
   

 

Food choices in the United States: opportunities 
for health and sustainability co-benefits 

A DISSERTATION  

 

PRESENTED ON JULY 19, 2022 

AND 

SUBMITTED ON JULY 27, 2022 

 

 

TO THE DEPARTMENT OF GLOBAL COMMUNITY HEALTH AND BEHAVIORAL SCIENCES  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

OF THE SCHOOL OF PUBLIC HEALTH AND TROPICAL MEDICINE  

OF TULANE UNIVERSITY 

 

 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY  

BY  

AMELIA WILLITS-SMITH, MS 

 

APPROVED:  
 Diego Rose, PhD, MPH, RD 

 

 

 Janet Tooze, PhD, MPH 

 

 

 Lina Moses, PhD, MSPH 

  
 Keelia O’Malley, PhD, MPH 



Willits-Smith Dissertation   

Version: 20220727  Page 1 

Table of Contents 
Abstract .................................................................................................................................... 2 

Acronyms ................................................................................................................................. 3 

Background and Significance ................................................................................................. 4 

1. Public health problem: non-communicable diseases ......................................................... 4 
2. Diet and health ................................................................................................................. 4 
3. Diet, health, and environmental impacts ........................................................................... 5 
4. Gaps in the literature ........................................................................................................ 8 
5. Overall dissertation purpose ............................................................................................. 9 

Paper 1: Estimating changes to diet healthfulness, carbon footprint, and cost when 
motivated consumers choose different foods ......................................................................10 

1. Background .....................................................................................................................10 
2. Research question ...........................................................................................................11 
3. Methods ...........................................................................................................................11 
4. Results ............................................................................................................................16 
5. Discussion .......................................................................................................................18 
6. Paper 1 Appendix ............................................................................................................25 

Paper 2: Assessing the change in US food-related greenhouse gas emissions (GHGE) 
over 10 years ...........................................................................................................................32 

1. Background .....................................................................................................................32 
2. Research question ...........................................................................................................33 
3. Methods ...........................................................................................................................33 
4. Results ............................................................................................................................36 
5. Discussion .......................................................................................................................37 
6. Paper 2 Appendix ............................................................................................................46 

Paper 3: Carbon footprint and diet quality of usual diets in the US ....................................50 

1. Background .....................................................................................................................50 
2. Research question ...........................................................................................................53 
3. Methods ...........................................................................................................................53 
4. Results ............................................................................................................................56 
5. Discussion .......................................................................................................................57 
6. Paper 3 Appendix ............................................................................................................66 

Conclusions and Future Directions .......................................................................................72 

References ..............................................................................................................................73 

Dissertation Appendix .......................................................................................................... A-1 

1. Detailed methods for the creation of dataFIELD............................................................. A-1 
2. HEI-2010 and HEI-2015 scoring comparison ................................................................. A-6 

 
 

  



Willits-Smith Dissertation   

Version: 20220727  Page 2 

Abstract 
Evidence indicates that changing from current Western-style dietary patterns can 

improve health as well as reduce environmental impact from agricultural greenhouse gas 
emissions (GHGE). However, most studies look only at a single aggregate datapoint, and very 
few have been conducted on US diets. This dissertation addresses these gaps by using 
individual self-selected dietary data from adults ages 18+ in the nationally representative 
National Health and Nutrition Examination Survey (NHANES). 

Paper 1 identified consumers who might be willing to change their dietary behaviors for 
sustainability reasons and calculated changes to diet quality, carbon footprint, and cost if these 
individuals were to replace beef with other protein foods. Replacing beef with poultry reduced 
food-related GHGE 35.7%, increased Healthy Eating Index (HEI) score by 1.7%, and reduced 
diet cost by 1.7%.  

Paper 2 developed new commodity recipes to be able to calculate food-related GHGE 
over a 10-year period. US food-related carbon footprints did not change significantly between 
2005-2006 and 2015-2016 (-0.14 kg CO2-equivalents/2000kcal, p=0.18). However, there were 
significant differences by socioeconomic and demographic factors. Women had lower food-
related emissions than men (-0.38 kg CO2-equivalents/2000kcal, p<.001), and the Silent 
Generation, Millennials, and Generation Z had lower food-related emissions than Baby 
Boomers. These generational differences likely stem from beef consumption significantly 
declining in all generations except Boomers. 

Paper 3 used multivariate Markov Chain Monte Carlo (MCMC) modeling to estimate 
usual or habitual food-related GHGE and HEI scores for the 2015-2016 NHANES. The usual 
distribution of food-related GHGE has substantially smaller left and right tails than previous work 
using 1-day dietary data. However, similar to results with 1-day dietary data, there is a 
significant inverse relationship (p trend = 0.010) between food-related emissions and diet 
quality, with the mean HEI score of low-GHGE diets being 6.5/100 points higher than high-
GHGE diets. 

Substantial environmental benefits are possible from dietary changes, especially those 
that reduce beef consumption and replace it with poultry or plant-based protein foods, and diets 
with these characteristics tend to have higher diet quality. However, US diets are not moving in 
the desired direction with respect to diet quality or climate impacts. More efforts, such as 
nutrition education programs, social marketing, and inclusion of sustainability in the Dietary 
Guidelines for Americans, are needed to achieve health and environment co-benefits. 
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Acronyms 
Your guide to the alphabet soup: 
 

24HR:  24-hour dietary recall 

CNPP:  Center for Nutrition Policy and Promotion 

CVD:  Cardiovascular disease 

dataFIELD: database of Food Impacts on the Environment for Linking to Diets 

DGA:  Dietary Guidelines for Americans 

DGAC:  Dietary Guidelines Advisory Committee 

DHHS:  Department of Health and Human Services 

EPA:  US Environmental Protection Agency 

ERS:  USDA Economic Research Service 

FAO:  Food and Agriculture Organization of the United Nations (UN) 

FCID:  Food Commodities Intake Database 

FDC:  USDA FoodData Central 

FNDDS: Food and Nutrient Database for Dietary Studies 

FPED:  Food Patterns Equivalents Database 

GHGE:  Greenhouse Gas Emissions (aka carbon footprint) 

HEI:  Healthy Eating Index 

IPR:  Income-to-poverty ratio (aka PIR) 

LCA:  Life Cycle Assessment 

NCD:  Noncommunicable disease 

NCI:  National Cancer Institute 

NHANES: National Health and Nutrition Examination Survey 

PSU:  Primary sampling unit 

SR28:  USDA National Nutrient Database for Standard Reference, Release 28 

UN:  United Nations 

US:  United States 

USDA:  United States Department of Agriculture
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Background and Significance 

1. Public health problem: non-communicable diseases 
Non-communicable diseases (NCDs) are a leading cause of morbidity and mortality 

globally and in the United States (US).1 NCDs, which include cardiovascular disease, cancer, 
chronic respiratory diseases, and diabetes, can result from a combination of genetic, behavioral, 
and environmental risk factors. Dietary intake is a modifiable risk factor for three of the major 
NCD categories: cardiovascular disease, cancers, and diabetes. In the US these three disease 
categories caused 65% of all deaths and accounted for 37% of the burden of disease (in 
disability-adjusted life years or DALYs) in 2019.2 

An estimated 18% of mortality and 11% of disease burden in US adults are attributable 
to dietary risk factors (such as low consumption of fruits and vegetables and high consumption 
of red or processed meats).3 Diet quality, combined with excess energy intake and reduced 
physical activity, also lead to obesity. High body mass index is an additional risk factor for 
NCDs, and is the second largest driver of death and disability combined in the US, eclipsed only 
by tobacco use.4,5 

2. Diet and health 
Measured in any number of ways—intake of food groups (e.g., fruits), intake of 

micronutrients (e.g., vitamin C), whole diet patterns (e.g., a Mediterranean diet), or diet quality 
indices (e.g., the Healthy Eating Index)—food choice is related to risk of NCDs. Evidence links 
dietary intake to health outcomes both directly as well as indirectly via intermediates such as 
blood pressure, blood sugar regulation, serum cholesterol, and obesity. See Table B-1 for a 
selection of relationships supported by meta-analyses. 

It is a long-standing 
national priority to promote 
healthier diets in order to reduce 
the risk of these diseases.31 A 
cornerstone of these efforts is the 
Dietary Guidelines for Americans 
(DGA), produced every five years 
by the USDA and the DHHS.32 
Each update of the DGA is 
developed based on extensive 
literature reviews and the input of 
an expert Dietary Guidelines 
Advisory Committee (DGAC). The 
DGA are used to inform nutrition 
education materials (e.g., MyPlate 
or the older MyPyramid) as well as 
government-run nutrition efforts 
such as the National School Lunch 
Program and the Special 

Table B-1. Dietary components that reduce the risk of 
non-communicable diseases: selected meta-analyses 

 Decreased risk of 
CVD Diabetes Cancer 

Food and food group intakes    

↑ Fruit X6  X6,7 

↑ Vegetables X6 X8 X6,7 
↑ Whole grains X9,10 X10 X10 
↑ Fish X11   

↓ Processed meat X12,13 X12,13 X13 
Nutrient intakes    
↑ Omega-3 fatty acids X14   

↑ Fiber X15 X16 X17 
↓ Saturated fats X9 X16 X18 
↓ Trans fats X19   

↓ Cholesterol   X20 
Diet patterns    

↑ Mediterranean diet adherence X21 X22,23 X24 
↑ DASH diet adherence X25,26 X25,27 X25,28 
↓ Western diet adherence X29 X22 X30 
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Supplemental Nutrition Program for Women, Infants, Children (WIC). 
The most recent iterations of the DGA have encouraged a focus on diet patterns as a 

whole, recognizing that people do not eat individual foods or nutrients in a vacuum, but rather in 
a variety of combinations and over time. The guidelines encourage eating an appropriate calorie 
level and choosing a dietary pattern that includes higher amounts of fruits, vegetables, legumes, 
whole grains, lean meat and poultry, nuts, seeds, and seafood, and lower amounts of red and 
processed meat, added sugars, and refined grains. Each new edition of the DGA drives home 
the continued need for interventions to improve food choice in the US. The most recent DGAC’s 
literature review “shows that the American dietary landscape has not changed appreciably over 
time.”33 Most Americans are still not eating dietary patterns that reflect recommendations to 
reduce the risk of chronic disease. Dietary behavior is an age-old but still critical point of 
intervention to improve health and well-being in the US. 

3. Diet, health, and environmental impacts 
What is the relationship between diet and the environment? 

While the impact of food choices on health is widely accepted, greater attention is being 
paid both by the public and by researchers to the impacts of food choice on the environment. 
Food choices—especially in high-income countries—create demand and drive agricultural 
production. Agriculture has numerous environmental impacts, including (but not limited to) 
emitting greenhouse gasses, consuming fresh water, using scarce land, and contributing to 
water pollution, to the loss of biodiversity, and to soil degradation.34 One of the most widely 
studied environmental impacts is greenhouse gas emissions (GHGE), the primary driver of 
climate change.35 

Agriculture accounts for 10-12% of global GHGE, which comes from clearing forests, 
gasses released by ruminant animals and rice production, and gasses related to manure and 
fertilizers.35 Food production overall contributes an even larger share to anthropogenic GHGE 
when considering fossil fuel use throughout the chain, including transportation, packaging, and 
energy to process and refrigerate foods, as well as losses in food waste. Estimates of the total 
impact of global food production are difficult because elements are spread among different 
economic sectors (agriculture, electrical production, industry). However, the total share of global 
GHGE from food production is estimated at 30-34%, twice that of transportation (~14%), an 
area of human behavior that has been targeted to try to reduce emissions.36-38 

Climate change is a substantial threat to human health39,40 and to future food security.41 
Combined with the rising global population, it creates a significant challenge to producing 
enough food to meet dietary needs for all the world’s people. It is estimated that global crop 
production needs to double by 2050.42 However, this increase in yield must happen without 
increasing the environmental damage caused by food production.34 This means that not only 
are food choices essential to better health for individuals, they can also be a mechanism to 
reduce global GHGE and contribute to future food security. 

 
How do different foods compare on GHGE? 

Broadly, animal-based foods produce higher GHGE during production than do plant-
based foods. Agricultural production emits three types of greenhouse gas emissions: nitrous 
oxide, methane, and carbon dioxide.43 Each of these has a different global warming potential.44 
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To measure total emissions associated with a product, the gases are standardized to the 
warming potential of carbon dioxide—thus the terms “carbon footprint” and “greenhouse gas 
emissions” are used interchangeably here. The unit for this is CO2-equivalents (CO2-eq).  

Ruminant animals such as cattle and sheep produce methane by virtue of the 
fermentation in their digestive systems. In addition, since animals are higher up the food chain, 
their production of calories and nutrients for human consumption requires more resources than 
equivalent calories or nutrients directly from plant sources. Beef produces about 33 kg CO2-eq 
per kg of edible product, while pork produces 6 and chicken 4 kg CO2-eq. Meanwhile, grains, 
vegetables, fruits, and legumes often produce emissions an order of magnitude below that of 
chicken. See Figure B-1 for a comparison of several foods across different food groups. Data for 
the chart come from dataFIELD, the database of Food Impacts on the Environment for Linking 
to Diets, details of which have been published45 and are also described below in the methods 
for Paper 1 and in Appendix 1. 

 
Figure B-1. Greenhouse gas emissions of selected foods 

 
 
  

0 5 10 15 20 25 30 35

Sugar
Honey

Canola oil
Olive oil

Tea
Coffee

Apple
Lemon

Blueberry
Cherry

Carrot
Spinach
Tomato
Broccoli

Peanut
Walnut

Almond
Cashew

Wheat
Oats
Rice

Pinto bean
Soybean

Milk
Tuna
Eggs

Chicken
Pork
Beef

O
th

e
r

F
ru

its
V

e
ge

ta
b

le
s

N
u

ts
G

ra
in

s
B

e
an

s
A

n
im

a
l

pr
od

uc
ts

kg CO2-equivalents per kg edible product



Willits-Smith Dissertation  Background and Significance 

Version: 20220727  Page 7 

What is the relationship between diet quality and environmental impacts? 
As you can see from Figure B-1, a wide variety of dietary GHGE are possible depending 

on what a person chooses to eat in a day, in a week, and over the years of their life. 
Estimates of mean daily dietary GHGE in high-income countries range from about 2 to 7 

daily kg CO2-eq per person.45-48 Using individual, self-selected diets in the US, we found a mean 
of 4.7 kg CO2-eq per person per day.45 Diets with low GHGE can be constructed, but these will 
not necessarily be healthful.49,50 They are also unlikely to be acceptable to large portions of the 
population: studies using linear optimization have found diets that meet nutritional requirements 
with 60% to 90% fewer GHGE, but the diets were very different than current eating patterns.51-53 
For example, the diet that met nutrient requirements with 90% fewer GHGE included only seven 
foods: “whole-grain breakfast cereal, pasta, peas, fried onions, brassicas (e.g. broccoli, 
cabbage), sesame seeds, and confectionary.”51 

It seems that reductions in GHGE of about 30% to 40% are the maximum before the diet 
starts to differ greatly from current consumption.52-55 For example, one study found that diets 
with a 30% reduction in GHGE represented about a 20% deviation from the current diet in 
women, and a 35% deviation in men.52 While these authors argued that such deviations were 
realistic policy goals, others would argue that altering the types or portions of one third of the 
foods you eat is not a simple objective. 

Shifting to healthier diet patterns or to recommended diets can reduce food-related 
GHGE, albeit less than diets targeted specifically toward emissions reductions (around 5-
20%).52,56 This makes sense, since current diet patterns in many high-income countries and 
certainly in the US include more red and processed meats and more high-fat dairy foods than 
recommended patterns, and fewer whole grains, fruits, and vegetables. The former animal 
foods have higher production GHGE, whereas the carbon footprints of the latter plant-based 
foods are much lower. However, the healthiest diets are not necessarily less impactful.57 

 
Communicating with consumers: sustainability in national dietary guidance 

There is enough evidence for the impact of food choice on the environment, and for 
“win-win” scenarios—diets that are healthful and also less impactful—that the 2015 US Dietary 
Guidelines Advisory Committee (DGAC) suggested that sustainability be incorporated into the 
DGA. Their systematic review concluded that:  

“Consistent evidence indicates that, in general, a dietary pattern that is higher 
in plant-based foods, such as vegetables, fruits, whole grains, legumes, nuts, 
and seeds, and lower in animal-based foods is more health promoting and is 
associated with lesser environmental impact (GHG emissions and energy, land, 
and water use) than is the current average U.S. diet. A diet that is more 
environmentally sustainable than the average U.S. diet can be achieved without 
excluding any food groups.”58 

Giving attention to sustainability was not entirely new; the 2005 and 2010 DGACs had 
acknowledged the importance and relevance of sustainability to dietary guidance, but had not 
made specific recommendations. However, the scientific advisory committee does not create 
the final Dietary Guidelines for Americans. Despite the 2015 Committee’s recommendation that 
sustainability be included as a consideration in the DGA, the secretaries of the agencies 
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involved concluded that this was out of scope. This political position was strengthened in the 
charter for the 2020 DGAC. For the first time, USDA and DHHS defined and limited the topics 
that the advisory committee was to review ahead of time. Dietary sustainability was not 
included. 

Other countries have not responded to the growing evidence of food choice and 
sustainability with the same avoidance. Several countries include some sustainability 
component in national dietary guidance. These include Canada, Sweden, Qatar, Brazil, Norway, 
Germany, the Netherlands, France, and the UK.59-61 Furthermore, publications such as the 
Rome Declaration on Nutrition (from the UN Food and Agriculture Organization in 2014)62 and 
the Decade of Action on Nutrition (from the UN in 2016)63 show global affirmation of the need for 
nutrition policy and action to consider climate change and food system sustainability. Numerous 
scholars concur.59,64-67 

4. Gaps in the literature 
What don’t we know about the nexus of diet, health, and sustainability? First of all, while 

most studies show some clear win-win scenarios where lower food-related GHGE diets are also 
healthier, this is not always true.56 While reducing intake of high-impact animal products can 
usually accomplish both of these goals, the outcomes may depend on what the animal products 
are replaced with. One US study looking at moving the average current diet toward 
recommendations found that this would increase food-related emissions, likely due to the 
amount of dairy recommended in the DGA.68 

Second, most studies look at aggregate diets (e.g., a national average diet, like the 
study just mentioned) or hypothetical diets constructed by investigators (e.g., a vegetarian or 
vegan diet). There is a wide variation in the GHGE of individual self-selected diets in high-
income countries like the US.45,69 Working with national averages misses this nuance. And while 
hypothetical diets are helpful to understand certain questions, they do not demonstrate the 
range of ways individuals operationalize their values and priorities into day-to-day food choices. 

Third, very few studies have looked at the carbon footprint of US diets. More evidence 
from the US population is critical. There are certainly similarities between diets in the US and 
those in other high-income countries; however, food choices happen in a particular context.  

This dissertation will address these gaps in the US context by using self-selected dietary 
intake data from a nationally representative survey and examining opportunities for lower-GHGE 
food choices which also improve diet quality. 

 
There are, of course, gaps and challenges in the literature that, although they are 

outside the scope of the studies presented here, are still important to note. Sustainability in the 
diet is a multifaceted topic with many more components than just GHGE. There are additional 
environmental impacts (water use, land use, biodiversity loss, and more), and these metrics do 
not always align, presenting potential trade-offs. For example, while nuts have a lower GHGE of 
production than most animal foods, their water use can still be quite high.70 Seafood is also a 
food group that presents challenges. Intake of high-omega-3 fish products is relatively low in the 
US compared to recommendations. At the same time, many of the world’s fish stocks are 
already overfished, and aquaculture practices have unintended and sometimes harmful 
consequences.71  
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Sustainable diets also include social elements. Recommendations and goals for these 
dietary changes need to be accessible—physically and financially—as well as culturally 
acceptable.72 And consumers are only one of many stakeholders involved in order to make 
changes to global food systems. Policy makers and those in all elements of food production 
must work together to achieve what some are calling “the Great Food Transformation.”64 
Evidence in all these fields continues to grow, and there is a continued need for interdisciplinary 
work in order to move toward the global goals of nutritious diets and future food security. 

5. Overall dissertation purpose 
The proposed dissertation will explore the distribution of, and covariates related to, 

dietary carbon footprints among US adults, with special attention given to how national dietary 
guidance has the potential to encourage more healthful and more sustainable diets. 
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Paper 1: Estimating changes to diet healthfulness, carbon footprint, 
and cost when motivated consumers choose different foods 

1. Background 
As discussed above, substantial evidence shows that shifting from more typical 

Western-style diets to a diet higher in plant-based foods is an opportunity to reduce food-related 
GHGE and improve diet quality (healthfulness). Aggregate studies from other countries are 
promising on the potential GHGE reductions and health improvements that might occur from 
this.56 

However, not all US consumers are willing to or interested in adopting an entirely plant-
based or vegetarian lifestyle. Meat eating has strong cultural associations—strength, 
masculinity, affluence, and even patriotism. But the 2015 DGAC scientific report makes it clear 
that a diet with health and sustainability co-benefits need not eliminate whole food groups.58 
Campaigns such as Meatless Monday tap into this thinking, encouraging people to eat 
vegetarian meals one day a week—a goal likely perceived as more achievable by many than 
giving up a food group entirely.73 While there has been increased interest in sustainability in 
general, and in “flexitarian” type eating patterns, it is not clear how many US consumers are 
ready and willing to reduce the meat intake in their diet, whether that is motivated by health, 
sustainability, ethics, or something else. A UK study found that health and animal welfare 
concerns were more salient for consumers than environmental impacts when considering eating 
meat, and suggested improving consumer knowledge by integrating sustainability information 
into national dietary guidance.74 

Even if US dietary guidance were to include sustainability considerations, not all 
consumers would change their behavior, or change it immediately. This study will give a realistic 
estimate of the daily impact US consumers could exert on food-related GHGE. 

 
Diet cost as an element of sustainability 

In addition, few consumers purchase food based primarily on environmental or 
nutritional considerations; price is a key factor in food choice.75 So while nutritious diets with 
lower carbon footprint are possible, it is unlikely that these patterns would be widely adopted 
unless they are also economically sustainable for the individual. Higher quality diets are 
generally more expensive in higher-income countries.76 

Some descriptive research using observed diets indicates that lower-carbon, healthful 
diets can be about the same cost or cheaper than current average diets.77-79 No such studies 
exist in the US. Studies simulating optimal diets using linear programming also show broadly 
similar results, but the resulting diets are often complex to communicate.51,80-82 It is important to 
identify realistic diets that meet the triple bottom line of health, environment, and cost in order to 
improve health and reduce environmental impacts from food.  

 
This study will address these gaps in the literature by simulating nutritional, GHGE, and 

cost effects of diet changes in US individuals and by identifying consumers who are most likely 
to make these changes.  
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2. Research question 
 
What are the potential effects on sustainability objectives if US dietary guidance were to 
recommend reducing the intake of high-impact foods? This research question was 
answered by addressing the following aims: 

 
Aim 1: Identify adults in NHANES 2007-2010 who might be motivated to change their 

diets if dietary guidance were to include advice on how to improve sustainability. 
 
Aim 2: Estimate the impacts on food-related GHGE, diet quality, and diet costs if these 

motivated consumers replaced higher-GHGE animal foods with lower-GHGE 
alternatives. 

3. Methods 
Methods: Study sample 

The sample came from the 2007-2010 waves of the National Health and Nutrition 
Examination Survey (NHANES). This is a complex, multistage, probability-based survey 
designed to be representative of the civilian, non-institutionalized US population. It is conducted 
continuously and results are reported in two-year cycles. Survey participants undergo physical 
and laboratory measurements in a Mobile Examination Center (MEC) as well as completing 
interview modules about demographics, dietary intake, consumer behavior, and more.83  

All individuals 18 to 65 years of age with a reliable dietary intake and with non-missing 
values on key demographic and behavioral variables were included, giving a sample size of 
7,188. (See the next section for clarification on what constitutes reliable NHANES dietary intake, 
and further below for details on behavioral variables used.) 

 
Methods: Dietary intake 

Food consumption data in NHANES are based on a 24-hour dietary recall, which uses 
the Automated Multiple-Pass Method (AMPM) developed and validated by the United States 
Department of Agriculture (USDA). This system includes rigorous protocols for the collection 
and processing of dietary data.84 This study used data from the Day 1 recalls, which are 
collected in person by trained interviewers in a Mobile Examination Center.  

The dietary recall process includes 5 rounds or passes of reviewing the person’s intake 
over the previous 24 hours. Respondents are first asked to quickly list everything they ate or 
drank. The following passes prompt the person to consider commonly forgotten items, organize 
reported items by time and eating occasion, gather full details on foods, beverages, and portion 
sizes, review the resulting list, and finally, prompt for any foods or eating occasions that may 
have been missed. A variety of aids are presented to help respondents report portion sizes. 
These include models, different sizes of dishware, measuring cups and spoons, images, and a 
ruler. 

After data collection, dietary intake data are checked for quality in several ways.85 They 
are only included for further research if the respondent completed at least 4 of the 5 passes in 
the AMPM, and if there are no missing foods. A respondent’s intake data may also be labeled 
as unreliable based on interviewer feedback, for example, if the respondent had memory 
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problems. Additional checks look for common reporting errors such as reporting the amount of a 
liquid cup of coffee using a code for dry instant coffee.  

Once quality control is completed, reported intake is matched to the USDA Food and 
Nutrient Database for Dietary Studies (FNDDS). Unknown foods are researched and matched 
to existing nutrient database entries, or to new ones that are added as needed. The final 
NHANES individual food files are publicly available and include grams of consumption of each 
food item for each person, along with energy (kilocalories [kcal]), macronutrient, and 
micronutrient data for the reported amounts.86 

There are 4,623 different food codes reported in the 2007-2010 NHANES. Since most 
environmental impact data is reported at the level of the commodity, the foods as reported in 
NHANES (e.g., pepperoni pizza) were converted into consumption of 332 commodity 
ingredients (e.g., wheat, milk, pork, etc.) using recipe files developed by the Environmental 
Protection Agency (EPA) for the Food Commodities Intake Database (FCID). The EPA created 
this database to assess pesticide exposure from food, and generated recipes for all foods 
consumed in the 2005-2010 NHANES. 

 
Methods: Greenhouse gas emissions 

GHGE were linked to commodity consumption using dataFIELD (the database of Food 
Impacts on the Environment for Linking to Diets). This database includes GHGE and other 
impacts for each FCID commodity. Built through a comprehensive literature review of life cycle 
assessment (LCA) studies from 2005 to 2016, dataFIELD includes GHGE values (kg CO2 
equivalents per kg commodity) up to the farm gate for most commodities, and up to the 
processor gate for the rest (for example, oils, flours, and juices). Food-related GHGE for 
individuals was calculated by multiplying grams of intake by GHGE per gram and summing for 
the day. Details of the database creation and the process of linking GHGE to diets have been 
published previously,45 and are also described in detail in Appendix 1.  

 
Methods: Diet healthfulness 

The quality or healthfulness of diets was assessed using the Healthy Eating Index 2010 
(HEI).87 The HEI is a measure of how well a diet corresponds to the Dietary Guidelines for 
Americans. Scores range from 0 to 100 and include 12 components. Nine of the components 
address adequacy (total fruits, whole fruits, total vegetables, greens and beans, whole grains, 
dairy, total protein foods, seafood and plant proteins, and fatty acid ratio), and three are 
moderation components, scored higher for lower consumption (refined grains, sodium, and 
empty calories). An HEI score was calculated for each individual in the sample using an 
algorithm developed by the National Cancer Institute.88 This algorithm makes uses of the Food 
Patterns Equivalents Database (FPED), which converts NHANES foods into nutrition-oriented 
food groups that form the basis of the HEI (e.g., cup-equivalents [c-eq] and ounce-equivalents 
[oz-eq]). Necessary sodium and fat values come from the Food and Nutrient Database for 
Dietary Studies (FNDDS). See Table 1-1 for details on the scoring from the official publication.89 

 
Methods: Diet cost 

Diet cost was calculated for each individual using food price data from the Center for 
Nutrition Policy and Promotion (CNPP) Food Prices Database. The database gives the price per 
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100 grams for NHANES food codes from 2003-2004 and was previously updated to the 2007-
2010 time period. Diet cost for individuals was calculated by multiplying grams of intake by price 
per gram and summing for the day. The CNPP database prices are for food-at-home. Eating 
away from home is common in the US, and as such, the diet costs calculated here likely 
underestimate true costs. 

 
Table 1 - 1. Healthy Eating Index 2010 Scoring (Guenther et al. 201487) 

 Dietary component 
Max 

Points 
Standard for maximum 

score 
Standard for zero score 

Adequacy 
 
(higher score 
= greater 
intake) 
 

Total Fruit 5 ≥ 0.8 c-eq/1000 kcal No fruit 
Whole Fruit 5 ≥ 0.4 c-eq/1000 kcal No whole fruit 
Total Vegetables 5 ≥ 1.1 c-eq/1000 kcal No vegetables 
Dark Greens & 
Legumes 

5 ≥ 0.2 c-eq/1000 kcal 
No dark-green veggies, beans, 
or peas 

Whole Grains 10 ≥ 1.5 oz-eq/1000 kcal No whole grains 
Dairy 10 ≥ 1.3 c-eq/1000 kcal No dairy 
Total Protein Foods 5 ≥ 2.5 oz-eq/1000 kcal No protein foods 
Seafood & Plant 
Proteins 

5 ≥ 0.8 c-eq/1000 kcal No seafood or plant proteins 

Fatty Acid Ratio1 10 
(PUFAs+MUFAs)/SFAs ≥ 
2.5 

(PUFAs+MUFAs)/SFAs ≤ 1.2 

Moderation 
(higher score 
= lower 
intake) 

Refined Grains 10 ≤ 1.8 oz-eq/1000 kcal ≥ 4.3 oz-eq/1000 kcal 
Sodium 10 ≤ 1.1 g/1000 kcal ≥ 2.0 g/1000 kcal 

Empty Calories 20 ≤ 19% of energy ≥ 50% of energy 
1Ratio of poly- and mono-unsaturated fatty acids to saturated fatty acids. 

 
Methods: Socioeconomic and demographic variables 

NHANES socioeconomic and demographic variables used were age, gender, education, 
race/Hispanic origin, income-to-poverty ratio, and household size. 

Age was categorized into four groups: 18-29, 30-49, and 50-65 years. Gender in 
NHANES is reported only as “male” or “female.” Highest education completed was categorized 
into four groups: less than high school, high school graduate or general educational 
development (GED), some college, and college graduate or higher.  

Race/Hispanic origin was recoded into four groups: Non-Hispanic White, Non-Hispanic 
Black, Hispanic, and Other/Multiracial. While the combination of race and ethnicity into a single 
variable is not ideal, it is the only option available in NHANES at this time. The categories before 
recoding were Non-Hispanic White, Non-Hispanic Black, Mexican American, Other Hispanic, 
and Other Race – Including Multi-Racial. NHANES has historically oversampled certain 
population groups in order to be able to calculate stable estimates for them. In the 2007-2010 
years, these oversampled groups were Hispanics, Non-Hispanic Blacks, the elderly (age 80+), 
and those at or below 130% of the federal poverty level.90 Asian Americans were not 
oversampled, nor was their race reported separately, until the NHANES wave beginning in 
2011. Other categories (such as Native groups) that may be reported from other national 
surveys are still lumped in to “Other Race” in NHANES. 

Income-to-poverty ratio (IPR) is a measure of household income divided by the poverty 
guideline. Poverty guidelines, calculated by the US Department of Health and Human Services, 
are specific to household size, state, and year.91 An IPR of 1 means a household is at the 
poverty guideline. While NHANES includes a family-level IPR, for this study, IPR was estimated 
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at the household level in order to align data with the Chatham House study (see below). IPR 
was categorized as <1, 1-1.99, 2-4.99, and 5 and over. 
 
Methods: Identifying potential changers 

Which individuals would change their diets if the federal government were to include 
information and suggestions for environmentally sustainable diets in the Dietary Guidelines for 
Americans? This question was the organizing framework for identifying potential changers. 
Potential changers were defined as individuals that: (1) have tried US dietary guidance and (2) 
agree that humans contribute to climate change. The first condition is reported by respondents 
in the NHANES. The second condition was predicted for NHANES respondents from answers 
by similar individuals in another nationally representative survey. Figure 1-1 gives an overview 
of this approach. 

 
Figure 1 - 1. Process to identify potential changers from 2007-2010 NHANES respondents 

 
 

Information on NHANES respondents' previous use of dietary guidance was obtained 
from the Consumer Behavior Phone Follow-up Module for Adults. A dichotomous variable was 
created based on three items. Individuals who answered “yes” to the question, “Have you tried 
to follow the (MyPyramid Plan/Pyramid plan) recommended for you?” were coded 1. Individuals 
who answered “no” to this question, and those who said they had not heard of the food pyramid 
or MyPyramid, were coded 0. 

NHANES does not include questions about attitudes toward climate change, so 
information on the second condition was imputed using a survey commissioned by Chatham 
House and the Glasgow University Media Group.92 This Chatham House survey was conducted 
online by Ipsos MORI across 12 countries in 2014 (US n=1,051) and asked a series of 
questions related to human impacts on climate change. For this study, respondents were 
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categorized as a 1 if they answered “strongly agree” or “tend to agree” to the item, “To what 
extent do you agree or disagree with: Human activities contribute to climate change.” Other 
respondents were coded 0. 

To impute these attitudes to NHANES respondents, a logistic model was developed with 
Chatham House data using the dichotomous dependent variable described above and 
independent variables that are also available in NHANES: age, gender, education, household 
size, and income-to-poverty ratio. Coefficients from this model and observed demographic 
characteristics from NHANES respondents were used to calculate NHANES individuals’ 
predicted probabilities of agreement that humans contribute to climate change. These 
probabilities were categorized into a dichotomous variable (1=agree, 0=does not agree), using a 
cut point that gave the same proportion of agreeing individuals in NHANES as in Chatham 
House (68.6%). See Paper 1 Appendix 1-a and Paper 1 Appendix Tables A1-1 and A1-2 for 
additional details. 

 
Methods: Hypothetical diet changes 

Previous research has made clear that ruminant meats like beef, sheep, and goat have 
a particularly high carbon footprint. While sheep and goat are not commonly consumed in the 
US, beef, as the marketing campaign goes, is often “what’s for dinner.” Because of its high 
impact, beef was chosen as the main food to replace in this study. 

Three replacement scenarios were used, based on the types of food with which people 
might commonly replace beef: pork, poultry, or plant protein foods (legumes, nuts, and seeds). 
Substitutions were implemented at the commodity level using the FCID database. 

 
Substitution 1: beef intake replaced with poultry 
Substitution 2: beef intake replaced with plant protein foods 
Substitution 3: meat intake (beef, pork, and poultry) replaced with plant protein foods. 

 
To provide more potential options for interested consumers, the analysis looked at fully 

replacing the original food(s) with the alternate food(s), or instead replacing 50% or 25% of the 
original intake. If a respondent did not consume the substituted item (e.g. beef) on the interview 
day, no substitution was made.  

The plant protein foods to be used as replacements for meat include 44 individual 
commodities and fall into three groups: legumes, nuts and seeds, and soy. To make simulations 
as realistic as possible, replacements will account for the proportion in which individuals 
reported eating these foods. For example, if a potential changer reported eating only nuts and 
seeds, but no legumes or soy, then any plant-based replacements for meats were 100% nuts 
and seeds. For potential changers who did not consume plant protein foods, mean consumption 
proportions from the overall sample was used for replacements. See Paper 1 Appendix 1-b and 
Paper 1 Appendix Tables A1-3 and A1-4 for a detailed explanation of how these and other 
substitutions were made on an isocaloric basis. 
 Substitutions were isocaloric. Averages from the National Nutrient Database for 
Standard Reference (SR28) were used to create conversion factors for all necessary 
replacements. For example, the mean energy content in 100 grams of raw beef is 188 
kilocalories (kcal) and for poultry the value is 168 kcal. Therefore replacements of beef with 
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poultry used a conversion of 1.12 to scale up the amount of poultry to the same energy value as 
the beef it replaced.  

Since substitutions were made at the commodity level, and since there is a direct linkage 
from the commodity database (FCID) to the environmental database (dataFIELD), the effect of 
these substitutions on GHGE could be calculated directly. There is not, however, a one-to-one 
correspondence of FCID commodities to FPED foods, which are needed for calculation of the 
HEI. A predictive model of HEI was developed based on intakes of aggregate groups of 
commodities. The general linear model used calculated individual HEI scores as the dependent 
variable and intakes of 19 commodity groups (e.g. beef, poultry, vegetables, etc,) as well as 
socioeconomic and demographic characteristics, as independent variables. This model was 
found to be very good predictor of actual HEI (p < 0.001, R2 = 0.44). Coefficients from this 
model were used with the new food commodity quantities, and demographics, to predict a post-
substitution HEI for each individual.  

The same approach was used for predicting the diet cost for each respondent (p <0.001, 
R2 = 0.32). Paper 1 Appendix Table A1-5 shows the models used in these estimations.  

 
Methods: Statistical analysis 

In addition to the models discussed above (used to impute attitude about climate change 
to NHANES and those used to predict HEI and diet cost after substitutions), the following 
additional statistical analyses were performed. 

To identify differences between potential changers and non-changers on demographic 
variables, Chi-squared tests were used. Student's t tests were used to identify differences 
between these groups on meat consumption variables. Paired t tests were used to test for 
differences in food-related GHGE (kg CO2-eq), HEI scores, and cost (US dollars) between 
baseline and replacement diets. 

All tests were two-sided with an α level of 0.05. All analyses used Stata/SE (version 
13.1) survey procedures, which account for survey design and sampling weights. This meant 
using weights that came with the Chatham House survey, and survey strata, primary sampling 
units (PSU), and sampling weights available with NHANES data. NHANES provides several 
types of weight variables depending on the analysis to be performed. Weights specific to the 
dietary data account for the additional variability in dietary data (nonresponse specific to the 
dietary module, and day of the week) compared to the overall NHANES interview.93 The survey 
weights used for this study were the Day 1 dietary weights (WTDRD1). The survey weights were 
adjusted for the use of multiple survey cycles according to NHANES guidance, which in this 
case meant dividing by two for the number of cycles used. When setting Stata up to run the 
survey-weighted analyses, this combined weight was treated as a probability weight. 

4. Results 
Results: NHANES characteristics and identifying potential changers (Aim 1) 

Over one fifth (22%) of NHANES respondents reported trying dietary guidance. Those 
likely to agree that human activities contribute to climate change comprised 69% of the 
population. The potential changers, i.e. those in both groups, were 16% of respondents 
(n=1,026). 
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The overall sample, reflecting the US population, was slightly over half female and about 
two-thirds non-Hispanic White (Table 1-2). About 60% of respondents had greater than a high 
school education. Twelve percent of people had incomes at or below the poverty level. Only 2% 
(n=164) of individuals in the population were self-described vegetarians. 

Compared to the rest of the population, potential changers were more likely to be 
female, to be more highly educated, or to have higher income. Compared to Non-Hispanic 
Whites, those who were of other race/Hispanic origins were less likely to be changers. There 
were no significant differences in age between potential changers and the rest of the population. 
Potential changers were more likely to describe themselves as vegetarians and, on average, 
consumed less beef and pork, but not poultry, than other respondents. 

 
Results: Impacts of substitutions on diet GHGE, quality, and cost (Aim 2) 

Baseline mean dietary GHGE among potential changers was 3.9 kg CO2-eq per person 

per day (95% CI: 3.6, 4.1). Beef replacement predictions were run on the 61% of potential 
changers that reported eating beef on their dietary recall day, which amounted to 10% of the 
overall sample. Within potential changers, replacing 100% of beef intake with poultry reduced 
mean dietary GHGE by 1.4 kg CO2-eq per person per day (95% CI: 1.2, 1.6) (Table 1-3). This 
change also increased mean estimated HEI by 0.9 points (0.8, 1.0) and decreased mean 
estimated dietary cost by 0.09 USD (95% CI: 0.08, 0.10). This represents a decrease in mean 
GHGE of 35.7%, a 1.7% increase in mean HEI, and a 1.7% decrease in mean cost. Replacing 
the beef with plant protein foods reduced potential changers’ mean GHGE by 40.3%, increased 
mean HEI by 3.3%, and decreased mean dietary cost by 5.5%. Replacing less than 100% of 
beef intake in the potential changers resulted in similar but smaller modifications in GHGE, HEI, 
and diet cost. Absolute quantities of meats and plant proteins before and after replacements are 
presented in Paper 1 Appendix Table A1-6. 

Almost all (92%, n=938) of the potential changers ate beef, pork, or poultry on their recall 
day, so when substituting for these meats, scenarios were run on 15% of the overall sample. 
Replacing 100% of beef, pork, and poultry intake in these potential changers with plant protein 
foods lowered mean GHGE by almost half, increased mean HEI by 8.5% (+4.5 points), and 
decreased dietary cost by 14.8%. Replacing only a quarter of this meat intake in the potential 
changers reduced mean GHGE by 12.1%, increased mean HEI by 2.0%, and decreased cost 
by 6.9%. 

What would be the impact on the overall population of modifications made only by the 
potential changers? This is examined in Table 1-4. Replacing 100% of beef with either poultry or 
plant protein foods in only the potential changers reduced the mean GHGE in the overall 
population by around 5%. Replacing meat and poultry with plant proteins lowered GHGE 6.7%. 

Figure 1-2 allows for examination of how changes in intakes from the different protein 
food groups contributed to GHGE reductions among potential changers. Beef intake 
represented the majority of GHGE to begin with and also the largest share of GHGE after any 
substitution scenario except 100% replacement. In other words, beef was still the largest emitter 
even when intake was reduced. 
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5. Discussion 
Replacing beef or beef, pork, and poultry in the diets of motivated consumers reduced 

the GHGE associated with their diets, on average, from 9% to 50%, depending on the type and 
degree of substitution. Although these environmental impacts were substantial among potential 
changers, since they only comprised 16% of the sample (n=1,026), overall dietary GHGE 
changes at the population level were much smaller. Diet changes increased the healthfulness of 
the diets among potential changers from less than 1% to about 9%, and they reduced diet costs 
by less than 1% to about 15%. In general, diet quality in the US, as measured by the Healthy 
Eating Index, is relatively low, and the modest changes found here are in the right direction. 
Although the greatest reductions in emissions came from substituting plant protein foods for all 
beef, pork, and poultry intake, replacing just the beef intake would account for over 80% of this 
reduction. 

These GHGE results are broadly consistent with previous research. For example, in a 
review of studies on the environmental impacts of dietary change, Aleksandrowicz and 
colleagues found decreases in GHGE from 3% to 36% when ruminant meat (e.g. beef or lamb) 
was replaced with monogastric meats (e.g. chicken or pork), and decreases of 15% to 58% with 
changes to vegetarian diets.56 In this work, complete substitution of poultry for beef resulted in a 
decreased GHGE of 36% for potential changers, while shifting away from all meats to 
vegetarian protein foods resulted in a 50% drop. Substantial reductions in meat intakes are also 
recommended by recent expert committee reports.64,94 

The results here on diet quality and cost are also consistent with the literature. Most, but 
not all, studies demonstrate that positive improvements with diet healthiness are concomitant 
with reductions in GHGE. For example, of the 37 scenarios in the review by Aleksandrowicz 
which shifted diets to healthy guidelines, only 4 of them had an increase in GHGE.56 All 
scenarios in this work reduced GHGE and also improved diet quality. Optimization studies have 
shown that healthier and more sustainable diets can be obtained for modest reductions in cost 
(3-11%), which was similar to these results.51,81 

The comparisons above are based on the results for potential changers. Since they 
account for only 16% of the sample, our overall population estimates for GHGE reductions are 
much smaller than other studies--only a 5% decrease for shifts from beef to chicken, and 7% 
from all meats to vegetable proteins. This is probably a more realistic short-term outcome for 
attempts to move toward more climate-friendly diets, since the entire population is not expected 
to make immediate changes. Still, considering the scale of these food replacements relative to 
other GHGE in the US, these diet scenarios produced reductions equivalent to 15 to 78 million 
fewer miles driven in a passenger vehicle for this one day of intake.95 

It is clear that the transition to climate-friendly diets will require new research and new 
policy work. This study used a relatively weak policy lever—information from dietary guidance—
to motivate change.96,97 The assumption was that those who had tried this before and who 
agreed that humans caused climate change would make changes to their diets to reduce their 
carbon footprint, if such information was newly included in dietary guidelines. However, food 
choice behavior is complex and multi-faceted.98 Taste, cultural preferences, convenience, and 
costs are all important factors that shape this behavior, in addition to health and environmental 
concerns. Moreover, there are a number of relevant aspects specific to meat-eating behavior, 
such as consumer attachment to eating meat and various rationalizations to justify it.99-101 The 
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potential changers identified here already consumed less beef and pork at baseline, but, 
unfortunately, there is no information about how attached they might be to eating beef. Thus, it 
is an open question as to how much they would reduce their beef intake, which is why several 
scenarios were presented.  
 
Strengths and limitations 

A major limitation of the study is the lack of data on attitudes toward climate change and 
sustainability in NHANES participants. The imputation method using socioeconomic and 
demographic variables may have missed key predictors of a person agreeing that humans 
cause climate change (for example, political affiliation or religious beliefs) and may therefore 
have mis-categorized some individuals. However, this study was not meant to estimate the 
proportion of climate change agreement in NHANES, but rather to provide a picture of the diet 
quality, carbon footprint, and cost changes that might occur if a subset of US individuals 
responded to the addition of sustainability in US dietary guidance. The imputation method used 
allowed for acceptable estimates of these outcomes even if some individuals are 
miscategorized. 

It is also true that agreement with the anthropogenic nature of climate change does not 
necessarily mean an individual would feel motivated to personally take action via dietary 
changes. More research is needed to examine dietary behavior change in relation to 
sustainability beliefs and concerns. 

This analysis looked at specific, fixed diet modifications of potential changers. This does 
not account for other dietary changes that might accompany a reduction in meat intake, or 
secondary effects on production, market supply, beef prices, or consumption of non-changers, 
either within the US or internationally. For example, reductions in GHGE described here could 
be muted if excess supply is shifted overseas. As such, these estimates are better thought of as 
potential first-order, short-run changes. 

Another limitation comes from use of a single day of intake. The distribution of a single 
day of dietary intake data is more disperse than the distribution of people’s usual, habitual 
intake. Please see Paper 3’s background for more information on this. However, since NHANES 
is a nationally representative study, the single day of dietary data used here is still a valid 
snapshot of one day of intake in the US. While a given individual may not eat a pound of 
barbecue and drink 12 beers on a normal day, a few people in the country may eat that way on 
any given day. This study demonstrates what effects there might be if motivated individuals 
changed their intake on one day. 

The 24-hour recalls used to collect dietary data are known to suffer from some 
measurement error, most often underreporting. NHANES does not collect any biomarker data 
by which underreporting could be identified and adjusted for. The self-reported dietary data 
used in this study may result in some underestimates of daily food-related GHGE or food cost; 
however, the comparisons of the different diet scenarios can still be made relative to one 
another. There is also no substitute for this nationally representative dietary dataset with rich 
detail of all foods and beverages. 

The dietary cost estimates here are likely to be an underestimate of true costs to the 
consumer, since they rely on prices for food-at-home. This is usually cheaper than food 
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prepared and/or eaten away from home. However, the costs calculated here still allow for the 
relative comparison of different diet scenarios. 

There are some limitations related to dataFIELD. The database does not include impacts 
of foods past the farm gate (or in some cases, the producer gate; see Appendix 1 for more 
details). There is also variability underlying the point value for food-related GHGE associated 
with each commodity (for example, from studies with different production methods or in different 
locations). This variability is not carried forward through the whole analysis. A previous 
publication has addressed these issues in much more detail.45 

The commodity recipes used to calculate food-related GHGE are from 2010, and the 
availability of those recipes for NHANES 2005-2010 dictated the choice of those years of dietary 
intake data. However, the age of these data is a limitation of this analysis. The dietary habits (or 
the foods that make up these diets) of US adults may have shifted over time. Using this older 
data allowed for studies to fill important gaps in the diet-health-environment literature using self-
selected US diets. While the shifts in US diets are not expected to be major, the literature would 
still benefit from more updated studies that reflect current consumption (see Paper 2). 

An overall strength of this research is the realistic nature of the dietary changes. 
Changes were made only in the portion of the population that was more likely to be motivated 
by this particular policy lever. Modest change scenarios are included, so complete elimination of 
food groups was not necessary. Changes in food groups (amounts of reductions in meat and 
increases in poultry, legumes, nuts, or seeds) were based on how much individuals were 
already eating, and replacements took into consideration the proportions in which they ate 
different commodities within these groups. These choices minimized the differences from 
potential changers’ current diets, making them more likely to be acceptable to consumers. 
Another strength of this study was the underlying dataset developed for it. The GHGE values 
came from a comprehensive approach to match detailed food consumption data with the latest 
literature on environmental impacts. 

 
 

In sum, changes in food consumption by a relatively small percentage of motivated 
individuals can reduce food-related GHGE and increase healthfulness of the diet without 
increasing cost. These changes in motivated consumers can have an effect, albeit modest, on 
emissions at the national level. This study provides further evidence that it is worthwhile to 
provide environmental sustainability as well as nutrition information to US consumers. While 
dietary guidance policy is one way to disseminate this information, other methods should also 
be considered. 
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Table 1 - 2. Characteristics of US adults and those categorized as potential changers, NHANES 2005-20101 

 
Full sample 
(N=7,188) 

Not potential changer 
(n=6,162) 

Potential changer2 
(n=1,026) 

 

 n % 95% CI n % 95% CI n % 95% CI p value3 

Female 3,828 53 (51, 54) 3,023 48 (46, 50) 805 78 (75, 81) <0.001 

Age           
 18-29 years 1,751 24 (22, 26) 1,515 24 (22, 27) 236 22 (19, 26) 

0.100 
 

 30-49 years 3,051 44 (42, 46) 2,613 45 (42, 47) 438 42 (38, 46) 
 50-65 years 2,386 32 (30, 34) 2,034 31 (29, 33) 352 36 (32, 40) 

Race-Ethnicity           
 Non-Hispanic White 3,208 69 (64, 74) 2,677 68 (63, 73) 531 75 (69, 80) 

<0.001  
 Non-Hispanic Black 1,477 12 (10, 14) 1,258 12 (10, 14) 219 11 (9, 14) 
 Hispanic 2,187 14 (11, 18) 1,952 15 (11, 19) 235 10 (7, 14) 
 Other 316 5 (5, 7) 275 6 (5, 7) 41 5 (3, 6) 

Education           
 Less than high school 1,875 17 (16, 19) 1,781 19 (17, 21) 94 7 (5, 11) 

<0.001 
 High school grad/GED 1,695 24 (22, 26) 1,514 25 (23, 27) 181 16 (13, 20) 
 Some college 2,141 31 (30, 33) 1,707 30 (28, 31) 434 39 (35, 43) 
 College grad or higher 1,477 28 (26, 31) 1,160 26 (24, 29) 317 37 (33, 42) 

Income-to-Poverty Ratio           
 < 1 1,336 12 (10, 14) 1,209 13 (11, 15) 127 7 (6, 9) 

<0.001 
 1 - < 2 1,928 18 (17, 20) 1,765 20 (18, 21) 163 11 (8, 15) 
 2 - < 5 2,434 38 (36, 41) 2,000 37 (35, 40) 434 42 (38, 45) 
 >=5 1,490 32 (29, 35) 1,188 30 (27, 33) 302 40 (35, 46) 

Self-described vegetarian 164 2 (2, 3) 131 2 (1, 2) 33 4 (2, 6) 0.02 

Beef consumption (mean g/d)4 51.3  (47.7, 54.8) 53.9  (50.2, 57.6) 37.7  (32.3, 43.0) <0.001 

Pork consumption (mean g/d) 4 29.1  (26.8, 31.5) 30.9  (28.5, 33.3) 20.1  (15.8, 24.5) <0.001 

Poultry consumption (mean g/d)4 55.9  (52.4, 59.4) 56.3  (52.3, 60.3) 53.8  (49.9, 57.7) 0.350 
1US National Health and Nutrition Examination Survey (NHANES) 2007-2010 adults (age 18 to 65) who responded to questions about trying dietary guidance 
(MyPyramid or MyPlate). 
2Potential changers are individuals who had tried dietary guidance and were likely to agree that humans contribute to climate change. Probability to agree that 
humans contribute to climate change in NHANES was predicted using socioeconomic and demographic variables and a model from the Chatham House survey, 
which asks this question directly to participants. These individuals were 16% of the sample (95% CI: 15%, 17%). 
3A chi-square statistic was used to test for association between being a potential changer (or not) and each of the categorical demographic variables. T statistics 
were used to test for differences between potential changers and others on each of the consumption variables.  
4Commodity amounts of edible portion of the meats in grams per day.  
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Table 1 - 3. Results of hypothetical meat reductions among potential changers (n=1,026): Dietary greenhouse gas emissions, Healthy Eating Index, 
and dietary cost1 

 
Food-Related Greenhouse Gas Emissions  

(kg CO2-equivalents person-1 day-1)2 
Estimated Healthy Eating Index2 

Estimated Diet Cost 
(US dollars person-1 day-1)2 

 Mean3 95% CI3 
p 

value4 

% 
Change 
in mean5 

Mean3 95% CI3 
p 

value4 

% 
Change 
in mean5 

Mean3 95% CI3 
p 

value4 

% 
Change 
in mean5 

Original 3.88 (3.64, 4.12) -- -- 52.65 (51.97, 53.32) -- -- 5.24 (5.16, 5.32) -- -- 

100% beef replaced:             

With poultry -1.38 (-1.58, -1.19) <0.001 -35.7 0.88 (0.76, 1.00) <0.001 1.7 -0.09 (-0.10, -0.08) <0.001 -1.7 

With plant protein6 -1.56 (-1.79, -1.34) <0.001 -40.3 1.74 (1.40, 2.08) <0.001 3.3 -0.29 (-0.33, -0.25) <0.001 -5.5 

50% beef replaced:             

With poultry -0.69 (-0.79, -0.59) <0.001 -17.8 0.44 (0.38, 0.50) <0.001 0.8 -0.05 (-0.05, -0.04) <0.001 -0.9 

With plant protein6 -0.78 (-0.89, -0.67) <0.001 -20.1 0.87 (0.70, 1.04) <0.001 1.7 -0.14 (-0.17, -0.12) <0.001 -2.8 

25% beef replaced:             

With poultry -0.35 (-0.40, -0.30) <0.001 -8.9 0.22 (0.19, 0.25) <0.001 0.4 -0.02 (-0.03, -0.02) <0.001 -0.4 

With plant protein6 -0.39 (-0.45, -0.34) <0.001 -10.1 0.44 (0.35, 0.52) <0.001 0.8 -0.07 (-0.08, -0.06) <0.001 -1.4 

100% beef, pork, 
poultry replaced: 

            

With plant protein6 -1.93 (-2.14, -1.71) <0.001 -49.6 4.46 (3.93, 4.98) <0.001 8.5 -0.78 (-0.82, -0.74) <0.001 -14.8 

50% beef, pork, 
poultry replaced: 

            

With plant protein6 -0.96 (-1.07, -0.86) <0.001 -24.8 2.17 (1.91, 2.43) <0.001 4.1 -0.50 (-0.53, -0.47) <0.001 -9.6 

25% beef, pork, 
poultry replaced: 

            

With plant protein6 -0.48 (-0.54, -0.43) <0.001 -12.1 1.03 (0.90, 1.16) <0.001 2.0 -0.36 (-0.39, -0.34) <0.001 -6.9 
1Potential changers (n=1,026) are individuals who had tried dietary guidance and were likely to agree that humans contribute to climate change. Probability to agree that humans 
contribute to climate change in NHANES was predicted using socioeconomic and demographic variables and a model from the Chatham House survey, which asks this question 
directly to participants. These individuals were 16% of the sample (95% CI: 15%, 17%). All replacements were made in equal calorie amounts, as estimated from the National 
Nutrient Database for Standard Reference (SR28). Replacements were only made if individuals consumed the meats in question: 645 (61%) ate beef, and 938 (92%) ate beef, pork, 
or poultry, but mean changes included all likely changers, whether a replacement was made or not. 
2Food-related greenhouse gas emissions (GHGE) were calculated based on commodity intakes using dataFIELD. Mean results are based on calculations of substitutions at the 
individual level, with variability due to sampling error in NHANES (CI=Confidence Interval). Healthy Eating Index (HEI) and diet cost results are means of person-level predicted 
values and associated confidence intervals. Predictions were based on commodity intakes and socioeconomic and demographic variables (See Appendix Table 4).  
3Values in the first row of the tables are mean and 95% CI at baseline. Subsequent rows show the mean difference from baseline, and 95% CI for that difference. 
4A paired t test was used to test the hypothesis that the mean difference between the substituted diet and the original ≠ 0. 
5Values are percent change in the mean value compared to baseline (original). 
6Plant proteins are legumes, nuts, and seeds. Diet changes for each potential changer reflected the individual’s actual reported intakes of these three food groups. Replacements 
were made in the same ratio as the individual reported eating the three food groups. If the individual did not eat any of the food groups, the overall average ratio in the sample was 
used to distribute the new intake, specifically: 0.405 legumes other than soy, 0.336 nuts/seeds, and 0.259 soy.  
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Table 1 - 4. Total US food-related greenhouse gas emissions after hypothetical changes in meat intake among potential changers1 

 
Mean per person per day 

(N=7,188) 
Population-level impact per day2 

 

 
Mean3 

(kg CO2-
equivalents) 

95% CI3 p value4 
% Change 
in mean5 

Total 
(Mg CO2-

equivalents) 

Equivalent difference 
in passenger vehicle 

miles6 
Original 4.64 (4.48, 4.80) -- -- 475,410  -- 
100% beef replaced:       
With poultry -0.22 (-0.26, -0.19) <0.001 -4.8 -22,939 -56,224,538 
With plant protein7 -0.25 (-0.29, -0.21) <0.001 -5.4 -25,906 -63,496,294 
50% beef replaced:       
With poultry -0.11 (-0.13, -0.09) <0.001 -2.4 -11,469 -28,112,269 
With plant protein7 -0.13 (-0.15, -0.11) <0.001 -2.7 -12,953 -31,748,147 
25% beef replaced:       
With poultry -0.06 (-0.07, -0.05) <0.001 -1.2 -5,734 -14,056,134  
With plant protein7 -0.06 (-0.07, -0.05) <0.001 -1.4 -6,476 -15,874,074  
100% beef, pork, poultry 
replaced:   

  
 

 

With plant protein7 -0.31 (-0.35, -0.27) <0.001 -6.7 -31,916 -78,225,536  
50% beef, pork, poultry replaced:       
With plant protein7 -0.16 (-0.18, -0.13) <0.001 -3.4 -15,958 -39,112,768 
25% beef, pork, poultry replaced:       
With plant protein7 -0.08 (-0.09, -0.07) <0.001 -1.6 -7,979 -19,556,384 

1Potential changers (n=1,026) are individuals who had tried dietary guidance and were likely to agree that humans contribute to climate change. Probability to 
agree that humans contribute to climate change in NHANES was predicted using socioeconomic and demographic variables and a model from the Chatham 
House survey, which asks this question directly to participants. These individuals were 16% of the sample (95% CI: 15%, 17%). All replacements were made in 
equal calorie amounts, as estimated from the National Nutrient Database for Standard Reference (SR28). Replacements were only made if individuals consumed 
the meats in question: 645 (61%) ate beef, and 938 (92%) ate beef, pork, or poultry. 
2Population-level values are calculated using the probability weights (expansion factors) supplied with the NHANES dataset. These represent the size of the 
population at the mid-point of the survey years being used. In the case of NHANES 2007-2010 this is 153,731,402 individuals. 
3Values in the first row of the tables are baseline (original diets). Subsequent rows show the difference from baseline. 
4A paired t test was used to test the hypothesis that the mean difference between the substituted diet and the original ≠ 0. 
5Values are percent change in the mean value compared to baseline (original).6Calculated using https://www.epa.gov/energy/greenhouse-gas-equivalencies-
calculator (accessed July 2018). 
7Plant proteins are legumes, nuts, and seeds. Diet changes for each potential changer reflected the individual’s actual reported intakes of these three food groups. 
Replacements were made in the same ratio as the individual reported eating the three food groups. If the individual did not eat any of the food groups, the overall 
average ratio in the sample was used to distribute the new intake, specifically: 0.405 legumes other than soy, 0.336 nuts/seeds, and 0.259 soy. 
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Figure 1 - 2. Greenhouse gas emissions from protein foods in potential changers before and 
after hypothetical changes1 

 
1Potential changers (n=1,026) are individuals who had tried dietary guidance and were likely to agree that 
humans contribute to climate change. Probability to agree that humans contribute to climate change in 
NHANES was predicted using socioeconomic and demographic variables and a model from the Chatham 
House survey, which asks this question directly to participants. These individuals were 16% of the sample 
(95% CI: 15%, 17%). All replacements were made in equal calorie amounts, as estimated from the 
National Nutrient Database for Standard Reference (SR28). Replacements were only made if individuals 
consumed the meats in question: 645 (61%) ate beef, and 938 (92%) ate beef, pork, or poultry. 
2Plant proteins are legumes, nuts, and seeds. Diet changes for each potential changer reflected the 
individual’s actual reported intakes of these three food groups. Replacements were made in the same 
ratio as the individual reported eating the three food groups. If the individual did not eat any of the food 
groups, the overall average proportions in the sample were used to distribute the new intake, specifically: 
0.405 legumes other than soy, 0.336 nuts/seeds, and 0.259 soy. 
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6. Paper 1 Appendix 

a. Imputing climate change agreement to NHANES data 

To impute an attitude on climate change to NHANES respondents, a logistic regression 
model was developed with the US subsample (n=1,051) of the Chatham House data using a 
dichotomous dependent variable (i.e., agrees or not that humans contribute to climate change) 
and all independent variables that were also available in NHANES: age, gender, education, 
household size, and income-to-poverty ratio. Coefficients from this model (Paper 1 Appendix 
Table A1-1) and observed demographic characteristics from NHANES respondents were used 
to calculate NHANES individuals’ predicted probabilities of agreement that humans contribute to 
climate change (see Appendix Figure A1-1).  

 
Appendix Table A1 - 1. Coefficients used to predict agreement that humans contribute to 
climate change in Chatham House Survey1 

 Coefficient 
Standard 

Error 
P>|z| 

Female 0.483 0.240 0.04 
Age    
 18-29 years    
 30-49 years 0.436 0.405 0.28 
 40-49 years -0.524 0.420 0.21 
 50-65 years -0.457 0.355 0.20 
Education    
 Less than high school    
 High school grad/GED 0.319 0.536 0.55 
 Some college 0.491 0.529 0.35 
 College grad or higher 0.272 0.533 0.61 
Income-to-Poverty Ratio    
 1 - < 2    
 2 - < 5 0.531 0.330 0.11 
 5 - < 10 0.415 0.382 0.28 
 >=10 0.376 0.713 0.60 
Household Size -0.227 0.103 0.03 
Intercept 0.740 0.572 0.20 
N 939   
Wald chi-squared 22.56   
P > chi-squared 0.02   
Pseudo R2 0.063   

1The model was a multi-variable logistic regression run on all US survey participants with complete 
socioeconomic and demographic data (939 of 1,051) between 18 and 65 years old. The outcome variable 
was equal to 1 if the respondent agreed (strongly agreed or tended to agree) that humans contribute to 
climate change and equal to 0 otherwise. All independent variables in the model are shown in the table.  
 
These predicted probabilities were categorized into a dichotomous variable equal to 1 if the 
probability was greater than 0.615. We used this cut point to create the same proportion of 
agreeing individuals in NHANES as in Chatham House (69%, n=715), since both are nationally 
representative samples of the US adult population. The distribution of socioeconomic and 
demographic characteristics differs between the Chatham House dataset and NHANES. 
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Therefore, before imputation, the Chatham House data were reweighted using entropy 
balancing weights. This multivariate reweighting method calibrates unit weights for Chatham 
House to balance covariate means between it and the NHANES dataset (Paper 1 Appendix 
Table A1-2).102 

 
Appendix Table A1 - 2. Entropy balancing process: Covariate means with original dataset 
sample weights and with entropy weights 

 
NHANES 

Chatham House:  
Sample weights 

Chatham House: 
Entropy balanced weights 

Mean Var. Skew. Mean Var. Skew. Mean Var. Skew. 

Age [18,30) 0.260 0.192 1.096 0.225 0.175 1.317 0.260 0.192 1.096 
Age [30,40) 0.230 0.177 1.285 0.166 0.139 1.796 0.230 0.177 1.285 
Age [40,50) 0.306 0.212 0.843 0.394 0.239 0.435 0.306 0.213 0.843 
Household size 3.201 2.359 0.610 2.587 1.816 0.898 3.201 2.847 0.572 
Male 0.487 0.250 0.051 0.494 0.250 0.026 0.487 0.250 0.051 
Less than high 
school 

0.243 0.184 1.200 0.182 0.149 1.652 0.243 0.184 1.201 

High School 
grad/GED 

0.311 0.214 0.815 0.375 0.235 0.515 0.311 0.215 0.815 

Some College 0.263 0.194 1.077 0.417 0.243 0.337 0.263 0.194 1.076 
Employed 0.701 0.210 -0.878 0.608 0.239 -0.442 0.701 0.210 -0.877 
Unemployed 0.129 0.113 2.210 0.101 0.091 2.652 0.129 0.113 2.210 
Student 0.041 0.040 4.614 0.107 0.096 2.537 0.041 0.040 4.603 
Retired 0.071 0.066 3.345 0.114 0.101 2.434 0.071 0.066 3.343 
Homemaker 0.029 0.028 5.607 0.010 0.010 10.050 0.029 0.028 5.609 
Income-to-
Poverty Ratio 
(0,1] 

0.129 0.112 2.218 0.142 0.122 2.047 0.129 0.112 2.216 

Income-to-
Poverty Ratio 
(1,2] 

0.187 0.152 1.606 0.214 0.168 1.396 0.187 0.152 1.606 

Income-to-
Poverty Ratio 
(2,5] 

0.369 0.233 0.544 0.434 0.246 0.266 0.369 0.233 0.544 

Income-to-
Poverty Ratio 
(5,10] 

0.238 0.182 1.228 0.198 0.159 1.514 0.238 0.182 1.229 
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Appendix Figure A1 - 1. Predicted probabilities to agree that humans contribute to climate 
change in Chatham House and in NHANES1 

 
1Predicted probabilities of agreement [p(agree)] are calculated for all individuals using 
coefficients of the logistic regression model depicted in Supplemental Table 1 and observed 
values of socioeconomic and demographic variables. This figure depicts the distribution of 
probabilities in the original Chatham House data compared to the distribution of probabilities 
imputed to NHANES respondents. 
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b. Isocaloric replacement of meats 

All substitutions employed in this research were isocaloric. Averages from the National 
Nutrient Database for Standard Reference (SR28) were used to create conversion factors for all 
necessary replacements. For example, the mean energy content in 100 grams of raw beef was 
188 kilocalories (kcal) and for poultry the value was 168 kcal. Therefore, replacements of beef 
with poultry used a conversion of 1.12 to scale up the amount of poultry to the same energy 
value as the beef it replaced. 

Nutrient content from all analytic entries of the following food groups was extracted from the 
National Nutrient  Database for Standard Reference (SR28): beef products, pork products, 
poultry products, legumes and legume products, and nut and seed products. “Composite” items 
such as ‘Beef, composite of trimmed retail cuts, separable lean and fat, trimmed to 0” fat, all 
grades, raw,’ are aggregations of other SR28 entries. As such, these were excluded. Items 
missing nutrient information were also excluded (5 cured beef items). Coconut entries were 
excluded from the nuts and seeds category in order to align with commodity groupings from 
FCID. Peanuts were included as nuts, not legumes. The legumes group included soy products. 
Items that could be commonly used as plant-based protein sources were included (e.g. tofu and 
soymilks). Highly processed entries such as soy creamers were excluded. 

Mean kilocalories per 100 grams were calculated for all categories: raw beef products, raw 
pork products, raw poultry products, raw legumes, soy, and raw nuts and seeds. See Appendix 
Table A1-3. 

 
Appendix Table A1 - 3. Mean energy content per 100 grams in SR28 entries 

 Kilocalories 95% CI Count 
 188.1 (179.1, 197.1) 408 

Raw pork products 209.1 (177.5, 240.8) 95 

Raw poultry products 167.7 (154.3, 181.1) 154 

Raw legume products, excluding soy 344.7 (339.1, 350.2) 33 

Soy products, excluding highly processed 120.2 (95.5, 144.9) 91 

Raw nuts and seeds 479.2 (413.9, 544.6) 34 

 
To calculate conversion factors for replacements, the average nutrient value in the food 

to be replaced was divided by the average nutrient value in the replacement food. For example, 
the mean energy content in 100 grams of raw beef was 188 kilocalories (kcal) and for poultry 
the value was 168 kcal. Therefore, replacements of beef with poultry used a conversion of 1.12 
to scale up the amount of poultry to the same energy value as the beef it replaced. Appendix 
Table A1-4 shows conversion factors for iso-caloric replacements for all food groups. 
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Appendix Table A1 - 4. Isocaloric substitution factors (grams needed to replace 1 gram of the 
column food) 

 Beef Pork Poultry 

Poultry 1.12 .. .. 

Legumes, excluding soy 0.55 0.61 0.49 

Nuts and seeds 0.39 0.44 0.35 

Soy 1.57 1.74 1.39 

 
For changes including legumes, nuts, and seeds replacements, the following 

calculations were done at the individual level. The grams of beef (or of beef, of poultry, and of 
pork) to be replaced was calculated. For example, if the person ate 80 grams of beef, 40 grams 
would need to be replaced under the 50% scenario. Those 40 grams would be allocated among 
the legumes, soy, and nuts/seeds categories according to the ratios in which that person ate 
those foods. For the 8% of changers who did not consume any of these foods (n=106), their 
replacement grams were allocated at the overall ratios for the population: 0.405 legumes other 
than soy, 0.336 nuts/seeds, and 0.259 soy. To replace the 40 grams of beef using these 
proportions, for example, the amounts would be as follows: 

 Legumes other than soy: 40 grams * 0.405 * 0.55 = 8.91 grams 
 Nuts/seeds: 40 grams * 0.336 * 0.39 = 5.24 grams 
 Soy: 40 grams * 0.259 * 1.57 = 16.27 grams 
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Appendix Table A1 - 5. Coefficients used to predict Health Eating Index and diet cost in 
NHANES1 

 
Model to predict Health Eating 

Index 
Model to predict diet cost 

 Coef. Std. Err. P>|z| Coef. Std. Err. P>|z| 

Crop Group: Beef -0.015 0.002 <0.0001 0.001 0.000 <0.0001 

Crop Group: Other ruminant meat -0.023 0.008 0.02 0.003 0.001 0.00 

Crop Group: Pork -0.021 0.004 <0.0001 0.001 0.000 0.01 

Crop Group: Poultry 0.007 0.002 <0.0001 0.001 0.000 <0.0001 

Crop Group: Other nonruminant meat 0.282 0.020 <0.0001 0.006 0.001 <0.0001 

Crop Group: Fish & Seafood 0.024 0.003 <0.0001 0.005 0.000 <0.0001 

Crop Group: Eggs -0.009 0.004 0.03 -0.001 0.000 <0.0001 

Crop Group: Dairy 0.006 0.001 <0.0001 0.000 0.000 <0.0001 

Crop Group: Oils -0.022 0.008 0.01 -0.011 0.001 <0.0001 

Crop Group: Solid (plant) fats -0.016 0.069 0.84 0.006 0.003 0.05 

Crop Group: Vegetables & Juices 0.011 0.004 <0.0001 0.001 0.000 <0.0001 

Crop Group: Fruits & Juices 0.016 0.001 <0.0001 0.000 0.000 <0.0001 

Crop Group: Legumes 0.051 0.009 <0.0001 -0.002 0.000 <0.0001 

Crop Group: Nuts & Seeds 0.096 0.017 <0.0001 -0.002 0.001 0.01 

Crop Group: Soy 0.027 0.005 <0.0001 0.001 0.000 <0.0001 

Crop Group: Grains -0.010 0.002 <0.0001 0.001 0.000 <0.0001 

Crop Group: Beverages 0.000 0.000 0.01 0.000 0.000 0.01 

Crop Group: Sweeteners -0.040 0.002 <0.0001 -0.002 0.000 <0.0001 

Crop Group: Other 0.014 0.018 0.42 0.008 0.001 <0.0001 

Women 1.146 0.407 0.00 0.103 0.022 <0.0001 

Household size 0.143 0.127 0.30 -0.015 0.008 0.08 

Age [30,40) 0.662 0.527 0.18 0.048 0.038 0.20 

Age [40,50) 1.276 0.525 0.04 0.068 0.042 0.06 

Age [50,65) 3.264 0.558 <0.0001 0.101 0.044 0.01 

High School grad/GED 0.737 0.569 0.29 0.047 0.043 0.20 

Some College 2.043 0.571 <0.0001 0.073 0.031 0.05 

College 4.134 0.674 <0.0001 0.098 0.040 0.02 

Income-to-Poverty Ratio (2,5] 0.852 0.429 0.04 0.065 0.028 0.03 

Income-to-Poverty Ratio (5,10] 1.011 0.563 0.18 0.108 0.036 0.00 

Income-to-Poverty Ratio>10 1.501 0.926 0.12 0.204 0.044 <0.0001 

Hispanic 0.719 0.463 0.32 -0.166 0.032 <0.0001 

Black -0.774 0.432 0.11 -0.137 0.035 <0.0001 

Other race -0.032 0.817 0.97 -0.219 0.050 <0.0001 

Intercept 42.044 1.036 <0.0001 2.358 0.060 <0.0001 

N 7,188   7,188     

R2 0.4371   0.3183   
1 Coefficient estimates in this table are the results of two separate multi-variable regressions models, one 
with Healthy Eating Index as the dependent variable, and one with Diet Cost as the dependent variable. 
All variables in the respective models are included in the table. 
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Table A1 - 1. Mean grams of commodity intake by potential changers under various meat replacement scenarios1 

 Beef Pork Poultry Legumes Nuts/Seeds 

 Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Baseline diet 37.7 (32.3, 43.0) 20.1 (15.8, 24.5) 53.8 (49.9, 57.7) 19.4 (14.7, 24.1) 10.3 (8.8, 11.8) 

100% beef replaced:                

With poultry 0.0      96.0 (90.6, 101.4)       

With plant protein2 0.0         44.5 (36.5, 52.6) 15.8 (14.3, 17.3) 

50% beef replaced:                

With poultry 18.8 (16.2, 21.5)    74.9 (71.2, 78.6)       

With plant protein2 18.8 (16.2, 21.5)       32.0 (26.1, 37.8) 13.1 (11.6, 14.5) 

25% beef replaced:                

With poultry 28.2 (24.2, 32.3)    64.4 (60.9, 67.8)       

With plant protein2 28.2 (24.2, 32.3)       25.7 (20.6, 30.7) 11.7 (10.3, 13.1) 

100% beef, pork, poultry replaced:                

With plant protein2 0.0   0.0   0.0   96.4 (80.7, 112.1) 24.8 (22.6, 27.0) 

50% beef, pork, poultry replaced:                

With plant protein2 18.8 (16.2, 21.5) 10.1 (7.9, 12.2) 26.9 (24.9, 28.9) 57.9 (48.5, 67.3) 17.6 (15.9, 19.3) 

25% beef, pork, poultry replaced:                

With plant protein2 28.2 (24.2, 32.3) 15.1 (11.8, 18.4) 40.4 (37.4, 43.3) 38.6 (32.0, 45.2) 14.0 (12.4, 15.5) 
1Commodity amounts of edible portion of the different meats and plant foods in grams per day. Blank cells under replacement scenarios represent no change in 
commodity consumption from baseline. 
2Plant proteins are legumes, nuts, and seeds. Diet changes for each potential changer reflected the individual’s actual reported intakes of these three food groups. 
Replacements were made in the same ratio as the individual reported eating the three food groups. If the individual did not eat any of the food groups, the overall 
average ratio in the sample was used to distribute the new intake, specifically: 0.405 legumes other than soy, 0.336 nuts/seeds, and 0.259 soy. 
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Paper 2: Assessing the change in US food-related greenhouse gas 
emissions (GHGE) over 10 years 

1. Background 
Previous work in the US has looked at the distribution of food-related greenhouse gas 

emissions using dietary data from 2005-2010.45,69 However, diet patterns may have changed in 
the years since then. To address this issue, this paper looks at change in diet-related GHGE 
over time.  

Diets change over time for various reasons, such as war rationing, changes in 
agricultural practices, and cultural trends. How we eat can change on many dimensions. For 
example, in an analysis of NHANES data from 1971 to 2010, researchers found that over time, 
respondents have mentioned fewer traditional meal occasions (breakfast, lunch, dinner), 
“snacks” have become more likely to replace meals, and the average clock time of breakfast 
and lunch has gotten later.103 Energy density of reported foods has also increased (1971-2002), 
paralleling a national rise in the prevalence of obesity.104 

Meat intakes in the US have shifted considerably over time. Between NHANES 1999-
2000 and 2015-2016, overall unprocessed red meat intakes decreased.105 Within this 
unprocessed red meat category, beef intakes decreased, pork intakes remained the same, and 
“other” red meat increased. (Defining red meat as meat from mammal muscle, this “other” 
category could include lamb, goat, venison, or other large game.) During the same time, poultry 
intakes increased. Fish/seafood and processed meat intakes did not change.105 Despite the 
reduction in beef intakes, the US remains one of highest per capita consumers of meat in the 
world.106 In addition, the USDA estimates that intakes will rise between now and 2030.107 

When looking at potential trends in food-related GHGE over time, meats and especially 
beef will probably be the largest drivers. However, changes in other food groups will also play a 
role. Sustainability or environmental-friendliness of foods is a growing motivation in many US 
consumers.108 But are US diets becoming more sustainable over time, in terms of their carbon 
footprint? 

One recently published study looked at US food-related GHGE from 2003 to 2018.109 
Similar to the present study, Bassi et al. used NHANES dietary data translated to commodity 
intakes using FCID, and used dataFIELD as their source of GHGE of commodities. However, 
Bassi et al. did not account for the structural changes to the USDA Food and Nutrient Database 
for Dietary Studies (FNDDS) after the 2011-2012 NHANES wave. This results in many foods 
from 2013-2014 onward not having commodity recipes from which to calculate food-related 
carbon footprint. Essentially, their analysis assigns these foods zero emissions. Their results 
show a steep decline in US food-related GHGE starting in 2013-2014, illustrating the impact of 
these missing foods. It is a necessity to update FCID recipes to match all foods reported in any 
NHANES waves used to explore questions of dietary carbon footprint using dataFIELD. The 
present study addresses this gap. 

A handful of studies outside the US look at change in food-related GHGE over time. One 
Swedish study110 found a significant decline in food-related GHGE overall, as well as in all age 
groups, over a similar time frame to the present study (2001-2004 to 2014-2018). A second 
Swedish study111 was longitudinal, the only study of that type that has looked at this question. 
They found that dietary GHGE tended to be slightly lower at participants’ second visit than at 



Willits-Smith Dissertation  Paper 2 

Version: 20220727  Page 33 

their first (going from 3.43 kg to 3.30 CO2-eq/1000kcal over the 10-year time period). However, 
they did not present statistical testing of this difference. In addition, their graphical results show 
food-related carbon footprints to be quite stable (~±0.2 CO2-eq/1000kcal) in the sample over the 
course of the study (1996-2016). 

This mirrors a study from China.112 While the authors found substantial changes in the 
makeup of food intakes and the carbon footprint of those intakes from 1980 to 2000, the 
changes from 2000 to 2017 do not appear to be statistically significant (they do not report these 
results in a table, only in a bar chart, and do not present any statistical testing). 

It is clear that more research is needed in this area, and the results may differ by country 
context. It is also critical that the correct methods be applied when calculating food-related 
emissions. This paper addresses the question of whether food-related GHGE has changed over 
time in the US context. 

The results of this study will be informative whether or not trends toward a lower carbon 
footprint diet are found. If there is a decreasing trend, this shows that US consumers can make 
dietary changes that improve sustainability. This “positive deviance” behavior can be 
highlighted, as it shows that more sustainable diets are real, possible, and already acceptable to 
some consumers. If no trend is found, or even an increase in the carbon footprint of diets over 
time, this further underscores the need for incorporating sustainability into nutrition education 
and national dietary guidance.  

2. Research question 
 

How has the food-related carbon footprint of US diets changed over time? This research 
question was answered by addressing the following aims: 
 
Aim 1: Develop and implement a method to calculate individual food-related GHGE for 

NHANES participants from 2015-2016.  
 
Aim 2: Assess the trend in overall food-related carbon footprint in US adults from 2005-

2006 to 2015-2016. 
 
Aim 3: Examine how this trend varies by socio-economic and demographic 

characteristics. 
 
Aim 4: Assess changes in intakes of different food groups that account for these trends. 

3. Methods 
Methods: Building new commodity recipes (Aim 1) 

Previous work with the database dataFIELD has resulted in food-related GHGE values 
for NHANES respondents from 2005-2010, but not for any of the NHANES waves since. See 
Paper 1 Methods and dissertation Appendix 1 for additional details. 

Commodity recipes were composed for all additional foods eaten by respondents in the 
2015-2016 wave of NHANES. New recipes followed existing FCID recipes and standards as 
closely as possible. This ensured that newly added foods did not systematically differ from the 
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original items in their ingredient makeups, and therefore their GHGE values. For example, a 
nutrition-oriented person might see a dish that is “cooked in oil” and assume that commodity 
recipe should include olive oil. However, FCID uses a selection of several common vegetable 
oils (based on market share) whenever an item is cooked “with oil.” New recipes followed these 
and other similar standards to minimize the impact of investigator decision making. Nutrient 
profiles and ingredient data from USDA’s FoodData Central (FDC) provided additional guidance 
on the makeup of new foods.  

Many new foods were matched directly to an existing FCID recipe. This is due to 
structural changes made to the USDA’s Food and Nutrient Database for Dietary Studies 
(FNDDS). The FNDDS is gives nutrient information for foods reported in NHANES, and is 
released on the same two-year cycle. First, modification codes were eliminated from the 
FNDDS between the 2011-2012 and 2013-2014 waves of NHANES. This means that some of 
the “new” foods that needed recipes in NHANES 2015-2016 were simply items that had been a 
modification in the past. For example, a “new” food might be “Egg omelet or scrambled egg, 
made with butter.” This could be matched directly to the existing FCID recipe for “Egg omelet or 
scrambled egg, fat added in cooking” with a modification code that specified the cooking fat was 
butter. 

Second, while some FNDDS items now describe the source of the food, the GHGE from 
production would not vary across these scenarios. For example, the foods “Chicken breast, 
baked or broiled, skin eaten, from pre-cooked” and “Chicken breast, baked or broiled, skin 
eaten, from fast food / restaurant” were both matched to the existing recipe for “Chicken, breast, 
roasted, broiled, or baked, skin eaten.”  

Recipes for foods without clear matches or previous recipes were developed based on 
judgement and informed from discussions with the research team. All new recipes were 
categorized by development type based on the source of the base recipe used, and the 
complexity of any changes made. See Paper 2 Appendix Table A2-1 for detailed criteria for 
these types.  

Newly created recipes were reviewed for accuracy and consistency. This meant 
consistency within category (for example, making sure that recipes for coffee drinks with “non-
dairy” milk all used the same commodity to represent that item), as well as consistency across 
categories (e.g., making sure that the commodity used for “non-dairy milk” in coffee drinks was 
the same as that used for non-dairy yogurt).  
 
Methods: Study sample 

The study sample was adults aged 18 years and older with reliable Day 1 and 2 dietary 
intake data from NHANES 2005-2006 and 2015-2016. The total sample size was 8,927. 

 
Methods: Calculating 2015-2016 individual-level food-related GHGE (Aim 1) 

Once all new recipes were completed, GHGE for each commodity ingredient was 
calculated using emissions values from dataFIELD and the ingredient amount per recipe. 
Emissions per ingredient in a recipe were summed to give kg CO2-eq per 100g of each food 
(i.e., NHANES or USDA food code). This created a new version of what was referred to as the 
“bridge” file (bridging commodities and as-eaten foods) in the earlier section on dataFIELD 
methods. (More detail in dissertation Appendix 1.) 
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Dietary data were appended into one file, which contained respondents from both 
waves: 2005-2006 and 2015-2016. Food-related GHGE was calculated for each person’s foods 
in the amounts they reported eating on both days. Finally, emissions were summed for each 
person to get a dataset of all respondents and their food-related GHGE for each day. 

Intakes in grams of six commodity groups were also calculated for each respondent and 
averaged over the two days of dietary intake data. These groups were beef, pork, poultry, fish 
and seafood, eggs, and dairy. 

 
Methods: Socioeconomic and demographic variables 

Variables for age, gender, race/Hispanic origin, education, and IPR were used. These 
were coded as described above in Paper 1, with the exception of age. Instead of chronological 
age, for this analysis respondents were categorized based on which generation they fell into 
(Table 2-1). 

Also of note: while a Non-Hispanic Asian category exists in NHANES 2015-2016, 
respondents who might fall into that category are not disaggregated in 2005-2006, so the same 
four categories were used as in Paper 1: Non-Hispanic White, Non-Hispanic Black, Hispanic, 
and Other/Multiracial. 
 
Table 2 - 1 Generational Age Category Definitions 

Generation Birth Years 
Estimated age 
(years) in 2006 

Estimated age 
(years) in 2016 

Silent1 1945 and earlier 61 and older 71 and older 
Baby Boomer 1946 – 1964 42 to 60 52 to 70 
X 1965 – 1980 26 to 41 36 to 51 
Millennial 1981 – 1996 18 to 25 20 to 35 
Z 1997 and later -- 18 to 19 

1The age variable in NHANES 2005-2006 was top-coded at 85 years, but the 
following waves used 80 years. Although some members of the Greatest Generation 
(born ~1928 to 1944) are likely present in the sample, they cannot be distinguished at 
the second time point. Therefore, for this analysis, they were not separated from the 
Silent Generation at either time point. 

 
Statistical analysis: new commodity recipes (Aim 1) 

For newly created commodity recipes, descriptive statistics were calculated to show the 
frequency of each new recipe development type. 
 
Statistical analysis: change in dietary GHGE, differences by socioeconomic and demographic 
characteristics (Aims 2 & 3) 

All analyses were appropriate for the complex survey structure of NHANES. For the main 
analysis—did US dietary GHGE change over time—the outcome variable was food-related 
GHGE (kg CO2-eq) per 2000 kilocalories averaged over the two days of dietary recall data (Day 
1 GHGE per 2000kcal plus Day 2 GHGHE per 2000kcal, divided by two). This is effectively the 
GHGE concentration or density in the diet, and eliminates differences in carbon footprint that 
would come from respondents simply eating a lot or a little on the sample day.  
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General linear models were used. First, a crude model tested change in food-related 
GHGE over time (essentially a survey-weighted Student’s t test). A fully adjusted model 
included time and all socioeconomic and demographic variables. To see if the trend varied by 
socioeconomic or demographic characteristics, two-way interaction terms were tested (e.g., 
generation*time). Interactions were only left in the model if they were statistically significant. 

 
Statistical analysis: Socioeconomic differences in commodity food groups (Aim 4) 

Additional models explored differences in intake of commodity food groups by 
socioeconomic or demographic characteristics. For each of these models, the outcome variable 
was 2-day average consumption in grams per 2000kcal of that commodity group (e.g., beef or 
dairy). Again, two-way interactions between time and socioeconomic and demographic 
variables were tested and only left in the model if significant. Adjusted consumption by 
generation and time were calculated from the regression equation, holding gender, 
race/Hispanic origin, educational attainment, and income-to-poverty ratio constant at their 
means. The following differences were tested, controlling for multiple comparisons with a 
Bonferonni correction: (1) Baby Boomers compared to each other generation, controlling for 
time (2) Baby Boomers compared to each other generation in 2015-2016. 

All analyses used strata, PSU, and sampling weights provided in NHANES. The weights 
used were the 2-day dietary weights (WTDR2D). These survey weights were adjusted for the 
use of multiple survey cycles according to NHANES guidance, which in this case meant dividing 
by two for the number of cycles used. All tests were two-sided with an α level of 0.05. Analyses 
were conducted in Stata/SE Version 17. 

4. Results 
Results: Building new commodity recipes (Aim 1) 

A total of 2,239 new commodity recipes were developed in order to calculate GHGE for 
foods consumed by NHANES participants in 2015-2016. Of these new recipes, 44.1% were 
directly matched with (i.e., copied from) existing FCID recipes (see Table 2-2). Relatively few 
items were classified as complex modifications or as “other” types of recipes. 

 
Results: Socioeconomic and demographic characteristics and change over time 

The sample, reflecting the US population, was largely Non-Hispanic White (68.2% 
overall), and more than half female (52.1%). Table 2-3 shows that over half of respondents 
(61.1%) had completed some education beyond high school. While those from the Silent 
Generation made up a fifth of the population (22.5%) in 2005-2006, their proportion declined 
and that of Millennials increased in 2015-2016. The distribution of age did not differ significantly 
over time. The distribution of race/Hispanic origin shifted over time, with respondents in 2015-
2016 more likely to be Hispanic (10.7% in 2005-2006 vs. 15.1% in 2015-2016) or 
Other/Multiracial (5.0% vs 9.6%). However, the difference was only statistically significant for 
the Other/Multiracial group.  
 
Results: Changes in energy intake over time 
 Reported energy intake (two-day average of kcal) decreased significantly over time in 
both crude and adjusted models (Paper 2 Appendix Table A2-2). Compared to Baby Boomers, 
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the Silent Generation reported significantly fewer calories and Gen X and Millennials reported 
significantly more. Non-Hispanic Black and Other/Multiracial respondents reported fewer 
calories than Non-Hispanic Whites. 
 
Results: Food-related GHGE in 2005-2006 vs 2015-2016 (Aims 2 & 3) 
 The mean food-related carbon footprint in 2005-2006 was 4.57 kg CO2-eq per 2000 kcal, 
and in 2015-2016 it was 4.42. This reduction was not statistically significant in either the crude 
or the fully adjusted model (Table 2-4). There were no significant interactions between time and 
socioeconomic or demographic variables. 

 
Results: Socioeconomic and demographic differences in overall food-related GHGE 
 However, there were significant differences in overall food-related carbon footprint by 
socioeconomic and demographic characteristics in the full model, that is, using observations 
from both time periods. Even adjusting for energy intake, women had lower food-related GHGE 
than men (-0.373, p<0.001). Non-Hispanic Black respondents had lower food-related GHGE 
than Non-Hispanic White respondents (-0.301, p=0.009). And those with education beyond a 
high-school diploma had lower food-related carbon footprint compared to those with a high 
school diploma or less. 
 And finally, the Silent Generation, Millennials, and Generation Z had lower dietary 
carbon footprints than Baby Boomers. There was no significant difference between Baby 
Boomers and Generation X. 
 
Results: Commodity consumption differences by generation (Aim 4) 
 Compared to Baby Boomers, controlling for time and all other socioeconomic and 
demographic variables, respondents from the Silent Generation consumed significantly less 
poultry (-13.8%) and more eggs (+20.5%) and dairy (+20.1%) (Table 2-5). Gen Xers ate more 
poultry (+10.9%) and fewer eggs (-14.3%). Millennials consumed less pork (-25.9%) and dairy  
(-9.3%) and more poultry (+19.5%). Gen Z respondents ate less fish and seafood (-52.8%). 
 There was a significant interaction between time and generation for consumption of 
beef, fish & seafood, and eggs. Figure 2-1 shows the very different trajectories of beef 
consumption by generation and time. By 2015-2016, Baby Boomers were consuming 23.0% 
more beef than the Silent Generation and 21.0% more than Millennials (see Paper 2 Appendix 
Table A2-3 for regression models and A2-4 for adjusted consumption values). In addition, the 
Silent Generation ate 20.5% more egg than Boomers in 2015-2016. 

5. Discussion 
The food-related carbon footprint of individual, self-selected diets in the US did not 

significantly change between 2005-2006 and 2015-2016. While there were interesting 
differences in food-related GHGE by socioeconomic and demographic characteristics, the main 
result indicates that the US is not decreasing with regard to its environmental impact in this 
area. 

These results are similar to work in China112 and in Sweden.111 Although these studies 
did not present statistical testing, the graphical results show food-related GHGE remaining 
relatively stable over time periods similar to the one in this study. However, a different Swedish 
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study110 found that dietary GHGE (measured as CO2-eq / total grams of food from an 86-item 
FFQ) declined over time in all age groups. It may be that the results from this second Swedish 
study are not generalizable. The data came from an intervention program aimed at 
cardiovascular disease prevention in one county that invited participants to come to their 
primary care center for screenings, and the study had a relatively high non-response rate (about 
60%).  

 The results of the present study do not agree, as expected, with the US study by Bassi 
et al.,109 who found a sharp decline in dietary GHGE over time but neglected to account for new 
foods in NHANES from 2013-2014 onward. The authors do not report mean food-related GHGE 
numerically, but from their graphs it appears that they calculated 4.3 kg CO2-eq per person per 
day in 2005-2006 and 2.5 in 2015-2016 (they did not adjust for energy intake). For comparison, 
the mean values unadjusted for energy intake in the present study are 4.8 kg CO2-eq per 
person per day for 2005-2006 and 4.4 for 2015-2016. Bassi et al. account only for losses at the 
consumer level and not at the retail level, which could explain the discrepancy between their 
values and the present study in 2005-2006. The dramatic difference between the two studies’ 
values in 2015-2016 demonstrates the large number of foods attributed a zero impact in Bassi 
et al. 

The present study found that the dietary carbon footprint of Baby Boomers was higher 
than that of respondents from the Silent Generation, Millennials, or Gen Z. This is likely due to 
declining beef intake among all the generations except Baby Boomers. Few nutrition-related 
studies look at consumption behavior or diet quality by generation. However, one US study that 
found that compared to the previous generation (those referred to as the Silent Generation in 
this study, born before 1946), Boomers consumed more total calories and higher amounts of fat 
and cholesterol.113 

Baby Boomers are the second largest generational cohort in the US, numbering around 
71.6 million, with the Millennial generation (72.1 million) only recently surpassing Boomers in 
size.114 Boomers suffer from chronic disease at higher rates than previous generations at the 
same age and this presents a substantial burden to the present and future health care 
system.113,115 Targeting modifiable risk factors such as diet, especially beef intake, could have 
benefits in the disease risk of this group as well as reducing environment impacts. 

A recent report by the Pew Research Center indicates that Millennials and Gen Z are 
more engaged both online (e.g., social media posts) and offline (e.g., donating money) with the 
issue of climate change, and are more supportive of prioritizing policies to address climate 
change (e.g., phasing out gas-powered vehicles), compared to older generations.116 Large 
majorities of Gen Z (76%) and Millennials (75%) say that addressing climate change is an 
important concern to them personally, compared to smaller majorities of Baby Boomers (and 
older, 64%) or Gen X (67%). 

Over one third of all generations surveyed said that they are more motivated to take 
action on climate change when they see people like themselves urging it, meaning that social 
marketing efforts may be an effective method of delivering nutrition and sustainability 
messaging. Overall, there was surprisingly high support in the Pew Research Center study for 
some diet-related behaviors: 81% of respondents said that they reduced their food waste and 
40% said that they ate less meat to help protect the environment (responses were not reported 
by generation and these were the only two diet-specific behaviors in the list). This suggests 
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potential responsiveness to education or social marketing with messages relating to the climate 
benefits of reducing meat consumption—especially if those messages were targeted by 
generation and delivered by a member of that generation.  

Some argue that chronological age, not generational cohort, is a more influential 
determinant of eating behavior.117 The most recent iteration of the Dietary Guidelines for 
Americans focuses on nutrition and wellness across the life course.32 Regardless of any age or 
generational targeting, food sustainability information could be incorporated into nutrition 
education materials and national dietary guidance. Given that a majority within all the 
generations studied by the Pew Research Center indicated that addressing climate change was 
a personal concern, increasing consumer awareness about the GHGE of different foods could 
increase the chances of dietary change, compared to simply giving health-related information 
about food. 
 
Strengths and limitations 

NHANES is a nationally representative dataset with rich detail about foods consumed by 
respondents. However, it is cross-sectional. This study cannot show whether individuals have 
changed their diets over time, and what factors might have affected that.  

The commodity recipes used to calculate the food-related carbon footprint in 2015-2016 
were based on the original 2005-2010 recipes, with the addition of new recipes that follow the 
methods and choices of these older recipes. It is possible that there are differences in the 
makeup of foods consumed more recently, and these are not captured by using the original 
recipe structure. However, using the same makeup of commodity recipes for the whole study 
sample is a strength that allows for the comparison of the effects of changes in dietary choices 
alone. The GHGE of food production may also change over time, but that is beyond the scope 
of dataFIELD and this analysis. More research is needed to understand the evolving impact of 
dietary choices in light of changes in food production and formulation, as well as any changes in 
consumer choices or other market forces. 

As above in Paper 1, the limitations of 24-hour recalls still apply here. Using the average 
of two days of dietary intake data helped reduce in-person variation. Also, all analyses here 
adjusted for reported energy intake, as suggested for the interpretation of self-reported dietary 
data.118 This eliminated variation that might have occurred if reported energy intakes changed 
over the decade the study, which they did (see Paper 2 Appendix Table A2-2 for details). In 
addition, dietary data are often right-skewed (see Paper 3), making analyses vulnerable to the 
influence of extreme large values. Additional analyses should explore the effect of outliers 
and/or transformation of the outcome variables to better approximate a normal distribution. 

 
In conclusion, the food-related GHGE of US diets did not decline between 2005-2006 and 2015-
2016. More effort is needed to address the climate impacts of food choice in the US. These 
efforts could include nutrition education and social marketing targeted demographically as well 
as inclusion of sustainability information in national dietary guidance. 
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Table 2 - 2. NHANES 2015-2016 new recipe development types and frequencies 

New recipe development type N % Example 

Direct match to FCID1 988 44.1 “Chicken drumstick, fried, coated, skin / coating eaten, from pre-cooked” (food code 24147310): 
matched to existing recipe for “Chicken, drumstick, coated, baked or fried, prepared with skin, 
skin/coating eaten” (24147210). 
 
"Egg, whole, fried with animal fat or meat drippings” (food code 31105060): matched to recipe 
for “Egg, whole, fried w/ animal fat or meat drippings” (31105000, modification code 205034). 

Simple modification of FCID recipe 896 40.0 “Corn with peppers, red or green, cooked, made with butter” (food code 75303022): replaced 
the fat components of the existing recipe “Corn with peppers, red or green, cooked, NS as to fat 
added in cooking” (75303000) with milk commodity ingredients using proportions from “Butter, 
NFS” (81100500). 

Complex modification of FCID 
recipe 

147 6.6 “Pasta with tomato-based sauce, poultry, and added vegetables, restaurant” (food code 
58146341): used “Pasta with meat sauce” (53146110) as a base, replacing meat with poultry 
items in the same proportions as “Spaghetti sauce with poultry, home-made style” (27141030), 
and added vegetables in the proportions from “Macaroni, creamed, with vegetables” 
(58147350). 

Direct from FoodData Central2 
ingredient list 

13 0.6 “Kefir, NS as to fat content“ (food code 11115400): used FoodData Central entry to determine 
proportions of FCID dairy commodities: milk fat, milk nonfat solids, and milk water. 

Simple modification of FoodData 
Central ingredient list 

6 0.3 “Edamame, cooked” (food code 41420020): took kcal per 100g from the FoodData Central 
entry. Used this value to scale SR Legacy item “Soybeans, mature seeds, raw” and find the 
commodity amount of soybeans needed for 100g cooked edamame. (Edamame are not mature 
seeds, but FCID has no commodity for immature soybeans.) 

Complex modification of FoodData 
Central ingredient list 

98 4.4 “Rice, white, with cheese and/or cream based sauce, NS as to fat added in cooking” (food code 
58164500): proportions of cooked rice, vegetable oil, and prepared cheese sauce came from 
FoodData Central. FCID had existing recipes for those three items: cooked rice (56205000), 
cheese sauce (14650100), and vegetable oil (82101000). 

Other 91 4.1 “Bean chips” (food code 41310900): started with existing FCID recipe for “Soy chips” 
(41410015) and replaced soy beans in this recipe with black beans. Consulted online listings for 
popular brand “Beanitos” and added brown rice and cassava to match the brand’s ingredient 
list. 

Total 2,239 
  

1Food Commodity Intake Database from the US Environmental Protection Agency. 
2FoodData Central, a search tool from the US Department of Agriculture that combines several food and nutrient databases, including the Food and Nutrient 
Database for Dietary Studies and the National Nutrient Database for Standard Reference Legacy Release. 
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Table 2 - 3. Characteristics of NHANES 2005-2006 and 2015-20161 adults and tests of demographic change over time 

 Overall 
(N=8,927) 

2005-2006 
(n=4,527) 

2015-2016 
(n=4,400) N 

ꭕ2 p 
value 

Logistic Regression3 

 % CI % CI % CI OR p value 
Gender           
    Male 47.9 (46.7, 49.2) 47.2 (45.6, 48.8) 48.6 (46.7, 50.5) 4,224 

0.261 
(reference)  

    Female 52.1 (50.8, 53.3) 52.8 (51.2, 54.4) 51.4 (49.5, 53.3) 4,703 0.96 0.431 
           
Generation           
    Silent 17.1 (15.0, 19.4) 22.5 (18.8, 26.6) 12.3 (10.3, 14.5) 1,871 

<0.001 

0.64 0.002 
    Boomer 31.6 (29.5, 33.7) 33.3 (31.4, 35.3) 30.0 (26.6, 33.7) 2,543 (reference)  
    Gen X 27.6 (25.6, 29.7) 29.3 (26.2, 32.7) 26.0 (23.6, 28.6) 2,272 0.96 0.698 
    Millennial 22.3 (20.4, 24.3) 14.9 (13.2, 16.8) 28.9 (26.0, 32.0) 2,041 2.04 0.261 
    Gen Z2 1.4 (1.1, 1.8) -- -- 2.7 (2.2, 3.4) 200 -- -- 
           
Race/Hispanic Origin           
    Hispanic 13.0 (10.2, 16.4) 10.7 (8.4, 13.5) 15.1 (10.3, 21.5) 2,378 

0.067 

1.45 0.174 
    Non-Hispanic White 68.2 (63.0, 73.0) 72.6 (66.0, 78.2) 64.3 (56.1, 71.7) 3,755 (reference)  
    Non-Hispanic Black 11.4 (8.6, 14.8) 11.8 (8.1, 16.8) 11.0 (7.3, 16.2) 2,011 0.93 0.815 
    Other 7.4 (5.9, 9.3) 5.0 (3.9, 6.5) 9.6 (7.1, 13.0) 783 1.73 0.015 
           
Highest Education           
    Less than HS 15.1 (13.1, 17.4) 16.7 (14.4, 19.3) 13.7 (10.6, 17.4) 2,167 

0.093 

0.79 0.062 
    HS grad or equivalent 23.8 (22.1, 25.5) 25.7 (23.2, 28.4) 22.0 (19.7, 24.4) 2,184 (reference)  
    Some college 32.6 (30.8, 34.5) 32.0 (30.0, 34.1) 33.2 (30.3, 36.2) 2,612 1.23 0.014 
    College grad or higher 28.5 (25.0, 32.3) 25.5 (21.4, 30.1) 31.2 (25.7, 37.3) 1,962 1.62 0.005 
           
Income-to-Poverty Ratio           
    <1 11.6 (10.0, 13.5) 10.5 (8.9, 12.4) 12.6 (10.0, 15.9) 1,666 

0.019 

1.08 0.509 
    1 - <2 19.4 (17.8, 21.1) 19.2 (17.2, 21.4) 19.6 (17.3, 22.2) 2,142 (reference)  
    2 - <5 38.6 (36.1, 41.3) 41.6 (39.8, 43.5) 35.9 (31.3, 40.8) 3,043 0.80 0.051 
    5+ 24.7 (21.5, 28.3) 25.2 (21.2, 29.6) 24.3 (19.4, 29.9) 1,466 0.81 0.282 
    Missing income data 5.6 (4.8, 6.6) 3.5 (2.8, 4.2) 7.6 (6.1, 9.3) 610 2.09 <0.001 
Age           
    18-29 years 21.6 (19.3, 24.1) 20.9 (18.5, 23.6) 21.2 (19.5, 23.0) 2,153 

0.154 Not included in model 
    30-49 years 37.7 (33.5, 42.1) 33.1 (30.0, 36.4) 35.3 (32.7, 38.0) 2,773 
    50-65 years 24.6 (22.1, 27.2) 27.3 (25.1, 29.5) 26.0 (24.4, 27.7) 2,111 
    66-80 years4 16.1 (13.4, 19.3) 18.7 (15.9, 21.9) 17.5 (15.5, 19.7) 1,890 

1All calculations account for survey design parameters and sampling weights. 
2Generation Z respondents only reached adulthood, and therefore were only included, in the 2015-2016 wave. Since being in Gen Z perfectly predicts being in the 2015-2016 wave, 
it was excluded from the logistic regression model. 
3Outcome was a dummy variable equal to 0 for respondents from 2005-2006 and 1 for respondents from 2015-2016. Predictors included all the characteristics in this table. 
4Age is top-coded to 85 in NHANES 2005-2006, and 80 in 2015-2016. For this study, any respondent with an age 81-85 years in 2005-2006 was recoded to 80. 
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Table 2 - 4. Mean food-related greenhouse gas emissions (kg CO2-equivalents per 2000kcal) by socioeconomic and demographic characteristics 
and time 

 Overall 2005-2006 2015-2016 Crude Model Fully Adjusted 
 Mean CI Mean CI Mean CI Coefficient1 P Coefficient1 P 

Overall 4.49 (4.39, 4.59) 4.57 (4.45, 4.68) 4.42 (4.26, 4.57) -0.149 0.124 -0.137 0.181 
           
Gender           
    Male 4.69 (4.54, 4.83) 4.78 (4.63, 4.93) 4.60 (4.37, 4.84)   (reference)  
    Female 4.31 (4.19, 4.43) 4.38 (4.21, 4.55) 4.24 (4.08, 4.41)   -0.373 <0.001 
           
Generation           
    Silent 4.42 (4.28, 4.57) 4.54 (4.39, 4.69) 4.23 (3.96, 4.51)   -0.261 0.024 
    Boomer 4.64 (4.47, 4.80) 4.62 (4.43, 4.82) 4.65 (4.38, 4.92)   (reference)  
    Gen X 4.51 (4.31, 4.70) 4.63 (4.35, 4.90) 4.38 (4.10, 4.66)   -0.123 0.292 
    Millennial 4.34 (4.14, 4.53) 4.37 (4.07, 4.67) 4.32 (4.08, 4.56)   -0.308 0.021 
    Gen Z2 4.10 (3.63, 4.58) -- -- 4.10 (3.63, 4.58)   -0.594 0.027 
           
Race/Hispanic Origin           
    Hispanic 4.58 (4.40, 4.76) 4.77 (4.43, 5.10) 4.46 (4.25, 4.67)   0.010 0.949 
    Non-Hispanic White 4.50 (4.37, 4.63) 4.58 (4.46, 4.71) 4.42 (4.18, 4.65)   (reference)  
    Non-Hispanic Black 4.23 (4.06, 4.40) 4.17 (3.97, 4.37) 4.29 (4.03, 4.55)   -0.301 0.009 
    Other 4.62 (4.34, 4.90) 4.87 (4.26, 5.48) 4.50 (4.20, 4.80)   0.178 0.226 
           
Highest Education           
    Less than HS 4.69 (4.47, 4.91) 4.66 (4.45, 4.87) 4.73 (4.33, 5.13)   0.179 0.253 
    HS grad or equivalent 4.51 (4.38, 4.63) 4.56 (4.42, 4.71) 4.44 (4.24, 4.65)   (reference)  
    Some college 4.50 (4.37, 4.63) 4.52 (4.33, 4.71) 4.48 (4.30, 4.65)   -0.019 0.795 
    College grad or higher 4.36 (4.22, 4.51) 4.57 (4.37, 4.77) 4.21 (4.00, 4.41)   -0.201 0.028 
           
Income-to-Poverty Ratio           
    <1 4.48 (4.33, 4.64) 4.66 (4.41, 4.91) 4.35 (4.15, 4.55)   -0.031 0.779 
    1 - <2 4.52 (4.36, 4.68) 4.62 (4.46, 4.79) 4.43 (4.17, 4.68)   (reference)  
    2 - <5 4.42 (4.29, 4.55) 4.49 (4.33, 4.65) 4.35 (4.14, 4.56)   -0.100 0.344 
    5+ 4.51 (4.31, 4.71) 4.58 (4.32, 4.84) 4.44 (4.14, 4.74)   -0.003 0.985 
    Missing income data 4.79 (4.46, 5.12) 4.90 (4.45, 5.36) 4.75 (4.32, 5.17)   0.308 0.115 

1The coefficient in the first row is the one for time: a dummy variable where NHANES 2005-2006 respondents are coded 0 and 2015-2016 respondents are  
coded 1. 
2Generation Z respondents only reached adulthood, and therefore were only included, in the 2015-2016 wave. 
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Table 2 - 5. Adjusted1 consumption of animal-based food groups by generation with differences compared to Baby Boomers 

 Boomers Silent Generation Gen X Millennial Gen Z 

 
g per 
2000 
kcal 

SE 
g per 
2000 
kcal 

SE 
Abs. 
Diff. 

% Diff. 
g per 
2000 
kcal 

SE 
Abs. 
Diff. 

% Diff. 
g per 
2000 
kcal 

SE 
Abs. 
Diff. 

% Diff. 
g per 
2000 
kcal 

SE 
Abs. 
Diff. 

% Diff. 

Beef 50.0 1.8 43.8 1.9 n.s.2 n.s. 47.7 2.1 n.s. n.s. 45.5 2.0 n.s. n.s. 41.8 5.8 n.s. n.s. 

Pork 30.5 1.3 28.4 1.2 n.s. n.s. 27.0 1.7 n.s. n.s. 22.6 1.2 -7.9*** -25.9*** 29.2 9.0 n.s. n.s. 

Poultry 52.2 2.4 45.0 1.8 -7.2** -13.8** 57.9 1.7 +5.7* +10.9* 62.4 2.5 +10.2*** +19.5*** 55.7 7.5 n.s. n.s. 

Fish & 
Seafood 

19.7 1.7 20.9 1.5 n.s. n.s. 20.2 1.7 n.s. n.s. 14.7 1.5 n.s. n.s. 9.3 3.2 -10.4* -52.8* 

Eggs 29.3 1.0 35.3 1.2 +6.0** +20.5** 25.1 1.3 -4.2* -14.3* 25.1 1.6 n.s. n.s. 25.5 4.2 n.s. n.s. 

Dairy 220.0 6.0 264.2 6.9 +44.2*** +20.1*** 214.7 9 n.s. n.s. 199.6 7.7 -20.4* -9.3* 234.3 25.6 n.s. n.s. 
1Predicted values based on regression models controlling for time, generation, gender, race/Hispanic Origin, education, and income-to-poverty ratio. An interaction between time 
and gender was statistically significant and therefore included in the models for beef, fish & seafood, and eggs. Post-tests for difference compared to Baby Boomers used a 
Bonferroni correction for multiple tests. 
2*p<0.05; **p<0.01, ***p<0.001 for adjusted Wald test comparing to Baby Boomers. 
  n.s.: difference was not statistically significant. 
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Figure 2 - 1. Adjusted1 beef consumption by time and generation 

 
1Predicted values based on regression models including time, generation, time*generation, gender, race/Hispanic 
origin, education, and income-to-poverty ratio. 

 

Figure 2 - 2. Adjusted1 fish & seafood consumption by time and generation 

 
1Predicted values based on regression models including time, generation, time*generation, gender, race/Hispanic 
origin, education, and income-to-poverty ratio. 
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Figure 2 - 3. Adjusted1 egg consumption by time and generation 

 
1Predicted values based on regression models including time, generation, time*generation, gender, race/Hispanic 
origin, education, and income-to-poverty ratio. 
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6. Paper 2 Appendix 
 
Appendix Table A2 - 1. Criteria and documentation details for commodity recipe types 

Code Description 

Base 
recipe 
comes 
from 

Examples Info to include in Recipe tab 

1 Direct match to 
FCID1 

FCID 
 

Food code and modification code of the recipe 
used. 

2 Simple 
modification of 
FCID recipe 

FCID One base FCID recipe modified 
with info from a second recipe. Or 
could be an average of two recipes. 
Could be an FCID recipe modified 
with info from an FDC item. 

Food code and modification code of the main 
FCID used. Either food code + mod code or 
FDC ID of the second item, as appropriate. If 
you modified an FCID recipe using some 
reasoning that is in your notes, but doesn't 
necessarily come from another recipe/item, you 
just need to include food code + mod code of 
the base recipe.  

3 Complex 
modification of 
FCID recipe 

FCID Combinations of 3 or more existing 
recipes, where the primary recipe is 
an FCID one. Modifying items 
could be FCID recipes or FDC 
items. 

Food code and modification code of the main 
FCID used. Either food code + mod code or 
FDC ID of the additional items, as appropriate 
and as space is available. So for example if 
you have an FCID recipe that you modified 
using another FCID food and an FDC food, you 
would fill in Food Code/Mod Code 1, Food 
Code/Mod Code 2, and FDC ID 1.  

4 Direct from 
FoodData 
Central 
ingredient list 

FDC This is not a direct match in the 
same way that code #1 is, because 
FDC foods are not made up of 
FCID commodity ingredients. So 
what this means is something like 
the Kefir example from our practice 
items: one FDC food was used to 
create a recipe of FCID commodity 
ingredients. 

FDC ID of the item used. 

5 Simple 
modification of 
FoodData 
Central 
ingredient list 

FDC A recipe based on an FDC item, 
with modifications or additions from 
another FDC item or from an 
existing FCID recipe. 

FDC ID of the main item used. Either food code 
+ mod code or FDC ID of the second item, as 
appropriate. 

6 Complex 
modification of 
FoodData 
Central 
ingredient list 

FDC Combinations of 3 or more existing 
recipes, where the primary recipe is 
an FDC item. Modifying items could 
be FCID recipes or FDC items. 

FDC ID of the main item used. Either food code 
+ mod code or FDC ID of the additional item, 
as appropriate and as space allows. 

7 Other Other Use sparingly--we want most of our 
work to fall in line with existing 
FCID recipes. Check with Amelia 
about recipes that don't fit the 
above categories. 

 

1Food Commodities Intake Database from the US Environmental Protection Agency. 
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Appendix Table A2 - 2. Regression coefficients for models of change in energy intake over time 

 Day 1 kcal Day 2 kcal Two-day avg kcal 
 Crude Adjusted Crude Adjusted Crude Adjusted 

Constant 2198.6   2625.7   2062.0   2416.0   2130.3   2520.8   
       
2015-2016 vs 2005-2006 -99.5*   -150.9*** -64.9    -111.1**  -82.2*   -131.0*** 
       
Gender       
    Male       
    Female  -714.3***     -633.4***     -673.8*** 
       
Generation       
    Silent  -331.6***     -247.9***     -289.7*** 
    Boomer  (reference)      (reference)      (reference)  
    Gen X  176.7***     89.8*       133.3*** 
    Millennial  188.2***     124.6**      156.4*** 
    Gen Z  -90.4        15.7        -37.3    
       
Race/Hispanic Origin       
    Hispanic  -17.6        -25.0        -21.3    
    Non-Hispanic White  (reference)      (reference)      (reference)  
    Non-Hispanic Black  -73.4*       -121.2**      -97.3**  
    Other  -150.3***     -99.9        -125.1**  
       
Highest Education       
    Less than HS  -67.8        -36.8        -52.3    
    HS grad or equivalent  (reference)      (reference)      (reference)  
    Some college  -8.7        81.3*       36.3    
    College grad or higher  -0.8        89.3*       44.3    
       
Income-to-Poverty Ratio       
    <1  -64.4        -116.2*       -90.3*   
    1 - <2  (reference)      (reference)      (reference)  
    2 - <5  -10.2        -27.6        -18.9    
    5+  -30.3        -7.6        -18.9    
    Missing income data  -118.5        -108.6        -113.5    
       
N 8927    8925   8927    8925 8927  8925   
F 6.4549    62.2877    2.6463    49.0375    5.0510    82.9376    
p 0.0165    0.0000    0.1143    0.0000    0.0321    0.0000    
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Appendix Table A2 - 3. Regression coefficients for models predicting 2-day average g animal food group consumption per 2000kcal 

Variable 
Beef Pork Poultry Fish & Seafood Eggs Dairy 

Crude Full Crude Full Crude Full Crude Full Crude Full Crude Full 
Generation:                           Silent -3.8  0.0    -1.3    -2.1    -10.1*** -6.7**  0.0   -0.9    4.5** 2.0   55.2*** 44.2*** 

Boomer (base) (base)  (base) (base) (base)  (base) (base) (base)  (base) (base) (base)  (base) 
GenX -1.5  4.6    -3.5    -3.5    6.2*   5.5*   0.4   -7.1    -3.3*  -5.9*  -8.9    -5.3    

Millennial -4.6* 2.5    -6.8*** -7.9*** 12.8*** 11.7*** -4.2   -11.4**  -1.2   -8.5** -31.2*** -20.4*   
GenZ -3.0  -9.5    0.8    -2.7    6.6    1.0    -10.7** -6.8*   -2.4   -4.9   -7.0    30.9    

                                            
Survey wave:                2005-2006   (base)     (base)     (base)    (base)     (base)       (base) 

2015-2016   3.0        2.8        5.3       -7.6*      2.1       -35.1**  
                                            

 Time-generation interaction:1                                            
2015-2016#Silent   -11.7*                      4.0       7.6**         

2015-2016#Boomer   (base)                     (base)    (base)          
2015-2016#GenX   -13.1*                      14.4**     3.1           

2015-2016#Millennial   -13.2*                      12.0**     8.0*          
2015-2016#GenZ   (omitted)                    (omitted)    (omitted)         

                                            
Gender:                                  Male   (base)      (base)     (base)    (base)     (base)     (base)   

Female   -12.1***     -6.6***     0.7       3.2       2.1       28.2*** 
                                            

Race/Hispanic origin:     Hispanic   2.0        -4.6*       9.1**     5.3*      5.9**     -28.6**  
Non-Hispanic White   (base)      (base)     (base)    (base)     (base)     (base) 
Non-Hispanic Black   -2.9        -1.5        24.5***    6.9***    0.3       -98.2*** 

Other/Multiracial   2.6        -0.1        8.2*      12.0***    2.0       -37.6**  
                                            

Income-to-poverty ratio:          <1   -0.2        1.0        5.6       -2.0       3.3*      -5.3    
1 - <2   (base)     (base)     (base)    (base)     (base)     (base) 
2 - <5   0.5        0.9        5.9*      -3.2       0.2       -19.2    

5+   -1.4        -3.7        11.9**     1.9       -3.8       -23.1    
Missing   4.5        -1.9        5.7       -0.1       -2.6       -2.8    

                                            
Education:                Less than HS   4.7        2.3        -1.3       -2.7       1.7       7.5    

HS grad or equivalent   (base)     (base)     (base)    (base)    (base)     (base) 
Some college   -1.3        -3.3        -0.7       -0.1       2.8       17.7*   

College grad or higher   -7.9***     -3.9*       -0.1       3.8*      3.1       21.3*   
N 8927 8925 8927 8925 8927 8925 8927 8925 8927 8925 8927 8925 
F 1.2203 9.9761 6.4893 5.8517 24.8670 9.5174 6.2656 7.7206 4.2045 7.8389 19.1546 29.6467 
p 0.3254 0.0001 0.0009 0.0007 0.0000 0.0000 0.0011 0.0004 0.0090 0.0004 0.0000 0.0000 

1Interactions were tested for each food group, but only left in if the term was statistically significant. Adjusted Wald test p value for interactions: beef p=0.043, fish & seafood 
p=0.033, eggs p=0.003. 
*p<0.05; **p<0.01, ***p<0.001 
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Appendix Table A2 - 4. Adjusted1 consumption (g/2000kcal) of all commodity food groups by generation and time 

 Silent Generation Boomer 
 Overall SE 0506 SE 1516 SE Overall SE 0506 SE 1516 SE 
Beef 43.8 1.9 48.4 2.0 39.6* 2.9 50.0 1.8 48.4 2.0 51.4 3.1 
Pork 28.4 1.2 26.9 1.2 29.7* 1.6 30.5 1.3 29.1 1.5 31.9 1.5 
Poultry 45.0** 1.8 44.1 2.3 45.8 2.9 52.2 2.4 52.1 3.3 52.2 3.7 
Fish & Seafood 20.9 1.5 22.8 1.9 19.2 2.2 19.7 1.7 23.7 3.0 16.1 1.8 
Eggs 35.3** 1.2 30.2 1.6 39.9*** 1.7 29.3 1.0 28.2 1.6 30.4 1.2 
Dairy 264.2*** 6.9 282.7 8.5 247.6*** 8.7 220.0 6.0 238.4 8.6 203.4 7.3 

 
 Gen X Millennial Gen Z2 
 Overall SE 0506 SE 1516 SE Overall SE 0506 SE 1516 SE 1516 SE 
Beef 47.7 2.1 53.0 2.9 42.9 3.1 45.5 2.0 50.9 3.6 40.6** 1.9 41.8 5.8 
Pork 27.0 1.7 25.6 1.9 28.4 1.9 22.6*** 1.2 21.1 1.5 23.9*** 1.4 29.2 9.0 
Poultry 57.9* 1.7 54.4 2.5 61.0 2.3 62.4*** 2.5 54.5 3.4 69.6** 3.5 55.7 7.5 
Fish & Seafood 20.2 1.7 16.6 2.3 23.4 2.6 14.7 1.5 12.3 2.1 16.8 2.1 9.3 3.2 
Eggs 25.1* 1.3 22.3 1.2 27.5 2.1 25.1 1.6 19.7 2.8 29.9 1.9 25.5 4.2 
Dairy 214.7 9.0 233.1 13.2 198.0 7.1 199.6* 7.7 218.0 11.0 182.9 7.5 234.3 25.6 

1Predicted values based on regression models controlling for time, generation, gender, race/Hispanic Origin, education, and income-to-poverty ratio. An interaction between time 
and generation was statistically significant and therefore included in the models for beef, fish & seafood,  eggs. Post-tests for difference compared all other generations to Baby 
Boomers both overall (i.e., controlling for time) and in 2015-2016, using a Bonferroni correction for multiple tests.  
*p<0.05; **p<0.01, ***p<0.001 for adjusted Wald test comparing to Baby Boomers. 
2Gen Z fish & seafood consumption differed from Baby Boomers in total (controlling for time), but not compared to 2015-2016 Baby Boomer values. 
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Paper 3: Carbon footprint and diet quality of usual diets in the US 

1. Background 
Issues in dietary measurement 

In nutrition research, it is typical to study the relationship between dietary intake and a 
health outcome. In infectious disease like food-borne parasites, the lag time between intake and 
a change in health may be quite short. When studying noncommunicable diseases, however, it 
is the long-term average (i.e., usual) intake that contributes to future health outcomes. Despite 
this, in research food intake is often measured at only one point or a few points in time. 

In a 24-hour dietary recall (24HR), respondents are asked to report everything they ate 
or drank over the last 24-hour period. Many details of consumption are recorded, including 
portion sizes and method of preparation. Diet recalls may be administered by a trained 
interviewer (as in NHANES, described in Paper 1 Methods) or by using validated self-
assessment methods (e.g., the National Cancer Institute’s Automated Self-Administered Recall 
system [ASA24]). Recalls are structured to include probing questions that help respondents 
remember commonly forgotten items, and visual guides assist respondents in reporting portion 
sizes.  

Despite these strict protocols, it is possible for 24-hour recalls to suffer from 
measurement error related to respondent underreporting. This may be systematic. Certain 
groups have been found to misreport intake, such as those who are obese or elderly. Social 
desirability bias may also occur, with respondents reporting smaller portions or excluding foods 
that they know are unhealthy.  

Despite these potential limitations 24-hour dietary recalls are useful and important tools 
to understand diets.118 Since respondents report their intake retrospectively, they will not have 
changed what they ate because they knew they were being tracked. And most importantly, 
24HRs give researchers rich detail about all the different foods and beverages consumed for the 
previous day, including preparation methods. This allows for the most accurate and complete 
calculation possible of food and nutrient intake using available analytic databases.  
 
Measuring “usual” intake 

A single 24HR is adequate to describe the average intake of a population.119 However, 
one day of eating does not necessarily represent a person’s typical intake.  

Dietary measurements using a single day of intake data tend to be more disperse than 
true usual intakes over time. In other words, the 1-day distribution of intakes tends to have more 
of the study sample in the extreme parts of the distribution. To assess adequacy in relation to a 
recommended standard, or to understand the true relationship between diet and a health 
outcome, a method is needed to get an accurate usual intake over time. Simply averaging 
multiple recalls does not fix these issues; the distributions are still wider than true usual intake. 

Biostatistics researchers have developed a series of complex methods to estimate usual 
intake from 2 or more days of 24-hour dietary recalls. The earliest versions of these methods 
could only model usual intake for nutrients that were consumed daily by everyone (i.e., no zero 
consumption values allowed), and they could not account for complex survey design or issues 
related to 24-hour recalls. The latest models can be used for both ubiquitously and episodically 
consumed foods and nutrients. They can also be used with complex survey data, and models 
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account for various elements of 24-hour recalls: time-in-sample (the order of the recall days), 
seasonality, day of the week (weekday versus weekend), and the relationship between 
probability of consumption and amount of consumption. Covariates related to consumption, 
such as age and sex, can also be added to improve the models. 

The effect of modeling usual intake versus 1-day diets or simply averaging multiple 
dietary recalls is shown in Figures 3-1 and 3-2. Figure 3-1 shows three distributions of total fruit 
and vegetable intake in the US from 1994-1996.120 The distribution overall is right-skewed, as 
dietary intake data often is. The line with long dashes represents a single day of dietary intake 
data. Substantially more of the population fell into the lowest and highest parts of this curve 
compared to the usual intake curve (solid line). The within-person mean distribution (short-
dashed line) is intermediate between the single day of intake and the usual intake. However, 
this would still overestimate the proportion of the population with very low or very high intakes, 
as the figure illustrates with the shaded area under the curve showing which proportion of the 
population would be categorized as consuming below one serving of fruits and vegetables per 
day. 

 

Figure 3 - 1. Comparing the distribution of dietary intakes using different estimation methods: a 
commonly consumed food (Dodd et al, 2006) 
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Figure 3-2 illustrates the additional challenge of episodically-consumed foods, or a food 
that is not usually consumed by all people every day, by looking at whole grain consumption in 
women.121 There is a large spike of values at zero (7.5% of the distribution) when dietary recalls 
are simply averaged (dotted line). The usual intake estimation methods (solid lines) produce 
distributions that are shifted to the right and that account for the large amount of non-
consumption.  

 
Figure 3 - 2. Comparing the distribution of dietary intakes using different estimation methods: an 

episodically-consumed food (from Tooze et al, 2006) 

 
Note: The present study uses the NCI (National Cancer Institute)  
method; more details are in the Methods below. 
 

In summary, methods are available to address common pitfalls in accurately analyzing 
24-hour dietary recall data. These usual intake methods are especially important when the 
research question of interest includes looking at particularly high- or low-consumption ends of 
the distribution. 
 
Food-related greenhouse gas emissions and usual intake 

One such question pertains to the carbon footprint or food-related GHGE of foods. 
GHGE can be thought of like a nutrient: just as different foods have different levels of fat, they 
also have different carbon footprints. We would expect the distribution of food-related GHGE to 
be right-skewed, similar to the nutrients shown in Figure 3-1. Research into the overlap between 
healthier diets and diets that have a lower carbon footprint necessarily means looking at the tails 
of this distribution. For example, what are the characteristics of the diets highest in GHGE 
versus those lowest in GHGE? 

To answer this question, an accurate analysis of which diets are truly “high” and “low” in 
GHGE is needed. This presents the same set of issues as other dietary components when the 
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data come from only one day of intake. The distribution from one day of intakes can be 
expected to be more disperse than the true usual food-related GHGE of the population. The 
distribution may overestimate the proportion of diets that are extremely high in GHGE, or 
extremely low.  

While few studies have looked at the distribution of food-related greenhouse gas 
emissions (GHGE) from individual diets, earlier work using NHANES 2005-2010 confirms the 
expectation of a large right tail.45 Examining this 1-day distribution revealed that diets in the 
highest quintile of food-related GHGE produced eight times the emissions of those in the lowest 
quintile. If everyone in the highest quintile shifted to a diet with average emissions, the GHGE 
savings would be substantial. But whether the magnitude of these findings hold when looking at 
GHGE of usual diets instead of 1-day intakes is unknown. 

The key issue in sustainable nutrition research is finding “win-win” dietary scenarios that 
provide adequate human nutrition with lower environmental impact. While the relationship 
between healthfulness of diet and food-related GHGE has been examined for 1-day US diets, 
the relationship has not been investigated using usual diets. It is usual intake over time that 
leads to both diet-related health outcomes and to the cumulative environmental impacts of food. 
The research here addresses this gap. 

2. Research question 
 
Are usual diets with a lower carbon footprint healthier than those with a higher carbon 
footprint? This research question was answered by addressing the following aims: 

 
Aim 1: Assess the difference in distribution of food-related GHGE in usual versus 1-day 

diets. 
 
Aim 2: Test the difference in diet quality (Healthy Eating Index) between high-GHGE 

usual diets and low-GHGE usual diets. 
 
Aim 3: Examine differences in HEI component scores to determine which components 

contribute to any differences found in overall HEI score. 

3. Methods 
Methods: Study sample 

The study sample was adult respondents (aged 18 years and older) from NHANES 
2015-2016 with one or two reliable 24HRs. Respondents who were pregnant or breastfeeding, 
and those who had zero kilocalories or zero food-related GHGE on either of their dietary recall 
days, were excluded. 

 
Methods: Socioeconomic and demographic variables 

Variables for age, gender, race/Hispanic origin, education, and IPR were used. Age was 
categorized into four groups: 18-29, 30-49, 50-65, and 66+ years. The coding of the 
race/Hispanic origin variable differed from that of the previous papers. NHANES 2015-2016 
included Non-Hispanic Asian as a category, and this was used in the present study, for a total of 
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five groups: Non-Hispanic White, Hispanic, Non-Hispanic Black, Non-Hispanic Asian, and 
Other/Multiracial. Education and IPR categories were the same as Papers 1 and 2. 
 
Methods: Greenhouse gas emissions 

Food-related GHGE were calculated for individuals in the sample using dataFIELD (as 
described in the Methods of Paper 1 and in more detail in Appendix 1) as well as the commodity 
recipes for new foods developed as described in Paper 2’s methods.  

 
Methods: Diet healthfulness 

The healthfulness (quality) of diets was assessed using the Healthy Eating Index 2015 
(HEI). The methods are very similar to those described for calculating the HEI-2010 in Paper 1. 
However, the HEI-2015 is the correct version to use for these data, as it measures adherence to 
the 2015 DGA. The main differences are that in the HEI-2015, saturated fats and added sugars 
are assessed separately, legume intake is counted as both a vegetable and a protein source, 
and alcohol is not included in the scoring (though it is still included in total calories). See 
Appendix 2 for a comparison of HEI-2010 and HEI-2015 components and scoring. The food 
group intake variables for these calculations come from the USDA’s Food Patterns Equivalents 
Database (FPED). This database converts NHANES foods into nutrition-oriented food groups 
with common units (e.g., cup-equivalents [c-eq] and ounce-equivalents [oz-eq]). Sodium and fat 
values come from the Food and Nutrient Database for Dietary Studies (FNDDS). 

 
Methods: Statistical analysis 

Usual food-related GHGE (kg CO2-eq) and usual intakes of food groups were estimated 
using the NCI method, which is a multivariate Markov Chain Monte Carlo (MCMC) method.122-124 
This method fits a two-part model that allows for correlated person-specific effects. The first part 
estimates the probability of consuming a food, and the second part uses the 24HR data to get 
the amount consumed on a consumption day. Both parts of the model allow for multiple 
covariates, which here included socioeconomic and demographic characteristics of the 
individual, as well as information about the two 24HRs (see Table 3-1 for a full list of variables). 
The modelling also includes NHANES survey design variables and sampling weights. 

Intakes of quite a few food groups and nutrients are needed to calculate HEI for each 
person. For the multivariate MCMC to run correctly, all food groups must be run in their most 
disaggregated form and the groups must not overlap. For example, while the HEI-2015 scoring 
includes legume consumption in both the Total Vegetable and Seafood and Plant Protein 
component scores, legumes were run as a separate variable in the multivariate MCMC. Re-
aggregations necessary for HEI scoring were done afterward.  

Table 3-1 lists all the variables that were included. First, all of the food group intake 
variables were checked to determine whether they should be included in the multivariate MCMC 
models as ubiquitous or commonly consumed foods, or as episodically consumed foods. Food 
groups with less than 5% nonconsumption (zero consumption) were categorized as ubiquitous. 
Food groups with greater nonconsumption were categorized as episodic. See Paper 3 Appendix 
Table A3-1 for details on variables’ nonconsumption rates. 

 The multivariate MCMC models produce a population of pseudo-people (100 for each 
original NHANES respondent), the means of which are the same as those of the original 
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observed population, and the distribution of which reflects the usual intake of the modeled 
components. Usual food-related emissions per 2000kcal were calculated for this pseudo-
population, as were quintile cut points. Estimates of usual intakes of food groups were used to 
calculate HEI-2015 scores for each pseudo-person. 

Table 3 - 1. Variables included in usual intake multivariate Markov Chain Monte Carlo models 

Intake variables 
Covariates 

Ubiquitous1 Episodic 
 Total food-related GHGE 
 Total energy (kcal) 
 Saturated fat 
 Monounsaturated fat 
 Polyunsaturated fat 
 Sodium 
 Non-dark-green vegetables  
 Dairy 
 Refined grains 
 Added sugars  

 Meat 
 Poultry 
 Cured and organ meats 
 Seafood 
 Legumes 
 Whole fruits 
 Fruit juice 
 Dark green vegetables  
 Whole grains  

Elements of 24HR 
 Day of the week 
 Order of the two recalls 
 
Demographic/Socioeconomic 
 Age 
 Gender 
 Race/Hispanic origin 
 Income-to-Poverty ratio 
 Educational attainment 

1For details on classification of intake variables as episodic or ubiquitous, see Paper 3 Appendix Table 
A3-1. 

 
Statistical analysis: difference in 1-day and usual diet GHGE distributions (Aim 1) 

Density curves were plotted for one-day, two-day mean, and usual food-related GHGE 
per 2000kcal distributions. Using NHANES weights, food-related GHGE per 2000kcal was 
summed to represent the total population level emissions contributed by each quintile. These 
results were multiplied by 365 to get total emissions for a year. These values were translated to 
equivalent passenger vehicles driven for a year using the Environmental Protection Agency’s 
GHGE Equivalencies Calculator.95 Values of GHGE/2000 kcal were calculated at different 
percentiles of each distribution. These were compared across distributions and compared to 
values from previously published work. 
 
Statistical analysis: relationship between HEI and food-related GHGE (Aim 2) 

General linear models were used with quintile of usual food-related GHGE as a 
categorical predictor and usual HEI score as the outcome. A second model included a quadratic 
term to test for any non-linear relationship. Models included the following covariates, all of which 
have been found to be associated with diet quality:125 age, gender, race/Hispanic origin, 
education, and IPR. Standard errors were calculated using Fay’s modified balanced repeated 
replications (BRR) technique.126 This is instead of the Taylor Series Linearization method for 
variance estimation, which is recommended for standard NHANES analysis and was used for 
Papers 1 and 2. Sixteen replicate weights were generated for NHANES 2015-2016 respondents 
(based on the two-day dietary weights, WTDR2D), and the multivariate MCMC models were run 
for each replicate, in addition to the base run that used the original NHANES weights. 
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Statistical analysis: relationship between HEI component and food-related GHGE (Aim 3) 
The same process was repeated, with a model for each HEI component score. Since 

HEI component scores for protein foods combine foods with a wide variety of production GHGE, 
additional models were run with FPED food groups as the outcome variable. 

 
All tests were two-sided with an α level of 0.05. All analyses accounted for the complex survey 
design of NHANES, incorporating strata, PSU, and sampling weights.Analyses used SAS 
Version 9.4 for the multivariate MCMC models, HEI scoring, regressions, and BRR standard 
errors. Stata/SE Version 17 was used for all other analyses. 

4. Results 
Results: Population characteristics 

The population was slightly more than half female (50.6%), and over one third non-White 
(35.5%) (Table 3-2). Almost two-thirds of respondents (64.1%) had completed some education 
beyond high school. The mean energy intake reported on Day 2 recalls was lower (-100kcal) 
than that of Day 1 recalls. While the mean food-related GHGE per day for Day 2 recalls was 
slightly lower than that of Day 1 recalls (-0.24 kg CO2-eq), the food-related GHGE per 2000kcal 
on Day 2 was higher (+0.13 kg CO2-eq). 
 
Results: Comparing 1-day and usual distributions of food-related GHGE (Aim 1) 
 Figure 3-3 shows density curves for 1-day, 2-day mean, and usual food-related GHGE in 
NHANES 2015-2016 adults. While the difference is small between the curves for 1-day and 2-
day average diets, the usual dietary GHGE has a dramatically different distribution. Both tails 
are shifted noticeably inward, and while the distribution is still right-skewed, that is much less 
pronounced. 
 Table 3-3 compares the distributions numerically. Quintile cut points that might be used 
to classify diets as high- or low-carbon footprint are substantially different between the usual 
and one-day distributions. For example, the lowest 20% of diets in the usual distribution had 
food-related GHGE below 3.40 kg CO2-eq per 2000kcal. However, this same cut point would 
include nearly half of the one-day distribution (one-day median = 3.46 kg CO2-eq per 2000kcal). 
See Paper 3 Appendix Table A3-1 for additional percentile values, as well as percentiles for kg 
CO2-eq per day unadjusted for energy intake. 
 Previous work using NHANES 2005-2010 indicated that the top quintile of one-day food-
related GHGE represented 5.1 times the total emissions contributed by the lowest quintile (41% 
versus 8% of total emissions).69 Using quintiles based on usual food-related GHGE in NHANES 
2015-2016, this difference was attenuated: 28% versus 14% (Table 3-4).  
 However, substantial reductions in food-related GHGE are still possible if individuals with 
usual diets like those in the top quintiles were to eat more like those with diets in the lower 
quintiles. Table 3-4 shows the magnitude of these potential reductions in both metric tons 
(kilograms / 1000) CO2-eq per year and the equivalent number of gas-powered passenger 
vehicles driven for a year. If individuals with usual diets like those in quintiles 4 or 5 were to eat 
diets at the mean of quintile 3 (4.22 kg CO2-eq/2000kcal), it would be equivalent to taking over 9 
million gas-powered passenger vehicles off the road. With a more dramatic dietary shift, if 
individuals with the top 80% of usual dietary GHGE were to eat diets with the mean GHGE of 
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quintile 1 (2.95 kg CO2-eq/2000kcal), this would be equivalent to eliminating almost 26 million 
passenger vehicles for a year, or 6.2% of the US’s new GHGE reduction target of 50-52% below 
2005 levels.  
 
Results: Relationship between usual diet quality and food-related GHGE (Aims 2 & 3) 
 The mean HEI score for the sample was 56.8 (Table 3-5). Adjusting for all 
socioeconomic and demographic factors, the mean score for diets in the top quintile of usual 
food-related GHGE was 6.5 points lower than that of the diets in the lowest quintile. Controlling 
for demographic and socioeconomic characteristics, there was a statistically significant 
(p=0.010) inverse relationship between usual food-related GHGE quintile and overall Healthy 
Eating Index score. 
 Several HEI component scores also differed significantly across quintiles of usual food-
related GHGE. As expected, the total protein foods score was significantly higher in higher 
quintiles of dietary GHGE. However, the mean component scores even in the lowest quintile of 
dietary GHGE were not particularly low (4.6 out of a possible 5 points). The component score 
for seafood and plant protein did not differ across quintiles of GHGE. 
 Higher usual dietary GHGE were significantly associated with lower scores on the total 
fruit, whole grain, saturated fat, fatty acid ratio, and sodium components. Higher GHGE were 
associated with a higher score on the added sugars component. (Recall that sodium and added 
sugars are reverse-scored, so higher scores equal lower consumption.) 
 
Results: Usual consumption of food groups and relationship with usual diet GHGE (lagniappe) 
 Differences in the usual consumption of food groups shine light on the source of some of 
the differences in usual HEI component scores (Table 3-6). Usual intakes of meat (i.e., beef, 
pork, lamb, veal, and game), cured and organ meats, and eggs were positively associated with 
usual food-related GHGE. However, usual intakes of poultry, seafood, and plant-based protein 
foods (legumes, soy, nuts, and seeds) did not differ across quintiles of GHGE.  
 The significant difference in the fatty acid ratio component score was driven by 
differences in usual monounsaturated and saturated fat intakes; usual polyunsaturated fatty acid 
intake did not differ by quintile of usual food-related GHGE. While no significant difference was 
seen in the HEI component score for vegetables, usual intake of vegetables was significantly 
lower in lower-GHGE diets (-0.08 cup equivalents per 1000kcal for the lowest quintile compared 
to the highest). 
 There were no remarkable quadratic effects of quintile of usual food-related GHGE on 
usual HEI or on usual consumption of any food group. 

5. Discussion 
The distribution of usual food-related greenhouse gas emissions in the US differs 

substantially from that of one-day food-related GHGE. However, usual food-related GHGE is 
still inversely related to diet quality, strengthening the body of evidence showing that nutritious 
diets are possible at lower impact to the planet. 

Results from the present study differ from previous studies using one-day food-related 
GHGE from NHANES 2005-2010. The threshold used by Rose et al.69 and Pollock et al.127 to 
designate low-GHGE diets (2.27 kg CO2-eq per 2000kcal) would apply to only 1% of the 
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population when looking at usual food-related GHGE (1st percentile = 2.29 kg CO2-eq per 
2000kcal). While Rose et al. calculated that individuals in the top 20% of food-related GHGE 
were responsible for 5.1 times the emissions of those in the bottom 20%, using usual food-
related GHGE, the difference is more modest, with the top quintile being responsible for twice 
the emissions of those in the lowest quintile. The present study focused on food-related GHGE 
standardized by energy intake. However, change in proportion of total food-related emissions 
contributed by each quintile in one-day versus usual distributions was more pronounced when 
looking at GHGE not standardized by energy intake. Heller et al. found that the top quintile of 
diets produced 7.9 times the food-related GHGE of the bottom quintile using one-day dietary 
intakes.45 Using usual food-related GHGE, this difference would be 3.1 times (see Paper 3 
Appendix Table A3-3 for percent of total emissions coming from each quintile). These previous 
studies used one-day intakes from NHANES 2005-2010, while the present study estimated 
usual food-related GHGE using NHANES 2015-2016. It is unlikely that the differences in one-
day and usual distributions come from a change in food-related GHGE over time, since no 
significant change was found between 2005-2006 and 2015-2016 in Paper 2. 

The present study found that diets with higher usual food-related GHGE had lower 
Healthy Eating Index scores. This finding adds to the growing body of literature with similar 
results using different types of dietary data and different measures of diet quality or health 
outcomes.46,51,52,57,128 The total HEI score difference between the lowest quintile of usual food-
related GHGE and the highest was 6.5 points. This difference is not only statistically significant, 
but it falls above the range of 5-6 points identified by Kirkpatrick et al.129 as a meaningful 
difference in diet quality between groups.  

These results differ from those in Rose et al.,69 where the finding was a difference of 2.3 
points between top and bottom quintiles of one-day food-related GHGE distribution. That the 
narrower usual food-related GHGE distribution should produce a larger HEI difference is 
unexpected. While Rose et al. used the HEI-2010 and the present study used the HEI-2015, this 
is unlikely to be the source of the differences. The evaluation study for the HEI-2015 found that 
the correlation between the two versions of the index when applied to the same sample is very 
high (r=0.96).130 The GHGE per 2000kcal of diets from the second and fourth quintiles in Rose 
et al. have emissions closer to the first and fifth quintiles of the usual distribution. The difference 
in HEI scores from Q2 to Q4 in Rose et al. was 3 points, and the highest HEI was found in Q3. 
There was a significant quadratic trend in HEI across food-related GHGE quintiles in Rose et 
al., whereas the trend was linear in the present study. The HEI scores in the present study were 
also higher overall and in all quintiles (5-9 points higher) than in Rose et al. This likely comes 
from the process of estimating usual diets, where less commonly consumed foods (legumes, 
dark green vegetables, whole grains) that might not have shown up often in the one-day diets 
had higher estimated usual consumption, resulting in higher HEI scores. See Appendix Tables 
A3-4 and A3-5 for comparisons of total HEI, HEI component score, and food group results from 
Rose et al.69 and the present study. 

 
Strengths and limitations 
 This study presents a novel application of statistical methods for estimating usual dietary 
intakes to food-related GHGE. No other study, whether in the US or elsewhere, has done this. 
(One study labeled its analyses as “usual” food-related carbon footprint, but they were simply 
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describing the use of a one-time food frequency questionnaire.131) Another strength of this work 
is that the food-related GHGE come from a comprehensive literature review of life cycle 
assessments of foods. 

Use of usual intake methods for 24-hour dietary recalls depends on certain assumptions 
about those recalls, namely that the recall is an unbiased measure of usual intake. For 
episodically consumed foods, further assumptions are that the dietary recall (1) correctly 
identifies consumption and non-consumption, and (2) is an unbiased measure for how much 
was eaten if consumption is reported. A limitation of this study is that these assumptions may 
not be accurate. Underreporting of energy has been identified in 24-hour dietary recalls, and it 
may be systematic by food type and/or by certain characteristics such as participants’ weight 
status. It is not possible to know which foods are being misreported, or to know by how much. 

However, there are currently no better methods to address this potential error in 
NHANES. NHANES does not collect biomarkers on a subset of the sample, which would then 
allow for adjustment for underreporting, and there is currently no other methodology available to 
ascertain “true” energy intake. The dietary constituents used here—carbon footprint and HEI 
scores—are both adjusted for reported energy intake, which is the recommended way to deal 
with this issue.118 

The age of the data is also a potential limitation. This could be problematic because 
either dietary habits, or the foods that make up the diets (for example, the fats people might 
choose to cook with), may have changed over time. The findings from Paper 2 showed that US 
dietary GHGE did not significantly change from 2005-2006 to 2015-2016, but some commodity 
intakes did.  It is unknown if trends in commodity intakes, like the reduction in beef intakes of 
some respondents, has continued to the present. Future work could build on these results using 
newer data.  

Finally, HEI is an excellent indicator of how well a diet corresponds with US national 
dietary guidance. It does not, however, detect micronutrient inadequacies in the diet. Future 
work could look at relationship between usual food-related GHGE and other measures of diet 
quality, such as the Total Nutrient Index.132 
 
 
In summary, the distribution of usual dietary carbon footprint differs substantially from that of 
one-day carbon footprints in the US. Nevertheless, in concordance with previous studies, diet 
quality was significantly lower in diets with higher usual food-related GHGE. Reducing usual 
dietary carbon footprints could yield benefits equivalent to 6.2% of the current US emissions 
target. 
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Table 3 - 2. Characteristics of NHANES 2015-2016 adult respondents with 1 or 2 days of 
reliable dietary recalls 

 
Full Sample 

(N=5,175) 
 n % 95% CI 
Gender    
 Female 2,632 50.6 (48.4, 52.7) 
 Male 2,543 49.4 (47.3, 51.6) 
Age    
 18-29 years 1,031 20.2 (17.4, 23.2) 
 30-49 years 1,644 33.1 (29.8, 36.6) 
 50-65 years 1,374 27.7 (25.4, 30.1) 
 66+ years 1,126 19.1 (16.1, 22.4) 
Race/Hispanic Origin    
 Non-Hispanic White 1,734 64.5 (56.0, 72.2) 
 Non-Hispanic Black 1,111 11.0 (7.2, 16.4) 
 Hispanic 1,598 14.9 (10.0, 21.7) 
 Non-Hispanic Asian 538 5.7 (3.5, 9.1) 
 Other 194 3.9 (2.8, 5.3) 
Education1    
 Less than high school 1,219 13.7 (10.6, 17.5) 
 High school grad/GED 1,204 22.2 (19.9, 24.6) 
 Some college 1,516 33.2 (30.1, 36.4) 
 College grad or higher 1,234 30.9 (25.2, 37.3) 
Income-to-Poverty Ratio    
 < 1 1,040 12.5 (9.8, 15.9) 
 1 - < 2 1,271 19.8 (17.3, 22.4) 
 2 - < 5 1,602 35.8 (31.2, 40.8) 
 >=5 755 24.3 (19.4, 29.9) 
 Missing income 507 7.6 (6.1, 9.5) 
    
 n Mean 95% CI 
Energy intake (kcal)    
 Day 1 5,175 2103 (2058, 2148) 
 Day 2 4,323 1998 (1942, 2055) 
 2-day average 4,323 2048 (2003, 2094) 
Food-related GHGE (kg CO2) per day    
 Day 1 5,175 4.61 (4.40, 4.82) 
 Day 2 4,323 4.37 (4.16, 4.59) 
 2-day average 4,323 4.46 (4.27, 4.64) 
Food-related GHGE (kg CO2) per 2000kcal    
 Day 1  5,175 4.36 (4.20, 4.52) 
 Day 2  4,323 4.49 (4.24, 4.74) 
 2-day average 4,323 4.43 (4.25, 4.60) 

1Two respondents were missing education information.  
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Figure 3 - 3. Distribution of food-related greenhouse gas emissions (kg CO2-equivalents per 
2000kcal) in NHANES 2015-2016 adults 

 
Note: The x axis is truncated at 20 kg CO2-eq/2000kcal to allow for more visual detail of the right tails 
from 10 to 15 kg CO2-eq/2000kcal. The maximum values for each distribution are as follows: 60.7 kg 
CO2-eq/2000kcal for single-day diets, 36.1 for 2-day average diets, and 13.6 for usual diets. See Paper 3 
Appendix Figure A3-1 for a version with the full right tail. 
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Table 3 - 3. US food-related GHGE distribution: percentile comparison among one-day intake, 
2-day mean intake, and usual intake 

Value 

Food-Related GHGE  
(kg CO2-eq) per 2000kcal 

1-day 
2-day 
mean 

Usual 
Rose 
et al. 
20191 

Mean 4.41 4.43 4.34 4.42 

20th percentile2 2.23 2.62 3.40 2.27 

40th percentile 2.99 3.35 3.95 2.99 

Median 3.46 3.82 4.22 -- 

60th percentile 4.16 4.29 4.50 4.12 

80th percentile 6.20 5.84 5.21 6.25 
1Rose D, Heller MC, Willits-Smith AM, Meyer RJ. Carbon footprint of self-selected US diets: Nutritional, 
demographic, and behavioral correlates. Am J Clin Nutr. 2019;109(3):526-534. This publication used 
quintiles per 1000kcal of dietary carbon footprint to categorize low- versus high-GHGE diets. The first 
quintile was designated low-GHGE, and the fifth quintile was designated high-GHGE. To make this table, 
the quintile cut points were doubled to match the per-2000kcal basis used in the present study. Rose et 
al. 2019 used dietary data from NHANES 2005-2010. 
 
2Percentiles are calculated using NHANES weights corresponding to the number of days of data and the 
number of waves used. NHANES 2015-2016 is one wave, so day 1 values used one-day weights and 2-
day and usual values used 2-day weights (adjusted by the multivariate MCMC for use with the pseudo-
people in the resulting dataset). For NHANES 2005-2010, weights were divided by 3 to account for the 
use of multiple waves. 
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Table 3 - 4. Total yearly US food-related GHGE by quintile 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Total 

Mean usual kg CO2-eq per 2000kcal  2.96 3.68 4.22 4.82 6.02 4.34 

Metric tons yearly CO2 -eq at population level 51,021,646 63,604,789 72,982,128 83,699,809 104,633,089 375,941,461 

      Percent of total emissions 13.6% 16.9% 19.4% 22.3% 27.8% 100% 

      Change if everyone ate at mean of Q3    -10,488,049 -31,345,947 -41,833,997 

      Change if everyone ate at mean of Q1  -12,673,919 -21,975,570 -32,509,893 -53,390,466 -120,549,847 
Equivalent passenger vehicles driven for a 
year 

10,993,595 13,704,875 15,725,403 18,034,734 22,545,211 81,003,818 

      Change if everyone ate at mean of Q3    -2,259,852 -6,754,087 -9,013,939 

      Change if everyone ate at mean of Q1  -2,730,840 -4,735,059 -7,004,882 -11,504,002 -25,974,783 
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Table 3 - 5. Healthy Eating Index 2015 component scores by quintile of usual food-related greenhouse gas emissions 

Component 
Max 

Points 
Overall 

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 P value for linear trend 

Mean  
(SE) 

Mean  
(SE) 

Mean  
(SE) 

Mean  
(SE) 

Mean 
(SE) 

Crude Adjusted1 

Total Fruit 5 
2.58 

(0.09) 
2.93 

(0.23) 
2.74 

(0.14) 
2.60 

(0.10) 
2.45 

(0.10) 
2.21 

(0.14) 0.126 0.034 

Whole Fruit 5 
3.02 

(0.10) 
3.29 

(0.26) 
3.15 

(0.15) 
3.03 

(0.11) 
2.90 

(0.11) 
2.71 

(0.16) 0.255 0.108 

Total Vegetables 5 
3.55 

(0.06) 
3.42 

(0.11) 
3.53 

(0.08) 
3.57 

(0.07) 
3.59 

(0.07) 
3.61 

(0.09) 
0.415 0.067 

Dark Greens & Legumes1 5 
2.99 

(0.13) 
3.07 

(0.27) 
3.03 

(0.16) 
3.00 

(0.13) 
2.96 

(0.13) 
2.91 

(0.18) 
0.757 0.830 

Whole Grains 10 
2.95 

(0.08) 
3.47 

(0.28) 
3.16 

(0.13) 
2.97 

(0.09) 
2.74 

(0.11) 
2.43 

(0.21) 
0.097 0.010 

Dairy 10 
5.43 

(0.08) 
4.92 

(0.23) 
5.27 

(0.11) 
5.47 

(0.10) 
5.62 

(0.14) 
5.85 

(0.25) 
0.148 0.085 

Total Protein Foods2 5 
4.82 

(0.02) 
4.64 

(0.03) 
4.77 

(0.02) 
4.84 

(0.02) 
4.90 

(0.02) 
4.96 

(0.01) <0.001 <0.001 

Seafood & Plant Proteins2 5 
4.06 

(0.08) 
4.17 

(0.18) 
4.10 

(0.10) 
4.06 

(0.08) 
4.02 

(0.10) 
3.95 

(0.20) 0.630 0.419 

Fatty Acid Ratio3 10 
4.72 

(0.14) 
5.41 

(0.26) 
4.96 

(0.16) 
4.69 

(0.14) 
4.45 

(0.15) 
4.07 

(0.19) 
0.007 0.001 

Refined Grains 10 
6.71 

(0.09) 
6.83 

(0.37) 
6.75 

(0.17) 
6.71 

(0.11) 
6.64 

(0.16) 
6.60 

(0.37) 
0.818 0.624 

Sodium 10 
3.70 

(0.13) 
5.26 

(0.28) 
4.26 

(0.13) 
3.66 

(0.13) 
3.08 

(0.21) 
2.24 

(0.32) 
<0.001 <0.001 

Added Sugars 10 
6.98 

(0.11) 
6.06 

(0.33) 
6.72 

(0.18) 
7.07 

(0.11) 
7.35 

(0.11) 
7.69 

(0.21) 
0.017 0.001 

Saturated Fats 10 
5.33 

(0.13) 
6.45 

(0.24) 
5.77 

(0.13) 
5.33 

(0.13) 
4.93 

(0.18) 
4.18 

(0.29) <0.001 <0.001 

Overall HEI 100 
56.83 
(0.60) 

59.91 
(1.85) 

58.22 
(1.00) 

56.98 
(0.62) 

55.62 
(0.64) 

53.40 
(1.21) 

0.105 0.010 

1Adjusting for age, gender, race/Hispanic origin, educational attainment, and income-to-poverty ratio 
2HEI-2015 scores include all legume consumption in all the possible categories: Total Vegetables, Dark Green Vegetables or Legumes, Total Protein Foods, and 
Seafood and Plant Proteins. 
3Ratio of poly- and mono-unsaturated fatty acids to saturated fatty acids. 
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Table 3 - 6. Usual food group consumption by quintile of usual food-related greenhouse gas emissions 

 Unit 
Quintile 1 

Mean 
(SE) 

Quintile 2 
Mean 
(SE) 

Quintile 3 
Mean 
(SE) 

Quintile 4 
Mean 
(SE) 

Quintile 5 
Mean 
(SE) 

P value for linear trend 

Crude Adjusted1 

Fruit cup eq/1000 kcal 
0.60 

(0.05) 
0.56 

(0.03) 
0.53 

(0.02) 
0.50 

(0.02) 
0.46 

(0.04) 
0.184 0.066 

Vegetables cup eq/1000 kcal 
0.79 

(0.03) 
0.82 

(0.02) 
0.84 

(0.02) 
0.85 

(0.03) 
0.87 

(0.03) 
0.342 0.023 

Whole grains oz eq/1000 kcal 
0.54 

(0.05) 
0.47 

(0.03) 
0.44 

(0.02) 
0.40 

(0.03) 
0.34 

(0.04) 
0.101 0.011 

Refined grains oz eq/1000 kcal 
2.75 

(0.11) 
2.79 

(0.06) 
2.81 

(0.04) 
2.84 

(0.06) 
2.85 

(0.12) 
0.813 0.621 

Protein foods: total oz eq/1000 kcal 
3.01 
(0.1) 

3.18 
(0.05) 

3.32 
(0.05) 

3.49 
(0.05) 

3.86 
(0.08) 

<0.001 <0.001 

    Meat2 oz eq/1000 kcal 
0.50 

(0.06) 
0.66 

(0.04) 
0.78 

(0.04) 
0.92 

(0.04) 
1.19 

(0.08) 
<0.001 <0.001 

    Cured meat, organ meat3 oz eq/1000 kcal 
0.32 

(0.04) 
0.38 

(0.03) 
0.41 

(0.02) 
0.45 

(0.03) 
0.51 

(0.04) 
0.020 0.010 

    Poultry oz eq/1000 kcal 
0.85 

(0.08) 
0.81 

(0.05) 
0.80 

(0.04) 
0.79 

(0.04) 
0.81 

(0.05) 
0.648 0.739 

    Seafood oz eq/1000 kcal 
0.31 

(0.04) 
0.33 

(0.02) 
0.34 

(0.03) 
0.36 

(0.04) 
0.40 

(0.05) 
0.547 0.236 

    Eggs oz eq/1000 kcal 
0.27 

(0.03) 
0.31 

(0.02) 
0.34 

(0.02) 
0.37 

(0.02) 
0.42 

(0.03) 
0.048 0.008 

    Legumes, soy, nuts, seeds oz eq/1000 kcal 
0.77 
(0.1) 

0.69 
(0.05) 

0.65 
(0.03) 

0.60 
(0.03) 

0.53 
(0.07) 

0.332 0.117 

Total dairy cup eq/1000 kcal 
0.57 

(0.04) 
0.61 

(0.02) 
0.63 

(0.01) 
0.65 

(0.02) 
0.69 

(0.03) 
0.141 0.081 

Monounsaturated fat g/1000 kcal 
13.12 
(0.28) 

13.52 
(0.18) 

13.80 
(0.16) 

14.06 
(0.16) 

14.59 
(0.26) 

0.025 <0.001 

Polyunsaturated fat g/1000 kcal 
9.02 
(0.2) 

9.03 
(0.12) 

9.05 
(0.09) 

9.07 
(0.1) 

9.14 
(0.16) 

0.998 0.690 

Saturated fat % of kcal 
10.28 
(0.23) 

10.82 
(0.12) 

11.19 
(0.1) 

11.51 
(0.13) 

12.16 
(0.24) 

<0.001 <0.001 

Added sugars % of kcal 
13.75 
(0.66) 

12.26 
(0.35) 

11.48 
(0.25) 

10.82 
(0.34) 

10.00 
(0.65) 

0.020 0.002 

1Adjusting for age, gender, race/Hispanic origin, educational attainment, and income-to-poverty ratio.  
2The Food Patterns Equivalents Database (FPED) meat group includes beef, pork, lamb, veal, and game, but excludes organ and cured meats. 
3Includes organs from any animal, and cured beef, pork, or poultry (e.g., bacon or lunch meats). 
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6. Paper 3 Appendix 
Table A3 - 1. Food and nutrient nonconsumption analysis and classification of variables as 
episodic or ubiquitous for multivariate MCMC 

Component Stratum 
Percent 

days 
with 0 

Percent 
0 on all 

days 

Classified 
episodic vs. 
not episodic 

Number 
with 2 

 non-zero 
recalls 

Fish and seafood 
Male 83.8 74.5 Episodic 103 

Female 81.5 70.5 Episodic 121 

Dark green vegetables 
Male 78.5 68 Episodic 182 

Female 72.4 59.7 Episodic 279 

Legumes 
Male 76.8 65 Episodic 187 

Female 77.6 65.6 Episodic 182 

Fruit juice 
Male 66.7 54 Episodic 375 

Female 65.1 51.5 Episodic 419 

Soy, nuts, and seeds 
Male 64.4 52.1 Episodic 436 

Female 60.3 45.7 Episodic 500 

Organ and cured meats1  
Male 51.8 36.1 Episodic 612 

Female 58.4 41.6 Episodic 486 

Poultry 
Male 56.5 38.5 Episodic 455 

Female 54.5 36.1 Episodic 529 

Meat2 
Male 48.3 29.7 Episodic 613 

Female 56.3 37.2 Episodic 471 

Whole grains 
Male 51.1 39.1 Episodic 719 

Female 49 34.2 Episodic 747 

Whole fruit 
Male 48.1 35.2 Episodic 760 

Female 40 26.8 Episodic 988 

Eggs 
Male 32.1 17.7 Episodic 1055 

Female 32 17.2 Episodic 1124 

Dairy 
Male 9.5 4.2 Not Episodic 1761 

Female 7.6 2.5 Not Episodic 1923 

Non-dark green vegetables 
Male 7.5 2.4 Not Episodic 1810 

Female 6.6 1.9 Not Episodic 1956 

Refined grains 
Male 2.6 0.5 Not Episodic 1989 

Female 3.1 1 Not Episodic 2102 

Added sugars 
Male 2.2 0.8 Not Episodic 2015 

Female 1.4 0.4 Not Episodic 2169 

Total kilocalories 
Male 0 0 Not Episodic 2096 

Female 0 0 Not Episodic 2227 

Saturated fat 
Male 0 0 Not Episodic 2094 

Female 0 0 Not Episodic 2226 

Sodium 
Male 0 0 Not Episodic 2095 

Female 0 0 Not Episodic 2227 

Food-related GHGE 
Male 0 0 Not Episodic 2096 

Female 0 0 Not Episodic 2227 

Monounsaturated fat 
Male 0 0 Not Episodic 2094 

Female 0 0 Not Episodic 2226 

Polyunsaturated fat 
Male 0 0 Not Episodic 2094 

Female 0 0 Not Episodic 2226 
1Includes organs from any animal, and cured beef, pork, or poultry (e.g., bacon or lunch meats). 
2Includes beef, pork, lamb, veal, and game, but excludes organ and cured meats.117  
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Figure A3 - 1. Distribution of food-related greenhouse gas emissions (kg CO2-equivalents per 
2000kcal) in NHANES 2015-2016 adults with full right tails 
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Table A3 - 2. US food-related GHGE distribution percentile comparison: one-day intake, 2-day 
mean intake, usual intake, and previous studies’ findings 

Value or 
percentile 

Food-Related GHGE  
(kg CO2-eq) per 2000kcal 

Food-Related GHGE  
(kg CO2-eq) per day 

1-day 
2-day 
mean 

Usual 
Rose 
et al. 
20191 

1-day 
2-day 
mean 

Usual 
Heller et 

al. 
20182 

Mean 4.41 4.43 4.34 4.42 4.61 4.46 4.61 4.72 

Minimum 0.34 0.47 1.23  0.07 0.10 0.57  

p13 1.09 1.31 2.29  0.57 0.81 1.63  

p5 1.54 1.88 2.75  1.06 1.36 2.16  

p10 1.84 2.17 3.03  1.36 1.69 2.51  

p20 2.23 2.62 3.40 2.27 1.88 2.26 3.01 1.94 

p25 2.42 2.81 3.55  2.15 2.52 3.22  

p40 2.99 3.35 3.95 2.99 2.91 3.19 3.84 2.95 

p50 3.46 3.82 4.22  3.54 3.78 4.27  

p60 4.16 4.29 4.50 4.12 4.30 4.41 4.75 4.32 

p75 5.49 5.43 4.99  5.89 5.72 5.65  

p80 6.20 5.84 5.21 6.25 6.63 6.32 6.03 6.91 

p90 8.22 7.38 5.81  9.09 8.07 7.18  

p95 9.95 8.73 6.35  11.70 9.69 8.21  

p99 14.76 13.25 7.51  18.07 13.64 10.47  

Maximum 60.71 36.05 13.55  78.78 40.05 24.49  

IQR 3.07 2.62 1.45  3.74 3.20 2.42  
1Rose D, Heller MC, Willits-Smith AM, Meyer RJ. Carbon footprint of self-selected US diets: Nutritional, demographic, 
and behavioral correlates. Am J Clin Nutr. 2019;109(3):526-534. This publication used quintiles per 1000kcal of 
dietary carbon footprint to categorize low- versus high-GHGE diets. The first quintile was designated low-GHGE, and 
the fifth quintile was designated high-GHGE. To make this table, the quintile cut points were doubled to match the 
per-2000kcal basis used in the present study. Rose et al. 2019 used dietary data from NHANES 2005-2010. 
2Heller MC, Willits-Smith A, Meyer R, Keoleian GA, Rose D. Greenhouse gas emissions and energy use associated 
with production of individual self-selected US diets. Environ Res Lett. 2018;13(4):044004. This publication used 
NHANES 2005-2010 data. 
3Percentiles are calculated using NHANES weights corresponding to the number of days of data and the number of 
waves used. NHANES 2015-2016 is one wave, so day 1 values used one-day weights and 2-day and usual values 
used 2-day weights (adjusted by the multivariate MCMC for use with the pseudopeople in the resulting dataset). For 
NHANES 2005-2010, weights were divided by 3 to account for the use of multiple waves.  
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Table A3 - 3. Percent of total US food-related GHGE from each quintile  

 NHANES 2015-2016 NHANES 2005-2010 

Quintile 
Usual food-related 

GHGE per 2000kcal 
Usual food-related 

GHGE per day 

One-day food-
related GHGE per 

2000kcal 
(Rose et al. 2019 69) 

One-day food-related 
GHGE per day 

(Heller et al. 2018 45) 

 % of total emissions % of total emissions % of total emissions % of total emissions 
1 13.6% 10.4% 8.2% 6% 

2 16.9% 14.7% 11.8% 10% 

3 19.4% 18.5% 15.8% 15% 

4 22.3% 23.2% 23.1% 23% 

5 27.8% 33.2% 41.1% 46% 
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Table A3 - 4. Comparison of relationship between HEI and quintile of food-related GHGE per 2000kcal: present study and Rose et al. 

 
Quintile of usual food-related GHGE/2000kcal 

NHANES 2015-2016  

Quintile of one-day food-related GHGE/2000kcal 
NHANES 2005-2010 

(Rose et al. 201969) 

GHGE cut point: 3.40 3.95 4.50 5.21      
 GHGE cut point: 2.27 2.99 4.12 6.25     

HEI-2015 
Component1 

Max 
Pts 

Q1 Q2 Q3 Q4 Q5 
P value for  
linear trend 

P value for 
quadratic trend 

Diff. 
high 

- low4 

HEI-2010 
Component1 

Max 
Pts 

Q1 Q2 Q3 Q4 Q5 
P val. 
Linear 
trend 

P val. 
Quad 
trend 

Diff. 
high - 
low4 

Mean2 Mean  Mean  Mean  Mean Crude Adj3 Crude Adj3 Mean  Mean  Mean  Mean  Mean Crude Crude 

Total Score 100 59.91 58.22 56.98 55.62 53.4 0.105 0.010 0.563 0.759 -6.5 Total score 100 50.25 51.22 50.46 48.22 48.00 <0.001 0.012 -2.3 

Total Fruit 5 2.93 2.74 2.6 2.45 2.21 0.126 0.034 0.736 0.917 -0.7 Total Fruit 5 2.04 2.4 2.33 2.06 1.91 0.003 <0.001 -0.1 

Whole Fruit 5 3.29 3.15 3.03 2.9 2.71 0.255 0.108 0.796 0.896 -0.6 Whole Fruit 5 2.06 2.31 2.21 2.01 1.77 <0.001 <0.001 -0.3 

Total 
Vegetables5 

5 3.42 3.53 3.57 3.59 3.61 0.415 0.067 0.365 0.556 +0.2 
Total 
Vegetables6 

5 2.8 2.94 3.08 3.07 3.18 <0.001 0.200 +0.4 

Dark 
Greens & 
Legumes5 

5 3.07 3.03 3 2.96 2.91 0.757 0.83 0.931 0.743 -0.2 
Dark Greens 
& Legumes6 

5 1.14 1.21 1.27 1.23 1.19 0.494 0.041 +0.1 

Whole 
Grains 

10 3.47 3.16 2.97 2.74 2.43 0.097 0.01 0.906 0.894 -1.0 
Whole 
Grains 

10 2.74 2.62 2.34 1.99 1.77 <0.001 0.254 -1.0 

Dairy 10 4.92 5.27 5.47 5.62 5.85 0.148 0.085 0.388 0.502 +0.9 Dairy 10 4.03 5.83 6.02 5.51 4.83 <0.001 <0.001 +0.8 

Total 
Protein 
Foods5 

5 4.64 4.77 4.84 4.9 4.96 <0.001 <0.001 0.133 0.049 +0.3 
Total Protein 
Foods6 

5 3.56 3.96 4.19 4.41 4.87 <0.001 0.255 +1.3 

Seafood & 
Plant 
Proteins5 

5 4.17 4.1 4.06 4.02 3.95 0.63 0.419 0.994 0.605 -0.2 
Seafood & 
Plant 
Proteins6 

5 2.38 2.08 1.96 1.85 1.6 <0.001 0.493 -0.8 

Fatty Acid 
Ratio 

10 5.41 4.96 4.69 4.45 4.07 0.007 0.001 0.654 0.410 -1.3 
Fatty Acid 
Ratio 

10 6.91 5.15 4.33 4.11 3.59 <0.001 <0.001 -3.3 

Refined 
Grains 

10 6.83 6.75 6.71 6.64 6.6 0.818 0.624 0.924 0.658 -0.2 
Refined 
Grains 

10 5.22 5.81 6.35 6.27 7.05 <0.001 0.537 +1.8 

Sodium 10 5.26 4.26 3.66 3.08 2.24 <0.001 <0.001 0.325 0.143 -3.0 Sodium 10 5.57 4.68 4.13 4.07 3.99 <0.001 <0.001 -1.6 

Added 
Sugars 

10 6.06 6.72 7.07 7.35 7.69 0.017 0.001 0.204 0.114 +1.6 -- -- -- -- -- -- -- -- -- -- 

Saturated 
Fats 

10 6.45 5.77 5.33 4.93 4.18 <0.001 <0.001 0.678 0.306 -2.3 -- -- -- -- -- -- -- -- -- -- 

-- -- -- -- -- -- -- -- -- -- -- -- 
Empty 
Calories7 

20 11.81 12.23 12.26 11.64 12.26 0.558 0.669 +0.4 

1For summary of differences between HEI-2015 and HEI-2010 scoring, see Appendix 2. 
2Standard errors removed for space. Available in original Table 3-5, and supplement of Rose et al. 2019. 
3Adjusted for age, gender, race/Hispanic Origin, educational attainment, and income-to-poverty ratio. 
4Bold values correspond to p<0.05 on linear trend in the crude model. 
5Includes legumes. 
6Legumes included in protein food scores until maximum score is met; remainder is included in vegetable components. 
7Calories from solid fats, added sugars, and alcohol. For alcohol, intakes ≤ 13 grams/1000kcal do not influence scoring.
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Table A3 - 5. Comparison of relationship between food group intakes and quintile of food-related GHGE per 2000kcal: present study and Rose et al. 

Quintile of usual food-related GHGE/2000kcal 
NHANES 2015-2016 

Quintile of one-day food-related GHGE/2000kcal 

NHANES 2005-2010 (Rose et al. 201969) 

GHGE cut point: 3.40 3.95 4.50 5.21      
 GHGE cut point: 2.27 2.99 4.12 6.25     

Food 
Group 

Unit 
per 

1000
kcal 

Q1 Q2 Q3 Q4 Q5 
P value for  
linear trend 

P value for 
quadratic trend 

Diff. 
high 

- low3 

Food 
Group 

Unit 
per 

1000 
kcal 

Q1 Q2 Q3 Q4 Q5 
P val. 
Linear 
trend 

P val. 
Quad 
trend 

Diff. 
high – 
low3 

Mean1 Mean  Mean  Mean  Mean Crude Adj2 Crude Adj2 Mean  Mean  Mean  Mean  Mean Crude Crude 

Fruit 
cup 
eq 

0.6 0.56 0.53 0.5 0.46 0.184 0.066 0.953 0.755 -0.1 Fruit cup eq 0.49 0.57 0.60 0.49 0.46 0.018 <0.001 -0.0 

Vegetable 
cup 
eq 

0.79 0.82 0.84 0.85 0.87 0.342 0.023 0.380 0.697 +0.1 Vegetable cup eq 0.71 0.78 0.83 0.80 0.84 <0.001 0.033 +0.1 

Whole 
grain 

oz eq 0.54 0.47 0.44 0.4 0.34 0.101 0.011 0.983 0.793 -0.2 
Whole 
grain 

oz eq 0.51 0.45 0.39 0.32 0.28 <0.001 0.608 -0.2 

Refined 
grain 

oz eq 2.75 2.79 2.81 2.84 2.85 0.813 0.621 0.916 0.648 +0.1 
Refined 
grains 

oz eq 3.09 2.82 2.61 2.65 2.35 <0.001 0.198 -0.7 

Protein 
foods: total 

oz eq 3.01 3.18 3.32 3.49 3.86 <0.001 <0.001 0.057 0.008 +0.9 
Protein 
foods: total 

oz eq 2.37 2.77 3.14 3.19 4.17 <0.001 <0.001 +1.8 

    Meat4 oz eq 0.5 0.66 0.78 0.92 1.19 <0.001 <0.001 0.118 0.015 +0.7     Meat6 oz eq 0.11 0.21 0.47 0.96 2.26 <0.001 <0.001 +2.2 

    Cured, 
organ 
meat5 

oz eq 0.32 0.38 0.41 0.45 0.51 0.020 0.010 0.790 0.920 +0.2 -- -- -- -- -- -- -- -- -- -- 

    Poultry oz eq 0.85 0.81 0.8 0.79 0.81 0.648 0.739 0.110 0.077 -0.0     Poultry oz eq 0.85 1.02 0.94 0.57 0.33 <0.001 <0.001 -0.5 

    Seafood oz eq 0.31 0.33 0.34 0.36 0.4 0.547 0.236 0.885 0.150 +0.1     Seafood oz eq 0.21 0.30 0.33 0.30 0.41 <0.001 0.741 +0.2 

    Eggs oz eq 0.27 0.31 0.34 0.37 0.42 0.048 0.008 0.804 0.489 +0.2 -- -- -- -- -- -- -- -- -- -- 

    Legume, 
nut, seed 

oz eq 0.77 0.69 0.65 0.6 0.53 0.332 0.117 0.761 0.903 -0.2 
    Legume, 

nut, seed 
oz eq 0.81 0.54 0.47 0.45 0.37 <0.001 <0.001 -0.4 

Total dairy 
cup 
eq 

0.57 0.61 0.63 0.65 0.69 0.141 0.081 0.498 0.650 +0.1 Total dairy cup eq 0.54 0.84 0.93 0.84 0.72 <0.001 <0.001 +0.2 

MUFA g 13.12 13.52 13.8 14.06 14.59 0.025 <0.001 0.606 0.247 +1.5 -- -- -- -- -- -- -- -- -- -- 

PUFA g 9.02 9.03 9.05 9.07 9.14 0.998 0.690 0.950 0.538 +0.1 -- -- -- -- -- -- -- -- -- -- 

Satatur-
ated fat 

% of 
kcal 

10.28 10.82 11.19 11.51 12.16 <0.001 <0.001 0.645 0.297 +1.9 -- -- -- -- -- -- -- -- -- -- 

Added 
sugar 

% of 
kcal 

13.75 12.26 11.48 10.82 10 0.020 0.002 0.220 0.129 -3.8 -- -- -- -- -- -- -- -- -- -- 

-- -- -- -- -- -- -- -- -- -- -- -- Oils g 12.8 10.7 9.87 9.68 8.40 <0.001 0.002 -4.4 

-- -- -- -- -- -- -- -- -- -- -- -- Solid fats g 14.6 17.6 18.5 19.1 19.0 <0.001 <0.001 +4.4 

-- -- -- -- -- -- -- -- -- -- -- -- 
Added 
sugar 

tsp eq 10.4 8.36 7.82 8.19 7.43 <0.001 <0.001 -3.0 

1Standard errors removed for space. See Table 3-6, and supplement of Rose et al. 2019. 
2Adjusted for age, gender, race/Hispanic Origin, educational attainment, income-to-poverty ratio 
3Bold values correspond to p<0.05 on linear trend in the crude model. 

4Beef, pork, lamb, veal, game 
5Cured beef, pork, or poultry; organs of any animal  
6Includes organ and cured meats 
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Conclusions and Future Directions 
This dissertation used self-selected dietary data from a nationally representative US 

sample to examine food-related greenhouse gas emissions, diet quality, and potential efforts to 
reduce environmental impacts of food in the US. The three studies here reinforce themes in the 
existing sustainable nutrition literature: food choice is a powerful mechanism to reduce 
greenhouse gas emissions, and diets with a lower carbon footprint can be more healthful.  

Substantial environmental benefits are possible from dietary changes, especially those 
that reduce beef consumption and replace it with poultry or plant-based protein foods, and diets 
with these characteristics tend to have higher diet quality. However, US diets are not moving in 
the desired direction with respect to diet quality or climate impacts. More efforts, such as 
nutrition education programs, social marketing, and inclusion of sustainability in the Dietary 
Guidelines for Americans, are needed to achieve health and environment co-benefits. 

These studies were only possible because of the foundation of cross-disciplinary work in 
the development of dataFIELD and its application to NHANES dietary data. Continued 
collaboration across multiple disciplines (nutrition, life cycle assessment, agriculture, economics, 
etc.) and stakeholders (researchers, governments, etc.) is critical in efforts to improve human 
health and combat climate change. 
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Dissertation Appendix 

1. Detailed methods for the creation of dataFIELD 
Food-related GHGE will be calculated using a previously described database, 

dataFIELD. DataFIELD was created from an exhaustive literature review of life cycle 
assessment (LCA) studies published from 2005 to 2016. The database includes a variety of 
information about the compiled studies, including environmental impact values (GHGE or 
cumulative energy demand), boundary conditions of the study, location of the study, and 
specific species or production information. 

Next, the available LCA data for food production was mapped to a list of 354 commodity 
foods in the Food Commodities Intake Database. The FCID was created by the EPA to assess 
pesticide exposure. It was chosen here because it allows for foods reported in national dietary 
studies to be broken down into commodity constituents. For example, a cheeseburger would 
have a commodity “recipe” including beef, wheat, milk, tomato, lettuce, etc. This is important 
because LCA studies are most often focused on production of commodities like wheat, 
soybeans, or beef. 

Not all of the 354 commodities* had perfect matches from the LCA literature compiled 
into dataFIELD. In these cases, a proxy value was assigned using botanically similar 
commodities. For example, an average of available citrus fruit values was used as a proxy for 
uncommon citrus fruits in the FCID list. While many foods in the FCID are commodities, some 
entries include some processing, such as flours, oils, and fruit juices. These were matched to 
primary LCA data where possible. Where not possible, appropriate conversion factors were 
applied. 

In addition, there were some LCA studies for foods that were not represented in the 
FCID. Since FCID was created to assess pesticide exposure, its construction did not always 
provide commodity recipes that would best describe the environmental impact of a food. For 
example, the “recipe” for beer was simply a small amount of hops. Recipes for diet soda were 
empty. When possible, to better account for these impacts, LCA study values were directly 
connected to NHANES foods: tofu, cheese, yogurt, beer, liquor, and soft drinks (check this list).  

Recipes for cocktails did not include any liquor component, but only mixers such as 
juice. A separate recipe file was created for these drinks based on the ingredient breakdowns in 
the National Nutrient Database for Dietary Studies (check name), also known as the Standard 
Reference (version 28). The recipes included both commodity items from the FCID list (such as 
orange juice or sugar) and directly connected impacts (such as liquor and soft drinks). 

There were still a few foods or ingredients that did not have associated GHGE even after 
assigning LCA values to FCID commodity recipes, and assigning LCA values directly to certain 
foods, and applying new cocktail recipes. For example, artificial sweeteners, supplements, and 
salt are not assessed in the FCID. Nor were there LCA studies of these items collected in 
dataFIELD. So in essence these parts of foods were assessed a zero impact, although they are 
not in truth without emissions or energy use in their production. 

 
* If you see a different number of commodities listed somewhere else: we often use the number 332 in 
descriptions of the database, because some commodities are component breakdowns of the same item: 
e.g., “Milk, fat,” “Milk, nonfat solids,” and “Milk, water.” The smaller number reflects these aggregations. 
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The above process was used to create a “bridge file,” bridging commodities and LCA 
study values with NHANES as-consumed foods, via the FCID recipe database. Each FCID 
recipe represented the commodity inputs needed to create 100g of an as-eaten food. 
Commodity GHGE and CED were added to the recipes and impacts were calculated for the 
amount of commodity used in each recipe. Then the impacts for a 100g recipe were summed, to 
get the total GHGE or CED of the food.  

It is important that the environmental impact per kg of food have the correct weight 
basis. For example, if the GHGE of one kg walnuts in the shell is __, then the GHGE of one kg 
of walnuts without the shell must come from a larger amount of walnuts to begin with, and must 
necessarily be assigned a larger impact value. The FCID commodity list accounts for primary 
food waste—things such as deboning meat, shelling nuts, and peeling citrus fruit. When the 
source LCA studies did not give these conversions, three USDA resources were used to find 
appropriate conversion factors.: the Food Intakes Converted to Retail Commodities Databases 
(FICRCD), Loss-Adjusted Food Availability (LAFA) data, and the National Nutrient Database for 
Standard Reference (SR) version 28. 

However, so called primary waste is not the only type of food waste. Losses of edible 
food occur along the chain of production, transportation, retail, and consumption. For example, 
some portion of foods carried in a grocery store will spoil before they are sold. In addition, 
consumers may purchase some items that they do not use before they spoil, or choose to throw 
them out. Consumers may also cook a meal and not eat everything on their plate, throwing 
away the leftovers.  

To estimate the additional impact of wasted food, data from the 2010 USDA Loss-
Adjusted Food Availability (LAFA) dataset were used to assign edible loss values to each FCID 
commodity. LAFA breaks down losses into primary, retail, and consumer levels. However, LAFA 
contains fewer foods than FCID. When possible, commodity items were matched directly to a 
LAFA entry (e.g. oranges to oranges). If this was not possible, the FCID commodity was 
matched to a similar LAFA entry (e.g. nectarines to peaches), or to an average of entries. 
Averages were of two types: those already in LAFA, and new ones created as needed. LAFA 
has summary rows in all of its sections (fruits, meats, and so on). So the chickpea commodity 
was matched to the LAFA entry “Beans, dry, other.” However, these summary rows did not 
always provide breakdowns of losses between retail and consumer levels. When necessary, we 
created our own averages. For example, several grain commodities (such as amaranth, 
buckwheat, and millet) were given loss values based on an average of all relevant grain entries 
from LAFA (wheat flour, rye flour, barley products, oat products, and corn meal).  

Since primary waste was already accounted for within the FCID commodities’ weight 
basis, we used only the latter two categories. LAFA is constructed such that the retail and 
consumer losses are stacked or cumulative. In the case of an orange, the retail loss is given as 
11.6% and the consumer loss as 36%. However, what this means is this means is that an 
estimated 36% of the remaining 100 – 11.6 = 88.4% is lost. If you were to add together 11.6 and 
36, you would get an inflated estimate of the edible losses of oranges. In order to accurate apply 
the loss factors, we used an adjusted consumer loss factor that can be summed together with 
retail losses without duplication. It was calculated as (100 – retail loss %) * (consumer loss % / 
100). In the above case of an orange, that yields a consumer edible loss of 31.8%.  
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This bridge file was merged with dietary intake data from the 2005-2010 National Health 
and Nutrition Examination Survey (NHANES). NHANES collects dietary intake in the form of two 
24-hour dietary recalls. The first is collected in person in the Mobile Examination Center. The 
second is conducted in a phone follow up (check this). Diet recalls are collected using the 
Automated Multiple Pass Method (AMPM) developed by UDSA. The process includes asking 
the respondent about all foods and beverages consumed in the last day, using several rounds, 
specific prompts to help remember forgotten items, and props to show portion sizes so the 
respondent can accurately describe amounts consumed. 

Dietary recall data are then subject to review; recalls may be deemed unreliable if recall 
was incomplete, or the interviewer noted certain things about the session (such as the 
respondent having memory problems). The final resulting dataset with reliable diet recalls is a 
source of rich detail for investigators. In it we have all foods and beverages the person 
consumed through the day, along with specific amounts and other metadata like what meal they 
called it and what day of the week the recall represents. 

It is to this detailed list of foods and drinks that the environmental impact data are 
connected, via the above-described bridge file. GHGE and CED were calculated for each item, 
in the amount that the respondent reported consuming it. This includes calculating impacts for 
the items directly connected to LCA study values. Finally, the impacts were summed to 
calculate GHGE and CED values for respondents’ full recall day. 

 
Strengths and limitations of dataFIELD 

 
This database is the first of its kind and the first to be built to link commodity life cycle 

assessment data to US dietary intake data. It is founded on a thorough search of all available 
literature at the time. 

The food-related GHGE linked in this work only account for emissions up to the farm 
gate (for most foods, and up to the processor gate for a few). There are several reasons for this. 
First of all, this is the boundary condition most often set in life cycle assessment (LCA) studies. 
Second, this was the boundary that made the most sense given that diet recipes were 
constructed from commodity foods with minimal or no processing. Lastly, NHANES 24-hour 
dietary recalls do not include information that could allow for addition of other food production 
stages (e.g. transportation). The recalls do not include details such as where the food item was 
produced, how it was packaged, how long the item was refrigerated at home, and other relevant 
factors. Previous findings have estimated that packaging and processing could increase impacts 
about 27% from cradle-to-farm gate impacts. While this is a limitation of the findings, the 
majority of GHGE related to food happen during production (up to the farm gate). An important 
strength of using these data is that they come from an up-to-date literature search that includes 
all possible LCA studies of food. 

However, there are limitations. While the FCID commodity recipes allow for NHANES 
foods to be broken down into commodity components, the original design of the database was 
to assess pesticide exposure. Therefore, the recipes do not account for some things that we 
may care about in terms of environmental impacts (for example, alcohol). We did our best to 
account for these issues. In the case of alcohol, we created our own recipes that included 
alcohol as an ingredient.  
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 The FCID recipe construction sometimes treats water idiosyncratically. The 
recipes only specify water amounts if that water is added by the consumer, not if it is added by a 
manufacturer. For example, homemade soup recipes contain water, but canned soup recipes 
do not. Another example is soft drinks. Since the water is added by the manufacturer, the only 
FCID ingredient is sugar. For soft drinks and beer, we directly linked these NHANES foods with 
LCA results, rather than using the FCID recipes, therefore addressing the lack of water in the 
recipes. However, for other foods like the soup example, this was not possible. The result is that 
for some foods, the calculated impact (GHGE, CED) is a small underestimate due to the 
missing water. 

 Some items are missing altogether from FCID: salt, alternative sweeteners, 
yeast, and many spices or herbs. The first three were considered to not be a concern for 
pesticide residue. For spices and herbs, there are several herbs in the list, and a commodity for 
“Spices, other.” While there may be environmental impacts for all these items, they are either 
given for “free” in our database, or in the case of spices, their impact is estimated by a 
aggregate of the small number of available LCA studies. [mention other things like dyes?] 

 In short, while the FCID is the best tool to bridge between as-eaten NHANES 
foods and commodity-level environmental impacts, it was not designed specifically for this work, 
and this should be remembered in interpreting results. 
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Figure A - 1. Steps in using dataFIELD1 to calculate environmental impacts of NHANES 2005-2010 diets 

 

1dataFIELD is referred to in the figure as ENVI (“environmental impacts”). 
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2. HEI-2010 and HEI-2015 scoring comparison 
From the National Cancer Institute: https://epi.grants.cancer.gov/hei/comparing.html. 
 

 
Dietary 

component 
Max 

Points 

Standard for maximum score Standard for zero score 

2010 2015 2010 2015 

Adequacy 
 
(higher score 
= greater 
intake) 
 

Total Fruit 5 ≥ 0.8 c-eq/1000 kcal No fruit 
Whole Fruit 5 ≥ 0.4 c-eq/1000 kcal No whole fruit 
Total Vegetables 5 ≥ 1.1 c-eq/1000 kcal No vegetables 
Dark Greens & 
Legumes1 

5 ≥ 0.2 c-eq/1000 kcal 
No dark-green veggies, beans, or 

peas 
Whole Grains 10 ≥ 1.5 oz-eq/1000 kcal No whole grains 
Dairy 10 ≥ 1.3 c-eq/1000 kcal No dairy 
Total Protein 
Foods1 

5 ≥ 2.5 oz-eq/1000 kcal No protein foods 

Seafood & Plant 
Proteins1 

5 ≥ 0.8 c-eq/1000 kcal No seafood or plant proteins 

Fatty Acid Ratio2 10 (PUFAs+MUFAs)/SFAs ≥ 2.5 (PUFAs+MUFAs)/SFAs ≤ 1.2 

Moderation 
(higher score 
= lower 
intake) 

Refined Grains 10 ≤ 1.8 oz-eq/1000 kcal ≥ 4.3 oz-eq/1000 kcal 
Sodium 10 ≤ 1.1 g/1000 kcal ≥ 2.0 g/1000 kcal 
Empty Calories3 20 ≤ 19% of energy  ≥ 50% of energy  
Added Sugars 10  ≤6.5% of energy  ≥26% of energy 
Saturated Fats 10  ≤8% of energy  ≥16% of energy 

12010 scores include legumes as protein foods until the maximum score is met. Any legumes left over after this are 
counted as vegetables. HEI-2015 scores add include all legume consumption in all the possible categories: Total 
Vegetables, Dark Green Vegetables or Legumes, Total Protein Foods, and Seafood and Plant Proteins  
2Ratio of poly- and mono-unsaturated fatty acids to saturated fatty acids. 
3Calories from solid fats, added sugars, and alcohol 

 


