


Abstract

Density functional theory (DFT) has become the most widely used computational approach for solving

problems in chemistry, materials science, and condensed matter physics because of its balanced accuracy and

efficiency. In principle, DFT is exact for the ground state energy and electron density, while its exchange-

correlation (XC) component must be approximated. There has been extensive research on improving

approximations to the XC energy and the resulting approximations are roughly categorized into a hierarchy

of increasing complexity and accuracy. Most of these approximations are based on mathematical constraints

satisfaction philosophy while others follow empirical pathway of fitting functionals to certain data set of

interest. More recently, machine learning (ML) has emerged out as an active areas of research for functional

design. This PhD dissertation focuses on two aspects of DFT. One is to test recently developed density

functionals for systems that are traditionally difficult for DFT, while the other is to develop density functionals

using machine learning (ML) techniques in combination with the exact constraint considerations.

For the first two projects, the properties of two difficult systems from DFT’s perspective, are studied.

Until recently, DFT had been failing to capture the properties of these systems correctly. With Strongly

constrained and appropriately normed SCAN functional’s success on them, accessing the performances of

other density functional approximations was essential to observe how different functionals behaved on these

systems. In this regard, for the first project, we study the crystal, electronic, and magnetic structures

of high temperature superconductor, lanthanum copper oxide La2−xSrxCuO4 (LSCO) for x = 0.0 and

x = 0.25 , employing 13 density functional approximations, representing the local, semi-local, and hybrid

exchange-correlation approximations within the Perdew–Schmidt hierarchy. We see that the meta-generalized

gradient approximation (meta-GGA) class of functionals is found to perform well in capturing the key

properties of LSCO, a prototypical high-temperature cuprate superconductor. In contrast, the local-spin-

density approximation, GGA, and the hybrid density functional fail to capture the metal-insulator transition

under doping.

The second project is an extension to the first work where we study the electronic properties of 3d transition-

metal monoxides (MnO, FeO, CoO, and NiO) employing 11 density functional approximations. Similar to

cuprate, we observe that the meta-GGA class of functionals again perform better than other semilocal density

functionals (including LSDA and GGA) by opening a band gap without an on-site inter-electronic interaction

U.

For the final project, ML techniques are used to design new density functional. Since SCAN is found to

exhibit greater accuracy for a variety of systems, the new ML functional is built upon SCAN. In addition,



the philosophy of exact constraints and appropriate norms compatibility with ML for functional design

are explored. ML techniques have received growing attention as an alternative strategy for developing

general-purpose density functional approximations, augmenting the historically successful approach of human

designed functionals derived to obey mathematical constraints known for the exact exchange-correlation

functional. More recently efforts have been made to reconcile the two techniques, integrating machine learning

and exact-constraint satisfaction. We continue this integrated approach, designing a deep neural network

that exploits the exact constraint and appropriate norm philosophy to deorbitalize the strongly constrained

and appropriately normed SCAN functional. The deep neural network is trained to replicate the SCAN

functional from only electron density and local derivative information, avoiding use of the orbital dependent

kinetic energy density. The performance and transferability of the machine learned functional are shown for

molecular and periodic systems.
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Introduction

Scientific work in today’s world has predominantly been dominated by computers especially when it comes

to analytically unsolved problems. The field of quantum chemistry is one of such fields where calculations

are heavily dependent on computer simulations where energies, charge distribution, dipole, multipoles,

and many other instances are calculated. Early works on dealing with the complex and analytically not

accessible many-body Schrödinger equation were performed by Hartree and Fock, who derived a set of self-

consistent, wave-function based equations that allowed an iterative calculation of energy- and other desired

parameters[19, 20]. It was a good attempt but was flawed in terms of high computation time and cost when

large systems were investigated because many body wave-functions had 3N degrees of freedom. Foundation

to lowering the computation cost was laid by Hohenberg and Kohn in 1964 when they showed that the

electron density, a variable only dependent on 3 spatial variables rather than 3N, in principle, contained all

the information about the ground state properties of a system[21]. Kohn and Sham in 1965[22], came up with

a set of self-consistent, iteratively solvable equations which was finally able to solve the complex many-body

systems. It is based on the fact that electron density is much less complex quantity than wave-function and

computation time for DFT calculations are drastically reduced. At present, DFT is widely used in variety

of quantum mechanical problems from quantum chemistry, to material science, and to condensed matter

physics. One of the most important quantities of DFT is the exchange correlation density functional that

arises from the Kohn-Sham approach and needs to be approximated.

The thesis begins by establishing necessary theoretical background of DFT in Chapter 1 which is extended

to Chapter 2 where construction, performance and limitations of various meta-GGAs are reported.

Chapter 3 focuses on analyzing the performance of various density functional approximations on high

temperature superconductors (cuprate). Here the crystal, electronic, and magnetic properties of cuprate

are studied. Chapter 4 is an extension to Chapter 3 where where we study the electronic properties of 3d

transition-metal monoxides (MnO, FeO, CoO, and NiO) employing 11 density functional approximations.

Finally, Chapter 5 focuses on exploring the compatibility of philosophy of exact constraints and appropriate

norms with Machine learning (ML) for functional design. Necessary theoretical background about ML is

established before diving into constructing ML density functionals.
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Chapter 1

Theoretical foundation

1.1 The Schrödinger equation

The behavior of atoms and electrons is completely described by non-relativistic Schrödinger equation:[23]

ĤΨ(r1, r2, ...., rN) = EΨ(r1, r2, ......rN) (1.1)

If we consider the interactions within a system of atoms then the Hamiltonian takes the following form:

Ĥ = −1

2

N∑
i

∇2
i −

1

2mA

M∑
A

∇2
A −

N∑
i

M∑
A

ZA

riA
+

N∑
i

N∑
j>i

1

rij
+

M∑
i

M∑
B>A

ZAZB

RAB
(1.2)

where A,B represent the nuclei and i,j the electrons. This equation is complicated and can be simplified

using the Born-Oppenheimer approximation[24]. The nuclei are assumed to move very slowly compared to

electrons as they are relatively heavier. Thus this approximation allows the nuclear kinetic energy to be

neglected and the Hamiltonian will only have dependence on the position of the nuclei. The wave-function

in time independent schrodinger equation (TISE) can now to be separated into the electronic and nuclear

components.

Ψ({ri}; {RA})Φ({RA}) (1.3)

The Hamiltonian now will only be solved for a set of electrons around a set of nuclei and has following form

Ĥelec = −1

2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA

riA
+

N∑
i

N∑
j>i

1

rij
(1.4)
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We are concerned in solving this TISE with the Hamiltonian expressed above but the solution is difficult

and is only possible in simpler system like hydrogen atom. Solving larger system requires approximate

computation methods, such as DFT.

1.2 Hartree-Fock approximation

One of the ways of approximately solving the TISE is using variational principle which best approximates

the ground state wave-function that produces the lowest energy when acted upon the above Hamiltonian.

Mathematically,

Eground = ⟨ψ0|Ĥ|ψ0⟩ ≤ ⟨ψ|Ĥ|ψ⟩ (1.5)

In equation 1.4, the first two terms correspond to sum of single-particle operators while the electron-electron

interaction term is a pair interaction. It is a many-body problem but it uses an approach of single-particle

picture, i.e. we assume that the electrons occupy different orbitals and they make up the wave-function.

Electron is assumed to feel the presence of other electron indirectly situated at other orbitals. One way of

building the wave-function is to form a direct product of the orbitals as follows

Φ(x1,x2.....xN) = ϕ1(x1)ϕ2(x2)...ϕN(xN) (1.6)

This is called Hartree-product. This approach however has a shortcomings as it fails to satisfy antisymmetry,

which is very essential while dealing with fermions. One way of tackling this issue was to use the concept of

Slater Determinant wave-function[25]. So instead of searching over all wave-function, the variational principle

can only be used in the Slater-Determinant wave-function. Generalizing this concept for N electron where

orbitals satisfy orthonormality condition, we obtain[26]

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) ... ϕN (x1)

ϕ1(x2) ϕ2(x2) ... ϕN (x2)

: : :

: : :

ϕ1(xN ) ϕ2(xN ) ... ϕN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.7)

Using a Slater determinant is similar to saying that an electron independently moves of all the others, except

that it feels the Coulomb repulsion due to the mean-field position of all the other electrons, and experiences

an exchange interaction due the necessary asymmetry of the wave-function.
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1.3 Hohenberg-Kohn DFT

One way of solving the time independent schrödinger equation (TISE) using Slater determinant is explained

in the section above. The other approach of solving TISE is based on the concept given by Hohenberg and

Kohn. The idea is to replace the complicated many body wave-function with much simpler density. There

are two Hohenberg-Kohn(HK) theorems.

Theorem 1: For a system of interacting electrons in an external potential, the ground state electron

density uniquely determines the external potential.

The theorem is proven by the reductio ad absurdum method. Consider two Hamiltonians Ĥ and Ĥ ′ differ

in their external potentials by more than a trivial additive constant but correspond to the same electronic

ground state n(r) . Also consider their respective ground state wavefunctions are Ψ and Ψ
′
with the ground

state energies are E0 and E
′

0 . Applying the Rayleigh-Ritz variational principle for H with wavefunction Ψ
′
,

we obtain

E0 < ⟨Ψ
′
|Ĥ|Ψ

′
⟩ = ⟨Ψ

′
|Ĥ ′|Ψ

′
⟩+ ⟨Ψ

′
|Ĥ − Ĥ ′|Ψ

′
⟩ (1.8)

E0 < E
′

0 +

∫
d3rn(r)(υ(r)− υ

′
(r)) (1.9)

Similarly for Ψ, we get

E0 < E
′

0 −
∫
d3rn(r)(υ(r)− υ

′
(r)) (1.10)

Adding 1.9 and 1.10, we obtain

E0 + E
′

0 < E
′

0 + E0, (1.11)

which contradicts the assumption made proving that the external potentials that correspond to the same

ground state density can not differ by more than an additive constant. Thus the ground state density uniquely

determines the external potential. Hence we can now write energy as a functional of density as,

E[n] = T [n] + Vee[n] +

∫
d3rn(r)υ(r) (1.12)

Theorem 2: For a non-negative trial density n′(r) with
∫
d3rn(r) = N, E[n′] ≥ E0, E0 is the ground

state energy.

From theorem 1, we know that n(r) determine its Hamiltonian Ĥ and hence the wavefunction Ψ
′
. Using

Ψ
′
as a trial wavefunction for Hamiltonian Ĥ ′ the energy functional is defined as,

⟨Ψ
′
|Ĥ|Ψ

′
⟩ = E[n′] = T [n] + Vee[n] +

∫
d3rn(r)υ(r) (1.13)
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But from Rayleigh-Ritz variational principle, we get,

⟨Ψ
′
|Ĥ|Ψ

′
⟩ ≥ E0 (1.14)

Hence

E[n′] ≥ E0 (1.15)

These two theorems form the basis of modern density functional theory however, theorem 1 does not hold if the

ground state wavefunction is degenerate. Also, the proof of theorem 2 is only true for V-representable density.

A V-representable density is the one that comes from the wavefunction of the Schrödinger with external

potential υ(r) which are not V-representable. This limitation was lifted by using Levy-Lieb constrained

search method.

1.4 Levy-Lieb constrained search method

Levy[27] and Lieb [28] introduced the constrained search method that eliminates the issues of HK theorems,

in which the density is N-representable. A density is said to be N-representable if following conditions hold

[29]

n(r) ≥ 0 (1.16)

∫
d3rn(r) = N (1.17)

Assume Ψn is any normalized antisymmetric wavefunction that gives the N-representable; it may not

necessarily be the ground state wavefunction of Hamiltonian Ĥ. If Ψg is the ground state wavefunction, from

Rayleigh-Ritz principle,

⟨Ψn|Ĥ|Ψn⟩ ≥ ⟨Ψg|Ĥ|Ψg⟩, (1.18)

The right hand side expression is the Hohenberg-Kohn universal function.

QHK [n] = ⟨Ψg|T̂ + V̂ee|Ψg⟩ (1.19)

Thus it is the ground state wave function that minimizes the expectation value of T̂ + V̂ee. We can define

a functional for any N -representable density nr.

QHK [n] = Ψ
min−−−→ n⟨Ψg|T̂ + V̂ee|Ψg⟩ (1.20)
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Here the minimization is over all the normalized antisymmetric wavefunctions that give the density n(r) and

we choose one that minimizes ⟨T̂ + V̂ee⟩. This definition does not require the knowledge of external potential

υ(r) , also, the degeneracy of the ground state is not an issue as the wavefunction is constrained to yield the

given density. Hence,

Q[n] +

∫
d3rn(r)υ(r) ≥ E0 (1.21)

The ground state energy can be obtained by minimizing the left-hand side of Eq. 1.21 over all N-

representable densities n(r)

E0 =
min
n [Q[n] +

∫
d3rn(r)υ(r)] (1.22)

Here the minimization is over 3-dimensional density, which is computationally much easier to do than the

minimization over 3N-dimensional wavefunction.

1.5 Kohn-Sham DFT

The energy corresponding to the Hamiltonian due to electronic and set of nuclei is

Eel =

∫
Ψ∗(

Nel∑
i=1

−1

2
∇2

i )Ψdr+

∫
Ψ∗(

Nel∑
i=1

Nel∑
j=i+1

1

|rj − ri|
)Ψdr+

∫
Ψ∗(

Nel∑
i=1

Vext(ri)Ψdr (1.23)

As seen earlier, HK theorem states that the energy of the system can be obtained entirely by system’s density.

In the above expression, the last two terms can be expressed in terms of energy density but not the kinetic

energy term. The kinetic energy has complicated many body nature and hence cannot be written in terms of

density for the interacting system. This problem was made simpler by Kohn and Sham when they introduced

the concept of auxiliary system of N non-interacting system of electrons which was described by a single

determinant wave-function in N “orbitals” ϕi[22]. In this case, the kinetic energy and the electron density are

obtained from the orbitals as

TS [n] = −1

2

Nel∑
i=1

⟨ϕi|∇2|ϕi⟩ (1.24)

n(r) =

Nel∑
i=1

|ϕi|2 (1.25)

Now, with auxiliary non-interacting electrons that has the same ground state density n(r) , the energy

functional is given as

E[n] = TS[n] + Vext[n] + VH[n] + Exc[n] (1.26)
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where

Vext[n] =

∫
V̂extn(r)dr (1.27)

VH[n] =
1

2

∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 (1.28)

represent corresponding external potential and classical Coulomb interaction or Hartree energy respectively.

So the Hamiltonian of this fictitious system can be decoupled into one-electron Hamiltonian as

Ĥ =

Nel∑
i

1

2
∇2

i + υs(r) (1.29)

where υs(r) is some reference potential and the wavefunction is represented by the single Slater determinant

of spin-orbitals

Φ =
1

N !
det[ϕ1, ϕ2..ϕN ] (1.30)

where the spin-orbitals are the solution of one-electron Schrödinger equation (or KS equation)

(−1

2
∇2 + υs(r))ϕi = ϵiϕi (1.31)

ϕi is called Kohn-Sham orbital and the eigenvalue ϵi the Kohn-Sham orbital energy. The beauty of KS

approach is that it explicitly separates the non-interacting kinetic energy and the long-range Hartree energy,

which describes the classical electrostatic repulsion between electrons, from the remaining exchange-correlation

energy that must be approximated, by the unknown functional Exc. Because the exchange-correlation (XC)

energy is usually only a small fraction of the ground-state total energy, impressive accuracy can be obtained

with relatively simple approximate functionals and without the large computational costs associated with the

many-electron wave function.

1.6 Exchange Correlation Functionals

1.6.1 Local Density Approximation(LDA)

The exchange-correlation energy term EXC is entirely quantum effect which is not included in Coulomb

repulsion and single particle kinetic energy. Its exact form is unknown. The simplest approach used is called

Local Density Approximation (LDA).

ELDA
xc [n] =

∫
drn(r)ϵhomxc (n(r)) (1.32)
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In this approximation, the ϵxc(n) is the function of local value of density and can be broken into the exchange

and correlation part as

ϵxc(n) = ϵx(n) + ϵc(n) (1.33)

The exchange part can be calculated exactly for the uniform electron gas but the exact value of functional

form of correlation term is unknown and it has been simulated using quantum Monte Carlo calculations[30].

LDA has proven to be useful approximation in many occasions such as studying properties as structure,

phase stability, vibrational frequency. On the other hand, it failed miserably while predicting binding energy

(overestimating by 20-30%), and in many other cases. Hence there was a need for better functionals.

1.6.2 The Generalised Gradient Approximation(GGA)

The extension to local density approximation was done by including non-locality via gradient of density.

So the functional was now dependent not only on the density but also the gradient of it.

EGGA
xc =

∫
drϵxc(n, |∇n|) (1.34)

It was found that having just local uniform density was not the ideal situation while dealing with electron

densities of many materials, and gradient term was added. This inclusion was gradient expansion approxima-

tion(GEA) which resulted into a number of unphysical properties as it does not normalise to –1, it is not

negative definite and it contains oscillations at large |r2 − r1|[31]. The GGA approximation satisfies all these

properties and hence was found to significantly improve description of binding energy of molecules. These are

often called “semi-local” functionals because of the presence of the ∇n(r) term. Some of the widely used

semi-local functionals are PBE[32], PW91[33].

1.6.3 meta-Generalised Gradient Approximation (meta-GGA)

meta-GGAs are recently constructed functionals that depend explicitly on the semi-local information in

the Laplacian of the spin density or of the local kinetic energy density. They are expressed as

Exc =

∫
n(r)ϵxc(n, |∇n|,∇2n, τ)dr (1.35)

where the kinetic energy density τ is obtained as

τ =
1

2

∑
i

|∇ϕi|2 (1.36)

With τ inclusion, the meta-GGA functional becomes more flexible by allowing the adherence of a greater
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number of exact constraints compared to the GGA. Furthermore, by defining a dimensionless variable

α = τ−τw

τunif , where τ
unif = (3/10)(3π2)2/3n5/3 is the kinetic energy density of the uniform electron gas and

τw = |∇n|2/8n is the von Weizsäcker kinetic energy density, meta-GGA functionals can recognize slowly

varying densities, single-orbital systems, and non-covalent bonds between two closed shells [12, 34].

The empirical approach, is an alternate route to non-empirical way of constructing XC functional. This

approach skips any mathematical properties of the exact functional (exact constraints), which include limits,

scaling relations, equalities, and bounds and use experimental data sets, which are often of greatest interest

to the user, for fitting purpose. These functionals may be good enough to interpolate between systems with

similar properties but studies have shown [35, 36] that the non-empirical approach only can result in reliable

prediction over the space of possible molecules, materials and properties. Minissota functional (M06-L) [37]

is one of the most widely used empirical functionals.

It is worth mentioning here a relatively nascent approach, the machine–learning (ML) techniques within

semi–emperical density functional approximation (DFA) design. The pioneering work on implementing ML

techniques in DFT was conducted by Burke and coworkers when they used a ML approximation to construct

an orbital-free non-interacting kinetic energy functional Ts[n] for spinless fermion systems [38, 39]. Brockherde

et. al. used ML to learn the Hohenberg-Kohn (HK) map between electron density and external potential

to give a mechanism that bypasses solving the KS equations [40]. Several other works have focused on the

XC potential problem [41, 42, 43, 44]. Other work included enforcing exact constraint in functional design

using ML technique when Hollingsworth et. al. demonstrated that enforcing coordinate scaling constraints

on kernel ridge regression models for Hook’s atom model systems improved ML functional performance [45].

The ML techniques to self-consistently determine a SCAN-like meta-GGA by satisfying some of the exact

constraints of SCAN is also achieved recently [46]. This approach is novel in its used of self-consistency

calculation to determine the functional performance and it also demenstrated that the optimal meta-GGA

did not deviate from SCAN. More recently, Nagai and his co-workers [47] introduced a method to analytically

impose asymptotic constraints on ML models and constructed XC functional that is found to exhibit higher

accuracy than existing standard functionals. This novel approach is soon becoming a bridge to incorporate

both empirical and non-empirical approaches for the functional design.

1.6.4 Hybrid Functional

It is evident that even for a single-electron system, the exchange-correlation energy and Hartree energy do

not cancel out each other in LDA and GGA functional and these functionals give rise to self-interaction error

(SIE)[48] which results in delocalization especially for d and f states. In contrast, the Hartree-Fock (HF)[49]
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theory accurately describes the single atom system and hence does not have issues regarding self-interaction

error. The only shortcoming of the HF method is that it is applicable only to atomic systems where no

correlation effect is included. The correlation effect is an integral part of molecular systems and also solids. As

exchange-correlation functions such as LDA, GGA do capture these effects, a combination of these functional

with Hartree-Fock is the major theoretical background in designing hybrid functionals[50]. Doing this allowed

the HF theory to exactly describe non-interacting systems while the local exchange-correlation functionals

captured accurately the description of the fully interacting systems. There are a number of different hybrid

functionals used in the quantum computations. Out of them, HSE functional[51] is used for the calculation.

The HSE functional can be expressed as

EHSE
xc = aESR

x (µ) + (1− a)EPBE,SR
x (µ) + EPBE,LR

x (µ) + EPBE
c (1.37)

where a is the mixing parameter whose value is 1/4[52]. In the above expression, the first three terms

correspond to the exchange energy while the last term gives the correlation energy. The mixing parameter is

of huge importance here because varying its value gives us different results. The 0.25 value gives us hybrid

functional while changing value to 0, results into PBE functional.
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Chapter 2

The state-of-art research in meta-GGA,

its construction and performance

2.1 Non-emperical mGGAs

2.1.1 Perdew-Kurth-Zupan-Blaha (PKZB) functional

The PKZB functional is constructed following the same philosophy as the PBE GGA functional of Perdew,

Burke and Ernzerhof [32]. PBE is constructed by preserving and extending the correct formal properties of

LSD. PKZB satisfies all the constraints satisfied by PBE. The constraints satisfied by the exchange energy

are as follows:

1. The spin scaling relation for exchange energy

Ex[n↑, n↓] =
1

2
Ex[2n↑, 0] +

1

2
Ex[2n↓, 0] (2.1)

2. Uniform density scaling

Ex[nλ] = λEx[n] (2.2)

where nλ(r) = λ3n(λr)

3. Lieb-Oxford bound

Ex[n↑, n↓] ≥ Exc[n↑, n↓] ≥ −1.679

∫
d3r n4/3 (2.3)
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The exchange energy for the spin unpolarized density is given by

EMGGA
x [n] =

∫
d3r nϵunifx (n)Fx(n,∇n, τ) (2.4)

where ϵunifx (n) = − 3
4π (3π

2n)1/3. One of the constraints that PBE fails to satisfy which is recovered by PKZB

functional is the fourth order gradient expansion coefficient of Svendsen and von Barth [53] given as

Fx = 1 +
10

81
p+

146

2025
q2 − 73

405
qp+Dp2 +O(∇6) (2.5)

where Fx is the enhancement factor.

p = |∇n|2/[4(3π2)2/3n8/3] (2.6)

is the square of the reduced density gradient, and

q = ∇2n/[4(3π2)2/3n5/3] (2.7)

is the reduced Laplacian density. The first two gradients of equation (2.5) are exactly known the third has

uncertainty and fourth one is unknown. A new variable q̃ is defined that which reduces to q at a slowly

varying limit

q̃ = 3τ/[2(3π2)2/3n5/3]− 9/20− p/12 (2.8)

The PKZB meta-GGA exact form is now defined as,

Fx(p, q̃) = 1 + κ− κ

1 + x/κ
(2.9)

and

x =
10

81
p+

146

2025
q̃2 − 73

405
q̃p+ [D +

1

κ
(10/81)2]p2 (2.10)

where κ = 0.804 ensured that the Lieb-Oxford bound of equation (2.3) is satisfied for all possible densities.

The value of D is estimated to be 0.113 which was equal to 0 in PBE functional. This value of D gives Fx ≥ 1

which is what is expected on the slowly varying density for the surface exchange energy. The reason PBE

fails to correctly capture the gradient expansion to second order for exchange energy is because it value for

p in the enhancement factor is larger than the value 10/81 by a factor of 1.778. PKZB also recovers exact

linear response function γx(k) up to fourth order in k/2kF , where kF is the Fermi wave vector [54].
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The correlation energy of PKZB is again built on the basis of PBE correlation energy, preserving all the

constraints satisfied by it. The constraints for the correlation energy functional are not simple and transparent

as that for the exchange functional. Some of the well-known constraints are:

1. Second order gradient expansion in slow varying limit (t→ 0)

EGGA
c [n] =

∫
nϵunifc (n)(1 + βGEt

2)d3 (2.11)

where GEA second order expansion coefficient βGE = 0.066725[55]

2. The rapid varying limit (t→ ∞)

EGGA
c [n↑, n↓] = 0 (2.12)

This constraint is required by the sum rule of correlation hole. In rapid varying limit, the only way to

satisfy sum rule is to make the GEA correlation hole vanish.

3. High density limit (rs → ∞)

EGGA
c [n↑, n↓] = −C (2.13)

where C is a positive constant.

One of the advantages of meta-GGA functionals is that they can be self-interaction free for the spin

polarized one electron density. The correlation energy is given by

EMGGA
c [n↑, n↓] =

∫
d3r


nϵGGA

c (n↑, n↓,∇n↑,∇n↓)
[
1 + C

(∑
σ τw

σ∑
σ τσ

)]
−(1 + C)

∑
σ

(
τw
σ

τσ

)2

nσϵ
GGA
c (nσ, 0,∇nσ, 0)

}
(2.14)

where ϵGGA
c = ϵunifc +H is the PBE GGA correlation energy per electron [32].

Also,

τWσ =
1

8

|∇nσ|
nσ

(2.15)

is the Weizsäcker kinetic energy density which is exact for a single electron system. For any value of C, 2.14

vanishes for one-electron density. The value of C = 0.53 gives surface correlation energy for jellium close to

that of PBE. Having correlation self interaction free achieves uniform scaling behavior for all one-electron

densities. In fact, it seems to work for many electron systems too. One of the shortcomings of PKZB

functional is the fitted parameter which is very less in comparison to other empirical functionals.

PKZB functional performance [54] on the atomization energies of 20 small molecules is found to be remarkably
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well. It seems to reduces the mean absolute error to 3 kcal/mol, more than a factor of 2 better than the PBE

GGA and a factor of 10 better than LSD. The PBE GGA overbinding problem of multiply bonded molecules

is reduced largely, without degrading the quality of the results for singly bonded molecules.

As discussed earlier, the PKZB functional has one empirical parameter in the exchange part which has

resulted in success and failure. Some of the failures include an accurate strong-interaction limit for the

correlation energy of a spin-unpolarized nonuniform density, atomization energies prediction, poor equilibrium

bond lengths, poor description of hydrogen-bonded cases. There was a need to have a meta-GGA that

corrected these issues and importantly it was non-empirical which resulted into the construction of TPSS

functional.

2.1.2 Tao-Perdew-Staroverov-Scuseria (TPSS)

TPSS construction is based on PKZB. The main idea in the construction of the TPSS exchange energy is

that the exchange potential must be finite at the nucleus for the one- and two-electron densities, the condition

satisfied in LSD but not in GGA. TPSS also respects the constraints that are already satisfied by PKZB.

The exchange energy is again obtained from the same equation given in (2.4) but with the following exchange

enhancement factor

Fx(p, z) = 1 + κ− κ

1 + x(p, z)/κ
(2.16)

where κ = 0.804 and the function x(p,z) is given as

x(p, z) =

{[
10

81
+ c

z2

(1 + z2)2

]
p+

146

2025
q̃2b −

73

405
q̃b

√
1

2
(
3

5
z)2 +

1

2
p2

+
1

κ
(
10

81
)2p2 + 2

√
e
10

81
(
3

5
z)2 + eµp3

}
/(1 +

√
ep)2

(2.17)

where the values of c = 1.59096 and e = 1.537 . Also

q̃b =
9

20

(α− 1)

[1 + bα(α− 1)]1/2
+

2p

3
(2.18)

is an inhomogeneity parameter constructed from p and z, that reduces to reduced Laplacian q in the slowly

varying limit. The parameter α is defined as

α = (τ − τW )/τunif (2.19)
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z is defined as

z =
τW

τ
=

5p

(5p+ 3α)
(2.20)

p is defined in equation (2.6), τW is defined in equation (2.15). Because of the relations obtained from

equations (2.6),(2.15) and (2.20), the TPSS enhancement factor can be written as the function of s and

α, i.e. Fx(s, α). The important property of TPPS functional is the presence of α and the two different

conditions that it gives rise to. In UEG, τ = τunif and τW → 0 meaning α = 1 and z =0. Similarly for one-or

two-electron densities, τ = τW , so we have α = 0 and z = 1. This was the first time when a meta-GGA level

functional was able to distinguish the two different electron density in space. The two different densities have

same reduced density so the GGA level functional could not distinguish them and hence treated them as the

same density[56]. The convergence of the potential at the nucleus for one- or two electron densities in TPSS

is achieved by

dFx(p = s2, z = 1)

ds

∣∣∣∣∣
s=0.376

= 0 (2.21)

where s is the two-electron exponential density at nucleus. The values of c and e as discussed earlier are

chosen so that equation (2.21) gives the correct exact ground state density for the hydrogen atom. The value

of b=0.40 in equation is chosen so that it preserves the property fo Fx to be monotonically increasing function

of s even for large α.

The correlation energy for TPSS is constructed by making some refinements to PKZB correlation functional

which can be expressed as

EMGGA
c [n↑, n↓] =

∫
nd3r ϵrevPKZB

c [1 + d ϵPKZB
c (τW /τ)3] (2.22)

where d = 2.8 hartree−1, ϵrevPKZB
c is the revised PKZB correlational functional which is expressed as

ϵrevPKZB
c =

{
ϵPBE
c (n↑, n↓,∇n↑,∇n↓)[1 + C(ζ, ξ)(τW /τ)2]

−[1 + C(ζ, ξ)](τW /τ)2
∑
σ

nσ
n
ϵ̃c

} (2.23)

Here ϵPBE
c is the main ingredient that already has corrrect second-order gradient expansion, scales properly

under uniform density scaling to high- and low-density (weak- and strong-interaction) limits, is nonpositive

and vanishes as p → ∞. To ensure the exact constraint Ec ≤ 0 for all possible densities, the value of ϵ̃c is

chose to be as

ϵ̃c = max[ϵPBE
c (nσ, 0,∇nσ, 0)] (2.24)
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Also

C(ζ, ξ) =
C(0, ξ)

{1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2}4
(2.25)

where

C(ζ, 0) = 0.53 + 0.87ζ2 + 0.50ζ4 + 2.26ζ6 (2.26)

The performance for TPSS meta-GGA for atoms, molecules, solid and jellium surfaces are studied. For

atoms, the performance is very accurate. The results show that it corrects the overestimated value of bond

lengths given by PKZB in molecules, hydrogen-bonded complexes and ionic solids. TPSS shows a controlled

interpolation between slowly varying and one- or two- electron limits as a result reduces the large LSD

atomization energy and increases the very small LSD jellium surface energies [56].

2.1.3 revised TPSS (revTPSS) functional

Due to the high performance of TPSS, it was considered to be the workhorse semilocal functional for

both molecules bonded to or reacting on solid surfaces. Unfortunately, due to its lattice constant error, TPSS

was not widely accepted. Since lattice constant is considered very sensitive to many solid state properties like

magnetism, ferroelectricity, bulk modulus and many more, it was seen that PBEsol [57], a modified PBE

GGA for solids was accepted more than TPSS. PBEsol did predict good lattice constant and surface energies

but the atomization energy was predicted poorly.

In 2009, Perdew et. al. [58] made some modification to the original TPSS exchange-correlation functional

and named it revised TPSS or revTPSS. The modification was done in order to acquire good result for both

geometry and energetics. The revTPSS preserves all the correct constraints of TPSS but yields lattice constant

as good as the ones obtained from GGA’s for solids. The semilocal exchange energy for spin-unpolarized

density is given as

Esl
x [n] =

∫
d3rnϵunifx (n)Fx(p, z) (2.27)

where ϵunifx (n) and Fx(p, z) terms are already explained above in the article. For the exchange part, specially

for α ≈ 1, meta-GGA Fx is modified to be more like PBSEsol GGA. A term in x is changed from cz2p/(a+z2)2

to cz3p/(a+ z2)2 which shifts this term from 6th to 8th order in gradient expansion. Fx remains unchanged

for α = 0 and large s for all α but its value is reduced at smaller s for α = 1. The value of µ is changed to

PBEsol value of 10/81 where c and e are adjusted accordingly to get values of c = 2.35204 and e =2.1677.

The correlation energy for revTPSS is obtained from TPSS with β given as

β(rs) = 0.066725(1 + 0.1rs)/(1 + 0.1778rs) (2.28)
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For rs → ∞, the above equation helps to cancel the second-order gradient terms for exchange and correlation

energy. In addition to using equation (2.28), C(ζ, 0) in the correlation term in TPSS is replaced by

C(ζ, 0) = 0.59 + 0.9269ζ2 + 0.62225ζ4 + 2.1540ζ6 (2.29)

With these corrections to exchange and correlation part, revTPSS performed about as well as the PBEsol.

The lattice constant is highly accurate with MAE of 0.036. The atomization energy results show that revTPSS

values are good and better on average that TPSS values. The MAE dropped from 5.9 from TPSS to 3.1

kcal/mol for revTPSS for G3 pure hydrocarbons. The MAE is obtained to be 1.0 kcal/mol slightly worse

than TPSS error of 0.9 kcal/mol for hydrogen bonds.

2.1.4 regularized TPSS (regTPSS)

The TPSS and revTPSS functionals use both α and z to construct exchange enhancement factor Fx

and use Eq. 2.20 to eliminate z dependence. However, this equation experiences unphysical order of limits

anomaly:

lim
p→0

lim
α→0

z = 1, lim
α→0

lim
p→0

z = 0 (2.30)

The two different ways about how both alpha and z approach to 0 results in two different values of Fx, (

limp→0Fx(p, α = 0) = 1.1470 and limα→0Fx(p = 0, α) = 1.0143). This order of limits problem has been

identified as the source of several failures in describing materials properties. Ruzsinszky et.al [59] proposed a

solution to remove the order of limits by considering a weighted difference of the revTPSS Fx at α = 0 and

ordinary α values,

F regTPSS
x (s, α) = F regTPSS

x (s, α) + f(α)exp(−cs2) × [F regTPSS
x (s, α = 0) − F regTPSS

x (s, α)] (2.31)

where c = 3 and d = 1.475. In Eq. (2.31), the term in square bracket which includes the order of limits

problem is subtracted from the exchange enhancement factor. The function f(α) = (1− α)3/(1 + (dα)2)3/2

is used to recover the exact fourth-order gradient expansion of revTPSS. The new exchange enhancement

factor Fx is now the function of α instead of z.

For the correlation part, a modified PBE correlation functional is used that takes a density-dependent

form as shown by Eq. (2.28). The drawback however of using this correlation functional is the failure of

one-electron self-correlation freedom as seen in the revTPSS correlation functional.
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2.1.5 Made Simple (MS) functional

In 2012, Sun et al. [60] proposed a breakthrough concept in developing the meta-GGAs by discovering

that α, defined in equation (2.19) is able to distinguish three different types of chemical interactions in solids,

i.e., single covalent bond (α = 0), metallic bond (α ≈ 1) and van der Waals interaction (α→ ∞). Based on

this theory, a new meta-GGA, called meta-GGA made simple or MGGA-MS was proposed. In contrast to

previously obtained meta-GGAs like TPSS, revTPSS, the importance of α in a meta-GGA enhancement

factor is emphasized. The α dependence of Fx(s, α) here is completely disetangled from its s dependence.

Similar to revTPSS, MGGA-MS adopts the interpolation form between α =1 and α = 0. The exchange

enhancement factor that entangles α and p is expressed as

F int
x (p, α) = F 1

x (p) + f(α)[F 0
x (p)− F 1

x (p)] (2.32)

where

F 1
x (p) = F int

x (p, α = 1) = 1 + κ− κ/(1 + µGEp/κ) (2.33)

and

F 0
x (p) = F int

x (p, α = 0) = 1 + κ− κ/(1 + (µGEp+ c)/κ) (2.34)

F int
x (p, α) interpolates between F 1

x (p) and F
0
x (p) through

f(α) =
(1− α2)3

1 + α3 + α6
(2.35)

f(α) is chose because it recovers second order gradient expansion, gives good jellium surface energies and

Hartree–Fock exchange energies of 12 non-interacting electron hydrogenic anion with nuclear charge Z =

1. In the case of slowly varying density, the second term equation (2.32) is negligible. F int
x (p, α) reduces to

F 1
x (p) in order to recover second order gradient expansion. Here µGE = 10/81, c = 0.28771 and κ = 0.29. In

comparison to revTPSS, the equation (2.32) is very simple and does not exhibit any order-of-limits problem,

but still recovers revTPSS behavior in regions of small s around α ≈ 1. When the exchange functional of MS0

is combined with the correlation of PBE but with the parameters use in revTPSS discussed in the earlier

section, it respects a tight Lieb-Oxford bound with Fxc ≤ 2.137, with standard value being 2.273. One of

the important observations for made simple meta-GGA is that the monotonically decreasing dependence

of enhancement factor α is qualitatively equivalent to monotonically increasing s-dependence which is well

shown by considering 10-electron hydrogenic anion to 12-electron one and on the correlation between changes.

It is seen that varying the α-dependence in the exchange functional, results in the formation of the intershell

region between the outermost core and the valence of an atom within a solid is associated with an increase of
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α and a decrease of s. This suggests that monotonically decreasing α-dependence of an enhancement factor is

qualitatively equivalent to monotonically increasing s-dependence for the intershell regions.

The MS functional performance on lattice constants for SL20 solids, jellium surface energies, atomization

energies of AE6 molecules, exchange energies of rare gas atoms and dissociation energies for W6 water clusters

are studied. The atomization energies results are very accurate with MAE of 5.5kcal/mol much better than

PBE. Compared to robust revTPSS, the MS functional gives better result for SL20 solids, comparable result

for the jellium surface exchange-correlation energies but extremely bad for the exchange part alone, and

worse for the G3 molecules. However, the MS functional predicts the most accurate dissociation energies of

the W6 water clusters, suggesting a good description for the hydrogen bond.

In 2013, Sun et al. [61] introduced other MGGA made simple functions called MGGA-MS1 and MGGA-

MS2 based upon one and two parameters respectively fitted empirically. The enhancement factor for these

functionals remain the same just as used in MS0, as described by equation (2.32) but to tune the α dependence,

a new parameter b is added in the denominator of the original f(α) as,

f(α) =
(1− α2)3

1 + α3 + bα6
(2.36)

For a slowly varying density where α ≈ 1, the numerator of f(α) controls the mechanism and the second

order gradient expansion is recovered with the first principle coefficient µGE = 10/81. The parameter c is

determined for each κ to reproduce the exchange energy of the hydrogen atom, where α = 0. Since bα6

is negligible for 0 < α <1 and the numerator of f(α) modulates the behavior of F int(p, α) for α ≈ 1, b

mainly controls the behavior for α > 1. Similarly, κ mainly controls the behavior of F int(p, α) for large

s. For MGGA-MS1, the value of parameters b =1 and κ = 0.404 results exact exchange energy value of

12-noninteracting-electron hydrogenic anion is obtained to be -1.8652 Ha. For MS2, the values are b = 4

and κ = 0.504 with exact exchange energy value -1.8558 Ha. This value is comparable to the exact value of

-1.8596 Ha which suggests that formation of hydrogenic ion is preserved by equation (2.36).

2.1.6 Meta-GGA made very simple (MVS)

In 2014, for the first time, a strongly and optimally tightened bound on the exchange energy was obtained

for one- and two-electron densities, and conjectured for all densities, resulting in the construction of MVS

functional [62]. While LSDA is known to satisfy this constraint, all GGAs violet it strongly for good

energetic predictions [63]. The meta-GGA enhancement factor is dependent upon two variables s and α. For

two-electron systems, where α = 0, it has been shown from reference [63] that an optimal lower bound on the
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exchange energy will be satisfied for all possible densities if and only if

Fx(s, α = 0) ≤ 1.174, (2.37)

and it is conjectured that

Fx(s, α) ≤ Fx(s, α = 0) ≤ 1.174 (2.38)

This tight bound given by equation 2.38 is not satisfied at GGA level because the enhancement factor would

be too small for large values of s compared with famous PBE functional [32]. At meta-GGA level, however,

monotonically decreasing dependence of enhancement factor α compensates for the monotonically increasing

s-dependence, demonstrating a bound FMGGA−MS ≤ 1.29, close to 1.174 [60]. To include the tight bound,

the enhancement factor is obtained as

Fx(s, α) =
h1x + fx(α)[h

0
x − h1x]

(1 + bs4)1/8
(2.39)

where

h0x = 1 + k0 (2.40)

where k0 = 0.174 for the tight lower bound (α = 0) and

h1x = 1 (2.41)

for the Uniform electron gas (UEG) limit (α = 1). fx(α) is constructed as

fx(α) =
(1− α)

[(1 + e1α2)2 + c1α4]1/4
(2.42)

which interpolates between α = 0 and α = 1 and extrapolates to a constant as α→ ∞. Here e1 = -1.6665

and c1 = 0.7438 are chosen. b = 0.0233 is obtained fitting Fx(s, α = 0) to exchange energy of hydrogen atom.

The exchange part is then combined with the modified PBE GGA correlation, the one used as the correlation

part of the meta-GGA MS functional.

The MVS functional is found to show better performance for the exchange energies of rare-gas atoms

compared to other functional, including PBE, PBEsol, B88[64]. The exchange enhancement factor plot for

MVS functional shows Fx smaller than 1.174 and a very small variation of s for 0 < s < 2. The energetically

important regions for atoms is s ≤ 1 for α ≈ 0, where MVS shows more exchange enhancement than any

GGA, which explains why MVS achieves accurate exchange energies for atoms. For molecules and solid, MVS
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matches PBE for the heat of formation and matches PBEsol for bond lengths and lattice constants. MVS

performance is much better than PBE for the barrier heights and the weak interactions, with a remarkable

mean absolute error (MAE) of 0.8 kcal/mol for the S22 set. For G3 heats of formation, MVS is not especially

impressive compared with other meta-GGAs, like meta-GGA MS, TPSS.

2.1.7 Strongly constrained and appropriately normed semilocal density func-

tional (SCAN)

In 2015, Sun et al. [62] constructed the first meta-GGA functional that satisfies all the possible known

exact constraints; 17 to be specific where about 6 for exchange, 6 for correlation and 5 for the combination of

both. The functional also satisfies appropriate norms for which it is extremely accurate ie, for the energies of

rare gas atoms and nonbonded interactions. The norms contain the information about 0 < α <∞ where the

nonbonded interaction contain information for α≫1.The constraints satisfied are listed:

For exchange:

1. Exchange energy has to be negative.

2. Spin scaling relation given in equation 2.1 [65]

3. Uniform density scaling as in equation 2.2 [66]

4. Fourth-order gradient expansion [53]

5. Non-uniform density scaling [67, 68]

6. Tight bound for two-electron densities [63, 69]

For correlation:

1. Correlation energy has to be non-positive

2. Second order gradient expansion [68]

3. Uniform density scaling to high density limit [66]

4. Uniform density scaling to high density limit [66]

5. Zero correlation energy for any one-electron spin-polarized density

6. Non-uniform density scaling [67, 68]
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For Exchange and correlation energy combined:

1. Size extensivity

2. General Lieb-Oxford bound [69, 32]

3. Weak dependence upon relative spin polarization in the low-density limit [70, 56]

4. Static linear response of the uniform electron gas[71]

5. Lieb-Oxford bound for two-electron densities [69]

The semilocal exchange-correlation functional is expressed as

Exc[n↑, n↓] =

∫
d3rnϵunifx (n)Fxc(rs, ζ, s, α) (2.43)

Here α is assumed same for the spin-unpolarized case. Also ϵunifx is the exchange energy per electron of a

uniform electron gas mentioned before. The exchange energy part for the spin unpolarized case is given by,

Ex[n] =

∫
d3rnϵunifx (n)Fx(s, α) (2.44)

Fx(s, α) is the exchange enhancement factor. s is given by

s = |∇n|/[2(3π2)1/3n4/3] (2.45)

is the dimensionless density gradient. The exchange enhancement factor is interpolated between α = 0 and

α ≈ 1 and extrapolates to α→ 0 as

F(s, α) = h1x(s, α) + fx(α)[h
0
x − h1x(s, α)]gx(s) (2.46)

where fx(α) is defined as

fx(α) = exp[−c1xα/(1− α)]θ(1− α)− dx exp[c2x/(1− α)]θ(α− 1) (2.47)

Here h1x(s, α) term helps to obtain fourth-order gradient expansion for slowly varying densities with small s

and α ≈ 1 and it is defined as,

h1x(s, α) = 1 + κ1 − κ1/(1 + x/κ1) (2.48)

with x defined as
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x = µAKs
2[1 + (b4s

2/µAK)exp(−|b4|s2/µAK)]

+
{
b1s

2 + b2(1− α)exp[−b3(1− α)2]
}2

(2.49)

The parameters have values like µAK = 10/81, b2 = (5913/405000)1/2, b1 = (511/13500)/(2b2), b3 = 0.5 and

b4 = µ2
AK/κ1 − 1606/18225− b21.

For α = 0, strongly tightened bound Fx ≤ 1.174 is imposed. In this case the enhancement factor reduced

to Fx(s, α = 0) = h0xgx(s) with h
0
x =1.174. Also

gx(s) = 1− exp[−a1s−1/2] (2.50)

Here a1 =4.9479. To satisfy the constraint that exchange energy per particle has to be negative under

nonuniform coordinate scaling, as s→ ∞, Fx vanishes as s−1/2. θ in Eq. 2.47 is step function of x, c1x = 0.667,

c2x = 0.8, dx = 1.24 and the value of κ1 is obtained from the appropriate norm. Because of the constrained

imposed it is seen that SCAN exchange enhancement factor Fx follows the Lieb-Oxford bound of Fx ≤ 1.174

not only for α =0 and instead for all values of α, something not achieved by previous functionals.

For the correlation part, the correlation energy is obtained exactly same as the exchange part as the

interpolation between α = 0 and α ≈ 1 and extrapolation to α→ ∞. The correlation energy is given as,

Ec[n↑, n↓] =

∫
d3r nϵc(rs, ζ, s, α) (2.51)

where ϵc has the form

ϵc = ϵ1c + fc(α)(ϵ
0
c − ϵ1c) (2.52)

where fc(α) is defined as

fc(α) = exp[−c1cα/(1− α)]θ(1− α)− dc exp[c2c/(1− α)]θ(α− 1) (2.53)

The PBE form is revised for the two-dimensional limit under nonuniform scaling to get

ϵ1c = ϵLSDA1
c +H1 (2.54)

with

H1 = γϕ3ln[1 + w1(1− g(At)2))] (2.55)
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t = (3π2/16)1/3s/(ϕr1/2s ) (2.56)

w1 = exp[−ϵLSDA1
c /(γϕ3)]− 1 (2.57)

A = β(rs)/(γw1) (2.58)

and

g(At2) = 1/(1 + 4At2)1/4 (2.59)

ϵLSDA1
c is the correlation energy of the UEG. Here γ has the value of γ = 0.031091.

β(rs) = 0.066725(1 + 0.1rs)/(1 + 0.1778rs) (2.60)

ϕ = [(1 + ζ)2/3 + (1− ζ)2/3]/2 (2.61)

ϵ0c is designed similar to ϵ1c as

ϵ0c = (ϵLDA0
c +H0)Gc(ζ) (2.62)

where

ϵLDA0
c = −b1c/(1 + b2cr

1/2
s + b3crs (2.63)

Gc(ζ) =
{
1− 2.3631[dx(ζ)− 1]

}
(1− ζ12) (2.64)

dx(ζ) = [(1 + ζ)4/3 + (1− ζ)4/3]/2 (2.65)

The term Gc(ζ) helps correlation energy vanish for one-electron density to satisfy a constraint for atomization

energy which was previously satisfied by TPSS and revTPSS. Just as H1 was built, H0 is given by

H0 = b1cln[1 + w0(1− g∞(ζ = 0, s))] (2.66)

with

w0 = exp[−ϵLDA0
c /b1c]− 1 (2.67)

g∞(ζ, s) = lim
rs→∞

g(At2) = 1/(1 + 4χ∞s
2)1/4 (2.68)

χ∞(ζ) = (3π2/16)2/3β(rs → ∞)ϕ/[cx(ζ)− f0] (2.69)

Since,

cx(ζ) = −(3/4π)(9π/4)1/3dx(ζ) (2.70)
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with f0 = -0.9. So at ζ = 0, χ(ζ = 0) = 0.128026 The values of the remaining parameters are b1c = 0.0285764,

b2c = 0.0889 and b3c = 0.125541, γx1 = -0.2259,γx2 = 0.2551 and γc1 = 0.03888.

In addition to these, GE4 is used to recover a nearly exact linear response for uniform density that satisfies

general Lieb-Oxford bound as Fxc ≤ 2.215.

The performance of SCAN for the exchange, correlation and combined exchange-correlation energies for

rare-gas atoms shows that the error in Ex is found to be less than 0.5% and error in Exc less than 0.1% shows

that rare gas atoms are approximately normed. The performance for the chemical barrier height for the

set of BH76 shows that MAE is 7.7kcal/mol close to the performance of M06L [37], which is heavily fitted

functional. For the performance of weak interaction energies, the set of S22[72] exhibits SCAN performs

better than other functionals and competes with M06L again. This improved performance is considered due

to appropriate norms.

Despite these broad success, SCAN, however, is well-known to yield overly large saturation magnetization

in elemental metals (e.g., Fe and Ni) which reflects an over-sensitivity of the iso-orbital indicator (α) used in

SCAN to distinguish between various chemical bonding environments[73]. The iso-orbital indicator α for two

spin-channel are seen to be magnified by SCAN’s interpolation function fx(α) for these transition metals,

especially for α < 1 region resulting into an enhanced magnetization values [73].

2.1.8 TM

So far in this review we have concerned ourselves with meta-GGAs derived as energy densities that satisfy

exact constraints. This is not the only way in which one may go about constructing new functionals, and

derivation around an exchange hole model is a further way. The exchange hole,

ex(ř) =
1

2

∫
d3u

ρx(ř, ř + ǔ)

u
, (2.71)

represents the interaction between an electron at ř and the resulting reduction in probability of finding an

electron at point ř + ǔ as a result of the tendency of electrons to repel each other.

One way of using the exchange hole in functional construction is through Taylor expansion models

[64, 74, 75], another is by density matrix expansion under a general coordinate transformation. Tao and

Mo use the latter approach derive the TM functional following the latter approach [76], a non-empirical

meta-GGA exchange functional.

Much like other meta-GGA functionals, TM exists as an interpolation between two limiting cases,

Fx = w(z)FDME
x + [1− w(z)]F SC

x , (2.72)
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where w(z) = (z2 + 3z3)/(1 + z3)2, with z the familiar iso-orbital indicator of Eq. 2.20. This interpolation is

made between a functional derived from the density matrix expansion, FDME
x , and the fourth order slowly

varying density gradient expansion for exchange, FSC
x .

For correlation, Tao and Mo identify three constraints as important: one electron self-interaction freedom,

the correct slowly varying density limit, and near-exactness and spin independence for the low-density limit.

Following these conditions they take the TPSS correlation functional for use with TM exchange, but simplify

Eq. 2.25 to,

C(ζ, χ) =
0.1ζ2 + 0.32ζ4{

1 + χ2
[
(1 + ζ)−4/3 + (1− ζ)−4/3

]
/2
}4 . (2.73)

The resulting functional is accurate for many systems[76, 77], though it’s accuracy for some problems is

severely limited by an order-of-limits problem in its design, as will be discussed shortly.

A revision of the functional was proposed by Jana, Sharma, and Samal, termed “revTM” [78] which

aims to improve functional performance by adjusting the slowly varying exchange term, F SC
x . They report

improved cohesive energies, metal surface energies, lattice constants, and bulk moduli compared to TM. The

revision does not resolve the order-of-limits problem however, so performance for transition pressures likely

remains limited.

Like TPSS it suffers an order-of-limits problem that harms its accuracy for transition pressure predictions

[79]. Like TPSS, this is a result of the use of z in the interpolation function in combination with the p

dependence of the interpolated energy densities.

Revised forms have been proposed that adjust the correlation functional following the philosophy of

revTPSS. The OOL problem is not a necessary limitation of TM[79] however, and [80] propose a “regTM”

that avoids it.

They do this by taking a regularised iso-orbital indicator,

z′ =
1

1 +
(
3
5

) [
α

p+f(α,p)

] , (2.74)

where,

f(α, p) =
(1− α)3

(1 + (dα)2)3/2
e−cp, (2.75)

with d = 1.475 and c = 3.0. This regularisation was first suggested in Ref. [59] for the revTPSS functional.

While the regTM functional thereby avoids the order-of-limits problem, the “regTM” correlation constructed

alongside it fails to be one-electron self-correlation free. Despite this limitation it maintains the parent

functional’s good overall performance and significantly improves transition pressure predictions.
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2.1.9 TASK

The TASK functional was proposed by Aschebrock and Kümmel in Ref. [81] as a meta-GGA that places

emphasis on minimising self-interaction error without including non-local ingredients beyond τ . This is

achieved by focusing on the potential response and derivative discontinuity features, rather than being

exclusively concerned with energy densities. At the time of writing only a TASK exchange functional has

been published, which is recommended for use with PW92 local density approximation type correlation [68],

until an appropriate correlation functional has been determined.

The TASK exchange functional is derived by first noting that a derivative discontinuity of appropriate

size and sign can be determined by enforcing,

∂ex
∂τ

> 0, (2.76)

by construction. Following the iso-orbital indicator driven interpolation ansatz this leads one to the design

constraint of,

∂Fx

∂α
< 0, (2.77)

with a more negative slope corresponding to a larger band gap. This is in agreement with the tight two

electron bound constraint of Fx(s, α) ≤ 1.174 and results in a tendency to localise electrons.

Following this analysis TASK adopts the α driven interpolation framework of SCAN, but redesigns the

interpolation function to use Chebyshev rational functions. As TASK seeks to maximise the derivative with

respect to α the interpolation derivatives do not disappear at α→ 1 as they do for SCAN, and so the slowly

varying density exchange, h1x, is modified to maintain the correct slowly varying density gradient expansion

up to fourth order. The correlation functional tailored for use with TASK exchange, however, has not been

constructed yet and hence PW92-LDA [68] correlation is used along with the exchange.

TASK shows much improved band gaps for most systems when compared against SCAN and the band

gaps values are closer to experiment for systems ranging from semiconductors to minerals like MgO and

LiCl. The chemical performance is however found to be less impressive, probably as a result of its relatively

primitive correlation functional.

2.1.10 Regularized and Restored SCAN

The SCAN functional, otherwise successful, has a well reported numerical problems [82, 83] that prevent

its application to especially sensitive or large scale problems. In addition to this the SCAN XC potential

diverges in single orbital systems complicating the generation of pseudopotentials for hydrogen and helium
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Figure 2.1: Comparison of the SCAN and rSCAN interpolation functions.

atoms [84, 85]. Some modifications to SCAN were presented by Mezei, Csonka, and Kállay that improve the

accuracy of atomisation energies for multi-reference systems but does not address the numerical sensitivities.

In response to this Bartok and Yates proposed a regularisation of SCAN termed “rSCAN”. This made

two substitutions.

The first regularising the α iso-orbital indicator,

α→ α′ =
α̃3

α̃2 + αr
(2.78)

where,

α̃ =
τ − τW
τU + τr

, (2.79)

where αr = 10−3 and τr = 10−4 are regularisation constants. This controls the single orbital diverge at the

expense of breaking the uniform density limit and coordinate scaling constraints obeyed by SCAN.

The second regularisation is to change the interpolation from the piecewise exponential function of SCAN

which introduce a kink around α = 1, into a smooth polynomial interpolation, see Figure 2.1.

While these are successful in resolving the numerical problems, they break four of the exact constraints

obeyed by SCAN. As a result the functional’s accuracy is less transferable and is degraded for atomisation

energies [86, 85].

In following work, Furness, Kaplan, Ning, Perdew, and Sun modify rSCAN to restore adherence to the

exact constraints while keeping the functional’s useful regularisations[79]. The resulting r2SCAN functional

obeys all the exact constraints SCAN does excepting the fourth order slowly varying density gradient

expansion. This restoration of the exact constraints to the well regularised rSCAN form gives a functional
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that maintains the accuracy of SCAN while avoiding the parent’s numerical issues [79, 87].

2.1.11 De-orbitalised versions

Out of the two ingredients in meta-genralized approximations, τ(r) is more commonly used and is well

understood as recognizing different chemical environments through iso-orbital indicator variables, as discussed

above. While theoretically convenient, τ introduces an implicit dependence on the KS orbitals, which brings

some complications. 1) It reduces computational efficiency by requiring additional basis function derivatives

to be computed on the numerical quadrature grid, which can be more costly for Fourier transform based

periodic codes. 2) It prevents the functional being used in orbital-free DFT calculations. 3) Evaluation of

the XC potential for τ -dependent functionals requires either optimised effective potential (OEP) techniques

[88, 89], or a generalised KS scheme[90, 91, 92]. While a generalised KS treatment can be computationally

convenient, the effective XC potential operator of a τ dependent mGGA is no longer a multiplicative function,

vxc(r), and is instead a non-local operator, v̂xc.

Mejia-Rodriguez and Trickey [93, 13, 94] circumvented these complications when they replaced τ(r)

with functions of laplacian, ∇2n(r) in many mGGA XC functionals to recover similar (but not identical)

performance to the parent functionals. The construction of these laplacian based density functional is achieved

by replacing the exact orbital-dependent kinetic-energy density τ with an approximate kinetic-energy density

τs. The iso-orbital indicator becomes,

α =
τs − τW
τU

(2.80)

where τθ = τs[n]−τW [n] is an approximation to the exact Pauli term. The approximate kinetic-energy density

τs is chosen from a variety of available single-point kinetic energy density functionals (KEDFs) which would

produce τθ, obtained by the Perdew and Constantin parameterization of τ [95]. Thus obtained orbital-free

version of SCAN and r2SCAN (SCAN-L and r2SCAN-L) are found to predict smaller magnetic moments in

the ferromagnets and also predict more accurate lattice constants of simple metals. It has also been shown

that r2SCAN has a computational cost similar to that of PBE in solids. [93, 13, 94].

Recently, Kaplana and Perdew [96] extended the work by Mejia-Rodriguez and Trickey by constructing an

orbital-free r2SCAN called OFR2 (orbital-free r2SCAN) by restoring the the fourth-order gradient expansion

for exchange, the constriant missing in r2SCAN-L, by simplifying the construction of the approximate τ

(consider Ref. [96] for more detail about construction). Doing so, OFR2’s performance on lattice constant of

solids is found to match to that of SCAN. It also more accurately describes transition-metal magnetism and

structural properties of alkali metals than r2SCAN but fails to perform well on their cohesive energies. For
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molecules, however, the performance is poor with MAE of 11kcal/mol for AE6 in comparison to r2SCAN

(3.65 kcal/mol) and r2SCAN-L (3.92 kcal/mol).
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Chapter 3

Sensitivity of the electronic and

magnetic structures of cuprate

superconductors to density functional

approximations

3.1 Introduction to Superconductivity

3.1.1 Conventional Superconductors

The superconductivity phenomenon was first discovered by Kamerlingh Onnes in 1911[97] where he

observed a certain drop in the resistivity of the mercury after a certain temperature. The second incident of

superconductivity was discovered by Meissner and Ochenfeld in 1933[98] when they observed the expulsion of

the magnetic flux from the superconducting state. After that, a lot of work and major advances were made

in an attempt to explain the superconducting phenomenon. But it was only at 1957, the universally accepted

microscopic theory of the phenomenon was successfully explained by Bardeen, Cooper, and Schrieffer[99] for

which they were awarded Noble prize in 1972.

BCS theory is based on the assumption that when the attractive Cooper pair interaction dominates the

Coulomb repulsive force, superconductivity arises. Cooper pair is electron-electron bound pair, which is

weak in nature, mediated by phonon interaction. The electrons which are fermions, after pairing by phonon
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coupling, act as bosons and hence condense into a single coherent ground state which allows the other

electrons to move through the crystal without losing their momentum. The paired electrons have equal and

opposite momentum so the total momentum of the electrons is conserved and hence superconductivity arises.

Since the Coulomb repulsion is strong so the pairs are far from each other and the attraction via phonon is

long range; thus is a quantum mechanical explanation.

3.1.2 High-Temperature Superconductors

The conventional superconductors were only possible at a very low temperature so the search for high-

temperature superconductors continued for a couple of decades after that. In 1986, Bednorz and Müller,

discovered a new class of superconducting materials, LaBaCuO, showing superconductivity at 30K[100].

The following year, the discovery of YBa2Cu3O7−δ which was superconducting at 90K[101] resulted in

high-temperature superconductivity as a serious area of research. The common component in all these

high-temperature superconductors was the presence of CuO2 plane and they were referred to as “cuprates”.

The superconductivity in cuprates has always been elusive to understand. In their stoichiometric form,

these materials are antiferromagnetic Mott insulators. The BCS theory explaining superconductivity in

conventional superconductors suggest that magnetism cannot co-exist with superconductivity. This difference

between new high-temperature superconductors(HTSCs) and conventional superconductors created great

excitement and scientists all over the world are working on to understand the physics, which till date is still

not fully comprehended.

Cuprates are layered materials whose elementary units are CuO2 planes, separated by spacer layers

containing other atoms. The spacer layers are where dopant atoms are introduced and not directly into

the CuO2 planes as shown in figure 3.1. The doping can be both electrons as well as the hole. Hole doped

systems have been studied more because these systems have a high superconducting temperature. My work

is focused on one of the hole-doped systems, Lanthanum copper oxide (La2CuO4).

Just as the Cuprate family, LCO consists of layered CuO6 layer where the Cu and O atoms together form

an octahedral structure as shown in figure 3.2. Depending upon the octahedral tilt modes, LCO is found to

exhibit a variety of phases. High Temperature Tetragonal phase (HTT) where all CuO6 octahedra are aligned

axially is a high-temperature phase. A transition of phase occurs at a low temperature resulting into (LTO)

phase where CuO6 octahedra are aligned along the (010) direction in alternate layers. A low-temperature

tetragonal (LTT) phase is a special condition obtained by doping Ba or by substituting La with Nd, where

octahedral tilts of the Cu–O–Cu bonds are aligned along the (110) zone diagonal. These different phases hold

true for both pristine LCO and Strontium doped La2−xSrxCuO4 (LSCO) system. My thesis work is based on
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Figure 3.1: (a) CuO2 plane where Cu atoms in red and oxygen atoms in blue. (b) Cuprate crystal structure
with alternatting CuO2 planes and spacer layer [1].

both the pristine and the doped systems. The different phases of LCO/LSCO is shown in figure 3.2

Figure 3.2: The crystal structure of (a) HTT (b) LTO (c) LTT phases depending upon CuO2 octahedra tilts
[2].

3.2 Problem/Motivation of the research

Ever since the discovery of cuprate superconductivity in 1986 by Bednorz and Müller[100], the anomalous

behavior of the pristine as well as the doped cuprate has eluded theoretical explanation and still remains an

unsolved problem in condensed matter physics. La2CuO4 (LCO), in particular, has been a significant challenge
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to describe within a coherent theoretical framework. The Hohenberg-Kohn-Sham density functional theory

(DFT)[21, 22] with some classes of popular exchange-correlation (XC) approximations fails spectacularly to

capture the insulating antiferromagnetic ground state of LCO, let alone the metal insulator transition (MIT)

under doping. [102]. Specifically, the local spin-density approximation (LSDA) XC functional incorrectly

predicts the parent compound to be a metal, yielding a vastly underestimated value for the copper magnetic

moment of 0.1µB [103, 104] compared to the experimental value of 0.60±0.05 µB[7]. The PBE generalized

gradient approximation (GGA) [32] still predicts LCO to be a metal with a slightly improved magnetic

moment of 0.2µB [105]. The Becke-3-Lee-Yang-Parr (B3LYP)[106, 107, 50, 108] hybrid functional correctly

explains the AFM ground state in LCO but fails to capture the MIT upon doping [109]. These failures have

led to the (incorrect) belief that DFT is fundamentally incapable of capturing the physics of the cuprates

and other correlated materials. Therefore, “beyond DFT” methodologies, such as the quantum Monte

Carlo methods [110], DFT+U [111, 112], and dynamical mean-field theory (DMFT)[113, 114, 115] have been

introduced to handle strong electron correlation effects. These approaches have been useful for understanding

the physics of the cuprates, although they typically introduce ad hoc parameters, such as the Hubbard U, to

tune the correlation strength, which limits their predictive power.

Recent progress in constructing advanced density functional approximations (DFA) provides a viable new

pathway for addressing the electronic structures of correlated materials. In particular, the strongly-constrained

and appropriately-normed (SCAN) meta-GGA [12] , which obeys all 17 known constraints applicable to a

meta-GGA functional, has been shown to accurately predict many key properties of the pristine and doped

La2CuO4 and YBa2Cu3O6 [3, 116, 117]. In LCO, SCAN correctly captures the size of optical band gap, the

magnitude and the orientation of the copper magnetic moment, and the magnetic form factor in comparison

with the corresponding experimental results [116]. In near-optimally doped YBa2Cu3O7, 26 competing

uniform and stripe phases are identified [117]. In this case, the treatment of charge, spin, and lattice degrees

of freedom on the same footing is crucial in stabilizing the stripe phases without invoking any free parameters.

Furthermore, SCAN has been applied to the Sr2IrO4 parent compound yielding the subtle balance between

electron correlations and strong spin-orbit coupling in excellent agreement with experiment[118].

SCAN’s success in the copper and iridium oxides is a significant achievement for the DFT and suggests

capability for treating a wider class of correlated materials. SCAN, however, is well-known to yield overly

large saturation magnetization in elemental metals (e.g., Fe and Ni) [119, 120, 121] and has the problem of

numerical instabilities [82, 122, 123, 79], which may limit its applicability. A number of natural questions

therefore arise: Is SCAN a unique XC density functional that is able to correctly capture a variety of

properties of the cuprates or do other meta-GGAs perform similarly well? How do hybrid XC functionals

perform in comparison? Answers to these questions are important for benchmarking the performance of
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SCAN and related DFAs, and for opening a pathway to their more extensive use.

With this motivation, this paper compares the accuracy of 13 DFAs. In particular, we assess the

efficacy of LSDA [124, 68], PBE[32], SCAN[12], SCAN-L[93], rSCAN[123], r2SCAN[79], r2SCAN-L[94],

TPSS[56], revTPSS[58], MS0[60], MS2[61], M06L[37], and HSE06[125, 126, 127, 128] with respect to their

predictions for crystal, electronic, and magnetic structures of the pristine and doped prototypical high-

temperature superconductors La2−xSrxCuO4. Various XC density functionals employed span the levels of

the Perdew—Schmidt hierarchy[129], allowing us to evaluate the performance of each functional class for the

description of correlated condensed matter systems.

3.3 Computational details

The calculations were performed using the pseudopotential projector-augmented wave method[130]

implemented in the Vienna ab initio simulation package (VASP)[131, 132]. The energy cutoff for the plane-

wave basis set was taken to be 550eV for all meta-GGA calculation whereas 520eV for HSE functional.

To sample the Brillouin zone, for meta-GGAs, 8 × 8 × 4 Γ-centered k-point mesh was used while a small

mesh of 6× 6× 2 was used for HSE functional. The structures were initially relaxed for meta-GGA using

conjugate gradient algorithm with an atomic force tolerance of 0.008eV /Ao and total energy tolerance of

10−5eV . For HSE functional, the unrelaxed structure was used for the calculation. The computational cost

for HSE increases drastically as compared to meta-GGA calculations so smaller energy, smaller k-point and

unrelaxed structures were used. The unit cell was rotated to obtain a
√
2 ×

√
2 AFM unit cell[133] where Sr

was doped in place of one La to obtain a doped structure. In the AFM structure obtained, due to crystal

symmetry, lanthanum substitution position was equivalent at all position so replacing one La by Sr resulted

in an effective average doping of 25%.

3.4 Results

3.4.1 Crystal structure

The phase diagram of the cuprates displays a complex intertwining of magnetic and charge ordered

states that evolve with doping to reveal a superconducting dome. Interestingly, structural phase transitions

associated with various octahedral tilt modes[134, 135] mainly follow the electronic phase boundaries.[136] At

high temperatures LCO is found to be tetragonal (HTT) with all CuO6 octahedra aligned axially. A phase

transition occurs upon lowering the temperature resulting in a low-temperature orthorhombic (LTO) phase

where the octahedra are tilted along the (110) zone diagonal. An additional low-temperature tetragonal
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Figure 3.3: (a) Theoretically predicted crystal structure of La2−xSrxCuO4 in the LTO phase for x = 0.0
and 0.25. Copper, oxygen, lanthanum, and strontium atoms are represented by blue, red, green, and yellow
spheres, respectively. Octahedral faces are shaded in blue (orange) to denote spin-up (down). Black dotted
lines mark the unit cell. (b) A schematic of the non-magnetic (NM) and anti-ferromagnetic (AFM) Brillouin
zone, where the path followed in the electronic dispersions in FIG.3.9 is marked.

(LTT) phase arises upon substituting La with Ba or Nd, where the octahedral tilts are aligned along the (100)

and (010) directions in alternating CuO2 layers. Therefore, in order to properly disentangle the connection

between the electronic and the physical properties of the cuprates, it is imperative to capture the correct

ground state crystal structure. To calculate the total energies of various crystalline phases, we consider the
√
2 ×

√
2 supercell of the body-centered-tetragonal I4/mmm primitive unit-cell to accommodate both the

octahedral tilts and the (π, π) AFM order within the CuO2 planes. We treat the doping within a relatively

simple “δ- doping” scheme in which one La atom in the supercell is replaced by a Sr atom to yield an average

hole doping of 25%[3]. This approach has been recently used for doping LSCO via molecular beam epitaxy

techniques[133]. Figure 3.3 (a) shows the crystal structures of LCO and LSCO in the LTO phase where the

CuO6 octahedra have been shaded blue and orange to represent the AFM order. The Sr doping site is also

indicated.

Figures 3.4 (a) and 3.4(d) present energy differences between the AFM and NM phases for the pristine

and doped La2−xSrxCuO4 in each crystal structure for the DFAs considered. Firstly, we note that LSDA

does not stabilize an AFM order over the Cu sites, whereas in PBE the AFM phase is marginally more stable,

consistent with previous studies[3]. All meta-GGAs find the AFM phase to be the ground state, with an

energy separation of −0.2 to −0.9 eV between the AFM and NM states in the pristine structure, whereas in

the doped case the energy difference is smaller by a factor of two. These trends are consistent across the

various crystal structures.

Figures 3.4 (b-c) and 3.4(e-f) present energy differences between the HTT, LTT, and LTO crystal structures
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Figure 3.4: (a) Energy differences between the G-AFM and NM phases for the HTT (green upside-down
triangle), LTO (white diamond), and LTT (blue triangle) structures for various XC density functionals. (b-c)
Relative energies per formula unit for AFM in pristine LCO between LTO and HTT (b) and LTO and LTT
(c). (d- f) Same as (a-c) except that these panels refer to LSCO instead of LCO.

for pristine and doped La2−xSrxCuO4 for various density functional approximations. In all cases, the HTT

phase lies at much higher energy compared to the LTO and LTT phases. Difference between the LTO and

LTT appears more delicate. For the undoped case, only SCAN correctly predicts LTO to be the ground state,

while LSDA, rSCAN, r2SCAN, and r2SCAN-L find LTO and LTT to be nearly degenerate with an energy

difference of less than 1 meV. In the doped case, all XC functionals correctly predict the ground state to be

LTT [137], while SCAN and rSCAN yield a marginal energy difference between LTT and LTO. Note that

near 12% doping, the LTO and LTT phases are found experimentally to be virtually degenerate [3].

Figure 3.5 shows the equilibrium lattice constants for LCO in the HTT, LTT, and LTO phases. The LSDA

and PBE values were taken from Ref. [3] and experimental values from Refs. [138, 139, 140]. The LSDA is

seen to underestimate the lattice constant for all crystal structures. PBE, on the other hand, underbinds

the atoms and yields an exaggerated orthorhombicity in the LTO phase, similar to the super-tetragonality

spuriously predicted by PBE for ferroelectric materials [141]. TPSS, revTPSS, MS0, MS2, SCAN, SCAN-L,

rSCAN, r2SCAN and r2SCAN-L correct PBE by reducing the b lattice constant in line with the experimental

values in LTO and LTT.

Curiously, all XC density functionals underestimate the lattice parameters in the HTT phase, except for
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Figure 3.5: Comparison of the theoretically obtained and experimental lattice constants a, b, c for the HTT,
LTT, and LTO crystal structures using various density functional approximations for La2CuO4. The lattice
constant values are divided by corresponding experimental values.

PBE and M06L. The empirical M06L XC functional predicts lattice constants with greater accuracy than

other XC functionals in all cases. Note that HTT is a high-temperature phase and therefore the experimental

lattice constant should, in principle, be corrected for finite-temperature effects for comparison with DFT

results. Figure 3.6 considers the octahedral tilt angles. Here, M06L underestimates the tilt angle, while all

other XC functionals overestimate it within a few degrees. We note, however, that the experimental tilt angles

should be regarded as average values because the CuO6 octahedra are not rigid objects: these octahedra

couple to various phonon modes and deform dynamically. Molecular dynamics or phonon calculations will be

needed to capture the octahedral tilts more accurately.

Lattice constants and octahedral tilts are not included for r2SCAN-L in Figs. 3.5 and 3.6 because we

found a non-zero stress tensor at the energy-minimized equilibrium volume in this case. This suggests an error

in the stress tensor implementation of r2SCAN-L, See Section S3 of Supplementary Materials for more details.

The experimental structures were therefore used for the electronic and magnetic properties calculations using

r2SCAN-L . The experimental structures were also used for HSE06 based calculations as the computational
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Figure 3.6: Theoretically predicted values of octahedra tilt angle using various density functional approxima-
tions for LCO. The LSDA and PBE value are taken from reference [3] The octahedra tilt values for LTO,
LTT and HTT are divided by corresponding experimental values.

cost for hybrid XC functionals is much greater than the meta-GGAs.

Notably, within the “SCAN family” of XC density functionals (SCAN, SCAN-L, rSCAN, and r2SCAN)

all members show similar performance for lattice constants and tilt angles (Figs.3.5 and 3.6). The potential

speedup of running r2SCAN-L in a density-only KS scheme and the improved numerical performance inherited

from r2SCAN suggest that r2SCAN-L could be used to optimize geometry followed by a single point SCAN

or r2SCAN calculation for obtaining electronic properties. This approach may also present an advantage of

minimizing the numerical challenges associated with SCAN. A similar scheme was suggested in Ref. [87] in

the context of spin-crossover prediction.

3.4.2 Electronic and Magnetic Structures

Figure 3.7 compares the theoretically predicted electronic bandgaps and copper magnetic moments

obtained from various XC functionals for the three crystalline phases of LCO. The range of experimentally

observed bandgaps [4, 5, 6], and median copper magnetic moments[7] are marked by the grey and blue

shaded regions, respectively. LSDA and PBE greatly underestimate the bandgaps and magnetic moments

because they fail to stabilize the AFM order. A large variation is seen in the results of the meta-GGAs.

TPSS and revTPSS both underestimate the bandgaps and magnetic moments. MS0, MS2 and SCAN yield

values that lie within the experimental ranges. Other meta-GGAs predict reduced bandgaps and magnetic

moments that are below experimental values. M06L underestimates both the moment and the bandgap
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Figure 3.7: Theoretical predicted values of (a) electronic band gap and (b) copper magnetic moment for all
three phases of pristine LCO obtained within various density functional approximations. The gray shaded
region in (a) gives the spread in the reported experimental values for the leading edge gap [4, 5, 6]. In (b),
the blue shaded region represents the experimental value of magnetic moment [7]. The LSDA and PBE values
are taken from Ref. [3]

value, possibly due to the bias towards molecular systems which is encoded in its empirical construction.

M06L yields ferrimagnetic order and, therefore, the average of the magnetic moment is given in Fig. 3.7.

Finally, the hybrid functional (HSE06) overestimates bandgaps, predicting a value of around 3 eV, and it

also overestimates magnetic moments.

Ando[142] has stressed that one should estimate the bandgap not from the lowest energy absorption peak,

but from the leading edge gap in the optical spectra[4]. The leading edge gives the minimum energy needed

by an electron to be elevated from the valence to the conduction band, in good agreement with the transport
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Figure 3.8: Copper magnetic moments of La2CuO4 in the LTO crystal structure by various functional
approximations when Wigner-Seitz radius is varied. The vertical grey line represents Cu-O bond length.

gap in the cuprates. In contrast, the energy of the absorption peak in the optical spectrum depends on

finer details of the electronic structure such as the presence of flat bands or Van Hove singularities. The

theoretically predicted bandgaps here should be compared to the fundamental band gaps [143, 144, 145, 146],

which are typically larger than the corresponding optical band gaps due to excitonic effects. Notably, a recent

measurement on LCO reports an optical bandgap of about ≈ 1.3 eV [5].

Regarding magnetic moments, the values obtained by neutron scattering involve uncertainties since the

copper form factor is not a priori known. Appendix E of Ref.[116] compares copper magnetic moments

from various experiments, including the values given in the recent review of Tranquada[7]. Note that, when

estimating the copper magnetic moment, we computed the copper (Cu) magnetic moment by varying the

Wigner-Seitz radius (rs) beyond the default of 1.16 Å to the value of 1.91 Å (the Cu-O bond length) to

fully capture the magnetic density centered on the Cu site and the part of the magnetic density originating

from the strong hybridization between the copper and oxygen atoms. Cu magnetic moments as a function

of the Wigner-Seitz radius based on using various functionals are shown in Figure 3.8: slightly enhanced

magnetic moments are seen for all functionals when the overlap between the Cu and oxygen atoms is taken

into account. At rs of 1.91 Å, we fully enclose the Cu site, resulting in the maximum positive magnetic

moment (S0) for all functional approximations. As rs increases further, the negative density from the tails of

the first nearest-neighbor shell of 4 atoms start to contribute. At rs ∼ 3.63 Å, we approximately capture
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1/4 of each nearest-neighbor site, yielding a moment of zero due to the staggered magnetization. For rs ∼

4.5 Å, the Wigner-Seitz sphere now fully encompasses the central atomic site and the first nearest-neighbor

shell, producing a large negative value since S = S0 + 4Snn, where Snn is the magnetic moment value on

the nearest-neighbor sites and Snn = −S0. Note that the Cu moment for large rs values will depend on the

coordination number and thus on the crystal structure.

While these predicted magnetic moments are in approximate agreement with the experimentally measured

value, it has been suggested that this is not the correct comparison. This is because 1) given a static magnetic

moment, fluctuation can cause a 30% reduction [147]. 2) DFT works with spin symmetry breaking [148],

and the DFT magnetic moments should be compared to the static value. We believe this issue is unresolved

and that self-consistency can capture some average effects of fluctuation due to the DFT correlation potential.

We hope to discuss this further in a future publication.

Figure 3.9 presents the electronic band dispersions in pristine and doped La2CuO4 in the LTO crystal

structure for the AFM phase using SCAN, r2SCAN, r2SCAN-L, M06L, and HSE06. The copper (red circles)

and planar oxygen (blue dots) orbital contributions are overlayed. For all XC functionals, LCO is seen to

be an insulator. At the valence band edge, SCAN, r2SCAN and r2SCAN-L produce a significant avoided

crossing between the dx2−y2 and in-plane oxygen dominated bands along Γ−M and M− Γ̄, but this feature

is essentially absent in M06L. In SCAN and r2SCAN, the gap is direct, with its smallest value occurring at M

symmetry point or very close to it. In contrast, r2SCAN-L and M06L predict indirect bandgaps. Finally, the

conduction bands in M06L display significant spin splittings indicative of ferrimagnetic ordering consistent

with the observed ferrimagnetic moments.

Turning to the doped system in Fig.3.9, all meta-GGAs are seen to capture the metal-insulator transition,

with various XC functionals producing small differences in band splittings around the Fermi level. In contrast,

HSE06 maintains a small gap and predicts a nearly flat impurity-like band just above the Fermi level,

consistent with the B3LYP results [109]. See Supplementary Materials for further details of the electronic

band dispersions in LTO, LTT and HTT phases. The SCAN-based magnetic moments and bandgaps given in

this study differ by ∼ 0.02 µB and 0.11eV respectively, from those given in Ref.[3]. These small differences,

which do not affect the overall conclusions of Ref.[3], are due to an error in the VASP implementation that

was used in Ref. [3].

3.4.3 Effective U and exchange coupling

The band gap that develops in the half-filled Cu dx2−y2 dominated band by splitting the up- and down-spin

bands is due to strong multi-orbital intrasite electron-electron interactions. The strength of these interactions
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is a key quantity that can be used to characterize various regions of the phase diagram and classify the

phenomenology of the cuprate family as a whole[149]. In order to estimate the correlation strengths implicit

in the underlying XC density functionals, we map our site-resolved partial densities of states to a multiorbital

Hubbard model[150] along the lines of Ref. [116]. For this purpose, we consider a d orbital µ of spin σ in a

ligand field with on-site correlations in the mean field, and express its energy as

Eµσ
± = Eµ

atomic +U⟨nµσ̄⟩± +U′
∑
ν ̸=µ

⟨nνσ̄⟩± + (U′ − JH)
∑
ν ̸=µ

⟨nνσ⟩± ± h,

where ± indexes the bonding (−) and antibonding (+) states, and h is the hybridization strength. µ(ν) and

spin σ(σ̄ = −σ) are orbital and spin indices, respectively, and ⟨n±µσ⟩ is the average electron occupation for a

given state in the mean field. By taking the difference between the up- and down-spin channels and summing

over bonding and anti-boding levels, U and JH can be shown to connect the spin splitting of a given orbital

to the differences in various spin-dependent orbital occupations,

Eµ↑ − Eµ↓ = U(Nµ↓ −Nµ↑)− JH
∑
ν ̸=µ

(Nν↑ −Nν↓), (3.1)

where Nµσ =
∑

± ⟨n±µσ⟩. Furthermore, Eµσ may be obtained from the density of states:

Eµσ =

∫
W

gµσ(ε)εdε (3.2)

where W represents the bandwidth. The average spin splitting of a given orbital can then be expressed as:

Eµ↑ − Eµ↓ =

∫
W

[gµ↑(ε)− gµ↓(ε)]εdε. (3.3)

We thus arrive at the following coupled set of equations for the interaction parameters,

∫
W

[gµ↑(ε)− gµ↓(ε)]εdε = (3.4)

U(Nµ↓ −Nµ↑)− JH
∑
ν ̸=µ

(Nν↑ −Nν↓).

By using the copper-atom-projected partial density-of-states in the AFM phase of LTO La2CuO4 where

the dx2−y2 orbital is half-filled and all other orbitals are completely filled, we can simplify the preceding set
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of coupled equations into the form:

∫
W

[gdx2−y2↑(ε)− gdx2−y2↓(ε)]εdε = U/2 (3.5)

∫
W

[g(µ ̸=dx2−y2 )↑(ε)− g(µ̸=dx2−y2 )↓(ε)]εdε = JH/2 (3.6)

Finally, we evaluate
∫
W
[gµ↑(ε)− gµ↓(ε)]εdε over the full band width W for each orbital to solve for U and

JH. The estimated values of U and JH so obtained are presented in Table 3.1. The average spin-splittings are

strongly orbital dependent [116], and we have taken the largest value as the upper bound on JH.

Table 3.1: Theoretically predicted values of U and JH using various DFAs for three different phases of pristine
LCO.

Functional Phase U (eV) JH (eV)

LTO 2.23 0.54
TPSS LTT 2.19 0.55

HTT 2.19 0.54

LTO 2.32 0.60
revTPSS LTT 2.31 0.60

HTT 2.3 0.58

LTO 3.14 0.51
M06L LTT 3.14 0.54

HTT 3.19 0.55

LTO 5.60 1.36
MS0 LTT 5.71 1.32

HTT 5.91 1.34

LTO 5.00 1.16
MS2 LTT 5.09 1.13

HTT 5.108 1.18

LTO 5.40 1.25
SCAN LTT 5.40 1.27

HTT 5.36 1.24

LTO 3.13 0.61
SCAN-L LTT 3.13 0.61

HTT 3.16 0.60

LTO 4.24 1.04
rSCAN LTT 4.25 1.03

HTT 4.26 1.02

LTO 4.45 1.06
r2SCAN LTT 4.43 1.06

HTT 4.41 1.05

LTO 3.14 0.61
r2SCAN-L LTT 3.15 0.62

HTT 3.16 0.61

LTO 11.79 1.27
HSE06 LTT 11.30 1.36

HTT 11.58 1.27
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Results of Table 3.1 show that TPSS and revTPSS yield a smaller value for U compared to the recent

cRPA calculations (∼ 3.2 eV) [151], since they fail to adequately capture the bandgaps and magnetic moments,

while M06L, SCAN-L and r2SCAN-L yield comparable values. MS0,MS2, rSCAN and r2SCAN, find larger

values than the cRPA values. The hybrid HSE06 XC functional predicts exaggerated values for U.

In order to determine the exchange coupling strength, we use a mean-field approach, where we map the

total energies of the AFM and ferromagnetic (FM) phases onto those of a nearest-neighbor spin− 1
2 Heisenberg

Hamiltonian [152, 153, 154]. The difference in the energies of the AFM and FM phases in the mean field

limit is given by

∆E = EAFM − EFM = JNZ<S>2 (3.7)

where N is the total number of magnetic sites in the unit cell, S =1/2 is the spin on each site, and Z is the

coordination number. Since the in-plane interactions within the Cu-O planes in La2CuO4 are much stronger

than the interplanar interactions, we take Z = 4. For our AFM
√
2×

√
2 unit cell, N = 4. In this way, we

obtain the J values for various XC functionals listed in table 3.2.

Table 3.2 shows that SCAN is most accurate in predicting the experimental value of −133 ± 3 meV

[155, 156, 157] for the exchange coupling in LCO. MS0 and MS2 slightly overestimate J compared to

SCAN. TPSS, revTPSS, SCAN-L, rSCAN, r2SCAN and r2SCAN-L underestimate and HSE06 significantly

overestimates J. M06L failed to converge for the FM case. Notably, here and in Ref. [116],our modeling

involves only the nearest-neighbor J in keeping with the related experimental analysis. We would expect

some renormalization of the J values if we were to include next and higher nearest neighbors in our modeling.

In order to gain further insight into the multiorbital nature of the electronic structure, two additional

descriptors were estimated: (1) Charge-transfer energies between the Cu 3d and O 2p orbitals (∆dp); and (2)

the tetragonal splitting of the eg states (∆eg), which are defined as

∆dp = εd − εp (3.8)

and

∆eg = εx2−y2 − εz2 . (3.9)

The various band centers εµ are defined using the corresponding partial density-of-states as

εµ =

∫
gµ(ε)εdε∫
gµ(ε)dε

, (3.10)

along the lines of Refs.[158] and [159]. We used an integration window of −8 eV to the top of the band in
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Table 3.2: Theoretically predicted values of exchange coupling using various XC functionals for three different
phases of pristine LCO.

Functional Phase J (meV)

LTO -26.74
TPSS LTT -25.9

HTT -22.24

LTO -26.89
revTPSS LTT -27.47

HTT -24.74

M06L did not converge -

LTO -158.29
MS0 LTT -159.36

HTT -160.75

LTO -140.46
MS2 LTT -141.76

HTT -139.94

LTO -131.08
SCAN LTT -131.32

HTT -125.97

LTO -48.48
SCAN-L LTT -50.62

HTT -49.95

LTO -87.16
rSCAN LTT -88.37

HTT -82.09

LTO -93.12
r2SCAN LTT -95.04

HTT -88.33

LTO -49.01
r2SCAN-L LTT -50.61

HTT -49.88

LTO -182.11
HSE06 LTT -188.51

HTT -180.27

Eq.3.10. This window covers only the anti-bonding bands for ∆eg . Results of Table 3.3 show that compared

to PBE, the meta-GGAs generally tend to enhance ∆dp and ∆eg due to the stabilization of the AFM order.

TPSS and revTPSS performances are comparable to PBE while other meta-GGAs predict larger ∆dp and

∆eg values. For the doped case, ∆dp increases, whereas ∆eg reduces compared to the pristine results. HSE06

predicts significantly large ∆dp and ∆eg for both pristine and doped cases.

3.4.4 Meta-GGA performance discussion

The present results for the crystal, electronic, and magnetic properties clearly demonstrate that meta-GGAs

provide an improvement over LSDA and PBE. Among the various meta-GGAs considered (TPSS, revTPSS,
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Table 3.3: Theoretically predicted values of the charge-transfer energies between Cu 3d and O 2p orbitals and
two Cu energy splitting using various XC functionals for three different phases of pristine LCO and doped
LSCO systems

pristine LCO doped LSCO
Functional Phase ∆dp(eV) ∆eg(eV) ∆dp(eV) ∆eg(eV)

LTO 2.41 0.74 3.49 0.60
PBE LTT 2.38 0.75 3.30 0.62

HTT 2.41 0.79 3.46 0.59

LTO 2.41 0.77 3.52 0.62
TPSS LTT 2.23 0.78 3.50 0.63

HTT 2.26 0.80 3.44 0.63

LTO 2.37 0.77 3.50 0.61
revTPSS LTT 2.24 0.78 3.49 0.62

HTT 2.23 0.80 3.46 0.63

LTO 2.52 1.00 3.95 0.73
M06L LTT 2.54 1.06 3.91 0.74

HTT 2.46 1.07 3.75 0.81

LTO 2.99 1.34 5.00 1.07
MS0 LTT 2.84 1.37 4.75 1.14

HTT 2.93 1.35 5.16 1.09

LTO 3.00 1.21 4.76 0.89
MS2 LTT 2.91 1.22 4.97 0.87

HTT 2.92 1.20 4.66 0.93

LTO 3.01 1.23 4.84 0.95
SCAN LTT 2.93 1.24 4.79 0.95

HTT 2.92 1.24 4.71 0.96

LTO 2.64 0.96 4.18 0.72
SCAN-L LTT 2.54 0.96 4.20 0.72

HTT 2.49 0.95 3.89 0.80

LTO 2.55 1.06 4.17 0.92
rSCAN LTT 2.45 1.08 4.18 0.92

HTT 2.47 1.12 4.1 0.93

LTO 2.52 1.08 4.19 0.92
r2SCAN LTT 2.45 1.09 4.22 0.93

HTT 2.47 1.13 4.15 0.93

LTO 2.65 0.98 4.18 0.73
r2SCAN-L LTT 2.55 0.98 4.21 0.74

HTT 2.46 0.96 3.91 0.83

LTO 7.35 2.76 9.89 2.80
HSE06 LTT 6.91 2.82 - -

HTT 7.15 2.74 - -

MS0, MS2, SCAN, rSCAN, r2SCAN, M06L), M06L is less satisfactory for predicting the LCO properties,

which is heavily parameterized for molecular systems. The earlier generalized-KS (gKS) meta-GGAs such as

TPSS and revTPSS are less accurate than the more recently developed approximations (e.g. SCAN). The

success of SCAN is a consequence of its enforcing all the known 17 rigorous constraints that a semilocal

functional can satisfy[12]. In addition, SCAN localizes d electrons better by reducing self-interaction errors
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that tend to over-delocalize d electrons in the presence of ligands involving s and p electrons[146]. SCAN

thus stabilizes the magnetic moment of Cu and opens a sizable bandgap in LCO[3], its shortcomings in

exaggerating magnetic moments in 3d elemental solids notwithstanding [119].

rSCAN solves the numerical grid issues encountered in SCAN by regularizing the problematic interpolation

function of SCAN with a smooth polynomial, which unfortunately violates exact constraints [123, 79], and

some of rSCAN’s tranferability is lost [86, 85]. r2SCAN retains the smoothness of rSCAN and maximally

restores the exact constraints violated by the regularization of rSCAN and it has been shown to improve

the accuracy over rSCAN while maintaining the numerical efficiency[79]. In the present study of cuprates,

r2SCAN and rSCAN both perform similarly, with only slight underestimations of the band gaps and magnetic

moments.

By replacing the kinetic energy density with the Laplacian of the electron density and thus de-orbitalizing

the underlying meta-GGAs, SCAN-L [93] and r2SCAN-L [94] are constructed from SCAN and r2SCAN,

respectively. The XC potentials in SCAN-L and r2SCAN-L are locally multiplicative while in their orbital

dependent parent functionals, the potentials are nonmultiplicative. Perdew et al.[145] have shown that for a

given DFA, the gKS orbital band gap is equal to the corresponding fundamental band gap in solids, which is

defined as the second order ground-state energy difference with respect to electron number. This indicates

that within the gKS formalism a DFA with better total energy also improves the band gap [146]. The

preceding statement also applies to DFAs with multiplicative potentials as they have the same potentials in

the KS and gKS schemes. The bandgaps and copper magnetic moments from SCAN-L and r2SCAN-L are

consistently underestimated compared to the corresponding values from the parent SCAN and r2SCAN XC

functionals.

M06L being an empirical functional is heavily parametrized. It is constructed by fitting to molecular data

sets, and therefore, it tends to be less reliable for systems outside its fitting set with limited transferability.

3.4.5 Why does HSE06 open a gap in the doped LSCO?

HSE06 with the admixing parameter value of 1/4 works well for bandgap predictions in semiconductors.

This improvement is due to the reduction of the self-interaction error present in PBE through the introduction

of exact exchange [144, 146]. However, Hartree-Fock is not applicable to metallic systems where there is no

bandgap to separate the occupied and unoccupied bands. Therefore, hybrid functionals are not suited for

metallic systems.

With the preceding consideration in mind, it is reasonable that the HSE06 XC functional produces an

insulator in LCO but fails to capture the metal-insulator transition under doping. Figure 3.10 shows HSE06
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based band structures of LSCO for various mixing parameters “a”. For a = 0, HSE06 is reduced to PBE,

and thus predicts LSCO to be metallic. At a =0.05, a slight change in the band structure can be seen: the

conduction bands are slightly pushed up and split due to the stabilization of the magnetic moments on Cu,

and the bands around the Fermi level at X start to separate from one another. Increasing a to 0.15 results in

a separation of the valence bands at the Fermi level and the splitting of the conduction bands, and the two

valence bands near the Fermi level split off from the remaining valence bands. Finally, at the standard value

of a= 0.25, the highest valence band completely splits off, leaving a 0.2 eV gap at the Fermi level.

The resulting conduction band displays significant spin-splitting, indicative of a strong uncompensated

ferri-magnetic order. Our spin density calculations show that the spin-down band now lies just above the

Fermi level where the doped hole is localized in the copper dz2 and apical-oxygen pz hybridized band, see in

Figure S5(a) of the Supplementary Material. Moreover, the band-projected charge density for the spin-down

band (Supplementary Figure S5(b)) clearly displays a dz2 orbital shape for copper sites and a pz orbital

shape on the apical oxygen sites, similar to the results from B3LYP [109].

Band structures of fig. 3.10 show that for small values of the mixing parameter (a), the conduction band

and valence bands around the M point near the Fermi level are more dominated by copper dx2−y2 states. As

the value of the mixing parameter increases, the copper dz2 orbitals gain more weight. This implies that,

as the fraction of exact exchange increases, electrons are more localized on in-plane copper atoms. This is

expected since the LSDA gives the extreme covalent regime while the Hartree-Fock leads to the extreme

ionicity.

3.5 Conclusion

Our study demonstrates that the meta-GGA class of XC functionals within the generalized Kohn-Sham

scheme correctly predict many experimental results for pristine LCO, and also capture the insulator-to-metal

transition with Sr doping. Among the different meta-GGAs considered, SCAN’s performance for structural,

electronic, and magnetic properties of LCO/LSCO is closest to the corresponding experimental results. In

contrast, the hybrid XC functional (HSE06) fails to capture the metal-insulator transition and overestimates

the magnetic moments and bandgaps in pristine LCO, and it needs adjustment of the standard 25% value of

the mixing parameter to produce the metallic states. Our study thus indicates that the meta-GGAs provide

a robust new pathway for the first-principles treatment of strongly correlated materials.
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Figure 3.9: Electronic band structure and density of states of LCO and LSCO in the LTO phase using (a)
SCAN (b) r2SCAN (c) r2SCAN-L (d) M06L (e) HSE06. The contribution of Cu-dx2−y2 and O -px + py are
marked by the red and blues shadings, respectively. The path followed by the dispersion in the Brillouin zone
is shown in Fig 3.3(b).
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Figure 3.10: Band structure comparison by varying mixing parameter in the HSE06 hybrid functional for
(a) a = 0 (b) a = 0.05 (c) a = 0.15 and (d) a = 0.25 in doped LTO phase. The blue filled and red empty
circles correspond to copper dz2 and copper dx2−y2 orbitals respectively. The projection strength is denoted
by marker size.
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Chapter 4

Transition metal compounds

4.1 Introduction/Motivation

Transition metal (TM) compounds are a unique class of solids whose physics is extremely rich. These

are metals, large-gap insulators, and also systems that exhibit metal-insulator transitions. The magnetic

properties of these systems are also diverse as most strong magnets are TM compounds. The high-Tc

superconductors also falls in this category [160]. Because of these unusual properties, the TM compounds fall

in the category of enigmatic systems.

The early studies of late 3d transition-metal monoxides (MnO, FeO, CoO, and NiO) incorrectly predicted

them to be metallic, contrasting the experimental result as an insulator [161]. This led to the general

concept that mean-field approaches are inappropriate for predicting the electronic structure of these materials

and inter-electronic interaction U is required to open a band gap between the occupied and unoccupied

degenerate states while retaining symmetry[146]. Recently however, it has been shown that this concept

of Mott insulators in fact, is not needed for the 3d binary oxides MnO, FeO, CoO, and NiO and that the

mean-field band theory can indeed open a band gap without an on-site inter-electronic interaction U . This

has been achieved with polymorphous representation of the unit cell in conjunction with a recently developed

non-empirical exchange-correlation (XC) density-functional (SCAN) [146]. In addition, SCAN has been

shown to accurately predict many key properties of correlated materials, with the likes of the pristine and

doped La2CuO4(LCO) and YBa2Cu3O6 [3, 116, 162, 117]. In LCO, SCAN correctly captures the size of

optical band gap, the magnitude and the orientation of the copper magnetic moment, and the magnetic form

factor in comparison with the corresponding experimental results [116]. In near-optimally doped YBa2Cu3O7,

26 competing uniform and stripe phases are identified [117]. Furthermore, SCAN has been applied to the
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Sr2IrO4 parent compound yielding the subtle balance between electron correlations and strong spin-orbit

coupling in excellent agreement with experiment[118].

SCAN’s success in 3d TM compounds is a significant achievement for the DFT and suggests capability

for treating a wider class of correlated materials. A number of natural questions therefore arise: Is SCAN a

unique XC density functional that is able to correctly capture a variety of properties of 3d TM compounds or

do other meta-GGAs perform similarly well? To answer these questions, we compare the accuracy of 11 DFAs,

LSDA[124, 68], PBE[32], TPSS[56], revTPSS[58], MS0[60], MS2[61], SCAN[12], SCAN-L[93], rSCAN[123],

r2SCAN[163], r2SCAN-L[94]. The performance of these functionals on the band gap and magnetic moment

are listed in Table 4.1 while the band gap plots are shown in figures 4.1,4.2,4.3, and 4.4.

4.1.1 Result

Results from Table 4.1 shows that LSDA, in general, performs poorly for all four TM compounds, for both

band gap and magnetic moment. PBE tends to improve over LSDA while for meta-GGAs, we observe mixed

performances. The earlier meta-GGAs such as TPSS and revTPSS are less accurate than the more recently

developed approximations (e.g. SCAN). Especially for FeO, they fail to open the band gap. MS0 is found to

predict band gap and magnetic moment values closest to experimental result for almost all four systems,

followed by SCAN. The other SCAN family functionals (rSCAN and r2SCAN) perform similarly with a slight

underestimated values compared to SCAN. The laplacian dependent meta-GGAs (SCAN-L and r2SCAN-L)

show performances either comparable to TPSS and revTPSS or only slightly better. One important thing

to note here is that the band gap produced by all meta-GGAs are significantly reduced compared to the

experimental values. Having said that, when compared to PBE density functional, which predicts metallic

behavior, the gap opening is a remarkable step forward. The significant underestimation of band gap from

recently developed approximations like SCAN is likely due to the residual self interaction error(SIE)[146].

Compared to band gap, the magnetic moments are found to be more closer to the experimental values for all

meta-GGAs.
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Figure 4.1: Band structure plot for MnO from the various DFAs considered.
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Figure 4.2: Band structure plot for NiO from the various DFAs considered.
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Figure 4.3: Band structure plot for FeO from the various DFAs considered.
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Figure 4.4: Band structure plot for CoO from the various DFAs considered.
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Table 4.1: Band gaps, and local magnetic moments of four 3d monoxides in the G-type AFM phase calculated
by various DFAs without U

Functional Band gap (eV) Magnetic moment (µB)

MnO NiO FeO CoO MnO NiO FeO CoO

Expt. 3.5[164] 3.5[164] 2.1[164] 2.8[164] 4.58[165] 1.90[165] 4.0[165] 3.8∼3.98[165]

LSDA 0.75 0.47 - - 4.23 1.15 3.36 2.33

PBE 0.90 1.02 - - 4.32 1.36 3.44 2.43

TPSS 0.96 1.42 - 0.43 4.37 1.45 3.49 2.52

revTPSS 0.91 1.42 - 0.48 4.39 1.45 3.5 2.54

MS0 1.40 2.76 0.87 1.65 4.47 1.61 3.55 2.61

MS2 1.05 2.38 0.56 1.26 4.43 1.58 3.52 2.58

SCAN 1.61 2.67 0.38 1.17 4.44 1.59 3.55 2.58

SCAN-L 0.98 1.90 0.06 0.55 4.35 1.51 3.45 2.49

rSCAN 1.67 2.33 0.29 0.81 4.45 1.57 3.55 2.57

r2SCAN 1.69 2.40 0.21 0.88 4.45 1.58 3.56 2.58

r2SCAN-L 1.33 1.82 0.08 0.52 4.41 1.51 3.49 2.51

4.2 Why meta-GGA improves over GGA?

The improvement of meta-GGAs and especially SCAN over PBE for transition metal oxides [146] and

f-electron compounds has been understood as a consequence of following three factors:

4.2.1 tau dependence

In addition to the electron density and its gradient used as ingredients in PBE, SCAN is also dependent on

the non-interacting kinetic energy density, τ . The kinetic energy density is a semilocal quantity built from the

occupied orbitals immediately available in DFT calculations. By correctly building the kinetic energy density

into a dimensionless orbital-overlap indicator, SCAN distinguishes between density regions characterizing

different chemical bonds (including covalent, ionic, metallic, hydrogen, and van der Waals bonds) and treats

them properly through appropriate GGA constructions, allowing SCAN to address diverse types of bonding

in materials and systematically improving over PBE in general[122, 61, 34]. In addition, it also allows SCAN

to satisfy exact constraints that are mutually exclusive for functionals at the GGA level, such as PBE.

4.2.2 generalized Kohn–Sham (gKS) scheme

τ is an orbital-dependent non-local functional of the electron density. This orbital dependence means

τ -dependent meta-GGAs, such as SCAN, are typically implemented in the gKS formalism in which the XC

potential is an orbital dependent operator, rather than multiplicative. It has been shown that within this

generalized framework the frontier orbitals have a well defined physical interpretation, and consequently the
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band gaps predicted by gKS calculations have a strong physical connection to the experimentally measured

fundamental gap [145, 146].

The fundamental band gap is defined as Eg = I−A, where I is the ionization energy, and A is the electron

affinity. Since, I and A are ground-state energy differences, this fundamental band gap in principle, can be

calculated exactly from DFT. Similarly, the band gap from Kohn-Sham (KS) or gKS DFT calculations can

be obtained as ϵCBM − ϵV BM where CBM and VBM stand for conduction band minimum and and valence

band maximum. As the XC potential in KS scheme is multiplicative, the exact KS potential jumps by an

additive-constant discontinuity as an electron is added to neutral solids [145]. This derivative discontinuity

is found missing in LSDA and in GGA(PBE), which should be added to the KS band gap for the correct

prediction of the fundamental band gap [166], certifying the underestimated band gaps predicted for four

monoxide in the AFM phase shown in table 4.1. In gKS scheme on the other hand, the effective potential

is not a multiplication operator but is in practice continuous. The earlier works [143, 144, 145] have also

shown that ϵCBM − ϵV BM band gap for a solid is equal to the fundamental band gap if the gKS potential

operator is continuous and when an electron or hole is added, the density change is delocalized. The above

work imply that any functional that improves the total energies, must also improve the orbital band gaps. As

the recent meta-GGA SCAN is implemented in the gKS scheme, there is no derivative discontinuity in its

effective potential, and therefore consistently opens the band gap in the four monoxides considered.

4.2.3 Self interaction error (SIE)

The construction of most approximate XC functionals leads to basic flaws. One such flaws is the self-

interaction error[167], which comes from the residual interaction of an electron with itself. The error appears

because the self-interaction of the approximate XC functional Exc and that of the Coulomb functional do

not cancel completely in the density functional scheme, as they do in Hartree-Fock. Since the repulsive

self-Coulomb exceeds the attractive self exchange correlation, the net SIE is generally positive [146] causing

electrons to delocalize between nuclear centers. Such delocalized orbitals are far from observing symmetry

breaking and hence underestimate the fundamental band gap [146].

The self-interaction correction (SIC) which is referred to as the reduction in the delocalization error is

important in improving the band gap prediction. For orbital dependent density functionals implemented in

gKS scheme with symmetry breaking, the lower the delocalization error, the better is the band gap prediction.

The Perdew-Zunger (PZ) SIC which uses an effective U to reduce SIE is found to be have an improved band

gap values for binary and ABO3 3d oxides. [104]. In this regard, compared to PBE, SCAN reduces the amount

of SIE [146, 168] and as result, consistently opens the band gap for the four TM compounds considered. This
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minimization of SIE is especially important[146] for the open-shell d- and f -electron compounds.

4.3 Challenges for meta-GGA functionals

4.3.1 Self-interaction error

The SIC seems to have reduced the delocalization error in recent meta-GGAs, suggested by the consistent

band gap opening by SCAN. However, the band gap predicted by meta-GGAs is significantly reduced

compared to the experimental values, suggesting a further need to overcome SIE. Resolving SIE in a true

first-principle spirit requires the necessity for nonlocal corrections [169, 170], which are computationally

expensive and, at the same time, scale poorly with system size. Pederson and co-workers extended the PZ

SIC to make the SIC computationally efficient by constructing size-extensive SIC orbitals.[170]. Yang and his

collaborators presented a promising route to the first-principles approach for correcting SIE efficiently but is

limited to its availability to solids [171].

The other approach is to use PZ SIC to meta-GGA, as Shahi and his collaborators did with SCAN

functional [172]. They found that using PZ SIC with SCAN removes SIE seen primarily for stretched bonds

but introduces other errors like orbital-density nodality errors[172]. The following alternative to effectively

reduce SIE is the use of DFT+U [173]. This method penalizes the d-electron delocalization and effectively

reduces semilocal functionals’ SIE. However, this approach seems to be more like an empirical one as the U

value depends upon systems and properties to be studied [168]. In addition, this is not considered as the

first-principles basis and is looked as “beyond DFT” methodology.
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Chapter 5

Exact constraints and appropriate

norms in machine learned

exchange-correlation functionals

5.1 Artificial neural network

5.1.1 Introduction

Inspired by the nervous system, the artificial neural network is a machine-learned prediction algorithm.

An artificial neural network consists of neurons, a connecting topology, and a learning algorithm. The neurons

are called units. A typical unit is shown in the figure 5.1. The input signals (x1, x2, .....xm) either comes

from the external environment or outputs from the other units in the network. With each input are weights

associated which have adjustable values that are to be learned. There is also an activation function that acts

as a trigger which fires the neuron when the necessary condition is satisfied.
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Figure 5.1: Single perceptron unit

The figure above represents a perceptron. Perceptron takes vectors of real-valued inputs, calculates the

linear combination of inputs along with the weights associated and produces output as 1 if the result is

greater than a certain threshold and produces -1 otherwise. We can imagine perceptron as hyperplane surface

for which 1 lies at one end and -1 at the other end. The output for the perceptron is obtained as

o(x1, x2, ......xm) =


1, if w0 + w1x1 + w2x2 + .....+ wmxm > 0

−1, otherwise

(5.1)

where wi are weights, w0 the bias. Learning a perceptron means that the correct values of these weights are

to be obtained. Even though s single perceptron is building block of neural network, it alone is insufficient to

express the system and hence a need for the multilayer networks of threshold units.
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5.1.2 Multilayer perceptron network

Figure 5.2: Multilayer neural network

The figure 5.2 represents a multi layer perceptron network or also termed as deep neural network. A

neural network (NN) with more than one hidden layer is called as deep network. As is shown in the figure,

the hidden layers can be of any number depending up on the data as well as the design per individual. The

working mechanism is similar to a single perceptron but the activation function can vary from using sigmoid,

hyper tangent, RELU or any other. The only motive of using different activation function is to induce more

non linearity and the model becomes more expressive. The other important aspect of multilayer perceptron

network is the back propagation algorithm used for learning the weights. It employs gradient descent to

minimize the squared error between network output and target values for these outputs. Unlike feed forward

network, in back propagation algorithm, the errors are propagated backward through the network. One of

the challenges of back propagation algorithms is that through gradient descent, the weights have tendency

to acquire local minima rather than global minima which can induce error. Despite this problem, back

propagation algorithm has been found to produce excellent result in many real world applications.

5.1.3 Activation function

Different activation functions are used to induce more non linearity and the model becomes more expressive.

The most commonly used activation functions were the logistic function and other sigmoid functions. Sigmoid

refers to “S”-shaped functions, for example the hyperbolic tangent (tanh). More recently, Nair et al.[174]

introduced the rectified linear unit (ReLU), a neuron with an activation function that is linear for positive

inputs and zero for negative inputs. Krizhevsky, Sutskever, et al.[175] showed that ReLUs produce significantly
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better results on image recognition tasks using deep networks than the common sigmoid-shaped activation

functions . Since, by the chain rule, the derivative of a composed function is the product of each of the

derivatives of its composing functions, the training signal can get exponentially small. The ReLU does not

have this problem, at least in the positive range, because there its derivative is simply one. While the ReLU

solved the problem of vanishing gradients for positive values, it completely cut off the gradient for negative

ones; thus once a neuron enters the negative regime (either through initialization or during training) for

most samples, no training signal can pass through it. To resolve this problem Maas et al. [176] introduced

the leaky ReLU, which is also linear for negative values but with a very small, although non-zero, slope;

for positive values it behaves like the ReLU. Soon after He et al.[177] demonstrated that it is advantageous

to make the slope of the negative part of the leaky ReLU an additional parameter of each neuron. This

parameter was trained alongside the weights and biases of the neural network using gradient descent.

Figure 5.3: Various activation functions used commonly in neural networks [8]

5.1.4 Back propagation

Back propagation algorithm is one of the most widely used learning procedures for multi-layer network

because of its simplicity. When training a neural network, a loss function is obtained, which represents

how far the network predicts compared to the true values. Back propagation calculates the gradient of the

loss function with respect to each of the weights of the network. This enables every weight to be updated

individually to gradually reduce the loss function over many training iterations [178].
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The mechanism of back propagation is to calculate the gradient proceeding backwards through the feed

forward network from the last layer through to the first. To calculate the gradient at a particular layer, the

gradients of all following layers are combined via the chain rule of calculus.

Let us assume that for a particular input pattern Xn in the training set, the error function is defined as,

En =
1

2

K∑
k=1

(tk − yk)
2 (5.2)

where yk is the output predicted by the neural network, and tk is the corresponding target value. The

derivative of the error function with respect to output yk is

∂En

∂yk
= yk − tk (5.3)

Suppose we have sigmoidal activation functions given by the equation

h(a) =
1

1 + e−a
(5.4)

The output of each neuron is between 0 and 1. The derivative of sigmoidal function is simple and is expressed

as

h
′
(a) = h(a)(1− h(a)) (5.5)

The training includes forward propagation first given by

aj =

D∑
i=0

w
(1)
ji xi (5.6)

zj = h(aj) (5.7)

ak =

M∑
j=0

w
(2)
kj zj (5.8)

yk = h(ak). (5.9)

This is the output of the ANN and now the derivatives of error function with respect to weight can be

calculated using the chain rule,

∂En

∂w
(2)
kj

=
∂En

∂yk
.
∂yk
∂ak

.
∂ak

∂w
(2)
kj

=

K∑
k=1

[(yk − tk).yk(1− yk)]zj (5.10)
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∂En

∂w
(1)
ji

=
∂En

∂yk
.
∂yk
∂ak

.
∂ak
∂zj

.
∂zj
∂aj

.
∂aj

∂w
(1)
ji

(5.11)

∂En

∂w
(1)
ji

=

K∑
k=1

[(yk − tk).yk(1− yk).w
(2)
kj ].zj(1− zj).xi (5.12)

Now as all the derivatives have been calculated, the weight value is adjust using the gradient descent algorithm

defined by,

W(τ+1) = W(τ) − η∇E(W(τ)) (5.13)

Here τ represents the iteration stepps and the η is known as the learning rate. After each step, the gradient

is re-evaluated for new weight vector and the process is repeated. Note that the error function is defined

with respect to the training set, and so each step requires to re-calculate the output of the neural network.

Hence, each step of the gradient descent algorithm comprises two stages: in the first stage, known as forward

propagation, the output of the neural network for a set of weights w is calculated. In the second stage, known

as BackPropagation, the derivatives of the error function with respect to the weights are evaluated. These

derivatives are then used to compute the adjustments to be made to the weight and bias parameters.

5.2 Motivation of the research

The density functional theory (DFT) of Hohenberg, Kohn, and Sham [21, 22] allows for efficient com-

putation of material properties by avoiding the complicated many-electron wave function in favor of the

computationally convenient electron density when solving the electronic structure problem. Due to its useful

accuracy and efficiency, DFT has become the most widely used computational approach for solving problems

in chemistry and condensed matter physics/electronic structure.

In the Kohn–Sham (KS) formulation of DFT, the majority of the energy is calculated exactly, leaving only

a small portion of the energy, known as the exchange-correlation (XC) energy, to be approximated. There has

been extensive research on improving approximations to the XC energy and the resulting functionals are roughly

categorized into a hierarchy of increasing complexity and expected accuracy [179]. The meta-generalized

gradient approximations (mGGAs), the highest category that depends only on semi-local ingredients, are

becoming increasingly popular for allowing high accuracy at favorable computational cost. The mGGA

functionals commonly consist of an XC energy density, exc, built from three ingredients: the electron density,

n(r), its gradient, |∇n(r)|, and the kinetic energy density τ(r) =
∑occ.

i |∇φi(r)|2, where φi are the occupied

KS orbitals. Though less common, density functionals depending on the density Laplacian ∇2n(r) instead of

(or in addition to) τ are also included at the mGGA level. The total XC energy for the system is calculated
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by integrating this XC energy density over all space,

Exc =

∫
dremGGA

xc (n(r), |∇n(r)|, τ(r),∇2n(r)), (5.14)

=

∫
drFmGGA

xc (n(r), |∇n(r)|, τ(r),∇2n(r))n(r)ϵLDA
x (r), (5.15)

where FmGGA
xc is the XC enhancement factor and ϵLDA

x (r) = −(3/4π2)(3π2n)1/3 is the exchange energy per

particle of the uniform electron gas.

The kinetic energy density, τ , is commonly used in mGGAs to recognise different chemical environments

through iso-orbital indicator variables [180, 12, 122], and as a component of the spherical exchange hole

expansion[181]. While theoretically convenient, τ introduces an implicit dependence on the KS orbitals,

which brings some complications. 1) It reduces computational efficiency by requiring additional basis function

derivatives to be computed on the numerical quadrature grid, which can be more costly for Fourier transform

based periodic codes. 2) It prevents the functional being used in orbital-free DFT calculations. 3) Evaluation

of the XC potential for τ -dependent functionals requires either optimised effective potential (OEP) techniques

[88, 89], or a generalised KS scheme[90? , 92]. While a generalised KS treatment can be computationally

convenient, the effective XC potential operator of a τ dependent mGGA is no longer a multiplicative function,

vxc(r), and is instead a non-local operator, v̂xc.

Despite the potential advantages offered avoiding the use of orbital dependent ingredients such as τ ,

∇2n(r) remains a less explored ingredient and its physical significance for the XC energy is unclear. Recently,

Mejia-Rodriguez and Trickey [93, 13] replaced τ(r) with functions of ∇2n(r) in many mGGA XC functionals

to recover similar (but not identical) performance to the parent functionals. This suggests an intriguing

but unclear relationship between τ(r) and ∇2n(r), though an explicit relationship remains elusive despite

significant effort [182].

Machine learning (ML) has proven to be a powerful tool for building complicated non-linear mappings for

which little theoretical guidance exists. It has proved successful in building complex models across a wide

variety of fields including robotics [183, 184], pattern recognition[185, 186], drug design [187, 188, 189], and

gaming [190]. Within DFT research, there has been a recent practice of applying ML to construct density

functionals. In 2012, Synder et. al. used a ML approximation to construct an orbital-free non-interacting

kinetic energy functional Ts[n] for spinless fermion systems [38, 39]. Brockherde et. al. used ML to learn

the Hohenberg-Kohn (HK) map between electron density and external potential to give a mechanism that

bypasses solving the KS equations [40]. Several other works have focused on the XC potential problem

[41, 42, 43, 44]. A perspective surveying the current state of ML in computational chemistry and materials

science was recently published by Westermayr, Gastegger, and Schütt in Ref. [191].
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The Strongly Constrained and Appropriately Normed (SCAN) functional [12] has proven to be effective

for describing a wide variety of systems [34], such as liquid water and ice [192], semiconductor materials [193]

and metal oxides [194], as well as for key properties of correlated materials like cuprates [3, 116, 195]. SCAN’s

success is credited to its adherence to all of the known exact-constraints applicable to a meta-GGA functional,

along with the philosophy of using “appropriate norms” to set free parameters with minimal empiricism.

These appropriate norms are the systems for which a semi-local density functional approximation can be

expected to be highly accurate, that is: the total energies of systems with highly localized exchange-correlation

holes [12].

In light of this dual success of both constraint driven design and ML techniques, a question arises. Is the

philosophy of exact constraints and appropriate norms compatible with ML for functional design? Growing

evidence that exact constraint adherence can improve ML transferability suggests it is. Indeed, earlier works

from Hollingsworth et. al. show that enforcing coordinate scaling constraints can improve machine-learned

functionals [45]. Nagai and collaborators [47] recently introduced a method to analytically impose asymptotic

constraints on an ML XC functional, finding generally improved accuracy. More recently, Kirkpatrick and

co- workers [41] developed a functional DM21 (DeepMind21) that for the first time, obeys two classes of

constraints on systems with fractional electrons, which are fractional charge systems and fractional spin

systems [196].

In our work, we explore this idea of exact constraints and appropriate norms satisfaction by training

a deep artificial neural network (ANN) to reproduce the XC energy density of the SCAN functional using

∇2n(r) instead of τ(r), a similar goal to the SCAN-L functional [13]. The de-orbitalization of SCAN stands

as a convenient application for exploring the idea of constraint satisfaction in ML functionals, with SCAN-L

providing an analytical benchmark for the task.

The ML models will be trained to perform the transformation,

F SCAN
xc (n(r), |∇n(r)|, τ(r)) → F SCAN−ML

xc

(
n(r), |∇n(r)|,∇2n(r)

)
We approach this mapping of orbital free ingredients onto the SCAN XC energy density using two different

ML models adhering to different numbers of exact conditions. One model is a single totally-connected

ANN trained for equation 5.2 directly, termed the “combined model”. The other model is built as two

complementary exchange and correlation-like ANN designed to obey exact spin-scaling constraints, termed

the “spin-scaled model”. We also impose the general Lieb–Oxford bound [69] on these models to create

models that also satisfy this constraint.
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5.3 Exact Constraints

While the exact XC functional remains unknown, it is known to obey many mathematical conditions,

commonly called the “exact constraints” of XC functionals. Currently, 17 exact constraints [12], are known

to apply at the semi-local functional level. These can be broken down as conditions for the exchange energy:

(1) negativity, (2) spin-scaling [65], (3) uniform density scaling [66], (4) the slowly-varying density gradient

expansion (to fourth order) [53], (5) non-uniform density scaling [67, 68], and (6) a tight bound for two-electron

densities [63, 69]. For correlation: (7) non-positivity, (8) the slowly-varying density gradient expansion (to

second order) [197], (9) uniform density scaling to the high-density limit [66], (10) uniform density scaling to

the low-density limit [66], (11) zero correlation energy for any one-electron spin-polarized density, and (12)

nonuniform density scaling [67, 68]. Finally, there are constraints known for the exchange and correlation

together: (13) size extensivity, (14) the general Lieb–Oxford bound [198, 69], (15) weak dependence upon

relative spin polarization in the low-density limit [70, 56], (16) static linear response of the uniform electron

gas [71], and (17) the Lieb–Oxford bound for two-electron densities [69].

Here, we consider a subset of the 17 constraints that are easy to enforce in an ML model.

The first of these is the behavior of the exchange energy under constraint (3), behavior under uniform

density scaling,

nγ(r) = γ3n(γr), (5.16)

where γ is a positive real number. The exact exchange energy is known to scale as,

Ex[nγ ] = γEx[n], (5.17)

under this transformation. The effect of this condition on kernel ridge regression models was investigated by

Hollingsworth, Baker, and Burke in Ref. 45 for Hook’s atom model systems, concluding that its inclusion

improved ML functional performance.

Condition (2), the spin-scaling relation for exchange energy,

Ex[n↑, n↓] =
Ex[2n↑] + Ex[2n↓]

2
, (5.18)

is simple to enforce for ML exchange models by requiring separate exchange and correlation models, and that

the same exchange model handle each spin channel independently.
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Condition (14), the general Lieb–Oxford bound on the XC enhancement factor, states that,

0 ≤ Fxc(r) ≤ 2.215. (5.19)

These bounds can be enforced on ML models by including a post-processing step that maps ML model output,

denoted ANNxc(r), to the desired domain, e.g.

FML
xc (r) =

2.215

1 + ANNxc(r)2
. (5.20)

A similar approach can be applied to impose condition (6), the tight bound for the exchange enhancement

factor Fx(r) ∈ [0, 1.174], if exchange and correlation models are separated. Conveniently, such post-processing

also enforces conditions (1) and (7), non-positivity, by constraining Fxc ≥ 0. It appears more challenging to

enforce the exact constraints outside this subset in ML models. For example, while enforcing the second (and

fourth) order gradient expansions for correlation (and exchange) is relatively straightforwards in analytical

functionals, the ML design contains thousands of parameters which cannot be fully controlled. Thus, it is

non-trivial to enforce such gradient expansion constraints on the model a priori. Despite this, the nature of

supervised training against methods that obey such constraints (such as SCAN) will result in the trained

model effectively learning a degree of the constraints. Without the rigorous enforcement described above it is

unclear how well such adherence will transfer out of the training domain however.

5.4 Input domain

Identifying input domain is a critical part of ML model design as a model’s performance can be strongly

dependent upon the nature of its inputs. Since our central interest is to replace kinetic energy density τ(r)

dependence we will only consider orbital free ingredients. Four density inputs were intially identified,

rs =

(
3

4πn

)1/3

−Wigner-Seitz radius (5.21)

s =
|∇n|

2(3π2)1/3n4/3
− Reduced density gradient (5.22)

ζ =
n↑ − n↓
n↑ + n↓

− Spin polarization (5.23)

q =
∇2n

4(3π2)2/3n5/3
− Reduced density laplacian (5.24)

The above dimensionless ingredients are preferred for XC functionals rather than using the density

variables directly because the correct uniform coordinate density-scaling behaviour can be satisfied with them
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[66]. The Weigner–Seitz radius is the radius of a sphere which on average contains one electron. The reduced

density gradient introduces inhomogeneity which measures how fast and how much the density varies on

the scale of the local Fermi wavelength 2π/kF . The reduced density Laplacian also measures the density

inhomogeneity and can distinguish bonds, in contrast to reduced gradient which vanishes at the middle of

the bond [182].

Further exploration revealed that including additional ingredients directly from the SCAN exchange and

correlation functionals (see Ref.12 supplemental material ‘SX’) could improve model performance:

ϵ0c(rs, s, ζ)− Single orbital correlation (5.25)

ϵ1c(rs, s, ζ)− Slowly varying correlation (5.26)

gx(s)− Exchange inhomogeneity (5.27)

h0 = 1.174− Single orbital exchange (5.28)

h1 = 1.065− 0.065

(1 + 10s2/81
0.065 )

−X 2nd order gradient expansion (5.29)

These additional inputs are combinations of the original density ingredients and do not provide any new

information directly. Their inclusion makes learning more efficient however, as it reduces the manipulations

that the network must learn. This limits dependence on the network to only learning τ dependent aspects,

rather than requiring it to learn every detail of the SCAN functional.

The possible range of the input parameters is very different to desired range of the model outputs:

0 ≤ FML
xc ≤ 2.215. For example, the domain of rs and s is [0,+∞) while q is (−∞,∞). Such a mismatch

in the magnitude of input and output is known to be challenging for ML models. To correct for this we

pre-processed the unbounded inputs using the hyperbolic tangent function, tanh(x) [199], to smoothly map

the unbounded quantities to (−1,+1). With pre-processing, the inputs are defined as,

r̃s = tanh(rs), (5.30)

s̃ = tanh(s), (5.31)

q̃ = tanh(q). (5.32)

Finally, we pre-process ζ as,

ζ̃ =
1

2

[
(1 + ζ)4/3 + (1− ζ)4/3

]
, (5.33)

to ensure the model is a symmetric function of spin polarisation [65]. The inputs of equations 5.25-5.29

are unprocessed as their ranges are already correctly bounded. Note that the pre-processed variables (Eqs.
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Figure 5.4: ML model architecture and workflow for (a) combined model (b) spin-scaled model. For the
combined model, total density (n↑+n↓) is given as the input. In the spin-scaled model, the upper architecture
is for the exchange model learning while the lower is the correlation-like model. Spin-scaling is satisfied in
the exchange model represented by (2nσ) where σ =↑↓ spin channels.

5.30-5.33) are only supplied to the network and are not used to generate the additional inputs of Eqs.

5.25-5.29.

Having identified the input domain, a training data set consisting of 20 atoms was generated using accurate

spherical Hartree–Fock orbitals [9, 10, 11] containing open and closed shell atoms (He, Li, Be, B, C, N, O, F,

Ne, Na, P, Cl, Ar, K, Cr, Cu, Cu+, As, Kr, Xe) with s, p, and d valence shells. The energetically important

region of the atomic density is typically between 0 and 4 a0 and the density of each atom was therefore

sampled in shells of decreasing sample density for models, with 2500 points evenly distributed radial sample

in r < 1 bohr (core), 1500 in 1 ≤ r < 4 bohr, and 500 in the tail region 4 ≤ r < 10 bohr.

This atomic training data was augmented with densities from the “appropriate norm” systems used in

SCAN’s construction. The first norm is the one electron hydrogen atom, which is used to ensure SCAN’s one

electron self-correlation freedom (constraint 11). The second and third norms are the jellium surface densities

for rs = 2, 3, 4 and 6 [200, 201], and the converged SCAN orbitals of the compressed argon dimer with

nuclear separations of 1.6, 1.8, and 2.0 Å, which were used to fix SCAN’s interpolation function parameters

[12]. We restrict the training data set to only these appropriate norms and avoid including chemically bonded

systems. While increasing the domain of the training data is expected to give the resulting ML models higher

accuracy for a wider range of problems, our intent here is to observe how exact constraint satisfaction can

transfer knowledge from minimal training data onto diverse problems.
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5.5 Neural Network architecture and Training

In this work, all the networks were built on the basis of the ML framework Tensorflow [202]. For the

models, the non-linearity in the mapping is acquired by using sigmoid[203], tanh and exponential linear unit

(elu) [204] activation functions, chosen as commonly used continuously differentiable activation functions.

Ensuring smooth activation functions was found to be essential for obtaining reasonable XC potentials, as

discussed below. The data set was randomly divided into training (80%) set and validation (20%) set, using

train-test split feature of sci-kit learn [205]. Hyper-parameter search identified a 3 layered model with sigmoid,

sigmoid and tanh activation functions as preferable for the combined model while a 2 layered model with

tanh and elu activation functions for spin-scaled model were obtained. The network weights and biases were

optimized by stochastic gradient descent with the Adam optimizer [206] using a learning rate of 0.05, applying

a gradient step after each sample in the training data set. The optimized model was chosen as that which

minimizes the error for the validation set, generally found after one complete pass of the training data.

5.5.1 Combined Model

Figure 5.4 a) presents a schematic for the simple neural network(NN) architecture, termed the “combined

model”. As the name suggests, the combined model receives inputs constructed from total density (n↑ + n↓)

as the features, and targets SCAN’s exchange-correlation enhancement factor. Different numbers of hidden

layers and neuron counts were tested, with a three layered model with 100, 50 and 20 neurons in respective

layers found to perform best.

For the combined model, the loss function to be optimized in the learning process is defined as,

Lcombined =
1

N

N∑
i

(
FML
xc − F SCAN

xc

)2
, (5.34)

where N is the number of training data points, thus minimizing the mean square difference between SCAN XC

enhancement and the learned XC enhancement.The Lieb-Oxford bound for the combined model is introduced

as a post-processing mechanism following the explanation in Eq. 5.20.

5.5.2 Spin-Scaled Model

The spin-scaled model follows a more complex architecture that allows it to obey the spin-scaling exact

constraint by treating exchange and correlation separately, as discussed above. The overall architecture for

the spin-scaled model is presented in Figure 5.4 b). The spin-scaled model is comprised of two separate

networks, one for exchange and one for correlation. These networks are trained separately and later combined
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to form the complete model. Training is therefore carried out as a two step process.

This separation by spin channel reduces the input domain for the exchange network to six features

suitable for exchange, {r̃sσ, s̃σ, q̃σ, gxσ, h0σ, h1σ}, separately generated for each spin σ. The exchange network

is trained first to minimize the mean square difference with the SCAN exchange enhancement defined as,

Lexchange =
1

N

N∑
i

(
FML
x − F SCAN

x

)2
, (5.35)

with the spin-scaled exchange enhancement,

FML
x =

Fx(2n↑)e
LDA
x (2n↑) + Fx(2n↓)e

LDA
x (2n↓)

2eLDA
x (n↑ + n↓)

. (5.36)

As the exchange energy must be invariant to permutation of spin labels, the same exchange network used for

both spin channels and should trained on both spin channels of the training data. The exchange network has

two layers with 80 and 40 neurons at the first and second layers respectively and the activation functions are

tanh and exponential linear unit (elu) [204].

The correlation energy is not subject to the same spin scaling constraint and is handled by a separate

model. This second model takes a reduced set of the total density (n↑ + n↓) input variables suitable for

correlation: {r̃s, s̃, q̃, ζ2, ϵ0c , ϵ1c}. This second network has the same hyper-parameters as the exchange network.

The loss function for the second network is,

Lcorrelation =
1

N

N∑
i

[
FML
c − (F SCAN

xc − FML
x )

]2
, (5.37)

where FML
x is the output of the previously trained exchange network. This second network is therefore not a

true model of SCAN correlation as the loss function of Eq. 5.37 drives it to compensate for deficiencies in the

exchange network, though correlation effects will dominate if the exchange network is accurate.

Finally, the total enhancement factor is obtained by summing the exchange network and second network

enhancement factors as,

F spin−scaled
xc = FML

x + FML
c . (5.38)

The Lieb-Oxford bounds for the spin-scaled model are introduced separately for exchange and the

correlation parts as they are trained separately. For the exchange part, we follow similar mechanism as

explained in Eq. 5.20 where the bound is introduced to the exchange enhancement factor as,

FML−bound
x (r) =

1.174

1 + ANNx(r)2
. (5.39)
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Here we choose a tight bound of 1.174 for the exchange.

For correlation, we introduce the bound by modifying the loss function to include an additional penalty

term,

Lbound
correlation =

1

N

N∑
i

{
[
FML
c − (F SCAN

xc − FML
x )

]2
+ µ × relu(−1 × (2.215 − FML

xc ))}, (5.40)

where µ value is chosen to be 20. Here we see that if the total XC enhancement factor is smaller than the

tight bound 2.215 the penalty term is zero whereas any value of total XC enhancement factor greater than

2.215 will incur penalty. This total loss function is minimized to satisfy the Lieb–Oxford bound introduced in

the ML model.

5.6 Results and discussion

5.6.1 Atomic Performance

Figure 5.5 shows the SCAN and ML-model XC enhancement for the silicon atom, which was not part of

the training set. Figures a) and b) show combined and spin-scaled models respectively without Lieb–Oxford

bound, while c), d) include Lieb–Oxford bound constraint. All the ML models show good agreement with the

SCAN’s XC enhancement factor for this system. The combined model without Lieb–Oxford bound shows

slightly less variation in the energetically important region between r = 0 and r = 4, the nuclei and inter-shell

regions.

During training we did not target total XC energy directly, in favor of learning the XC energy density of

an existing mGGA instead. This switch towards mimicking XC energy density, a local property, has three

benefits. Most importantly it reduces the complexity of the training by avoiding summing the derivatives of

many training points in a numerical integration batch. Secondly, far more training data is available for a

given functional’s local energy density than for total XC energies, as every point in the all-space integration of

any system can now be considered a training point. Thirdly, this avoids the introduction of a gauge freedom

in which many different energy density functions can integrate to the same total energy, which could result in

learning a model that gives reasonable total energy, but poor local accuracy to the SCAN energy density.

Despite this training against local XC density it will be shown that the models are successful in recovering

the total XC energy for the training atom sets, predicting the global property from local training.
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Figure 5.5: XC enhancement plots for the test silicon atom which was not included in the training set for (a)
combined model and (b) spin-scaled model without Lieb–Oxford bound while (c) and (d) represent same
as (a) and (b) with Lieb-Oxford bound. All models performances are compared against SCAN functional.
Density was obtained from accurate spherical HF orbitals [9, 10, 11].

5.6.2 Molecular Test Sets

For the models trained against data from atomic systems, a real challenge is to generalize to problems

outside the training domain. We examine this by looking at model accuracy for the open- and closed-shell

molecules of the G3 test set [15]. The input ingredients (density, gradient and laplacian) and the SCAN

F SCAN
xc target for all molecular calculations were generated from self-consistent SCAN orbitals in the 6-

311++G(3df,3pd) basis set [16, 17]. All molecular calculations were carried using the QUantum Electronic

Structure Techniques (QUEST) program [18].

The mean absolute error in atomization energy for the G3 set are summarized in Tables 5.1 and 5.2 for

open-shell, closed-shell, and total collections. Overall all models showed comparable performance giving

accuracy close to the SCAN functional (MAE 6.53 kcal mol−1 ). In particular, enforcing the correct spin-

scaling relation in the ML models improved accuracy for the open-shell systems, though this was accompanied

by a smaller reduction in accuracy for the closed shell systems. Introduction of the Lieb–Oxford bound to
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Table 5.1: Mean absolute error (MAE) in kcal mol−1 for G3 set of 226 molecular atomization energies [15]. All
SCAN G3 calculations were performed fully self-consistently with the 6-311++G(3df,3pd) basis set [16, 17]
in the QUEST program[18]. The ML calculations were performed non self-consistently from SCAN orbitals.
The ML models with Lieb–Oxford bound are denoted by “LO” within table. The model performances are
compared against parent SCAN functional.

SCAN
ML models closed shell open shell (G3)

(MAE) (MAE) (MAE)
Combined 7.49 7.89 7.69

Combined-LO 11.88 9.26 10.58
Spin–scaled 8.03 4.85 6.44

Spin-scaled-LO 7.66 5.66 6.66

Table 5.2: Mean absolute error (MAE) in kcal mol−1 for G3 set of 226 molecular atomization energies [15]. All
SCAN G3 calculations were performed fully self-consistently with the 6-311++G(3df,3pd) basis set [16, 17]
in the QUEST program[18]. The ML calculations were performed non self-consistently from SCAN orbitals.
The ML models with Lieb–Oxford bound are denoted by “LO” within table. The model performances are
compared against reference values.

Reference
ML models closed shell open shell (G3)

(MAE) (MAE) (MAE)
Combined 7.80 5.17 6.48

Combined-LO 13.24 7.26 10.25
Spin–scaled 8.55 3.73 6.14

Spin-scaled-LO 11.14 6.35 8.75

Figure 5.6: Exchange-correlation enhancement plots for O2 (open shell) and CO (closed shell) from (a)
combined model and (b) spin-scaled model without Lieb–Oxford bound. (c), (d) are same as (a) and (b) but
for models including Lieb–Oxford bound. The gray vertical lines mark atomic positions.

the combined model deteriorated performance for both open and closed shell systems. This unexpected

poor performance suggests that enforcing the Lieb–Oxford bound through Eq. 5.20 does not seem to be a

successful strategy. While such post-processing seems theoretically convenient, the results from the G3 set
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and lattice constant below show that it significantly limited model learning during training. We understand

this as an effect of requiring the network to simultaneously return very large numbers when target Fxc(Fx)

is small, and very small numbers in energetically significant regions where Fxc(Fx) approaches 2.215(1.174)

for combined(spin–scaled) models. The spin–scaled model performs better than combined model because

the number to return (1.174) is relatively smaller compared to 2.215 for combined model and hence error is

smaller. An alternative solution for enforcing this constraint could be to simply truncate the range of the

network output,

FML
xc = max(0,min(2.215,ANN(r))), (5.41)

and

FML
x = max(0,min(1.174,ANN(r))), (5.42)

however this may introduce undesirable discontinuities in the partial derivatives of the model, transferring

into a non-physical XC potential.

In order to better understand how faithfully the ML models are reproducing the SCAN functional, Figure

5.6 compares the XC enhancement factor, Fxc, for the open shell O2 and closed shell CO molecules. We see

that all the models are accurate in the areas immediately around the nuclei. This is expected from the good

atomic performance as these core regions are relatively unchanged by the covalent bonding. The models

deviate more severely around the bond center, with all models underestimating F SCAN
xc . In these regions

|∇n| → 0 and hence s → 0, while the density n remains significant. Such regions are under-represented

in the training set, appearing only in small regions at the center of the compressed Ar2 diatomic. This

suggests that the spin scaling relation enforced in the spin-scaled model as well as the Lieb–Oxford bound

are insufficient to transfer learning from a training set that does not include chemical bonding, onto systems

that are chemically bound. Further constraint satisfaction, or inclusion of bonding data into the training set,

is likely necessary to improve model accuracy at these important points. We also note that the combined

model with no Lieb–Oxford bound exhibits sharp spikes in Fxc in the bonding regions that are not seen for

other ML models or the SCAN functional.

5.6.3 Lattice Constants of solids

The transferability of the ML functionals was further tested by calculating the lattice constants of 20

solids from the LC20 test set[207]. This tests the model’s ability to generalise into further unseen chemical

environments in periodic systems, as well as requiring description of the energy as a function of nuclear

displacement. The LC20 set is therefore a sensitive test of model transferability. The equilibrium lattice
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Figure 5.7: Mean Absolute Error (MAE, Å) for SCAN, whose results are obtained from Ref.[12], SCAN-L,
whose results are obtained from Ref. [13], combined, combined with Lieb–Oxford bound (denoted “LO”
within figure), spin-scaled and spin-scaled with Lieb–Oxford bound for the lattice constant set of 20 solids.
The ML calculations were obtained from non self-consistent calculations using PBE densities generated
self-consistently, using FHI-aims [14].

constants were determined by nine points fit of total energy per unit cell to the Vinet equation of state

around the SCAN equilibrium unit cell volume (V0) in a range of V0 ± 10% [208, 209].

Figure 5.7 compares LC20 results from ML models with the SCAN and SCAN-L functionals. The SCAN

results for lattice constants are taken from Ref. [12] and SCAN-L results from Ref. [13]. The results show

that the ML models do not perform as well for solids as they do for gas phase atoms and molecules, suggesting

difficulty in generalizing knowledge into this untrained domain. The spin-scaled model preformed significantly

better than the combined model both with and without enforcing the Lieb–Oxford bound. While the

performance of ML models is poor compared to SCAN and SCAN-L, they improve slightly on the PBE GGA

[32] (MAE 0.060Å). It has to be noted here that the ML calculations were obtained non self-consistently using

PBE densities instead SCAN densities. This is because we found SCAN implementation to be numerically

less stable in FHI-aims and showed convergence issues for certain systems. FHI-aims was used because we

required all electron code and not pseudopotential to get usable input data for lattice constant calculations.

The poor performance for the ML models could well be because we may have introduced density driven errors

into the ML calculations as PBE densities are different to SCAN densities. Having said that, it suggests a

similar conclusion to the molecular tests: that the spin-scaling and the Lieb–Oxford bound are insufficient to
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Figure 5.8: Derivatives of SCAN and ML model XC energy density (combined and spin-scaled) with respect
to input ingredients for the silicon atom (not in training set). ML derivatives are represented by solid lines
while SCAN are dotted.

transfer learning into the periodic systems. Inclusion of such information in the training set is likely necessary

to improve model accuracy.
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5.6.4 Exchange-correlation potential

The XC potential is defined as,

vxc(r) =
δExc

δn(r)
. (5.43)

This is constructed for the ML models from the partial derivatives of the model with respect to its ingredients,

{
∂EML

xc

∂n(r)
,
∂EML

xc

∂|∇n(r)|
,
∂EML

xc

∂∇2n(r)

}
, (5.44)

through repeated application of the chain rule. In practice this is achieved using the back-propagation

mechanism of the machine learning framework [210]. Here the choice of the activation functions for the neuron

layers is critically important for obtaining a smooth XC potential appropriate for SCF applications. When

the activation functions are differentiated during back-propagation activation functions with discontinuous

derivatives, such as the popular rectified linear unit (ReLu) [211], may introduce discontinuities into the

XC potential that can harm SCF convergence and computational efficiency. We therefore used only smooth

sigmoid, tanh and elu activation functions within the present models.

Figure 5.8 shows partial derivatives of the combined and spin-scaled models with respect to input ingredi-

ents, compared against the equivalent for the SCAN functional where they exist. Note that ϵSCAN
xc (n, |∇n|, τ)

and ϵML
xc (n, |∇n|,∇2n) are necessarily different functions, even though ϵML

xc has been trained to reproduce

ϵSCAN
xc . Hence, we should not expect their partial derivatives in n and |∇n| to match. Figure 5.8 (a-d)

shows the combined model partial derivatives for the test silicon atom, while (e-h) shows the same for the

spin-scaled model.

Figures 5.8 (a), (e), (i) and (m) show that the density partial derivative is comparable to SCAN for both

models. Both models exhibit oscillations in this derivative, though these are less severe for the spin-scaled

models than the combined models. Figures 5.8 (b-c) and (j-k) for the combined model without and with

Lieb–Oxford bound constraint and (f-g) and (n-o) for spin-scaled model, again with and without Lieb–Oxford

bound, show the partial derivatives with respect to the same spin and cross spin gradient components. While

the combined model does not distinguish between different spins ∂ϵxcML/∂∇n2σ = ∂ϵxcML/∂∇n↑ · ∇n↓, the

spin-scaled model is able to distinguish spin channels so the same-spin and cross-spin partial derivatives are

different. Finally, Figures (d), (h), (i) and (k)show the Laplacian partial derivatives.

It is not clear to what degree the oscillations of the present partial derivatives may affect the SCF

performance of the ML models without performing such calculations, which is beyond the scope of the present

study. We can reasonably expect the smoother spin-scaled model to outperform the combined model in this

regard however, as a result of the reduced oscillations seen in Figure 5.8. We note that the SCAN functional
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is known to have problematic oscillations in its XC potential which reduce its computational efficiency but

generally do not prevent SCF convergence [82, 84, 83, 85, 79]. The similarity between the ML and SCAN

partial derivatives of Figure 5.8 therefore suggest that self-consistency can likely be reached, though this may

be sensitive to the choice of starting guess orbitals if they are different from the converged orbitals used in

training.

5.7 Conclusion

In summary, we explore how a philosophy of exact constraints and appropriate norms can be combined

with ML techniques in functional design. We have shown a simple test of this idea as a de-orbitalization of

the SCAN functional, using the density Laplacian, ∇2n(r), in place of kinetic energy density τ(r). Four ML

functionals were developed, enforcing a spin-scaling constraint, the Lieb–Oxford bound, both, and neither.

These models were trained using a dataset with no chemical bonding, preferring the “norms” appropriate

for semi-local functionals [12]. The model satisfying both the spin-scaling constraint and the Lieb–Oxford

bound generally achieved a more balanced performance accross the properties tested, though performance

was worse than that achieved by the analytical SCAN-L deorbitalization. Given that model performance

was generally improved when both constraints were imposed, it is reasonable to believe that engineering in

further constraints can enhance robustness of the ML models out of the training domain.
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[94] D. Mej́ıa-Rodŕıguez and S. Trickey, “Meta-GGA performance in solids at almost GGA cost,” Phys.
Rev. B, vol. 102, no. 12, p. 121109, 2020.

[95] J. P. Perdew and L. A. Constantin, “Laplacian-level density functionals for the kinetic energy density
and exchange-correlation energy,” Physical Review B, vol. 75, no. 15, p. 155109, 2007.

[96] A. D. Kaplan and J. P. Perdew, “Improved laplacian-level meta-gga for the weakly-nonlocal solid
metals,” arXiv preprint arXiv:2203.09403, 2022.

[97] P. H. Meijer, “Kamerlingh onnes and the discovery of superconductivity,” American Journal of Physics,
vol. 62, no. 12, pp. 1105–1108, 1994.

[98] W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit,” Naturwis-
senschaften, vol. 21, no. 44, pp. 787–788, 1933.

[99] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Physical
Review, vol. 106, no. 1, p. 162, 1957.

[100] J. G. Bednorz and K. A. Müller, “Possible hight c superconductivity in the ba- la- cu- o system,”
Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–193, 1986.

[101] M.-K. Wu, J. R. Ashburn, C. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Wang, and a. Chu,
“Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure,”
Physical review letters, vol. 58, no. 9, p. 908, 1987.

[102] W. E. Pickett, “Electronic structure of the high-temperature oxide superconductors,” Reviews of Modern
Physics, vol. 61, no. 2, p. 433, 1989.

[103] L. Mattheiss, “Electronic band properties and superconductivity in la 2- y x y cuo 4,” Physical review
letters, vol. 58, no. 10, p. 1028, 1987.

[104] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for
many-electron systems,” Physical Review B, vol. 23, no. 10, p. 5048, 1981.

[105] D. Singh and W. Pickett, “Gradient-corrected density-functional studies of cacuo 2,” Physical Review
B, vol. 44, no. 14, p. 7715, 1991.

[106] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,”
Physical review A, vol. 38, no. 6, p. 3098, 1988.

88



[107] C. Lee, W. Yang, and R. G. Parr, “Development of the colle-salvetti correlation-energy formula into a
functional of the electron density,” Physical review B, vol. 37, no. 2, p. 785, 1988.

[108] P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption
and circular dichroism spectra using density functional force fields,” The Journal of Physical Chemistry,
vol. 98, no. 45, pp. 11623–11627, 1994.

[109] J. K. Perry, J. Tahir-Kheli, and W. A. Goddard III, “Ab initio evidence for the formation of impurity d
3 z 2- r 2 holes in doped la 2- x sr x cuo 4,” Physical Review B, vol. 65, no. 14, p. 144501, 2002.

[110] L. K. Wagner and P. Abbamonte, “Effect of electron correlation on the electronic structure and
spin-lattice coupling of high-Tc cuprates: Quantum Monte Carlo calculations,” Phys. Rev. B, vol. 90,
no. 12, p. 125129, 2014.
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