed data for the mean statistic3.  For each resample of the Monte Carlo Bootstrap 

method a t-statistic is calculated.  This collection of t-statistics is the Monte Carlo 

Bootstrap sampling distribution of interest and is used in deriving the confidence interval.  

The t-statistic for each resample is calculated as: 

𝑡∗
𝐵 =  

𝜃𝐵
∗  −  𝜃

𝑠̂𝜃∗̂
𝐵
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𝜃𝐵
∗  is the estimate of the population parameter for each resample, 𝜃 is the estimate 

of the parameter from the original sample, and 𝑠̂𝜃∗̂
𝐵
 is the estimate of the standard error 

of the population parameter for each resample.  Then for the computation of the 

confidence interval the (1- 
α

2
)  and 

α

2
 percentiles of the ordered Monte Carlo Bootstrap 

sampling distribution are taken to determine the t-statistics used for the confidence 

interval computation.  The confidence interval takes the form3:  

( 𝜃 −  𝑡∗
(1− 

α

2
)

𝑠̂𝜃̂

√𝑛
,   𝜃 −  𝑡∗α

2

𝑠̂𝜃̂

√𝑛
) 

Although the Bootstrap-t method is second order accurate, like the t-interval with 

Bootstrap standard error method, it is not transformation invariant3. Also, computing the 

t-statistic makes most sense when 𝜃 is a location parameter (i.e., mean, median), but that 

is not always the statistic of interest14.  If instead we are estimating the correlation with 

𝜃 =  𝜌, we cannot treat 𝜌 as a location parameter and methods using the t-statistic 

perform poorly. The Fisher-z transform below has been suggested as an alternative 

approach8: 

𝑧 =  
1 

2
𝑙𝑜𝑔{(1 +  𝜌)/(1 −  𝜌)} 

where after computing the confidence bounds for 𝑧, the bounds are then back transformed 

to confidence bounds for 𝜌.    

This approach is helpful because it normalizes the correlation statistic and has 

been shown to improve coverage properties.  This transformation is implemented in the 

simulation work in chapter 4 by applying the Fisher-z transformation to both Bootstrap 

and EBSD(𝑛) methods for the correlation statistic. 
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A further disadvantage of the Bootstrap-t method is the source of its better 

coverage properties, namely the requirement of an appropriate scale estimate (standard 

error) for the method’s confidence interval14. If the formula for the sample variance of the 

statistic is not known, we must calculate Bootstrap variance estimates on each Bootstrap 

resample to achieve the appropriate standard error estimate for each 𝑡∗
𝐵. Performing 

bootstraps of each Bootstrap resample can become computationally intensive, relative to 

other confidence interval methods, especially when many confidence interval 

computations are required.   

Non-resampling Second Order Confidence Interval Methods 

T-skew Method 

The t-skew method is not a resampling method but rather a confidence interval 

method that adjusts the t-statistic for skewness.  The t-statistic adjustment is based on 

skewness corrected t-statistic.  The t-skew corrected confidence interval can be 

implemented in the following form for the sample mean3: 

𝑋̅ + ( 𝛾 ∗
1

6∗√𝑛
∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) ± 𝑡𝛼

2
,𝑛−1) ∗

𝑠̂

√𝑛
, 𝑤ℎ𝑒𝑟𝑒 𝛾 =  

(
1

𝑛
)∗∑ (𝑋𝑖 −𝑋̅)3𝑛

𝑖=1

𝑠̂3  

The motivation for this adjustment is the t-statistic has been shown to be twice as 

skewed as 𝑋̅ in the opposite direction of the skew of 𝑋̅3.  Further if drawing a sample 

from exponentially distributed data; data with an inherent level of skew (𝛾 =2), means 

there is a strong dependent relationship between 𝑋̅ and the standard error computed from 

the sample.  This dependent relationship causes the acceleration we are adjusting for in 

the 𝐵𝐶𝑎 method. Thus, adjusting for skewness in the t-statistic is necessary to produce the 
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most accurate confidence intervals3.  For many statistics, the sample variance is 

unknown, thus a logical approach would be to estimate it using a resampling method.  

This estimate could then be plugged into the formula above.  

2.6 Research Questions 

The primary research question is how the accuracy of the methods using 

EBSD(𝑛) compare to methods commonly used with the Monte Carlo Bootstrap.  

Confidence interval accuracy was evaluated using the type 1 one-sided error-rate for each 

side of the confidence interval.  Once the one-sided error rate for both the upper and 

lower limit were computed, the percent error from the theoretically true one-sided error 

rate was computed.   

Confidence interval methods do not perform uniformly accurately for all 

significance levels, statistics, and distributional types.  Thus, secondary research 

questions investigated were: 

 How did method accuracy vary across alpha significance level? 

 How did method accuracy vary for different types of probability distributions? 

 How did method accuracy vary when the statistic was linear vs. non-linear? 

Four specific comparisons of interest in comparing confidence interval methods 

for the EBSD(𝑛) method to confidence interval methods for the Monte Carlo Bootstrap 

were:  

 Performance for the mean statistic when the distribution was skewed in nature 

 Performance for the Pearson correlation coefficient  
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 Performance for the ratio of two independent means statistic  

 Performance for data drawn from the mixture of two normal distributions 

Additionally, accuracy of confidence interval methods applied on EBSD(𝑛) 

compared specifically to the same method applied on the Monte Carlo Bootstrap.  This 

comparison will also be performed when a larger or smaller number of Bootstraps was 

employed for the Monte Carlo Bootstrap. 
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Chapter 3: Methods  

In this chapter the construction of the five most common Bootstrap confidence 

interval methods (T-interval with Bootstrapped Standard Error, Percentile, Basic, 

Bootstrap-t and 𝐵𝐶𝑎) using EBSD(𝑛) is described.  A new method E-skew of 

constructing confidence intervals using EBSD(𝑛) is introduced in section 3.2.  The 

outlines for comparing Bootstrap Confidence Intervals (BCI) using the EBSD(𝑛) 

(including E-skew) with Monte Carlo methods are displayed in sections 3.3, 3.4 and 3.5.   

3.1 Bootstrap Sample Construction using EBSD(𝒏) 

As described in the introduction, an EBSD(𝑛) design can be used to select an 

optimal subset of all possible Bootstrap samples.  This subset of samples is optimal 

because the resulting Bootstrap sampling distribution for the sample mean has the same 

mean and variance as if from the complete enumeration of all possible samples.  The 

following theorem below states this property for an EBSD(𝑛) design:  

Theorem 3.1.1: If Sample Average, 𝑇(𝑋), is the statistic of interest then the Bootstrap 

mean (𝑇𝐵
̅̅ ̅) and variance (𝑠𝐵

2) estimate of 𝑇 for Bootstrap samples, generated by an 

EBSD(𝑛) method, is exact1 i.e.,   

𝑇𝐵
̅̅ ̅ = 𝐸[𝑇(𝑿∗)] = 𝑋̅ = 𝑇(𝑿), and 

𝑠𝐵
2 = 𝑉𝑎𝑟(𝑇(𝑋∗)) = 

∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1

𝑛2
 = 

𝑠∞
2

𝑛
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for 𝑇(𝑋∗) = 
∑ 𝑋𝑗

∗𝑛
𝑗=1

𝑛
, where 𝑋∗ = (𝑋1

∗, 𝑋2
∗, … , 𝑋𝑛

∗) denotes the Bootstrap sample of 𝑿 

generated by an EBSD(𝑛) method for a random sample 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) of size 𝑛 and 

𝑠∞
2  = 

∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1

𝑛2 .  

Next we will discuss specifically how the EBSD(𝑛) design is constructed.  The  

EBSD(𝑛) design is constructed using Balanced incomplete block design (BIBD) 

principles.  Below are the definitions of the BIBD principles that underlie EBSD(𝑛).   

BIBD Principles Underlying EBSD(𝒏) 

A BIBD design with parameters (𝑣, 𝑏, 𝑟, 𝑘, 𝜆) is an arrangement of 𝑣 symbols in 

𝑏 sets each of size 𝑘 (<𝑣) such that: 

 Every symbol appears in each set at most once, 

 Every symbol occurs in exactly 𝑟 sets, 

 Every pair of distinct symbols occurs in exactly 𝜆 sets. 

The symbol and the set are called respectively the treatment and the block, in 

experimental settings.  BIBD (𝑣, 𝑏, 𝑟, 𝑘, 𝜆) denotes a BIBD with parameters (𝑣, 𝑏, 𝑟, 𝑘, 

𝜆).  Further if a balanced incomplete block design exists it implies the existence of a 

balanced ternary block design which is used in the construction of EBSD(𝑛).   

Theorem 3.1.2: Resultantly, the existence of balanced incomplete block design 

𝐵(𝑣’, 𝑏’, 𝑟’, 𝑘’, 𝜆’) with parameters1: 

 𝑣’ =  2𝑛, 𝑏’ =  2(2𝑛 − 1), 𝑟’ =  2𝑛 − 1, 𝑘’ =  𝑛 and 𝜆’ =  𝑛 − 1, for 𝑛 ≥ 2 implies the 

existence of balanced ternary block design 𝐵𝑇𝐷(𝑣, 𝑏, 𝑟, 𝜌1, 𝜌2, 𝑘, 𝜆) with parameters  
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 𝑣 =  𝑛 =  𝑘, 𝑏 =  2(2𝑛 − 1)  =  𝑟, 𝜌1  =  2𝑛, 𝜌2 =  𝑛 –  1 and 𝜆 =  4(𝑛 − 1), 

where 𝜌𝑖 denotes the number of blocks each element appears only i-times, i= 1, 2. 

EBSD(𝑛) leverages these principles mentioned above to yield its design.  Construction of 

the EBSD(𝑛) design is accomplished by following the procedure below.  

Procedure to Produce EBSD(𝒏) 

Step 1: From the existence of a balanced incomplete block design 𝐵(2𝑛, 4𝑛 − 2, 2𝑛 −

1, 𝑛, 𝑛 − 1) suggests the existence of a balanced ternary block design1 𝐵𝑇𝐷(𝑛, 4𝑛 −

 2, 4𝑛 − 2, 2𝑛, 𝑛 − 1, 4(𝑛 − 1)).    

Step 2: Generate a cyclic group of auto-morphism of order 𝑛 of the 𝐵𝑇𝐷(𝑛, 4𝑛 −

 2, 4𝑛 −  2, 2𝑛, 𝑛 –  1, 𝑛, 4(𝑛 –  1)) design of Step 1 with 𝑛 elements i.e., permute the 

elements of each block with the residual modulo 𝑛 cyclically.  Here the elements of each 

block 𝐵𝑖 of the 𝐵𝑇𝐷 design taken as the set 𝐵𝑖 (𝑚𝑜𝑑 𝑛) and mapping 𝑖 →  𝑖 +  1 

(𝑚𝑜𝑑 𝑛) for each element 𝑖 maps 𝐵𝑖 into 𝑛 blocks.  It is easy to attest the parameters of 

the derived 𝐵𝑇𝐷(𝑣’, 𝑏’, 𝑟’, 𝜌1’ , 𝜌2’ , 𝑘’, 𝜆’) design as below1: 

𝑣’ =  𝑛 =  𝑘’, 𝑏’ =  𝑟’ =  2𝑛(2𝑛 − 1), 𝜌1’ =  2𝑛2 , 𝜌2’ =  𝑛(𝑛 –  1) and 𝜆’ =

 4𝑛(𝑛 –  1). 

Step 3: Adjoin 2 copies of 𝑛 blocks of {(1,1,  … 1),  (2,2, … 2),  … ,  (𝑛,  𝑛,  … . )} and a 

single block with the complete set of elements (1, 2 , … , 𝑛) to the 𝐵𝑇𝐷(𝑣̃, 𝑏̃, 𝑟̃, 𝜌1̃, 𝜌2̃, 𝑘̃, 

𝜆̃) design of Step 2.   

The resulting 4𝑛2+1 blocks can then in turn be thought of as Bootstrap samples.  

These samples can be used to construct a sampling distribution for the sample mean.  As 
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stated above the mean and variance of this sampling distribution matches the exact 

sample mean (𝑋̅) and exact variance of the mean (𝜎̂𝑋̅
2
) as if from the complete 

enumeration of all possible samples.   

In fact, there have been many past attempts to generate a design with the property 

stated above.  For example, the second order balanced bootstrap attempted to achieve 

these properties by using Latin squares.  However, despite the complex derivation used, 

the design is only able to achieve the properties provided by EBSD(𝑛) if size of the 

original sample is equal to the power of a prime number10.  Therefore, EBSD(𝑛) finally 

is able to achieve the property of exact first and second moments that many other 

methods had endeavored but failed to achieve.  Therefore, naturally this sampling 

distribution is preferable over sampling distributions such as the balanced bootstrap or the 

Monte Carlo Bootstrap. 

Further, the elimination of simulation error for the sampling distribution of the 

sample mean should facilitate accurate confidence interval construction.  A Bootstrap 

sampling distribution with no simulation error yields a better estimate of the distribution 

of the data and should yield a better estimate of the distributions skew and thus producing 

more accurate confidence intervals.   

Also if one is interested in constructing a confidence interval for any statistic 

other than the sample mean constructing a sampling distribution which matches on the 

first two moments for the mean in theory should provide a better Bootstrap sampling 

distribution for the statistic of interest. This is because using Monte Carlo resampling 

introduces simulation error which leads to error bias.  This error bias leads to less 
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accurate sampling distributions and consequently less accurate confidence intervals.  

True population parameters can be excluded from inaccurate confidence intervals more 

frequently.  Thus sampling distributions with error bias lead to worse parameter 

estimation. 

As the sampling distribution is integral to accurate confidence interval 

construction, below is a definition for the Bootstrap sampling distribution constructed 

from EBSD(𝑛). 

Bootstrap Sampling Distribution Constructed from EBSD(𝒏) 

An EBSD(𝑛) design can be used to construct a Bootstrap sampling distribution 

with (4𝑛2+1) elements.  Similar to the concept of the Monte Carlo Bootstrap sampling 

distribution in Chapter 2, the Bootstrap sampling distribution constructed from EBSD(𝑛) 

is generated by calculating the statistic of interest for each sample from EBSD(𝑛).  This 

collection of statistics 𝜃𝐸1

∗ , … . , 𝜃𝐸
4𝑛2+1

∗   is termed the Bootstrap sampling distribution 

constructed from EBSD(𝑛) and can be used for confidence interval construction. 

To compare the Bootstrap sampling distribution constructed from EBSD(𝑛) to the 

Monte Carlo Bootstrap sampling distribution we compare the standard error generated 

from each using the data from Table 4 below.  As stated above the variance of the sample 

mean sampling distribution is the same as if from the complete enumeration of all 

possible samples.  If the exact variance of the sample mean is achieved then the exact 

standard error of the mean is also achieved as the standard error is simply a one-to-one 

function of 𝜎̂𝑋̅
2
 (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟𝑋̅= √𝜎̂𝑋̅

2/𝑛 where 𝑛 is the size of the original sample).   
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Thus below we refer back to the example mentioned in section 2.4 and also 

presented below.  It is seen that from the results published by Efron also in Table 5 below, 

that trials using 50, 100, 250, 500 and 1,000 Monte Carlo Bootstrap samples all resulted 

in standard errors that failed to match the exact standard error.  According to Efron, only 

if approximately an infinite number of Monte Carlo Bootstraps resamples were 

performed may the resulting standard error be exact.  The Bootstrap sampling distribution 

constructed using EBSD(𝑛) yields a standard error for the mean of 23.36 using the data 

Efron used (Table 4) and this is accomplished using only 197 samples.  Therefore the 

advantage in the sampling distribution generated from EBSD(𝑛) is that it identifies a 

small subset of samples that guarantee exact first two moments for the sample mean, 

while conversely, the Monte Carlo Bootstrap cannot guarantee this even when generating 

many more resamples to construct it’s sampling distribution.  

Table 3.1 Survival Time (Days) Treatment group Mouse Data 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 𝑿𝟕 
94 197 16 38 99 141 23 

 

Table 3.2 Efron and Tibshirani Estimated Standard Error for the Sample 

Mean: Mouse Data: Treatment Group  

𝑩* 50 100 250 500 1000 ∞ 

Standard Error of the Sample Mean 19.72 23.63 22.32 23.79 23.02 23.36 

           *𝐵 = # of Bootstrap samples. 

Below we see a comparison of the sampling distributions in Figure 1 below.  In 

the figure it is shown that the Bootstrap sampling distribution constructed from EBSD(𝑛) 

is centered at the mean value of the Mouse data from the original sample.  Conversely, 

for the Monte Carlo Bootstrap simulation error causes the sampling distribution to be 

centered above the mean value from the original sample.  
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Figure 3.1. Comparison of Sampling Distributions for Mouse Data 

 

In the Efron example above we see why it would be impractical to use the Monte 

Carlo Bootstrap to generate a sampling distribution for the mean that are exact for the 

first two moments.  One may then argue why not just enumerate out all possible samples 

in order to generate a design with exact moments?  The issue with this approach is that 

complete enumeration of all possible samples is unfeasible even for relatively small 

sample sizes.  The number of samples required when performing complete enumeration 

is 𝑛𝑛 and the number of samples required for complete unique enumeration is (
2𝑛 − 1

𝑛
) 

where 𝑛 is the size of the original sample.  Therefore, the design size exponentially 

increases as the original sample size increases.  In this way, we see the relative benefit of 

EBSD(𝑛) because the required number of samples for EBSD(𝑛) (4𝑛2+1) is much 

smaller as sample size increases.  The size of the complete enumeration of all possible 

samples and the complete enumeration of all possible unique samples is compared to the 

EBSD(𝑛) design size in the table below.   
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Table 3.3 Comparison of Relative Design Sizes 

Sample 

Size 

(n) 

Number of Samples 

When Enumerating All 

Possible Samples 

Number of 

Samples When 

Enumerating All 

Possible Unique 

Samples 

Number of 

EBSD(𝒏) 

(4𝒏𝟐+1) 

Required 

Samples 

 

3 27 10 37 

4 256 35 65 

5 3,125 126 101 

6 46,656 462 145 

7 823,543 1716 197 

8 16,777,216 6435 257 

9 387,420,489 24310 325 

10 10 *1010 92378 401 

11 28.5 *1011 352716 485 

13 3.02 *1015 5,200,300 677 

15 4.4 *1018 77,558,760 901 

19 1.97 *1024 1.7 e11 1445 

23 2.08 *1032 4.1 *1013 2117 

25 8.88 *1034 6.3 *1014 2501 

30 2.06 *1044 5.9 *1016 3601 

40 1.21 *1064 5.4 *1022 6401 

70 1.44 *10129 4.7 *1040 19601 

100 1 *10200 4.5 *1058 40001 

∞ ∞ ∞ ∞ 

The complete enumeration of all possible samples can be done up to sample size 

15 using high performance computing.  For sample sizes greater than 15 limitations in 

computational capability make complete enumeration impossible to achieve.  Thus 

EBSD(𝑛) is needed for the construction of a design that yields a sampling distribution 

with exact first and second moments for the sample mean for sample sizes larger than 15.  

The design sizes required in the table above highlight how impractical it can be to 

perform complete enumeration as sample size increases. 
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3.2 Confidence Intervals using EBSD(𝒏) 

As stated in section 3.1 confidence intervals can be computed using the Bootstrap 

sampling distribution constructed from EBSD(𝑛).  A number of different algorithmic 

approaches are possible.  Below is a proposed method for a new confidence interval 

method called E-skew. In this section specific techniques employed for each statistic 

studied in the simulation are detailed.  After proposal of the E-skew confidence interval, 

algorithmic approaches commonly used with the Monte Carlo Bootstrap are proposed 

using EBSD(𝑛). 

E-skew Method for Constructing a Confidence Interval for a Statistic 𝜽̂ 

For the case of constructing a confidence interval for a statistic 𝜃 the following 

method adjusting for skew in the Bootstrap sampling distribution constructed from 

EBSD(𝑛) is proposed:   

Step 1:  A modification of the t-skew method mentioned in section 2.5 is used to 

construct a confidence interval lower limit and upper limit for each sample from 

EBSD(𝑛).  Consequently, there are two sampling distributions, a lower limit sampling 

distribution and an upper limit sampling distribution.  For a statistic 𝜃 the confidence 

interval formula for each sample is: 

𝜃𝐸𝑖

∗  + 

𝑠̂
𝜃̂𝐸𝑖

∗

√𝑛
∗ ((

𝑠𝑘𝑒𝑤̂𝜃̂𝐸𝑖
∗

6√𝑛
) ∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) ±  𝑡𝛼

2
,𝑛−1) 

 𝜃𝐸𝑖

∗  is defined as the sample statistic for the ith sample from EBSD(𝑛)  

 The Jackknife method is used to estimate the sample variance for each EBSD(𝑛) 

sample and is computed as:  
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𝑠̂𝜃̂𝐸𝑖
∗

2  = 
1

𝑛−1
∑ (𝜃𝐸𝑖(−j) − 𝜃𝐸𝑖(.))2𝑛

𝑗=1   

 𝑛 is the size of the original sample 

 𝐸𝑖 is the ith sample from EBSD(𝑛)  

 𝐸𝑖𝑗 is the ith sample and jth element from EBSD(𝑛)  

 Lastly the skew for each sample is estimated as: 

 𝑠𝑘𝑒𝑤̂𝜃̂𝐸𝑖
∗  = 

(
𝟏

𝒏
)∗∑ (𝜃̂𝐸𝑖(−j)−𝜃̂𝐸𝑖(.))𝟑𝒏

𝒋=𝟏

(𝑠̂𝜃̂𝐸𝑖
∗ )𝟑  

In the case where 𝑠𝑘𝑒𝑤̂𝜃̂𝐸𝑖
∗ is undefined as would be the case when 𝑠𝐸𝑖

 =0 (this 

occurs for the samples with the repeated elements), 𝑠𝑘𝑒𝑤̂𝜃̂𝐸𝑖
∗  is assigned the value of 0.  

These variance and skew estimates from the Jackknife are used in conjunction 

with the t-skew adjustment to generate an EBSD(𝑛) sampling distribution for both the 

upper and lower limit for any statistic of interest.  

Step 2: The t-skew adjusted upper and lower limit is calculated for the statistic of interest 

(𝜃) from the original sample. 

Step 2A: For the upper limit 𝜃𝑈 is the t-skew adjusted upper limit from the original 

sample is computed as: 

𝜃𝑈 = 𝜃 + 
𝑠̂𝜃̂

√𝑛
∗ ((

𝑠𝑘𝑒𝑤̂𝜃̂

6√𝑛
) ∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) −  𝑡𝛼

2
,𝑛−1) 

The 𝑠𝑘𝑒𝑤̂𝜃̂ and 𝑠̂𝜃̂ for 𝜃𝑈 are estimated using the Jackknife just like they are for 

each sample from EBSD(𝑛): 
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where  𝑠𝑘𝑒𝑤̂𝜃̂  = 
(

𝟏

𝒏
)∗∑ (𝜃̂−𝑗−𝜃̂(.))𝟑𝒏

𝒋=𝟏

(𝑠̂𝜃̂)𝟑
 where 𝑠̂𝜃̂ is the sample standard deviation of the j 

Jackknifed samples from the original sample: 𝑠̂𝜃̂ = (
1

𝑛−1
) ∗ ∑ (𝜃−𝑗 − 𝜃(.))2𝑛

𝑗=1  and where 

𝜃(.)  = 
1

𝑛
 ∑ 𝜃(−j) 

𝑛
𝑗=1  and 𝜃−𝑗 is the statistic calculated with the jth element removed from 

the original sample. 

Step 2B: Similarly, for the lower limit 𝜃𝐿 is the t-skew adjusted lower limit from the 

original sample and is computed as: 

𝜃𝐿 = 𝜃 + 
𝑠̂𝜃̂

√𝑛
∗ ((

𝑠𝑘𝑒𝑤̂𝜃̂

6√𝑛
) ∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) +  𝑡𝛼

2
,𝑛−1) 

where 𝑠𝑘𝑒𝑤̂𝜃̂  and 𝑠̂𝜃̂ are the same estimates as what was used for the upper limit.   

Step 3: The median bias (𝑧0̂𝑈
 and 𝑧0̂𝐿

) are calculated for both the upper and lower limit 

as is done with the 𝐵𝐶𝑎 method.   

Step 3A: 𝜃𝑈 is compared to the t-skew adjusted upper limit computed from each 

EBSD(𝑛) sample 𝐸𝑖 and  𝑧0̂𝑈
 is computed as below: 

𝑧0̂𝑈
 : 𝜙−1(( ∑ 𝜃𝑈𝐸𝑖

< 𝜃𝑈)/(4𝑛2 + 1) 

4𝑛2+1

𝑖=1

) 

 𝜃𝑈𝐸𝑖
 is defined as the t-skew adjusted upper limit of sample 𝐸𝑖 from EBSD(𝑛)  

Step 3B: 𝜃𝐿 is compared to the t-skew adjusted lower limit computed from each 

EBSD(𝑛) sample 𝐸𝑖 and  𝑧0̂𝐿
 is computed as below: 

𝑧0̂𝐿
 : 𝜙−1(( ∑ 𝜃𝐿𝐸𝑖

> 𝜃𝐿)/(4𝑛2 + 1) 

4𝑛2+1

𝑖=1

) 
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Where the inequality sign is flipped when computing for the lower limit.   

 𝜃𝐿𝐸𝑖
 is defined as the t-skew adjusted lower limit of sample 𝐸𝑖 from EBSD(𝑛)  

Step 4:  The quantile to be taken from each sampling distribution (upper limit and lower 

limit) is calculated. The modified 𝐵𝐶𝑎 adjustment determines which limit from the 

sampling distribution is chosen for either side of the interval.   

Step 4A: The alpha percentile to be chosen from the upper limit sampling distribution is 

calculated as: 

𝛼𝑈 =  𝜙 (
𝑧0̂𝑈

(1 − 𝑎̂𝑈 ∗ 𝑧0̂𝑈
)

) 

where 𝑎̂𝑼 is estimated using the Jackknife approach like what is done with the 𝐵𝐶𝑎 

method: 

  𝑎̂𝑼 = 
∑ (𝜃̂𝑈(.) −𝜽̂𝑼−𝒋)𝟑𝒏

𝒋=𝟏

6 ∑ ((𝜃̂𝑈(.)−𝜽̂𝑼−𝒋
)2)𝒏

𝒋=𝟏
𝟑/𝟐, 

𝜃𝑈−𝑗
 is the t-skew adjusted upper limit for the jackknifed sample with the jth element 

removed from the original sample. 

𝜃𝑈(.)
 is the average t-skew adjusted upper limit for the j Jackknifed samples: 

𝜃𝑈(.)
   = 

1

𝑛
 ∑ 𝜃𝑈(−j) 

𝑛
𝑗=1  . 

Step 4B: The alpha percentile to be chosen from the lower limit sampling distribution is 

calculated where the opposite sign is imposed on the denominator of the formula for 𝛼𝐿: 

𝛼𝐿 =  𝜙 (
𝑧0̂𝐿

(𝑎̂𝐿 ∗ 𝑧0̂𝐿
− 1)

) 
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where 𝑎̂𝑳 is estimated using the Jackknife approach like 𝑎̂𝑼: 

𝑎̂𝑳 = 
∑ (𝜽̂𝑳−𝒋−𝜃̂𝐿(.))𝟑𝒏

𝒋=𝟏

6 ∑ ((𝜽̂𝑳−𝒋
−𝜃̂𝐿

(.)
)2)𝒏

𝒋=𝟏
𝟑/𝟐 

𝜃𝐿−𝑗
 is the t-skew adjusted lower limit for the jackknifed sample with the jth element 

removed from the original sample 

𝜃𝐿(.)
 is the average t-skew adjusted lower limit for the j Jackknifed samples: 

𝜃𝐿(.)
   = 

1

𝑛
 ∑ 𝜃𝐿(−j) 

𝑛
𝑗=1  . 

Each of 𝑎̂𝐿 and 𝑎̂𝑈 are calculated using a Jackknife approach, the same approach 

as what is used for the 𝐵𝐶𝑎 method.   Using the Jackknife, 𝑛 upper limits and 𝑛 lower 

limits are calculated.  Each limit is calculated from a sample of size 𝑛 – 1, where for each 

limit a different unique element has been removed prior to calculation.   

Step 5:  The 𝛼𝐿 and 𝛼𝑈 quantiles are applied to each EBSD(𝑛) sample respectively and 

confidence interval limits are generated.   The quantiles 𝛼𝐿 and 𝛼𝑈 are picked from 

limit’s sampling distribution.  No matter which limit is picked for each end of the interval 

a skew adjusted limit will be selected from a random resample of the original sample.   

a. Illustration of E-skew Confidence Interval Construction for the Sample Mean 𝑿̅ 

For the case of constructing a confidence interval for the sample mean statistic 𝑋,̅ 

an approach that is nearly the same as the general case 𝜃 is proposed.  The difference 

with the mean is how the sample skew and sample variance of the mean are calculated for 

each EBSD(𝑛) sample.  For the sample mean both statistics do not need to be estimated 

using the Jackknife for each EBSD(𝑛) sample.  Therefore, the skew adjusted t-statistic 
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confidence interval calculated on each sample is the same as what is used for the t-skew 

method mentioned in section 2.5.  The confidence interval formula for each sample is: 

𝑋̅𝐸𝑖

∗  + 
𝑠̂∗

𝑋̅𝐸𝑖

√𝑛
∗ ((

𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗

6√𝑛
) ∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) ±  𝑡𝛼

2
,𝑛−1) 

 𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗  = 

(
1

𝑛
)∗∑ (𝑋𝐸𝑖𝑗

−𝑋̅𝐸𝑖
∗ )3𝑛

𝑗=1

𝑠̂∗
𝑋̅𝐸𝑖

3   

  𝑋̅𝐸𝑖

∗  is defined as the sample mean for a given sample from EBSD(𝑛). 

 𝑠̂∗
𝑋̅𝐸𝑖

 is the estimated sample standard deviation for each sample: 

  √(
1

𝑛−1
) ∗ ∑ (𝑋𝐸𝑖𝑗

− 𝑋̅𝐸𝑖

∗ )2𝑛
𝑗=1  

 𝑛 is the size of the original sample 

 𝐸𝑖 is the ith sample from EBSD(𝑛)  

 𝑋𝐸𝑖𝑗
 is the ith sample and jth element from EBSD(𝑛)  

In the case where 𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗ is undefined as would be the case when 𝑠𝐸𝑖

 =0 (this 

occurs for the samples with the repeated elements), 𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗  is assigned the value of 0.  

Once the sampling distribution for the upper and lower limits is generated the 

remaining algorithm steps are the same as they are for a statistic 𝜃.  Correspondingly not 

only does 𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗  and 𝑠̂∗

𝑋̅𝐸𝑖
 not need to be estimated using the Jackknife, 𝑠𝑘𝑒𝑤̂𝑋̅ and 𝑠̂𝑋̅ 

for calculating the t-skew adjusted limits from the original sample also can be estimated 

directly as the same concept applies.  

b. Confidence Interval for the Ratio of Means 
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For the case of constructing a confidence interval for the ratio of means statistic  𝑟̂ 

the following method adjusting for skew in the Bootstrap sampling distribution 

constructed from EBSD(𝑛) is proposed:   

Step 1:  The approach for computing a confidence interval for 𝑟̂ is the same as the 

approach for 𝜃, except E-skew is computed for the natural log of 𝑟̂ and then the resulting 

limits are back transformed to generate the confidence interval for 𝑟̂ where 𝑟̂ is defined as  

𝑋

𝑌̅

̅
, where 𝑋̅ = 

∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 and 𝑌̅ = 

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
. 

ln(𝑟̂)𝐸𝑖

∗  + 
𝑠̂ln(𝑟̂)𝐸𝑖

∗

√𝑛
∗ ((

𝑠𝑘𝑒𝑤̂ln(𝑟̂)𝐸𝑖
∗

6√𝑛
) ∗ (1 + 2 ∗ 𝑡𝛼

2
,𝑛−1

2) ±  𝑡𝛼

2
,𝑛−1) 

 ln(𝑟̂)𝐸𝑖

∗  is defined as the natural log of the ratio statistic for the ith sample from 

EBSD(𝑛)  

 The Jackknife method is used to estimate the sample variance for each EBSD(𝑛) 

sample and is computed as:  

𝑠̂ln(𝑟̂)𝐸𝑖
∗

2  = 
1

𝑛−1
∑ (ln(𝑟̂)𝐸𝑖(−j) − ln(𝑟̂)𝐸𝑖(.))2𝑛

𝑗=1   

 𝑛 is the size of the original sample 

 𝐸𝑖 is the ith sample from EBSD(𝑛)  

 𝐸𝑖𝑗 is the ith sample and jth element from EBSD(𝑛)  

 Lastly the skew for each sample is estimated as: 

 𝑠𝑘𝑒𝑤̂ln(𝑟̂)𝐸𝑖
∗  = 

(
𝟏

𝒏
)∗∑ (ln(𝑟̂)𝐸𝑖(−j)−ln(𝑟̂)𝐸𝑖(.))𝟑𝒏

𝒋=𝟏

(𝑠̂ln(𝑟̂)𝐸𝑖
∗ )𝟑  
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In the case where 𝑠𝑘𝑒𝑤̂ln(𝑟̂)𝐸𝑖
∗ is undefined as would be the case when 𝑠𝐸𝑖

 =0 (this 

occurs for the samples with the repeated elements), 𝑠𝑘𝑒𝑤̂ln(𝑟̂)𝐸𝑖
∗  is assigned the value of 0.  

Once the sampling distribution for the upper and lower limits is generated the 

remaining the steps are the same as they are for a statistic 𝜃.  After the remaining E-skew 

steps are completed for ln(𝑟̂) the resulting confidence interval for ln(𝑟̂) is back 

transformed in order to yield a confidence interval for 𝑟̂.  

  The natural log transformation can yield undefined estimates if an element from 

the sampling distribution is less than 0 prior to transformation.  In practice negative 

values are not typically collected from nature and this is not a problem.  However, for 

example from the normal distribution a negative element could be randomly generated if 

the center of the normal distribution where values are being simulated from is near 0.  

Enough negative elements in an individual sample will result in a sampling distribution 

with a negative element.  If a negative element is generated for 𝑟̂ prior to using the 

natural log transformation the resulting sampling distribution of ln(𝑟̂) will have an 

undefined element. When measuring the performance of E-skew for the ratio of means 

statistic, distributional parameters were set to be centered sufficiently far above 0 for such 

distributional types.  Therefore, the chance a negative element would contribute to the 

sampling distribution should not occur.   

In the very rare cases the estimate for 
𝑧0̂𝐿

(𝑎̂𝐿∗𝑧0̂𝐿−1)
 and 

𝑧0̂𝑈

(1− 𝑎̂𝑈∗𝑧0̂𝑈)
 would diverge to 

infinity.  In these cases, the element taken from the given confidence interval limit 

sampling distribution was the maximum value from that sampling distribution. 
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c. Confidence Interval for the Pearson Correlation Coefficient 

For the case of constructing a confidence interval for the Pearson correlation 

coefficient 𝜌̂ the following method adjusting for skew in the Bootstrap sampling 

distribution constructed from EBSD(𝑛) is proposed:   

Step 1:  A similar approach to computing the confidence interval for 𝜃 is used for 𝜌̂, 

except E-skew is computed for the Fisher-z transformation (Fisher 1915) of 𝜌̂ and then 

the resulting limits are back transformed to generate the confidence interval for 𝜌̂ where 𝜌̂ 

is defined as 𝜌̂ = 
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2 ∑(𝑌𝑖−𝑌̅)2
, where 𝑋̅ = 

∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 and 𝑌̅ = 

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
, and the Fisher-z 

transformation is defined as 
1 

2
𝑙𝑜𝑔{

1 + 𝜌̂

1 − 𝜌̂
}.  Because the Fisher-z transformed Pearson 

correlation coefficient uses standard normal quantile 𝑧1−(
𝛼

2
) in confidence interval 

construction no skew adjustment for the t-statistic is computed for each sample of 

EBSD(𝑛). 

Therefore the confidence interval computed for each sample 𝐸𝑖 is: 

1 

2
𝑙𝑜𝑔{

1 +  𝜌̂𝐸𝑖

∗

1 −  𝜌̂𝐸𝑖

∗}  ±  𝑧
1−(

𝛼
2

)
√

1

𝑛 − 3
 

 𝜌̂𝐸𝑖
 is defined as the Fisher-z transformed Pearson correlation coefficient for  

sample 𝑖 from EBSD(𝑛)  

 𝑛 is the size of the original sample 

 𝐸𝑖 is the ith sample from EBSD(𝑛)  

 𝐸𝑖𝑗 is the ith sample and jth element from EBSD(𝑛)  
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Furthermore, 𝑠𝑘𝑒𝑤̂𝜌̂𝐸𝑖
∗  and 𝑠̂𝜌̂𝐸𝑖

∗
2 did not need to be estimated for each sample of 

EBSD(𝑛) because neither of these statistics contribute to the Fisher-z transformed 

confidence interval.  Although individual skew corrections are not applied on each 

sample the method below still calculates the upper and lower limit for each sample of the 

EBSD(𝑛) method using the 𝛼𝑈 = 𝜙 (
𝑧0̂𝑈

(1−𝑎̂𝑈∗𝑧0̂𝑈)
) percentile of the upper and 𝛼𝐿 = 

𝜙 (
𝑧0̂𝐿

(𝑎̂𝐿∗𝑧0̂𝐿−1)
) percentile of the lower limits.  These corresponding 𝛼𝑢 and 𝛼𝐿 percentiles 

are chosen from the EBSD(𝑛) sampling distribution as was done for the mean and ratio 

of means statistics.  The 𝑧0𝑈
, 𝑧0𝐿

, 𝑎̂𝑈, 𝑎̂𝐿 would be computed the same as how was 

described previously for E-skew.   

After the remaining E-skew steps are completed for the Fisher-z transformation of 

𝜌̂ the resulting confidence interval is back transformed in order to yield a confidence 

interval for 𝜌̂. 

Again in the rare cases like with ln(𝑟̂) where 
𝑧0̂𝐿

(𝑎̂𝐿∗𝑧0̂𝐿−1)
 and 

𝑧0̂𝑈

(1− 𝑎̂𝑈∗𝑧0̂𝑈)
 would 

diverge to infinity, the element taken from the given confidence interval limit sampling 

distribution was set to the maximum value from that sampling distribution. 

Computation of Pearson Correlation Coefficient Confidence Interval  

A further modification is implemented for the purposes of yielding more accurate 

bounds for the correlation parameter when using the EBSD(𝑛) sampling distribution for 

this simulation work.  In generating the EBSD(𝑛) 2𝑛 paired samples must be generated 

in which a single element from the original sample is repeated 𝑛 times.  In the case of the 

correlation parameter the repeated paired samples take the form of repeated pairs 𝑛 times. 
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Since for 𝚾 = {((𝑈𝟏, 𝑉𝟏) , … .,  (𝑈𝒏, 𝑉𝒏) )}, in the case of each repeated pair 𝚾∗ = (𝑈1
∗,… , 

𝑈𝑛
∗ ) is the same element repeated 𝑛 times the variance of (𝑈1

∗,… , 𝑈𝑛
∗ ) (this also goes for 

𝑉∗) is 0 and the corresponding estimate of the correlation for this pair of samples is 

undefined.  Rather than throwing away these important paired samples that allow us to 

achieve the second order balance the correlation value is defined to be -1 or 1 depending 

on the elements in question.  If the repeated element from 𝑈 is less than the repeated 

element from 𝑉 the correlation is assigned the value of -1, otherwise if the element from 

𝑉 is greater than or equal to 𝑈 the correlation is assigned the value of 1.   

d. Confidence Interval for the Trimmed Mean 

The trimmed mean statistic is used as a location statistic in the one sample case 

when estimating the mean or the median is suboptimal. Typically, when outliers exist in 

the original sample and are believed to be compromising the estimate produced by the 

mean; the trimmed mean can be used as an alternative. The trimmed mean removes a 

designated percentage from either end of the sample.   

The k-times trimmed mean is represented as: 

𝑋̅𝑡𝑘 = 
1

𝑛−2𝑘
∑ 𝑋𝑖

𝑛−𝑘
𝑖=𝑘+1  

The trimmed mean is a compromise between the mean and median in that it is not 

as subject to misrepresenting the population mean in the case of extreme outliers and yet 

can still represent the existence of skewness in the resulting confidence interval if 

skewness can be observed in the remaining 80-90% of the data.  Once samples were 

trimmed, mean confidence interval computation was implemented on the remaining data 

as is described for the proposed E-skew confidence interval for the sample mean.  For 
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this work, each end of the ordered sample was trimmed by 10% prior to confidence 

interval computation. 

In cases where estimates 𝑎̂𝐿, 𝑎̂𝑈 and 𝑠𝑘𝑒𝑤̂𝑋̃𝑖
 for the ith Jackknifed sample of the 

original sample diverged these estimates were set to 0 in the computation of the E-skew 

method. 

Monte Carlo Bootstrap Confidence Interval Methods applied on EBSD(𝒏) 

The t-interval with bootstrap estimated standard error, percentile, basic and 𝐵𝐶𝑎 

methods were applied on the Bootstrap sampling distribution constructed from EBSD(𝑛).  

In each case these algorithms were identical to how each method is applied on the Monte 

Carlo Bootstrap Sampling distribution.  In cases where a transformation was used for E-

skew as detailed above (independent ratio of sample means statistic and Pearson 

correlation coefficient), the same transformation was used for each of these methods 

applied on EBSD(𝑛). The Bootstrap-t method was also applied on EBSD(𝑛) but required 

a modification detailed below. 

Bootstrap-t Method with EBSD(𝒏) (ES) 

The Bootstrap-t method applied on EBSD(𝑛) is computed similar to how it is 

computed for the Monte Carlo Bootstrap with a slight modification.  For each sample of 

EBSD(𝑛) a t-statistic is calculated.  This collection of t-statistics is the Bootstrap 

sampling distribution constructed from EBSD(𝑛) and is used in deriving the confidence 

interval.  The t-statistic for each resample is calculated as: 

𝑡∗
𝐸𝑖

=  
𝜃𝐸𝑖

∗  −  𝜃

𝑠̂𝜃∗̂
𝐸𝑖
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𝜃𝐸𝑖

∗  is the statistic of interest calculated for each resample, 𝜃 is the statistic from the 

original sample, and 𝑠̂𝜃∗̂
𝐸𝑖

 is the estimate of the standard error of the statistic for each 

resample.  Then for the computation of the confidence interval the (1- 
α

2
)  and 

α

2
 

percentiles of the EBSD(𝑛) sampling distribution are taken to determine the t-statistics 

used for the confidence interval computation.  The confidence interval takes the form:  

( 𝜃 −  𝑡∗
(1− 

α

2
)

𝑠̂𝜃̂

√𝑛
,   𝜃 −  𝑡∗α

2

𝑠̂𝜃̂

√𝑛
) 

The problem with this approach is what to do with the t-statistics for the samples 

of repeated elements.  One approach is to assign the t-statistic the value of 0 similar to 

what is done for 𝑠𝑘𝑒𝑤̂𝑋̅𝐸𝑖
∗  in E-skew.  The sample of repeated elements end up 

concentrated near the 50th percentile of the resulting EBSD(𝑛) sampling distribution and 

information is lost as they are not distributed across the sampling distribution.  For this 

simulation study the approach of assigning the t-statistic the value 0 was taken in order to 

generate error rate results. 

3.3 Workflow 

In the simulation study done for this dissertation detailed below, one-sided error 

rates were computed for both the upper and lower limit for the E-skew, ET, EP, EBC, 

E𝐵𝐶𝑎, and ES methods as well as for Monte Carlo Bootstrap methods: BT, BP, BC, 𝐵𝐶𝑎, 

BS, ABC.  Each of these methods were studied for multiple statistics, distributional 

types, sample sizes and confidence levels.  For Monte Carlo Bootstrap methods, the 

number of Bootstrap samples specified ranged from 200, 500, 1,000, 5,000, or 10,000 

depending on the simulation in question.  Each simulation was repeated 10,000 times for 
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each sample size, statistic and distributional type tested.  The sample sizes used were n = 

5, 10, 15, 20, 30 and 40.  Specifically, the methods tested using the Bootstrap constructed 

from EBSD(𝑛) and using the Monte Carlo Bootstrap were: 

Table 3.4 Confidence Interval Method’s Used in the Simulation Study 

Bootstrap constructed from EBSD(𝑛) 

Confidence Interval method 

Monte Carlo Bootstrap Confidence 

Interval method 

E-skew  

T-interval with EBSD(𝑛) standard error 

(ET) 

 

T-interval with Bootstrap standard error 

method (BT) 

 

Percentile method using EBSD(𝑛) (EP) Percentile method (BP) 

 

Basic/reverse method using EBSD(𝑛) 

(EBC) 

Basic/Reverse method (BC) 

 

Bias-Corrected accelerated method using 

EBSD(𝑛) (E𝐵𝐶𝑎) 

Bias-Corrected accelerated method 

(𝐵𝐶𝑎)/ABC method 

Bootstrap-t method using EBSD(𝑛) (ES) Bootstrap-t method (BS) 

Below table 8 describes the parameters specified for each distributional type.  In 

total the table is split into 8 different distributional types by statistic.  The distributions 

are: The Normal distribution, the Exponential distribution, the Gamma distribution, the 

Log-Normal distribution, the Mixture of Two Normal distributions, the Bivariate Normal 

distribution, the Bivariate Non-Normal distribution, and the Cauchy distribution.  

Table 3.5 Parameter Specifications for each Statistic for each distribution of interest 

 Parameters specified  

Normal Distribution 

Sample Mean 

(𝜇, 𝜎) (4, 1), (4, 4), (4, 8) 

Sample Median 

(𝜇, 𝜎) (4, 1) 

Trimmed Mean 

(𝜇, 𝜎) (4, 1) 

Ratio of Sample Means  
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(𝜇1, 𝜎1, 𝜇2, 𝜎2) (100, 1, 50, 1), (50, 1, 100, 1),  

(100, 1, 100, 1) 

Exponential Distribution  

Sample Mean 

𝜆 0.10, 0.01, 1 

Sample Median 

𝜆 0.10 

Trimmed Mean 

𝜆 0.10 

Ratio of Sample Means 

(𝜆1, 𝜆2) (0.10, 0.20), (0.20, 0.05), (0.10, 0.10) 

Gamma Distribution 

Sample Mean 

(𝛼, 𝜆)  (2, 2), (2, 3) 

Trimmed Mean 

(𝛼, 𝜆) (2, 2) 

Ratio of Sample Means 

(𝛼1, 𝜆1, 𝛼2, 𝜆2) (4, 1, 3, 1) 

Log-Normal Distribution 

Sample Mean 

(𝜇, 𝜎) (4, 0.2), (4, 2), (4, 3) 

Trimmed Mean 

(𝜇, 𝜎) (4, 0.2) 

Ratio of Sample Means 

(𝜇1, 𝜎1, 𝜇2, 𝜎2) (4, 0.2, 3.3, 0.2) 

Mixture of Two Normal Distributions 

Sample Mean 

(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2) (4, 4, 0.5, 8, 8, 0.5), (4, 4, 0.6, 8, 8, 0.4), 

(4, 4, 0.8, 8, 8, 0.2) 

Trimmed Mean 

(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2) (4, 4, 0.6, 8, 8, 0.4) 

Median 

(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2) (4, 1, 0.5, 8, 1, 0.5) 

Ratio of Sample Means 

(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2, 𝜇3, 𝜎3, 𝑝3, 𝜇4, 𝜎4, 𝑝4) (50, 1, 0.6, 100, 1, 0.4, 25, 1, 0.6, 50, 1, 0.4) 

Bivariate Normal Distribution 

Pearson Correlation Coefficient 

(𝜇1, 𝜎1, 𝜇2, 𝜎2, 𝜌) (4, 1, 4, 1, 0.1), (4, 1, 4, 1, 0.5),  

(4, 1, 4, 1, 0.9) 

Bivariate Non-Normal Distributions 

Pearson Correlation Coefficient  

(Skew, Kurtosis, 𝜌) (3, 61, 0.1), (3, 61, 0.5) 
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Cauchy Distribution 

Median 

(𝑥0, 𝛾) (0, 1) 

In total the E-skew method and the other methods mentioned in section 3.2 using 

EBSD(𝑛) were compared against the six Monte Carlo Bootstrap methods.  For each 

method when a transformation was applied to the E-skew method it was also applied to 

every other method studied; both to methods applied on EBSD(𝑛) and on the Monte 

Carlo Bootstrap.  For the median statistic EBSD(𝑛) methods and Monte Carlo Bootstrap 

methods were compared but the E-skew method was not a part of the comparison as skew 

adjustment was not deemed necessary for the median statistic.   

3.4 Simulation Study Procedure  

First Figure 2 below displays the simulation method used in this dissertation 

graphically via a flow chart.  Following the figure, the simulation procedure is described 

step by step in order to give the reader an overview of the simulation process.  
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               Figure 3.2 Flow Chart of Simulation Study 
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Step 1: Selection of the Sample Size Configuration for the Sample 

Six different sample size configurations were used, “small” sample sizes 𝑛 = 5 

and 𝑛 = 10, “Moderately small” sample sizes 𝑛 = 15 and 𝑛 = 20 and “Marginally small” 

sample sizes 𝑛 =   30, and 𝑛 = 40.   

Step 2: Selection of the Probability Distribution 

Eight probability distribution types: Exponential, Normal, Cauchy, Gamma, Log-

Normal, Mixture of two Normal distributions, Bivariate Normal, and Bivariate Non-

Normal.  The parameters specified for each of these distributions is detailed in Table 8 

above.  

Step 3: Specification of Types of Confidence Intervals on the Same Data set  

90, 95 and 99% confidence intervals were generated.  Thus 3 confidence intervals 

were generated for each probability distribution, sample size, and statistic combination 

for each method. 

Step 4: Confidence Intervals for True Parameter Capture Across Significance Level  

The ability to capture the true population parameter was compared between 

Bootstrap confidence intervals constructed from EBSD(𝑛) and Monte Carlo Bootstrap 

confidence intervals.  For Monte Carlo Bootstrap confidence intervals 200, 500, 1,000 

and 10,000 samples were used for the mean, ratio of means, and Pearson correlation 

coefficient.  For the trimmed mean statistic Monte Carlo Bootstrap samples of 500 and 

10,000 were used. For the median statistic 500, 1,000 and 5,000 Monte Carlo Bootstrap 

samples were used.  The upper and lower limit of the 90, 95, and 99% confidence interval 
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for each statistic was compared to the true population parameter.  If the upper limit was 

greater or lower limit less than the true population parameter one-sided coverage was 

achieved for that specific end of the confidence interval.  If the upper limit was less than 

or the lower limit greater than the true population parameter one-sided coverage was not 

achieved for that end of the confidence interval.    

This process was repeated 10,000 times in order to compute an error rate.  This 

error rate was then compared to the true nominal error rate in order to compute a percent 

error.  The smaller the percent error the more accurate the method.  Graphics analysis 

(one-sided error rate plots) were also used to compare each of the test methods.  Next is a 

section describing how error rates were compared to the true nominal error rate using 

percent error.  

3.5 Criteria for Confidence Interval Method Comparison 

Accuracy was measured by computing the error rate for the upper limit and lower 

limit separately and then computing each limit’s percent error against the true nominal 

error rate. The percent error was defined as: 

|100 ∗
(𝜀𝑠̂ − 𝜀𝑛)

𝜀𝑛
| 

𝜀𝑠̂ = error rate computed from the 10,000 generated samples. 

 𝜀𝑛 = theoretical true nominal error rate based on the alpha level specified. 

As shown above the absolute value of the percent error was taken and the percent 

error reported was always be greater than or equal to zero.  Therefore, if two error rates, 
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one of which was smaller and the other larger, were equidistant from the nominal error 

rate they would correspondingly have the same reported percent error. 

These percent errors were computed separately for the upper and lower limit, the 

true nominal error rate for an 𝛼 = 0.05 confidence interval for each end of the interval 

would be 0.025.  

Justification for Reporting Percent Error Separately for Each Limit End 

An accurate 95% confidence interval upper limit is less than the true population 

parameter 2.5% of the time while it’s lower limit is greater than the true population 

parameter 2.5% of the time.  As a counter example, consider a 95% confidence interval 

that misses 5% for the upper limit and 0% for the lower limit.  Although the total error 

rate is the same as the total theoretical nominal error rate this example implies both limits 

would be smaller than what they should be.  This theoretical interval would then present a 

clearly biased picture of the true population parameter; we may think the true population 

parameter is smaller than it is.  
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Chapter 4: Main Results 

This chapter is divided into two parts.  First results from the simulation study will 

be reported and discussed.  Results from the simulation study are reported in sections 4.1-

4.6.  In sections 4.1-4.5, error rate results for each statistic are reported for the sample 

mean, the ratio of sample means, the Pearson correlation coefficient, the trimmed mean 

and the median.  In section 4.6 error rate results are compared between EBSD(𝑛) and 

Monte Carlo Bootstrap methods, where for Monte Carlo Bootstrap methods, error rate 

results using multiple Bootstrap iterations sizes are compared.  

Then in section 4.7 results from a real data example using microarray data are 

reported and discussed.  In this real data example, the E-skew method is compared to 

Monte Carlo Bootstrap methods using the Kappa agreement statistic.  

4.1 Sample Mean  

For the sample mean portion of the simulation study, results for six different 

sample sizes are reported (𝑛 = 5, 10, 15, 20, 30, and 40).  For each of these sample sizes, 

confidence interval error rates are reported at the 𝛼 = 0.01, 0.05, and 0.10 significance 

levels.   

The probability distributions used in the simulation study for the sample mean 

were the normal, exponential, gamma, log-normal, and mixture of two normal 

distributions. For each distribution, the population parameters specified are displayed 

below in Table 4.1.  These parameter specifications are the same as the specifications for 

the sample mean in Table 3.5 in Chapter 3.     
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For each sample size, population parameter specification, and probability 

distribution combination 10,000 separate samples were generated.  For the Monte Carlo 

Bootstrap confidence interval methods each of the 10,000 samples used 10,000 Monte 

Carlo Bootstrap resamples to create its Bootstrap sampling distribution.  The comparisons 

discussed in this section are made between EBSD(𝑛) methods and Bootstrap methods 

that use 10,000 Bootstrap resamples. In addition, confidence interval method error rate 

results were measured on the same 10,000 unique samples using 200, 500, and 1,000 

Bootstrap resamples. These alternative Bootstrap resampling levels were performed for 

the normal distribution and exponential distribution simulations.  The error rate results at 

these additional Bootstrap resampling levels are reported in the Appendix.  Each 

generated unique sample had confidence intervals computed using the confidence interval 

methods listed below.  

 For methods using EBSD(𝑛) this included: E-skew, ET, EBC, EP, 𝐸𝐵𝐶𝑎, and ES.   

 For methods using the Monte Carlo Bootstrap this includes: BT, BC, BP, 

𝐵𝐶𝑎/ABC, and BS. 

Below in Table 4.1 is a description of the parameter specifications used for the 

sample mean statistic in this simulation study: 
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Table 4.1 Simulation Parameter Specifications for Sample Mean 

Probability 

distribution 

Population Parameter       Parameter code: 

Specified Parameter Values 

Normal distribution (𝜇, 𝜎)       N1: (4, 1) 

      N2: (4, 4) 

      N3: (4, 8) 

Exponential 

distribution 
𝜆       E1: 0.10 

      E2: 0.01 

      E3: 1 

Gamma distribution (𝛼, 𝜆)       G1: (2, 2) 

      G2: (2, 3) 

Log-Normal 

distribution 
(𝜇, 𝜎)       LN1: (4, 0.2) 

      LN2: (4, 3) 

Mixture of two 

normal distributions 
(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2)       MN1: (4, 4, 0.5, 8, 8, 0.5)  

 MN2: (4, 4, 0.8, 8, 8, 0.2) 

For each of these specified distributions an error rate was computed using the 

10,000 unique samples for each confidence interval method.  The percent error of each 

confidence interval’s error rate was computed by comparing the error rate result from the 

10,000 unique samples against the theoretical nominal error rate.  Because three different 

significance levels were studied the theoretical nominal error rate was different 

depending on the level specified.  Error rates were also computed separately for the upper 

limit and the lower limit.  Therefore, the theoretical nominal error rate in this study for 

the 𝛼 = 0.01 significance level is 0.005, for the 𝛼 = 0.05 significance level it is 0.025, and 

for the 0.10 significance level it is 0.05.  Percent errors of these error rates were 

computed as discussed in Section 3.5.  The smaller the percent error the closer the actual 

error rate is to the true theoretical nominal error rate.  The closer the error rate is to the 

nominal error rate the more accurate the confidence interval. 

Each error rate results table included in sections 4.1-4.5 is assigned a combination 

of letters and numbers as it’s table “number”.  Each table “number” begins with a 

probability distribution code that is assigned using capitalized letters to refer to the 
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probability distribution the table pertains to.  Each corresponding parameter specification 

is assigned the value “1”, “2” or “3” as displayed in Table 4.1.  Specification numbering 

is also performed in tables 4.2, 4.3, 4.4 and 4.5 for each respective section.  Probability 

distribution codes for the sample mean are: 

 N = the normal distribution 

 E = the exponential distribution 

 G = the gamma distribution 

 LN = the log-normal distribution 

 MN = the mixture of two normal distributions 

Following the statistical distribution code and parameter specification number, a 

capitalized “U” or “L” is assigned following the parameter specification number to 

indicate whether the table refers to an error rate for the lower limit or upper limit of the 

confidence interval.  Lastly, following the confidence interval limit letter, a confidence 

interval number is assigned that corresponds to the 𝛼 significance level measured in that 

table.  For confidence intervals reported at the 𝛼=0.01 significance level, “99” is assigned 

after the interval limit letter. Similarly, a table reporting error rate results at the 𝛼 = 0.05 

significance level has a “95” assigned and table reporting at the 𝛼 = 0.10 significance 

level has a “90” assigned.     

As an example, the table “N1U99” indicates the results were computed using data 

generated from a normal distribution for the first parameter specification considered.  The 

specification may change depending on the statistic studied.  The “U” indicates the 
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results are specific to the upper limit of the confidence interval.  Further the “99” 

indicates the results are computed for the 𝛼 = 0.01 significance level.  

For figure “numbering” the parameter specification number is removed as all 

parameter specifications for a given statistic, distribution, significance level and limit end 

are presented in one figure.  Therefore, Figure NU99 on page 74 displays error rates at all 

three specifications: 𝑁(𝜇 = 4, 𝜎 = 1), 𝑁(𝜇 = 4, 𝜎 = 4), and 𝑁(𝜇 = 4, 𝜎 = 8) for the 

sample mean statistic.  

As a final note, for all error rate result tables in section 4.1-4.5 the method that 

achieved the error rate with the smallest percent error has its error rate and percent error 

bolded at each sample size.  The method that yielded the error rate with the smallest 

percent error was the most accurate at that sample size for that set of 10,000 unique 

samples.    

a. Normal Distribution  

This sub section has two purposes.  The first is to compare the accuracy of E-

skew to the accuracy of all other methods studied for the sample mean statistic when data 

is normally distributed.  The second is to compare the accuracy of other methods that use 

the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods again for the 

sample mean statistic when data is normally distributed.  Below mean error rates are 

compared for data generated from the normal distribution.  First the results for data 

generated from 𝑁(𝜇 = 4, 𝜎 = 1) distribution at the 𝛼 = 0.01 significance level are 

considered.  These confidence interval method error rates and their corresponding percent 

errors can be viewed and compared to one another in each of tables N1U99 and N1L99 
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on pages 68 and 69 below.  For the sample mean statistic three separate normal 

distributions at three 𝛼 significance levels were studied.  However, in this section because 

of the volume of error rate results, only these error rate results are displayed in tables.  

Detailed numerical results for simulations not included in these tables can be viewed in 

Appendix tables.   

Although the tables only report results for the 𝑁(𝜇 = 4, 𝜎 = 1) specification, the 

𝑁(𝜇 = 4, 𝜎 = 4) and 𝑁(𝜇 = 4, 𝜎 = 8) results can be viewed visually in figures NU99, 

NL99, NU95, NL95, NU90 and NL90 on pages 74-79.  In these figures the dashed 

horizontal line represents the target nominal one-sided error rate based on the confidence 

interval 𝛼 significance level.  Each colored line represent a different confidence interval 

method with error rates plotted at sample sizes 5, 10, 15, 20, 30 and 40.  Plot points 

marked with cross symbols represent methods that use EBSD(𝑛).  Plot points marked 

with triangles represent methods that use the Monte Carlo Bootstrap. 

Compared to the other methods studied, E-skew performed relatively less 

accurately at the 𝛼 = 0.01 significance level and relatively more accurately at the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels.  For the 𝑁(𝜇 = 4, 𝜎 = 1) parameter specification at 

the specified 𝛼 = 0.01 significance level for the upper limit, E-skew had the error rate 

with the smallest percent error at sample size 15.  E-skew also had the error rate with a 

percent error as small as any method using EBSD(𝑛) at sample size 30 for both the upper 

and lower limit as well.   

Other methods using EBSD(𝑛) were relatively more accurate compared to E-

skew and Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance level than when 
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they were compared to these methods at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  

For sample size 40 at the 𝛼 = 0.01 significance level for the upper limit, the EP method 

had the error rate with the smallest percent error.  At sample size 10 for the upper limit, 

the ET, BT and BS methods all had the error rate with the equally smallest percent error.  

For the lower limit at this specified 𝛼 significance level, at sample sizes 20 and 40, the 

EP method had the error rate with the smallest percent error.  These results are shown 

below in N1U99 and N1L99.  These results can also be viewed visually in figures NU99 

and NL99.   

Although several methods performed accurately using EBSD(𝑛) at the 𝛼 = 0.01 

significance level, the strength of the E-skew method is demonstrated when comparing 

the error rates across 𝛼 significance level.  For example in the case of the normal 

distribution 𝑁(𝜇 = 4, 𝜎 = 1), the E-skew method maintained or improved accuracy 

comparatively as the 𝛼 significance level increased from 𝛼 = 0.01 to 𝛼 = 0.10.  At the 𝛼 = 

0.01 significance level for the upper limit, E-skew attained the error rate with the smallest 

percent error for one sample size.  At the 𝛼 = 0.05 significance level, E-skew only 

attained the error rate with the smallest percent error at one sample size for the upper 

limit and one sample size for the lower limit.  However, at this 𝛼 significance level for 

the upper limit, E-skew’s percent error was also smaller at every sample size when 

compared to any other method applied on EBSD(𝑛).  Further, for the upper limit at this 

significance level, it attained an error rate with a smaller percent error compared to any 

Monte Carlo Bootstrap method other than BS.  Similarly for the lower limit at the 𝛼 = 

0.05 significance level, it attained an error rate with a smaller percent error compared to 

any other method implemented on EBSD(𝑛) at every sample size measured.  At the 𝛼 = 
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0.10 significance level E-skew attained the error rate with the smallest percent error for 

three sample sizes for the upper limit and one sample size for the lower limit even when 

compared to BS.   

By comparison the EBC/EP/𝐸𝐵𝐶𝑎/ET all were more accurate at the 𝛼 = 0.01 

significance level and became less accurate at larger 𝛼 levels.  At the 𝛼 = 0.01 

significance level for the upper limit, one of these four methods attained the error rate 

with the smallest percent error for two separate sample sizes (EP at sample size 40 and 

ET at sample size 10).  At the 𝛼 = 0.01 significance level for the lower limit, one of these 

methods attained the error rate with the smallest percent error at two separate sample 

sizes (EP at sample sizes 20 and 40).  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels, none of the four methods attained the error rate with the smallest percent error for 

any sample size for either the upper or lower limit.  
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Table: Sample Mean - N1U99 Upper limit error rate (𝜶 = 0.01), Normal 

Distribution, 𝑵(𝝁 = 4, 𝝈 =1), Bootstraps=10000 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0111 

 

(122%) 

0.0089 

 

(78%) 

0.005 

 

(0%) 

0.0055 

 

(10%) 

0.0052 

 

(4%) 

0.0056 

 

(12%) 

BT  

 

0.0065 
 

(30%) 

0.0072 

 

(44%) 

0.0053 
 

(6%) 

0.005 

 

(0%) 

0.0053 
 

(6%) 

0.0059 
 

(18%) 

ET 0.0067 
 

(34%) 

0.0072 

 

(44%) 

0.0053 
 

(6%) 

0.0051 
 

(2%) 

0.0053 
 

(6%) 

0.006 
 

(20%) 

BC 

 

0.0506 

 
(912%) 

0.0224 

 
(348%) 

0.0123 

 
(146%) 

0.0096 

 
(92%) 

0.008 

 
(60%) 

0.0082 

 
(64%) 

EBC 0.0318 

 

(536%) 

0.0101 

 

(102%) 

0.0027 

 

(46%) 

0.0031 

 

(38%) 

0.0028 

 

(44%) 

0.0052 

 

(4%) 

BP 

 

0.0521 

 

(942%) 

0.0227 

 

(354%) 

0.0119 

 

(138%) 

0.0098 

 

(96%) 

0.008 

 

(60%) 

0.0081 

 

(62%) 

EP 

 
0.0318 

 

(536%) 

0.0096 
 

(92%) 

0.0029 
 

(42%) 

0.0035 
 

(30%) 

0.0022 
 

(56%) 

0.005 

 

(0%) 

BS 

 
0.0059 

 

(18%) 

0.0072 

 

(44%) 

0.0047 

 
(6%) 

0.0043 

 
(14%) 

0.0051 

 

(2%) 

0.0058 

 
(16%) 

ES 

 
0.1586 

 
(3072%) 

0.2649 

 
(5198%) 

0.2931 

 
(5762%) 

0.3249 

 
(6398%) 

0.3186 

 
(6272%) 

0.3434 

 
(6768%) 

𝑩𝑪𝒂 

 

0.0565 

 

(1030%) 

0.0235 

 

(370%) 

0.0124 

 

(148%) 

0.0101 

 

(102%) 

0.0086 

 

(72%) 

0.0081 

 

(62%) 

𝑬𝑩𝑪𝒂 

 

0.0494 

 

(888%) 

0.0098 

 

(96%) 

0.006 

 

(20%) 

0.0042 

 

(16%) 

0.0505 

 

(910%) 

0.0687 

 

(1274%) 

ABC 0.047 

 
(840%) 

0.0226 

 
(352%) 

0.0123 

 
(146%) 

0.01 

 
(100%) 

0.0086 

 
(72%) 

0.0082 

 
(64%) 
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Table: Sample Mean - N1L99 Lower limit error rate (𝜶 = 0.01), Normal 

Distribution, 𝑵(𝝁 = 4, 𝝈 =1), Bootstraps=10000 

  

Sample size 5 10 15 20 30 40 

E-skew 0.0113 
 

(126%) 

0.0057 
 

(14%) 

0.0068 
 

(36%) 

0.0069 
 

(38%) 

0.0049 
 

(2%) 

0.0056 
 

(12%) 

BT 0.0069 
 

(38%) 

0.005 
 

(0%) 

0.006 
 

(20%) 

0.0073 
 

(46%) 

0.0049 
 

(2%) 

0.0056 
 

(12%) 

ET 0.0066 
 

(32%) 

0.0048 
 

(4%) 

0.0058 
 

(16%) 

0.0072 
 

(44%) 

0.0049 
 

(2%) 

0.0055 
 

(10%) 

BC 0.05 
 

(900%) 

0.02 
 

(300%) 

0.0145 
 

(190%) 

0.0129 
 

(158%) 

0.0081 
 

(62%) 

0.0086 
 

(72%) 

EBC 

 
0.0287 

 
(474%) 

0.0107 
 

(114%) 

0.0033 
 

(34%) 

0.0044 
 

(12%) 

0.0027 
 

(46%) 

0.0055 
 

(10%) 

BP 

 
0.0497 

 
(894%) 

0.0187 
 

(274%) 

0.0141 
 

(182%) 

0.0127 
 

(154%) 

0.008 
 

(60%) 

0.008 
 

(60%) 

EP 0.0318 
 

(536%) 

0.0082 
 

(64%) 

0.0027 
 

(46%) 

0.0047 
 

(6%) 

0.0025 
 

(50%) 

0.0053 
 

(6%) 

BS 0.0052 
 

(4%) 

0.0043 
 

(14%) 

0.0053 
 

(6%) 

0.0056 
 

(12%) 

0.005 
 

(0%) 

0.0056 
 

(12%) 

ES 0.1581 
 

(3062%) 

0.2597 
 

(5094%) 

0.3037 
 

(5974%) 

0.3258 
 

(6416%) 

0.3173 
 

(6246%) 

0.3462 
 

(6824%) 

𝑩𝑪𝒂 0.0488 
 

(876%) 

0.0198 
 

(296%) 

0.0153 
 

(206%) 

0.013 
 

(160%) 

0.0075 
 

(50%) 

0.0081 
 

(62%) 

𝑬𝑩𝑪𝒂 

 

0.032 

 

(540%) 

0.0069 

 

(38%) 

0.0057 

 

(14%) 

0.0054 

 

(8%) 

0 

 

(100%) 

0 

 

(100%) 

ABC 0.0452 
 

(804%) 

0.019 
 

(280%) 

0.0154 
 

(208%) 

0.0133 
 

(166%) 

0.0076 
 

(52%) 

0.008 
 

(60%) 

Simulations were not only performed for the normal distribution with parameters 

𝑁(𝜇 = 4, 𝜎 = 1).  Simulations were also performed for parameter specifications 𝑁(𝜇 = 4, 
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𝜎 = 4), and 𝑁(𝜇 = 4, 𝜎 = 8).  When the value of 𝜎 was increased,  E-skew performed 

relatively less accurately compared to the other methods studied at the 𝛼 = 0.05 and 𝛼 = 

0.10 significance levels than it did at when 𝜎 was set to 1.   

When 𝜎 was increased from 1 to 4, for the upper limit, E-skew had the error rate 

with the smallest percent error at only one sample size for the upper limit at all three 𝛼 

significance levels.  When 𝜎 was increased further to 8, E-skew did not have the smallest 

percent at any sample size for the upper limit at the 𝛼 = 0.01 and 𝛼 = 0.05 significance 

levels.  However, at the 𝛼 = 0.10 significance level for the upper limit, E-skew had the 

error rate with the smallest percent error at three sample sizes. For the lower limit at the 𝛼 

= 0.01 significance level, E-skew attained the error rate with the smallest percent error 

only at one sample size.  E-skew also attained the smallest percent error for the lower 

limit at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for one and two sample sizes 

respectively.   

Similarly, changing the parameter specification yielded a similar error rate pattern 

across  𝛼 significance level for the other methods applied on EBSD(𝑛).  When 𝜎 was 

increased from 1 to 4, BS had the error rate with the smallest percent error at each of 

sample sizes 5, 10, 15 and 20 for each 𝛼 significance level for the upper limit.  For the 

lower limit at the 𝛼 = 0.01 significance level, one of the EBC/EP/𝐸𝐵𝐶𝑎/ET methods had 

the error rate with the smallest percent error at one of the six sample sizes.  For the lower 

limit at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, ET attained the error rate with the 

smallest percent error for one and two sample sizes respectively.  In most cases for a 

given significance level and sample size combination when a method using EBSD(𝑛) did 
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not attain the error rate with the smallest percent error BS attained the smallest percent 

error.  

Again when 𝜎 was increased to 8, at the 𝛼=0.01 significance level for the upper 

limit, ET had the error rate with the smallest percent error at sample sizes 10 and 40.  In 

no other case did a method other than E-skew using EBSD(𝑛) attain the error rate with 

the smallest percent error for the upper limit at the 𝛼=0.05 or 𝛼=0.10 significance levels.  

For the lower limit at the 𝛼=0.01 significance level, EP and ET both attained the error 

rate with the smallest percent error at sample size 40 and 𝐸𝐵𝐶𝑎 attained the error rate 

with the smallest percent error at sample size 15.  For the lower limit at the 𝛼=0.05 

significance level, ET attained the error rate with the smallest percent error at sample size 

40.  In no other case did a method other than E-skew using EBSD(𝑛) attain the error rate 

with the smallest percent error for the lower limit at any other sample size or 𝛼 

significance level.  Again, BS attained the error rate with the smallest percent error most 

frequently when a method using EBSD(𝑛) did not.  

Another comparison of interest is comparing how the same algorithm performed 

using the Monte Carlo Bootstrap to how it performed using the EBSD(𝑛) (i.e. how did 

ET compare to BT etc.).  The specific comparisons below are related to the 𝑁(𝜇 = 4, 𝜎 

=1) distribution but similar results occurred for each parameter specification. 

ET and BT performed approximately equally accurately for both the upper and 

lower limit at all three 𝛼 significance levels.  The two methods had error rates with either 

equally small, slightly smaller, or slightly larger percent errors depending on the 

simulation and sample size.   



72 

 

Although there was not a marked difference between the ET and BT methods, 

when comparing the BC method to the EBC method and the BP method to the EP method 

at the 𝛼 = 0.01 significance level there was a marked difference from the comparison at 

the 𝛼 = 0.05 and the 𝛼 = 0.10 significance levels.  At the 𝛼 = 0.01 significance level, 

EBC and EP had error rates with smaller percent errors at each sample size for both the 

upper and lower limit.  This is intuitively logical when considering the EBSD(𝑛) 

sampling distribution of 𝑋̅. The sampling distribution from EBSD(𝑛) has larger 

minimum and maximum values because of the repeated blocks that are automatically 

assigned.  Thus at the 𝛼 = 0.01 significance level, both percentile methods EP and EBC 

were relatively more accurate compared to their Monte Carlo Bootstrap counterpart 

because the range of the EBSD(𝑛) sampling distribution was larger and thus the 

confidence intervals using EBSD(𝑛) were wider. 

Although EP and EBC performed more accurately compared to their Monte Carlo 

Bootstrap counterparts at the 𝛼 = 0.01 significance level, they did not at the 𝛼 = 0.05 and 

𝛼 = 0.10 significance levels.  At each sample size for both the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels, for both the upper and lower limit, the EBC and EP methods had error 

rates with larger percent errors compared to BC and BP respectively.   

𝐸𝐵𝐶𝑎 performed better at sample sizes 5, 10, 15 and 20 for the upper limit at the 

𝛼 = 0.01 significance level compared to 𝐵𝐶𝑎.  𝐸𝐵𝐶𝑎 also had an error rate with a smaller 

percent error compared to 𝐵𝐶𝑎 at sample size 5-20 for the lower limit at the 𝛼 = 0.01 

significance level.  Additionally, 𝐸𝐵𝐶𝑎 had an error rate with a smaller percent error at 

sample size 5 for the lower limit at both the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  In 
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the remaining cases for these two significance levels, the error rate for 𝐵𝐶𝑎 had a percent 

error that was smaller at each sample size and significance level in comparison to 𝐸𝐵𝐶𝑎.               



74 

 

Figure: Sample Mean - NU99 - One-Sided Upperlimit Error Rates for 99% CI for the Normal Distribution 
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Figure: Sample Mean - NL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Normal Distribution 

 



76 

 

Figure: Sample Mean - NU95 - One-Sided Upperlimit Error Rates for 95% CI for the Normal Distribution 
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Figure: Sample Mean - NL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Normal Distribution 
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Figure: Sample Mean - NU90 - One-Sided Upperlimit Error Rates for 90% CI for the Normal Distribution 
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Figure: Sample Mean - NL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Normal Distribution 
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b. Exponential Distribution  

The purpose of this sub section is to compare E-skew error rates and error rates 

for other methods using EBSD(𝑛) to Monte Carlo Bootstrap method error rates for the 

sample mean statistic when data is exponentially distributed.  Below mean error rates are 

compared for data generated from an exponential distribution with 𝜆=0.10.  The error 

results at the 𝛼 = 0.01 significance level are displayed in tables E1U99, and E1L99 on 

pages 83 and 84 below.  Three separate exponential distributions were studied, however 

because of the volume of error rate results, only the results for the exponential 

distribution with Exp(𝜆=0.10) at the 𝛼 = 0.01 significance level are displayed in the 

tables.  Detailed numerical results for simulations not included here can be viewed in 

Appendix tables.  Although these tables only report results for the Exp(𝜆=0.10) 

specification, the Exp(𝜆=1) and Exp(𝜆=0.01) results can be viewed visually in figures 

EU99, EL99, EU95, EL95, EU90 and EL90 on pages 88-93.  

For data generated from an exponential distribution with 𝜆=0.10, at the specified 

𝛼 = 0.01 significance level, E-skew performed relatively less accurately than the other 

methods applied on EBSD(𝑛).  For the upper limit at sample size 40, E-skew did have 

the error rate with the smallest percent error compared to any method using EBSD(𝑛).  

Although for the upper limit E-skew had the smallest percent error among methods 

applied on EBSD(𝑛), E-skew did not have the error rate with the smallest percent error 

when compared to all Monte Carlo Bootstrap methods.  However, for the lower limit at 

the 𝛼 = 0.01 significance level, E-skew did have the error rate with the smallest percent 

error at sample size 15 and 20 compared to all other methods.   
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Other methods applied on EBSD(𝑛) did perform relatively more accurately 

compared to E-skew and Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance 

level.  For the upper limit at the 𝛼 = 0.01 significance level, the 𝐸𝐵𝐶𝑎 method did 

perform most accurately for sample sizes 10, 15 and 20.  For the lower limit at this 

significance level, the 𝐸𝐵𝐶𝑎, EP, and EBC methods all tied for the error rate with the 

smallest percent error at sample size 5.  For methods that used the Monte Carlo 

Bootstrap, the BS method had the error rate with the smallest percent error at sample 

sizes 5, 30 and 40 for the upper limit but did not have the error rate with the smallest 

percent error at any sample size for the lower limit.  The ABC method had the error rate 

with the smallest percent error at sample size 30 and 40 for the lower limit but did not 

have the error rate with the smallest percent error for any sample size for the upper limit.  

Once again, the strength of the E-skew method is demonstrated when comparing 

the error rates across 𝛼 significance level.  The E-skew method improved accuracy 

relative to methods applied on EBSD(𝑛) as the 𝛼 significance level increased from 𝛼 = 

0.01 to 𝛼 = 0.10.  At the 𝛼 = 0.01 significance level, E-skew attained the error rate with 

the second smallest percent error at sample size 40 for the upper limit and the error rate 

with the smallest percent error for two sample sizes for the lower limit.  At the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels for the upper limit, E-skew also attained the error rate 

with the second smallest percent error for every sample size.  At the 𝛼 = 0.05 significance 

level for the lower limit, E-skew attained the error rate with the smallest percent error at 

four sample sizes.  At the 𝛼 = 0.10 significance level for the lower limit, it achieved the 

error rate with the smallest percent error for one sample size and the error rate with the 

smallest other than ABC/𝐵𝐶𝑎 methods for three other sample sizes.   
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The 𝐸𝐵𝐶𝑎 method was more accurate compared to the other methods studied at 

the 𝛼 = 0.01 significance level and was relatively less accurate compared to the other 

methods studied at larger 𝛼 levels.  At the 𝛼 = 0.01 significance level for the upper limit, 

𝐸𝐵𝐶𝑎 had the error rate with the smallest percent error for three separate sample sizes.  

At the  𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, it did not have the 

error rate with the smallest percent error for any sample size.  Further 𝐸𝐵𝐶𝑎’s percent 

error was larger for every sample size when compared to E-skew for both significance 

levels.  For the lower limit as stated above 𝐸𝐵𝐶𝑎/EP/EBC all tied for the error rate with 

the smallest percent error at sample size 5 for the 𝛼 = 0.01 significance level.  At the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels, no other method using EBSD(𝑛) other than E-

skew attained an error rate with the smallest percent error at any sample size.  
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Table: Sample Mean - E1U99 Upper limit error rate (𝜶 = 0.01), Exponential 

Distribution Exp(𝝀 = 𝟎. 𝟏𝟎), Bootstraps=10000 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0413 

 
(726%) 

0.0317 

 
(534%) 

0.0224 

 
(348%) 

0.021 

 
(320%) 

0.0128 

 
(156%) 

0.0116 

 
(132%) 

BT 0.061 

 

(1120%) 

0.0546 

 

(992%) 

0.0414 

 

(728%) 

0.0397 

 

(694%) 

0.0295 

 

(490%) 

0.0242 

 

(384%) 

ET 0.0607 
 

(1114%) 

0.0545 
 

(990%) 

0.0413 
 

(726%) 

0.0399 
 

(698%) 

0.0293 
 

(486%) 

0.0244 
 

(388%) 

BC 0.1827 

 
(3554%) 

0.1109 

 
(2118%) 

0.0826 

 
(1552%) 

0.0713 

 
(1326%) 

0.0502 

 
(904%) 

0.0397 

 
(694%) 

EBC 

 

0.1548 

 

(2996%) 

0.0639 

 

(1178%) 

0.0287 

 

(474%) 

0.0206 

 

(312%) 

0.0117 

 

(134%) 

0.0136 

 

(172%) 

BP 

 
0.1374 

 

(2648%) 

0.0745 
 

(1390%) 

0.0499 
 

(898%) 

0.0438 
 

(776%) 

0.0287 
 

(474%) 

0.0222 
 

(344%) 

EP 0.0985 
 

(1870%) 

0.0576 
 

(1052%) 

0.0359 
 

(618%) 

0.0473 
 

(846%) 

0.0331 
 

(562%) 

0.0298 
 

(496%) 

BS 0.0177 

 

(254%) 

0.0166 

 
(232%) 

0.014 

 
(180%) 

0.0148 

 
(196%) 

0.0084 

 

(68%) 

0.0087 

 

(74%) 

ES 0.1723 

 

(3346%) 

0.2455 

 

(4810%) 

0.2676 

 

(5252%) 

0.3115 

 

(6130%) 

0.2649 

 

(5198%) 

0.3064 

 

(6028%) 

𝑩𝑪𝒂 0.1267 
 

(2434%) 

0.0557 
 

(1014%) 

0.0339 
 

(578%) 

0.0279 
 

(458%) 

0.0166 
 

(232%) 

0.0137 
 

(174%) 

𝑬𝑩𝑪𝒂 

 

0.1129 

 
(2158%) 

0.0147 

 

(194%) 

0.0061 

 

(22%) 

0.0032 

 

(36%) 

0.1935 

 
(3770%) 

0.1975 

 
(3850%) 

ABC 0.1113 

 

(2126%) 

0.0532 

 

(964%) 

0.0325 

 

(550%) 

0.0277 

 

(454%) 

0.0162 

 

(224%) 

0.0137 

 

(174%) 
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Table: Sample Mean - E1L99 Lower limit error rate (𝜶 = 0.01), Exponential 

Distribution, Exp(𝝀 = 𝟎. 𝟏𝟎), Bootstraps=10000 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0026 

 

(48%) 

0.0042 

 

(16%) 

0.0056 

 

(12%) 

0.005 

 

(0%) 

0.0071 

 

(42%) 

0.0063 

 

(26%) 

BT 6e-04 

 

(88%) 

3e-04 

 

(94%) 

2e-04 

 

(96%) 

5e-04 

 

(90%) 

6e-04 

 

(88%) 

5e-04 

 

(90%) 

ET 6e-04 
 

(88%) 

3e-04 
 

(94%) 

2e-04 
 

(96%) 

5e-04 
 

(90%) 

6e-04 
 

(88%) 

5e-04 
 

(90%) 

BC 0.0105 

 
(110%) 

0.0026 

 
(48%) 

0.0011 

 
(78%) 

0.0011 

 
(78%) 

8e-04 

 
(84%) 

5e-04 

 
(90%) 

EBC 

 

0.0056 

 

(12%) 

0.0018 

 

(64%) 

0.001 

 

(80%) 

0.0014 

 

(72%) 

4e-04 

 

(92%) 

8e-04 

 

(84%) 

BP 

 
0.011 

 

(120%) 

0.0047 

 

(6%) 

0.0039 
 

(22%) 

0.003 
 

(40%) 

0.0024 
 

(52%) 

0.0018 
 

(64%) 

EP 0.0056 

 

(12%) 

0.001 

 
(80%) 

2e-04 

 
(96%) 

1e-04 

 
(98%) 

1e-04 

 
(98%) 

2e-04 

 
(96%) 

BS 9e-04 

 

(82%) 

9e-04 

 

(82%) 

0.0013 

 

(74%) 

0.0019 

 

(62%) 

0.0024 

 

(52%) 

0.0023 

 

(54%) 

ES 0.1492 
 

(2884%) 

0.2828 
 

(5556%) 

0.3176 
 

(6252%) 

0.3354 
 

(6608%) 

0.3396 
 

(6692%) 

0.355 
 

(7000%) 

𝑩𝑪𝒂 0.0126 

 
(152%) 

0.0088 

 
(76%) 

0.0091 

 
(82%) 

0.006 

 
(20%) 

0.0062 

 
(24%) 

0.006 

 
(20%) 

𝑬𝑩𝑪𝒂 

 

0.0056 

 

(12%) 

0.0025 

 

(50%) 

0.002 

 

(60%) 

0.0019 

 

(62%) 

0 

 

(100%) 

0 

 

(100%) 

ABC 0.0115 
 

(130%) 

0.008 
 

(60%) 

0.0082 
 

(64%) 

0.0061 
 

(22%) 

0.0061 

 

(22%) 

0.0055 

 

(10%) 
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Simulation were not only performed for the exponential distribution with 

parameter Exp(𝜆 = 0.10).  Simulations were also performed for the parameter 

specifications 𝜆 = 0.01, and 𝜆 = 1.  When increasing the value of 𝜆, a similar pattern of 

results was seen across 𝛼 significance level for E-skew.  When 𝜆 was increased from 0.10 

to 1, for the upper limit at the 𝛼 = 0.01 significance level, E-skew attained the error rate 

with the second smallest percent error at sample size 40 for the upper limit and the error 

rate with the smallest percent error for four separate sample sizes for the lower limit.  At 

the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, E-skew attained the 

error rate with the second smallest percent error for every sample size.  At the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels for the lower limit, E-skew attained the error rate with 

the smallest percent error at one sample size and an error rate with a smaller percent error 

compared to any other method other than ABC/𝐵𝐶𝑎 at three other sample sizes for each 

significance level.  When 𝜆 was decreased from 0.10 to 0.01, a similar pattern across 𝛼 

level occurred for E-skew as well. 

Similarly, changing the parameter specification yielded a similar error rate pattern 

across  𝛼 level for each method studied as it did when 𝜆 =0.10 was specified.  When 𝜆 

was increased from 0.10 to 1, the 𝐸𝐵𝐶𝑎 method was most accurate for sample sizes 10, 

15 and 20 at the 𝛼 = 0.01 significance level for the upper limit.  However, when 𝛼 

significance level was modified, 𝐸𝐵𝐶𝑎 was relatively less accurate compared to the other 

methods studied at these sample sizes for the upper limit.  At the  𝛼 = 0.05 and 𝛼 = 0.10 

significance levels for the upper limit, it did not have the error rate with the smallest 

percent error for any sample size.  Further 𝐸𝐵𝐶𝑎’s percent error was larger for every 

sample size when compared to E-skew for both significance levels.  At the  𝛼 = 0.01 
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significance level for the lower limit, the EBC method attained the error rate with the 

smallest percent error at sample size 5.  No other method using EBSD(𝑛) other than E-

skew attained the error rate with the smallest percent error at any other sample size or 𝛼 

level.   

Instead when 𝜆 was decreased to 0.01, at the 𝛼=0.01 significance level for the 

upper limit, the 𝐸𝐵𝐶𝑎 method attained the error rate with the smallest percent error at the 

same three sample sizes, but then was unable to achieve the error rate with the smallest 

percent error at any sample size for the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  For the 

lower limit at the 𝛼=0.01 significance level, EBC attained the error rate with the smallest 

percent error at sample size 5 but then no other method using EBSD(𝑛) attained the error 

rate with the smallest percent error at any other sample size or 𝛼 level. 

Again a comparison of how the same algorithm performed using the Monte Carlo 

Bootstrap and EBSD(𝑛) was made.  The specific comparisons below are related to the 

Exp(𝜆 = 0.10) distribution but similar results occurred for each exponential parameter 

specification. 

Like in the normal distribution case, although there was not a marked difference 

between the ET and BT methods, when comparing the BC method to the EBC method 

and the BP method to the EP method there was a marked difference between the 

comparison at the 𝛼 = 0.01 significance level and the comparison at the 𝛼 = 0.05, 0.10 

significance levels.  At the 𝛼 = 0.01 significance level for the upper limit, the EBC 

method had an error rate with a smaller percent error at each sample size compared to the 



87 

 

BC method.  The EP method also had an error rate with a smaller percent error at sample 

sizes 5, 10 and 15 compared to the BP method for the upper limit.    

For exponentially distributed data, 𝐸𝐵𝐶𝑎 also performed better at sample sizes 10, 

15 and 20 for the upper limit at the 𝛼 = 0.01 significance level compared to 𝐵𝐶𝑎.  𝐸𝐵𝐶𝑎 

also had an error rate with a smaller percent error compared to 𝐵𝐶𝑎 at sample size 5 for 

the lower limit at the 𝛼 = 0.01 significance level.  In the remaining cases the error rate for 

𝐵𝐶𝑎 had a percent error that was smaller at each sample size and significance level in 

comparison to 𝐸𝐵𝐶𝑎.   

Again for exponentially distributed data the ES method had an error rate with a 

larger percent error at each sample size compared to the BS method for both the upper 

and lower limit. 
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Figure: Sample Mean - EU99 - One-Sided Upperlimit Error Rates for 99% CI for the Exponential Distribution 
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Figure: Sample Mean - EL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Exponential Distribution 
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Figure: Sample Mean - EU95 - One-Sided Upperlimit Error Rates for 95% CI for the Exponential Distribution 
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Figure: Sample Mean - EL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Exponential Distribution 
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Figure: Sample Mean - EU90 - One-Sided Upperlimit Error Rates for 90% CI for the Exponential Distribution 
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Figure: Sample Mean - EL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Exponential Distribution 
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c. Gamma Distribution 

The purpose of this sub section is to compare E-skew error rates and error rates 

for other methods using EBSD(𝑛) to Monte Carlo Bootstrap method error rates for the 

sample mean statistic when data is generated from a gamma distribution.  The first 

comparison performed is for data generated from an gamma distribution with 𝛼 = 2 and 

𝜆 = 2.  The error results at the 𝛼 = 0.01 significance level are displayed in tables G1U99, 

and G1L99 on pages 96 and 97 below.   

Two separate gamma distributions were studied, however because of the volume 

of error rate results in this section, only the results for the gamma(𝛼 = 2, 𝜆 = 2) at the 𝛼 = 

0.01 significance level are displayed in the tables.  Detailed numerical results for 

simulations not included in these tables can be viewed in Appendix tables.  Although the 

tables only report results for the gamma(𝛼 = 2, 𝜆 = 2) specification, the gamma(𝛼 = 2, 𝜆 

= 3) specification results can be viewed visually in figures GU99, GL99, GU95, GL95, 

GU90 and GL90 on pages 101-106.  The ABC method for this sub section and the 

remaining sub sections was not included for these simulations.  It was found that the ABC 

and 𝐵𝐶𝑎 results were very similar thus repeatedly reporting both results was considered 

redundant.  

For the gamma(𝛼 = 2, 𝜆 = 2) parameter specification at the specified 𝛼 = 0.01,  𝛼 

= 0.05 and 𝛼 = 0.10 significance levels, error rate results for E-skew were very similar to 

what they were for data generated from the exponential distribution.  For the upper limit 

at the 𝛼 = 0.01 significance level, E-skew had the error rate with the second smallest 

percent error at sample size 40.  For the lower limit at the 𝛼 = 0.01 significance level, E-
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skew had the error rate with the smallest percent error at three sample sizes.  At the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels for the upper limit, E-skew had the error rate with 

the second smallest percenter error at each sample size and a smaller percent error than 

any other method used on EBSD(𝑛) at each sample size.  For the lower limit, E-skew had 

the error rate with the smallest percent error at sample size 40 at each 𝛼 significance 

level.  Additionally, at the 𝛼 = 0.01 significance level for the lower limit, E-skew also had 

the error rate with the smallest percent error at sample size 5.  

By comparison the EBC/EP/𝐸𝐵𝐶𝑎/ET all were relatively more accurate compared 

to the other methods studied at the 𝛼 = 0.01 significance level and relatively less accurate 

compared to other methods at larger 𝛼 significance levels.  At the 𝛼 = 0.01 significance 

level for the upper limit, 𝐸𝐵𝐶𝑎 had the error rate with the smallest percent error at sample 

sizes 10, 15 and 20.  Additionally, at the 𝛼 = 0.05 significance for the lower limit, 𝐸𝐵𝐶𝑎 

had the error rate with the smallest percent error at sample size 5.  For the 𝛼 = 0.10 

significance level for the lower limit, EBC had the error rate with the smallest percent 

error at sample size 30.  Otherwise no method other than E-skew using EBSD(𝑛) had the 

error rate with the smallest percent error at any sample size or significance level. 
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Table: Sample Mean - G1U99 Upper limit error rate (𝜶 = 0.01), Gamma 

Distribution, gamma(𝜶 = 𝟐, 𝝀 =  𝟐), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎  

 

Sample size 5 10 15 20 30 40 

E-skew 0.0281 
 

(462%) 

0.0223 
 

(346%) 

0.0147 
 

(194%) 

0.012 
 

(140%) 

0.0096 
 

(92%) 

0.0093 
 

(86%) 

BT 0.0353 
 

(606%) 

0.035 
 

(600%) 

0.025 
 

(400%) 

0.0248 
 

(396%) 

0.0182 
 

(264%) 

0.0191 
 

(282%) 

ET 0.0353 
 

(606%) 

0.0348 
 

(596%) 

0.0253 
 

(406%) 

0.0245 
 

(390%) 

0.0184 
 

(268%) 

0.0189 
 

(278%) 

BC 0.1313 
 

(2526%) 

0.0759 
 

(1418%) 

0.0525 
 

(950%) 

0.0444 
 

(788%) 

0.0328 
 

(556%) 

0.0293 
 

(486%) 

EBC 

 

0.0999 
 

(1898%) 

0.0405 
 

(710%) 

0.0139 
 

(178%) 

0.0091 
 

(82%) 

0.0081 
 

(62%) 

0.0123 
 

(146%) 

BP 

 
0.1035 

 
(1970%) 

0.0571 
 

(1042%) 

0.034 
 

(580%) 

0.0293 
 

(486%) 

0.0194 
 

(288%) 

0.0193 
 

(286%) 

EP 0.0712 
 

(1324%) 

0.0386 
 

(672%) 

0.0188 
 

(276%) 

0.0251 
 

(402%) 

0.0181 
 

(262%) 

0.0218 
 

(336%) 

BS 0.0155 
 

(210%) 

0.0166 
 

(232%) 

0.0116 
 

(132%) 

0.0089 
 

(78%) 

0.0076 
 

(52%) 

0.0074 
 

(48%) 

ES 0.1687 
 

(3274%) 

0.2457 
 

(4814%) 

0.2776 
 

(5452%) 

0.3184 
 

(6268%) 

0.2874 
 

(5648%) 

0.3222 
 

(6344%) 

𝑩𝑪𝒂 0.0986 
 

(1872%) 

0.0462 
 

(824%) 

0.0258 
 

(416%) 

0.0197 
 

(294%) 

0.013 
 

(160%) 

0.0122 
 

(144%) 

𝑬𝑩𝑪𝒂 

 
0.0894 

 
(1688%) 

0.0132 
 

(164%) 

0.0054 
 

(8%) 

0.0029 
 

(42%) 

0.2011 
 

(3922%) 

0.2067 
 

(4034%) 
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Table: Sample Mean - G1L99 Lower limit error rate (𝜶 = 0.01), Gamma 

Distribution, gamma(𝜶 = 𝟐, 𝝀 =  𝟐), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0047 
 

(6%) 

0.0043 
 

(14%) 

0.0035 
 

(30%) 

0.0034 
 

(32%) 

0.0048 
 

(4%) 

0.0052 
 

(4%) 

BT 0.0017 
 

(66%) 

0.0014 
 

(72%) 

0.0011 
 

(78%) 

0.0011 
 

(78%) 

0.0015 
 

(70%) 

0.0016 
 

(68%) 

ET 0.0017 
 

(66%) 

0.0014 
 

(72%) 

0.001 
 

(80%) 

0.001 
 

(80%) 

0.0015 
 

(70%) 

0.0015 
 

(70%) 

BC 0.0198 
 

(296%) 

0.0053 
 

(6%) 

0.0029 
 

(42%) 

0.0021 
 

(58%) 

0.002 
 

(60%) 

0.0015 
 

(70%) 

EBC 

 
0.01 

 
(100%) 

0.0038 
 

(24%) 

0.0014 
 

(72%) 

0.0014 
 

(72%) 

8e-04 
 

(84%) 

0.0012 
 

(76%) 

BP 

 
0.0211 

 
(322%) 

0.0071 
 

(42%) 

0.0057 
 

(14%) 

0.004 
 

(20%) 

0.0036 
 

(28%) 

0.0039 
 

(22%) 

EP 0.0113 
 

(126%) 

0.0027 
 

(46%) 

2e-04 
 

(96%) 

2e-04 
 

(96%) 

2e-04 
 

(96%) 

6e-04 
 

(88%) 

BS 0.0012 
 

(76%) 

0.002 
 

(60%) 

0.0016 
 

(68%) 

0.002 
 

(60%) 

0.0027 
 

(46%) 

0.0039 
 

(22%) 

ES 0.1444 
 

(2788%) 

0.2734 
 

(5368%) 

0.3131 
 

(6162%) 

0.3291 
 

(6482%) 

0.338 
 

(6660%) 

0.3558 
 

(7016%) 

𝑩𝑪𝒂 0.0215 
 

(330%) 

0.0107 
 

(114%) 

0.01 
 

(100%) 

0.0065 
 

(30%) 

0.0064 
 

(28%) 

0.0069 
 

(38%) 

𝑬𝑩𝑪𝒂 

 
0.0113 

 
(126%) 

0.0032 
 

(36%) 

0.0023 
 

(54%) 

0.0021 
 

(58%) 

0 
 

(100%) 

0 
 

(100%) 

Simulation were not only performed for the gamma distribution with parameters: 

gamma(𝛼 = 2, 𝜆 = 2).  Simulations were also performed for the parameter specification: 

gamma(𝛼 = 2, 𝜆 = 3). When considering a change in parameter specification (i.e. 

increasing the value of 𝜆)  E-skew performed approximately as accurately at the 𝛼 = 0.01 
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significance level and  relatively more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.   

When 𝜆 was increased from 2 to 3, for the upper limit at the 𝛼 = 0.01 significance 

level, E-skew attained the error rate with the second smallest percent error at sample size 

40 for the upper limit.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper 

limit, E-skew attained the error rate with the second smallest percent error for every 

sample size.  At the 𝛼 = 0.01 significance level, E-skew achieved the error rate with the 

smallest percent error for four sample sizes for the lower limit.  At the 𝛼 = 0.05 

significance level for the lower limit, E-skew attained the smallest percent error at one 

sample size and a smaller percent error than any other method other than 𝐵𝐶𝑎 for one 

other sample size.  At the 𝛼 = 0.10 significance level for the lower limit, E-skew attained 

the error rate with the smallest percent error at two sample sizes and a smaller percent 

error than any method other than 𝐵𝐶𝑎 for two other sample sizes.   

Similar results were observed for the other methods implemented on EBSD(𝑛) 

when changing the parameter specification of 𝜆 from 2 to 3 across 𝛼 significance level.  

When 𝜆 was increased from 2 to 3, the 𝐸𝐵𝐶𝑎 method was again relatively more accurate 

compared to the other methods studied at the 𝛼 = 0.01 significance level than it was at 

larger 𝛼 levels.  At the 𝛼 = 0.01 significance level for the upper limit 𝐸𝐵𝐶𝑎 had the error 

rate with the smallest percent error for two separate sample sizes.  At the  𝛼 = 0.05 and 𝛼 

= 0.10 significance levels for the upper limit it did not have the error rate with the 

smallest percent error for any sample size.  Further 𝐸𝐵𝐶𝑎’s percent error was larger for 

every sample size when compared to E-skew for both significance levels.  At the 𝛼 = 0.05 
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significance level for the lower limit, the EBC method attained the error rate with the 

smallest percent error at sample size 30, and EP attained the smallest percent error at 

sample size 40.  No other method using EBSD(𝑛) other than E-skew attained the error 

rate with smallest percent error at any other sample size or 𝛼 level.   

Similar patterns were again observed as they were for simulations from the 

exponential distribution when comparing methods using EBSD(𝑛) to the same method 

using the Monte Carlo Bootstrap at each 𝛼 level and sample size.  The specific 

comparisons below are related to the gamma(𝛼 = 2, 𝜆 = 2) specification but similar 

results occurred for the gamma(𝛼 = 2, 𝜆 = 3)  specification. 

EBC had an error rate with a smaller percent error for every sample size when 

compared to BC for the upper limit at the 𝛼 = 0.01 significance level.  EP had an error 

rate with a smaller percent error for every sample size except at sample size 40 for the 

upper limit at the 𝛼 = 0.01 significance level.  Both methods had error rates with larger 

percent errors for the upper limit at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the 

upper limit at each sample size.  For the lower limit at the 𝛼 = 0.01 significance level, 

EBC and EP each had error rates with smaller percent errors at sample size 5 compared to 

their BC and BP counter parts.  For the lower limit at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels, EBC and EP also had error rates with smaller percent errors at sample 

size 30 and 40 compared to BC and BP respectively.  For the remaining cases BC and BP 

had error rates with smaller percent errors.     

Again 𝐸𝐵𝐶𝑎 performed better at sample sizes 10, 15 and 20 for the upper limit at 

the 𝛼 = 0.01 significance level compared to 𝐵𝐶𝑎.  Also at sample size 5 for the lower 
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limit at the 𝛼 = 0.01 significance level, 𝐸𝐵𝐶𝑎 had an error rate with a smaller percent 

error compared to 𝐵𝐶𝑎.  In the remaining cases the error rate for 𝐵𝐶𝑎 had a percent error 

that was smaller at each sample size and significance level in comparison to 𝐸𝐵𝐶𝑎.   

Again ET and BT had very similar error rates at each sample size for both the 

upper and lower limit at each significance level.  ES had a larger error rate at every 

sample size for both the upper and lower limit at each significance level when compared 

to BS. 
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Figure: Sample Mean - GU99 - One-Sided Upperlimit Error Rates for 99% CI for the Gamma Distribution 
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Figure: Sample Mean - GL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Gamma Distribution 
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Figure: Sample Mean - GU95 - One-Sided Upperlimit Error Rates for 95% CI for the Gamma Distribution 
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Figure: Sample Mean - GL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Gamma Distribution 
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Figure: Sample Mean - GU90 - One-Sided Upperlimit Error Rates for 90% CI for the Gamma Distribution 
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Figure: Sample Mean - GL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Gamma Distribution 
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d. Log-normal Distribution 

The purpose in this sub section is to compare E-skew error rates and error rates 

for other methods using EBSD(𝑛) to Monte Carlo Bootstrap method error rates for the 

sample mean statistic when data is log-normally distributed.  The first comparison is 

performed using data generated from a log-normal distribution with 𝜇 = 4 and 𝜎 = 0.2.  

Two separate log-normal distributions were studied, however because of the volume of 

error rate results in this section, only the results for the log-normal(𝜇 = 4, 𝜎 = 0.2) at the 

𝛼 = 0.01 significance level are displayed in the tables LN1U99 and LN1L99 below on 

pages 109 and 110.  Detailed numerical results for simulations not included in the tables 

can be viewed in Appendix.  Although the tables only report results for one 

specifications, the log-normal(𝜇 = 4, 𝜎 = 3) results can be viewed visually in figures 

LNU99, LNL99, LNU95, LNL95, LNU90 and LNL90 on pages 113-118.   

For the log-normal(𝜇 = 4, 𝜎 = 0.2) parameter specification at the specified 𝛼 = 

0.01,  𝛼 = 0.05 and 𝛼 = 0.10 significance levels, error rate results for E-skew were very 

similar to what they were for data generated from the exponential distribution.  E-skew 

performed relatively less accurately at the 𝛼 = 0.01 compared to other methods applied 

on EBSD(𝑛) than it did at larger 𝛼 significance levels. For the upper limit at the 𝛼 = 0.01 

significance level, E-skew had the error rate with the second smallest percent error at 

sample size 40.  For the lower limit at the 𝛼 = 0.01 significance level, E-skew had the 

error rate with the smallest percent error at sample size 15 and sample size 20 and the 

second smallest percent error at sample sizes 10 and 40. 

At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, E-skew had 

the error rate with the second smallest percenter error at each sample size and a smaller 
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percent error compared to any other method used on EBSD(𝑛) at each sample size.  For 

the lower limit at the 𝛼 = 0.05 significance level, it had the error rate with the smallest 

percent error at sample size 40.  For the lower limit at the 𝛼 = 0.10 significance level, it 

had the error rate with the smallest percent error at sample size 20.  Also at the 𝛼 = 0.05 

significance level for the lower limit, E-skew had the error rate with the second smallest 

percent error at four other sample sizes and was the method with smallest percent error 

among all methods using EBSD(𝑛) at each of these sample sizes. 

By comparison the EBC/EP/ 𝐸𝐵𝐶𝑎/ET all were relatively more accurate 

compared to E-skew and Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance 

level than they were at larger 𝛼 levels.  At the 𝛼 = 0.01 significance level for the upper 

limit, 𝐸𝐵𝐶𝑎 had the error rate with the smallest percent error among any method at 

sample size 20.  Also at this significance level for the upper limit, EBC had the error rate 

with the smallest percent error at sample sizes 15 and 30.  Additionally, at the 𝛼 = 0.01 

significance level for the lower limit, 𝐸𝐵𝐶𝑎 had the error rate with the smallest percent 

error at sample size 10.  Otherwise no method other than E-skew using EBSD(𝑛) had and 

error rate with the smallest percent error at any sample size larger than sample size 5 at 

any significance level for either limit end. 
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Table: Sample Mean - LN1U99 Upper limit error rate (𝜶 = 0.01), Log-

Normal Distribution, log-normal(𝝁 = 4, 𝝈 = 0.2), Bootstraps=10000  

 

Sample size 5 10 15 20 30 40 

E-skew 0.0155 

 
(210%) 

0.0113 

 
(126%) 

0.0115 

 
(130%) 

0.0073 

 
(46%) 

0.0074 

 
(48%) 

0.0065 

 
(30%) 

BT 0.0113 

 

(126%) 

0.0127 

 

(154%) 

0.0138 

 

(176%) 

0.0104 

 

(108%) 

0.0092 

 

(84%) 

0.0093 

 

(86%) 

ET 0.0112 
 

(124%) 

0.0127 
 

(154%) 

0.0141 
 

(182%) 

0.0105 
 

(110%) 

0.009 
 

(80%) 

0.0098 
 

(96%) 

BC 0.076 

 
(1420%) 

0.0372 

 
(644%) 

0.0289 

 
(478%) 

0.0185 

 
(270%) 

0.0135 

 
(170%) 

0.0135 

 
(170%) 

EBC 

 

0.0503 

 

(906%) 

0.0169 

 

(238%) 

0.0065 

 

(30%) 

0.006 

 

(20%) 

0.0042 

 

(16%) 

0.0077 

 

(54%) 

BP 

 
0.0682 

 

(1264%) 

0.0324 
 

(548%) 

0.0239 
 

(378%) 

0.0148 
 

(196%) 

0.0106 
 

(112%) 

0.0113 
 

(126%) 

EP 0.0438 
 

(776%) 

0.0175 
 

(250%) 

0.008 
 

(60%) 

0.0087 
 

(74%) 

0.0063 
 

(26%) 

0.0098 
 

(96%) 

BS 0.0091 

 

(82%) 

0.0089 

 

(78%) 

0.0096 

 
(92%) 

0.0066 

 
(32%) 

0.0068 

 
(36%) 

0.0058 

 

(16%) 

ES 0.1554 

 

(3008%) 

0.2707 

 

(5314%) 

0.3017 

 

(5934%) 

0.3202 

 

(6304%) 

0.3052 

 

(6004%) 

0.333 

 

(6560%) 

𝑩𝑪𝒂 0.0691 
 

(1282%) 

0.0301 
 

(502%) 

0.0229 
 

(358%) 

0.0127 
 

(154%) 

0.0102 
 

(104%) 

0.0094 
 

(88%) 

𝑬𝑩𝑪𝒂 

 
0.0702 

 
(1304%) 

0.0105 

 
(110%) 

0.0072 

 
(44%) 

0.0041 

 

(18%) 

0.2014 

 
(3928%) 

0.2005 

 
(3910%) 
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Table: Sample Mean - LN1L99 Lower limit error rate (𝛂 = 0.01), Log-

Normal Distribution, log-normal(𝛍 = 4, 𝛔 = 0.2), Bootstraps=10000   

 

Sample size 5 10 15 20 30 40 

E-skew 0.0073 

 
(46%) 

0.0055 

 
(10%) 

0.005 

 

(0%) 

0.0056 

 

(12%) 

0.004 

 
(20%) 

0.0049 

 
(2%) 

BT 0.0036 

 
(28%) 

0.0035 

 
(30%) 

0.0025 

 
(50%) 

0.0035 

 
(30%) 

0.002 

 
(60%) 

0.0035 

 
(30%) 

ET 0.0037 

 

(26%) 

0.0036 

 

(28%) 

0.0024 

 

(52%) 

0.0033 

 

(34%) 

0.002 

 

(60%) 

0.0034 

 

(32%) 

BC 0.0364 
 

(628%) 

0.0113 
 

(126%) 

0.0065 
 

(30%) 

0.0058 
 

(16%) 

0.0033 
 

(34%) 

0.0043 
 

(14%) 

EBC 

 

0.0225 

 
(350%) 

0.0059 

 
(18%) 

0.0016 

 
(68%) 

0.0033 

 
(34%) 

0.0016 

 
(68%) 

0.0034 

 
(32%) 

BP 

 

0.0374 

 

(648%) 

0.0132 

 

(164%) 

0.0084 

 

(68%) 

0.0066 

 

(32%) 

0.0046 

 

(8%) 

0.005 

 

(0%) 

EP 0.0221 
 

(342%) 

0.0066 
 

(32%) 

9e-04 
 

(82%) 

0.0017 
 

(66%) 

0.001 
 

(80%) 

0.003 
 

(40%) 

BS 0.0035 

 
(30%) 

0.0043 

 
(14%) 

0.0036 

 
(28%) 

0.0043 

 
(14%) 

0.0031 

 
(38%) 

0.0047 

 
(6%) 

ES 0.1535 

 

(2970%) 

0.2572 

 

(5044%) 

0.3037 

 

(5974%) 

0.3394 

 

(6688%) 

0.3231 

 

(6362%) 

0.3499 

 

(6898%) 

𝑩𝑪𝒂 0.0364 
 

(628%) 

0.0153 
 

(206%) 

0.0112 
 

(124%) 

0.0095 
 

(90%) 

0.0071 
 

(42%) 

0.0066 
 

(32%) 

𝑬𝑩𝑪𝒂 

 
0.0221 

 
(342%) 

0.0052 

 

(4%) 

0.004 

 
(20%) 

0.0038 

 
(24%) 

0 

 
(100%) 

0 

 
(100%) 

Another set of results are presented for the log-normal distribution where 𝜎 is 

increased from 0.2 to 3.  The reason to discuss another set of results for this distribution 

is the theoretical skewness of the log-normal distribution is determined as a function of 𝜎. 

The function is increasing; skewness = (𝑒𝜎2
+ 2) ∗ √𝑒𝜎2

− 1, this increases the role of 

skewness in this data simulation from approximately 0.6 to more than 720,000.  The 
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purpose of this example is to observe an extreme theoretical situation that would likely 

not be observed in practice.  

For the upper limit at the 𝛼 = 0.01 significance level, E-skew attained the error 

rate with the third smallest percent error at sample sizes 40 for the upper limit behind 

both BS and 𝐵𝐶𝑎 when 𝜎 was increased from 0.2 to 3.  At the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels for the upper limit, E-skew attained the error rate with the third 

smallest percent error at sample sizes 20, 30 and 40.  Despite the adjustments used for E-

skew, the method could not adjust for skew as well as either second order Monte Carlo 

Bootstrap method.  E-skew was still able to provide an error rate with a smaller percent 

error than any method implemented on EBSD(𝑛) at these sample sizes and at the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels.  

At the 𝛼 = 0.01 significance level, E-skew performed inaccurately for the lower 

limit.  E-skew had the error rate with the largest percent error rate at two separate sample 

sizes.  However, at the 𝛼 = 0.05 significance level for the lower limit, E-skew performed 

more accurately, attaining the error rate with the smallest percent error at sample sizes 10 

and 15.  Further, at the 𝛼 = 0.10 significance level for the lower limit, E-skew performed 

very accurately attaining the error rate with the smallest percent error at five sample size.   

When 𝜎 was increased from 0.2 to 3, the 𝐸𝐵𝐶𝑎 method was again relatively more 

accurate at the 𝛼 = 0.01 significance level than it was at larger 𝛼 levels.  At the 𝛼 = 0.01 

significance level for the upper limit 𝐸𝐵𝐶𝑎 had the error rate with the second smallest 

percent error to BS for three separate sample sizes.  At the  𝛼 = 0.05 for the upper limit 

𝐸𝐵𝐶𝑎 method had the error rate with the smallest percent error of any method 
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implemented on EBSD(𝑛) at sample size 10.  𝐸𝐵𝐶𝑎’s percent error was larger for every 

other sample size at each significance level considered for the upper limit when 

compared to E-skew.   

Surprisingly, ES performed better for the upper limit at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels when compared to E-skew at sample sizes 5 and 10.  Additionally, at 

the 𝛼 = 0.01 level for the upper limit, ES had an error rate with a smaller percent error 

than any other method implemented on EBSD(𝑛) at sample sizes 5 and 30.  For the lower 

limit no method other than E-skew performed relatively accurately at any significance 

level for any of the sample size greater than sample size 5 considered.  
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Figure: Sample Mean - LNU99 - One-Sided Upperlimit Error Rates for 99% CI for the Log-Normal Distribution 

 

 



114 

 

Figure: Sample Mean - LNL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Log-Normal Distribution 
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Figure: Sample Mean - LNU95 - One-Sided Upperlimit Error Rates for 95% CI for the Log-Normal Distribution 
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Figure: Sample Mean - LNL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Log-Normal Distribution 
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Figure: Sample Mean - LNU90 - One-Sided Upperlimit Error Rates for 90% CI for the Log-Normal Distribution 
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Figure: Sample Mean - LNL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Log-Normal Distribution 
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e. Mixture of Two Normal Distributions 

The purpose here is to compare E-skew error rates and error rates for other 

methods using EBSD(𝑛) to Monte Carlo Bootstrap method error rates for the sample 

mean statistic when data is generated from a mixture of two normal distributions.  For the 

first comparison below, data was generated from a mixture of normal distributions with 

specification 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.4*𝑁(𝜇1 = 8, 𝜎1 = 8).  The error results at the 𝛼 

= 0.01 significance level are displayed in tables MN1U99, and MN1L99 in pages 121 and 

122 below.  Two separate mixture of normal distributions were studied, however because 

of the volume of error rate results, only the results for the 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) + 

0.4*𝑁(𝜇1 = 8, 𝜎1 = 8) specification at the 𝛼 = 0.01 significance level are displayed in 

the tables.  Detailed numerical results for simulations not included here can be viewed in 

Appendix tables.  Although these tables only report results for the 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) 

+ 0.4*𝑁(𝜇1 = 8, 𝜎1 = 8) specification, the 0.8*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.2*𝑁(𝜇1 = 8, 𝜎1 =

8) specification results can be viewed visually in figures MNU99, MNL99, MNU95, 

MNL95, MNU90 and MNL90 on pages 125-130.  

For the 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.4*𝑁(𝜇1 = 8, 𝜎1 = 8) parameter specification 

at the specified 𝛼 = 0.01,  𝛼 = 0.05 and 𝛼 = 0.10 significance levels, error rate results for 

E-skew were very similar to what they were for data generated from the normal 

distribution.  E-skew performed relatively less accurately at the 𝛼 = 0.01 significance 

level, and relatively more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels 

when compared to both Monte Carlo Bootstrap and other EBSD(𝑛) methods.  For the 

upper limit at the 𝛼 = 0.01 significance level, E-skew and BS both had the error rate with 
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the smallest percent error at sample size 40.  For the lower limit at the 𝛼 = 0.01 

significance level, E-skew had the error rate with the smallest percent error at sample 

sizes 5 and 15.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, E-

skew had the error rate with the second smallest percent error at each sample size and a 

smaller percent error than any other method used on EBSD(𝑛) at each sample size.  For 

the lower limit, it had the error rate with the smallest percent error compared to any other 

method for four sample sizes at the 𝛼 = 0.05 significance level and three sample sizes at 

the 𝛼 = 0.10 significance level.   

Several methods performed relatively more accurately using EBSD(𝑛) at the 𝛼 = 

0.01 significance level than at larger 𝛼  significance levels.  For the upper limit at the 𝛼 = 

0.01 significance level, EBC had the error rate with the smallest percent error for two 

sample sizes and EP had the smallest at one sample size.  However, at the 𝛼 = 0.05 and 𝛼 

= 0.10 significance levels for the upper limit, neither method had the error rate with the 

smallest percent error at any sample size and neither method had the smallest percent 

error among methods applied on EBSD(𝑛).  For the lower limit, a similar finding 

occurred.  For the lower limit at the 𝛼 = 0.01 significance level, 𝐸𝐵𝐶𝑎 was found to have 

the smallest percent error at sample size 20 and EP the smallest at sample size 10.  

However, none of EBC/EP/𝐸𝐵𝐶𝑎/ET had an error rate with the smallest percent error for 

the lower limit for any sample size at either the 𝛼 = 0.05 or 𝛼 = 0.10 significance levels. 
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Table: Sample Mean - MN1U99 Upper limit error rate (𝜶 = 0.01), Mixture 

of two Normal Distributions, 0.6*𝑵(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟒) + 0.4*𝑵(𝝁𝟐 = 𝟖,
𝝈𝟐 = 𝟖), Bootstraps=10000 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0206 

 

(312%) 

0.0157 

 

(214%) 

0.0122 

 

(144%) 

0.0123 

 

(146%) 

0.0112 

 

(124%) 

0.0073 

 

(46%) 

BT 0.0138 

 

(176%) 

0.0132 

 

(164%) 

0.0102 

 

(104%) 

0.0119 

 

(138%) 

0.0107 

 

(114%) 

0.009 

 

(80%) 

ET 0.0141 
 

(182%) 

0.013 
 

(160%) 

0.0103 
 

(106%) 

0.0121 
 

(142%) 

0.0108 
 

(116%) 

0.0088 
 

(76%) 

BC 0.0711 

 
(1322%) 

0.0318 

 
(536%) 

0.0226 

 
(352%) 

0.0202 

 
(304%) 

0.0144 

 
(188%) 

0.0119 

 
(138%) 

EBC 

 

0.0442 

 

(784%) 

0.0199 

 

(298%) 

0.0075 

 

(50%) 

0.009 

 

(80%) 

0.008 

 

(60%) 

0.0085 

 

(70%) 

BP 

 
0.0751 

 

(1402%) 

0.0346 
 

(592%) 

0.0228 
 

(356%) 

0.0199 
 

(298%) 

0.0147 
 

(194%) 

0.0111 
 

(122%) 

EP 0.0506 

 
(912%) 

0.02 

 
(300%) 

0.0078 

 
(56%) 

0.0112 

 
(124%) 

0.0079 

 

(58%) 

0.0095 

 
(90%) 

BS 0.0094 

 

(88%) 

0.0122 

 

(144%) 

0.0105 

 

(110%) 

0.011 

 

(120%) 

0.011 

 

(120%) 

0.0073 

 

(46%) 

ES 0.1905 
 

(3710%) 

0.2743 
 

(5386%) 

0.2904 
 

(5708%) 

0.3186 
 

(6272%) 

0.3084 
 

(6068%) 

0.3313 
 

(6526%) 

𝑩𝑪𝒂 0.08 

 
(1500%) 

0.038 

 
(660%) 

0.024 

 
(380%) 

0.0197 

 
(294%) 

0.0164 

 
(228%) 

0.0106 

 
(112%) 

𝑬𝑩𝑪𝒂 

 
0.0829 

 

(1558%) 

0.0193 

 

(286%) 

0.0106 

 

(112%) 

0.0103 

 

(106%) 

0.2058 

 

(4016%) 

0.2081 

 

(4062%) 
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Table: Sample Mean - MN1L99 Lower limit error rate (𝜶 = 0.01), Mixture 

of two Normal Distributions, 0.6*𝑵(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟒) + 0.4*𝑵(𝝁𝟐 = 𝟖,
𝝈𝟐 = 𝟖), Bootstraps=10000 

 

Sample size 5 10 15 20 30 40 

E-skew 0.0073 

 

(46%) 

0.0059 

 

(18%) 

0.0055 

 

(10%) 

0.0057 

 

(14%) 

0.0064 

 

(28%) 

0.0055 

 

(10%) 

BT 0.0025 

 

(50%) 

0.0026 

 

(48%) 

0.0013 

 

(74%) 

0.0017 

 

(66%) 

0.0024 

 

(52%) 

0.0029 

 

(42%) 

ET 0.0025 
 

(50%) 

0.0027 
 

(46%) 

0.0013 
 

(74%) 

0.0017 
 

(66%) 

0.0023 
 

(54%) 

0.0028 
 

(44%) 

BC 0.0264 

 
(428%) 

0.0093 

 
(86%) 

0.0037 

 
(26%) 

0.0043 

 
(14%) 

0.0036 

 
(28%) 

0.0034 

 
(32%) 

EBC 

 

0.015 

 

(200%) 

0.0061 

 

(22%) 

0.0028 

 

(44%) 

0.0039 

 

(22%) 

0.0021 

 

(58%) 

0.0034 

 

(32%) 

BP 

 
0.0352 

 

(604%) 

0.0132 
 

(164%) 

0.0069 
 

(38%) 

0.0079 
 

(58%) 

0.0066 
 

(32%) 

0.0053 

 

(6%) 

EP 0.0185 

 
(270%) 

0.0046 

 

(8%) 

9e-04 

 
(82%) 

9e-04 

 
(82%) 

8e-04 

 
(84%) 

0.0021 

 
(58%) 

BS 0.0022 

 

(56%) 

0.0036 

 

(28%) 

0.0029 

 

(42%) 

0.0044 

 

(12%) 

0.0055 

 

(10%) 

0.0053 

 

(6%) 

ES 0.1784 
 

(3468%) 

0.275 
 

(5400%) 

0.3087 
 

(6074%) 

0.3439 
 

(6778%) 

0.3343 
 

(6586%) 

0.3521 
 

(6942%) 

𝑩𝑪𝒂 0.0375 

 
(650%) 

0.0182 

 
(264%) 

0.0114 

 
(128%) 

0.0123 

 
(146%) 

0.0104 

 
(108%) 

0.008 

 
(60%) 

𝑬𝑩𝑪𝒂 

 
0.0185 

 
(270%) 

0.0056 

 
(12%) 

0.0036 

 
(28%) 

0.0048 

 

(4%) 

0 

 
(100%) 

0 

 
(100%) 

Simulation were not only performed for the mixture of normal distribution with 

parameters: 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.4*𝑁(𝜇1 = 8, 𝜎1 = 8).  Simulations were also 

performed for parameter specifications: 0.8*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.2*𝑁(𝜇1 = 8, 𝜎1 =

8).  When considering a change in parameter specification (changing the values of 𝑝1 and 
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𝑝2) E-skew did not perform relatively as accurately compared to the remaining methods 

studied at the 𝛼 = 0.01 significance level for the upper limit as it did for the first 

specification studied.  When 𝑝1 was increased from 0.6 to 0.8, for the upper limit, E-skew 

did not have the error rate with the smallest percent error at any sample size for the upper 

limit at the 𝛼 = 0.01 significance level.  It also did not have the error rate with the 

smallest percent error among methods applied on EBSD(𝑛) at any sample size.   

However, for the upper limit at the 𝛼 = 0.05 significance level,  E-skew did 

perform relatively more accurately relative to other methods applied on EBSD(𝑛).  E-

skew had the error rate with the smallest percent error among methods applied on 

EBSD(𝑛) and the error rate with the second smallest percent error overall at four of the 

six sample sizes considered.  At the 𝛼 = 0.10 significance level for the upper limit, it had 

the error rate with the smallest percent error among all methods applied on EBSD(𝑛) and 

the second smallest percent error overall for all six sample sizes.   

E-skew also did not perform as accurately relative to the Monte Carlo Bootstrap 

methods studied for this parameter specification for the lower limit at the 𝛼 = 0.01 and 𝛼 

= 0.05 significance levels.  E-skew did not attain the error rate with the smallest percent 

error at any sample size and only attained the second smallest at sample size 10 at the 𝛼 = 

0.05 significance level.  At the 𝛼 = 0.10 significance level for the lower limit, E-skew 

attained the error rate with the smallest percent error at four sample sizes among methods 

applied on EBSD(𝑛).  

The EP method performed more accurately at the 𝛼 = 0.01 significance level for 

the upper limit relative to the first parameter specification studied.  At this significance 



124 

 

level for the upper limit, EP had the error rate with the smallest percent error at four 

sample sizes.  For the lower limit, EP also had the smallest percent error among methods 

applied on EBSD(𝑛) at this significance level.  Further for the 𝛼 = 0.01 significance level 

for the lower limit, 𝐸𝐵𝐶𝑎 had the error rate with the smallest percent error among 

methods applied on EBSD(𝑛) at one sample size.  At the 𝛼 = 0.05 significance levels for 

the upper limit, ET had the error rate with the smallest percent error among EBSD(𝑛) 

methods at sample size 10.   For the lower limit, ET had the error rate with the smallest 

percent error among EBSD(𝑛) methods at sample size 5 at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  No method other than E-skew applied on EBSD(𝑛) achieved an error 

rate with the smallest percent error at any other sample size for either the upper or lower 

limit at either the 𝛼 = 0.05 or 𝛼 = 0.10 significance levels. 
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Figure: Sample Mean - MNU99 - One-Sided Upperlimit Error Rates for 99% CI for the Mixture of two Normals  
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Figure: Sample Mean - MNL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Mixture of two Normals  

 

 



127 

 

Figure: Sample Mean - MNU95 - One-Sided Upperlimit Error Rates for 95% CI for the Mixture of two Normals  
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Figure: Sample Mean - MNL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Mixture of two Normals  
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Figure: Sample Mean - MNU90 - One-Sided Upperlimit Error Rates for 90% CI for the Mixture of two Normals  
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Figure: Sample Mean - MNL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Mixture of two Normals  
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Sample Mean Results Discussion for E-skew and other methods using EBSD(𝒏) 

In general, the E-skew method yielded error rates for the sample mean with 

smaller percent errors compared to any other method applied on EBSD(𝑛) when 

considering all three significance levels studied.  Additionally, E-skew was more accurate 

compared to all Monte Carlo Bootstrap and EBSD(𝑛) methods in some instances for  

normally distributed data for both the upper and lower limit.  When data was generated 

from skewed distributions, E-skew performed relatively more accurately for the upper 

limit compared to all other methods applied on EBSD(𝑛) at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  In general, E-skew performed the most accurately in comparison to 

all other methods at the 𝛼 = 0.10 significance level.      

For moderately skewed data, like data generated from the exponential 

distribution, E-skew outperformed every other method implemented on EBSD(𝑛) at the 

𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit. E-skew consistently 

performed more accurately for the upper limit at these significance levels compared to 

every method studied other than BS.  At the  𝛼 = 0.01 significance level for the upper 

limit 𝐸𝐵𝐶𝑎 performed more accurately than E-skew at small to moderate sample sizes 

(𝑛 = 10, 15, 20) but then it’s error rate percent error was much larger than E-skew’s at 

sample sizes 30 and 40.  For the lower limit for moderately skewed data E-skew and 

𝐵𝐶𝑎/ABC both obtained the error rate with the smallest percent error depending on the 

simulation run and the sample size at each significance level.   

For substantially skewed data like in the case of the second log-normal 

distribution example, E-skew did not perform as accurately.  Particularly at the 𝛼 = 0.01 
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significance level for the lower limit, E-skew was among the least accurate methods 

tested.  However even in this case, E-skew performed accurately at the 𝛼 = 0.05 and 𝛼 = 

0.10 significance levels for the lower limit, when compared not only to other methods 

applied on EBSD(𝑛) but to Monte Carlo Bootstrap methods as well.   

For data generated from a mixture of two normal distributions E-skew performed 

slightly less accurately than the most accurate Monte Carlo Bootstrap method for the 

upper limit across 𝛼 level.  For the lower limit it performed the most accurately relative 

to the other methods studied at the 𝛼 = 0.10 significance level.  Otherwise for the lower 

limit, it performed comparatively as accurately as it did for most of the distributions 

studied.   

Other methods applied on EBSD(𝑛) performed more accurately at the 𝛼 = 0.01 

significance level.  At this significance level the method applied on EBSD(𝑛) 

outperformed its Monte Carlo Bootstrap counterpart frequently for both the upper and 

lower limit.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, methods applied 

on EBSD(𝑛) performed less accurately other than their Monte Carlo Bootstrap 

counterpart.  In general at these significance levels E-skew performed relatively 

accurately compared to the other method applied on EBSD(𝑛).   

4.2 Ratio of Independent Sample Means 

For the ratio of sample means portion of the simulation study, results for six 

different sample sizes are reported (𝑛 = 5, 10, 15, 20, 30, and 40).  For each of these 

sample sizes, confidence interval error rates are reported at the 𝛼 = 0.01, 0.05, and 0.10 

significance levels.   
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The probability distributions used in the simulation study for the ratio of sample 

means statistic were the normal, exponential, gamma, log-normal, and mixture of two 

normal distributions. For each distribution, the population parameters specified are 

displayed below in Table 4.2.  These parameter specifications are the same as the 

specifications for the sample mean in Table 3.5 in Chapter 3.     

For each sample size, population parameter specification, and probability 

distribution combination 10,000 separate samples were generated.  For the Monte Carlo 

Bootstrap confidence interval methods each of the 10,000 samples used 10,000 Monte 

Carlo Bootstrap resamples to create its Bootstrap sampling distribution.  The comparisons 

discussed in this section are made between EBSD(𝑛) methods and Bootstrap methods 

that use 10,000 Bootstrap resamples.  In addition, confidence interval method error rate 

results were measured on the same 10,000 unique samples using 200, 500, and 1,000 

Bootstrap resamples.  These alternative Bootstrap resampling levels were performed for 

the normal distribution and exponential distribution simulations.  The error rate results at 

these additional Bootstrap resampling levels are reported in the Appendix.  

For the remaining statistics studied, including the ratio of sample means statistic, 

results for ES and 𝐸𝐵𝐶𝑎 are not reported.  Both methods performed very irregularly for 

the sample mean.  For ES at nearly every sample size, probability distribution and 

significance level combination ES had an error rate with a larger percent error than every 

other method.  Not only was it larger, in most case 𝐸𝐵𝐶𝑎’s percent error was many 

multiples larger compared to every other method.  Additionally, 𝐸𝐵𝐶𝑎’s percent error did 

not show substantial improvement at the larger sample sizes studied.  𝐸𝐵𝐶𝑎 was also not 

reported below.  𝐸𝐵𝐶𝑎 was not reported because the method did not demonstrate 
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characteristics typical of a method that would be considered valid.  At sample sizes 30 

and 40 for the upper limit 𝐸𝐵𝐶𝑎’s error rate would increase dramatically and for the 

lower limit 𝐸𝐵𝐶𝑎’s error rate would be 0.  This would occur even when the distributions 

studied were standard cases like data generated from the normal distribution.  Therefore, 

these two methods were omitted from further study.  Below are the methods that were 

studied for the ratio of means statistic:  

 For methods using EBSD(𝑛) this included: E-skew, ET, EBC, and EP  

 For methods using the Monte Carlo Bootstrap this includes: BT, BC, BP, 𝐵𝐶𝑎, and 

BS. 

Each method in this section used the natural log transformation.  A sampling 

distribution was computed on the natural log transformation of the ratio statistic and then 

the resulting confidence interval limits were back transformed.  Below in Table 4.2 is a 

description of the parameter specifications used for the sample mean statistic in this 

simulation study:  

Table 4.2 Simulation Parameter Specifications for the Ratio of Sample Means 

Probability distribution Population Parameter       Parameter code: 

Specified Parameter Values 

Normal distribution (𝜇1, 𝜎1)        N1: (100, 1, 50, 1) 

       N2: (50, 1, 100, 1) 

       N3: (100, 1, 100, 1) 

Exponential distribution (𝜆1, 𝜆2)        E1: (0.10, 0.20) 

       E2: (0.20, 0.05) 

Gamma distribution (𝛼1, 𝜆1, 𝛼2, 𝜆2)        G1: (4, 1, 3, 1) 

Log-Normal distribution (𝜇1, 𝜎1, 𝜇2, 𝜎2)        L1: (4, 0.2, 3.3, 0.2) 

Mixture of two normal 

distributions 
(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2, 𝜇3, 𝜎3, 

𝑝3, 𝜇4, 𝜎4, 𝑝4) 

      M1: (50, 1, 0.6, 100, 1, 0.4, 

25, 1, 0.6, 50, 1, 0.4) 

a. Normal Distribution 
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The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the ratio of means statistic when data is 

normally distributed.  The second purpose is to compare the accuracy of other methods 

that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods for the 

ratio of means statistic when data is normally distributed.  For the ratio of means statistic 

two independent samples are generated for each simulation.  Then the ratio of means 

statistic was computed as the mean of sample 1 divided by the mean of sample 2.  

For the normal distribution three pairs of independent samples were generated.  

First the results for data generated with sample 1 distributed as: 𝑁(𝜇 = 100, 𝜎 = 1) and 

sample 2 distributed as: 𝑁(𝜇 = 50, 𝜎 = 1) at the 𝛼 = 0.01 significance level are discussed.  

The results of this simulation at the 𝛼 = 0.01 significance level can be viewed in tables 

N1U99 and N1L99 on pages 138 and 139 below.  For the ratio of sample means statistic, 

three separate pairs of independent samples were generated from the normal distributions 

at three different 𝛼 significance levels.  However, in this section because of the volume of 

error rate results, only the results for the 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 50, 𝜎 = 1) 

specification pair at the 𝛼 = 0.01 significance level are displayed in tables.  Detailed 

numerical results for simulations not included in these tables can be viewed in Appendix 

tables.   

Although the tables only report results for the 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 50, 𝜎 = 

1) specification pair, the 𝑁(𝜇 = 50, 𝜎 = 1), 𝑁(𝜇 = 100, 𝜎 = 1) and 𝑁(𝜇 = 100, 𝜎 = 1), 

𝑁(𝜇 = 100, 𝜎 = 1) results can be viewed visually in figures NU99, NL99, NU95, NL95, 

NU90 and NL90 on pages 142-147.  In these figures the dashed horizontal line represents 

the target nominal one-sided error rate based on the confidence interval 𝛼 significance 
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level.  Each colored line represent a different confidence interval method with error rates 

plotted at sample sizes 5, 10, 15, 20, 30 and 40.  Plot points marked with cross symbols 

represent methods that use EBSD(𝑛).  Plot points marked with triangles represent 

methods that use the Monte Carlo Bootstrap. 

For the 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 50, 𝜎 = 1) parameter specification pair at the 

specified 𝛼 = 0.01 significance level, E-skew performed relatively accurately compared 

to the other methods studied at moderate sample sizes. For the upper and lower limit at 

the 𝛼 = 0.01 significance level, E-skew had the error rate with the smallest percent error 

at sample sizes 30 and 40.  E-skew also had the error rate with the smallest percent error 

compared to any method that used EBSD(𝑛) at every sample size for the lower limit.  

Also for the upper limit when compared to every other method applied on EBSD(𝑛), E-

skew had an error rate with a smaller percent error at every sample size but sample size 

20.  For the upper limit at sample size 20, the EP method had the error rate with the 

smallest percent error.  Otherwise, either BT or BS had the error rate with the smallest 

percent error at the remaining sample sizes for both the upper and lower limit.  These 

results are shown below in N1U99 and N1L99.  These results can also be viewed visually 

in figures NU99 and NL99.   

E-skew performed even more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels than it did at the 𝛼 = 0.01 significance level.  At the 𝛼 = 0.01 significance level E-

skew attained the error rate with the smallest percent error for two sample sizes for both 

the upper and lower limit.  At the 𝛼 = 0.05 significance level, E-skew attained the error 

rate with the smallest percent error at five sample sizes for both the upper and lower 

limit.  At the 𝛼 = 0.10 significance level, E-skew attained the error rate with the smallest 
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percent error for three sample sizes for the upper limit and all six sample size for the 

lower limit.   

By comparison percentile methods applied on EBSD(𝑛) performed relatively 

more accurately at the 𝛼 = 0.01 significance level and relatively less accurately at the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels.  For the upper limit at the 𝛼 = 0.01 significance 

level, EP did achieve the error rate with the smallest percent error at sample size 20 when 

compared to every other method studied.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels, no method other than E-skew achieved an error rate with the smallest 

percent error at any sample size for the upper or lower limit.  Additionally, when 

comparing EBC and EP to BC and BP respectively, both methods had error rates with 

smaller percent errors for each sample size for the upper and lower limit compared to 

their Monte Carlo Bootstrap counterpart.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels the EBSD(𝑛) percentile algorithms had a larger percent error at each 

sample size for the upper and lower limit compared to their Monte Carlo Bootstrap 

counterpart.   
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Additionally, ET performed relatively less accurately compared to BT at every 

sample size and significance level.  ET had an error rate with a larger percent error for 

both the upper and lower limit at each sample size and significance level when compared 

to BT.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table: Ratio of Sample Means - N1U99  Upper limit error rate (𝜶 = 0.01), 

Normal Distributions, 𝑵𝟏(𝝁𝟏 = 𝟏𝟎𝟎, 𝝈𝟏 = 𝟏), 𝑵𝟐( 𝝁𝟐 = 𝟓𝟎, 𝝈𝟐 =
𝟏), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0098 

 
(96%) 

0.0071 

 
(42%) 

0.0058 

 
(16%) 

0.0074 

 
(48%) 

0.0047 

 

(6%) 

0.0048 

 

(4%) 

BT 0.0065 

 

(30%) 

0.0055 

 

(10%) 

0.0055 

 

(10%) 

0.0062 

 
(24%) 

0.0043 

 
(14%) 

0.0056 

 
(12%) 

ET 0.038 

 

(660%) 

0.019 

 

(280%) 

0.0123 

 

(146%) 

0.0123 

 

(146%) 

0.0081 

 

(62%) 

0.0072 

 

(44%) 

BC 0.0486 
 

(872%) 

0.0219 
 

(338%) 

0.0132 
 

(164%) 

0.0122 
 

(144%) 

0.0082 
 

(64%) 

0.0071 
 

(42%) 

EBC 

 

0.029 

 

(480%) 

0.0101 

 

(102%) 

0.0037 

 

(26%) 

0.0039 

 

(22%) 

0.0027 

 

(46%) 

0.0046 

 

(8%) 

BP 

 

0.0489 

 

(878%) 

0.0216 

 

(332%) 

0.013 

 

(160%) 

0.0116 

 

(132%) 

0.0084 

 

(68%) 

0.007 

 

(40%) 

EP 0.0285 
 

(470%) 

0.0084 
 

(68%) 

0.0031 
 

(38%) 

0.0058 

 

(16%) 

0.0025 
 

(50%) 

0.0041 
 

(18%) 

BS 0.0076 

 
(52%) 

0.0079 

 
(58%) 

0.0065 

 
(30%) 

0.007 

 
(40%) 

0.0057 

 
(14%) 

0.0062 

 
(24%) 

𝑩𝑪𝒂 0.0535 

 

(970%) 

0.023 

 

(360%) 

0.0138 

 

(176%) 

0.0118 

 

(136%) 

0.0082 

 

(64%) 

0.0072 

 

(44%) 
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Simulation were not only performed for the 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 50, 𝜎 = 1) 

specification pair.  Simulations were also performed for the following parameter 

specification pairs: 𝑁(𝜇 = 50, 𝜎 = 1), 𝑁(𝜇 = 100, 𝜎 = 1) and 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 

100, 𝜎 = 1).  When considering a change in parameter specification (i.e. decreasing the 

expected value of the ratio of means from 2 to 1) E-skew performed relatively as 

accurately across 𝛼 significance level as it did for the first parameter specification tested.  

For the upper limit at the 𝛼 = 0.01 significance level, E-skew did not have the error rate 

Table: Ratio of Sample Means - N1L99 Lower limit error rate (𝜶 = 0.01), 

Normal Distribution, 𝑵𝟏(𝝁𝟏 = 𝟏𝟎𝟎, 𝝈𝟏 = 𝟏), 𝑵𝟐( 𝝁𝟐 = 𝟓𝟎, 𝝈𝟐 =
𝟏), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎 

Sample size 5 10 15 20 30 40 

E-skew 0.0124 

 

(148%) 

0.007 

 

(40%) 

0.0058 

 

(16%) 

0.0048 

 

(4%) 

0.0054 

 

(8%) 

0.0054 

 

(8%) 

BT 0.0064 

 

(28%) 

0.006 

 

(20%) 

0.0055 

 

(10%) 

0.0046 

 

(8%) 

0.006 

 

(20%) 

0.0061 

 

(22%) 

ET 0.0385 
 

(670%) 

0.0164 
 

(228%) 

0.0113 
 

(126%) 

0.0082 
 

(64%) 

0.0081 
 

(62%) 

0.0077 
 

(54%) 

BC 0.0486 

 
(872%) 

0.0179 

 
(258%) 

0.0122 

 
(144%) 

0.0083 

 
(66%) 

0.0082 

 
(64%) 

0.0077 

 
(54%) 

EBC 

 

0.0301 

 

(502%) 

0.0087 

 

(74%) 

0.0023 

 

(54%) 

0.0032 

 

(36%) 

0.0034 

 

(32%) 

0.0058 

 

(16%) 

BP 

 
0.0524 

 

(948%) 

0.0198 
 

(296%) 

0.0124 
 

(148%) 

0.0091 
 

(82%) 

0.0093 
 

(86%) 

0.0083 
 

(66%) 

EP 0.0313 

 
(526%) 

0.0102 

 
(104%) 

0.0031 

 
(38%) 

0.0033 

 
(34%) 

0.0036 

 
(28%) 

0.0055 

 
(10%) 

BS 0.0075 

 

(50%) 

0.0066 

 

(32%) 

0.0062 

 

(24%) 

0.0051 

 

(2%) 

0.0059 

 

(18%) 

0.0061 

 

(22%) 

𝑩𝑪𝒂 0.0506 
 

(912%) 

0.0225 
 

(350%) 

0.0148 
 

(196%) 

0.0107 
 

(114%) 

0.0106 
 

(112%) 

0.009 
 

(80%) 
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with the smallest percent error at any sample size.  However, for the lower limit at the 𝛼 

= 0.01 significance level, it did have the error rate with the smallest percent error at two 

sample sizes.  Additionally, E-skew did have the error rate with the smallest percent error 

among all methods applied on EBSD(𝑛) at every sample size but sample sizes 20 and 40 

for the upper limit and every sample size but sample size 40 for the lower limit at the 𝛼 = 

0.01 significance level.   

Further as seen with the first specification studied, E-skew’s accuracy improved at 

the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  At the 𝛼 = 0.05 significance level for the 

upper limit, E-skew had the error rate with the smallest percent error at all six sample 

sizes.  For the lower limit at this significance level, E-skew had the error rate with the 

smallest percent error at five of six sample sizes.  At the 𝛼 = 0.10 significance level, E-

skew attained the error rate with the smallest percent error at five sample sizes for the 

upper limit and three sample sizes for the lower limit. No other method applied on 

EBSD(𝑛) attained the error rate with the smallest percent error for any sample size for 

the upper or lower limit at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.   

When the expected value of the ratio of sample means from the two independent 

samples was decreased to 0.5, E-skew was relatively as accurate as it was for the other 

two parameter specifications studied.  E-skew attained the error rate with the smallest 

percent error at the 𝛼 = 0.01 significance level for one sample size for the upper limit and 

two for the lower limit.  Also the EP method performed relatively accurately at the 𝛼 = 

0.01 significance level, attaining the error rate with the smallest percent error at sample 

size 40 for the lower limit.  No other method using EBSD(𝑛) attained the error rate with 

the smallest percent error at the 𝛼=0.05 and 𝛼=0.10 significance levels.  At the 𝛼=0.05 
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significance level for the upper limit, E-skew attained the error rate with the smallest 

percent error for four sample sizes for the upper limit and five sample sizes for the lower 

limit.  Additionally, at the 𝛼=0.10 significance level, E-skew attained the error rate with 

the smallest percent at five of six sample sizes for both the upper and lower limit. 
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Figure: Ratio of Sample Means - NU99 - One-Sided Upperlimit Error Rates for 99% CI for the Normal Distribution 
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Figure: Ratio of Sample Means - NL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Normal Distribution 
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Figure: Ratio of Sample Means - NU95 - One-Sided Upperlimit Error Rates for 95% CI for the Normal Distribution 
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Figure: Ratio of Sample Means - NL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Normal Distribution 

 



146 

 

Figure: Ratio of Sample Means - NU90 - One-Sided Upperlimit Error Rates for 90% CI for the Normal Distribution 
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Figure: Ratio of Sample Means - NL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Normal Distribution 
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b. Exponential Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the ratio of means statistic when data is 

exponentially distributed.  The second purpose is to compare the accuracy of other 

methods that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap 

methods for the ratio of means statistic when data is exponentially distributed.  E-skew 

error rates and error rates for other methods using EBSD(𝑛) are compared to Monte 

Carlo Bootstrap method error rates for data generated from a pair of independent 

exponential distributions Exp(𝜆=0.10) and Exp(𝜆=0.20).   

The error rate results at the 𝛼 = 0.01 significance level are displayed in tables 

E1U99, and E1L99 on pages 151 and 152 below.  For the exponential distribution, two 

separate pairs of independent samples were studied, however because of the volume of 

error rate results, only the Exp(𝜆=0.10), Exp(𝜆=0.20) pair at the 𝛼 = 0.01 significance 

level are displayed in the tables.  Detailed numerical results for simulations not included 

here can be viewed in Appendix tables.  Although these tables only report results for the 

Exp(𝜆=0.10), Exp(𝜆=0.20) pair, the Exp(𝜆=0.20), Exp(𝜆=0.05) specification pair can be 

viewed visually in figures EU99, EL99, EU95, EL95, EU90 and EL90 on pages 155-160.  

For the Exp(𝜆=0.10), Exp(𝜆=0.20) parameter specification at the specified 𝛼 = 

0.01 significance level, for the upper limit, E-skew performed relatively less accurately 

compared to BS and the other methods applied on EBSD(𝑛) that were studied.  E-skew 

did not have the error rate with the smallest percent error at any sample size for the upper 

limit and for the lower limit had the error rate with the smallest percent error for only one 
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sample size (𝑛=30).  However, for the upper and lower limit, E-skew did have the error 

rate with the smallest percent error at sample size 5 compared to any method using 

EBSD(𝑛).   

Other methods applied on EBSD(𝑛) performed relatively accurately compared to 

E-skew and Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance level.  At this 

significance level for the upper limit, ET and EP had the error rate with the smallest 

percent error at two separate sample sizes and EP had the error rate with the smallest 

percent error at three separate sample sizes.  For the lower limit at this significance level, 

ET had the error rate with the smallest percent error at sample sizes 20 and 30.  EP had 

the error rate with the smallest percent error at sizes 10 and 40.  Also for the lower limit 

at this significance level, EBC had the error rate with the smallest percent at sample size 

15.  

Once again, the strength of the E-skew method was demonstrated when 

comparing the error rates across 𝛼 significance level.  E-skew maintained or improved 

relative accuracy compared to Monte Carlo Bootstrap and EBSD(𝑛) methods, across 

sample size, as the 𝛼 significance level increased from 𝛼 = 0.01 to 𝛼 = 0.10.  At the 𝛼 = 

0.05 significance level for the lower limit, E-skew attained the error rate with the smallest 

percent error at four separate sample sizes among methods applied on EBSD(𝑛).  At the 

𝛼 = 0.10 significance level for the lower limit, it achieved the error rate with the smallest 

percent error among all methods for four sample sizes (𝑛 =5, 20, 30 and 40).  

Additionally, for the upper limit at the 𝛼 = 0.05 significance level, E-skew attained the 

smallest percent error at sample size 40 and additionally the smallest among all methods 

applied on EBSD(𝑛) at sample sizes 5 and 30.  For the upper limit at the 𝛼 = 0.10 
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significance level, E-skew attained the error rate with the smallest percent error at the 

same four sample sizes studied as for the lower limit.   

By comparison the EP method was relatively more accurate at the 𝛼 = 0.01 

significance level and became relatively less accurate compared to the other methods 

studied at larger 𝛼 levels.  At the 𝛼 = 0.01 significance level for the upper limit, EP had 

the error rate with the smallest percent error at sample size 40 with a percent error of 0%.  

However at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, the error 

rate percent errors increased to 98.8% and 102.4% respectively at sample size 40.  The 

percent error increased similarly for the lower limit from the 𝛼 = 0.01 to the 𝛼 = 0.05, 

and 𝛼 = 0.10 significance levels.  ET did perform relatively similarly across significance 

level.  At the 𝛼 = 0.01 significance level for the upper limit, it had the error rate with the 

smallest percent error at two sample sizes.  Then at the 𝛼 = 0.05 and 0.10 significance 

levels for the upper limit respectively, ET again attained the error rate with the smallest 

percent error at two sample sizes in each case.  A similar pattern was found for the lower 

limit.  Although ET performed relatively as accurately across 𝛼 significance level, the 

sample size that ET attained the smallest percent error were sample sizes 10, 15, 20 or 30.  

At each significance level for the upper limit, ET’s percent error was larger at sample size 

40 than it was at the sample size it attained the smallest percent error for a given 𝛼 

significance level and limit end.  
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Table: Ratio of Sample Means - E1U99 Upper limit error rate (𝜶 = 0.01), 

Exponential Distributions, 𝑬𝒙𝒑𝟏( 𝝀𝟏 = 0.1), 𝑬𝒙𝒑𝟐(𝝀𝟐 =0.2), 

Bootstraps=10000 

  Sample size 5 10 15 20 30 40 

E-skew 0.0169 

 
(238%) 

0.0135 

 
(170%) 

0.0127 

 
(154%) 

0.0088 

 
(76%) 

0.0093 

 
(86%) 

0.0071 

 
(42%) 

BT 0.007 

 

(40%) 

0.0079 

 
(58%) 

0.01 

 
(100%) 

0.0072 

 
(44%) 

0.0079 

 
(58%) 

0.0065 

 
(30%) 

ET 0.0313 

 

(526%) 

0.0095 

 

(90%) 

0.0081 

 

(62%) 

0.0049 

 

(2%) 

0.004 

 

(20%) 

0.0025 

 

(50%) 

BC 0.053 
 

(960%) 

0.0219 
 

(338%) 

0.0171 
 

(242%) 

0.0121 
 

(142%) 

0.0116 
 

(132%) 

0.0085 
 

(70%) 

EBC 

 

0.0297 

 
(494%) 

0.0094 

 
(88%) 

0.0029 

 
(42%) 

0.0036 

 
(28%) 

0.0038 

 
(24%) 

0.0054 

 
(8%) 

BP 

 

0.0561 

 

(1022%) 

0.0209 

 

(318%) 

0.0171 

 

(242%) 

0.0123 

 

(146%) 

0.0106 

 

(112%) 

0.0095 

 

(90%) 

EP 0.0338 
 

(576%) 

0.007 

 

(40%) 

0.0038 

 

(24%) 

0.0043 
 

(14%) 

0.0029 
 

(42%) 

0.005 

 

(0%) 

BS 0.0127 

 
(154%) 

0.0107 

 
(114%) 

0.0105 

 
(110%) 

0.0077 

 
(54%) 

0.0084 

 
(68%) 

0.0065 

 
(30%) 

𝑩𝑪𝒂 0.0619 

 

(1138%) 

0.0222 

 

(344%) 

0.0182 

 

(264%) 

0.013 

 

(160%) 

0.0115 

 

(130%) 

0.0097 

 

(94%) 
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Simulation were not only performed for the exponential distribution for the 

parameter pair Exp(𝜆=0.10), Exp(𝜆=0.20).  Simulations were also performed for 

Exp(𝜆=0.20), Exp(𝜆=0.05) parameter specifications pair.  When the expected ratio of 

means was decreased from 2 to 0.25, E-skew performed most accurately at the 𝛼 = 0.10 

significance level.  At the 𝛼 = 0.10 significance level for both the upper and lower limit, 

E-skew had the error rate with the smallest percent error compared to all methods 

measured at five of six sample sizes.   At the 𝛼 = 0.05 significance level for both the 

upper and lower limit E-skew attained the error rate with the smallest percent error at 

Table: Ratio of Sample Means - E1L99 Lower limit error rate (𝜶 = 0.01),  

Exponential Distributions, 𝑬𝒙𝒑𝟏(𝝀𝟏 = 0.1), 𝑬𝒙𝒑𝟐(𝝀𝟐 =0.2), 

Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 0.0187 

 
(274%) 

0.0136 

 
(172%) 

0.0109 

 
(118%) 

0.0077 

 
(54%) 

0.0069 

 

(38%) 

0.0073 

 
(46%) 

BT 0.0084 

 

(68%) 

0.0096 

 
(92%) 

0.0078 

 
(56%) 

0.0063 

 
(26%) 

0.007 

 
(40%) 

0.0062 

 
(24%) 

ET 0.0305 

 

(510%) 

0.0111 

 

(122%) 

0.0073 

 

(46%) 

0.0041 

 

(18%) 

0.0031 

 

(38%) 

0.003 

 

(40%) 

BC 0.0542 
 

(984%) 

0.0244 
 

(388%) 

0.0156 
 

(212%) 

0.0106 
 

(112%) 

0.0102 
 

(104%) 

0.0082 
 

(64%) 

EBC 

 

0.0327 

 
(554%) 

0.0101 

 
(102%) 

0.0039 

 

(22%) 

0.0026 

 
(48%) 

0.0028 

 
(44%) 

0.0045 

 
(10%) 

BP 

 

0.0543 

 

(986%) 

0.0228 

 

(356%) 

0.0165 

 

(230%) 

0.0117 

 

(134%) 

0.0099 

 

(98%) 

0.0085 

 

(70%) 

EP 0.0303 
 

(506%) 

0.0094 

 

(88%) 

0.0027 
 

(46%) 

0.0036 
 

(28%) 

0.0022 
 

(56%) 

0.0049 

 

(2%) 

BS 0.0128 

 
(156%) 

0.0136 

 
(172%) 

0.0104 

 
(108%) 

0.0062 

 
(24%) 

0.0072 

 
(44%) 

0.006 

 
(20%) 

𝑩𝑪𝒂 0.0536 

 

(972%) 

0.0243 

 

(386%) 

0.017 

 

(240%) 

0.0115 

 

(130%) 

0.0103 

 

(106%) 

0.0092 

 

(84%) 
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sample size 40 when compared to any other method.  It also had the error rate with the 

smallest percent error for three sample sizes at this significance level, for both the upper 

and lower limit, when compared to any other method using EBSD(𝑛).   At the 𝛼 = 0.01 

significance level, E-skew did not perform as accurately.  At no sample size for either the 

upper or lower limit did E-skew attain the error rate with the smallest percent error.  

Additionally, E-skew only had the error-rate with the smallest percent error among 

methods applied on EBSD(𝑛) at sample size 5 for both the upper and lower limit.   

For the other methods using EBSD(𝑛), changing the parameter specification 

yielded similar error rate pattern across 𝛼 significance level as it did for the previous 

parameter specification.  When the expected value for the ratio of means was decreased 

from 2 to 0.25, ET performed relatively as accurately across 𝛼 level.  At the 𝛼 = 0.01 

significance level for both the upper and lower limit, ET had the error rate with the 

smallest percent error at two sample sizes.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels, for both interval ends, it had the error rate with the smallest percent error at three 

sample sizes and one sample size respectively.  Again ET had the smallest percent errors 

at sample sizes 10, 15, 20 or 30 at each 𝛼 significance level.  A consistent pattern for 

error rates across 𝛼 significance level was also seen for the percentile methods EBC and 

EP.  EBC and EP performed relatively more accurately at the 𝛼 = 0.01 significance level, 

and then relatively less accurately at the other two significance levels.  At the 𝛼 = 0.01 

significance level, EBC had the error rate with the smallest percent error for two sample 

sizes for the upper limit, while EP had the smallest at one sample size for both the upper 

and lower limit. However at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, both EBC and 
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EP had error rates with percent errors that were larger when compared to their Monte 

Carlo Bootstrap counterpart at each sample size.   
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Figure: Ratio of Sample Means - EU99 - One-Sided Upperlimit Error Rates for 99% CI for the Exponential Distribution 
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Figure: Ratio of Sample Means - EL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Exponential Distribution 
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Figure: Ratio of Sample Means - EU95 - One-Sided Upperlimit Error Rates for 95% CI for the Exponential Distribution 
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Figure: Ratio of Sample Means: EL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Exponential Distribution 
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Figure: Ratio of Sample Means: EU90 - One-Sided Upperlimit Error Rates for 90% CI for the Exponential Distribution 
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Figure: Ratio of Sample Means: EL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Exponential Distribution 
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c. Gamma Distribution 

The first purpose of this sub section is to compare the accuracy of the E-skew 

method to the accuracy of all other methods studied for the ratio of means statistic when 

data is generated from a gamma distribution.  The second purpose is to compare the 

accuracy of other methods that use the EBSD(𝑛) method to the accuracy of Monte Carlo 

Bootstrap methods for the ratio of means statistic when data is generated from a gamma 

distribution.  E-skew error rates and error rates for other methods using EBSD(𝑛) are 

compared to Monte Carlo Bootstrap method error rates for data generated from a pair of 

independent gamma distributions Gamma(𝛼=4, 𝜆=1) and Gamma(𝛼=3, 𝜆=1).  The error 

results at the 𝛼 = 0.01 significance level are displayed in tables G1U99, and G1L99 on 

pages 164 and 165 below.  For the gamma distribution, only one pair of independent 

samples was studied.  Error rate results at the 𝛼 = 0.05 and 𝛼 = 0.10 specification pair is 

displayed in Appendix tables.  Although these tables only report results at the 𝛼 = 0.01 

significance level, results for the other two significance levels can be viewed visually in 

figures G99, G95, and G90 on pages 166-168.  

For the Gamma(𝛼=4, 𝜆=1), Gamma(𝛼=3, 𝜆=1) parameter specification at the 

specified 𝛼 = 0.01 significance level for the upper limit, E-skew performed relatively 

accurately at moderate sample sizes compared to the other methods studied.  For the 

upper limit, E-skew had the error rate with the smallest percent error at sample size 40 for 

the upper limit.  Additionally, for the upper limit at this significance level, E-skew had the 

error rate with the smallest percent error at four of six sample sizes compared to any other 

method using EBSD(𝑛).  However, for the lower limit, E-skew mostly performed 
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relatively less accurately compared to every other method applied on EBSD(𝑛) studied at 

the 𝛼 = 0.01 significance level.   

Percentile methods using EBSD(𝑛) performed relatively accurately at the 𝛼 = 

0.01 significance level compared to Monte Carlo Bootstrap methods.  At this significance 

level for the upper limit, EBC had the error rate with the smallest percent error at one 

sample size for both the upper and lower limit.  Additionally, for the lower limit at this 

significance level, EP had the error rate with the smallest percent error at three separate 

sample sizes.  At this significance level, both EBC and EP had error rates with a smaller 

percent error compared to their Monte Carlo Bootstrap counterpart at five of six sample 

sizes for the upper limit and smaller at all six sample sizes for the lower limit.  

Conversely, ET had an error rate with an equal or larger percent error at each sample size 

for both the upper and lower limit.    

Once again, the strength of the E-skew method is demonstrated when comparing 

the error rates across 𝛼 significance level.  E-skew maintained or improved relative 

accuracy as the 𝛼 significance level increased from 𝛼 = 0.01 to 𝛼 = 0.10.  At the 𝛼 = 0.01 

significance level, E-skew attained the error rate with the smallest percent error at sample 

size 40 for the upper limit.  At the 𝛼 = 0.05 significance level for the upper limit, E-skew 

attained the error rate with the smallest percent error at five of six sample sizes studied.  

At the 𝛼 = 0.05 significance level for the lower limit, E-skew attained the error rate with 

the smallest percent error at one sample size and the smallest among all methods applied 

on EBSD(𝑛) at two other sample sizes. At the 𝛼 = 0.10 significance level for the upper 

limit, E-skew attained the error rate with the smallest percent error at four of six sample 

sizes studied.  At the 𝛼 = 0.10 significance level for the lower limit, E-skew attained the 
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error rate with the smallest percent error at one sample size and the smallest among all 

methods applied on EBSD(𝑛) at three other sample sizes.   

By comparison the EP and EBC methods which each attained the error rate with 

the smallest percent error at one sample at the 𝛼 = 0.01 significance level, did not at any 

sample size for the other two significance levels.  In addition, EBC and EP had error rates 

with percent errors that were larger when compared to their Monte Carlo Bootstrap 

counterpart at each sample size.  ET’s relative accuracy improved as significance level 

increased.  At the 𝛼 = 0.01 significance level for the upper and lower limit, ET had an 

error rate with a percent error that was equal to or larger at each sample size compared to 

BT.  However, at the 𝛼 = 0.05 and 0.10 significance levels for the lower limit, it attained 

the error rate with the smallest percent error at two sample sizes.  Additionally, for the 

upper limit, it attained the error rate with the smallest percent error at one sample size for 

the 𝛼 = 0.10 significance level.  Therefore, ET performed relatively more accurately at 

the 𝛼 = 0.05 and 0.10 significance levels and relatively less accurately at the 𝛼 = 0.01 

significance level unlike EBC and EP.  
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Table: Ratio of Sample Means - G1U99 Upper limit error rate (𝜶 = 0.01), 

Gamma Distributions, 𝒈𝒂𝒎𝒎𝒂𝟏(𝜶𝟏 = 𝟒, 𝝀𝟏 = 𝟏), 𝒈𝒂𝒎𝒎𝒂𝟐(𝜶𝟐 = 3, 

𝝀𝟐 = 𝟏), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0121 

 

(142%) 

0.0069 

 

(38%) 

0.007 

 

(40%) 

0.0057 

 

(14%) 

0.0044 

 

(12%) 

0.0047 

 

(6%) 

BT 0.0072 

 

(44%) 

0.0067 

 

(34%) 

0.0061 

 

(22%) 

0.0064 

 

(28%) 

0.0042 

 

(16%) 

0.0057 

 

(14%) 

ET 0.0342 
 

(584%) 

0.0162 
 

(224%) 

0.0103 
 

(106%) 

0.0094 
 

(88%) 

0.0042 
 

(16%) 

0.0065 
 

(30%) 

BC 0.0536 

 
(972%) 

0.0235 

 
(370%) 

0.0151 

 
(202%) 

0.0128 

 
(156%) 

0.007 

 
(40%) 

0.0088 

 
(76%) 

EBC 

 

0.0346 

 

(592%) 

0.0117 

 

(134%) 

0.0038 

 

(24%) 

0.005 

 

(0%) 

0.0028 

 

(44%) 

0.0061 

 

(22%) 

BP 

 
0.0452 

 

(804%) 

0.0202 
 

(304%) 

0.0125 
 

(150%) 

0.0105 
 

(110%) 

0.006 
 

(20%) 

0.0082 
 

(64%) 

EP 0.0297 

 
(494%) 

0.0078 

 
(56%) 

0.0019 

 
(62%) 

0.0029 

 
(42%) 

0.0016 

 
(68%) 

0.0037 

 
(26%) 

BS 0.0094 

 

(88%) 

0.0101 

 

(102%) 

0.0075 

 

(50%) 

0.0078 

 

(56%) 

0.0049 

 

(2%) 

0.0071 

 

(42%) 

𝑩𝑪𝒂 0.0506 
 

(912%) 

0.022 
 

(340%) 

0.0138 
 

(176%) 

0.0115 
 

(130%) 

0.0074 
 

(48%) 

0.0093 
 

(86%) 
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Table: Ratio of Sample Means - G1L99 Lower limit error rate (𝜶 = 0.01) 

Gamma Distributions, 𝒈𝒂𝒎𝒎𝒂𝟏(𝜶𝟏 = 𝟒, 𝝀𝟏 = 𝟏), 𝒈𝒂𝒎𝒎𝒂𝟐(𝜶𝟐 = 3, 

𝝀𝟐 = 𝟏), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0145 

 

(190%) 

0.0105 

 

(110%) 

0.0099 

 

(98%) 

0.008 

 

(60%) 

0.0086 

 

(72%) 

0.0082 

 

(64%) 

BT 0.0079 

 

(58%) 

0.0065 

 

(30%) 

0.0061 

 

(22%) 

0.0075 

 

(50%) 

0.008 

 

(60%) 

0.0071 

 

(42%) 

ET 0.0372 
 

(644%) 

0.0153 
 

(206%) 

0.0116 
 

(132%) 

0.0101 
 

(102%) 

0.008 
 

(60%) 

0.0074 
 

(48%) 

BC 0.0482 

 
(864%) 

0.0201 

 
(302%) 

0.0144 

 
(188%) 

0.0121 

 
(142%) 

0.0101 

 
(102%) 

0.009 

 
(80%) 

EBC 

 

0.0302 

 

(504%) 

0.0071 

 

(42%) 

0.0026 

 

(48%) 

0.003 

 

(40%) 

0.0031 

 

(38%) 

0.0045 

 

(10%) 

BP 

 
0.0564 

 

(1028%) 

0.0216 
 

(332%) 

0.0162 
 

(224%) 

0.0144 
 

(188%) 

0.0117 
 

(134%) 

0.0105 
 

(110%) 

EP 0.0347 

 
(594%) 

0.0107 

 
(114%) 

0.0048 

 

(4%) 

0.0052 

 

(4%) 

0.0049 

 

(2%) 

0.006 

 
(20%) 

BS 0.0083 

 

(66%) 

0.0096 

 

(92%) 

0.0084 

 

(68%) 

0.0084 

 

(68%) 

0.0078 

 

(56%) 

0.0069 

 

(38%) 

𝑩𝑪𝒂 0.0529 
 

(958%) 

0.0229 
 

(358%) 

0.0163 
 

(226%) 

0.0133 
 

(166%) 

0.0112 
 

(124%) 

0.0103 
 

(106%) 
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Figure: Ratio of Sample Means: G99 - One-Sided Error Rates for 99% CI for the Gamma Distribution 
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Figure: Ratio of Sample Means: G95 - One-Sided Error Rates for 95% CI for the Gamma Distribution 
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Figure: Ratio of Sample Means: G90 - One-Sided Error Rates for 90% CI for the Gamma Distribution 
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d. Log-Normal Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the ratio of means statistic when data is log-

normally distributed.  The second purpose is to compare the accuracy of other methods 

that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods for the 

ratio of means statistic when data is log-normally distributed.  Data was generated from a 

pair of independent samples with parameter specifications: lognormal(𝜇=4, 𝜎=0.2), 

lognormal(𝜇=3.3, 𝜎=0.2).  

The error results at the 𝛼 = 0.01 significance level are displayed in tables 

LN1U99, and LN1L99 on pages 171 and 172 below.  For the log-normal distribution, 

only one pair of independent samples was studied, error rate results at the 𝛼 = 0.05 and 𝛼 

= 0.10 specification pair is displayed in Appendix tables.  Although these tables only 

report results at the 𝛼 = 0.01 significance level, results for the other two significance 

levels can be viewed visually in figures LN99, LN95, and LN90 on pages 173-175.  

For the Lognormal(𝜇=4, 𝜎=0.2), Lognormal(𝜇=3.3, 𝜎=0.2) parameter 

specification pair at the specified 𝛼 = 0.01 significance level, E-skew performed 

relatively more accurately when compared to other methods applied on EBSD(𝑛).  For 

both the upper and lower limit, E-skew had the error rate with the smallest percent error 

among methods applied on EBSD(𝑛) at three sample sizes.   

Other methods using EBSD(𝑛) performed relatively accurately at the 𝛼 = 0.01 

significance level.  At this significance level for the upper limit, EBC had the error rate 

with the smallest percent error at three sample sizes for the upper limit and two sample 
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sizes for the lower limit.  Also, at this significance level, EP had the error rate with the 

smallest percent error at sample size 40 for the upper and lower limit.  EP’s percent error 

was tied for the smallest with EBC.  At the 𝛼 = 0.01 significance level, EP also had the 

error rate with smallest percent error at sample size 15 for the lower limit.  Conversely, 

ET did not perform accurately at the 𝛼 = 0.01 significance.  For both the upper and lower 

limit ET had an error rate with a larger percent error when compared to BT at each 

sample size.  

Once again, the strength of the E-skew method is demonstrated when comparing 

the error rates across 𝛼 significance level.  E-skew improved relative accuracy as the 𝛼 

significance level increased from 𝛼 = 0.01 to 𝛼 = 0.10.  In fact, E-skew was the relatively 

more accurate than every other method studied across sample size.  At both the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels for both the upper and lower limit E-skew attained the 

smallest percent error at each sample size compared to every other method studied.  

By comparison, clearly the EP and EBC methods did not attain the error rate with 

the smallest percent error compared to every other method studied at any sample size for 

the 𝛼 = 0.05 or 𝛼 = 0.10 significance levels.  In addition, EBC and EP had error rates 

with percent errors that were larger when compared to their Monte Carlo Bootstrap 

counterpart at each sample size.  In addition, ET had error rates with percent errors that 

were larger when compared to their Monte Carlo Bootstrap counterpart at each sample 

size for all three significance levels.  
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Table: Ratio of Sample Means - LN1U99 Upper limit error rate (𝜶 = 0.01), Log-

Normal Distributions, 𝒍𝒐𝒈 − 𝒏𝒐𝒓𝒎𝒂𝒍𝟏(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟎. 𝟐), 𝒍𝒐𝒈 − 𝒏𝒐𝒓𝒎𝒂𝒍𝟐(𝝁𝟐 ≈ 3.3, 

𝝈𝟐 = 𝟎. 𝟐), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0132 

 

(164%) 

0.0089 

 

(78%) 

0.0066 

 

(32%) 

0.0059 

 

(18%) 

0.0073 

 

(46%) 

0.0052 

 

(4%) 

BT 0.008 

 

(60%) 

0.0074 

 

(48%) 

0.0062 

 

(24%) 

0.0057 

 

(14%) 

0.0068 

 

(36%) 

0.0059 

 

(18%) 

ET 0.0417 
 

(734%) 

0.0202 
 

(304%) 

0.0137 
 

(174%) 

0.0102 
 

(104%) 

0.0102 
 

(104%) 

0.0076 
 

(52%) 

BC 0.0548 

 
(996%) 

0.0236 

 
(372%) 

0.0145 

 
(190%) 

0.0113 

 
(126%) 

0.0102 

 
(104%) 

0.0076 

 
(52%) 

EBC 

 

0.0339 

 

(578%) 

0.0123 

 

(146%) 

0.0048 

 

(4%) 

0.0041 

 

(18%) 

0.0043 

 

(14%) 

0.0049 

 

(2%) 

BP 

 
0.0522 

 

(944%) 

0.0216 
 

(332%) 

0.0141 
 

(182%) 

0.0114 
 

(128%) 

0.0102 
 

(104%) 

0.008 
 

(60%) 

EP 0.0333 

 
(566%) 

0.01 

 
(100%) 

0.0039 

 
(22%) 

0.0039 

 
(22%) 

0.0035 

 
(30%) 

0.0051 

 

(2%) 

BS 0.0077 

 

(54%) 

0.0097 

 

(94%) 

0.0079 

 

(58%) 

0.0069 

 

(38%) 

0.0068 

 

(36%) 

0.0063 

 

(26%) 

𝑩𝑪𝒂 0.0549 
 

(998%) 

0.0236 
 

(372%) 

0.0157 
 

(214%) 

0.0119 
 

(138%) 

0.0103 
 

(106%) 

0.0082 
 

(64%) 
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Table: Ratio of Sample Means - LN1L99 Lower Limit error rate (𝜶 = 0.01),  Log-

Normal Distributions, 𝒍𝒐𝒈 − 𝒏𝒐𝒓𝒎𝒂𝒍𝟏(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟎. 𝟐), 𝒍𝒐𝒈 − 𝒏𝒐𝒓𝒎𝒂𝒍𝟐(𝝁𝟐 ≈ 3.3, 

𝝈𝟐 = 𝟎. 𝟐), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.011 

 

(120%) 

0.0078 

 

(56%) 

0.0071 

 

(42%) 

0.0061 

 

(22%) 

0.0044 

 

(12%) 

0.0056 

 

(12%) 

BT 0.0077 

 

(54%) 

0.0059 

 

(18%) 

0.0066 

 

(32%) 

0.0059 

 

(18%) 

0.0053 

 

(6%) 

0.0057 

 

(14%) 

ET 0.0413 
 

(726%) 

0.0185 
 

(270%) 

0.0129 
 

(158%) 

0.0108 
 

(116%) 

0.0084 
 

(68%) 

0.0082 
 

(64%) 

BC 0.053 

 
(960%) 

0.0219 

 
(338%) 

0.0147 

 
(194%) 

0.0114 

 
(128%) 

0.0083 

 
(66%) 

0.0076 

 
(52%) 

EBC 

 

0.0347 

 

(594%) 

0.0106 

 

(112%) 

0.0027 

 

(46%) 

0.0051 

 

(2%) 

0.0031 

 

(38%) 

0.0052 

 

(4%) 

BP 

 
0.0543 

 

(986%) 

0.0202 
 

(304%) 

0.0141 
 

(182%) 

0.0116 
 

(132%) 

0.0087 
 

(74%) 

0.0082 
 

(64%) 

EP 0.0353 

 
(606%) 

0.0085 

 
(70%) 

0.0044 

 

(12%) 

0.0038 

 
(24%) 

0.002 

 
(60%) 

0.0048 

 

(4%) 

BS 0.0076 

 

(52%) 

0.0082 

 

(64%) 

0.008 

 

(60%) 

0.0071 

 

(42%) 

0.0067 

 

(34%) 

0.0057 

 

(14%) 

𝑩𝑪𝒂 0.0526 
 

(952%) 

0.0214 
 

(328%) 

0.0152 
 

(204%) 

0.0122 
 

(144%) 

0.0097 
 

(94%) 

0.0085 
 

(70%) 
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Figure: Ratio of Sample Means: LN99 - One-Sided Error Rates for 99% CI for the Log-Normal Distribution 
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Figure: Ratio of Sample Means: LN95 - One-Sided Error Rates for 95% CI for the Log-Normal Distribution 
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Figure: Ratio of Sample Means: LN90 - One-Sided Error Rates for 90% CI for the Log-Normal Distribution 
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e. Mixture Distribution 

This sub-section compares E-skew error rates to the error rates of every other 

method studied for the ratio of means statistic when data is generated from a mixture of 

two normal distributions.  Additionally, error rate comparisons for this statistic and 

distribution are made between other methods using EBSD(𝑛) and Monte Carlo Bootstrap 

methods.  Error rate comparisons are made from data generated from a pair of 

independent mixture of normal distributions 0.6*𝑁(𝜇1 = 50, 𝜎1 = 1) + 0.4*𝑁(𝜇1 = 100, 

𝜎1 = 1) and 0.6*𝑁(𝜇1 = 25, 𝜎1 = 1) + 0.4*𝑁(𝜇1 = 50, 𝜎1 = 1).  The error results at the 

𝛼 = 0.01 significance level are displayed in tables MN1U99, and MN1L99 on pages 178  

and 179 below.  For the mixture of normal distributions, only one pair of independent 

samples was studied.  Error rate results for this specification pair at the 𝛼 = 0.05 and 𝛼 = 

0.10 are displayed in Appendix tables.  Although these tables only report results at the 𝛼 

= 0.01 significance level, results for the other two significance levels can be viewed 

visually in figures MN99, MN95, and MN90 on pages 180-182. 

For the 0.6*𝑁(𝜇1 = 50, 𝜎1 = 1) + 0.4*𝑁(𝜇1 = 100, 𝜎1 = 1), 0.6*𝑁(𝜇1 = 25, 

𝜎1 = 1) + 0.4*𝑁(𝜇1 = 50, 𝜎1 = 1) parameter specification pair at the specified 𝛼 = 0.01 

significance level, for the upper and lower limit, E-skew did not perform relatively as 

accurately as other methods applied on EBSD(𝑛).  Other than at sample size 5, E-skew 

had a larger percent error at each sample size for both the upper and lower limit at the 𝛼 = 

0.01 significance level compared to at least one EBSD(𝑛) method.  

Percentile methods using EBSD(𝑛) performed relatively accurately compared to 

Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance level.  At this significance 
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level for the upper limit, EBC had the error rate with the smallest percent error at sample 

size 15 for the upper limit.  At this significance for the upper limit, EP had the error rate 

with the smallest percent error at sample size 20 and for the lower limit at both sample 

sizes 15 and 20.  Conversely, ET did not perform as accurately relative to BT at the 𝛼 = 

0.01 significance level.  For both the upper and lower limit ET had an error rate with a 

larger percent error when compared to BT at each sample size.  

Once again, the strength of the E-skew method is demonstrated when comparing 

the error rates across 𝛼 significance level.  E-skew improved accuracy comparatively as 

the 𝛼 significance level increased from 𝛼 = 0.01 to 𝛼 = 0.10.  At the 𝛼 = 0.05 significance 

level, for the upper limit E-skew attained the smallest percent error at sample size 10.  

Additionally, at the 𝛼 = 0.05 significance level, for both the upper and lower limit, E-

skew attained the error rate with the smallest percent error of any method applied on 

EBSD(𝑛) at each sample size.  At the 𝛼 = 0.10 significance level for the upper limit, E-

skew attained the error rate with the smallest percent error at sample size 5 and 10 and 

the smallest at each sample size among methods applied on EBSD(𝑛).  At the 𝛼 = 0.10 

significance level for the lower limit, E-skew attained the error rate with the smallest 

percent error at sample size 5, 10 and 40 and the smallest at each sample size among 

methods applied on EBSD(𝑛). 

By comparison, EP and EBC methods did not attain the error rate with the 

smallest percent error at any sample size for the 𝛼 = 0.05 or 𝛼 = 0.10 significance levels.  

In addition, for the 𝛼 = 0.10 significance level for both the upper and lower limit, EBC 

and EP had error rates with percent errors that were larger when compared to their Monte 

Carlo Bootstrap counterpart at each sample size.  At the 𝛼 = 0.05 significance level, the 
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same was true except at sample size 5.  Therefore, in these simulations, EP and EBC 

performed relatively accurately at the 𝛼 = 0.01 significance level but performed relatively 

less accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels. 

 

 

 

Table: Ratio of Sample Means - MN1U99 Upper limit error rate (𝜶 = 0.01), Mixture 

Distribution:  𝑴𝑵𝟏(0.6*𝑵(𝝁𝟏 = 𝟓𝟎, 𝝈𝟏 = 𝟏) + 0.4*𝑵(𝝁𝟐 = 𝟏𝟎𝟎, 𝝈𝟐 = 𝟏)), 

𝑴𝑵𝟐(0.6*𝑵(𝝁𝟏 = 𝟐𝟓, 𝝈𝟏 = 𝟏) + 0.4*𝑵(𝝁𝟐 = 𝟓𝟎, 𝝈𝟐 = 𝟏)), Bootstraps=10000  

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0139 

 

(178%) 

0.0118 

 

(136%) 

0.0089 

 

(78%) 

0.0115 

 

(130%) 

0.0085 

 

(70%) 

0.0071 

 

(42%) 

BT 0.0072 

 

(44%) 

0.0071 

 

(42%) 

0.008 

 
(60%) 

0.0079 

 
(58%) 

0.0064 

 

(28%) 

0.0052 

 

(4%) 

ET 0.0358 

 

(616%) 

0.0214 

 

(328%) 

0.015 

 

(200%) 

0.0148 

 

(196%) 

0.0098 

 

(96%) 

0.0083 

 

(66%) 

BC 0.0577 
 

(1054%) 

0.0239 
 

(378%) 

0.0186 
 

(272%) 

0.0159 
 

(218%) 

0.0111 
 

(122%) 

0.0085 
 

(70%) 

EBC 

 

0.053 

 
(960%) 

0.0115 

 
(130%) 

0.0028 

 

(44%) 

0.002 

 
(60%) 

2e-04 

 
(96%) 

0.0027 

 
(46%) 

BP 

 

0.0557 

 
(1014%) 

0.0274 

 
(448%) 

0.0162 

 
(224%) 

0.0123 

 
(146%) 

0.009 

 
(80%) 

0.007 

 
(40%) 

EP 0.0309 

 

(518%) 

0.0084 

 

(68%) 

0.0021 

 

(58%) 

0.0044 

 

(12%) 

0.0022 

 

(56%) 

0.0039 

 

(22%) 

BS 6e-04 
 

(88%) 

0 
 

(100%) 

2e-04 
 

(96%) 

0.0015 
 

(70%) 

0.0026 
 

(48%) 

0.0032 
 

(36%) 

𝑩𝑪𝒂 0.0607 

 
(1114%) 

0.035 

 
(600%) 

0.0156 

 
(212%) 

0.0103 

 
(106%) 

0.0072 

 
(44%) 

0.0054 

 
(8%) 
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Table: Ratio of Sample Means - MN1L99 Lower limit error rate (𝜶 = 0.01), Mixture 

Distribution:  𝑴𝑵𝟏(0.6*𝑵(𝝁𝟏 = 𝟓𝟎, 𝝈𝟏 = 𝟏) + 0.4*𝑵(𝝁𝟐 = 𝟏𝟎𝟎, 𝝈𝟐 = 𝟏)), 

𝑴𝑵𝟐(0.6*𝑵(𝝁𝟏 = 𝟐𝟓, 𝝈𝟏 = 𝟏) + 0.4*𝑵(𝝁𝟐 = 𝟓𝟎, 𝝈𝟐 = 𝟏)), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 
 

0.0138 

 

(176%) 

0.0127 

 

(154%) 

0.0104 

 

(108%) 

0.009 

 

(80%) 

0.0087 

 

(74%) 

0.0072 

 

(44%) 

BT 0.0072 

 

(44%) 

0.0081 

 

(62%) 

0.0086 

 

(72%) 

0.0066 

 

(32%) 

0.0066 

 

(32%) 

0.0049 

 

(2%) 

ET 0.0366 
 

(632%) 

0.021 
 

(320%) 

0.0147 
 

(194%) 

0.0129 
 

(158%) 

0.0105 
 

(110%) 

0.0085 
 

(70%) 

BC 0.0565 

 
(1030%) 

0.0253 

 
(406%) 

0.0178 

 
(256%) 

0.0141 

 
(182%) 

0.0103 

 
(106%) 

0.0083 

 
(66%) 

EBC 

 

0.0515 

 

(930%) 

0.012 

 

(140%) 

0.0033 

 

(34%) 

7e-04 

 

(86%) 

3e-04 

 

(94%) 

0.0024 

 

(52%) 

BP 

 
0.0583 

 

(1066%) 

0.0268 
 

(436%) 

0.0151 
 

(202%) 

0.0109 
 

(118%) 

0.0088 
 

(76%) 

0.0067 
 

(34%) 

EP 0.0322 

 
(544%) 

0.0084 

 
(68%) 

0.0035 

 

(30%) 

0.0034 

 

(32%) 

0.0023 

 
(54%) 

0.004 

 
(20%) 

BS 7e-04 

 

(86%) 

0 

 

(100%) 

5e-04 

 

(90%) 

7e-04 

 

(86%) 

0.0025 

 

(50%) 

0.0027 

 

(46%) 

𝑩𝑪𝒂 0.0552 
 

(1004%) 

0.0339 
 

(578%) 

0.0142 
 

(184%) 

0.0074 
 

(48%) 

0.0063 

 

(26%) 

0.0057 
 

(14%) 
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Figure: Ratio of Sample Means: MN99 - One-Sided Error Rates for 99% CI for the Mixture of two Normals 
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Figure: Ratio of Sample Means: MN95 - One-Sided Error Rates for 95% CI for the Mixture of two Normals 
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Figure: Ratio of Sample Means: MN90 - One-Sided Error Rates for 90% CI for the Mixture of two Normals 
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Ratio of Sample Means Results for E-skew and other methods using EBSD(𝒏) 

In general, the E-skew method was relatively as accurate, if not more accurate, for 

the ratio of sample means statistic than it was for the sample mean statistic.  For example, 

when data was generated from the normal distribution with an expected ratio of means 

value of 2, when compared to every method studied for this statistic of the 36 sample size 

cases (6 sample sizes*2 limit ends*3 significance levels) studied for data generated from 

the normal distribution, E-skew had the error rate with the smallest percent error for 23 of 

them.  E-skew in particular, performed more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.   

For data that was exponentially distributed, E-skew again performed relatively 

more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels than at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.01 significance level, E-skew performed relatively less 

accurately compared to at least one other method using EBSD(𝑛).  At the 𝛼 = 0.05 and 𝛼 

= 0.10 significance levels, E-skew’s accuracy improved relative to other methods it was 

compared to.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels E-skew was relatively 

more accurate than every other methods applied on EBSD(𝑛).  Further at larger sample 

sizes at these significance levels, it was also relatively more accurate than both methods 

applied on EBSD(𝑛) and Monte Carlo Bootstrap methods.   

For data that was log-normally distributed 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels, E-skew performed relatively more accurately at each sample size for both the 

upper and lower limit than every other method it was compared to.  
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For data generated from a mixture of two normal distributions E-skew performed 

the most accurately among methods applied on EBSD(𝑛) at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  Additionally, in a few instances it was more accurate not only for all 

methods applied on EBSD(𝑛) but all Monte Carlo Bootstrap methods as well at these 

significance levels.  At the 𝛼 = 0.01 significance level, at least one method applied on 

EBSD(𝑛) was more accurate at nearly every sample size.   

Other percentile methods applied on EBSD(𝑛) performed better at the 𝛼 = 0.01 

significance level.  At this significance level the percentile methods applied on EBSD(𝑛) 

outperformed their Monte Carlo Bootstrap counterpart frequently for both the upper and 

lower limit.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, like in the case of 

the sample mean, methods applied on EBSD(𝑛) other than E-skew performed less 

accurately than Monte Carlo Bootstrap confidence intervals.  The ET method performed 

relatively as accurately across 𝛼 level for exponential and gamma distributed data.  For 

data generated both from the exponential and gamma distribution it performed accurately 

in comparison to other methods applied on EBSD(𝑛) at each significance level.  For data 

generated from the normal, log-normal, and mixture of two normal ET performed 

relatively less accurate across sample size and significance level compared to BT. 

4.3 Pearson Correlation Coefficient 

For the Pearson correlation coefficient portion of the simulation study, results for 

six different sample sizes are reported (𝑛 = 5, 10, 15, 20, 30, and 40).  For each of these 

sample sizes, confidence interval error rates are reported at the 𝛼 = 0.01, 0.05, and 0.10 

significance levels.   
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The probability distributions used in the simulation study for the Pearson 

correlation coefficient were three bivariate normal distributions and two bivariate non-

normal skewed distributions. For each distribution, the population parameters specified 

are displayed below in Table 4.3.  These parameter specifications are the same as the 

specifications for the sample mean in Table 3.5 in Chapter 3.     

For each sample size, population parameter specification, and probability 

distribution combination 10,000 separate samples were generated.  For the Monte Carlo 

Bootstrap confidence interval methods each of the 10,000 samples used 10,000 Monte 

Carlo Bootstrap resamples to create its Bootstrap sampling distribution.  The comparisons 

discussed in this section are made between EBSD(𝑛) methods and Bootstrap methods 

that use 10,000 Bootstrap resamples.  In addition, confidence interval method error rate 

results were measured on the same 10,000 unique samples using 200, 500, and 1,000 

Bootstrap resamples.  These alternative Bootstrap resampling levels were performed for 

each distribution studied here.  The error rate results at these additional Bootstrap 

resampling levels are reported in the Appendix.  Each generated unique sample had 

confidence intervals computed using the confidence interval methods listed below.  

 For methods using EBSD(𝑛) this included: E-skew, ET, EBC, and EP  

 For methods using the Monte Carlo Bootstrap this includes: BT, BC, BP, 𝐵𝐶𝑎, and 

BS. 

Each method in this section used the fisher transformation.  A sampling 

distribution was computed on the fisher transformation of the Pearson correlation 

coefficient and then the resulting confidence interval limits were back transformed.   
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Below in Table 4.3 is a description of the parameter specifications used for the 

sample mean statistic in this simulation study: 

Table 4.3 Simulation Parameter Specifications for the Pearson Correlation Coefficient 

Probability distribution Population Parameter       Parameter code: 

Specified Parameter Values 

Normal distribution (𝜇1, 𝜎1, 𝜇2, 𝜎2, 𝜌)        N1: (4, 1, 4, 1, 0.1)  

       N2: (4, 1, 4, 1, 0.5) 

       N3: (4, 1, 4, 1, 0.9) 

Non-Normal distribution (Skew, Kurtosis, 𝜌)        NN1: (3, 61, 0.1) 

       NN2: (3, 61, 0.5) 

It can be noted in the tables below and in the tables in the appendix, the error rate 

results for the BC and BS methods are identical.  This is because the fisher 

transformation was used for the Pearson correlation coefficient and hence a constant 

value was specified for the formula’s sample variance and therefore the Boot package in 

R yields the same result for each method.  This is further because for example the 

numerator of the t-statistic for the 
𝛼

2
 end of the sample distribution is: (𝜃𝛼/2

∗ -𝜃).  Then 

when this quantity is applied to the t-statistic formula, the constant value in the 

denominator is eliminated by multiplying by the standard error and the lower end point 

becomes: 𝜃 - (𝜃𝛼/2
∗ -𝜃) = 2𝜃 - (𝜃𝛼/2

∗ ).  This is the same as the 𝛼/2 percentile from the 

Basic sampling distribution.  

a. Bivariate Normal Distribution 

The first purpose of this section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the Pearson correlation coefficient on bivariate 

normally distributed data.  The second is to compare the accuracy of other methods that 
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use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods again for 

the Pearson correlation coefficient for bivariate normally distributed data.   

For the bivariate normal distribution, simulations using three different 

specifications were performed.  First the results for data generated from a bivariate 

normal distribution with specification 𝑁(𝜇 = (
4
4

), Σ = (
1 0.1

0.1 1
)) at the 𝛼 = 0.01 

significance level are discussed.  These confidence interval method error rates and their 

corresponding percent errors can be viewed and compared to one another in each of 

tables N1U99 and N1L99 on pages 190 and 191 below.  For the Pearson correlation 

coefficient three separate pairs of independent samples were generated from the bivariate 

normal distribution at three 𝛼 significance levels.  However, in this section because of the 

volume of error rate results, only the error rates reported at the 𝛼 = 0.01 significance level 

for the bivariate normal distribution with covariance matrix Σ = (
1 0.1

0.1 1
) are displayed 

in tables.  Detailed numerical results for simulations not included in these tables can be 

viewed in Appendix tables.   

Although the tables only report results for the 𝑁(𝜇 = (
4
4

), Σ = (
1 0.1

0.1 1
)) 

specification, the 𝑁(𝜇 = (
4
4

), Σ = (
1 0.5

0.5 1
)) and the 𝑁(𝜇 = (

4
4

), Σ = (
1 0.9

0.9 1
)) 

results can be viewed visually in figures NU99, NL99, NU95, NL95, NU90 and NL90 on 

pages 194-199.  In these figures, the dashed horizontal line represents the target nominal 

one-sided error rate based on the 𝛼 significance level.  Each colored line represent a 

different confidence interval method with error rates plotted at sample sizes 5, 10, 15, 20, 
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30 and 40.  Plot points marked with cross symbols represent methods that use EBSD(𝑛).  

Plot points marked with triangles represent methods that use the Monte Carlo Bootstrap. 

For the (𝜇 = (
4
4

), Σ = (
1 0.1

0.1 1
))  parameter specification at the specified 𝛼 = 

0.01 significance level, for the upper and lower limit, E-skew was relatively more 

accurate compared to both Monte Carlo Bootstrap and EBSD(𝑛) methods across sample 

size.  E-skew had the error rate with the smallest percent error at sample sizes 20, 30 and 

40 for the upper limit.  For the lower limit E-skew had the error rate with the smallest 

percent error at sample sizes 5, 20, 30 and 40.  E-skew also had the error rate with the 

smallest percent error of any method using EBSD(𝑛) studied at every sample size for 

both the upper limit and lower limit.  Otherwise, either 𝐵𝐶𝑎 or BS/BC had the error rate 

with the smallest percent error at the remaining sample sizes greater than sample size 5, 

for both the upper and lower limit.  These results are shown below in N1U99 and N1L99.  

These results can also be viewed visually in figures NU99 and NL99.   

E-skew performed even more accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

level than it did at the 𝛼 = 0.01 significance level.  The E-skew method was even more 

accurate relative the other methods studied as the 𝛼 significance level was modified from 

𝛼 = 0.01 to 𝛼 = 0.10.  At the 𝛼 = 0.01 significance level for both the upper and lower 

limit, E-skew attained the error rate with the smallest percent error for four sample sizes.  

At both the 𝛼 = 0.05 and 𝛼 = 0.10 significance level for the lower limit, E-skew attained 

the error rate with the smallest percent error at five sample sizes.  At the 𝛼 = 0.05 

significance level for the upper limit, E-skew attained the error rate with the smallest 
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percent error for five sample sizes.  At the 𝛼 = 0.10 significance level for the upper limit, 

E-skew attained the error rate with the smallest percent error for four sample sizes. 

Other than EBC for sample size 10 at the 𝛼 = 0.01 significance level for the upper 

limit, no method other than E-skew using EBSD(𝑛) attained the error rate with the 

smallest percent error at any other sample size for any of the three significance levels for 

either the upper or lower limit.  Additionally, EP was relatively more accurate at the 𝛼 = 

0.01 significance level and relatively less accurate at the 𝛼 = 0.05 or  𝛼 = 0.10 

significance levels when compared to BP.  At the 𝛼 = 0.01 significance level for the lower 

limit, EP attained an error rate with a smaller percent error at five sample sizes compared 

to BP.  However at the 𝛼 = 0.05 significance level EP accomplished this for only two 

sample sizes and at the 𝛼 = 0.10 significance level accomplished this for one sample size.  

EBC’s relatively accuracy to BC to did not change across 𝛼 significance level.  For both 

the 𝛼 = 0.01 and  𝛼 = 0.10 significance levels for both the upper and lower limit, EBC 

only attained the error rate with a smaller percent error at one sample size.  The ET 

method was ineffective as the resulting confidence interval was too large at each 

significance level leading to error rates of 0 for both the upper and lower limit at every 

sample size but sample size 5.  
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Table: Pearson Correlation Coefficient - N1U99 Upper limit error rate (𝜶 = 0.01), 

Bivariate Normal Distributions, 𝑴𝑽𝑵(𝝁𝟏 = 4, 𝝈𝟏 = 1, 𝝁𝟐 = 4, 𝝈𝟐 = 1,  ρ = 0.1), 

Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 0.0065 

 
(30%) 

0.0068 

 
(36%) 

0.0043 

 
(14%) 

0.0062 

 

(24%) 

0.0059 

 

(18%) 

0.0053 

 

(6%) 

BT 0 

 

(100%) 

0.0111 

 

(122%) 

0.0102 

 

(104%) 

0.0108 

 

(116%) 

0.0082 

 

(64%) 

0.0086 

 

(72%) 

ET 0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

BC 1e-04 
 

(98%) 

0.0018 
 

(64%) 

0.0045 

 

(10%) 

0.0074 
 

(48%) 

0.0068 
 

(36%) 

0.0065 
 

(30%) 

EBC 8e-04 
 

(84%) 

1e-04 
 

(98%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

BP 

 
0.0062 

 

(24%) 

0.0132 

 
(164%) 

0.0115 

 
(130%) 

0.0108 

 
(116%) 

0.0085 

 
(70%) 

0.009 

 
(80%) 

EP 3e-04 

 
(94%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

BS 1e-04 

 
(98%) 

0.0018 

 
(64%) 

0.0045 

 

(10%) 

0.0074 

 
(48%) 

0.0068 

 
(36%) 

0.0065 

 
(30%) 

𝑩𝑪𝒂 0.0014 

 

(72%) 

0.006 

 

(20%) 

0.0071 

 

(42%) 

0.0087 

 

(74%) 

0.0074 

 

(48%) 

0.007 

 

(40%) 
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Table: Pearson Correlation Coefficient - N1L99 Lower limit error rate (𝜶 = 0.01), 

Bivariate Normal Distributions, 𝑴𝑽𝑵(𝝁𝟏 = 4, 𝝈𝟏 = 1, 𝝁𝟐 = 4, 𝝈𝟐 = 1,  ρ = 0.1), 

Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 0.0068 

 

(36%) 

0.006 

 
(20%) 

0.0058 

 
(16%) 

0.0048 

 

(4%) 

0.005 

 

(0%) 

0.0056 

 

(12%) 

BT 0 

 

(100%) 

0.0088 

 

(76%) 

0.0111 

 

(122%) 

0.0108 

 

(116%) 

0.0083 

 

(66%) 

0.009 

 

(80%) 

ET 4e-04 
 

(92%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

BC 0 
 

(100%) 

0.0015 
 

(70%) 

0.0045 

 

(10%) 

0.0058 
 

(16%) 

0.0065 
 

(30%) 

0.0079 
 

(58%) 

EBC 0.0016 

 
(68%) 

0.0014 

 
(72%) 

2e-04 

 
(96%) 

2e-04 

 
(96%) 

0 

 
(100%) 

0 

 
(100%) 

BP 

 

0.0161 

 

(222%) 

0.0131 

 

(162%) 

0.0131 

 

(162%) 

0.0118 

 

(136%) 

0.0092 

 

(84%) 

0.0103 

 

(106%) 

EP 0.0074 
 

(48%) 

0.0025 
 

(50%) 

4e-04 
 

(92%) 

5e-04 
 

(90%) 

1e-04 
 

(98%) 

5e-04 
 

(90%) 

BS 0 

 
(100%) 

0.0015 

 
(70%) 

0.0045 

 

(10%) 

0.0058 

 
(16%) 

0.0065 

 
(30%) 

0.0079 

 
(58%) 

𝑩𝑪𝒂 0.0031 

 

(38%) 

0.0048 

 

(4%) 

0.0073 

 

(46%) 

0.008 

 

(60%) 

0.0072 

 

(44%) 

0.0085 

 

(70%) 

Simulation were not only performed for the (𝜇 = (
4
4

), Σ = (
1 0.1

0.1 1
)) parameter 

specification.  Simulations were also performed for the (𝜇 = (
4
4

), Σ = (
1 0.5

0.5 1
))  and 

(𝜇 = (
4
4

), Σ = (
1 0.9

0.9 1
)) specifications.  When considering a change in parameter 

specification (i.e. increasing the correlation between the paired samples from 0.1 to 0.5) 

E-skew did not perform relatively as accurately compared as it did when 𝜌 = 0.10.  When 

𝜌 was set to 0.50, at the 𝛼 = 0.01 significance level for the upper limit, E-skew had the 

error rate with the smallest percent error at five of the six sample sizes measured.  

However, for the lower limit at this significance level, it attained the error rate with the 
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smallest percent error only at three sample sizes.  At the 𝛼 = 0.05 significance level, for 

the upper and lower limit respectively, E-skew had the error rate with the smallest percent 

error at four and two sample sizes.  At the 𝛼 = 0.10 significance level, E-skew performed 

even less relatively accurate than when 𝜌 = 0.10, attaining the error rate with the smallest 

percent error at one sample size for the upper limit and three for the lower limit.    

When the correlation was increased even further to 0.90, for the upper limit, E-

skew performed even less relatively accurate compare to the other methods studied at 

each significance level than it did when the correlation was increased to 0.50.  At the 𝛼 = 

0.01 significance level for the upper limit, E-skew did attain the error rate with the 

smallest percent error at four of six sample sizes.  However at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels, E-skew did not attain the error rate with the smallest percent error for 

any sample size for the upper limit.  Further for the lower limit, at all three significance 

levels, E-skew did not attain the error rate with the smallest percent error at any sample 

size.   

Other methods applied on EBSD(𝑛) performed more accurately relative to E-

skew and Monte Carlo Bootstrap methods when the correlation was increased to 0.90.  At 

the 𝛼 = 0.01 significance level for the lower limit, EBC attained an error rate with a 

smaller percent error at one sample size.  At the 𝛼 = 0.05 significance level, for the upper 

and lower limit respectively, EBC attained this for one and three sample sizes 

respectively.  Additionally, at the 𝛼 = 0.05 and  𝛼 = 0.10 significance levels for the upper 

limit, EP attained the error rate with the smallest percent error at one sample size.    
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When comparing EBSD(𝑛) methods to their Monte Carlo Bootstrap counterpart 

at the specified correlation value of 𝜌=0.90, the EBSD(𝑛) methods relative accuracy 

varied depending on the significance level.  The EP method performed more accurately 

relative to BP for the lower limit at the 𝛼 = 0.01 significance level, attaining an error rate 

with a smaller percent error at each sample size.  At the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels EP performed relatively less accurately compared to BP for the 

majority of sample sizes for the lower limit.   

EBC performed relatively less accurate compared to BC at the 𝛼 = 0.01 

significance level for the upper limit.  EBC attained an error rate with a smaller percent 

error at three sample sizes compared to BC for the upper limit at the 𝛼 = 0.01 

significance level.  For the lower limit, EBC performed relatively more accurately than 

BC at the 𝛼 = 0.05 significance level, and relatively less accurately at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.01 significance level for the lower limit, EBC had an 

error rate with a smaller percent error compared to BC only at one sample size.  By 

comparison at the 𝛼 = 0.05 significance level for the lower limit, it had an error rate with 

a smaller percent error than BC for three sample sizes.  ET had an error rate of 0 at every 

significance level for every sample size for the upper limit except at sample size 5 at the 

𝛼 = 0.10 significance level.  For the lower limit it had a significance level that was non-

zero for one sample size at the 𝛼 = 0.01 significance level, two sample sizes at the 𝛼 = 

0.05 significance level, and three sample sizes at the 𝛼 = 0.10 significance level.  
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Figure: Pearson Correlation Coefficient - NU99 - One-Sided Upperlimit Error Rates for 99% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NU95 - One-Sided Upperlimit Error Rates for 95% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NU90 - One-Sided Upperlimit Error Rates for 90% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Bivariate 

Normal Distribution 
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b. Bivariate Non-Normal Distribution 

The first purpose of this section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the Pearson correlation coefficient on bivariate 

non-normally distributed data.  The second is to compare the accuracy of other methods 

that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods for the 

Pearson correlation coefficient again for bivariate non-normally distributed data.   

For the bivariate non-normal distribution two sample specifications were 

generated.  First the results for data using bivariate non-normal specifications: 

𝑁𝑁(skew=3, kurtosis=61, 𝜌=0.1) at the 𝛼 = 0.01 significance level are considered.  

Confidence interval method error rates and their corresponding percent errors can be 

viewed and compared to one another in each of tables NN1U99 and NN1L99 on pages 

203 and 204 below.  For the Pearson correlation coefficient two separate pairs of 

bivariate samples were generated from the bivariate non-normal distributions at three 

different 𝛼 significance levels.  However, in this section because of the volume of error 

rate results, only the error rates reported at the 𝛼 = 0.01 significance level with 𝜌=0.1 are 

displayed in tables.  Detailed numerical results for simulations not included in these 

tables can be viewed in Appendix tables.   

Although the tables in this sub section only report results for the 𝑁𝑁(skew=3, 

kurtosis=61, 𝜌=0.1) specification, the 𝑁𝑁(skew=3, kurtosis=61, 𝜌=0.5) results can be 

viewed visually in figures NNU99, NNL99, NNU95, NNL95, NNU90 and NNL90 on 

pages 207-212.  In these figures the dashed horizontal line represents the target nominal 

one-sided error rate based on the 𝛼 significance level.  Each colored line represents a 
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different confidence interval method with error rates plotted at sample sizes 5, 10, 15, 20, 

30 and 40.  Plot points marked with cross symbols represent methods that use EBSD(𝑛).  

Plot points marked with triangles represent methods that use the Monte Carlo Bootstrap. 

For the 𝑁𝑁(skew=3, kurtosis=61, 𝜌=0.1) parameter specification at the specified 

𝛼 = 0.01 significance level, for the upper and lower limit, E-skew performed relatively 

less accurately compared to the other methods studied.  E-skew did not have the error rate 

with the smallest percent error at any sample size for either the upper or lower limit.  E-

skew also had an error rate with a larger percent error at each sample size compared to 

every other method applied on EBSD(𝑛) for both the upper and lower limit.   

At the 𝛼 = 0.10 significance level for the upper limit, E-skew was relatively more 

accurate compared to every other method studied for a few sample sizes.  E-skew 

achieved the error rate with the smallest percent error at both sample size 5 and 40 at this 

significance level.  Additionally, at the 𝛼 = 0.05 significance level for the upper limit, E-

skew achieved the error rate with the smallest percent error at sample size 5.  E-skew also 

performed relatively more accurately than every other method applied on EBSD(𝑛) for a 

few sample sizes at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the lower limit.  For 

this end of the confidence interval, E-skew had the error rate with the smallest percent 

error among methods applied on EBSD(𝑛) for one sample size at the 𝛼 = 0.05 

significance level and three sample sizes at the 𝛼 = 0.10 significance level. 

The EP method performed relatively more accurately than BP at the 𝛼 = 0.01 

significance level, and relatively less accurately than BP at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  At the 𝛼 = 0.01 significance level for both the upper and lower limit, 
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EP had an error rate with an equal or smaller percent error at each sample size when 

compared to BP.  However, at the 𝛼 = 0.05 significance level for both the upper and 

lower limit, EP had an error rate with a smaller percent error at only four sample sizes.  

Further, at the 𝛼 = 0.10 significance level, EP had an error rate with a smaller percent  

error compared to BP at one sample size for the lower limit and no sample sizes for the 

upper limit.  Conversely from what was seen for the simulation from the bivariate normal 

distribution, EBC performed relatively less accurate to BC at both the 𝛼 = 0.01 and 𝛼 = 

0.10 significance levels for both limit ends.  The error rate for ET was 0 or near 0 at each 

sample size for both the upper and lower limit at each significance level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



203 

 

 

Table: Pearson Correlation Coefficient - NNU99 Upper limit error rate (𝜶 = 0.01), 

Bivariate non-Normal Distribution, Bivariate Non-Normal(Skew=3, Kurtosis=61, ρ = 

0.1), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 0.0115 
 

(130%) 

0.0104 
 

(108%) 

0.0125 
 

(150%) 

0.0113 
 

(126%) 

0.0121 
 

(142%) 

0.0101 
 

(102%) 

BT 0 
 

(100%) 

0.0025 

 

(50%) 

0.0039 
 

(22%) 

0.0059 

 

(18%) 

0.0037 

 

(26%) 

0.0057 

 

(14%) 

ET 0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

0 

 
(100%) 

BC 0 

 

(100%) 

0.0019 

 

(62%) 

0.0042 

 

(16%) 

0.0038 

 

(24%) 

0.0032 

 

(36%) 

0.004 

 

(20%) 

EBC 0.0011 

 

(78%) 

0 
 

(100%) 

0 
 

(100%) 

0 
 

(100%) 

1e-04 
 

(98%) 

1e-04 
 

(98%) 

BP 

 

0.3094 

 
(6088%) 

0.0315 

 
(530%) 

0.014 

 
(180%) 

0.012 

 
(140%) 

0.01 

 
(100%) 

0.0104 

 
(108%) 

EP 0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

BS 0 
 

(100%) 

0.0019 
 

(62%) 

0.0042 

 

(16%) 

0.0038 
 

(24%) 

0.0032 
 

(36%) 

0.004 
 

(20%) 

𝑩𝑪𝒂 0.4912 
 

(9724%) 

0.0152 
 

(204%) 

0.0111 
 

(122%) 

0.0136 
 

(172%) 

0.0149 
 

(198%) 

0.0163 
 

(226%) 
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Table: Pearson Correlation Coefficient - NNL99 Lower limit error rate (𝜶 = 0.01), 

Bivariate non-Normal Distribution, Bivariate Non-Normal(Skew=3, Kurtosis=61, ρ = 

0.1), Bootstraps=10000 

Sample size 5 10 15 20 30 40 

E-skew 0.0179 
 

(258%) 

0.0224 
 

(348%) 

0.0178 
 

(256%) 

0.0184 
 

(268%) 

0.0178 
 

(256%) 

0.0181 
 

(262%) 

BT 0 

 
(100%) 

0.0059 

 
(18%) 

0.0073 

 
(46%) 

0.0053 

 

(6%) 

0.0044 

 

(12%) 

0.0057 

 

(14%) 

ET 1e-04 

 

(98%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

0 

 

(100%) 

BC 3e-04 
 

(94%) 

0.0057 
 

(14%) 

0.0063 
 

(26%) 

0.0042 
 

(16%) 

0.0034 
 

(32%) 

0.0039 
 

(22%) 

EBC 0.0028 

 
(44%) 

0.001 

 
(80%) 

2e-04 

 
(96%) 

2e-04 

 
(96%) 

0 

 
(100%) 

3e-04 

 
(94%) 

BP 

 

0.0211 

 

(322%) 

0.0145 

 

(190%) 

0.0181 

 

(262%) 

0.0176 

 

(252%) 

0.0175 

 

(250%) 

0.0179 

 

(258%) 

EP 0.0077 
 

(54%) 

0.0011 
 

(78%) 

1e-04 
 

(98%) 

1e-04 
 

(98%) 

2e-04 
 

(96%) 

1e-04 
 

(98%) 

BS 3e-04 

 
(94%) 

0.0057 

 

(14%) 

0.0063 

 

(26%) 

0.0042 

 
(16%) 

0.0034 

 
(32%) 

0.0039 

 
(22%) 

𝑩𝑪𝒂 0.0029 

 

(42%) 

0.0086 

 
(72%) 

0.0115 

 
(130%) 

0.013 

 
(160%) 

0.0179 

 
(258%) 

0.0184 

 
(268%) 

Simulation were not only performed for the 𝑁𝑁(skew=3, kurtosis=61, 𝜌=0.1) 

parameter specification.  Simulations were also performed for the 𝑁𝑁(skew=3, 

kurtosis=61, 𝜌=0.5) specification.  When considering a change in parameter specification 

(i.e. increasing the correlation between the paired samples from 0.1 to 0.5) E-skew 

performed relatively less accurately than the other methods studied across 𝛼 significance 

level.  At the 𝛼 = 0.01 significance level for the upper limit, E-skew had the error rate 

with a larger percent error compared to every method but BS/BC.  For the lower limit at 

this significance level, E-skew had an error rate with a larger percent error compared to 

every other method.  When increasing the significance level, E-skew performed relatively 
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more accurately for the upper limit compared to the other methods studied than it did at 

the 𝛼 = 0.01 significance level.  E-skew attained the error rate with the smallest percent at 

one sample for each of the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  However, for the 

lower limit at these significance levels, E-skew was still among the least accurate 

methods.  E-skew was the method with the largest percent error at each sample size.   

EP performed relatively more accurately compared to BP at the 𝛼 = 0.01 and 𝛼 = 

0.05 significance levels for the lower limit.  At the 𝛼 = 0.01 significance level for the 

lower limit, EP attained an error rate with a smaller percent error at each sample size.  For 

the 𝛼 = 0.05 significance level for the lower limit, EP attained an error rate with a smaller 

percent error for five of six sample sizes.  However, at the 𝛼 = 0.10 significance level for 

the lower limit, EP had an error rate with a larger percent error at five of six sample sizes.  

For the upper limit, EP performed relatively less accurately compared to BP.  EP had an 

error rate with a larger percent error for most sample sizes at each significance level 

compared to BP.   

At the 𝛼 = 0.01 significance level for the lower limit, EBC performed relatively 

more accurately than BC.  EBC achieved the error rate with the smallest percent error 

compared to all other methods at five of six sample sizes for the lower limit at this 

significance level.  In addition, for the upper limit at this significance level, it achieved 

the error rate with the smallest percent error compared to every other method at sample 

size 40.  Then when 𝛼 significance level was modified, EBC performed less accurately 

compared to BC at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  At the 𝛼 = 0.05 

significance level, EBC had an error rate with a larger percent error for half the sample 

sizes when compared to BC for both the upper and lower limit.  At the 𝛼 = 0.10 
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significance level, EBC had an error rate with a larger percent error for five of six sample 

sizes for both the upper and lower limit.  

The error rate for ET was again at or near 0 at each sample size and significance 

level when the correlation was increased from 0.1 to 0.5.  
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Figure: Pearson Correlation Coefficient - NNU99 - One-Sided Upperlimit Error Rates for 99% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NNL99 - One-Sided Lowerlimit Error Rates for 99% CI for the Bivariate 

Normal Distribution 

 

 



209 

 

Figure: Pearson Correlation Coefficient - NNU95 - One-Sided Upperlimit Error Rates for 95% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NNL95 - One-Sided Lowerlimit Error Rates for 95% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NNU90 - One-Sided Upperlimit Error Rates for 90% CI for the Bivariate 

Normal Distribution 
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Figure: Pearson Correlation Coefficient - NNL90 - One-Sided Lowerlimit Error Rates for 90% CI for the Bivariate 

Normal Distribution 
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Pearson Correlation Coefficient Results for methods using EBSD(𝒏) 

In general, the E-skew method was relatively accurate compared to other methods 

for the Pearson correlation coefficient when data was generated from a bivariate normal 

distribution.  E-skew performed relatively most accurately when the correlation specified 

was 𝜌=0.1.  As the Pearson coefficient was increased close to the boundary (the 

coefficient must be bounded between -1, and 1) E-skew performed relatively less 

accurately.  In general, E-skew achieved the error rate with the smallest percent error in 

comparison to all other methods the most frequently at the 𝛼 = 0.05 significance level 

when 𝜌=0.1 and the data generated was bivariate normal.      

For moderately skewed data, like data generated from the bivariate non-normal 

distribution, E-skew did not perform as accurately.  When 𝜌=0.1, E-skew performed 

relatively less accurately than both Monte Carlo Bootstrap and other EBSD(𝑛) methods 

at the 𝛼 = 0.01 significance level.  Additionally, when the significance level was 

modified, E-skew frequently had an error rate with a larger percent error compared to at 

least one Monte Carlo Bootstrap method.  Although this was the case, E-skew did 

perform relatively more accurately compared to other methods applied on EBSD(𝑛) at 

the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  When the Pearson correlation coefficient 

was increased to 𝜌=0.5 E-skew also performed relatively less accurately compared to the 

other methods studied.  For the lower limit, E-skew performed the least accurately 

compared to any other method.  For the upper limit it generally had error rates with larger 

percent errors than other methods applied on EBSD(𝑛) and Monte Carlo Bootstrap 

methods.   
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Regardless of the parameter specification and distribution drawn from, other 

methods applied on EBSD(𝑛) varied in relative accuracy at each significance level.  EP 

performed relatively more accurately at the 𝛼 = 0.01 significance level, and relatively less 

accurately when significance level was modified.  EBC performed relatively more 

accurately at the 𝛼 = 0.10 significance level and less accurately as significance level 

decreased.  ET had an error rate near 0 regardless of the sample size, significance level 

and distribution the data was drawn from consequently indicating the method was 

generating intervals that were far too large.   

4.4 Trimmed Sample Mean 

For the trimmed sample mean portion of the simulation study, results for four 

different sample sizes are reported (𝑛 = 10, 20, 30, and 40).  For each of these sample 

sizes, confidence interval error rates are reported at the 𝛼 = 0.01, 0.05, and 0.10 

significance levels.   

The probability distributions used in the simulation study for the trimmed sample 

mean were the normal, exponential, gamma, log-normal, and mixture of two normal 

distributions. For each distribution, the population parameters specified are displayed 

below in Table 4.4.  These parameter specifications are the same as the specifications for 

the sample mean in Table 3.5 in Chapter 3.     

For each sample size, population parameter specification, and probability 

distribution combination 10,000 separate samples were generated.  For the Monte Carlo 

Bootstrap confidence interval methods each of the 10,000 samples used 10,000 Monte 

Carlo Bootstrap resamples to create its Bootstrap sampling distribution.  The comparisons 
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discussed in this section are made between EBSD(𝑛) methods and Bootstrap methods 

that use 10,000 Bootstrap resamples.  In addition, confidence interval method error rate 

results were measured on the same 10,000 unique samples using 500 Bootstrap 

resamples.  This alternative Bootstrap resampling level was performed for each 

distribution tested.  The error rate results at these additional Bootstrap resampling levels 

are reported in the Appendix.  Each generated unique sample had confidence intervals 

computed using the confidence interval methods listed below.  

 For methods using EBSD(𝑛) this included: E-skew, ET, EBC, EP, 𝐸𝐵𝐶𝑎, and ES.   

 For methods using the Monte Carlo Bootstrap this includes: BT, BC, BP, 

𝐵𝐶𝑎/ABC, and BS. 

Below in Table 4.4 is a description of the parameter specifications used for the 

trimmed sample mean statistic in this simulation study: 

Table 4.4 Simulation Parameter Specifications for the Trimmed Sample Mean Statistic 

Probability distribution Population Parameter       Parameter code: 

Specified Parameter Values 

Normal distribution (𝜇,𝜎)        N1: (50, 1)  

        

 

Exponential distribution (𝜆)        E1: (0.1) 

 

Gamma distribution (𝛼, 𝜆)       G1: (2, 2) 

Log-normal distribution (𝜇,𝜎)       LN1: (4, 0.2) 

Mixture of two normal 

distributions 
(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2)       M1: (4, 4, 0.6, 8, 8, 0.4) 

 

a. Normal Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the trimmed sample mean when data is 

normally distributed.  The second is to compare the accuracy of other methods that use 
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the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap methods again for the 

trimmed sample mean when data is normally distributed.  First the results for data 

generated from 𝑁(𝜇 = 50, 𝜎 = 1) distribution at the 𝛼 = 0.01 significance level are 

discussed.  These confidence interval method error rates and their corresponding percent 

errors can be viewed and compared to one another in each of tables N1U99 and N1L99 

on pages 218 and 219 below.  Detailed numerical results for error rate results tested at the 

𝛼 = 0.05 and 𝛼 = 0.10 significance levels, as well as error rate results for Monte Carlo 

Bootstrap methods where 500 bootstrap resamples were specified can be viewed in 

Appendix tables.  Results can also be viewed visually in figures N99, N95, and N90 on 

pages 220-222.   

In these figures the dashed horizontal line represents the target nominal one-sided 

error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 

10, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

For the 𝑁(𝜇 = 50, 𝜎 = 1) parameter specification at the specified 𝛼 = 0.01 

significance level, for the upper limit, E-skew did not have the error rate with the smallest 

percent error at any sample size.  E-skew also did not have the error rate with the smallest 

percent error of any method using EBSD(𝑛) at any sample size at this significance level.  

The percentile methods, EP and EBC, were more accurate at the 𝛼 = 0.01 significance 

level relative to E-skew and Monte Carlo Bootstrap methods.  At sample sizes 10, 20, and 

30, EP had the error rate with the smallest percent error for the upper and lower limit.  
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Additionally, the EBC method had the error rate with the smallest percent error at sample 

size 40 for the upper and lower limit.  These results are shown below in N1U99 and 

N1L99.  These results can also be viewed visually in figure N99.   

The E-skew method demonstrates its relative value when comparing the error 

rates across 𝛼 significance level.  The E-skew method was more accurate relative to the 

other methods applied on EBSD(𝑛) when the 𝛼 significance level modified from 𝛼 = 

0.01 to 𝛼 = 0.10.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper and 

lower limit, E-skew achieved the error rate with the smallest percent error among all 

methods applied on EBSD(𝑛) at all four sample sizes.  Additionally, when comparing E-

skew to Monte Carlo Bootstrap methods it had an error rate with a smaller percent error 

than any method except BS. 

Compared to their Monte Carlo Bootstrap counterpart, the percentile methods 

EBC and EP, performed relatively more accurately compared at the 𝛼 = 0.01 significance 

level and relatively less accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  EP 

and EBC both had error rates with smaller percent errors at every sample size for both the 

upper and lower limit at the 𝛼 = 0.01 significance level compared to BP and BC 

respectively.  Then when the 𝛼  significance level was modified to 𝛼 = 0.05, both 

methods had error rates with larger percent errors at three of four sample sizes for both 

the upper and lower limit.  At the 𝛼 = 0.10 significance level for both limits, EP and EBC 

performed even relatively less accurately compared to BP and BC, having error rates with 

a larger percent error at every sample size for each comparison respectively.   
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ET did not attain the error rate with the smallest percent error at any 𝛼 

significance level.  It did, however, perform about equally well to BT; ET achieved an 

error rate with a smaller percent error than BT for about half the sample sizes studied for 

both the upper and lower limit.    

Table: Trimmed Sample Mean - N1U99 Upper limit error rate (𝜶 = 0.01), Normal 

Distribution, 𝑵(𝝁 = 50, 𝝈 =1), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0128 

 

(156%) 

0.022 

 

(340%) 

0.0237 

 

(374%) 

0.0307 

 

(514%) 

BT 0.0158 
 

(216%) 

0.0241 
 

(382%) 

0.0262 
 

(424%) 

0.0332 
 

(564%) 

ET 0.0158 

 
(216%) 

0.0244 

 
(388%) 

0.0265 

 
(430%) 

0.0323 

 
(546%) 

BC 0.0547 

 

(994%) 

0.045 

 

(800%) 

0.038 

 

(660%) 

0.0421 

 

(742%) 

EBC 

 

0.0148 
 

(196%) 

0.0072 
 

(44%) 

0.0029 
 

(42%) 

0.0267 

 

(434%) 

BP 

 

0.0502 

 
(904%) 

0.0444 

 
(788%) 

0.0377 

 
(654%) 

0.04 

 
(700%) 

EP 0.0123 

 

(146%) 

0.0069 

 

(38%) 

0.0031 

 

(38%) 

0.0298 

 

(496%) 

BS 0.0124 
 

(148%) 

0.018 
 

(260%) 

0.0196 
 

(292%) 

0.0283 
 

(466%) 

𝑩𝑪𝒂 0.0478 
 

(856%) 

0.0423 
 

(746%) 

0.0363 
 

(626%) 

0.0402 
 

(704%) 
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Table: Trimmed Sample Mean - N1L99 Lower limit error rate (𝜶 = 0.01), Normal 

Distribution, 𝑵(𝝁 = 50, 𝝈 =1), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0147 

 
(194%) 

0.0244 

 
(388%) 

0.0251 

 
(402%) 

0.0248 

 
(396%) 

BT 0.0185 

 

(270%) 

0.0279 

 

(458%) 

0.0282 

 

(464%) 

0.0267 

 

(434%) 

ET 0.0185 
 

(270%) 

0.0283 
 

(466%) 

0.0283 
 

(466%) 

0.0265 
 

(430%) 

BC 0.0572 

 

(1044%) 

0.0456 

 

(812%) 

0.0396 

 

(692%) 

0.0358 

 

(616%) 

EBC 

 

0.0153 

 
(206%) 

0.008 

 
(60%) 

0.0044 

 
(12%) 

0.021 

 

(320%) 

BP 

 

0.0544 

 

(988%) 

0.043 

 

(760%) 

0.0388 

 

(676%) 

0.0346 

 

(592%) 

EP 0.0146 

 

(192%) 

0.0068 

 

(36%) 

0.0046 

 

(8%) 

0.0253 
 

(406%) 

BS 0.0148 

 
(196%) 

0.0214 

 
(328%) 

0.0222 

 
(344%) 

0.0222 

 
(344%) 

𝑩𝑪𝒂 0.0555 

 

(1010%) 

0.0414 

 

(728%) 

0.0377 

 

(654%) 

0.0339 

 

(578%) 
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       Figure: Trimmed Sample Mean - N99 - One-Sided Error Rates for 99% CI for the Normal Distribution 
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Figure: Trimmed Sample Mean - N95 - Error Rates for 95% CI for the Normal Distribution 
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Figure: Trimmed Sample Mean: N90 - One-Sided Error Rates for 90% CI for the Normal Distribution 
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b. Exponential Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the trimmed sample mean statistic on data 

drawn from an exponential distribution.  The second is to compare the accuracy of other 

methods that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap 

methods for this same statistic and distribution.  First the results for data generated from 

Exp(𝜆 = 0.10) distribution at the 𝛼 = 0.01 significance level are considered.  These 

confidence interval method error rates and their corresponding percent errors can be 

viewed and compared to one another in each of tables E1U99 and E1L99 on pages 226 

and 227 below.  Detailed numerical results for error rate results tested at the 𝛼 = 0.05 and 

𝛼 = 0.10 significance levels, as well as error rate results for Monte Carlo Bootstrap 

methods where 500 bootstrap resamples were specified can be viewed in Appendix 

tables.  Results can also be viewed visually in figures E99, E95, and E90 on pages 228-

230.   

In these figures the dashed horizontal line represents the target nominal one-sided 

error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 

10, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

For the Exp(𝜆 = 0.10) parameter specification at the specified 𝛼 = 0.01 

significance level, for the upper limit, E-skew did not have the error rate with the smallest 
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percent error at any sample size.  E-skew also did not have the error rate with the smallest 

percent error of any method using EBSD(𝑛) at any sample size at this significance level.  

EP performed relatively accurately compared to the other methods applied on EBSD(𝑛) 

for the upper limit at this 𝛼 = 0.01 significance level.  Namely, at sample sizes 10, 20, and 

30 EP had the error rate with the smallest percent error for the upper and lower limit 

among all methods applied on EBSD(𝑛).  Additionally, the EBC method had the error 

rate with the smallest percent error at sample size 40 for both the upper and lower limit 

among all methods applied on EBSD(𝑛) and had the smallest among every method 

compared for the lower limit at sample size 40.  These results are shown below in E1U99 

and E1L99.  These results can also be viewed visually in figure E99.   

The E-skew method demonstrates its relative value when comparing the error 

rates across 𝛼 significance level.  In the case of the Exp(𝜆 = 0.10) distribution, the E-

skew method’s accuracy relative to percentile methods applied on EBSD(𝑛) when the 𝛼 

significance level was modified from 𝛼 = 0.01 to 𝛼 = 0.05 and 𝛼 = 0.10 for the upper 

limit.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit, E-skew 

achieved the error rate with the smallest percent error among all methods applied on 

EBSD(𝑛) at all four sample sizes.   

EP performed relatively more accurately compared to the other methods applied 

on EBSD(𝑛) at the 𝛼 = 0.01 significance level than it did at the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  At the 𝛼 = 0.01 significance level for the upper limit, EP attained the 

error rate with the smallest percent error among methods applied on EBSD(𝑛) at sample 

sizes 10 and 20.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit 
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however, EP failed to attain the error rate with the smallest percent error among methods 

applied on EBSD(𝑛) at any sample size.  For the upper limit the same could be said of 

the EBC.  However for the lower limit, EBC did perform relatively more accurately 

compared to the other methods studied across 𝛼 significance level.  At the 𝛼 = 0.05 

significance level, EBC attained the error rate with the smallest percent error compared to 

every other method at three of four sample sizes.  Further at the 𝛼 = 0.10 significance 

level, EBC attained the error rate with the smallest percent error compared to every other 

method at every sample size studied.   

Similarly, for the upper limit, the percentile methods applied on EBSD(𝑛) 

performed relatively accurately compared to their Monte Carlo Bootstrap counterparts at 

the 𝛼 = 0.01 significance level.  EP had an error rate with a smaller percent error for three 

of four sample sizes when compared to BP and EBC did for all four sample sizes when 

compared to BC.  Then when significance level was modified to 𝛼 = 0.05 and 𝛼 = 0.10, 

EBC had an error rate with a larger percent compared to BC for three of the four sample 

sizes studied.  Similarly, EP had an error rate that was larger for three of the four sample 

sizes at the 𝛼 = 0.05 significance level, and for all four sample sizes at the 𝛼 = 0.10 

significance level.   

ET did not attain the error rate with the smallest percent error at any 𝛼 

significance level.  It did, however, perform about equally well to BT; ET achieved an 

error rate with a smaller percent error than BT for about half the sample sizes studied for 

both the upper and lower limit.  The two methods alternated which had a higher and 

which a lower percent error across sample size, and their percent errors were 

approximately equivalent.    
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Table: Trimmed Sample Mean - E1U99 Upper limit error rate (𝜶 = 0.01), Exponential 

Distribution, 𝑬𝒙𝒑(𝝀 = 0.10), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.1211 

 
(2322%) 

0.1747 

 
(3394%) 

0.2176 

 
(4252%) 

0.2679 

 
(5258%) 

BT 0.1338 

 

(2576%) 

0.1838 

 

(3576%) 

0.2219 

 

(4338%) 

0.2742 

 

(5384%) 

ET 0.1337 
 

(2574%) 

0.1835 
 

(3570%) 

0.2228 
 

(4356%) 

0.2748 
 

(5396%) 

BC 0.2501 

 

(4902%) 

0.2621 

 

(5142%) 

0.287 

 

(5640%) 

0.329 

 

(6480%) 

EBC 

 

0.1606 

 
(3112%) 

0.1023 

 
(1946%) 

0.0906 

 
(1712%) 

0.1515 

 
(2930%) 

BP 

 

0.1982 

 

(3864%) 

0.2076 

 

(4052%) 

0.238 

 

(4660%) 

0.2846 

 

(5592%) 

EP 0.0858 
 

(1616%) 

0.0907 
 

(1714%) 

0.0999 
 

(1898%) 

0.3264 
 

(6428%) 

BS 0.0585 

 

(1070%) 

0.0882 

 

(1664%) 

0.1273 

 

(2446%) 

0.1779 

 

(3458%) 

𝑩𝑪𝒂 0.167 

 

(3240%) 

0.1695 

 

(3290%) 

0.1972 

 

(3844%) 

0.2424 

 

(4748%) 
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Table: Trimmed Sample Mean - E1L99 Lower limit error rate (𝜶 = 0.01), Exponential 

Distribution, 𝑬𝒙𝒑(𝝀 = 0.10), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0012 

 
(76%) 

0.001 

 
(80%) 

5e-04 

 
(90%) 

1e-04 

 
(98%) 

BT 0.0015 

 

(70%) 

0.0011 

 

(78%) 

6e-04 

 

(88%) 

3e-04 

 

(94%) 

ET 0.0015 
 

(70%) 

0.001 
 

(80%) 

6e-04 
 

(88%) 

3e-04 
 

(94%) 

BC 0.0079 

 

(58%) 

0.0021 

 

(58%) 

0.001 

 

(80%) 

6e-04 

 

(88%) 

EBC 

 

0.0012 

 
(76%) 

4e-04 

 
(92%) 

0 

 
(100%) 

0.0011 

 

(78%) 

BP 

 

0.0106 

 

(112%) 

0.0029 

 

(42%) 

0.0018 

 

(64%) 

8e-04 

 

(84%) 

EP 0.0013 
 

(74%) 

1e-04 
 

(98%) 

0 
 

(100%) 

1e-04 
 

(98%) 

BS 0.0022 

 

(56%) 

0.0014 

 
(72%) 

0.0012 

 
(76%) 

4e-04 

 
(92%) 

𝑩𝑪𝒂 0.0128 

 

(156%) 

0.004 

 

(20%) 

0.0021 

 

(58%) 

0.0011 

 

(78%) 
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Figure: Trimmed Sample Mean - E99 - One-Sided Error Rates for 99% CI for the Exponential Distribution 
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Figure: Trimmed Sample Mean - E95 - One-Sided Error Rates for 95% CI for the Exponential Distribution 
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Figure: Trimmed Sample Mean - E90 - One-Sided Error Rates for 90% CI for the Exponential Distribution 
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c. Gamma Distribution 

The first purpose of this sub section is to compare the performance of E-skew to 

the accuracy of all other methods studied for the trimmed sample mean statistic on data 

drawn from a gamma distribution.  The second is to compare the accuracy of other 

methods that use the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap 

methods for this same statistic and distribution.  First the results for data generated from 

gamma(𝛼=2, 𝜆 = 2) distribution at the 𝛼 = 0.01 significance level are considered.  These 

confidence interval method error rates and their corresponding percent errors can be 

viewed and compared to one another in each of tables G1U99 and G1L99 on pages 234 

and 235 below.  Detailed numerical results for error rate results tested at the 𝛼 = 0.05 and 

𝛼 = 0.10 significance levels, as well as error rate results for Monte Carlo Bootstrap 

methods where 500 bootstrap resamples were specified can be viewed in Appendix 

tables.  Results can also be viewed visually in figures G99, G95, and G90 on pages 236-

238.   

In these figures the dashed horizontal line represents the target nominal one-sided 

error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 

10, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

For the gamma(𝛼=2, 𝜆 = 2) parameter specification at the specified 𝛼 = 0.01 

significance level, for both the upper and lower limit, E-skew did not have the error rate 
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with the smallest percent error at any sample size.  E-skew also did not have the error rate 

with the smallest percent error of any method using EBSD(𝑛) at any sample size at this 

significance level.  EP performed relatively accurately for the upper limit at this 𝛼 = 0.01 

significance level compared to the other methods studied.  Namely, at sample sizes 10 

and 20 EP had the error rate with the smallest percent error for the upper limit among all 

methods considered.  Additionally, the EBC method had the error rate with the smallest 

percent error at sample sizes 30 and 40 for the upper limit among all methods considered.  

These results are shown below in G1U99 and G1L99.  These results can also be viewed 

visually in figure G99.   

The E-skew method demonstrates its relative value when comparing the error 

rates across 𝛼 significance level.  In the case of the gamma(𝛼=2, 𝜆 = 2) distribution, the 

E-skew method’s accuracy improved relative to the percentile methods applied on 

EBSD(𝑛) when the 𝛼 significance level was modified from 𝛼 = 0.01 to 𝛼 = 0.05 and 𝛼 = 

0.10 for the upper limit.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper 

limit, E-skew achieved the error rate with the smallest percent error among all methods 

applied on EBSD(𝑛) at all four sample sizes.   

Compared to the other methods studied, EP performed relatively more accurately 

at the 𝛼 = 0.01 significance level and relatively less accurately at the 𝛼 = 0.05 and 𝛼 = 

0.10 significance levels.  At the 𝛼 = 0.01 significance level for the upper limit, EP 

attained the error rate with the smallest percent error among methods applied on 

EBSD(𝑛) at sample sizes 10, and 20.  Then at the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels for the upper limit, EP failed to attain the error rate with the smallest percent error 

at any sample size.  For the upper limit the same could be said of the EBC.  However for 
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the lower limit, EBC did perform relatively accurately compared to the other methods 

studied across 𝛼 significance level.  At the 𝛼 = 0.05 significance level for the lower limit, 

EBC attained the error rate with the smallest percent error compared to all other methods 

at two of four sample sizes.  Further at the 𝛼 = 0.10 significance level for the lower limit, 

EBC attained the error rate with the smallest percent error at sample size 40.  For the 

lower limit EP also attained the error rate with the smallest percent error at the 𝛼 = 0.05 

significance level at sample size 40, and the smallest percent error at the 𝛼 = 0.10 

significance level at sample size 30.   

At the 𝛼 = 0.01 significance level for the upper limit, the percentile methods 

applied on EBSD(𝑛) performed relatively accurately compared to their Monte Carlo 

Bootstrap counterparts.  EP had an error rate with a smaller percent error for three of four 

sample sizes when compared to BP and EBC did for all four sample sizes when compared 

to BC.  Then when significance level was modified to 𝛼 = 0.05 and 𝛼 = 0.10, EBC and 

EP were relatively less accurate than BC and BP.  EP and EBC had an error rates that 

were larger for three of the four sample sizes for the upper limit at the 𝛼 = 0.05 

significance level, and for all four sample sizes at the 𝛼 = 0.10 significance level when 

compared to their Monte Carlo Bootstrap counterpart.  At the 𝛼 = 0.05 and 𝛼 = 0.10 

significance level for the lower limit, both EP and EBC attained an error rate with a 

smaller percent error at three of four sample sizes considered compared to their Monte 

Carlo Bootstrap counterpart.    

Again similar results were found when comparing ET to BT.  At each significance 

level and sample size studied ET and BT had error rates with approximately equivalent 

percent errors.  
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Table: Trimmed Sample Mean - G1U99 Upper limit error rate (𝜶 = 0.01), Gamma 

Distribution, gamma(𝜶 =2, 𝝀=2), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0757 

 
(1414%) 

0.1039 

 
(1978%) 

0.1306 

 
(2512%) 

0.162 

 
(3140%) 

BT 0.0861 

 

(1622%) 

0.1101 

 

(2102%) 

0.1364 

 

(2628%) 

0.1686 

 

(3272%) 

ET 0.0859 
 

(1618%) 

0.1107 
 

(2114%) 

0.1364 
 

(2628%) 

0.168 
 

(3260%) 

BC 0.178 

 

(3460%) 

0.1674 

 

(3248%) 

0.184 

 

(3580%) 

0.2092 

 

(4084%) 

EBC 

 

0.0946 

 
(1792%) 

0.0489 

 
(878%) 

0.0422 

 

(744%) 

0.0966 

 

(1832%) 

BP 

 

0.1471 

 

(2842%) 

0.1381 

 

(2662%) 

0.1532 

 

(2964%) 

0.1814 

 

(3528%) 

EP 0.0559 

 

(1018%) 

0.0468 

 

(836%) 

0.0469 
 

(838%) 

0.1971 
 

(3842%) 

BS 0.0432 

 
(764%) 

0.0627 

 
(1154%) 

0.0864 

 
(1628%) 

0.1184 

 
(2268%) 

𝑩𝑪𝒂 0.1298 

 

(2496%) 

0.1189 

 

(2278%) 

0.1325 

 

(2550%) 

0.1581 

 

(3062%) 
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Table: Trimmed Sample Mean - G1L99 Lower limit error rate (𝜶 = 0.01), Gamma 

Distribution, gamma(𝜶 =2, 𝝀=2), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0028 

 
(44%) 

0.0027 

 
(46%) 

0.0023 

 
(54%) 

0.0021 

 
(58%) 

BT 0.0036 

 

(28%) 

0.0035 

 

(30%) 

0.0026 

 

(48%) 

0.0023 

 

(54%) 

ET 0.0036 

 

(28%) 

0.0035 
 

(30%) 

0.0026 
 

(48%) 

0.0022 
 

(56%) 

BC 0.0147 

 

(194%) 

0.0063 

 

(26%) 

0.004 

 

(20%) 

0.0032 

 

(36%) 

EBC 

 

0.003 

 
(40%) 

6e-04 

 
(88%) 

1e-04 

 
(98%) 

0.003 

 
(40%) 

BP 

 

0.0148 

 

(196%) 

0.0073 

 

(46%) 

0.0048 

 

(4%) 

0.0036 

 

(28%) 

EP 0.0035 
 

(30%) 

8e-04 
 

(84%) 

3e-04 
 

(94%) 

0.0015 
 

(70%) 

BS 0.0034 

 
(32%) 

0.0036 

 
(28%) 

0.0024 

 
(52%) 

0.0028 

 
(44%) 

𝑩𝑪𝒂 0.0167 

 

(234%) 

0.0091 

 

(82%) 

0.0056 

 

(12%) 

0.0042 

 

(16%) 
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Figure: Trimmed Sample Mean - G99 - One-Sided Error Rates for 99% CI for the Gamma Distribution 
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Figure: Trimmed Sample Mean - G99 - One-Sided Error Rates for 95% CI for the Gamma Distribution 
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Figure: Trimmed Sample Mean - G99 - One-Sided Error Rates for 90% CI for the Gamma Distribution 
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d. Log-Normal Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the trimmed sample mean statistic on data 

drawn from a log-normal distribution.  The second is to compare the accuracy of other 

methods that use the EBSD(𝑛) method to the accuracy of Monte Carlo Bootstrap 

methods for this same statistic and distribution.  First the results for data generated from a 

log-normal(𝜇=4, 𝜎 = 0.2) distribution at the 𝛼 = 0.01 significance level are considered.  

These confidence interval method error rates and their corresponding percent errors can 

be viewed and compared to one another in each of tables LN1U99 and LN1L99 on pages 

242 and 243 below.  Detailed numerical results for error rate results tested at the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels, as well as error rate results for Monte Carlo Bootstrap 

methods where 500 bootstrap resamples were specified can be viewed in Appendix 

tables.  Results can also be viewed visually in figures LN99, LN95, and LN90 on pages 

244-246.   

In these figures the dashed horizontal line represents the target nominal one-sided 

error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 

10, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

For the log-normal(𝜇=4, 𝜎 = 0.2) parameter specification at the specified 𝛼 = 0.01 

significance level, for the upper limit, E-skew did not have the error rate with the smallest 
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percent error at any sample size.  E-skew also did not have the error rate with the smallest 

percent error of any method using EBSD(𝑛) at any sample size at this significance level 

for the upper limit.  However, for the lower limit at this significance level, E-skew did 

attain the error rate with the smallest percent error at one sample size.   

EBC was relatively more accurate compared to the other methods studied for the 

upper limit at this 𝛼 = 0.01 significance level.  At sample sizes 20, 30, and 40 EBC had 

the error rate with the smallest percent error for the upper limit among all methods 

considered.  For the lower limit EBC attained the error rate with the smallest percent 

error at sample size 10.  These results are shown below in LN1U99 and 4LN1L99.  These 

results can also be viewed visually in figure LN99.   

The E-skew method demonstrates its value when comparing the error rates across 

𝛼 significance level.  In the case of the log-normal(𝜇=4, 𝜎 = 0.2) distribution, the E-skew 

method’s accuracy improved relative to percentile methods applied on EBSD(𝑛) when 

the 𝛼 significance level was modified from 𝛼 = 0.01 to 𝛼 = 0.05 and  𝛼 = 0.10 for the 

lower limit.  At the 𝛼 = 0.05 significance level for the lower limit, E-skew achieved the 

error rate with the smallest percent error among all methods at all four sample sizes.  At 

the and 𝛼 = 0.10 significance level for the lower limit, E-skew achieved the error rate 

with the smallest percent error at three of four sample sizes.  For the upper limit at both 

significance levels, E-skew achieved the error rate with the smallest percent error among 

all methods applied on EBSD(𝑛) and second smallest overall to BS.   

EBC performed relatively accurately compared to the other methods studied at the 

𝛼 = 0.01 significance level.  At the 𝛼 = 0.01 significance level for the upper limit, EBC 
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attained the error rate with the smallest percent error among methods applied on 

EBSD(𝑛) at sample sizes 20, 30 and 40.  Then at the 𝛼 = 0.05 and 𝛼 = 0.10 significance 

levels EBC failed to attain the error rate with the smallest percent error at any sample 

size.    

At the 𝛼 = 0.01 significance level for both the upper and lower limit, the 

percentile methods applied on EBSD(𝑛) performed relatively accurately compared to 

their Monte Carlo Bootstrap counterparts.  EP had an error rate with a smaller percent 

error for all four sample sizes when compared to BP and EBC did for all four sample 

sizes when compared to BC.  Then when significance level was modified to 𝛼 = 0.05, 

EBC had an error rate with a larger percent error compared to BC for three of the four 

sample sizes studied.  When significance level was modified to 𝛼 = 0.10, EBC had an 

error rate with a larger percent compared to BC for all four sample sizes studied.  

Similarly, EP had an error rates with a larger percent error for three of the four sample 

sizes for the upper and lower limit at the 𝛼 = 0.05 significance level when compared to 

their Monte Carlo Bootstrap counterpart.  At the 𝛼 = 0.10 significance level, for the upper 

limit and lower limit, EP had a larger percent error at each sample size when compared to 

their Monte Carlo Bootstrap counterpart.    

Again similar results were found when comparing ET to BT.  At each significance 

level and sample size studied ET and BT had error rates with approximately equivalent 

percent errors. 
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Table: Trimmed Sample Mean - LN1U99 Upper limit error rate (𝜶 = 0.01), Log-

Normal Distribution, log-normal(𝝁 = 4, 𝝈 =0.2), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.031 

 
(520%) 

0.0481 

 
(862%) 

0.0522 

 
(944%) 

0.0634 

 
(1168%) 

BT 0.0385 

 

(670%) 

0.0537 

 

(974%) 

0.0558 

 

(1016%) 

0.0663 

 

(1226%) 

ET 0.0387 

 

(674%) 

0.0541 

 

(982%) 

0.0558 

 

(1016%) 

0.0666 

 

(1232%) 

BC 0.097 
 

(1840%) 

0.0841 
 

(1582%) 

0.0791 
 

(1482%) 

0.0869 
 

(1638%) 

EBC 

 
0.0376 

 

(652%) 

0.0166 

 

(232%) 

0.0114 

 

(128%) 

0.0448 

 

(796%) 

BP 

 
0.0854 

 

(1608%) 

0.0752 
 

(1404%) 

0.0696 
 

(1292%) 

0.0794 
 

(1488%) 

EP 0.0262 

 
(424%) 

0.0198 

 
(296%) 

0.0123 

 
(146%) 

0.0701 

 
(1302%) 

BS 0.023 

 

(360%) 

0.0351 

 

(602%) 

0.0404 

 

(708%) 

0.0536 

 

(972%) 

𝑩𝑪𝒂 0.078 
 

(1460%) 

0.068 
 

(1260%) 

0.0641 
 

(1182%) 

0.0738 
 

(1376%) 
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Table: Trimmed Sample Mean - LN1L99 Lower limit error rate (𝜶 = 0.01), Log-

Normal Distribution, log-normal(𝝁 = 4, 𝝈 =0.2), Bootstraps=10000 

Sample size 10 20 30 40 

E-skew 0.0071 

 
(42%) 

0.0085 

 
(70%) 

0.0073 

 
(46%) 

0.007 

 

(40%) 

BT 0.009 

 
(80%) 

0.0103 

 
(106%) 

0.008 

 
(60%) 

0.0079 

 
(58%) 

ET 0.0091 

 

(82%) 

0.0103 

 

(106%) 

0.008 

 

(60%) 

0.0081 

 

(62%) 

BC 0.0324 
 

(548%) 

0.0192 
 

(284%) 

0.0134 
 

(168%) 

0.0107 
 

(114%) 

EBC 

 

0.0068 

 

(36%) 

0.0014 

 
(72%) 

7e-04 

 
(86%) 

0.009 

 
(80%) 

BP 

 

0.0321 

 

(542%) 

0.0204 

 

(308%) 

0.0137 

 

(174%) 

0.012 

 

(140%) 

EP 0.0079 
 

(58%) 

0.0022 
 

(56%) 

9e-04 
 

(82%) 

0.0082 
 

(64%) 

BS 0.0081 

 
(62%) 

0.0082 

 

(64%) 

0.0072 

 

(44%) 

0.0079 

 
(58%) 

𝑩𝑪𝒂 0.0324 

 

(548%) 

0.0216 

 

(332%) 

0.0143 

 

(186%) 

0.0129 

 

(158%) 
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Figure: Trimmed Sample Mean - LN99 - One-Sided Error Rates for 99% CI for the Log-Normal Distribution 
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Figure: Trimmed Sample Mean - LN95 - One-Sided Error Rates for 95% CI for the Log-Normal Distribution 
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Figure: Trimmed Sample Mean - LN90 - One-Sided Error Rates for 90% CI for the Log-Normal Distribution 
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e. Mixture Distribution 

The first purpose of this sub section is to compare the accuracy of E-skew to the 

accuracy of all other methods studied for the trimmed sample mean statistic on data 

drawn from the mixture of two normal distributions.  The second is to compare the 

accuracy of other methods that use the EBSD(𝑛) method to the accuracy of Monte Carlo 

Bootstrap methods for this same statistic and distribution.  First the results for data 

generated from a distribution at the 𝛼 = 0.01 significance level are considered.  These 

confidence interval method error rates and their corresponding percent errors can be 

viewed and compared to one another in each of tables MN1U99 and MN1L99 on pages 

250 and 251 below.  Detailed numerical results for error rate results tested at the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels, as well as error rate results for Monte Carlo Bootstrap 

methods where 500 bootstrap resamples were specified can be viewed in Appendix 

tables.  Results can also be viewed visually in figures MN99, MN95, and MN90 on pages 

252-254.   

In these figures the dashed horizontal line represents the target nominal one-sided 

error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 

10, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

For the 0.6*𝑁(𝜇1 = 4, 𝜎1 = 4) + 0.4*𝑁(𝜇2 = 8, 𝜎2 = 8) parameter specification 

at the specified 𝛼 = 0.01 significance level, for the upper limit, E-skew did not have the 
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error rate with the smallest percent error at any sample size.  E-skew did have the error 

rate with the smallest percent error for three of four sample sizes at this significance level 

for the lower limit.   

EP performed relatively accurately compared to the other methods studied for the 

upper limit at this 𝛼 = 0.01 significance level.  Namely, at sample size 10 EP and EBC 

both had the error rate with the smallest percent error for the upper limit among all 

methods considered.  For the lower limit EP attained the error rate with the smallest 

percent error at sample size 40.  Additionally, the EBC method had the error rate with the 

smallest percent error at sample sizes 20, 30 and 40 for the upper limit among all 

methods considered.  These results are shown below in MN1U99 and MN1L99.  These 

results can also be viewed visually in figure MN99.   

The E-skew method demonstrates its value when comparing error rates across 𝛼 

significance level.  Once again E-skew performed relatively more accurately at the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels compared to other methods applied on EBSD(𝑛).  

At both significance levels for the upper limit, E-skew attained the error rate with the 

smallest percent error at each sample size among methods applied on EBSD(𝑛).  At the 𝛼 

= 0.05 significance level for the lower limit, E-skew had the error rate with the smallest 

percent error for three of four sample sizes.  At the 𝛼 = 0.10 significance level for the 

lower limit, E-skew had the error rate with the smallest percent error at all four sample 

sizes studied. 

Again for this distributional case both methods, EP and EBC, at the 𝛼 = 0.05 and 

𝛼 = 0.10 significance levels for both limit ends, performed relatively less accurately than 
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their Monte Carlo Bootstrap counterpart.  At the 𝛼 = 0.05 significance level for both the 

upper and lower limit, EP had an error rate with a larger percent error for three of four 

sample sizes compared to BP.  At the 𝛼 = 0.10 significance level for the upper and lower 

limit, EP had an error rate with a larger percent error for all four sample sizes compared 

to BP.  For EBC similar results were found as what was found for EP.  EBC had an error 

rate with a larger percent error compared to BC at each significance level and for both 

limit ends for every sample size except sample size 5 at the 𝛼 = 0.01 significance level.   

Again similar results were found when comparing ET to BT to what was found 

when comparing ET to BT for the previous comparisons in this section.  At each 

significance level and sample size studied ET and BT had error rates with approximately 

equivalent percent errors. 
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Table: Trimmed Sample Mean - MN1U99 Upper limit error rate (𝜶 = 0.01), Mixture 

of two Normal Distributions: 0.6*𝑵𝟏(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟒) + 0.4*𝑵𝟐(𝝁𝟐 = 𝟖, 𝝈𝟐 =
𝟖), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎 

Sample size 10 20 30 40 

E-skew 0.0309 

 

(518%) 

0.0503 

 

(906%) 

0.0553 

 

(1006%) 

0.076 

 

(1420%) 

BT 0.0394 

 

(688%) 

0.0557 

 

(1014%) 

0.0589 

 

(1078%) 

0.0795 

 

(1490%) 

ET 0.039 
 

(680%) 

0.0557 
 

(1014%) 

0.0587 
 

(1074%) 

0.0792 
 

(1484%) 

BC 0.1021 

 
(1942%) 

0.0843 

 
(1586%) 

0.0825 

 
(1550%) 

0.1005 

 
(1910%) 

EBC 

 

0.0349 

 

(598%) 

0.0176 

 

(252%) 

0.0136 

 

(172%) 

0.0647 

 

(1194%) 

BP 

 
0.0953 

 

(1806%) 

0.0801 
 

(1502%) 

0.0771 
 

(1442%) 

0.0922 
 

(1744%) 

EP 0.0285 

 
(470%) 

0.0176 

 

(252%) 

0.0141 

 
(182%) 

0.0816 

 
(1532%) 

BS 0.0274 

 

(448%) 

0.0423 

 

(746%) 

0.0486 

 

(872%) 

0.0657 

 

(1214%) 

𝑩𝑪𝒂 0.0914 
 

(1728%) 

0.0776 
 

(1452%) 

0.0736 
 

(1372%) 

0.0871 
 

(1642%) 

 

 

 

 

 

 

 



251 

 

 

Table: Trimmed Sample Mean - MN1L99 Lower limit error rate (𝜶 = 0.01), Mixture 

of two Normal Distributions: 0.6*𝑵𝟏(𝝁𝟏 = 𝟒, 𝝈𝟏 = 𝟒) + 0.4*𝑵𝟐(𝝁𝟐 = 𝟖, 𝝈𝟐 =
𝟖), 𝐁𝐨𝐨𝐭𝐬𝐭𝐫𝐚𝐩𝐬 = 𝟏𝟎𝟎𝟎𝟎 

Sample size 10 20 30 40 

E-skew 0.0046 

 

(8%) 

0.0068 

 

(36%) 

0.0092 

 

(84%) 

0.0084 

 
(68%) 

BT 0.0059 

 

(18%) 

0.0086 

 

(72%) 

0.0106 

 

(112%) 

0.009 

 

(80%) 

ET 0.0059 
 

(18%) 

0.0087 
 

(74%) 

0.0106 
 

(112%) 

0.0091 
 

(82%) 

BC 0.0248 

 
(396%) 

0.0153 

 
(206%) 

0.0154 

 
(208%) 

0.0122 

 
(144%) 

EBC 

 

0.0043 

 

(14%) 

0.0024 

 

(52%) 

7e-04 

 

(86%) 

0.0139 

 

(178%) 

BP 

 
0.0301 

 

(502%) 

0.019 
 

(280%) 

0.0181 
 

(262%) 

0.0139 
 

(178%) 

EP 0.0055 
 

(10%) 

0.0018 
 

(64%) 

6e-04 
 

(88%) 

0.0063 

 

(26%) 

BS 0.0068 

 
(36%) 

0.0089 

 
(78%) 

0.0117 

 
(134%) 

0.0111 

 
(122%) 

𝑩𝑪𝒂 0.0339 

 

(578%) 

0.0222 

 

(344%) 

0.0203 

 

(306%) 

0.0169 

 

(238%) 
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Figure: Trimmed Sample Mean - MN99 - One-Sided Error Rates for 99% CI for the Mixure of two Normals 
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Figure: Trimmed Sample Mean - MN95 - One-Sided Error Rates for 95% CI for the Mixure of two Normals 
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Figure: Trimmed Sample Mean - MN90 - One-Sided Error Rates for 90% CI for the Mixure of two Normals 
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Trimmed Sample Mean Results Discussion for methods using EBSD(𝒏) 

In general, the E-skew method yielded error rates for the trimmed sample mean 

with smaller percent errors than any other method applied on EBSD(𝑛) for normally 

distributed data at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  In general, E-skew 

performed relatively more accurately in comparison to other methods at the 𝛼 = 0.05 and  

𝛼 = 0.10 significance levels than it did at the 𝛼 = 0.01 significance level.      

For moderately skewed data, like data generated from the exponential 

distribution, E-skew outperformed every other method implemented on EBSD(𝑛) at the 

𝛼 = 0.05 and 𝛼 = 0.10 significance levels for the upper limit. E-skew consistently 

performed better for the upper limit at these significance levels compared to any other 

method applied on EBSD(𝑛).   

Percentile methods applied on EBSD(𝑛) performed better at the 𝛼 = 0.01 

significance level.  At this significance level the method applied on EBSD(𝑛) 

outperformed their Monte Carlo Bootstrap counterpart frequently for both the upper and 

lower limit.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, percentile 

methods applied on EBSD(𝑛) performed less accurately than their Monte Carlo 

Bootstrap counterpart.  ET performed approximately equivalently well as BT for each 

distribution studied.   

4.5 Sample Median 

For the sample median portion of the simulation study, results for six different 

sample sizes are reported (𝑛 = 5, 10, 15, 20, 30, and 40).  For each of these sample sizes, 
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confidence interval error rates are reported at the 𝛼 = 0.01, 0.05, and 0.10 significance 

levels.   

The probability distributions used in the simulation study for the sample mean 

were the normal, exponential, Cauchy, log-normal, and mixture of two normal 

distributions. For each distribution, the population parameters specified are displayed 

below in Table 4.5.  These parameter specifications are the same as the specifications for 

the sample mean in Table 3.5 in Chapter 3.     

For each sample size, population parameter specification, and probability 

distribution combination 10,000 separate samples were generated.  For the Monte Carlo 

Bootstrap confidence interval methods each of the 10,000 samples used 5,000 Monte 

Carlo Bootstrap resamples to create its Bootstrap sampling distribution.  The comparisons 

discussed in this section are made between EBSD(𝑛) methods and Bootstrap methods 

that use 5,000 first level Bootstrap resamples.  In addition, confidence interval method 

error rate results were measured on the same 10,000 unique samples using 1000 and 500 

Bootstrap resamples.  This alternative Bootstrap resampling level was performed for each 

distribution tested. The error rate results at these additional Bootstrap resampling levels 

are reported in the Appendix.   

For the BS method second level Bootstrap iterations were required.  This is 

because a closed form solution for the variance of the sample median is not available for 

every sample size case studied.  Therefore, for the sake of consistency, second level 

Bootstraps were used for the BS method for every sample size studied in this section.  

Due to programming limitations only 5 second level Bootstrap iterations were able to be 
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performed computationally.  When using 5000 first level Bootstrap iterations BS still 

performed relatively accurately despite using only 5 second level Bootstrap iterations.  

E-skew confidence intervals were not generated for the median statistic.  E-skew 

confidence intervals were not generated because the median statistic is not effected by 

skewed data the same way the mean statistic is.  The purpose of E-skew is to provide 

adjusted confidence intervals in the case of data that is non-normally distributed so that 

the resulting confidence interval has an implied error rate that matches the theoretical 

nominal error rate.  The implied error rates for confidence intervals generated for the 

median statistic are not impacted by skew.  Therefore, using E-skew confidence intervals 

for the median statistic was deemed unnecessary.  Instead ET, EBC and EP confidence 

intervals alone should suffice in evaluating the viability of using EBSD(𝑛) to generate 

confidence intervals for the median statistic.  Each generated unique sample had 

confidence intervals computed using the confidence interval methods listed below.  

 For methods using EBSD(𝑛) this included: ET, EBC, and EP.  

 For methods using the Monte Carlo Bootstrap this includes: BT, BC, BP, 

𝐵𝐶𝑎/ABC, and BS. 

Below in Table 4.5 s a description of the parameter specifications used for the 

trimmed sample mean statistic in this simulation study: 
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Table 4.5 Simulation Parameter Specifications for the Median Statistic 

Probability distribution Population Parameter       Parameter code: 

Specified Parameter Values 

Normal distribution (𝜇, 𝜎)        N1: (4, 1)  

Exponential distribution (𝜆)        E1: (0.10)    

Cauchy distribution (𝑥0, 𝛾)        C1: (0, 1) 

Log-Normal distribution (𝜇, 𝜎)        L1: (4, 0.2) 

Mixture of two normal 

distributions 
(𝜇1, 𝜎1, 𝑝1, 𝜇2, 𝜎2, 𝑝2)  M1: (4, 1, 0.5, 8, 1, 0.5) 

a. Normal Distribution 

The purpose of this sub section is to compare the performance of methods that use 

the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap methods for the 

sample median statistic.  For the normal distribution one parameter specification type was 

generated.  These confidence interval method error rates and their corresponding percent 

errors can be viewed and compared to one another in each of tables N1U and N1L on 

pages 260 and 261 below.  For the sample median statistic the one specification 

simulated was studied at three different 𝛼 significance levels.  However, in this section 

because of the volume of error rate results, only the error rate results at the 𝛼 = 0.01 

significance level is displayed in tables.  Detailed numerical results for simulations not 

included in these tables can be viewed in Appendix tables.   

Although the tables only report results for the 𝑁(𝜇 = 4, 𝜎 = 1) at the 𝛼 = 0.01 

significance level  results can be viewed visually in figures N99, N95, and N90 on pages 

262-264.  In these figures the dashed horizontal line represents the target nominal one-

sided error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 5, 

10, 15, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 
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EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

Percentile type algorithms that used EBSD(𝑛) performed relatively more 

accurately than Monte Carlo Bootstrap methods at the 𝛼 = 0.01 significance level for the 

upper limit.  For the upper limit, EP did achieve the error rate with the smallest percent 

error when compared to any other method at sample sizes 15 and 30.  Additionally, for 

the lower limit EP achieved the error rate with the smallest percent error at sample size 

15.  

However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, EP did not achieve an 

error rate with the smallest percent error at any sample size for the upper or lower limit.  

Further, EBC did not achieve an error rate with the smallest percent error at any of the 

three significance levels.  When comparing EBC and EP to BC and BP respectively, both 

methods had error rates with smaller percent errors at multiple sample size for the upper 

and lower limit compared to their Monte Carlo Bootstrap counterpart at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels though, the percentile 

algorithms applied on EBSD(𝑛) had an error rate with a larger percent error at each 

sample size for the upper and lower limit compared to their Monte Carlo Bootstrap 

counterpart.  Additionally, ET had an error rate with a larger percent error compared to 

BT for both the upper and lower limit at each significance level for every sample size 

except sample size 5.  At sample size 5, ET had the error rate with the smallest percent 

error compared to every other method studied for each significance level for both the 

upper and lower limit except for the upper limit at the 𝛼 = 0.05 level.  
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Table: Sample Median - N1U99 Upper limit error rate (𝜶 = 0.01), Normal distributions,  

𝑵(𝝁=4, 𝝈=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0018 

 
(64%) 

0.0061 

 
(22%) 

0.0074 

 
(48%) 

0.0082 

 
(64%) 

0.0077 

 
(54%) 

0.007 

 
(40%) 

ET 0.007 

 

(40%) 

0.0073 

 

(46%) 

0.0087 

 

(74%) 

0.0099 

 

(98%) 

0.008 

 

(60%) 

0.0093 

 

(86%) 

BC 0.112 
 

(2140%) 

0.0574 
 

(1048%) 

0.0686 
 

(1272%) 

0.0448 
 

(796%) 

0.0381 
 

(662%) 

0.0317 
 

(534%) 

EBC 

 

0.1166 
 

(2232%) 

0.0489 
 

(878%) 

0.0367 
 

(634%) 

0.0333 
 

(566%) 

0.034 
 

(580%) 

0.0325 
 

(550%) 

BP 

 

0.03 

 
(500%) 

0.0122 

 
(144%) 

0.0165 

 
(230%) 

0.0091 

 
(82%) 

0.0082 

 
(64%) 

0.0053 

 

(6%) 

EP 0.0328 

 

(556%) 

0.0112 

 

(124%) 

0.0033 

 

(34%) 

0.0064 

 

(28%) 

0.0055 

 

(10%) 

0.0071 

 

(42%) 

BS 0.0514 
 

(928%) 

0.0058 

 

(16%) 

0.0104 
 

(108%) 

0.0054 

 

(8%) 

0.0044 
 

(12%) 

0.0037 
 

(26%) 

𝑩𝑪𝒂 0.0539 

 

(978%) 

0.0155 

 

(210%) 

0.0132 

 

(164%) 

0.0096 

 

(92%) 

0.0089 

 

(78%) 

0.0065 

 

(30%) 
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Table: Sample Median - N1L99 Lower limit error rate (𝜶 = 0.01), Normal distribution, 

𝑵(𝝁=4, 𝝈=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0018 

 

(64%) 

0.0061 

 

(22%) 

0.0074 

 

(48%) 

0.0082 

 

(64%) 

0.0077 

 

(54%) 

0.007 

 

(40%) 

ET 0.006 

 

(20%) 

0.0084 

 

(68%) 

0.0088 

 

(76%) 

0.0089 

 

(78%) 

0.0081 

 

(62%) 

0.0089 

 

(78%) 

BC 0.112 

 

(2140%) 

0.0574 

 

(1048%) 

0.0686 

 

(1272%) 

0.0448 

 

(796%) 

0.0381 

 

(662%) 

0.0317 

 

(534%) 

EBC 

 

0.112 

 

(2140%) 

0.0559 

 

(1018%) 

0.0381 

 

(662%) 

0.0376 

 

(652%) 

0.0372 

 

(644%) 

0.0323 

 

(546%) 

BP 

 
0.03 

 

(500%) 

0.0122 

 

(144%) 

0.0165 

 

(230%) 

0.0091 

 

(82%) 

0.0082 

 

(64%) 

0.0053 

 

(6%) 

EP 0.03 

 

(500%) 

0.0121 

 

(142%) 

0.0048 

 

(4%) 

0.0074 

 

(48%) 

0.0082 

 

(64%) 

0.0054 

 

(8%) 

BS 0.0514 

 

(928%) 

0.0058 

 

(16%) 

0.0104 

 

(108%) 

0.0054 

 

(8%) 

0.0044 

 

(12%) 

0.0037 

 

(26%) 

𝑩𝑪𝒂 0.0539 

 

(978%) 

0.0155 

 

(210%) 

0.0132 

 

(164%) 

0.0096 

 

(92%) 

0.0089 

 

(78%) 

0.0065 

 

(30%) 
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Figure: Sample Median - N99 - One-Sided Error Rates for 99% CI for the Normal Distribution 
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Figure: Sample Median - N95 - One-Sided Error Rates for 95% CI for the Normal Distribution 
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Figure: Sample Median - N90 - One-Sided Error Rates for 90% CI for the Normal Distribution 
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b. Exponential Distribution 

The purpose of this sub section is to compare the performance of methods that use 

the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap methods for the 

sample median statistic for data generated from an exponential distribution.  For the 

exponential distribution one parameter specification type was generated.  These 

confidence interval method error rates and their corresponding percent errors can be 

viewed and compared to one another in each of tables E1U99 and E1L99 on pages 267 

and 268 below.  For the sample median statistic, the one specification simulated was 

studied at three different 𝛼 significance levels.  However, in this section because of the 

volume of error rate results, only the error rate results at the 𝛼 = 0.01 significance level 

is displayed in tables.  Detailed numerical results for simulations not included in these 

tables can be viewed in Appendix tables.   

Although the tables only report results for the Exp(𝜆=0.10) at the 𝛼 = 0.01 

significance level  results can be viewed visually in figures E99, E95, and E90 on pages 

269-271.  In these figures the dashed horizontal line represents the target nominal one-

sided error rate based on the confidence interval 𝛼 significance level.  Each colored line 

represent a different confidence interval method with error rates plotted at sample sizes 5, 

10, 15, 20, 30 and 40.  Plot points marked with cross symbols represent methods that use 

EBSD(𝑛).  Plot points marked with triangles represent methods that use the Monte Carlo 

Bootstrap. 

Compared to the other methods studied, EP was relatively more accurate at the 𝛼 

= 0.01 and relatively less accurate at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  For 
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the upper and lower limit at the 𝛼 = 0.01 significance level, EP achieved the error rate 

with the smallest percent error when compared to any other method at sample sizes 15.   

However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels EP did not achieved an 

error rate with the smallest percent error at any sample size for the upper or lower limit.  

Further EBC did not achieve an error rate with the smallest percent error at any of the 

three significance levels.  When comparing EBC and EP to BC and BP respectively, both 

methods had error rates with smaller percent errors at many sample sizes for the upper 

and lower limit compared to their Monte Carlo Bootstrap counterpart at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels though, the EBSD(𝑛) 

percentile algorithm had an error rate with a larger percent error at each sample size for 

the upper and lower limit compared to their Monte Carlo Bootstrap counterpart.    

ET performed relatively accurately across significant level in comparison to BT.  

ET had an error rate with a smaller percent error when compared to the other methods 

studied for the majority of sample sizes for the upper and lower limit at each significance 

level.  At 𝛼 = 0.05 significance level for the upper limit, ET had the error rate with the 

smallest percent error at four sample sizes compared to any other method.  Also at the 𝛼 

= 0.10 significance level for the upper limit ET had the error rate with the smallest 

percent at error at two sample sizes.  Similar results were seen for the lower limit for ET 

as well. 
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Table: Sample Median - E1U99 Upper limit error rate (𝜶 = 0.01), Exponential 

Distribution, 𝑬𝒙𝒑(𝝀=0.10), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.007 

 

(40%) 

0.0112 
 

(124%) 

0.0118 
 

(136%) 

0.0144 
 

(188%) 

0.0139 
 

(178%) 

0.0154 
 

(208%) 

ET 0.014 

 
(180%) 

0.0101 

 
(102%) 

0.0077 

 
(54%) 

0.0067 

 
(34%) 

0.0058 

 
(16%) 

0.0057 

 
(14%) 

BC 0.2212 

 

(4324%) 

0.1286 

 

(2472%) 

0.1311 

 

(2522%) 

0.102 

 

(1940%) 

0.0787 

 

(1474%) 

0.0705 

 

(1310%) 

EBC 

 

0.2212 

 

(4324%) 

0.1272 

 

(2444%) 

0.1026 

 

(1952%) 

0.0921 

 

(1742%) 

0.0761 

 

(1422%) 

0.0726 

 

(1352%) 

BP 

 
0.0309 

 

(518%) 

0.0103 
 

(106%) 

0.0143 
 

(186%) 

0.0072 
 

(44%) 

0.0061 
 

(22%) 

0.0054 

 

(8%) 

EP 0.0309 

 
(518%) 

0.0103 

 
(106%) 

0.0046 

 

(8%) 

0.0053 

 
(6%) 

0.0068 

 
(36%) 

0.0057 

 
(14%) 

BS 0.0609 

 

(1118%) 

0.0082 

 

(64%) 

0.0116 

 

(132%) 

0.005 

 

(0%) 

0.0044 

 

(12%) 

0.0058 

 

(16%) 

𝑩𝑪𝒂 0.0631 

 

(1162%) 

0.014 

 

(180%) 

0.0099 

 

(98%) 

0.0069 

 

(38%) 

0.0081 

 

(62%) 

0.0055 

 

(10%) 
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Table: Sample Median - E1L99 Lower limit error rate (𝜶 = 0.01), Exponential 

Distribution, 𝑬𝒙𝒑(𝝀=0.10), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0016 
 

(68%) 

0.0029 
 

(42%) 

0.0031 
 

(38%) 

0.0049 

 

(2%) 

0.0033 
 

(34%) 

0.0049 

 

(2%) 

ET 0.004 

 

(20%) 

0.0045 

 

(10%) 

0.0042 

 
(16%) 

0.0066 

 
(32%) 

0.0046 

 
(8%) 

0.0047 

 
(6%) 

BC 0.0713 

 

(1326%) 

0.0261 

 

(422%) 

0.0383 

 

(666%) 

0.0205 

 

(310%) 

0.0182 

 

(264%) 

0.0162 

 

(224%) 

EBC 

 

0.0713 
 

(1326%) 

0.0257 
 

(414%) 

0.0157 
 

(214%) 

0.0165 
 

(230%) 

0.0169 
 

(238%) 

0.0152 
 

(204%) 

BP 

 

0.032 

 
(540%) 

0.0108 

 
(116%) 

0.0152 

 
(204%) 

0.0074 

 
(48%) 

0.0047 

 

(6%) 

0.0077 

 
(54%) 

EP 0.032 

 

(540%) 

0.01 

 

(100%) 

0.005 

 

(0%) 

0.0045 

 

(10%) 

0.0042 

 

(16%) 

0.0072 

 

(44%) 

BS 0.0483 
 

(866%) 

0.0055 
 

(10%) 

0.0103 
 

(106%) 

0.0036 
 

(28%) 

0.0044 
 

(12%) 

0.0055 
 

(10%) 

𝑩𝑪𝒂 0.0525 
 

(950%) 

0.0137 
 

(174%) 

0.0114 
 

(128%) 

0.0081 
 

(62%) 

0.0066 
 

(32%) 

0.0079 
 

(58%) 
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Figure: Sample Median - E99 - One-Sided Error Rates for 99% CI for the Exponential Distribution 

 

 

 



270 

 

Figure: Sample Median - E95 - One-Sided Error Rates for 95% CI for the Exponential Distribution 
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Figure: Sample Median - E90 - One-Sided Error Rates for 90% CI for the Exponential Distribution 
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c. Log-Normal Distribution 

The purpose of this sub section is to compare the performance of methods that use 

the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap methods for the 

sample median statistic for data from a log-normal distribution.  For the log-normal 

distribution one parameter specification type was generated.  These confidence interval 

method error rates and their corresponding percent errors can be viewed and compared to 

one another in each of tables LN1U99 and LN1L99 on pages 274 and 275 below.  For the 

sample median statistic the one specification simulated was studied at three different 𝛼 

significance levels.  However, in this section because of the volume of error rate results, 

only the error rate results at the 𝛼 = 0.01 significance level is displayed in tables.  

Detailed numerical results for simulations not included in these tables can be viewed in 

Appendix tables.   

Although the tables only report results for the log-normal(𝜇 =4, 𝜎 =0.2) at the 

𝛼 = 0.01 significance level  results can be viewed visually in figures LN99, LN95, and 

LN90 on pages 276-278.  In these figures the dashed horizontal line represents the target 

nominal one-sided error rate based on the confidence interval 𝛼 significance level.  Each 

colored line represent a different confidence interval method with error rates plotted at 

sample sizes 5, 10, 15, 20, 30 and 40.  Plot points marked with cross symbols represent 

methods that use EBSD(𝑛).  Plot points marked with triangles represent methods that use 

the Monte Carlo Bootstrap. 

EP was again relatively more accurate at the 𝛼 = 0.01 significance level compared 

to the other methods studied.  For the upper limit, the EP did achieve the error rate with 
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the smallest percent error when compared to any other method at sample sizes 15 and 40, 

it also achieved the error rate with the smallest percent error at sample size 20 for the 

lower limit.   

However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels EP did not achieved an 

error rate with the smallest percent error at any sample size for the upper or lower limit.  

Further EBC did not achieve an error rate with the smallest percent error at any of the 

three significance levels.  When comparing EBC and EP to BC and BP respectively, both 

methods had error rates with smaller percent errors at many sample size for the upper and 

lower limit compared to their Monte Carlo Bootstrap counterpart at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels though, the EBSD(𝑛) 

percentile algorithms had an error rate with a larger percent error at each sample size for 

the upper and lower limit compared to their Monte Carlo Bootstrap counterpart.   

ET performed relatively less accurately in comparison to BT across significant 

level.  ET had an error rate with a larger percent error for the most sample sizes for the 

upper and lower limit at each significance level.  Further other than sample sizes 5 and 

15, ET did not have an error rate with the smallest percent error when compared to all 

other methods for the other sample sizes.   
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Table: Sample Median - LN1U99 Upper limit error rate (𝜶 = 0.01), Log-Normal 

Distribution, log-normal(𝝁=4, 𝝈=0.2), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0032 

 

(36%) 

0.006 

 

(20%) 

0.0082 
 

(64%) 

0.0102 
 

(104%) 

0.0086 
 

(72%) 

0.0081 
 

(62%) 

ET 0.0091 

 
(82%) 

0.0071 

 
(42%) 

0.0098 

 
(96%) 

0.0104 

 
(108%) 

0.0075 

 
(50%) 

0.0086 

 
(72%) 

BC 0.128 

 

(2460%) 

0.0667 

 

(1234%) 

0.0812 

 

(1524%) 

0.0529 

 

(958%) 

0.0439 

 

(778%) 

0.0408 

 

(716%) 

EBC 

 

0.128 

 

(2460%) 

0.0657 

 

(1214%) 

0.0478 

 

(856%) 

0.0458 

 

(816%) 

0.0411 

 

(722%) 

0.0421 

 

(742%) 

BP 

 
0.0311 

 

(522%) 

0.0114 
 

(128%) 

0.0159 
 

(218%) 

0.0091 
 

(82%) 

0.0062 
 

(24%) 

0.0048 
 

(4%) 

EP 0.0311 

 
(522%) 

0.0112 

 
(124%) 

0.0039 

 

(22%) 

0.0072 

 
(44%) 

0.0062 

 
(24%) 

0.005 

 

(0%) 

BS 0.0594 

 

(1088%) 

0.0061 

 

(22%) 

0.0082 

 

(64%) 

0.0055 

 

(10%) 

0.0041 

 

(18%) 

0.0054 

 

(8%) 

𝑩𝑪𝒂 0.0584 

 

(1068%) 

0.0138 

 

(176%) 

0.0123 

 

(146%) 

0.0085 

 

(70%) 

0.0074 

 

(48%) 

0.0055 

 

(10%) 
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Table: Sample Median - LN1L99 Lower limit error rate (𝜶 = 0.01), Log-Normal 

Distribution, log-normal(𝝁=4, 𝝈=0.2), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0014 
 

(72%) 

0.0035 
 

(30%) 

0.0044 

 

(12%) 

0.0067 
 

(34%) 

0.0049 

 

(2%) 

0.0069 
 

(38%) 

ET 0.0048 

 

(4%) 

0.0061 

 
(22%) 

0.0065 

 
(30%) 

0.009 

 
(80%) 

0.006 

 
(20%) 

0.0092 

 
(84%) 

BC 0.0929 

 

(1758%) 

0.0435 

 

(770%) 

0.0514 

 

(928%) 

0.038 

 

(660%) 

0.0293 

 

(486%) 

0.027 

 

(440%) 

EBC 

 

0.0929 
 

(1758%) 

0.0423 
 

(746%) 

0.0257 
 

(414%) 

0.0315 
 

(530%) 

0.0274 
 

(448%) 

0.0268 
 

(436%) 

BP 

 

0.0328 

 
(556%) 

0.0121 

 
(142%) 

0.014 

 
(180%) 

0.0084 

 
(68%) 

0.0064 

 
(28%) 

0.0054 

 

(8%) 

EP 0.0328 

 

(556%) 

0.0118 

 

(136%) 

0.0034 

 

(32%) 

0.0064 

 

(28%) 

0.0062 

 

(24%) 

0.0056 

 

(12%) 

BS 0.054 
 

(980%) 

0.0048 

 

(4%) 

0.0085 
 

(70%) 

0.0036 

 

(28%) 

0.0041 
 

(18%) 

0.0046 

 

(8%) 

𝑩𝑪𝒂 0.0566 

 

(1032%) 

0.0156 

 

(212%) 

0.0106 

 

(112%) 

0.0081 

 

(62%) 

0.0067 

 

(34%) 

0.0059 

 

(18%) 
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Figure: Sample Median - LN99 - One-Sided Error Rates for 99% CI for the Log-Normal Distribution 
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Figure: Sample Median - LN95 - One-Sided Error Rates for 95% CI for the Log-Normal Distribution 
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Figure: Sample Median - LN90 - One-Sided Error Rates for 90% CI for the Log-Normal Distribution 
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d. Mixture Distribution 

The purpose of this sub section is to compare the performance of methods that use 

the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap methods for the 

sample median statistic for data from a mixture of two normal distribution.  For the 

mixture of two normal distributions one parameter specification type was generated.  

These confidence interval method error rates and their corresponding percent errors can 

be viewed and compared to one another in each of tables MN1U99 and MN1L99 on 

pages 281 and 282 below.  For the sample median statistic the one specification 

simulated was studied at three different 𝛼 significance levels.  However, in this section 

because of the volume of error rate results, only the error rate results at the 𝛼 = 0.01 

significance level is displayed in tables.  Detailed numerical results for simulations not 

included in these tables can be viewed in Appendix tables.   

Although the tables only report results for the mixture of two normal distributions 

(𝜇1= 4, 𝜎1= 1, 𝑝1= 0.5, 𝜇2=  8, 𝜎2 =1, 𝑝2= 0.5) at the 𝛼 = 0.01 significance level, results 

can be viewed visually in figures MN99, MN95, and MN90 on pages 283-285.  In these 

figures the dashed horizontal line represents the target nominal one-sided error rate based 

on the confidence interval 𝛼 significance level.  Each colored line represent a different 

confidence interval method with error rates plotted at sample sizes 5, 10, 15, 20, 30 and 

40.  Plot points marked with cross symbols represent methods that use EBSD(𝑛).  Plot 

points marked with triangles represent methods that use the Monte Carlo Bootstrap. 

EP was again relatively more accurate at the 𝛼 = 0.01 significance level in 

comparison to the other methods studied.  For both the upper and lower limit, the EP 
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method achieved the error rate with the smallest percent error when compared to any 

other method at four of six sample sizes considered.   

However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels EP did not achieved an 

error rate with the smallest percent error at any sample size for the upper or lower limit.  

Further EBC did not achieve an error rate with the smallest percent error at any of the 

three significance levels.  When comparing EBC and EP to BC and BP respectively, both 

methods had error rates with smaller percent errors at many sample size for the upper and 

lower limit compared to their Monte Carlo Bootstrap counterpart at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels though, the EBSD(𝑛) 

percentile algorithms had an error rate with a larger percent error at each sample size for 

the upper and lower limit compared to their Monte Carlo Bootstrap counterpart.   

ET performed relatively less accurately in comparison to BT across significant 

level.  For most sample sizes studied, at each significance level, ET had an error rate with 

a larger percent error for the upper and lower limit.  Further ET did not achieve the error 

rate with the smallest percent error at any sample size for any significance level when 

compared to all other methods studied.  
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Table: Sample Median - MN1U99 Upper limit error rate (𝜶 = 0.01), Mixture of two 

Normal Distributions, 0.50*𝑵𝟏(𝝁𝟏 =4, 𝝈𝟏=1) + 0.50*𝑵𝟐(𝝁𝟐 =8, 𝝈𝟐=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0098 

 

(96%) 

0.0197 
 

(294%) 

0.0188 
 

(276%) 

0.0259 
 

(418%) 

0.0272 
 

(444%) 

0.0289 
 

(478%) 

ET 0.0175 

 
(250%) 

0.0278 

 
(456%) 

0.0325 

 
(550%) 

0.0457 

 
(814%) 

0.0426 

 
(752%) 

0.0498 

 
(896%) 

BC 0.257 

 
(5040%) 

0.1765 

 
(3430%) 

0.2167 

 
(4234%) 

0.1832 

 
(3564%) 

0.1745 

 
(3390%) 

0.1647 

 
(3194%) 

EBC 

 

0.257 

 

(5040%) 

0.1746 

 

(3392%) 

0.1696 

 

(3292%) 

0.1709 

 

(3318%) 

0.1682 

 

(3264%) 

0.1649 

 

(3198%) 

BP 

 
0.0293 

 

(486%) 

0.0105 
 

(110%) 

0.0142 
 

(184%) 

0.0082 
 

(64%) 

0.0084 
 

(68%) 

0.0061 

 

(22%) 

EP 0.0293 

 
(486%) 

0.0104 

 

(108%) 

0.0031 

 

(38%) 

0.0065 

 

(30%) 

0.0082 

 

(64%) 

0.0065 

 
(30%) 

BS 0.0824 

 

(1548%) 

0.0134 

 

(168%) 

0.0178 

 

(256%) 

0.0102 

 

(104%) 

0.0106 

 

(112%) 

0.0114 

 

(128%) 

𝑩𝑪𝒂 0.0601 
 

(1102%) 

0.0142 
 

(184%) 

0.0108 
 

(116%) 

0.0082 
 

(64%) 

0.0097 
 

(94%) 

0.0073 
 

(46%) 

 

 

 

 

 

 

 

 



282 

 

 

Table: Sample Median - MN1L99 Lower limit error rate (𝜶 = 0.01), Mixture of two 

Normal Distributions, 0.50*𝑵𝟏(𝝁𝟏 =4, 𝝈𝟏=1) + 0.50*𝑵𝟐(𝝁𝟐 =8, 𝝈𝟐=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 0.0114 

 

(128%) 

0.0198 
 

(296%) 

0.0215 
 

(330%) 

0.0294 
 

(488%) 

0.0269 
 

(438%) 

0.0275 
 

(450%) 

ET 0.0208 

 
(316%) 

0.0285 

 
(470%) 

0.0369 

 
(638%) 

0.0494 

 
(888%) 

0.0403 

 
(706%) 

0.0474 

 
(848%) 

BC 0.2573 

 

(5046%) 

0.179 

 

(3480%) 

0.2169 

 

(4238%) 

0.1804 

 

(3508%) 

0.1701 

 

(3302%) 

0.1631 

 

(3162%) 

EBC 

 

0.2573 
 

(5046%) 

0.1773 
 

(3446%) 

0.1735 
 

(3370%) 

0.168 
 

(3260%) 

0.1646 
 

(3192%) 

0.1638 
 

(3176%) 

BP 

 

0.0331 

 
(562%) 

0.0098 

 
(96%) 

0.0168 

 
(236%) 

0.0085 

 
(70%) 

0.006 

 

(20%) 

0.0055 

 

(10%) 

EP 0.0331 

 

(562%) 

0.0097 

 

(94%) 

0.005 

 

(0%) 

0.0064 

 

(28%) 

0.0062 

 

(24%) 

0.0055 

 

(10%) 

BS 0.0841 
 

(1582%) 

0.0123 
 

(146%) 

0.0187 
 

(274%) 

0.0122 
 

(144%) 

0.0099 
 

(98%) 

0.011 
 

(120%) 

𝑩𝑪𝒂 0.0629 

 
(1158%) 

0.0144 

 
(188%) 

0.0129 

 
(158%) 

0.0086 

 
(72%) 

0.0072 

 
(44%) 

0.0062 

 
(24%) 
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Figure: Sample Median - MN99 - One-Sided Error Rates for 99% CI for the Mixture of two Normal Distributions 
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Figure: Sample Median - MN95 - One-Sided Error Rates for 95% CI for the Mixture of two Normal Distributions 
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Figure: Sample Median - MN90 - One-Sided Error Rates for 90% CI for the Mixture of two Normal Distributions 
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e. Cauchy Distribution  

The purpose of this sub section is to compare the performance of methods that use 

the EBSD(𝑛) method to the performance of Monte Carlo Bootstrap methods for the 

sample median statistic for data from a Cauchy distribution.  For the Cauchy distribution 

one parameter specification type was generated.  These confidence interval method error 

rates and their corresponding percent errors can be viewed and compared to one another 

in each of tables C1U99 and C1L99 on pages 288-289 below.  For the sample median 

statistic the one specification simulated was studied at three different 𝛼 significance 

levels.  However, in this section because of the volume of error rate results, only the error 

rate results at the 𝛼 = 0.01 significance level is displayed in tables.  Detailed numerical 

results for simulations not included in these tables can be viewed in Appendix tables.   

Although the tables only report results for the Cauchy (𝑥0=0, 𝛾=1) at the 𝛼 =

0.01 significance level results can be viewed visually in figures C99, C95, and C90 on 

pages 290-292.  In these figures the dashed horizontal line represents the target nominal 

one-sided error rate based on the confidence interval 𝛼 significance level.  Each colored 

line represent a different confidence interval method with error rates plotted at sample 

sizes 5, 10, 15, 20, 30 and 40.  Plot points marked with cross symbols represent methods 

that use EBSD(𝑛).  Plot points marked with triangles represent methods that use the 

Monte Carlo Bootstrap. 

EP again performed relatively accurately compared to the other methods studied 

at the 𝛼 = 0.01 significance level.  For both the upper and lower limit, the EP method 

achieved the error rate with the smallest percent error at sample size 15 when compared 
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to any other method.  Additionally, for the lower limit, EP achieved the error rate with the 

smallest percent error at sample size 20. 

However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels EP did not achieved an 

error rate with the smallest percent error at any sample size for the upper or lower limit.  

Further, EBC did not achieve an error rate with the smallest percent error at any of the 

three significance levels.  When comparing EBC and EP to BC and BP respectively, both 

methods had error rates with smaller percent errors at many sample size for the upper and 

lower limit compared to their Monte Carlo Bootstrap counterpart at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels though, the percentile 

methods applied on EBSD(𝑛) had error rates with larger percent errors at each sample 

size for the upper and lower limit when compared to their Monte Carlo Bootstrap 

counterpart.   

Additionally, ET performed relatively less accurately in comparison to BT across 

significant level.  ET had an error rate with a larger percent error for the majority of 

sample sizes for both the upper and lower limit at each significance level.  With this 

being the case, at each significance level ET did not achieve the error rate with the 

smallest percent error at any sample size greater than 5 when compared to the other 

methods studied.  
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Table: Sample Median - C1U99 Upper limit sample median error rate (𝜶 = 0.01), 

Cauchy Distribution, Cauchy(𝒙𝟎 =0, 𝜸=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 4e-04 

 

(92%) 

5e-04 

 

(90%) 

0.0014 

 

(72%) 

0.0032 

 

(36%) 

0.0029 

 

(42%) 

0.003 

 

(40%) 

ET 0.0017 

 

(66%) 

0.001 
 

(80%) 

3e-04 
 

(94%) 

3e-04 
 

(94%) 

1e-04 
 

(98%) 

0 
 

(100%) 

BC 0.0436 

 

(772%) 

0.0146 

 

(192%) 

0.029 

 

(480%) 

0.0174 

 

(248%) 

0.0157 

 

(214%) 

0.0132 

 

(164%) 

EBC 

 

0.0436 

 

(772%) 

0.0144 

 

(188%) 

0.0091 

 

(82%) 

0.0132 

 

(164%) 

0.0143 

 

(186%) 

0.0139 

 

(178%) 

BP 

 
0.0318 

 

(536%) 

0.0106 
 

(112%) 

0.0135 
 

(170%) 

0.008 
 

(60%) 

0.0055 
 

(10%) 

0.0069 
 

(38%) 

EP 0.0318 

 
(536%) 

0.0104 

 
(108%) 

0.0027 

 

(46%) 

0.0058 

 
(16%) 

0.0055 

 
(10%) 

0.0069 

 
(38%) 

BS 0.0458 

 

(816%) 

0.0052 

 

(4%) 

0.0119 

 

(138%) 

0.0055 

 

(10%) 

0.0047 

 

(6%) 

0.0043 

 

(14%) 

𝑩𝑪𝒂 0.0509 
 

(918%) 

0.0134 
 

(168%) 

0.0113 
 

(126%) 

0.0073 
 

(46%) 

0.0059 
 

(18%) 

0.0075 
 

(50%) 
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Table: Sample Median - C1L99 Lower Limit Error rate (𝜶 = 0.01), Cauchy 

distribution, Cauchy(𝒙𝟎 =0, 𝜸=1), Bootstraps=5000 

Sample size 5 10 15 20 30 40 

BT 4e-04 

 

(92%) 

8e-04 

 

(84%) 

0.0017 

 

(66%) 

0.0018 

 

(64%) 

0.0027 

 

(46%) 

0.004 

 

(20%) 

ET 0.002 

 

(60%) 

9e-04 
 

(82%) 

1e-04 
 

(98%) 

3e-04 
 

(94%) 

2e-04 
 

(96%) 

0 
 

(100%) 

BC 0.0481 

 

(862%) 

0.0175 

 

(250%) 

0.0281 

 

(462%) 

0.0172 

 

(244%) 

0.0152 

 

(204%) 

0.0152 

 

(204%) 

EBC 

 

0.0481 

 

(862%) 

0.0173 

 

(246%) 

0.008 

 

(60%) 

0.0138 

 

(176%) 

0.0142 

 

(184%) 

0.0161 

 

(222%) 

BP 

 
0.0309 

 

(518%) 

0.0118 
 

(136%) 

0.0144 
 

(188%) 

0.0073 
 

(46%) 

0.0047 

 

(6%) 

0.0055 

 

(10%) 

EP 0.0309 

 
(518%) 

0.0113 

 
(126%) 

0.0041 

 

(18%) 

0.0051 

 

(2%) 

0.0041 

 
(18%) 

0.0062 

 
(24%) 

BS 0.0484 

 

(868%) 

0.0058 

 

(16%) 

0.009 

 

(80%) 

0.0042 

 

(16%) 

0.0035 

 

(30%) 

0.0055 

 

(10%) 

𝑩𝑪𝒂 0.0516 
 

(932%) 

0.0155 
 

(210%) 

0.0122 
 

(144%) 

0.0073 
 

(46%) 

0.0058 
 

(16%) 

0.0063 
 

(26%) 
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Figure: Sample Median - C99 - One-Sided Error Rates for 99% CI for the Cauchy Distribution 
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Figure: Sample Median - C95 - One-Sided Error Rates for 95% CI for the Cauchy Distribution 
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Figure: Sample Median - C90 - One-Sided Error Rates for 90% CI for the Cauchy Distribution 
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Median Results for Methods using EBSD(𝒏) 

Regardless of the parameter specification and distribution drawn from the same 

pattern was seen for the percentile methods applied on EBSD(𝑛).  EP and EBC 

performed relatively more accurately at the 𝛼 = 0.01 significance level, and relatively less 

accurately as significance level was modified.   

ET however did have varied results depending on the distribution studied.  For the 

normal, log-normal and Cauchy distributions, ET performed relatively more accurately in 

multiple instances at small sample sizes (𝑛=5, 10, 15), than BT and in many instances 

achieved error rates with smaller percent errors across sample size.  For the mixture of 

two normal distributions ET performed relatively less accurately compared to BT for 

small, medium and large sample sizes.  For the exponential distribution which was the 

distribution with the greatest degree of skew studied for the median statistic, ET 

performed relatively more accurately than BT for both the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.  These results indicate further investigation into ET’s relative 

accuracy for the median statistic could be warranted.  ET may be a preferable method for 

the median statistic if the data being analyzed is skewed.    
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4.6 Varied Monte Carlo Bootstrap Iterations Levels 

The purpose of this section is to compare EBSD(𝑛) error rate results to error rate 

results from the Monte Carlo Bootstrap at multiple bootstrap resample levels.  One 

advantage of EBSD(𝑛) methods relative to bootstrap methods is the consistency of the 

algorithm.  With methods applied on EBSD(𝑛) there will always be 4𝑛2 + 1 bootstrap 

samples.  With methods applied on the Monte Carlo Bootstrap the number of resamples 

specified will depend on the preference of the user.  At smaller numbers of Bootstrap 

resamples the variance of the error rate will be larger.  If there is greater variance in error 

rate results, this could lead Monte Carlo Bootstrap methods to yield error rates that vary 

from the theoretical nominal error rate more than EBSD(𝑛) methods.   

Sample Mean 

For the first example below, results are viewed for data generated from a normal 

distribution with parameters 𝑁(𝜇=4, 𝜎=1) at the 𝛼 = 0.01 significance level for the upper 

limit.  The tables below list the error rates for Monte Carlo Bootstrap resamples of 200, 

500, 1000 and 10,000 for the mean statistic and compares these results to what is found 

using EBSD(𝑛).  The error rate closest to the true nominal error rate among the methods 

considered is bolded for each sample size. 

When 10,000 Bootstrap resamples were used, the BT method had an error rate 

with corresponding percent error that was less than or equal to ET’s at each sample size.  

Instead, when 200 resamples were specified, ET had an error rate with corresponding 

percent error that was less than or equal to BT’s at four of the five sample sizes 

considered.  Therefore, increasing the number of Bootstrap resamples did impact the 
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resulting comparison of relative accuracy of ET and BT. When a smaller number of 

Bootstrap resamples were used, ET was found to be more accurate than BT.  When a 

larger number of Bootstrap resamples were used BT was found to be more accurate than 

ET.   

BC and BP at the 𝛼 = 0.01 significance level, performed less accurately compared 

to EBC and EP at each sample size even when 10,000 Bootstrap resamples were 

specified.  Further, at each sample size BC and BP had error rates with corresponding 

percent errors that were larger when 10,000 Bootstrap resamples were specified relative 

to when 200 Bootstrap resamples were specified.  Therefore, for these two methods 

decreasing Bootstrap iteration level did not impact each methods comparison to their 

EBSD(𝑛) counterpart.   

𝐸𝐵𝐶𝑎 and ES were not included in this section, as these methods were generally 

found to be unreliable.  However, the error rate variation in 𝐵𝐶𝑎 and BS is measured 

against the error rate accuracy of E-skew when the number of Bootstrap resamples used 

was varied.   When 10,000 Bootstrap resamples were used 𝐵𝐶𝑎 had an error rate with a 

corresponding percent error that was smaller at each sample size compared to when 200 

Bootstrap resamples were used.  However even when 10,000 Bootstrap resamples were 

used, 𝐵𝐶𝑎 still had error rates with corresponding percent errors that were larger 

compared to E-skew at each sample size studied.  Finally, the BS error rate was not found 

to be impacted by the number of Bootstrap resamples used.  The BS error rate using 

10,000 Bootstrap resamples had a corresponding percent error that was smaller than the 

BS error rate using 200 Bootstrap at sample sizes 5 and 30.  Conversely, the BS error rate 

using 200 Bootstrap resamples had error rates with corresponding percent errors at 10, 15 
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and 40.  At each Bootstrap resample level, BS had the error rate with the smallest percent 

error for the majority of sample sizes among Monte Carlo Bootstrap methods.   
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Table: Mean - N1U99 Advantage of EBSD(𝒏) when comparing across Bootstrap Iteration Levels,  

𝜶 = 0.01 significance level, upper limit  
 Sample Size 

 N=5 N=10 N=15 N=30 N=40 

E-skew 
0.0111 0.0089 0.005 0.0052 0.0056 

ET 
0.0067 0.0072 0.0053 0.0053 0.006 

EP 0.0318 0.0096 0.0029 0.0022 0.005 

EBC 0.0318 0.0101 0.0027 0.0028 0.0052 

#Boots 10000 1000 500 

 

200 

Sample Size N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 

BT 0.0065 0.0072 0.0053 0.0053 0.0059 0.0069 0.0075 0.0051 0.0053 0.0064 0.0066 0.008 0.0053 0.0051 0.0064 0.007 0.0079 0.0057 0.0052 0.006 

BC 
0.0506 0.0224 0.0123 0.008 0.0082 0.0508 0.0216 0.0117 0.0077 0.0081 0.0499 0.0208 0.0113 0.0093 0.0079 0.0494 0.0193 0.0108 0.0082 0.0069 

BP 0.0521 0.0227 0.0119 0.008 0.0081 0.0526 0.0221 0.0113 0.0085 0.0075 0.0521 0.0209 0.0112 0.008 0.0082 0.0504 0.0206 0.0113 0.008 0.0074 

𝑩𝑪𝒂 0.0565 0.0235 0.0124 0.0086 0.0081 0.0576 0.0235 0.0119 0.0088 0.0073 0.0561 0.0234 0.0129 0.0084 0.0084 0.0588 0.0254 0.0151 0.01 0.0093 

BS 0.0059 0.0072 0.0047 0.0051 0.0058 0.006 0.007 0.0043 0.0051 0.0051 0.0054 0.0063 0.0049 0.0052 0.0054 0.0067 0.0071 0.005 0.0052 0.0049 
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Below in table E1U99 are the error rate results at the 𝛼 = 0.01 significance level 

for the upper limit for the mean statistic for data drawn from an exponential distribution 

with parameter 𝜆 = 0.10.  Again similar results were found as what was found from the 

normal distribution for the sample mean.  Increasing the number of Bootstrap resamples 

did impact the resulting comparison of relative accuracy of ET and BT. When a small 

number of Bootstrap resamples were used, ET was found to be more accurate than BT.  

When a larger number of Bootstrap resamples were used BT was found to be more 

accurate than ET.  BC and BP at the 𝛼 = 0.01 significance level, performed less 

accurately compared to EBC and EP at each sample size even when 10,000 Bootstrap 

resamples were specified.  Further, at each sample size BC and BP had error rates with 

corresponding percent errors that were larger when 10,000 Bootstrap resamples were 

specified relative to when 200 Bootstrap resamples were specified.  When 10,000 

Bootstrap resamples were used 𝐵𝐶𝑎 had an error rate with corresponding percent error 

that was smaller at each sample size compared to when 200 Bootstrap resamples were 

used.  Finally, the BS error rate was not found to be impacted by the number of Bootstrap 

resamples used.   

 

 

 

 

 

 



299 

 

 

Table Mean - E1U99 Advantage of EBSD(𝒏) when comparing across Bootstrap Iteration Levels,  

𝜶 = 0.01 significance level, upper limit, 𝜶 = 0.01 significance level, upper limit  
 Sample Size 

 N=5 N=10 N=15 N=30 N=40 

E-skew 
0.0413 0.0317 0.0224 0.0128 0.0116 

ET 0.0607 0.0545 0.0413 0.0293 0.0244 

EP 0.0985 0.0576 0.0359 0.0331 0.0298 

EBC 0.1548 0.0639 0.0287 0.0117 0.0136 

#Boots 10000 1000 500 

 

200 

Sample Size N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 

BT 0.061 0.0546 0.0414 0.0295 0.0242 0.0609 0.0546 0.041 0.0299 0.0243 0.0609 0.0554 0.0424 0.0299 0.0247 0.0611 0.0548 0.0422 0.0308 0.0248 

BC 
0.1827 0.1109 0.0826 0.0502 0.0397 0.1817 0.1107 0.082 0.0488 0.0393 0.1814 0.1084 0.0799 0.0475 0.0388 0.1805 0.1064 0.0772 0.0465 0.037 

BP 0.1374 0.0745 0.0499 0.0287 0.0222 0.1388 0.073 0.049 0.0272 0.0214 0.137 0.0729 0.0486 0.0282 0.0211 0.1352 0.0691 0.0454 0.0261 0.0206 

𝑩𝑪𝒂 0.1267 0.0557 0.0339 0.0166 0.0137 0.1279 0.0566 0.0349 0.0155 0.0132 0.1312 0.0595 0.0379 0.0172 0.0141 0.1388 0.07 0.0456 0.0261 0.0209 

BS 0.0177 0.0166 0.014 0.0084 0.0087 0.0186 0.0159 0.0133 0.0084 0.0089 0.0186 0.0173 0.0144 0.0078 0.009 0.0196 0.0143 0.0135 0.0074 0.0076 
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Ratio of Means 

Below in NU199 are the error rate results at the 𝛼 = 0.01 significance level for the 

upper limit for the ratio of means statistic for the 𝑁(𝜇 = 100, 𝜎 = 1), 𝑁(𝜇 = 50, 𝜎 = 1) 

specification pair.  Again similar results were found as what was found from the normal 

distribution for the sample mean.  Increasing the number of Bootstrap resamples did 

impact the resulting comparison of relative accuracy of ET and BT. When a small 

number of Bootstrap resamples were used, ET was found to be more accurate than BT.  

When a larger number of Bootstrap resamples in the majority of cases ET was more 

accurate than BT but not always.  BC and BP at the 𝛼 = 0.01 significance level, 

performed less accurately compared to EBC and EP at each sample size even when 

10,000 Bootstrap resamples were specified.  Further, at each sample size BC and BP had 

error rates with corresponding percent errors that were larger when 10,000 Bootstrap 

resamples were specified relative to when 200 Bootstrap resamples were specified.  

When 10,000 Bootstrap resamples were used 𝐵𝐶𝑎 had an error rate with corresponding 

percent error that was smaller at each sample size compared to when 200 Bootstrap 

resamples were used.  Finally, the BS error rate was not found to be impacted by the 

number of Bootstrap resamples used.   
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Table Ratio of Sample Means - NU199 Advantage of EBSD(𝒏) when comparing across Bootstrap Iteration Levels, 𝜶 = 0.01 

significance level, upper limit, 𝜶 = 0.01 significance level, upper limit 
 Sample Size 

 N=5 N=10 N=15 N=30 N=40 

E-

skew 0.0098 0.0071 0.0058 0.0047 0.0048 

ET 0.038 0.019 0.0123 0.0081 0.0072 

EP 
0.0285 0.0084 0.0031 0.0025 0.0041 

EBC 0.029 0.0101 0.0037 0.0027 0.0046 

#Boots 10000 1000 500 

 

200 

Sample Size N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 

BT 0.0065 0.0055 0.0055 0.0043 0.0056 0.0065 0.0056 0.0057 0.0044 0.0056 0.0067 0.0053 0.0057 0.0047 0.0056 0.0069 0.0056 0.0061 0.0051 0.0058 

BC 0.0486 0.0219 0.0132 0.0082 0.0071 0.0481 0.0216 0.0133 0.0085 0.0072 0.0488 0.0219 0.0125 0.0077 0.0069 0.0478 0.0196 0.0114 0.0077 0.0066 

BP 0.0489 0.0216 0.013 0.0084 0.007 0.0482 0.0207 0.0128 0.0084 0.0081 0.0471 0.0204 0.0124 0.0065 0.007 0.0457 0.0192 0.0121 0.0082 0.0066 

𝑩𝑪𝒂 0.0535 0.023 0.0138 0.0082 0.0072 0.0524 0.0222 0.0136 0.0085 0.0082 0.0522 0.0227 0.0126 0.0077 0.007 0.0548 0.0246 0.0145 0.0114 0.0086 

BS 0.0076 0.0079 0.0065 0.0057 0.0062 0.0074 0.0075 0.0067 0.0055 0.0052 0.0067 0.0074 0.0068 0.0051 0.0059 0.0078 0.0072 0.0057 0.0051 0.0054 
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Pearson Correlation Coefficient  

Below in NU199 are the error rate results at the 𝛼 = 0.01 significance level for the 

upper limit for the Pearson correlation coefficient for data drawn from an bivariate 

normal distribution with parameters  𝑁(𝜇 = (
4
4

), Σ = (
1 0.1

0.1 1
)).  In this case increasing 

the number of Bootstrap resamples did not impact the resulting comparison of relative 

accuracy of ET and BT.  BT using 200 resamples, had an error rate which was equal to or 

smaller compared to ET at each sample size.  The same was found to be the case for BP 

when compared to EP.  When 10,000 Bootstrap resamples were used 𝐵𝐶𝑎 had an error 

rate with corresponding percent error that was smaller at four of five sample size 

compared to when 200 Bootstrap resamples were used.  Additionally, 𝐵𝐶𝑎 with 10,000 

Bootstrap resamples had an error rate with a smaller percent error when compared to E-

skew at sample size 10.  However, 𝐵𝐶𝑎 with 200 Bootstrap resamples had an error rate 

with a larger percent error when compared to E-skew at every sample size considered.  

Therefore, increasing the number of Bootstrap resamples did impact the relative accuracy 

of 𝐵𝐶𝑎 and E-skew.  For BS the number of resamples did not impact the relative accuracy 

when compared to E-skew.  At one of five sample sizes BS using 10,000 resamples had 

an error rate with a smaller percent error when compared to E-skew.  However, when 200 

resamples were specified at this sample size, BS had an error rate with an even smaller 

percent error than when 10,000 resamples were specified.  Therefore, BS was found to be 

more accurate than E-skew at sample size 15 regardless whether 10,000 or 200 resamples 

were specified.  
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Table: Pearson Correlation Coefficient - NU199 Advantage of EBSD(𝒏) when comparing across Bootstrap Iteration 

Levels, 𝜶 = 0.01 significance level, upper limit  
 Sample Size 

 N=5 N=10 N=15 N=30 N=40 

E-skew 
0.0065 0.0068 0.0043 0.0059 0.0053 

ET 0 0 0 0 0 

EP 
3e-04 0 0 0 0 

EBC 8e-04 1e-04 0 0 0 

#Boots 10000 1000 500 

 

200 

Sample 

Size 

N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 N=5 N=10 N=15 N=30 N=40 

BT 0 0.0111 0.0102 0.0082 0.0086 0 0.0109 0.0105 0.0082 0.0081 0 0.0112 0.0111 0.0086 0.0087 1e-04 0.011 0.0107 0.008 0.0088 

BC 
1e-04 0.0018 0.0045 0.0068 0.0065 1e-04 0.0019 0.0043 0.0072 0.0073 1e-04 0.0018 0.0047 0.0059 0.0068 0 0.0029 0.0048 0.0065 0.0062 

BP 0.0062 0.0132 0.0115 0.0085 0.009 0.0062 0.0128 0.0112 0.0087 0.0081 0.0062 0.0121 0.0106 0.0081 0.0089 0.0075 0.0128 0.0108 0.0081 0.0083 

𝑩𝑪𝒂 0.0014 0.006 0.0071 0.0074 0.007 0.003 0.0067 0.0065 0.0074 0.0073 0.0044 0.0079 0.0085 0.0073 0.008 0.0077 0.0138 0.0128 0.0095 0.0097 

BS 1e-04 0.0018 0.0045 0.0068 0.0065 1e-04 0.0019 0.0043 0.0072 0.0073 1e-04 0.0018 0.0047 0.0059 0.0068 0 0.0029 0.0048 0.0065 0.0062 
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4.7 Application of EBSD(𝒏) in Microarray Data 

The purpose of this section is to test the level of agreement between the E-skew 

method and Monte Carlo Bootstrap methods using real data.  Agreement between the E-

skew method and Bootstrap methods is tested using Cohen’s Kappa statistic defined in 

detail below.  The real data example included in the Gene expression Omnibus (GEO) 

project with accession code GSE9574 was originally used for a study by Tripathi A, King 

C, de la Morenas A, et al.  The available data consists of two cohorts and 22,283 genes 

for 29 available patients.  The first cohort consists of patients with epithelium adjacent to 

a breast tumor and the second consists of patients undergoing reduction mammoplasty 

without apparent breast cancer.   

For this work the complete set of genes is divided into two data sets analyzed 

separately.  The first data set, the Differentially Expressed Data Set, includes the top 250 

differentially expressed genes.  Differential expression between the two cohorts is 

determined by the GEO2R software.  The second data set, the non-Differentially 

Expressed Data Set, includes the remaining genes not among the top 250 most 

differentially expressed.  For this work all available data from the GSE9574 study are 

used to rank differential expression.  

To assess the agreement between the E-skew method and the Monte Carlo 

Bootstrap, the Cohen’s Kappa statistic is used as mentioned above.  The Kappa algorithm 

is derived as: 

𝜅 =  
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Tripathi%20A%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/?term=King%20C%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/?term=King%20C%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/?term=de%20la%20Morenas%20A%5bAuthor%5d


305 

 

where 𝑝0 = 
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
  and 𝑝𝑒 = 

(𝑎+𝑏)

(𝑎+𝑏+𝑐+𝑑)
*

(𝑎+𝑐)

(𝑎+𝑏+𝑐+𝑑)
 + 

(𝑑+𝑐)

(𝑎+𝑏+𝑐+𝑑)
*

(𝑑+𝑏)

(𝑎+𝑏+𝑐+𝑑)
 , and where 

𝑎, 𝑏, 𝑐 and 𝑑 represent the cell counts in the 2X2 contingency table with an example table 

shown below. 

Example of two by two contingency table used in the work below for a given 

alpha level and sample size.   

 E-skew  

   

Positive  

  

Negative  

 

Total 

Bootstrap Positive  𝑎 𝑏 𝑎 + 𝑐 

Bootstrap Negative  𝑐 𝑑 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 

The cell counts 𝑎, 𝑏, 𝑐, and 𝑑 are defined as follows: 

 The 𝑎 cell refers to the number genes positively classified by both the E-skew and 

Bootstrap methods.  For the Differentially Expressed Data Set the 𝑎 cell is the 

number genes classified by both the E-skew method and Bootstrap methods as 

differentially expressed.  Conversely, for the non-Differentially Expressed Data 

Set the 𝑎 cell is the number genes classified as not significantly differentially 

expressed by both the E-skew method and Bootstrap method. 

 The 𝑑 cell refers to the number of genes negatively classified for both the E-skew 

method and Bootstrap method.  For the Differentially Expressed Data Set the 𝑑 

cell is the number of genes classified by both the E-skew method and Bootstrap 

methods as not differentially expressed.  Conversely, for the non-Differentially 

Expressed Data Set the 𝑑 cell is the number genes classified as significantly 

differentially expressed by both the E-skew method and Bootstrap method. 
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 The 𝑏 cell refers to the number of genes negatively classified by the E-skew 

method that the Bootstrap method positively classified.  For the Differentially 

Expressed Data Set the 𝑏 cell is the number of genes classified by the E-skew 

method as not differentially expressed that the Bootstrap method classified as 

differentially expressed.  Conversely, for the non-Differentially Expressed Data 

Set the 𝑏 cell is the number genes classified as significantly differentially 

expressed by the E-skew method that the Bootstrap method classified as not 

differentially expressed. 

 The 𝑐 cell refers to the number of genes negatively classified by the Bootstrap 

method that the E-skew positively classified.  For the Differentially Expressed 

Data Set the 𝑐 cell is the number of genes classified by the E-skew method as 

differentially expressed that the Bootstrap method classified as not differentially 

expressed.  Conversely, for the non-Differentially Expressed Data Set the 𝑐 cell is 

the number genes classified as not significantly differentially expressed by the E-

skew method that the Bootstrap method classified as differentially expressed. 

The Kappa statistic range of possible values is from -1 to 1.  A Kappa agreement 

of 1 means two tests yield identical results for every data point considered.  Conversely a 

Kappa statistic of -1 means two tests yield opposite results for every data point 

considered.    

Cohen’s Kappa can also have many different qualitative interpretations.  The 

below will be used to define the level of agreement between E-skew and the Monte Carlo 

Bootstrap method in the results section. This approach for interpreting Kappa can be 

found in Koch and Landis (1977).  
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 A Kappa value less than 0.00 means poor agreement between two methods 

 A Kappa value ranging from 0.00-0.20 means slight agreement between two 

methods 

  A Kappa value ranging from 0.21-0.40 means fair agreement between two 

methods  

 A Kappa value ranging from 0.41-0.60 means moderate agreement between two 

methods 

 A Kappa value ranging from 0.61-0.80 means substantial agreement between two 

methods  

 A Kappa value greater than 0.80 means near perfect agreement between two 

methods 

The standard error of the Kappa statistic can be computed as: 

𝑆𝐸𝜅= √
𝑝0(1−𝑝0)

𝑁(1−𝑝𝑒)2 

The standard error for the Kappa statistic can be computed to create a confidence 

interval for the Kappa statistic.  The corresponding confidence interval for the Kappa 

statistic is computed as: 

𝐶𝐼𝜅 =  𝜅 ± 𝑧𝛼/2√
𝑝0(1 − 𝑝0)

𝑁(1 − 𝑝𝑒)2
 

The confidence interval can be used to test whether the agreement between two 

tests (in this case two intervals) is statistically significantly different from 0.   
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E-skew is tested for agreement with five Monte Carlo Bootstrap methods: the BS, 

𝐵𝐶a, BP, BC and BT.  The process flow of how the E-skew is compared to the Bootstrap 

is as follows: 

First the complete set of genes are ranked by differential expression between the 

two cohorts using all available data.  Then EBSD(𝑛) is used to generate an EBSD(𝑛) 

sampling distribution for each gene and for each cohort and simultaneously the Monte 

Carlo Bootstrap is used to generate a Monte Carlo Bootstrap sampling distribution for 

each of the same.  To compute each Monte Carlo confidence interval 10,000 Bootstrap 

resamples are drawn consistent with the number of Bootstraps specified in sections 4.1-

4.5.  

Confidence intervals are generated at each of three sample size levels 5, 10 and 14 

for each of three significance level (𝛼 =0.01, 𝛼 =0.05, 𝛼 =0.10).  Each EBSD(𝑛) 

sampling distribution is then used to generate an E-skew confidence interval and each 

Monte Carlo Bootstrap sampling distribution is used to generate five different Monte 

Carlo Bootstrap confidence intervals: a BP, BT, BC, 𝐵𝐶a, and BS interval.  For each data 

set the confidence interval generated for each gene in each cohort is compared.  Then 

2X2 contingency tables are created comparing E-skew to each Monte Carlo Bootstrap 

method.  Contingency tables are reported for the Differentially Expressed Data Set and 

the non-Differentially Expressed Data Set separately.  These contingency tables are then 

used to generate a Cohen’s Kappa statistic of agreement and corresponding Kappa 

confidence interval comparing E-skew to each Monte Carlo Bootstrap method.   

Application of E-skew in Microarray Data: Differentially Expressed Data Set 
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At the 𝛼 = 0.01 significance level in table DE599 below E-skew had slight or 

poor agreement with each Monte Carlo Bootstrap method considered at sample size 5.  

As sample size increased in tables DE1099 and DE1499 the Kappa agreement increased 

between E-skew and each Monte Carlo Bootstrap method.  At sample size 10 E-skew had 

slight or fair agreement with each Monte Carlo Bootstrap method.  At sample size 14 E-

skew had fair or moderate agreement with each Monte Carlo Bootstrap method.  At each 

sample size none of the Kappa agreements were statistically significantly different from 

one another.  

Further, at sample size 5 none of the Kappa coefficients were statistically 

significantly different from 0 indicating any agreement found between E-skew and a 

Monte Carlo Bootstrap method was by chance.  At sample size 10 and 14 however the 

agreement between E-skew and each Monte Carlo Bootstrap method other than the BC at 

sample size 10 were found to be statistically significantly greater than 0.  The E-skew had 

highest agreement at sample size 10 with the BP method.  The agreement with BP at 

sample size 10 was not significantly higher than it was with BT, 𝐵𝐶a and BS.  The E-

skew also had highest agreement at sample size 14 with the BS method.  This agreement 

was also not statistically significantly higher than the agreement between E-skew and any 

of the other methods. 

Kappa agreements were lower at the 𝛼 = 0.01 significance level for the 

Differentially Expressed Data Set.  In general Kappa agreements were lower at sample 

size 5 at the 𝛼 = 0.01 significance level than they were for any combination of 

significance level and sample size for both sets of genes.  However, at each successive 

sample size Kappa agreements increased between E-skew and each Monte Carlo 
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Bootstrap method.  These patterns can also be viewed in Figure DE99 below.  In the 

figure each Kappa was plotted at each sample size for the Differentially Expressed Data 

Set at the 𝛼 = 0.01 significance level.  

Table DE599 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

  

Positive 

 

 

Negative 

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  0 38 -0.008 ( -0.39 , 0.374 ) 

BC Negative  1 211   

 

BT Positive  0 1 0 ( -1 , 1 ) 

BT Negative  0 249   

 

BP Positive  1 35 0.047 ( -0.338 , 0.432 ) 

BP Negative  0 214   

 

𝑩𝑪𝐚 Positive  1 37 0.044 ( -0.330 , 0.418 ) 

𝑩𝑪𝐚 Negative  0 212   

 

BS Positive  0 1 0 ( -1 , 1 ) 

BS Negative  0 249   
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Table DE1099 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  18 47 0.145 ( -0.069 , 0.36 ) 

BC Negative  27 158   

 

BT Positive  10 5 0.267 ( -0.006 , 0.541 ) 

BT Negative  35 200   

 

BP Positive  35 51 0.389 ( 0.214 , 0.564 ) 

BP Negative  10 154   

 

𝑩𝑪𝐚 Positive  38 60 0.378 ( 0.211 , 0.545 ) 

𝑩𝑪𝐚 Negative  7 145   

 

BS Positive  13 1 0.388 ( 0.133 , 0.644 ) 

BS Negative  32 204   

 

Table DE1499 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  117 45 0.20 ( 0.028 , 0.372 ) 

BC Negative  46 42   

 

BT Positive  83 15 0.287 ( 0.138 , 0.435 ) 

BT Negative  80 72   

 

BP Positive  154 50 0.416 ( 0.244 , 0.587 ) 

BP Negative  9 37   

 

𝑩𝑪𝐚 Positive  155 50 0.424 ( 0.253 , 0.595 ) 

𝑩𝑪𝐚 Negative  8 37   

 

BS Positive  84 79 0.425 ( 0.288 , 0.563 ) 

BS Negative  0 87   
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Figure DE99 Kappa Agreements for the Differentially Expressed Data Set at the 0.01 alpha level 
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At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels in tables DE595, DE1095, 

DE1495, DE590, DE1090, and DE1490 below, Kappa agreements were higher between 

E-skew and each Monte Carlo Bootstrap method than they were at the 𝛼 = 0.01 

significance level for a given sample size.  At sample size 5 for both significance levels 

the E-skew method was in highest agreement with the BT method.  Further at sample size 

5, agreements ranged from fair to substantial at the 𝛼 = 0.05 significance level, and 

moderate to substantial at the 𝛼 = 0.10 significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels the agreement between E-skew and BT was statistically significantly 

higher than the BC, BP and 𝐵𝐶a methods but not higher than the BS method. 

At sample size 10 for both alpha levels, E-skew had highest agreement with the 

BS method.  The agreements ranged from fair to substantial.  No one method had a 

statistically significantly higher Kappa than every other method.  However, the BC 

Kappa was statistically significantly lower than the 𝐵𝐶a and BS Kappa’s. All of the 

Kappa’s were statistically significantly greater than 0.  

At sample size 14 in table DE1495 and DE1490 below, for both alpha levels, E-

skew had highest agreement with the 𝐵𝐶a method.  Agreements ranged from fair to 

substantial at the 𝛼 = 0.05 significance level, and fair to perfect at the 𝛼 = 0.10 

significance level.  Only the 𝐵𝐶a Kappa was statistically significantly greater than 0 at 

both the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  Further, at the 𝛼 = 0.10 significance 

level the E-skew had perfect agreement with the 𝐵𝐶a and BP methods.  All three methods 

the 𝐵𝐶a, BP and E-skew found 248 of the 250 differentially expressed genes to be 

differentially expressed.  
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As can be viewed in Figures DE95 and DE90, only the 𝐵𝐶a Kappa increased at 

each successive sample size at both the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  

Further at the 𝛼 = 0.10 significance level the BP Kappa increased at each successive 

sample size.  At the 𝛼 = 0.05 significance level all other method’s Kappa decreased from 

sample size 10 to sample size 14.  At the 𝛼 = 0.10 significance level the BS and BT 

method’s Kappa were lower at sample size 14 than they were at sample size 10.  

The reason there was lower agreement at sample size 14 at these two alpha levels 

for the BS and BT methods was because BS and BT found a lower count of differentially 

expressed genes.  Table E1L99 in section 4.1 demonstrated at sample size 15 BS and 

BT’s lower limit percent error was greater than for the E-skew and 𝐵𝐶a methods. In turn 

their confidence interval’s length was larger than E-skew and 𝐵𝐶a.  The larger each 

cohort’s interval the more likely the intervals will overlap. Therefore, because BT and 

BS’s interval length were longer they were classifying fewer genes as differentially 

expressed and generating less agreement with E-skew.  
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Table DE595 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the Differentially Expressed Data Set.  Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  16 60 0.262 ( 0.101 , 0.423 ) 

BC Negative  1 173   

 

BT Positive  12  6  0.662 ( 0.467 , 0.857 ) 

BT Negative  5 227   

 

BP Positive  17 74 0.226 ( 0.078 , 0.374 ) 

BP Negative  0 159   

 

𝑩𝑪𝐚 Positive  17  79 0.21 ( 0.065 , 0.354 ) 

𝑩𝑪𝐚 Negative  0 154   

 

BS Positive  9 1 0.649 ( 0.424 , 0.874 ) 

BS Negative  8 232   

 

Table DE1095 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  101   56  0.275 ( 0.154 , 0.396 ) 

BC Negative  33  60   

 

BT Positive  91  17 0.525 ( 0.42 , 0.63 ) 

BT Negative  43  99   

 

BP Positive  129   55 0.503 ( 0.394 , 0.613 ) 

BP Negative  5 61   

 

𝑩𝑪𝐚 Positive  134  47  0.611 ( 0.511 , 0.712 ) 

𝑩𝑪𝐚 Negative  0 69   

 

BS Positive  97  2 0.693 ( 0.604 , 0.781 ) 

BS Negative  37 114   
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Table DE1495 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  219  7  0.228 ( -0.052 , 0.509 ) 

BC Negative  19 5   

 

BT Positive  216  6 0.25 ( -0.012 , 0.512 ) 

BT Negative  22 6   

 

BP Positive  238  9 0.388 ( -0.004 , 0.781 ) 

BP Negative  0 3   

 

𝑩𝑪𝐚 Positive  235  4 0.681 ( 0.448 , 0.914 ) 

𝑩𝑪𝐚 Negative  3 8   

 

BS Positive  214  0 0.461 ( 0.256 , 0.666 ) 

BS Negative  24 12   
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Figure DE95 Kappa Agreements for the Differentially Expressed Data Set at the 0.05 alpha level 
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Table DE590 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.10 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  40 69  0.387 ( 0.285 , 0.490 ) 

BC Negative  1 140   

 

BT Positive  34  24 0.612 ( 0.505 , 0.720 ) 

BT Negative  7 185   

 

BP Positive  41 79 0.351 ( 0.251 , 0.450 ) 

BP Negative  0 130   

 

𝑩𝑪𝐚 Positive  41 83 0.332 ( 0.234 , 0.431 ) 

𝑩𝑪𝐚 Negative  0 126   

 

BS Positive  22 6 0.582 ( 0.452 , 0.712 ) 

BS Negative  19 203   

 

Table DE1090 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.10 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  172 32 0.283 ( 0.146 , 0.420 ) 

BC Negative  25 21    

 

BT Positive  167 14 0.526 ( 0.419 , 0.632 ) 

BT Negative  30 39   

 

BP Positive  196 31 0.517 ( 0.386 , 0.648 ) 

BP Negative  0 22   

 

𝑩𝑪𝐚 Positive  197 27 0.603 ( 0.484 , 0.722 ) 

𝑩𝑪𝐚 Negative  0 26   

 

BS Positive  162 0 0.662 ( 0.575 , 0.749 ) 

BS Negative  35 53   
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Table DE1490 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.10 alpha level for the Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  240 0 0.324 ( -0.062 , 0.711 ) 

BC Negative  8 2   

 

BT Positive  240  0 0.324 ( -0.062 , 0.711 ) 

BT Negative  8 2   

 

BP Positive  248  0 1.00 ( 1 , 1 ) 

BP Negative  0 2   

 

𝑩𝑪𝐚 Positive  248 0 1.00 ( 1 , 1 ) 

𝑩𝑪𝐚 Negative  0 2   

 

BS Positive  237 0 0.256 ( -0.104 , 0.617 ) 

BS Negative  11 2   
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Figure DE90 Kappa Agreements for the Differentially Expressed Data Set at the 0.10 alpha level 
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Application of E-skew in Microarray Data: non-Differentially Expressed Data Set 

At the 𝛼 = 0.01 significance level in Table NDE599 below E-skew had slight 

agreement with each Monte Carlo Bootstrap method considered at sample size 5.  At 

sample size 10 in Table NDE1099 below E-skew had slight or fair agreement with each 

method.  At sample size 14 in Table NDE1499 E-skew had fair or moderate agreement 

with each method.  

At sample size 5 the method with highest agreement with E-skew was BS.  

However, none of the Kappa’s were significantly different from 0. As sample size 

increased in tables NDE1099 and NDE1499 the Kappa agreement generally increased but 

not always.  For every method, the Kappa at sample size 14 was greater than it was at 

sample size 5 except in the case of the BS method. Further at sample sizes 10 and 14 the 

𝐵𝐶a had highest agreement with E-skew.  At both sample sizes the 𝐵𝐶a Kappa’s were 

significantly different from 0.  Also at sample size 14 the BP Kappa was significantly 

different from 0.  

As seen in Figure NDE99, the Kappa agreement between E-skew and each 

method is plotted for the non-Differentially Expressed Data Set at the 𝛼 = 0.01 

significance level.   
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Table NDE599 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  21502 2 0.025 ( -0.083 , 0.134 ) 

BC Negative  522 7   

 

BT Positive  22024 9 0 ( -0.858 , 0.858 ) 

BT Negative  0 0   

 

BP Positive  21352 0 0.025 ( -0.070 , 0.121 ) 

BP Negative  672 9   

 

𝑩𝑪𝐚 Positive  21158 0 0.02 ( -0.065 , 0.104) 

𝑩𝑪𝐚 Negative  866 9   

 

BS Positive  21997 5 0.199 ( -0.165 , 0.564 ) 

BS Negative  27 4   

 

Table NDE1099 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  21785 208 0.013 ( -0.148 , 0.174 ) 

BC Negative  38 2   

 

BT Positive  21822 209 0.009 ( -0.166 , 0.185 ) 

BT Negative  1 1   

 

BP Positive  21777 192 0.128 ( -0.017 , 0.272 ) 

BP Negative  46 18   

 

𝑩𝑪𝐚 Positive  21740 166 0.256 ( 0.135 , 0.377 ) 

𝑩𝑪𝐚 Negative  83 44   

 

BS Positive  21823 209 0.009 ( -0.166 , 0.185 ) 

BS Negative  0 1   
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Table NDE1499 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.01 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

99% CI for 𝜅 

BC Positive  20851 1066 0.044 ( -0.027 , 0.114 ) 

BC Negative  84 32   

 

BT Positive  20930 1092 0.01 ( -0.065 , 0.085 ) 

BT Negative  5 6   

 

BP Positive  20820 994 0.144 ( 0.079 , 0.208 ) 

BP Negative  115 104   

 

𝑩𝑪𝐚 Positive  20738 896 0.250 ( 0.193 , 0.307 ) 

𝑩𝑪𝐚 Negative  197 202   

 

BS Positive  20934 1075 0.039 ( -0.035 , 0.113 ) 

BS Negative  1 23   
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Figure NDE99 Kappa Agreements for the non-Differentially Expressed Data Set at the 0.01 alpha level 
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At the 𝛼 = 0.05 significance level in tables NDE595, NDE1095, and NDE1495 

below E-skew had slight to substantial agreement at sample sizes 5 and 14 while fair to 

moderate agreement at sample size 10.  At this alpha level all the Kappa’s at each sample 

size were statistically significantly greater than 0.  At sample size 14 the 𝐵𝐶a Kappa 

agreement was statistically significantly higher than any other agreement.  

At the 𝛼 = 0.10 significance level in tables NDE590, NDE1090, and NDE1490 

below, E-skew had slight to moderate agreement at sample sizes 5, and moderate to 

substantial agreement at sample size 10.  At sample size 14 each method’s Kappa 

agreement was substantial or near perfect.  At this alpha level all the Kappa’s at each 

sample size were also statistically significantly greater than 0.  At sample size 14 the 𝐵𝐶a 

Kappa agreement was statistically significantly higher than any other agreement.  

Figure NDE95 and NDE90 below display the Kappa agreement between E-skew 

and each method for the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels respectively. As is 

displayed in the figures, the Kappa agreement’s increased at each successive sample size 

for the 𝐵𝐶a, BP and BC methods.  
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Table NDE595 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  21497 2 0.188 ( 0.116 , 0.260 ) 

BC Negative  477 57   

 

BT Positive  21945 26 0.544 ( 0.424 , 0.665 ) 

BT Negative  29 33   

 

BP Positive  21324 0 0.149 ( 0.085 , 0.214 ) 

BP Negative  650 59   

 

𝑩𝑪𝐚 Positive  21183 0 0.125 ( 0.066 , 0.185 ) 

𝑩𝑪𝐚 Negative  791 59   

 

BS Positive  21965 22 0.704 ( 0.600 , 0.808 ) 

BS Negative  9 37   

 

 

Table NDE1095 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  21489 231 0.334 ( 0.272 , 0.396 ) 

BC Negative  200 113   

 

BT Positive  21653 266 0.335 ( 0.261 , 0.41 ) 

BT Negative  36 78   

 

BP Positive  21443 117 0.548 ( 0.501 , 0.594 ) 

BP Negative  246 227   

 

𝑩𝑪𝐚 Positive  21312 35 0.592 ( 0.552 , 0.631 ) 

𝑩𝑪𝐚 Negative  377 309   

 

BS Positive  21686 222 0.516 ( 0.453 , 0.579 ) 

BS Negative  3 122   
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Table NDE1495 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.05 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

95% CI for 𝜅 

BC Positive  20226 877 0.504 ( 0.476 , 0.532 ) 

BC Negative  278 652   

 

BT Positive  20453 1023 0.465 ( 0.434 , 0.497 ) 

BT Negative  51 506   

 

BP Positive  20177 520 0.684 ( 0.663 , 0.705 ) 

BP Negative  327 1009   

 

𝑩𝑪𝐚 Positive  20045 319 0.738 ( 0.720 , 0.756 ) 

𝑩𝑪𝐚 Negative  459 1210   

 

BS Positive  20502 808 0.624 ( 0.598 , 0.649 ) 

BS Negative  2 721   
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Figure NDE95 Kappa Agreements for the non-Differentially Expressed Data Set at the 0.05 alpha level 
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Table NDE590 Comparison of E-skew and Monte Carlo Bootstrap classification at 0.10 

alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =5 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  21497 2 0.188 ( 0.128 , 0.249 ) 

BC Negative  477 57   

 

BT Positive  21945 26 0.544 ( 0.443 , 0.645 ) 

BT Negative  29 33   

 

BP Positive  21324 0 0.149 ( 0.095 , 0.204 ) 

BP Negative  650 59   

 

𝑩𝑪𝐚 Positive  21183 0 0.125 ( 0.075 , 0.176 ) 

𝑩𝑪𝐚 Negative  791 59   

 

BS Positive  21965 22 0.387 ( 0.294 , 0.481 ) 

BS Negative  9 37   

 

Table NDE1090 Comparison of E-skew and Monte Carlo Bootstrap classification at 

0.10 alpha level for the non-Differentially Expressed Data Set. Significance measured 

indirectly by comparing confidence intervals in each cohort, sample size =10 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  20649 468 0.513 ( 0.487 , 0.540 ) 

BC Negative  412 504   

 

BT Positive  20962 551 0.551 ( 0.522 , 0.579 ) 

BT Negative  99 421   

 

BP Positive  20586 213 0.672 ( 0.652 , 0.692 ) 

BP Negative  475 759   

 

𝑩𝑪𝐚 Positive  20401 31 0.716 ( 0.698 , 0.733 ) 

𝑩𝑪𝐚 Negative  660 941   

 

BS Positive  21051 402 0.725 ( 0.703 , 0.748 ) 

BS Negative  10 570   
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Table NDE1490 Comparison of E-skew and Monte Carlo Bootstrap classification at the 

0.10 alpha level among the non-Differentially Expressed Data Set. Significance 

measured indirectly by comparing confidence intervals in each cohort, sample size =14 

 E-skew  

   

Positive  

 

  

Negative  

 

 

𝜅 
 

90% CI for 𝜅 

BC Positive  18767 1203 0.653 ( 0.639 , 0.667 ) 

BC Negative  337 1726   

 

BT Positive  19000 1375 0.643 ( 0.629 , 0.658 ) 

BT Negative  104 1554   

 

BP Positive  18725 724 0.771 ( 0.760 , 0.782 ) 

BP Negative  379 2205   

 

𝑩𝑪𝐚 Positive  18607 391 0.828 ( 0.818 , 0.837 ) 

𝑩𝑪𝐚 Negative  497 2538   

 

BS Positive  19099 1045 0.757 ( 0.745 , 0.769 ) 

BS Negative  5 1884   
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  Figure NDE90 Kappa Agreements for the non-Differentially Expressed Data Set at the 0.10 alpha level 
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Application of E-skew in Microarray Data Results Discussion 

When comparing the Kappa agreements between the non-Differentially Expressed 

and Differentially Expressed data sets, there were varied results between the two data sets 

depending on the alpha level and sample size.  For the non-Differentially Expressed Data 

Set each Kappa agreement was statistically significantly greater than 0 for both the 𝛼 = 

0.05 and 𝛼 = 0.10 significance levels.  This could not be said for every method for the 

Differentially Expressed Data Set.  Although, this was the case at the 𝛼 = 0.05 and 𝛼 = 

0.10 significance levels, at the 𝛼 = 0.01 significance level, the Kappa’s for the 

Differentially Expressed Data Set were higher at sample sizes 10 and 14.  Further, these 

Kappa’s were statistically significantly greater than 0.  This could not be said for the 

genes from the non-Differentially Expressed Data Set at this significance level at these 

sample sizes.  Therefore, which data set yielded higher Kappa agreements depended on 

the significance level considered. 

Although there were varied agreements depending on the significance level 

considered, these results were encouraging when referring to the simulation results in 

section 4.1.  Table E199U reported upper limit confidence interval error rates at 

successive sample sizes 5, 10, and 15 at the 0.01 alpha level for data drawn from the 

exponential distribution.  Data drawn from an exponential distribution with fixed 𝛼 = 1, 

are considered moderately skewed with skew approximately equal to 2 as mentioned 

previously.  The distribution of gene fold expression data studied in this section were also 

right skewed.  In Table E199U the method with the smallest deviation from the true 

nominal error rate for the upper limit level was the BS method.  Simulation results at the 

𝛼 = 0.05 and 𝛼 = 0.10 significance levels are also reported in the Appendix.  These 
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Appendix tables also found BS to have the smallest deviation from the true error rate at 

the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  Similarly, among the methods considered 

in section 4.7 the 𝐵𝐶a method had the smallest deviation from the nominal one-sided 

error rate for the lower limit.  This can be seen in tables E199L and Appendix tables.   

These results are not surprising because at small sample sizes the 𝐵𝐶a and BS 

methods are more accurate as second order methods and have error rates at small sample 

sizes closer to target nominal error rates compared to first order methods.  For sample 

sizes 10 and 14, other than for the Differentially Expressed Data Set at the 𝛼 = 0.01 

significance level at sample size 10, the method with the highest Kappa was either the BS 

or 𝐵𝐶a.  At sample size 5 the method with highest agreement with E-skew varied but at 

such a small sample size intervals are inherently less reliable because so little data is 

available.  Consequently, having such high agreement with the most accurate Monte 

Carlo Bootstrap methods indicates the E-skew method is performing appropriately in this 

real data example.  

Further the E-skew uses EBSD(𝑛) which has inherent advantages.  One 

disadvantage of relying on Monte Carlo resampling in testing individual gene expression 

is every time resampling is performed this changes the significance or non-significance of 

a given gene.  Although most genes will repeatedly be found to be significant or non-

significant for each 10,000 resamples performed, a path forward remains unclear for 

those genes that alternate between significant and not depending on the trial run.  In other 

words, if a second set of 10,000 Bootstrap resamples are performed, some genes which 

are found to be non-significant in the first set could then be found to be significant in the 

second because of random Monte Carlo variation. Further there is not only Monte Carlo 
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variation but user variation.  The selection of the number Monte Carlo Bootstrap 

resamples as mentioned before will vary depending on the user. The selection of 10,000 

Monte Carlo Bootstrap resamples was made to limit variation. In fact, a user could 

choose to only perform 200 or 500 resamples, as is often done, and this would increase 

the variation in classification from one trial to the next.  This highlights an advantage of 

using the E-skew method.  The E-skew method will find the same genes to be significant 

with repeated runs of the algorithm any time the method is performed on the same data 

because it relies on the same underlying fixed design of EBSD(𝑛).  

Although the results varied depending on the significance level, sample size and 

data set under consideration frequently E-skew was found to be in statistically significant 

agreement with many of the Monte Carlo Bootstrap methods.  Further the results show 

the E-skew method had high agreement with second order methods 𝐵𝐶a and BS at 

sample size 10 and 14 in nearly every case.  EBSD(𝑛) provides a framework from which 

E-skew can derive consistent results.  Thus E-skew provided consistent results with 

second order methods at small sample sizes based on Cohen’s Kappa while also 

providing consistent results by using EBSD(𝑛).   
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Chapter 5: Conclusion 

The Monte Carlo Bootstrap has been a common but inefficient technique for 

confidence interval computation.  The inefficiency in the technique, namely, is that it 

introduces simulation error.  Hence, the author was motivated to compare confidence 

interval methods using the Efficient Bootstrap Sample Design for a sample of size 𝑛 

(EBSD(𝑛)) to those using the Monte Carlo Bootstrap.  The purpose of this comparison 

was to highlight the added advantage of using EBSD(𝑛) to eliminate Monte Carlo 

Bootstrap simulation error in confidence interval computation.  Some aspects of this 

simulation study highlighted the benefit of using EBSD(𝑛) more so than others.   

In general the relative accuracy of methods using EBSD(𝑛) varied depending on 

the sample size, significance level, statistic and distribution studied.  Relative 

improvement in accuracy using EBSD(𝑛) was found frequently at the 𝛼 = 0.01 

significance level for each statistic studied.  Additionally, E-skew provided relative 

accuracy for non-linear statistics across 𝛼 significance level.  Noteworthy results for 

specific sample sizes, significance levels, statistics and statistical distributions are 

described below.   

For the sample mean when the data was approximately normally distributed at the 

𝛼 = 0.01 significance level, percentile methods such as EP and EBC, performed relatively 

more accurately compared to E-skew and Monte Carlo Bootstrap methods.  Although EP 

and EBC performed relatively accurately at the 𝛼 = 0.01 significance level, they 

performed relatively less accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  

Although EP and EBC performed relatively less accurately in the latter case, E-skew 
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performed relatively accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, 

providing a reasonable facsimile to the most accurate Monte Carlo Bootstrap methods, 

BS and 𝐵𝐶a.   

For the sample mean at the 𝛼 = 0.01 significance level, 𝐸𝐵𝐶a performed 

relatively accurately at small sample sizes when data was generated from a skewed 

distribution such as data generated from the exponential distribution.  𝐸𝐵𝐶a, in particular, 

performed relatively accurately at sample sizes 10, 15 and 20 as it had the error rate with 

the smallest percent error at each of these sample sizes.  This is a significant finding as 

often BS performs most accurately for the long tailed end of a distribution for the sample 

mean across sample size.  This suggests 𝐸𝐵𝐶a may be able to provide relatively accurate 

results at the 𝛼 = 0.01 significance level when the data is skewed for small sample sizes.  

However, at sample sizes 30 and 40 at the 𝛼 = 0.01 significance level for the upper limit, 

𝐸𝐵𝐶a had an error rate with one of the largest percent errors compared to all of the other 

methods studied.  Although 𝐸𝐵𝐶a did perform relatively accurately at these small sample 

sizes at 𝛼 = 0.01 significance level, it was unable to maintain the same degree of relative 

accuracy at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels. 

For the ratio of sample means statistic when data was generated from the normal 

distribution with an expected ratio of means value of 2, E-skew performed relatively 

accurately.  In particular, E-skew performed more accurately at nearly every sample size 

and significance level when compared to other methods applied on EBSD(𝑛) for this 

statistic.  When comparing E-skew to both Monte Carlo Bootstrap and EBSD(𝑛) for this 

specification, of the 36 cases studied (6 sample sizes*2 limit ends*3 significance levels), 
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E-skew had the error rate with the smallest percent error for 23 of them.  Similar results 

for E-skew were found for the other two normal distribution specifications studied.  This 

suggests E-skew provides relatively accurate confidence intervals for the ratio of means 

statistic when the data from each independent sample is normally distributed.     

The E-skew error rate results for data generated from the log-normal distribution 

were found to be similar to the error rate results from the normal distribution, in fact for 

the simulation performed on the log-normally distributed data, E-skew had the error rate 

with the smallest percent error at every sample size for the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels.   

For the ratio of sample means statistic when data was generated from the 

exponential distribution with an expected ratio of means value of 2, E-skew performed 

relatively more accurately than other methods applied on EBSD(𝑛) at the 𝛼 = 0.05 and 𝛼 

= 0.10 significance levels.  Further at the 𝛼 = 0.10 significance level, E-skew performed 

relatively more accurately than all methods it was compared to.  In this case, E-skew 

achieved the error rate with the smallest percent error for 3 of 6 sample sizes for the 

upper limit and 4 of 6 sample sizes for the lower limit.  At the 𝛼 = 0.01 significance level, 

EP performed relatively more accurately than E-skew.  Similar E-skew results were 

found for the ratio of means statistic for both exponential distribution parameter 

specifications.  Additionally, similar E-skew results were also found for data generated 

from the gamma distribution and the mixture of two normal distributions.  For the gamma 

distribution, E-skew performed relatively accurately for the upper limit at the 𝛼 = 0.05 

and 𝛼 = 0.10 significance levels, attaining the error rate with the smallest percent error in 

10 of 12 cases.  For the mixture of two normal distributions, at the 𝛼 = 0.05 and 𝛼 = 0.10 
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significance levels E-skew attained the error rate with the smallest percent error among 

all methods applied on EBSD(𝑛) for both the upper and lower limit.   

For the ratio of sample means statistic, EBC and EP performed more accurately at 

the 𝛼 = 0.01 significance level at each sample size compared to their Monte Carlo 

Bootstrap counterpart.  They also performed less accurately compared to their Monte 

Carlo Bootstrap counterpart at each sample size for the 𝛼 = 0.05 and 𝛼 = 0.10 

significance levels for each distribution studied.   

For the Pearson correlation coefficient, E-skew performed relatively accurately 

when the data was generated from the bivariate normal distribution. For 𝜌 = 0.10, E-skew 

had the error rate with the smallest percent error compared to any other method at 3 of 6 

sample sizes for the upper limit and 4 of 6 sample sizes for the lower limit at the 𝛼 = 0.01 

significance level.  At the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, E-skew attained the 

error rate with the smallest percent for an even higher percentage of sample sizes.  As 𝜌 

was increased E-skew attained the error rate with the smallest percent error less 

frequently but still did so at many sample sizes studied.  This suggests when computing 

confidence intervals for the Pearson correlation coefficient, E-skew may be relatively 

accurate compared to Monte Carlo Bootstrap methods when the data is generated from a 

distribution that is approximately bivariate normal.     

When compared to other methods applied on EBSD(𝑛), E-skew performed more 

accurately at every sample size at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  EBC, EP 

and ET did not perform as accurately at each sample size and significance level compared 

to their Monte Carlo Bootstrap counterpart.   
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When the data was non-normally distributed, E-skew did not perform as 

accurately for the Pearson correlation coefficient as the Monte Carlo Bootstrap methods 

for most sample sizes.  In a few cases at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels, E-

skew did attain the error rate with the smallest percent error when the data was non-

normally distributed and 𝜌 = 0.10.   

For the trimmed sample mean for data that was normally distributed, EP or EBC 

attained the error rate with the smallest percent error at every sample size compared to 

the other methods studied including Monte Carlo Bootstrap methods at the 𝛼 = 0.01 

significance level.  However, at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels both 

methods performed less accurately than their Monte Carlo Bootstrap counterpart.  This 

suggests when computing confidence intervals at the 𝛼 = 0.01 significance level on data 

where outliers have been removed, it may be preferable to use EP or EBC over any 

Monte Carlo Bootstrap method.  However, when the data was slightly skewed as in the 

log-normal and gamma cases EP or EBC attained the error rate with the smallest percent 

error for the upper limit at three of four sample sizes.  When the data was moderately 

skewed as in the case of the exponential distribution neither EP or EBC attained the error 

rate with the smallest percent error for the upper limit at any sample size.  This suggests 

as the data becomes more skewed EP and EBC become relatively less accurate compared 

to Monte Carlo Bootstrap methods for the trimmed sample mean.  At the 𝛼 = 0.05 and 𝛼 

= 0.10 significance levels E-skew performed relatively more accurately than every other 

method applied on EBSD(𝑛) and second most accurately to BS in nearly every case.  

Again in this instance, E-skew provided a reasonable facsimile to BS in terms of 

accuracy while also having the advantages inherent in using EBSD(𝑛). 
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For the sample median, percentile methods applied on EBSD(𝑛) performed more 

accurately than their Monte Carlo Bootstrap counterparts at the 𝛼 = 0.01 significance 

level, and less accurately at the 𝛼 = 0.05 and 𝛼 = 0.10 significance levels.  For some 

sample sizes at the 𝛼 = 0.01 significance level, percentile methods applied on EBSD(𝑛) 

had error rates with smaller percent errors than every Monte Carlo Bootstrap method.   

The main simulation results were studied using 10,000 Bootstrap resamples.  

Some methods using EBSD(𝑛) that performed less accurately compared to Monte Carlo 

Bootstrap methods could be found to be more accurate if the number of Bootstrap 

iterations specified was decreased.  For example, for the sample mean examples in 

section 4.6, BT which was found to have an error rate with a smaller percent error 

compared to ET for the upper limit for 10,000 Bootstrap iterations, frequently had a 

larger percent error when fewer Bootstrap iterations were used.  Therefore, in the 

simulation study the Monte Carlo Bootstrap methods were compared to EBSD(𝑛) using a 

best case approach.  In practice fewer Monte Carlo Bootstrap iterations are often 

specified and this would lead to a further comparative advantage for EBSD(𝑛) methods. 

Lastly, in the real data example in section 4.7, although the results varied 

depending on the alpha level, sample size and data set under consideration frequently E-

skew was found to be in statistically significant agreement with many of the Bootstrap 

methods.  Further the results show E-skew had high agreement with second order 

methods 𝐵𝐶a and BS at sample size 10 and 14 in nearly every case.  As the microarray 

data was skewed, one can refer back to the results for data simulated from the exponential 

distribution as a basis for comparison.  For this part of the simulation study, the 𝐵𝐶a and 

BS methods provided the most accurate results for the lower limit and upper limit 
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respectively.  Since E-skew is in highest agreement with these methods at sample sizes 10 

and 14 this is an indication E-skew is performing accurately in a real data context.  Thus 

by using EBSD(𝑛), E-skew can derive consistent accurate results which is motivation to 

choose the method when analyzing skewed data.   

Limitations of E-skew 

For the sample mean, when the data was highly skewed as in the second log-

normal specification studied in section 4.1, E-skew was not able to adjust for skew as 

successfully as the 𝐵𝐶a and BS methods.  For moderately skewed distributions like the 

exponential, E-skew adjusted for skew as well or nearly as well as these methods.  The 

more dramatic the skew, the less relatively accurate E-skew was compared to these 

methods.   

Additionally, for non-linear statistics, E-skew is dependent on using the Jackknife 

method to estimate the skew for each Bootstrap sample that makes up EBSD(𝑛).  As 

described in section 2.4 the Jackknife is inaccurate for large sample sizes for the sample 

median.  Therefore, E-skew will also not perform accurately for the sample median at 

large sample sizes as it is dependent on the Jackknife method.  The same, in theory, could 

be said for other statistics the Jackknife performs inaccurately for.  Additionally, in 

section 2.4 it is mentioned that the Jackknife does not perform as accurately for more 

complex probability structures.  Therefore, this would also be a limitation for E-skew as 

well.  

Limitations of Other Monte Carlo Bootstrap methods Applied on EBSD(𝒏) 
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Generally speaking, EBC, EP and 𝐸𝐵𝐶a performed relatively less accurately when 

the 𝛼 significance level was greater than 0.01 for the sample sizes studied.  Additionally, 

at the 𝛼 = 0.01 significance level, 𝐸𝐵𝐶a generally performed relatively accurately for the 

upper limit at sample sizes 10, 15 and 20 and then relatively inaccurately for the upper 

limit at sample sizes 30 and 40.  For the 𝐵𝐶𝑎 method it is uncommon for the upper limit 

error rate’s percent error to be larger at sample sizes 30 and 40 than it is at sample size 20 

when data is drawn from the same population across sample size.  However, this was 

found to happen consistently for the 𝐸𝐵𝐶𝑎 method. 

In the construction of EBSD(𝑛), as sample size increased, the proportion of 

samples from EBSD(𝑛) with 𝑋̅𝐸𝑖
 equal to 𝑋̅ from the original sample increased.  At 

sample sizes 30 and 40, approximately half of the samples EBSD(𝑛) produced had a 𝑋̅𝐸𝑖
 

equal to the 𝑋̅ from the original sample.   

This property causes the percent error of 𝐵𝐶𝑎’s upper limit error rate to increase 

greatly.  The 𝑧0̂ value in the 𝐵𝐶𝑎 algorithm is overly sensitive to samples whose 𝑋̅𝐸𝑖
 is 

equal to the 𝑋̅ from the original sample because of the 𝑋̅𝐸𝑖
 < 𝑋̅ inequality.  Therefore 

when the 𝐵𝐶𝑎 algorithm is applied on EBSD(𝑛), 𝐸𝐵𝐶𝑎, the strictly less than inequality 

causes the 𝑧0̂ value and consequently the percentile taken from the EBSD(𝑛) sampling 

distribution to be much smaller for the upper limit than the percentile that would be taken 

using the Monte Carlo Bootstrap method at sample size 30 and 40.  This causes the 

resulting confidence interval to be narrower and therefore excludes the true population 

mean at a higher frequency compared to other methods at these sample sizes. 
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The ES method did not compare favorably to the BS method.  For each sample 

size at each significance level the ES method had an error rate with a larger percent error 

than BS for both the upper and lower limit.  Both methods used the Bootstrap-t algorithm 

described in section 2.5.  This algorithm used t-statistics generated from the Bootstrap 

sampling distribution to compute a confidence interval.  The reason ES did not perform 

as well as BS is because of the repeated blocks inherent to the EBSD(𝑛) design.  In the 

Monte Carlo Bootstrap, the probability of the same element being picked 𝑛 times with 

replacement in an individual resample is 𝑛 ∗ (
1

𝑛
)𝑛.  For example, for a sample of size 30 

one way a resample would have a sample variance of 0 would be if the first element were 

picked 30 consecutive times when sampling with replacement.  Of course, this is not 

exclusive to the first element, if any of the 𝑛 elements are chosen every time for a 

resample this will cause the variance to be 0.  If the sample variance is 0, the t-statistic is 

undefined in the resulting Monte Carlo Bootstrap sampling distribution.  For the Monte 

Carlo Bootstrap, the probability of this occurring once in 10,000 Bootstrap resamples is 

unlikely even at sample sizes as small as 10 (This probability can be computed as: (1-(1-

(10*((
1

10
)10)))10,000)≈0.00001).  Conversely, EBSD(𝑛) guarantees 

2𝑛

4𝑛2+1
 samples will have 

this condition.  Accordingly, a high percentage of the t-statistic sampling distribution is 

undefined.  At sample size 10 approximately 5% of the sample sizes will not be usable 

for establishing a distribution for the t-statistic.  Further at sample size 40, still a little 

more than 1% of the samples will not be usable.  This had an impact on the percentile to 

be used from the EBSD(𝑛) sampling distribution for a significance level 𝛼.  It is unclear 

how to proceed using the Bootstrap-t because although the samples were unusable by 

removing them from the sampling distribution information would be lost.  
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The problems inherent with the Bootstrap-t method might cause one to wonder 

why doesn’t the E-skew method suffer from the same problem when implemented on 

EBSD(𝑛)?  If the t-statistic cannot be computed for the repeated samples and the E-skew 

method uses the skew corrected t-statistic, then this should cause these samples to be 

thrown out of the E-skew sampling distribution?  The difference was because upper and 

lower limits were being computed rather than t-statistics.  The E-skew method 

automatically assigned the value of the repeated element as the upper and lower limits 

because there is no variance in these samples.  These elements were distributed across the 

sampling distribution rather than being concentrated at the center of the sampling 

distribution. 

An automatic assignment was applied for the Bootstrap-t, the t-statistic was 

assigned the value of 0.  However, because the repeated elements samples end up 

concentrated near the 50th percentile of the resulting EBSD(𝑛) sampling distribution, 

information was lost as these t-statistics were not distributed across the sampling 

distribution.  Therefore, the results for the Bootstrap-t algorithm using EBSD(𝑛) was  

quite inaccurate relative to the other methods considered. 

Future Work 

There are many interesting potential investigations that could be performed for 

the E-skew and EBSD(𝑛).  First, further investigation would be merited in finding a way 

to adjust the E-skew algorithm to perform relatively as accurately as BS and 𝐵𝐶𝑎 in the 

case of highly skewed data.  The component of interest that could be investigated for 

adjustment is the computation of the 𝛼𝑈 or 𝛼𝐿 parameters.  The reason this is specifically 
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of interest is because there is potentially a modification that could be made here so that 

the percentile chosen from the upper limit (or lower limit) sampling distribution would be 

higher (or lower) and thus provide better coverage for data generated from highly skewed 

distributions.   

Further investigation would also be merited into EBSD(𝑛) and specifically the 

application of 𝐸𝐵𝐶𝑎 on EBSD(𝑛).  The fact that 𝐸𝐵𝐶𝑎 performed relatively accurately 

compared to BS at the 𝛼 = 0.01 significance level for the upper limit for sample sizes 10, 

15 and 20 is quite promising. Potentially a slight modification to the 𝐵𝐶𝑎 algorithm when 

applied on EBSD(𝑛) could lead to highly accurate results at sample size 30 and 40.   
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