TOWARDS EQUITABLE INSTITUTIONS OF CIVIC ENGAGEMENT:
HOW RACE, CLASS, AND GENDER IMPACT PUBLIC PARTICIPATION IN NEW ORLEANS
AN HONORS THESIS
SUBMITTED ON THE 28TH DAY OF APRIL, 2021
TO THE DEPARTMENTS OF POLITICAL ECONOMY AND POLITICAL SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE HONORS PROGRAM
OF NEWCOMB-TULANE COLLEGE
TULANE UNIVERSITY
FOR THE DEGREES OF
BACHELOR OF ARTS
WITH HONORS IN POLITICAL ECONOMY AND POLITICAL SCIENCE

BY

[Signature]
Katherine Rose

APPROVED:

[Signature]
Stephen Ostertag, Ph.D.
Co-Director of Thesis

[Signature]
Izabela Steflija, Ph.D.
Co-Director of Thesis

[Signature]
Menaka Philips, Ph.D.
Third Reader

(Professor Stephen Ostertag, Sociology; Professor Izabela Steflja, Political Science International Development)

This thesis uses intersectional feminist statistical methods to investigate the ways that identity (including race, class, gender, and other factors) impacts access to political power within civic engagement institutions. It examines neighborhood associations as a case study, which connect neighborhood residents to opportunities to participate in local politics. The work aims to build upon gaps in civic engagement literature by explicitly studying the intersection of race, class, and gender and its impacts on political power. Further, this thesis seeks to investigate the specific mechanisms of inclusion and exclusion occurring within the localized context of civic engagement institutions in New Orleans. Chapter 1 focuses on and identifies gaps within relevant civic engagement literature, Chapter 2 introduces and justifies the chosen methodological approach, Chapter 3 includes an in-depth analysis of results, and Chapter 4 summarizes and interprets key findings. Overall, this investigation revealed that race, class, and gender actively shape access to political power in nuanced and often contradictory ways in New Orleans. Further, findings suggest that neighborhood associations are not demographically representative of New Orleans residents at both neighborhood and city-wide levels.
ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis committee, including Dr. Stephen Ostertag, Dr. Izabela Steflja, and Dr. Menaka Philips. Their guidance, assistance, and advice were invaluable throughout each stage of the research process. I would also like to extend my profound gratitude to Maxwell Ciardullo and Karléh Wilson at the Louisiana Fair Housing Action Center, who are co-collaborators on a report that integrates insights from this thesis. During bi-weekly check ins, they provided constructive feedback and insightful suggestions that transformed the quality of my research. I would also like to thank Samuel Mignot for his invaluable insights on effectively mobilizing statistical analysis and data visualization techniques. Finally, I would like to extend a special thank you to my family for their unwavering support. They have encouraged my intellectual curiosity throughout my experience at Tulane.
TABLE OF CONTENTS

Chapter 1- Introduction .. 1
 Introduction .. 1
 Literature Review ... 1
 Significance of New Orleans as a Case Study ... 6
 Significance .. 8

Chapter 2- Research Methodology .. 10
 Methods .. 10
 Data Collection Methods ... 11
 Board Member Demographics ... 11
 Civic Engagement Survey .. 12
 Activity Level ... 13
 Analysis Methods ... 14
 Board Member Demographics ... 14
 Civic Engagement Survey .. 15
 Activity Level ... 16
 Justification ... 17
 Potential Limitations ... 18

Chapter 3- Results .. 21
 Board Member Demographics vs. Neighborhood Demographics .. 21
 Survey Participant Demographics vs. Survey Responses ... 33
 Survey Participants Demographics vs. Orleans Parish Demographics .. 54
 Neighborhood Association Activity Level vs. Neighborhood Demographics 57

Chapter 4- Discussion ... 62
Bibliography...66

Appendices..73
LIST OF TABLES

Table 1. Chi-square Test of Goodness of Fit for Individual Neighborhood Associations……..25
Table 2. Multivariate Analysis for Survey Question 1: How long have you participated in your neighborhood association? (Years) For p ≤ .05………………………………………………………….57
Table 3. Multivariate Analysis for Survey Question 3: How many times have you participated in a neighborhood association meeting or event in the past year? For p ≤ .05………………………….39
Table 4. Multivariate Analysis for Survey Questions 4-6: How many times have you participated in a neighborhood association meeting or event in the past year? For p ≤ .05………………….43
Table 5. Multivariate Analysis for Survey Questions 7-10 for p ≤ .05…………………………….47
Table 6. Multivariate Regression Analysis for Survey Questions 11-14 for p ≤ .05………………….50
Table 7. Multivariate Regression Analysis for Survey Questions 15-17 for p ≤ .05………………….53
Table 8. Multivariate Regression Analysis for Pre- and Post-COVID-19 Neighborhood Association Activity Level for p ≤ .05…………………………………………………………………..60
LIST OF FIGURES

Figure 1. Pearson’s Correlation Coefficient Heat Map for Board Member Demographics vs. Neighborhood Demographics, all Associations ... 22

Figure 2. Pearson’s Correlation Coefficient Heat Map for Board Member Demographics vs. Neighborhood Demographics, Associations with at Least 7 Board Members 23

Figure 3. Goodness of Fit Histogram for Orleans Parish .. 24

Figure 4. Goodness of Fit Histogram for the Faubourg St. John Neighborhood Association 26

Figure 5. Goodness of Fit Histogram for the Lower Garden District Association 27

Figure 6. Goodness of Fit Histogram for the English Turn Property Owners Association 28

Figure 7. Goodness of Fit Histogram for the Bywater Neighborhood Association 29

Figure 8. Goodness of Fit Histogram for the Carrollton Area Network 30

Figure 9. Goodness of Fit Histogram for the Broadmoor Improvement Association 31

Figure 10. Pearson’s Correlation Coefficient Heat Map for Neighborhood Association Demographics vs. p value ... 32

Figure 11. Pearson’s Correlation Coefficient Heat Map for Survey Question 1: How long have you lived in your neighborhood? (Years) ... 34

Figure 12. Pearson’s Correlation Coefficient Heat Map for Survey Question 2: How long have you participated in your neighborhood association? (Years) 36

Figure 13. Pearson’s Correlation Coefficient Heat Map for Survey Question 3: How many times have you participated in a neighborhood association meeting or event in the past year? 38

Figure 14. Pearson’s Correlation Coefficient Heat Map for Survey Questions 4-6 41

Figure 15. Pearson’s Correlation Coefficient Heat Map for Survey Questions 7-10 45

Figure 16. Pearson’s Correlation Coefficient Heat Map for Survey Questions 11-14 48

Figure 17. Pearson’s Correlation Coefficient Heat Map for Survey Questions 15-17 52
Figure 18. Pearson’s Correlation Coefficient Heat Map for Survey Participant Demographics vs. Orleans Parish Demographics, Full Sample Size……………………………………………………………55

Figure 19. Pearson’s Correlation Coefficient Heat Map for Survey Participant Demographics versus Orleans Parish Demographics, Small Sample Size……………………………………………………56

Figure 20. Pearson’s Correlation Coefficient Heat Map for Pre- and Post-COVID-19 Activity Level………………………………………………………………………………………………………59
CHAPTER ONE

INTRODUCTION

Introduction

In the United States, civic engagement is a mechanism that connects citizens to broader society and provides an opportunity to participate in democracy (Robinson 2019; Smith 2017). It includes activities and opportunities that allow people to voice their political opinions, such as voting, membership in neighborhood-level associations, and attendance at public meetings (Robinson 2019). Although civic engagement is supported by the notion that everyone has the right to take part, some groups are restricted from participating. Particularly limiting factors include discrimination and systemic exclusion on the basis of race, class, and gender (McBride, Moore, and Sherraden 2006). To explore the ways that identity may limit or bolster people’s access to civic engagement opportunities, this thesis uses New Orleans neighborhood associations as a case study to investigate the question: how does identity (including race, class, and gender) impact access to political power in civic engagement institutions? Independent variables include New Orleans residents’ race, gender identity, and class through a variety of indicators. Political power is quantified by individual levels of participation in civic engagement opportunities, including neighborhood association and City Council meetings.

Literature Review

Past scholarship reveals many valuable insights about the role of civic engagement in society. A major insight includes the notion that it upholds a transparent and responsive democracy and provide individualized social benefits to citizens (Tocqueville and Reeve 1835). Studies also illuminate the importance of equal access to political opportunity, and identify factors that can limit, deter, or prevent the participation of certain demographic groups. Despite these contributions, literature fails to address the ways that civic engagement institutions structure
access to power on the basis of race, class, and gender. This relationship must be more thoroughly explored in the field of civic engagement.

An early branch of theory focuses on the ways that citizen participation benefits democracy. From its beginnings in American society, civic engagement has nurtured a connection between citizens and opportunities to influence local politics (Robinson 2019). In the early United States, civic associations emerged as an early institution of civic engagement that allowed people to participate in and practice democracy at the individual level (Brown, Hanna, and Holdsworth 2017; Kaufman, Jason, and Tepper 1999; Stoll 2001; Tocqueville 1835). In the 21st century, scholars of participatory democracy continue to uphold the importance of citizen involvement in political decision making (Bevir 2009; Smith 2017). Modern civic engagement institutions, for example, allow citizens to organize at the neighborhood level and promote a mutually transparent relationship with their government (Brown, Hanna, and Holdsworth 2017). Additionally, democracy is predicated upon the idea that every citizen has the ability to participate in their government (Smith 2017). Everyone must be able to participate in political deliberation and decision-making processes provided by civic engagement institutions (Smith 2017). This equality of access ensures that political institutions are responsive and transparent in responding to their constituents’ needs (Bramley and Bailey 2018; Levin-Waldman 2012; Smith 2017). It also increases the likelihood of just and equitable societal outcomes (Fung 2004).

Additionally, civic engagement provides important socioeconomic benefits to individuals that participate. When people join associations, they build relationships within their community and can gain access to resources that enhance their social and economic capital (Bramley and Bailey 2018; Robinson 2019; Stoll 2001). Putnam (2000) also argues that participation in civic associations is associated with higher levels of education, health, social mobility, and neighborhood safety. In addition to being essential for the realization of democracy, equal access
to political opportunities has deep implications for individuals seeking access to these social benefits. Everyone must have access to civic engagement institutions to ensure that the social, economic, and political benefits of engagement are distributed evenly within a community (Robinson 2019; Stoll 2001). Thus, from its origins in democratic theory to its modern-day interpretations, civic engagement is generally regarded as a positive force that confers important social benefits upon individuals and society (Robinson 2019).

Given these benefits, many contemporary scholars focus on the factors that govern access to civic engagement opportunity (and thus to associated societal and individual benefits). Social inclusion and exclusion are terms used to conceptualize the ways that different people are granted or denied access to political institutions. Inclusion is defined as the provision of equal access to influence the decision-making process (Dahl 1998; Goodin 2007; Wojciechowska 2019; Young 2000). By extension, social inclusion is the process of improving the ability for everyone to participate in civic engagement, particularly for those excluded on the basis of race, sex, age, disability, place of origin, religion, and other factors (“Identifying Social Inclusion” 2016). Social exclusion, necessarily implied by the concept of inclusion, is a state in which certain groups are unable to participate in political opportunity due to disparities in resources, rights, goods, or services (“Identifying Social Inclusion” 2016). In many cases, groups have been historically excluded from civic engagement institutions, such as African Americans. This presents the paradoxical question of how to re-integrate such populations into institutions designed to exclude them (Labonte 2004). Because exclusion and inclusion define individuals’ experiences with institutions, there is strong incentive to understand how and why they occur as well as ensure that participation is consistent across different demographic groups.

To investigate why certain groups are included or excluded from civic opportunity, many studies focus on trends in civic participation within certain populations over time. Putnam, for
example, famously argues that civic engagement is in decline, especially among Black Americans (2000). Other studies, however, reveal that it has merely assumed new (and sometimes less visible) forms in response to a shifting American political landscape (Robinson 2019). Some, for example, describe the enduring influence of voluntary associations on American political and civic life despite changes in their forms of organization (Brayden 2012; Skocpol 2004). Another branch of research identifies disparities in participation among groups of different race, class, and gender identity. Women and people of color, for example, generally experience greater difficulty participating in mainstream institutions of civic engagement and often develop their own methods of participation (Robinson 2019). Other theories correlate increasing class inequality with decreasing levels of civic participation, arguing that people with fewer financial resources have more difficulty accessing political space (Levin-Waldman 2012; Solt 2008). By detecting disparities in participation, these theories identify a need for greater inclusion in civic engagement. They do not, however, address the structural causes of this exclusion, nor investigate that ways that the institutions of civic engagement uphold power dynamics on the basis of race, class, and gender.

Scholarship fails to examine the ways that institutions, such as neighborhood associations, directly mediate access to social inclusion (Robinson 2019). The foundations of civic engagement lack an analysis of the inherent structural inequity present in many political structures (Fraser 1990; Robinson 2019). Institutions are often seen as “race-neutral” (Ray 2019; Robinson 2019), implying equal access regardless of racial identity. Evidence reveals otherwise; structural racism and other forms of discrimination are rampant (Fraser 1990; Robinson 2019), and the concept of neutrality merely serves to “erase difference, conceal power, and perpetuate social injustice” (Costa and Leong 2012). Further, institutions are shaped and informed by their history (Putnam 1993), and thus inevitably reflect historical patterns of bias and inequity. Since
the origins of slavery in the United States, many scholars argue that racism and sexism have endured and reformed within the institutional structures of American civic life (Omi and Winant 2009; Bonilla-Silva 2015). Since women and people of color were initially denied the right to vote, for example, civic associations developed along race, class, and gender-based lines (Robinson 2019). Many of these divisions persist in 21st century spaces (Robinson 2019), and the structure of policies and institutions directly determines whether they perpetuate social exclusion or mitigate its legacy (“Identifying social inclusion” 2016). Recent scholarship has not yet explored the ways that institutions structure access to power and resources on the basis of identity. To address this gap, this thesis explicitly addresses the ways that gender, race, and class interact within neighborhood associations, a type of institution typically considered “neutral” towards issues of identity.

To understand the ways that identity structures power, civic engagement scholarship must also engage with the concept of identity using an intersectional approach. In 1989, jurist Kimberlé Crenshaw introduced the term “intersectionality” to critique the U.S. judicial system’s race and gender-based classification of legal offenses. In a formative publication, she argues that violent offenses committed against Black women are not included under singular categories of gender and race (Crenshaw 1989). Intersectionality critiques the assumption that identity can be analyzed along a single axis or through the sum of several factors, such as race, class or gender. It is instead a product of the unique intersection of these elements (Crenshaw 1991). Oppression, in turn, is an interlocking and mutually reinforcing system at the intersection of race, gender, and class. Feminist scholar Patricia Hill Collins describes this interaction as the “matrix of domination” (Allison and Banerjee 2014; Hill Collins 1996; Limpangog 2016). When applied to the study of civic engagement, intersectional analysis ensures that all identity groups are represented within a study. Individuals at the intersection of two or more identities or that fall
along a spectrum, such as non-binary people, risk being omitted from a traditional method of conceptualizing identity (Wojciechowska 2019). This study assumes an intersectional lens to accurately determine whether civic engagement institutions are inclusive for every New Orleans resident.

Significance of New Orleans as Case Study

New Orleans neighborhood associations serve as a case study to investigate these intersectional relationships. In New Orleans, neighborhood associations are the dominant structures of civic engagement that connect residents to local political power (Koschmann and Laster 2011). Although legally independent from local government (Danley 2015), they are integral political actors that advocate for the needs of citizens at the neighborhood level and negotiate power for residents in conflict (Logan and Rabrenovic 1990).

Associations have played an increasingly important role in local politics, particularly following Hurricane Katrina when residents’ demands increased and changed (Danley 2015; Weil 2011). Before Katrina, rampant government corruption and intercommunal conflict led to low citywide levels of civic engagement and social capital. For several years after the storm, however, citizen engagement dramatically increased, along with corresponding indicators of cooperation and social trust (Weil 2011, 2012). Citizens were more likely to attend neighborhood association, City Planning, and City Council meetings. The functions of neighborhood associations changed as well; individual groups improved their organizational capacity and were eager to partner with local government as well as other neighborhood associations (Weil 2011). Overall, associational membership played a growing role in post-Katrina recovery and development for many New Orleans residents.

Despite the increasing popularity of neighborhood associations, participation was uneven among different population groups. Research from Frederick Weil, conducted from 2006 to 2011,
indicates that people with greater social and economic capital were more civically active: Jewish people, citizens in high income and education brackets, White people, and church members (2011). Surprisingly, the most active citizens were mostly Black and low-income members of Social Aid and Pleasure Clubs (SAPCs). SAPC members compensated for their comparative lack of individual resources through increased civic participation, yet continued to be excluded from civic engagement spaces by New Orleans elites (Weil 2011). The least active groups were Black people (excluding SAPC members), Vietnamese people, and residents of temporary emergency housing (Weil 2011). These groups scored poorly on indicators of social and economic capital. The exclusion of Black and Vietnamese people further reflects News Orleans’ history of racial division within neighborhood associations and other political institutions (Brown n.d.; Danley 2015). Thus, despite increased citywide levels of civic engagement, Weil identifies many obstacles towards achieving widespread and effective citizen participation for all residents. He further questions the longevity of this period of increased engagement as Katrina recovery advances.

Since Weil’s study, New Orleans’ population has continued to change, but no modern scholarship has re-examined his conclusions on civic engagement. In 2010, near the conclusion of his study, 60% of residents identified as Black or African American, 30% identified as White, 5% identified as Hispanic, and 3% identified as Asian (Plyer 2011). As of 2019, the city was 59% Black or African American, 31% White, 6% Hispanic, and 3% Asian (Plyer 2011). The city’s Hispanic and White populations have continued to grow, while the Black population has declined slightly. New Orleans’ changing population demands an updated look at racial dynamics and their necessary intersections with class and gender in institutions of civic engagement. This study builds upon Weil’s work to re-examine the ways that these factors interact and structure access to political power in contemporary New Orleans.
Significance

By explicitly addressing the intersection of race, class, and gender, this study has theoretical and practical significance for the field of civic engagement scholarship.

On one hand, it furthers the study of democratic institutions that are inclusive and accessible for everyone, regardless of their identity. As discussed in relevant literature, inclusivity is a necessary condition for democracy; it creates more transparent and effective political institutions (Bramley and Bailey 2018; Smith 2017; Levin-Waldman 2012) and ensures that the benefits of democratic participation are widely conferred (Robinson 2019; Stoll 2001). Despite this objective, data and scholarship demonstrates that power is structured unequally within political institutions on the basis of race, gender, and class, regardless of presumed neutrality. Civic engagement scholarship has not addressed this relationship, nor the complex and intersecting construction of identity and oppression (Wojciechowska 2019). By deliberately investigating the role of race, gender, and class within civic engagement institutions, this study begins addressing this gap. Further, by applying an intersectional approach to understand the interlocking systems of power that impact identity, it includes groups of people at the margins and intersections that are often excluded from civic engagement scholarship.

Independent of results, this research also has practical applications for upholding the principle of inclusivity in society, which ensures every citizen’s right to participate in democracy (Woiciechowska 2019). If this study discovers that power is distributed unequally in New Orleans, it can motivate and guide reform for a more inclusive system of civic engagement. Any institution that is not fully inclusive is not fully democratic, according to scholars of participatory democracy: “decision-making processes that do not provide such influence are not inclusive and, in this regard, they fail to be democratic” (Woiciechowska 2019). If discrimination is currently taking place in New Orleans, it is important to identify the individuals and groups that are most
affected in order to build an institution that deliberately centers their needs and encourages their participation. Conversely, findings that indicate equal access pose new avenues for research on inclusion. Discrimination can be assumed within any institution that is not deliberately designed with identity- and the ways it impacts participants’ experiences- in mind (Ray 2019). In a U.S. context, systemic barriers at the intersection of race, class, and gender tend to particularly affect Black Americans and other vulnerable groups (Robinson 2019). If New Orleans neighborhood associations are fully inclusive and accessible, these findings pose new avenues for investigation regarding the characteristics of civic engagement institutions that work for everyone, particularly people that exist at the margins of traditional systems of civic engagement.

Finally, this thesis has direct political impacts for the city of New Orleans. It is contributing to a 2021 report by the Louisiana Fair Housing Action Center (LaFHAC) on neighborhood associations in New Orleans. LaFHAC is publishing a comprehensive study on the ways that identity impacts access to power in neighborhood associations and City Council meetings in New Orleans. Civic engagement opportunities must be equally accessible to residents across race, class, and gender-based lines to ensure that every constituent has equal access to influence local policy. The results of this study suggest a need for reform at the systemic and institutional level, and bolster advocacy for more equitable and inclusive civic engagement structures.
CHAPTER TWO
RESEARCH METHODOLOGY

Methods

This study used quantitative methods to investigate ways that race, class, and gender impact access to political power in New Orleans. Independent variables included indicators of race, class, and gender identity. Dependent variables included indicators of engagement in institutions like neighborhood associations, City Council, and security districts. To understand the relationships between these variables, this thesis used statistical analysis to search for and document correlations. Intersectional quantitative methods were also applied to study the unique intersection of race, gender, and class and its effects on political participation. Overall, these methods exposed the ways that identity impacts access to spaces often considered neutral to questions of discrimination (Ray 2019). The relationship between identity and political power was explored in three ways:

I. The demographics of neighborhood association members were compared to the demographics of all residents in their neighborhoods. Membership in neighborhood associations is widely associated with increased political power and social capital (Bramley and Bailey 2018; Robinson 2019; Stoll 2001). This stage of analysis thus searches for differentials in membership across different groups to see if neighborhood association participation differs by race, class, and gender.

II. The demographics of neighborhood association members were compared to their responses to a survey gauging their involvement in civic engagement opportunities. This created a comparison between respondents’ identities and their degree of participation in civic engagement opportunities.
III. The demographics of New Orleans neighborhoods were compared to the pre- and post-COVID-19 activity levels of their neighborhood associations. Activity level is positively correlated with access to political power and is thus an effective indicator for the dependent variable.

Data Collection Methods

Board Member Demographics

Demographic data for all neighborhood association board members in Orleans Parish was compared to aggregate demographic data for residents in their neighborhoods. Board members were included in this study if they held a role or position beyond that of general member in their neighborhood association, including board member, executive board, officer, committee member, or primary contact with the Mayor’s Office of Neighborhood Engagement. They were not included if they were part of 10 registered business associations, which serve local business owners rather than homeowners and renters. The Eastern New Orleans Civic Association was also excluded because it is likely the same organization as the East New Orleans Neighborhood Advisory Council (ENONAC). Board member names were collected from a variety of public sources: The Mayor’s Office of Neighborhood Engagement “Neighborhood and Community Organizations” contact page, 78 individual neighborhood association websites, and Nola.com and Nola.gov articles that featured neighborhood association leadership. Aggregate neighborhood-level data included all residents in the Census tract(s) associated with a neighborhood association.

Demographic data was collected for individual board members and neighborhoods. Self-identified race and gender data was available for most board members through the nonprofit VoterRecords.com. In the absence of gender data from this portal, personal pronouns (such as she/her/hers, they/them/theirs, etc.), gendered titles (such as Mr., Miss, etc.) and gendered nouns (such as “wife,” “brother,” “woman,” etc.) were proxies for gender. In the absence of race data
from this portal, race was determined by an individual’s affiliation with a race-based award, publication, or accomplishment, such as identifying as a “Black business owner” in local news articles or receiving an “NAACP Annual Salute to Outstanding African-Americans.” At the neighborhood level, race and gender data were collected for each association’s Census tract(s) through the U.S. Census via the database “Census Reporter.” Race and gender data were aggregated for all Census tracts within each neighborhood association’s geographic borders. In some cases, geographic boundaries did not align exactly with Census tracts, so the best possible approximations were made following protocol used in the 2012 LSU-NPN Neighborhood Survey in New Orleans (Weil 2012).

The total sample size included 834 board members for which gender data was available, 730 members for which race data was available, and 726 members for which both race and gender data were available. This data represented 61 associations for which board member data was available.

Civic Engagement Survey

The Principal Investigator and Faculty Adviser received IRB Exempt status approval to distribute a survey to neighborhood association participants (see Appendices A and B). The survey was conducted online using Qualtrics software. It consisted of two parts: 1) a section on participation in neighborhood associations, city council, and other institutions of civic engagement with 17 multiple choice and 5 free response questions, and 2) a section on demographic indicators with 8 multiple choice and 1 free response questions. The second section included independent variables and the first collected indicators for the dependent variable. Questions covered topics such as number of meetings attended, frequency of participation in City Council, participation in security districts, and perceived level of importance of neighborhood associations, among other indicators.
Eligible participants included all people that identified as a member of, participant in, or former member of one of 176 registered neighborhood associations on the Mayor’s Office of Neighborhood Engagement website, excluding 10 business associations and the Eastern New Orleans Civic Association. Participant outreach was conducted in two ways. First, participants’ email addresses were collected from the Mayor’s Office of Neighborhood Engagement “Neighborhood and Community Organizations” contact page and individual neighborhood association websites. Participants were emailed the survey link four times and asked to share it with other members of their association. Second, the survey was shared in 103 public neighborhood association Facebook groups. Participants were given roughly 60 days to complete the survey.

Although 238 responses were collected, only 177 were complete and thus used in the analysis.

Activity Level

Indicators of neighborhood association activity level were compared to neighborhood demographics. All neighborhood associations registered on the Mayor’s Office of Neighborhood Engagement were included in this portion of the study, excluding 10 business associations and the Eastern New Orleans Civic Association. Demographic information for each neighborhood was collected through the U.S. Census on the “Census Reporter” website. Neighborhood-level variables included race, gender identity, age, income, housing status, housing value, and education. Activity level, the dependent variable representing each association’s degree of political engagement, was quantified by the number of meetings held by each association and whether or not they posted on their website or social media (including Facebook, Instagram, Twitter, YouTube, and/or LinkedIn). Activity level data was collected for a period one year prior to the outbreak of COVID-19 in New Orleans (March 16th, 2019 to March 15th, 2020) as well as
one year after New Orleans’ city-wide shutdown due to COVID-19 (from March 16th, 2020 to February 20th, 2021). This distinction accounted for any effects of the global pandemic on participation rates and engagement strategies.

Activity level and demographic information was analyzed for 176 total associations.

Analysis Methods

Board Member Demographics

Board member data was analyzed using Pearson’s Correlation Coefficient (r) test, regression analysis, the chi-square test for goodness of fit, and Fisher’s Exact Test.

Pearson’s Correlation Coefficient test and regression analysis are generally used to measure the linear correlation between two data sets and are thus appropriate methods to investigate the relationship between board member and neighborhood demographics. Tests of correlation are widely used in social science research to investigate the strength of associations between variables (Samuel and Okey 2015). They are effective predictors of the relationship between identity and political power. They can even reveal smaller correlations that disappear during regression analysis (Weil 2012). Further, the study sample size \(n=161 \) exceeded the recommended minimum sample size of \(n \geq 8 \) for regression analysis (Jenkins and Quintana-Ascencio 2020).

To prepare for analysis, percent race and gender were aggregated for each association and corresponding neighborhood. The number of board members in each association varied from 1 to 53; to account for skewed race and gender values in associations with a very low number of board members, two correlation and regression analyses were run. The first involved all 161 neighborhood associations, regardless of board member count. The second treated individual associations’ board member counts as sample sizes, and only included 40 associations for which \(n \geq 7 \) board members (Jenkins and Quintana-Ascencio 2020).
Finally, the chi-Square test for goodness of fit and Fisher’s Exact Test were used to compare two data sets: the demographics of each neighborhood association’s board members versus their surrounding neighborhood, and the aggregate demographics of all board members versus the demographics in Orleans Parish. The chi-square test is an effective method to determine the degree of difference between a set of observed and expected values (“Chi Square” n.d.). In this study, it was used to compare actual board member demographics with the demographics that would be expected if an association was 100% representative of its neighborhood. For some associations with small sample sizes, Fisher’s Exact Test was preferred. Fisher’s Test effectively analyzes associations between categorical variables with smaller sample sizes (Connelly 2016).

A first chi-square test compared the demographics of all board members in the city to the demographics that would be expected if they were fully representative of Orleans Parish. This analysis met the recommended minimum sample size for Chi-square analysis (Siegel and Castellan 1989). A second round of tests was run for 44 associations representing at least the 66th percentile for number of board members. Depending on sample size, either chi-square or Fisher’s Exact Test were employed. Finally, regression analysis was used to compare each association’s p value, obtained through chi-square analysis, to the demographics of their neighborhood. $p \leq 0.05$ indicated a significant difference between board member and neighborhood demographics.

Across all three of these analyses (chi-square, Fisher’s Exact Test, and regression), race and gender were combined into multivariate indicators to account for the intersectional nature of identity.

Civic Engagement Survey

Survey data was analyzed using Pearson’s Correlation Coefficient as well as single and multivariate regression analysis.
Linear regression analysis and Pearson’s Correlation Coefficient were used to analyze two relationships: 1) the connection between survey participants’ demographics and survey responses, and 2) the difference between survey participants’ demographics and the demographics of people in their neighborhoods. Further, multivariate regression analysis contributed to an intersectional exploration of race, class, and gender and their interlocking impacts on the dependent variable.

Data was prepared for these analyses. Before comparing survey participants’ demographics to their survey responses, dummy variables were created to represent categorical survey responses, and all incomplete responses were purged. The continuous dependent variables, “number of years living in your neighborhood” and “number of years participating in your neighborhood association” were also tested for normal conditional distribution using a histogram chart (Henderson 2006). They were both normally distributed, suggesting that they met a key assumption of regression analysis. The conditional distribution of the disturbance term and dependent variable require conditional normality (Poole and O’Farrell 1971).

For the second regression and Pearson’s test, survey participants’ demographic data was aggregated by neighborhood association. The number of members from each association varied from 1 to 10, so two regression analysis were run to account for these different sample sizes. The first analysis included 177 responses from all 64 associations represented in the survey, regardless of how many responses were received per association. The second analysis included responses from 18 associations that met the criteria of at least three survey responses. This limit maximized sample size (n=18) while ensuring that several people were represented from each association.

Activity Level

Activity level was analyzed using Pearson’s Correlation Coefficient test, simple linear regression, and multivariate regression analysis. To prepare the data for analysis, all forms of the dependent variable (activity level) were tested for conditional normality using a histogram. The
first variable, “meetings held by neighborhood associations,” passed a test of normality for both pre- and post-COVID-19 data sets. A second dependent variable was created to represent associations’ social media engagement. Associations received a score of “1” for each social media or website platform they engaged with, and these values were totaled to create one indicator for activity level. This indicator also passed a test for conditional normality, justifying its suitability as a dependent variable (Poole and O’Farrell 1971).

Justification

The most effective quantitative methods were chosen to analyze the intersectional impact of race, class, and gender on access to political power.

Quantitative methods are established mechanisms to investigate the relationships between independent and dependent variables in social science research and serve as effective tools to answer this research question. On one hand, quantitative approaches are effective tools to measure and describe patterns of inequality that occur within and across multidimensional categories (Sigle-Rushton 2014). This thesis attempts to investigate the relationships between multidimensional independent and dependent variables, including indicators of identity and political activity. Quantitative analysis is thus an appropriate method.

Additionally, this thesis adopts intersectional methods during data collection and analysis to produce results that reflect intersectional feminist theory (Manderscheid 2014; Scott and Siltanen 2017; Sigle-Rushton 2014). On one hand, this study combines race, class, and gender into intersectional categories, such as “Black Women,” during multivariate analysis. This avoids conceptualizing identity using singular or additive categorizations, which do not fully capture the experiences of people at the intersections of different identity groups (Hill Collins 1990; Scott and Siltanen 2017; Sigle-Rushton 2014). Further, this thesis analyzes inequality across and within different neighborhoods in New Orleans. This accounts for the ways that geographic and cultural
context defines the intersection of race, class, and gender according to intersectional feminist theory (Scott and Siltanen 2016, 2017).

Potential Limitations

Limitations of this methodology were mitigated when possible. One potential error involved the use of proxies like pronouns, gendered nouns, and gendered titles to assume gender identity for neighborhood association board members. Although these concepts are often associated, pronouns are not necessarily reflective of gender identity. Further, an individual may change pronouns throughout their lifetime, and thus the indicators in this study may not reflect board members’ current gender identities (McGlashan and Fitzpatrick 2018). Despite the issues associated with this assumption, there remains a well-established historical association between specific pronouns and binary gender categories. “She/her” pronouns, for example, are strongly associated with female gender identity, and “he/him” pronouns are strongly associated with male identity (Deutsch and Buchholz 2014; McGlashan and Fitzpatrick 2018). Despite the heteronormative assumptions associated with using pronouns as an indicator of gender identity, pronouns and gendered titles were the only data sets available for many board members and are thus a sufficient indicator for this study.

Another potential issue is the risk associated with small sample sizes. Small sample size is a common issue in similar studies, such as Weil’s 2011 analysis of New Orleans neighborhood associations (Weil 2011) as well as many intersectional feminist studies that use a variety of identity-based indicators (Sigle-Rushton 2014). Small sample size presents an issue during regression analysis because it can lead to inconclusive or contradictory results that do not reflect accurate correlations between variables (Jenkins and Quintana-Ascencio 2020). This study addressed these risks pertaining to neighborhood association data in several ways. Following best practice for intersectional feminist theory (Sigel-Rushton 2014), a multitude of independent and
dependent variable combinations were run during quantitative analysis. Some indicators were further compared across time intervals, such as pre- and post-COVID-19 activity level data sets. The multitude of quantitative combinations included in this study mitigates potential sample size error. This methodology further mitigated risk by ensuring that all quantitative tests met or exceeded the recommended minimum sample size. Finally, for chi-square analysis, error tends to occur in a “safe” direction so that the null hypothesis is only rejected if a relationship is statistically significant (Siegel and Castellan 1989). This affirms the validity of this study’s conclusions from chi-square analysis.

Another potential limitation involves the linearity assumption in regression and correlation analysis. Regression and correlation models assume that there is a linear relationship between independent and dependent variables, and thus only reveal linear correlations (Poole and O’Farrell 1971). Although non-linear relationships may potentially exist between variables, the choice to investigate linear relationships via regression and correlation methods reflects common methodology used within similar studies, particularly for small sample sizes (Weil 2011, 2012). More advanced methods are suggested for future studies investigating the relationship between identity and political power in New Orleans.

Finally, a potential issue within this analysis is the assumption that the independent and dependent variables have a causal relationship. Scholars of inclusion and exclusion illuminate the paradoxical relationship between identity and political inclusion. Exclusion from political institutions, for example, is not a product of individual characteristics like race or gender, but of social processes within these institutions that create exclusionary conditions that disproportionately affect people based on race or gender (Labonte 2004). These findings question this thesis’ assumption that identity is an independent variable. This issue was mitigated in two ways. First, correlation analyses were run alongside regression analyses for all data sets.
Correlation analysis reveals any statistical correlation, whether causal or not, between sets of variables. It thus revealed relationships between identity and political power without assuming that identity had a causal impact. Second, although chi-square and regression analysis were used to investigate causal relationships, they were still useful tool to discover important relationships in the data. They revealed significant correlations between identity and political power, regardless of whether identity was the theoretical cause of inclusion or exclusion.
CHAPTER THREE

RESULTS

These findings illuminate the ways that race, class, and gender impact access to political power in New Orleans. Four main relationships were analyzed: the demographics of neighborhood association board members compared to aggregate neighborhood level demographics, the demographics of survey respondents compared to their survey responses, the demographics of survey respondents compared to aggregate demographics in Orleans Parish, and the aggregate demographics of each New Orleans neighborhood compared to the activity level of their neighborhood association(s).

Board Member Demographics vs. Neighborhood Demographics

Figure 1 shows that percent White board members and percent White neighborhood residents were strongly positively correlated, \(r \geq .70 \). This was further reflected during regression analysis, \(R^2 = .48, p < .05 \). Percent Black board members and percent Black neighborhood residents reflected an identical correlation during Pearson’s Correlation Coefficient test, \(r \geq .60 \), and regression analysis, \(R^2 = .48, p < .05 \). There was also a weak positive correlation between percent Hispanic or Latino board members and percent Hispanic or Latino neighborhood residents, \(r \geq .20 \). This relationship was reflected in regression analysis as well, \(R^2 = .06, p < .05 \).

Figure 2, which only includes associations with at least seven board members, displays similar relationships. Percent White board members was positively correlated with percent White people by neighborhood during Pearson’s test, \(r \geq .70 \), and regression analysis (\(R^2 = .58, p < .05 \)). The model predicted 58% of the variance in the dependent variable. There was a similar positive correlation between percent Black board members and percent Black people by neighborhood, \(r \geq .70 \). Regression analysis revealed that this relationship explained 54% of the variance in the dependent variable (\(R^2 = .54, p < .05 \)). Finally, there was a moderate positive correlation between
percent Hispanic or Latino board members and percent Hispanic or Latino neighborhood residents, $R^2 = .13, p < .05$.

Figure 1

Pearson’s Correlation Coefficient Heat Map for Board Member Demographics vs. Neighborhood Demographics, all Associations

Note. This heat map displays results for all neighborhood associations.

No data was available for average number of property assessments, although it is labeled here.
Figure 2

Pearson’s Correlation Coefficient Heat Map for Board Member Demographics vs. Neighborhood Demographics, Associations with at Least 7 Board Members

Note. This heat map only displays results for neighborhood associations with at least 7 board members.

No data was available for average number of property assessments, although it is labeled.
A chi-square test for goodness of fit revealed different conclusions. It showed that there is a significant different between the aggregate demographics of neighborhood association board members and the demographics of Orleans Parish, $X^2(16, N= 2290) = 675.69, p=.00$. Figure 3 shows that this value is a result of race and gender-based disparity. Demographic groups that were over-represented within neighborhood association boards included men, White people, White women, White men, people identifying as another race, women identifying as another race, and men identifying as another race. Underrepresented groups included women, Black people, Black women, Black men, Asian people, Asian women, Hispanic or Latino people, Hispanic or Latino women, and Hispanic or Latino men.

Figure 3

Goodness of Fit Histogram for Orleans Parish

Note. Values on the x-axis, in chronological order, are as follows: Percent Female, Percent Male, Percent White, Percent White Female, Percent White Male, Percent Black, Percent Black Female, Percent Black Male, Percent Asian, Percent Asian Female, Percent Asian Male, Percent Other Race, Percent Female of Other race, Percent Male of Other Race, Percent Hispanic or Latino, Percent Hispanic or Latino Female, Percent Hispanic or Latino Male.
Table 1 examines the results of chi-square analysis at the level of individual neighborhood associations. For six out of 44 neighborhood associations, the null hypothesis H0 was rejected, indicating that there was a significant difference between the demographics of neighborhood association board members and the demographics of their surrounding neighborhoods. For 14 neighborhood associations, the null hypothesis was accepted, indicating that there was no significant difference between observed and expected values.

Table 1

<table>
<thead>
<tr>
<th>Neighborhood Association</th>
<th>k</th>
<th>n</th>
<th>X^2</th>
<th>df</th>
<th>ϕ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faubourg St. John</td>
<td>17</td>
<td>109</td>
<td>54.86</td>
<td>16</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Lower Garden District Association</td>
<td>17</td>
<td>78</td>
<td>37.45</td>
<td>16</td>
<td>0.69</td>
<td>0.00</td>
</tr>
<tr>
<td>English Turn Property Owners Association</td>
<td>17</td>
<td>37</td>
<td>35.55</td>
<td>16</td>
<td>0.98</td>
<td>0.00</td>
</tr>
<tr>
<td>Bywater Neighborhood Association</td>
<td>17</td>
<td>75</td>
<td>33.23</td>
<td>16</td>
<td>0.67</td>
<td>0.01</td>
</tr>
<tr>
<td>Carrollton Area Network</td>
<td>17</td>
<td>30</td>
<td>32.45</td>
<td>16</td>
<td>1.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Broadmoor Improvement Association</td>
<td>17</td>
<td>30</td>
<td>26.11</td>
<td>16</td>
<td>0.93</td>
<td>0.05</td>
</tr>
<tr>
<td>Friends of the Lafitte Greenway</td>
<td>17</td>
<td>64</td>
<td>24.52</td>
<td>16</td>
<td>0.62</td>
<td>0.08</td>
</tr>
<tr>
<td>Maple Area Residents Association</td>
<td>17</td>
<td>34</td>
<td>23.71</td>
<td>16</td>
<td>0.84</td>
<td>0.10</td>
</tr>
<tr>
<td>Broad Community Connections</td>
<td>17</td>
<td>76</td>
<td>22.52</td>
<td>16</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td>Lakeview Civic Improvement Association</td>
<td>17</td>
<td>44</td>
<td>18.60</td>
<td>16</td>
<td>0.65</td>
<td>0.29</td>
</tr>
<tr>
<td>Bouligny Improvement Association</td>
<td>17</td>
<td>24</td>
<td>17.54</td>
<td>16</td>
<td>0.85</td>
<td>0.35</td>
</tr>
<tr>
<td>ENONAC</td>
<td>17</td>
<td>97</td>
<td>15.24</td>
<td>16</td>
<td>0.40</td>
<td>0.51</td>
</tr>
<tr>
<td>Climana Neighborhood Association</td>
<td>17</td>
<td>33</td>
<td>14.96</td>
<td>16</td>
<td>0.67</td>
<td>0.53</td>
</tr>
<tr>
<td>Upper Hurstville</td>
<td>17</td>
<td>139</td>
<td>13.09</td>
<td>16</td>
<td>0.31</td>
<td>0.67</td>
</tr>
<tr>
<td>Irish Channel Neighborhood Association</td>
<td>17</td>
<td>38</td>
<td>11.35</td>
<td>16</td>
<td>0.55</td>
<td>0.79</td>
</tr>
<tr>
<td>Walnut Bend Association</td>
<td>17</td>
<td>33</td>
<td>9.04</td>
<td>16</td>
<td>0.52</td>
<td>0.91</td>
</tr>
<tr>
<td>Carrollton/Riverbend Neighborhood Assoc.</td>
<td>17</td>
<td>23</td>
<td>8.78</td>
<td>16</td>
<td>0.62</td>
<td>0.92</td>
</tr>
<tr>
<td>Audubon Riverside Neighborhood Assoc.</td>
<td>17</td>
<td>30</td>
<td>6.52</td>
<td>16</td>
<td>0.47</td>
<td>0.98</td>
</tr>
<tr>
<td>Uptown Triangle Association</td>
<td>17</td>
<td>26</td>
<td>5.66</td>
<td>16</td>
<td>0.47</td>
<td>0.99</td>
</tr>
<tr>
<td>Lake Vista Property Owners Association</td>
<td>17</td>
<td>32</td>
<td>4.83</td>
<td>16</td>
<td>0.39</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note. This table excludes 24 neighborhood associations for which p = Not a Number.

For the six associations that did not reflect neighborhood demographics, there were significant trends related to race and gender. Figures 4 to 9 represent the six organizations for
which $p \leq .05$. All six organizations had a lower expected value for Black people, Black women, and Black men. Five of six organizations had a lower expected value for Hispanic people, Hispanic Women, and Hispanic men. Further, all six also had higher expected values for White people, White women, and white men, demonstrating clear patterns of inclusion and exclusion on the basis of gender and race.

Figure 4

Goodness of Fit Histogram for the Faubourg St. John Neighborhood Association

Note. Values on the x-axis, in chronological order, are as follows: Percent Female, Percent Male, Percent White, Percent White Female, Percent White Male, Percent Black, Percent Black Female, Percent Black Male, Percent Asian, Percent Asian Female, Percent Asian Male, Percent Other Race, Percent Female of Other race, Percent Male of Other Race, Percent Hispanic or Latino, Percent Hispanic or Latino Female, Percent Hispanic or Latino Male.
Figure 5

Goodness of Fit Histogram for the Lower Garden District Association

Note. Values on the x-axis, in chronological order, are as follows: Percent Female, Percent Male, Percent White, Percent White Female, Percent White Male, Percent Black, Percent Black Female, Percent Black Male, Percent Asian, Percent Asian Female, Percent Asian Male, Percent Other Race, Percent Female of Other race, Percent Male of Other Race, Percent Hispanic or Latino, Percent Hispanic or Latino Female, Percent Hispanic or Latino Male.
Figure 6

Goodness of Fit Histogram for the English Turn Property Owners Association

Note. Values on the x-axis, in chronological order, are as follows: Percent Male, Percent Female, Percent White, Percent Black, Percent Asian, Percent Other, Percent Hispanic or Latino, Percent White Female, Percent Black Female, Percent Asian Female, Percent Female of Other Race, Percent Hispanic or Latino Female, Percent White Male, Percent Black Male, Percent Asian Male, Percent Male of Other Race, Percent Hispanic or Latino Male.
Figure 7

Goodness of Fit Histogram for the Bywater Neighborhood Association

Note. Values on the x-axis, in chronological order, are as follows: Percent Male, Percent Female, Percent White, Percent Black, Percent Asian, Percent Other, Percent Hispanic or Latino, Percent White Female, Percent Black Female, Percent Asian Female, Percent Female of Other Race, Percent Hispanic or Latino Female, Percent White Male, Percent Black Male, Percent Asian Male, Percent Male of Other Race, Percent Hispanic or Latino Male.
Figure 8

Goodness of Fit Histogram for the Carrollton Area Network

Note. Values on the x-axis, in chronological order, are as follows: Percent Male, Percent Female, Percent White, Percent Black, Percent Asian, Percent Other, Percent Hispanic or Latino, Percent White Female, Percent Black Female, Percent Asian Female, Percent Female of Other Race, Percent Hispanic or Latino Female, Percent White Male, Percent Black Male, Percent Asian Male, Percent Male of Other Race, Percent Hispanic or Latino Male.
Figure 9

Goodness of Fit Histogram for the Broadmoor Improvement Association

Note. Values on the x-axis, in chronological order, are as follows: Percent Male, Percent Female, Percent White, Percent Black, Percent Asian, Percent Other, Percent Hispanic or Latino, Percent White Female, Percent Black Female, Percent Asian Female, Percent Female of Other Race, Percent Hispanic or Latino Female, Percent White Male, Percent Black Male, Percent Asian Male, Percent Male of Other Race, Percent Hispanic or Latino Male.

Finally, figure 10 reveals significant race and gender-based trends for the p values resulting from chi-square analysis. There was a small negative correlation between Percent Black, Percent Black Female, Percent Black Male, Percent Male, Percent Hispanic or Latino, Percent Hispanic or Latino Female, and Percent Hispanic or Latino male and p value, $r \geq -.20$, indicating that these groups are not equally represented on neighborhood association boards. There were
small positive correlations with p value for all other identity categories (with the exception of Asian populations), $r \geq .20$.

Figure 10

Pearson’s Correlation Coefficient Heat Map for Neighborhood Association Demographics vs. p Value
Survey Participant Demographics vs. Survey Responses

Figure 11 shows the correlations between survey participants’ demographics and their responses to survey question 1, which asked how long they lived in their neighborhood. Age was significantly positively correlated with duration of time in both Pearson’s Correlation Coefficient test, $r \geq .70$, and during regression analysis, $R^2 = .27, p < .05$. Identifying as White was somewhat negatively correlated with duration of time in Pearson’s Correlation Coefficient test, $r \geq -.20$, and during regression analysis, $R^2 = .03, p < .05$. In contrast, identifying as Black was somewhat positively correlated with duration of time in Pearson’s Correlation Coefficient test, $r \geq .20$, and during regression analysis, $R^2 = .03, p < .05$. There was a small negative correlation between not owning a business and duration of time during both Pearson’s Correlation Coefficient test, $r \geq - .10$, and regression analysis, $R^2 = .04, p < .05$. A small positive correlation was identified between being self-employed and duration of time during Pearson’s test, $r \geq .10$, and regression analysis, $R^2 = .04, p < .05$. Finally, there was a small positive correlation between homeownership and duration of time during Pearson’s test, $r \geq .20$, and regression analysis, $R^2 = .04, p < .05$. This trend was reversed for renters.

Multivariate analysis was run for question 1, but the results were rejected due to small sample size among Hispanic survey respondents ($n=2$). Regression correlations were also discarded for people that received a professional certification and for retired business owners due to low sample size.
Figure 11

Pearson’s Correlation Coefficient Heat Map for Survey Question 1: How long have you lived in your neighborhood? (Years)

Next, figure 12 shows the correlations between survey participants’ demographics and survey question 2, which asked participants how long they have participated in their
neighborhood association as an indicator of their political engagement. There was a strong positive correlation between age and duration of participation, $r \geq .50$. This was also reflected in regression analysis, $R^2 = .29, p < .05$. Identifying as White and duration of participation were somewhat negatively correlated in Pearson’s Correlation Coefficient test, $r \geq -.10$, and regression analysis, $R^2 = .04, p < .05$. Identifying as Black and duration of participation were positively correlated in Pearson’s Correlation Coefficient test, $r \geq .20$, and regression analysis, $R^2 = .05, p < .05$. Homeowners were somewhat positively correlated with duration of participation in Pearson’s Correlation Coefficient test, $r \geq .20$, and during regression analysis, $R^2 = .07, p < .05$. In contrast, renters were somewhat negatively correlated with duration in Pearson’s Correlation Coefficient test, $r \geq -.20$, and during regression analysis, $R^2 = .05, p < .05$.
Table 2 shows that multivariate regression analysis also yielded significant results for survey question 2. There was a positive correlation between homeowners’ age and duration of participation in the neighborhood association.
participation, and a negative correlation between renters’ age and duration. With the exception of
the “Under $19,999” income bracket for Black people, lower income brackets ($20,000 to
$39,999) in Black communities were associated with greater durations of participation, and
higher income brackets (over $200,000) were negatively associated with duration. The reverse
trend occurred at the intersection of White identity and income. Finally, higher-income
homeowners (in the $140,000 to 159,999 income group) were negatively associated with duration
of participation, with the reverse trend occurring among lower-income homeowners.

Table 2

Multivariate Analysis for Survey Question 1: How long have you participated in your
neighborhood association? (Years) For p ≤ .05

<table>
<thead>
<tr>
<th>Variables</th>
<th>coeff</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age x Hispanic or Latino</td>
<td>1.21</td>
<td>.33</td>
<td>.02</td>
</tr>
<tr>
<td>Age x Homeowner</td>
<td>0.54</td>
<td>.31</td>
<td>.03</td>
</tr>
<tr>
<td>Age x Renter</td>
<td>-.62</td>
<td>.31</td>
<td>.05</td>
</tr>
<tr>
<td>White x 200,000 +</td>
<td>24.54</td>
<td>.31</td>
<td>.05</td>
</tr>
<tr>
<td>White x 20,000 to 39,999</td>
<td>-28.63</td>
<td>.13</td>
<td>.00</td>
</tr>
<tr>
<td>Black x 200,000 +</td>
<td>-25.20</td>
<td>.10</td>
<td>.05</td>
</tr>
<tr>
<td>Black x 20,000 to 39,999</td>
<td>28.11</td>
<td>.13</td>
<td>.00</td>
</tr>
<tr>
<td>Black x under 19,999</td>
<td>-10.89</td>
<td>.10</td>
<td>.03</td>
</tr>
<tr>
<td>Hispanic x 40,000 to 59,999</td>
<td>56.45</td>
<td>.07</td>
<td>.00</td>
</tr>
<tr>
<td>Homeowner x 140,000 to 159,999</td>
<td>-4.97</td>
<td>.08</td>
<td>.03</td>
</tr>
<tr>
<td>Homeowner x 40,000 to 59,999</td>
<td>22.58</td>
<td>.12</td>
<td>.01</td>
</tr>
</tbody>
</table>

Figure 13 examines relationships for survey question 3, which asked participants how
many times they had participated in a neighborhood association meeting or event in the past year.
Being Black was somewhat positively correlated with attending 9+ meetings (the highest level of
engagement) during both Pearson’s Correlation Coefficient Test, r ≥ .20, and regression analysis,
R² = .03, p < .05. This trend was mirrored among Hispanic and Asian groups during Pearson’s
test, although small sample size limited the validity of these results. Higher income groups were
also positively associated with holding meetings. The $160,000 to $179,999 income bracket was somewhat positively correlated with holding 7-8 meetings during Pearson’s test, $r \geq .20$, and during regression analysis, $R^2 = .04$, $p < .05$. The $140,000 to $159,999 bracket was somewhat positively correlated with 1-2 meetings for Pearson’s test, $r \geq .02$, and regression analysis, $R^2 = .04$, $p < .05$. The $100,000 to $119,999 income bracket was somewhat positively correlated with holding 3-4 meetings during Pearson’s test, $r = .20$, and regression analysis, $R^2 = .04$, $p < .05$.

Figure 13

Pearson’s Correlation Coefficient Heat Map for Survey Question 3: How many times have you participated in a neighborhood association meeting or event in the past year?
Table 3 demonstrates that multivariate regression analysis also yielded significant results for survey question 3. There was a significant negative correlation associated with White people in the $80,000 to $99,999 income bracket and 0 meetings attended. Contrarily, there was a positive correlation associated with Black people in the same income bracket and 0 meetings. Another significant trend occurred at the intersection of housing status, income, and meetings attended. Homeowners in the $100,000 to $119,999 income bracket were negatively correlated with 0 meetings, while renters in the same income bracket were positively correlated. Renters in the $20,000 to $39,999 income bracket were also positively associated with 1-2 meetings. Additionally, homeowners in both the $160,000 to $179,999 and $20,000 to $39,999 income brackets were positively correlated with attending 9+ meetings in the past year, while renters in the $20,000 to $39,999 bracket were negatively correlated with 9+ meetings. Finally, a significant trend occurred at the intersection of race, housing status, and meetings attended. White homeowners were positively correlated with attending 1-2 meetings, while Black homeowners were negatively correlated. Further, White renters were negatively correlated with 1-2 meetings, while Black renters were positively correlated.

Table 3

Multivariate Analysis for Survey Question 3: How many times have you participated in a neighborhood association meeting or event in the past year? For $p \leq .05$

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 times</td>
<td>White x 80,000 to 99,999</td>
<td>-.57</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>0 times</td>
<td>Black x 80,000 to 99,999</td>
<td>.61</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td>0 times</td>
<td>Homeowner x 100,000 to 119,999</td>
<td>-.89</td>
<td>.10</td>
<td>.00</td>
</tr>
<tr>
<td>0 times</td>
<td>Renter x 100,000 to 119,999</td>
<td>.86</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td>1-2 times</td>
<td>Age x Renter</td>
<td>.02</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>1-2 times</td>
<td>White x Homeowner</td>
<td>.41</td>
<td>.05</td>
<td>.02</td>
</tr>
<tr>
<td>1-2 times</td>
<td>White x Renter</td>
<td>-.37</td>
<td>.04</td>
<td>.05</td>
</tr>
<tr>
<td>1-2 times</td>
<td>White x 140,000 to 159,999</td>
<td>.10</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>1-2 times</td>
<td>Black x Homeowner</td>
<td>-.41</td>
<td>.04</td>
<td>.02</td>
</tr>
</tbody>
</table>
Next, figure 14 demonstrates the correlations associated with survey questions 4-6, which asked participants about how many committees they participate in, the ways they participate in their neighborhood associations, and their role in their neighborhood association as indicators of political engagement. People that identified as White were somewhat negatively correlated with number of committees, attendance at neighborhood association meetings, attendance at City Council/City Planning Commission, or other City Board or commission meetings, and monetary contributions ($r \geq -0.10$ for all indicators). Black and Hispanic populations had positive correlations for the same dependent variables, $r \geq 0.10$. Results for people identifying as Hispanic or Latino were discarded due to low sample size.
Figure 14

Pearson’s Correlation Coefficient Heat Map for Survey Questions 4-6

Note. The dependent variable(s) are listed in on the y axis in the area highlighted in red, and represent responses to the following survey questions:
• “What is your role in your neighborhood association? You may select multiple responses.” Results were aggregated into the categories of “General Member,” “Board Member,” and “Current or Former Leadership.”

• “Do you participate in any committees within your neighborhood association? You may select multiple responses or none at all.” Results were reported as a numerical value for the purpose of regression analysis.

• “In what ways do you participate in your neighborhood association? You may select multiple responses.” Results were aggregated into the categories of “a. Attendance at neighborhood association meetings,” “b. Attendance at City Council, City Planning Commission, or other City Board or commission meetings,” “c. Helping organize events,” “d. Monetary contributions,” “e. Participating through social media,” and “f. Other.”

Further, Table 4 shows that multivariate regression analysis yielded significant results for survey questions about membership status, duties, and types of engagement in neighborhood associations. The intersection of age and renter status as well as the intersection of renter status and the $40,000 to $59,999 income bracket were positively correlated with general membership. Renter status was negatively correlated, however, with other indicators of activity level. The intersection of renter status and the $20,000 to $39,999 income bracket was negatively correlated with leadership status and number of committees, for example. Homeownership status, by contrast, was positively associated with multiple indicators for activity level at both the $40,000 to $59,999 and $20,000 to $39,999 income brackets. Finally, identifying as White was generally positively correlated with the dependent variables, including board members status, attendance at City Council, and participating on social media (regardless of the variables it was combined with).
Table 4

Multivariate Analysis for Survey Questions 4-6: How many times have you participated in a neighborhood association meeting or event in the past year? For $p \leq .05$

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Member</td>
<td>Age x renter</td>
<td>.02</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>General Member</td>
<td>Homeowner x 40,000 to 59,999</td>
<td>.64</td>
<td>.05</td>
<td>.02</td>
</tr>
<tr>
<td>Board Member</td>
<td>White x 40,000 to 59,999</td>
<td>.52</td>
<td>.04</td>
<td>.05</td>
</tr>
<tr>
<td>Board Member</td>
<td>Hispanic x 40,000 to 59,999</td>
<td>1.19</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Age x Renter</td>
<td>-.03</td>
<td>.04</td>
<td>.01</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Age x 200,000+</td>
<td>-.02</td>
<td>.04</td>
<td>.01</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Age x 20,000 to 39,999</td>
<td>.02</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Homeowner x 40,000 to 59,999</td>
<td>.54</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>.96</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Renter x 40,000 to 59,999</td>
<td>.60</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>Current or former leadership</td>
<td>Renter x 20,000 to 39,999</td>
<td>-.86</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td># of Committees</td>
<td>Black x 40,000 to 59,999</td>
<td>2.85</td>
<td>.07</td>
<td>.01</td>
</tr>
<tr>
<td># of Committees</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>3.82</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td># of Committees</td>
<td>Renter x 20,000 to 39,999</td>
<td>-3.87</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td>Attendance at assoc. meetings</td>
<td>Homeowner x 100,000 to 119,999</td>
<td>.86</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>Attendance at assoc. meetings</td>
<td>Renter x 100,000 to 119,999</td>
<td>-.85</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>Attendance at City Council</td>
<td>Age x White</td>
<td>.02</td>
<td>.08</td>
<td>.03</td>
</tr>
<tr>
<td>Attendance at City Council</td>
<td>Age x Black</td>
<td>-.02</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>Attendance at City Council</td>
<td>Age x 120,000 to 139,999</td>
<td>-.04</td>
<td>.07</td>
<td>.02</td>
</tr>
<tr>
<td>Helping organize events</td>
<td>Age x Renter</td>
<td>-.02</td>
<td>.06</td>
<td>.05</td>
</tr>
<tr>
<td>Helping organize events</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>.71</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>Helping organize events</td>
<td>Renter x 20,000 to 39,999</td>
<td>-.64</td>
<td>.02</td>
<td>.07</td>
</tr>
<tr>
<td>Monetary Contributions</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>.75</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>Participating on social media</td>
<td>Age x 40,000 to 59,999</td>
<td>.01</td>
<td>.12</td>
<td>.03</td>
</tr>
<tr>
<td>Participating on social media</td>
<td>White x 120,000 to 139,999</td>
<td>.80</td>
<td>.05</td>
<td>.01</td>
</tr>
</tbody>
</table>

Note. No data is included for people identifying as American Indian or Alaska Native due to extremely low sample size.
Figure 15 shows significant correlations for survey questions addressing City Council meeting attendance before COVID-19, City Council testimonies given before COVID-19, City Council meetings attended since COVID-19, and testimonies given since COVID-19 as indicators of political engagement. Pearson’s Correlation Coefficient test showed that there were moderate positive correlations between age, meetings attended, and testimonies given before COVID-19, \(r \geq .30 \). Regression analysis supplemented these findings by proving the strong relationship between age and meeting attended pre-COVID-19, \(R^2 = .06, p < .05 \), as well as age and testimonies given before COVID-19, \(R^2 = .09, p < .05 \). These correlations were reduced to \(r \geq .00 \) following COVID-19. Another finding was the relationship between race and engagement. There was a slight negative correlation between White people and meetings attended before COVID-19 for both Pearson’s test, \(r \geq -.20 \), and regression analysis, \(R^2 = .02, p < .05 \). This correlation was positive for Black people during both Pearson’s test, \(r \geq .20 \), and regression analysis, \(R^2 = .02, p < .05 \). The same trends occurred across Pearson’s test and regression analysis for testimonies given pre-COVID, but these correlations disappeared following COVID-19. Finally, homeownership status was somewhat positively correlated with meetings attended and testimonies given before COVID-19 in Pearson’s test, \(r \geq .20 \). A reverse correlation occurred for renters before COVID-19, \(r \geq -.20 \), but disappeared following the outbreak of the pandemic.
Figure 15

Pearson’s Correlation Coefficient Heat Map for Survey Questions 7-10

Note. The dependent variable(s) are listed in on the y axis, and represent responses to the following survey questions in order:
• “How many City Council or City Planning Commission meetings have you ever attended before COVID-19?” Results were reported as a numerical value.

• “How many times have you testified about a neighborhood issue or submitted a public comment at a City Council or City Planning Commission meeting before COVID-19?” Results were reported as a numerical value.

• “How many virtual City Council or City Planning Commission meetings have you attended since COVID-19?” Results were reported as a numerical value.

• “How many times have you submitted a public comment about a neighborhood issue at a virtual City Council or City Planning Commission meeting since COVID-19?” Results were reported as a numerical value.

Table 5 shows that there were also significant multivariate relationships for meetings attended and testimonies given before and after COVID-19. White people in the $200,000 plus income bracket were strongly positively associated with public comments submitted before COVID-19. Results for Black populations differed by income. Black populations in the $40,000 to $59,999 income brackets were positively associated with public comments before COVID-19, yet the $200,000 plus income bracket was negatively associated. Relationships for Asian and Hispanic population groups were discarded due to low sample size.
Table 5

Multivariate Analysis for Survey Questions 7-10 for $p \leq .05$

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public comments before COVID-19</td>
<td>White x 200,000 +</td>
<td>3.44</td>
<td>.08</td>
<td>.03</td>
</tr>
<tr>
<td>Public comments before COVID-19</td>
<td>Black x 200,000 +</td>
<td>-3.28</td>
<td>.06</td>
<td>.04</td>
</tr>
<tr>
<td>Public comments before COVID-19</td>
<td>Black x 40,000 to 59,999</td>
<td>2.78</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>Virtual meetings since COVID-19</td>
<td>Age x Asian</td>
<td>.07</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Virtual meetings since COVID-19</td>
<td>Hispanic x 80,000 to 99,999</td>
<td>-4.90</td>
<td>.08</td>
<td>.02</td>
</tr>
<tr>
<td>Virtual meetings since COVID-19</td>
<td>Asian x Homeowner</td>
<td>-.13</td>
<td>.02</td>
<td>.05</td>
</tr>
<tr>
<td>Virtual meetings since COVID-19</td>
<td>Asian x 140,000 to 159,999</td>
<td>1.86</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Public comments since COVID-19</td>
<td>Hispanic x 80,000 to 99,999</td>
<td>-4.44</td>
<td>.09</td>
<td>.03</td>
</tr>
</tbody>
</table>

Figure 16 analyzes correlations between participants’ identities and the frequency that they contact City Council, 311, their local security district, and the police. Race was shown to be a significant factor impacting levels of civic engagement, particularly for City Council. White people were likely to have contacted City Council 0 times during both Pearson’s test, $r \geq .20$, and regression analysis, $R^2 = .04, p < .05$. Black people were less likely to have contacted City Council 0 times during both Pearson’s test, $r \geq .20$, and regression analysis, $R^2 = .03, p < .05$. This trend was reversed for the dependent variable, “5+ times contacting City Council.” Being White was negatively associated with contacting City Council 5+ times during Pearson’s test, $r \geq -.30$, and regression analysis, $R^2 = .09, p < .05$. Being Black, by contrast, was strongly positively correlated with contacting City Council 5+ times during Pearson’s test, $r \geq .30$, and regression analysis, $R^2 = .08, p < .05$. Other groups that were positively correlated with this value included Hispanic people, $R^2 = .05, p < .05$, and self-employed people, $R^2 = .04, p < .05$.
Figure 16

Pearson’s Correlation Coefficient Heat Map for Survey Questions 11-14

Note. The dependent variable(s) are listed in on the y axis, and represent responses to the following survey questions:
• “How many times have you contacted your City Council member or their staff in the past year (including calling, emailing, or speaking in person)?” Responses included “0 times,” “1-2 times,” “3-4 times,” and “4-5 times.”

• “How many times have you contacted 311 about a neighborhood issue in the past year?” Responses included “0 times,” “1-2 times,” “3-4 times,” and “4-5 times.”

• “How many times have you contacted your security district in the past year?” Responses included “0 times,” “1-2 times,” “3-4 times,” and “4-5 times.”

• “How many times have you called the police in the past year?” Responses included “0 times,” “1-2 times,” “3-4 times,” and “4-5 times.”

Table 6 summarizes the multivariate relationships between survey participants’ demographics and they number of times they contacted City Council, 311, and their local security district. On one hand, the interaction of age and median income was strongly associated with a variety of dependent variables. The interactions of age and the $80,000 to $99,999, $100,000 to $119,999, $200,000 plus, and $120,000 to $139,999 income brackets were positively associated with having contacted one of these institutions at least 1-2 times. Additionally, there was a class-based division for renters. Renters in the lowest income brackets (under $19,999 and $20,000 to $39) were likely to have contacted City Council only 1-2 times and were negatively associated with having contacted City Council 5+ times. Renters in comparatively higher income brackets ($60,000 to $79,999 and $80,000 to $99,999) were positively associated with having contacted 311 3-4 times and City Council 5+ times. Finally, race emerged as a significant variable. Regardless of income bracket, White people were generally less likely to contact City Council, 311, and local security districts (one exception was White people in the $120,000 to $139,999 income bracket, who were positively associated with contacting City Council 3-4 times). Additionally, Black people in income brackets below or equal to $79,999 were more likely to
contact City Council and their local security districts, while Black people in higher income brackets were less likely to call at the same frequencies.

Table 6

Multivariate Regression Analysis for Survey Questions 11-14 for p ≤ .05

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 times contacting City Council</td>
<td>Age x 80,000 to 99,999</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>1-2 times contacting City Council</td>
<td>Black x under 19,999</td>
<td>.26</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>1-2 times contacting City Council</td>
<td>Renter x under 19,999</td>
<td>.28</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>3-4 times contacting City Council</td>
<td>Age x 100,000 to 119,999</td>
<td>.02</td>
<td>.06</td>
<td>.03</td>
</tr>
<tr>
<td>3-4 times contacting City Council</td>
<td>White x 120,000 to 139,999</td>
<td>.52</td>
<td>.06</td>
<td>.02</td>
</tr>
<tr>
<td>3-4 times contacting City Council</td>
<td>White x 100,000 to 119,999</td>
<td>-.61</td>
<td>.06</td>
<td>.02</td>
</tr>
<tr>
<td>3-4 times contacting City Council</td>
<td>Black x 120,000 to 139,999</td>
<td>-.63</td>
<td>.08</td>
<td>.01</td>
</tr>
<tr>
<td>3-4 times contacting City Council</td>
<td>Homeowner x 40,000 to 59,999</td>
<td>-.46</td>
<td>.04</td>
<td>.03</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Age x 20,000 to 39,999</td>
<td>.03</td>
<td>.06</td>
<td>.03</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Black x 100,000 to 119,999</td>
<td>-.77</td>
<td>.10</td>
<td>.03</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Black x 40,000 to 59,999</td>
<td>.53</td>
<td>.10</td>
<td>.04</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>.71</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Renter x 60,000 to 79,999</td>
<td>.91</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>5+ times contacting City Council</td>
<td>Renter x 20,000 to 39,999</td>
<td>-.73</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>0 times contacting 311</td>
<td>White x 200,000+</td>
<td>-1.07</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td>0 times contacting 311</td>
<td>Black x 200,000+</td>
<td>1.06</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td>0 times contacting 311</td>
<td>Homeowner x 40,000 to 59,999</td>
<td>.54</td>
<td>.05</td>
<td>.03</td>
</tr>
<tr>
<td>1-2 times contacting 311</td>
<td>Hispanic x 140,000 to 159,999</td>
<td>1.09</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>3-4 times contacting 311</td>
<td>Age x Homeowner</td>
<td>-.02</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>3-4 times contacting 311</td>
<td>Age x 200,000+</td>
<td>.02</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>3-4 times contacting 311</td>
<td>Asian x 140,000 to 159,999</td>
<td>.46</td>
<td>.04</td>
<td>.03</td>
</tr>
<tr>
<td>3-4 times contacting 311</td>
<td>Homeowner x 80,000 to 99,999</td>
<td>-.13</td>
<td>.08</td>
<td>.00</td>
</tr>
<tr>
<td>3-4 times contacting 311</td>
<td>Renter x 80,000 to 99,999</td>
<td>1.18</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td>5+ times contacting 311</td>
<td>White x 120,000 to 139,999</td>
<td>-.48</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>5+ times contacting 311</td>
<td>Hispanic x 140,000 to 159,999</td>
<td>-1.01</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>0 times contacting security district</td>
<td>White x 160,000 to 179,999</td>
<td>.89</td>
<td>.06</td>
<td>.02</td>
</tr>
<tr>
<td>0 times contacting security district</td>
<td>White x 60,000 to 79,999</td>
<td>.67</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>0 times contacting security district</td>
<td>Black x 160,000 to 179,999</td>
<td>-.87</td>
<td>.06</td>
<td>.02</td>
</tr>
<tr>
<td>1-2 times contacting security district</td>
<td>Age x 120,000 to 139,999</td>
<td>.03</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>1-2 times contacting security district</td>
<td>Hispanic x Homeowner</td>
<td>-1.05</td>
<td>.06</td>
<td>.00</td>
</tr>
<tr>
<td>1-2 times contacting security district</td>
<td>Hispanic x Renter</td>
<td>1.11</td>
<td>.06</td>
<td>.00</td>
</tr>
<tr>
<td>1-2 times contacting security district</td>
<td>Hispanic x under 19,999</td>
<td>1.11</td>
<td>.06</td>
<td>.01</td>
</tr>
</tbody>
</table>
Table 6 (Continued)

<table>
<thead>
<tr>
<th>Contacting Security District</th>
<th>Homeowner x 120,000 to 139,999</th>
<th>3-4 Times</th>
<th>5+ Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 times contacting security district</td>
<td>White x 160,000 to 179,999</td>
<td>–.49</td>
<td>.05</td>
</tr>
<tr>
<td>3-4 times contacting security district</td>
<td>Black x 160,000 to 179,999</td>
<td>.48</td>
<td>.05</td>
</tr>
<tr>
<td>5+ times contacting security district</td>
<td>Age x Hispanic</td>
<td>.03</td>
<td>.08</td>
</tr>
<tr>
<td>5+ times contacting security district</td>
<td>White x 60,000 to 79,999</td>
<td>–.51</td>
<td>.05</td>
</tr>
<tr>
<td>5+ times contacting security district</td>
<td>Black x 60,000 to 79,999</td>
<td>.51</td>
<td>.05</td>
</tr>
<tr>
<td>5+ times contacting security district</td>
<td>Black x 40,000 to 59,999</td>
<td>.30</td>
<td>.06</td>
</tr>
<tr>
<td>5+ times contacting security district</td>
<td>Hispanic x 40,000 to 59,999</td>
<td>.91</td>
<td>.10</td>
</tr>
</tbody>
</table>

Figure 17 analyzes responses to the final survey questions, which asked participants to rank the importance of neighborhood association opinions to City Council and the Mayor. Several correlations were revealed. Age was positively correlated with believing that neighborhood association opinions were “important” to the mayor during Pearson’s test, $r \geq .02$, and regression analysis, $R^2 = .05$, $p < .05$. Additionally, race was a significant factor in structuring participants’ responses. White people were most likely to feel that their opinions were not important to the mayor. This view was reflected in Pearson’s test, $r \geq .20$, and during regression analysis, $R^2 = .03$, $p < .05$. White people were also less likely to perceive neighborhood association opinions as very important, which was revealed during Pearson’s test ($r \geq -.10$) and regression analysis ($R^2 = .03$, $p < .05$). These results were reversed for Black communities. Black people were less likely to perceive opinions as unimportant during Pearson’s test, $r \geq -.20$, and regression analysis, $R^2 = .03$, $p < .05$. They were also more likely to view neighborhood association opinions as very important during Pearson’s test, $r \geq .20$, and regression analysis, $R^2 = .02$, $p < .05$.
Figure 17

Pearson's Correlation Coefficient Heat Map for Survey Questions 15-17

Note. The dependent variable(s) are listed on the y axis, and represent responses to the following survey questions in order:
• “How important do you believe neighborhood association opinions are to City Council?”
 Results include “Not important,” “Of little importance,” “Moderately important,”
 “Important,” and “Very Important.”
• “How important do you believe neighborhood association opinions are to the Mayor?”
 Results include “Not important,” “Of little importance,” “Moderately important,”
 “Important,” and “Very Important.”
• “Do you participate in a Security District within your neighborhood?” Results include
 “Does not participate in security district” and “does participate in security district.”

Table 7 summarizes the multivariate relationships between survey participants’
demographics and how important they believed that neighborhood associations were to the Mayor
and City Council. Multivariate analysis revealed that renters are likely to perceive their opinions
as unimportant or of little importance to the Mayor and City Council, regardless of their income.
Further, renters in the $80,000 to $99,999 income group were unlikely to perceive neighborhood
association opinions as very important.

Table 7

Multivariate Regression Analysis for Survey Questions 15-17 for $p \leq .05$

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Council: Not important</td>
<td>White x 180,000 to 199,999</td>
<td>.09</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>City Council: Not important</td>
<td>Homeowner x 180,000 to 199,999</td>
<td>.08</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>City Council: Of little importance</td>
<td>Age x 120,000 to 139,999</td>
<td>-.03</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>City Council: Of little importance</td>
<td>Age x under 19,999</td>
<td>.03</td>
<td>.05</td>
<td>.00</td>
</tr>
<tr>
<td>City Council: Of little importance</td>
<td>Hispanic x 80,000 to 99,999</td>
<td>1.10</td>
<td>.07</td>
<td>.00</td>
</tr>
<tr>
<td>City Council: Moderately Important</td>
<td>Renter x 60,000 to 79,999</td>
<td>.80</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>City Council: Moderately Important</td>
<td>Black x under 19,999</td>
<td>.26</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>City Council: Moderately Important</td>
<td>Hispanic x Renter</td>
<td>1.02</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>City Council: Moderately Important</td>
<td>Homeowner x 200,000 +</td>
<td>-.11</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>City Council: Moderately Important</td>
<td>Homeowner x 60,000 to 79,999</td>
<td>.58</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>City Council: Very Important</td>
<td>White x 80,000 to 99,999</td>
<td>-.75</td>
<td>.02</td>
<td>.05</td>
</tr>
<tr>
<td>City Council: Very Important</td>
<td>Hispanic x 40,000 to 59,999</td>
<td>1.11</td>
<td>.03</td>
<td>.05</td>
</tr>
</tbody>
</table>
Table 7 (Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Comparison</th>
<th>Correlation (r)</th>
<th>Confidence Interval (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Council: Very Important</td>
<td>Homeowner x 20,000 to 39,999</td>
<td>- .70</td>
<td>.03 .05</td>
</tr>
<tr>
<td>City Council: Very Important</td>
<td>Renter x 20,000 to 39,999</td>
<td>.79</td>
<td>.04 .03</td>
</tr>
<tr>
<td>Mayor: Not Important</td>
<td>Age x Hispanic</td>
<td>.03</td>
<td>.06 .00</td>
</tr>
<tr>
<td>Mayor: Not Important</td>
<td>Hispanic x 40,000 to 59,999</td>
<td>1.04</td>
<td>.08 .00</td>
</tr>
<tr>
<td>Mayor: Not Important</td>
<td>Renter x 60,000 to 79,999</td>
<td>.48</td>
<td>.04 .03</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Age x 60,000 to 79,999</td>
<td>.02</td>
<td>.06 .02</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Black x 120,000 to 139,999</td>
<td>-.57</td>
<td>.04 .03</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Black x 100,000 to 119,999</td>
<td>.71</td>
<td>.04 .04</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Hispanic x 140,000 to 159,999</td>
<td>1.21</td>
<td>.05 .02</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Homeowner x 40,000 to 59,999</td>
<td>-.49</td>
<td>.04 .05</td>
</tr>
<tr>
<td>Mayor: Of Little Importance</td>
<td>Renter x 40,000 to 59,999</td>
<td>.64</td>
<td>.05 .02</td>
</tr>
<tr>
<td>Mayor: Moderately Important</td>
<td>Age x 100,000 to 119,999</td>
<td>.02</td>
<td>.03 .04</td>
</tr>
<tr>
<td>Mayor: Moderately Important</td>
<td>White x 80,000 to 99,999</td>
<td>-.78</td>
<td>.04 .03</td>
</tr>
<tr>
<td>Mayor: Moderately Important</td>
<td>Black x 80,000 to 99,999</td>
<td>.82</td>
<td>.04 .02</td>
</tr>
<tr>
<td>Mayor: Important</td>
<td>Age x Asian</td>
<td>.02</td>
<td>.07 .03</td>
</tr>
<tr>
<td>Mayor: Important</td>
<td>Age x Homeowner</td>
<td>-.02</td>
<td>.09 .01</td>
</tr>
<tr>
<td>Mayor: Important</td>
<td>Age x 60,000 to 79,999</td>
<td>-.02</td>
<td>.10 .01</td>
</tr>
<tr>
<td>Mayor: Important</td>
<td>Asian x Homeowner</td>
<td>.41</td>
<td>.03 .04</td>
</tr>
<tr>
<td>Mayor: Important</td>
<td>Asian x 140,000 to 159,999</td>
<td>.39</td>
<td>.03 .05</td>
</tr>
<tr>
<td>Mayor: Very Important</td>
<td>Age x Black</td>
<td>.01</td>
<td>.06 .02</td>
</tr>
<tr>
<td>Mayor: Very Important</td>
<td>Renter x 80,000 to 99,999</td>
<td>-1.00</td>
<td>.04 .05</td>
</tr>
<tr>
<td>Participates in a security district</td>
<td>Age x 180,000 to 199,999</td>
<td>-.03</td>
<td>.03 .04</td>
</tr>
<tr>
<td>Participates in a security district</td>
<td>Age x 100,000 to 119,999</td>
<td>.02</td>
<td>.03 .04</td>
</tr>
</tbody>
</table>

Survey Participant Demographics vs. Orleans Parish Demographics

Figure 18 examines the difference between survey participants’ demographics and aggregate demographics in Orleans Parish. There were positive correlations between the percentage of White survey respondents and the percentage of White people in Orleans Parish ($r \geq 0.20$), the percentage of women respondents and the percentage of women in Orleans Parish ($r \geq 0.10$), the percentage of high school graduates among respondents and within Orleans Parish ($r \geq 0.10$), and the percentage of bachelor’s degree recipients among respondents and within Orleans Parish ($r \geq 0.10$). There were also positive correlations for the following income groups: $50,000 to $100,000 ($r \geq 0.25$), $100,000 to $200,000 ($r \geq 0.25$), and over $200,000 ($r \geq 0.30$). There were
negative correlations for age ($r \geq -.25$), percent male ($r \geq -.25$), percent Black ($r \geq -.60$), and the under $50,000$ income group ($r \geq -.25$).

Figure 18

Pearson’s Correlation Coefficient Heat Map for Survey Participant Demographics vs. Orleans Parish Demographics, Full Sample Size

Note. This visualization includes all neighborhood associations, regardless of how many survey responses were received per association.
Figure 19 examines the difference between survey participants’ demographics and aggregate demographics in Orleans Parish for a smaller sample of neighborhood associations. Results were similar to figure 18. There was a new positive association between the percentage of male survey respondents and the percentage of men in Orleans parish \((r \geq .20)\). There was also a positive association for the under $50,000 income bracket \((r \geq .30)\) and weaker positive correlations for the other three income brackets compared to figure 18.

Figure 19

Pearson’s Correlation Coefficient Heat Map for Survey Participant Demographics versus Orleans Parish Demographics, Small Sample Size
Note. This visualization only includes neighborhood associations that had at least three survey responses per association (18 total).

Neighborhood Association Activity Level vs. Neighborhood Demographics

Figure 20 shows the relationship between the demographics of different New Orleans neighborhoods and neighborhood association activity level. There were significant correlations for two age groups. The percentage of people age 10-19 was negatively correlated with several dependent variables: meetings held since COVID-19 for Pearson’s test ($r \geq -.20$) and regression analysis ($R^2 = .03, p < .05$), activities pre-COVID-19 for Pearson’s test ($r \geq -.25$) and regression analysis ($R^2 = .07, p < .05$), and activities post-COVID-19 for Pearson’s test ($r \geq -.20$) and regression analysis ($R^2 = .03, p < .05$). In contrast, the percentage of people age 30-39 was strongly associated with greater activity level. This group was positively correlated with the following indicators: meetings held before COVID-19 for Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .05, p < .05$), meetings held since COVID-19 for Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .06, p < .05$), activities held before COVID-19 for Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .08, p < .05$), and activities held since COVID-19 for Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .04, p < .05$).

Race was also associated with significant correlations. Being White was positively correlated with meetings before COVID-19 during Pearson’s test ($r \geq .10$) and regression analysis ($R^2 = .05, p < .05$), while being Black was negatively associated with meetings before COVID-19 during both Pearson’s test ($r \geq -.10$) and regression analysis ($R^2 = .04, p < .05$). Black identity was also negatively correlated with activities pre COVID-19 during Pearson’s test ($r \geq -.10$) and regression analysis ($R^2 = .02, p < .05$). Black and White populations maintained these same general correlations after COVID-19 with a weaker Correlation Coefficient (r). Another
significant relationship involved Hispanic identity, which was positively correlated with activities pre-COVID-19 during Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .05, p < .05$).

Finally, class had strong effects on the dependent variable. With the exception of the $100,000 to $200,000 income group, income brackets over $50,000 were associated with more active neighborhood associations. The $50,000 to $100,000 bracket was correlated with meetings held before COVID-19 for Pearson’s test ($r \geq .20$) and regression analysis ($R^2 = .06, p < .05$ 50-100k). Finally, the $300,000 to $400,000 housing value group was positively correlated with all four activity level indicators: meetings held before COVID-19 through Pearson’s test ($r \geq .10$) and regression analysis ($R^2 = .03, p < .05$ 300-400k), meetings held after COVID-19 through Pearson’s test ($r \geq .10$) and regression analysis ($R^2 = .03, p < .05$), activities held before COVID-19 through Pearson’s test ($r \geq .10$) and regression analysis ($R^2 = .03, p < .05$ 300-400k), and activities held after COVID-19 through Pearson’s test ($r \geq .10$) and regression analysis ($R^2 = .03, p < .05$ 300-400k).
Finally, Table 8 shows that the intersections of various independent variables had a significant effect on neighborhood association activity level. White people in lower income groups (under $50,000) were generally more active compared to other majority-White groups. White communities were positively correlated with meetings held before COVID-19, meetings
since COVID-19, activities held before COVID-19, and activities held since COVID-19.

Alternately, White people in higher-income groups were less active. White people and median household income were negatively correlated with meetings held before COVID-19, meetings since COVID-19, and activities held before COVID-19. Further, White people in the $100,000 to $200,000 income bracket were negatively correlated with meetings before COVID-19 and activities before COVID-19. Finally, White people in the $200,000 plus bracket were negatively associated with meetings before and after COVID-19.

This trend was reversed within Black populations. Black people in lower income groups (under $50,000) were generally less active. This income bracket was negatively correlated with meetings before COVID-19, meetings since COVID-19 and activities held before COVID-19. In contrast, the intersection of Black identity and median household income was positively correlated with meetings before and after COVID-19. Finally, the $100,000 to $200,000 income group was positively correlated with activities and meetings held before COVID-19, and the $200,000 plus income group was positively correlated with meetings since COVID-19.

Table 8
Multivariate Regression Analysis for Pre- and Post-COVID-19 Neighborhood Association

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variables</th>
<th>coef</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meetings held before COVID-19</td>
<td>White x Median Household Income</td>
<td>-.00</td>
<td>.10</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>White x Under 50,000</td>
<td>.00</td>
<td>.11</td>
<td>.00</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>White x 100,000 to 200,000</td>
<td>-.01</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>White x Over 200,000</td>
<td>-.00</td>
<td>.11</td>
<td>.02</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>Black x Median Household Income</td>
<td>.00</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>Black x Under 50,000</td>
<td>-.00</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>Black x 100,000 to 200,000</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
</tr>
<tr>
<td>Meetings held before COVID-19</td>
<td>Asian x 50,000 to 100,000</td>
<td>-.10</td>
<td>.12</td>
<td>.00</td>
</tr>
<tr>
<td>Meetings since COVID-19</td>
<td>White x Median Household Income</td>
<td>-.00</td>
<td>.04</td>
<td>.02</td>
</tr>
<tr>
<td>Meetings since COVID-19</td>
<td>White x Under 50,000</td>
<td>.00</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>Meetings since COVID-19</td>
<td>Variable</td>
<td>Coefficient 1</td>
<td>Coefficient 2</td>
<td>Coefficient 3</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>White x Over 200,000</td>
<td>.00</td>
<td>.04</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Black x Median Household Income</td>
<td>.00</td>
<td>.04</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Black x Under 50,000</td>
<td>-.00</td>
<td>.05</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Black x Over 200,000</td>
<td>.00</td>
<td>.03</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Asian x 50,000 to 100,000</td>
<td>-.07</td>
<td>.07</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Median household income x 50,000 to 100,000</td>
<td>-.00</td>
<td>.04</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Male x White</td>
<td>.00</td>
<td>.06</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Male x Black</td>
<td>-.00</td>
<td>.07</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Male x Native American</td>
<td>-.01</td>
<td>.03</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Male x Asian</td>
<td>.01</td>
<td>.03</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Male x Hispanic</td>
<td>.00</td>
<td>.08</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Male x Under 50,000</td>
<td>-.00</td>
<td>.03</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Male x 100,000 to 200,000</td>
<td>.00</td>
<td>.04</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>White x Median Household Income</td>
<td>-.00</td>
<td>.07</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>White x Under 50,000</td>
<td>.00</td>
<td>.11</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>White x 100,000 to 200,000</td>
<td>-.00</td>
<td>.07</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Black x Under 50,000</td>
<td>-.00</td>
<td>.12</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Black x 100,000 to 200,000</td>
<td>.00</td>
<td>.07</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>White x Under 50,000</td>
<td>.00</td>
<td>.05</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Black x Under 50,000</td>
<td>-.00</td>
<td>.04</td>
<td>.04</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER FOUR
DISCUSSION AND CONCLUSIONS

This thesis presents several conclusions about the ways that race, class, and gender impact access to political power in New Orleans. These results build upon the work of scholars of inequality and civic engagement by suggesting that identity actively shapes access to power in New Orleans. On one hand, this work proves that power is structured in different ways depending on both the unique settings where civic engagement takes place and the intersection of different identities within that setting. Certain factors, including race, class, and homeownership status, were identified as particularly influential in shaping power relations in New Orleans. Secondly, this study suggests that neighborhood associations— one of the dominant structures of civic engagement in New Orleans—are not currently inclusive of all New Orleans residents at the city and neighborhood levels. These conclusions demonstrate that New Orleans’ current system of civic engagement is not accessible for all demographic groups, and further suggest that its design may actively contribute to their exclusion.

The results section illuminates the different and often contradictory ways that identity mediates access to political power across different spaces of civic engagement. The survey data shows that depending on the institution of civic engagement at hand, such as neighborhood association activities or City Council meetings, the same identity categories can act as forces of inclusion or exclusion. The results of correlation and regression analysis for survey question 2, for example, show that Black people were likely to have participated for a longer duration of time than White people in their neighborhood associations. This suggests that they are more civically engaged and actively included within the city’s neighborhood associations. These results are contradicted in other parts of the survey, however. Black people in the $200,000 plus income bracket, for example, were less likely to have submitted a public comment during a City Council
meeting before COVID-19, which is another important indicator of civic engagement and political power. Similar contradictions were rampant throughout the data and suggest that identity structures power in different ways depending on the institution and unique setting where civic engagement is taking place. They also suggest that demographic groups are being excluded from the benefits of civic engagement across many different types of civic engagement institutions in New Orleans.

Further, this thesis shows that unique intersections of race, class, gender, and other factors actively impacts access to political power in New Orleans neighborhoods. The analysis comparing neighborhood association activity level to neighborhood demographics, for example, shows that the intersection of race and class revealed correlations that disappeared during simple linear regression analysis. Neighborhoods with a high proportion of high-income Black people tended to have more active neighborhood associations than neighborhoods with a high percentage of lower-income Black people. This trend was reversed within majority-White communities. These analyses show how the intersection of different aspects of identity structures power in nuanced ways, affirming the suggestions of intersectional feminist theorists. They also demonstrate that depending on the matrix of identities present in each neighborhood and institution of civic engagement in New Orleans, power is structured in different ways and thus different groups may be included or excluded on the basis of identity.

Despite the unique ways that identity structures power across different contexts in New Orleans, certain demographic indicators were particularly powerful predictors of inclusion and exclusion within institutions of civic engagement: race, class, and homeownership status. Especially when combined in multivariate analyses, these factors had consistent and powerful relationships with the dependent variable (access to political power). They are discussed below:
1. Racial identity was a strong predictor of activity level within White and Black communities. People identifying as Black or African American were more likely to participate in civic engagement activities and thus access political power for a variety of indicators in the survey, including perceiving neighborhood associations as important to City Council, contacting City Council, and attending 9+ neighborhood association meetings, among others. Black populations were much less likely than White populations, however, to be adequately represented on their neighborhood association board. They were also highly under-represented among survey respondents compared to White neighborhood residents, and thus their representation in survey results may be less accurate.

2. Class was an important feature of multivariate regression analysis. It often highlighted intersectional relationships within identity categories, such as the intersection of race and class in the neighborhood association activity level analysis. Additionally, income- one indicator of class- was positively correlated with activity level throughout many sections of the survey. People in higher income brackets were also better represented among survey respondents compared to New Orleans residents with lower annual incomes.

3. Homeownership, as opposed to renting, was generally association with greater duration and frequency of participation in civic engagement. Throughout the survey, homeownership was often positively correlated with indicators of political engagement, such number of neighborhood association meetings attended.

Although many different aspects of identity produced statistically significant results, these indicators were prevalent throughout the results section. This thesis suggests that they are particularly influential in impacting access to political power in a New Orleans context.
Finally, results indicated that neighborhood associations boards are not representative of the demographics of all New Orleans residents. Although board member regression analysis suggested that White and Black populations were represented at roughly the same degree, the chi-square goodness of fit test refuted these results. At the city level (Orleans Parish), a chi-square test showed that New Orleans’ demographics differ significantly from the demographics of neighborhood association board members. There was a pronounced lack of representation for Black people, Black women, Black men, women, Asian people, Asian women, Asian men, Hispanic or Latino people, Hispanic or Latino women, and Hispanic or Latino men. Similar trends appeared at the neighborhood level. A chi-square test showed that six associations were highly unrepresentative of their surrounding neighborhoods, and were particularly lacking in representation among Black people, Black women, Black men, Hispanic or Latino people, Hispanic or Latino Women, and Hispanic or Latino men. These patterns of exclusion correspond with historical legacies of marginalization for women, Black people, Asian people, and Hispanic people in New Orleans, and suggest that many of these legacies may still be occurring within institutions of civic engagement in New Orleans.

Despite the varying trends these results suggest, they nearly universally show that certain groups are actively being included and excluded from institutions of civic engagement in New Orleans. Exclusion is actively occurring in spaces like neighborhood associations, thus implying that the benefits of civic engagement are not being conferred equally among New Orleans citizens. Further, the groups that are excluded at the highest rates—such as Black and Hispanic populations—have been historically excluded from civic engagement institutions throughout New Orleans’ history (Sarma 2010). Their continued marginalization suggests that the design of political institutions must be updated to specifically center and uplift their needs.
BIBLIOGRAPHY

doi: 10.4135/9781446214817.n33.

https://64parishes.org/entry/jim-crowsegregation.

https://www.southampton.ac.uk/passs/full_time_education/bivariate_analysis/chi_square.page.

Politics of Empowerment.” Boston: Unwin Hyman.

Logan, John R., and Gordana Rabrenovic. 1990. “Neighborhood Associations: Their Issues,

APPENDICES

Survey Questions

Thank you for your interest in taking this survey. These questions are completely anonymous and will take you 5 minutes to complete.

Part I. Neighborhood Association and City Council Participation

1. What neighborhood association do you belong to?
 a. Free response

2. How long have you lived in your neighborhood?
 a. Free response: ___ years ___ months

3. How long have you participated in your neighborhood association?
 a. Free response: ___ years ___ months

4. How many times have you participated in a neighborhood association meeting or event in the past year?
 a. 0 times
 b. 1-2 times
 c. 3-4 times
 d. 5-6 times
 e. 7-8 times
 f. 9+ times

5. What is your role in your neighborhood association? You may select multiple responses.
 a. Member
 b. Board member
 c. Officer of the Board
d. President/Chair

e. Vice President/Vice Chair

f. Treasurer

g. Secretary

h. Other (please specify): ______

 a. Attendance at neighborhood association meetings
 b. Attendance at City Council, City Planning Commission, or other City board or commission meetings
 c. Helping organize events
 d. Monetary contributions
 e. Participating through social media
 f. Other (please specify): ______

7. Do you participate in any committees within your neighborhood association? You may select multiple responses or none at all.

 a. Communication or outreach
 b. Fundraising
 c. Neighborhood development
 d. Neighborhood security or police relations
 e. Parks and recreation
 f. Zoning
 g. Other (please specify): ______
8. What issue was your greatest motivation in joining your neighborhood association? You may select up to two responses
 a. Climate change
 b. COVID-19
 c. Crime and safety
 d. Density
 e. Disaster preparedness
 f. Education
 g. Flooding
 h. Healthcare
 i. Historic Preservation
 j. Infrastructure (e.g., streets)
 k. Lack of development and investment
 l. Lack of housing that is affordable
 m. Lack of jobs or services for young people
 n. Overdevelopment or commercialization
 o. Parking
 p. Parks and green space
 q. Police accountability
 r. Transportation
 s. Unoccupied and blighted homes or lots
 t. Other (please specify): ______

9. What do you see as the biggest concern in your neighborhood today? You may select up to two responses.
a. Access to parks, green space, or recreational facilities
b. Access to public transportation
c. Access to social services (e.g., education, food services, healthcare)
d. Climate change
e. COVID-19
f. Crime and safety
g. Density
h. Flooding
i. Historic preservation
j. Infrastructure (e.g., streets)
k. Lack of development and investment
l. Lack of housing that is affordable
m. Lack of jobs or services for young people
n. Overdevelopment or commercialization
o. Parking
p. Police accountability
q. Unoccupied and blighted homes or lots
r. Other (please specify): ______

10. What do you see as your neighborhood association’s greatest accomplishment in the past year? Please do not include the names of any neighborhood association members in your response.
 a. Free response
11. What do you see as the greatest challenge your neighborhood association has faced in the past year? Please do not include the names of any neighborhood association members in your response.
 a. Free response

12. How many City Council or City Planning Commission meetings have you ever attended before COVID-19?
 a. 0 meetings
 b. 1 meeting
 c. 2 meetings
 d. 3 meetings
 e. 4 meetings
 f. 5+ meetings

13. How many times have you testified about a neighborhood issue or submitted a public comment at a City Council or City Planning Commission meeting before COVID-19?
 a. I never attended a City Council or City Planning Commission meeting before COVID-19
 b. 0 times
 c. 1 time
 d. 2 times
 e. 3 times
 f. 4 times
 g. 5+ times

14. How many virtual City Council or City Planning Commission meetings have you attended since COVID-19?
a. 0 meetings
b. 1 meeting
c. 2 meetings
d. 3 meetings
e. 4 meetings
f. 5+ meetings

15. How many times have you submitted a public comment about a neighborhood issue at a virtual City Council or City Planning Commission meeting since COVID-19?
 a. I’ve never attended a virtual City Council or City Planning Commission meeting since COVID-19
 b. 0 times
c. 1 time
d. 2 times
e. 3 times
f. 4 times
g. 5+ times

16. How many times have you contacted your City Council member or their staff in the past year (including calling, emailing, or speaking in person)?
 a. 0 times
 b. 1-2 times
c. 3-4 times
d. 5+ times

17. How important do you believe neighborhood association opinions are to City Council?
 a. Very important
b. Important

c. Moderately important

d. Of little importance

e. Not important at all

18. How important do you believe neighborhood association opinions are to the Mayor?
 a. Very important
 b. Important
 c. Moderately important
 d. Of little importance
 e. Not important at all

19. How many times have you contacted 311 about a neighborhood issue in the past year?
 a. 0 times
 b. 1-2 times
 c. 3-4 times
 d. 5+ times

20. Do you participate in a Security District within your neighborhood?
 a. No
 b. Yes, I am a member of the board of my local Security District
 c. Yes, I have called Security District officers for assistance
 d. Yes, other (please specify): ______

21. How many times have you contacted your security district in the past year?
 a. 0 times
 b. 1-2 times
 c. 3-4 times
22. How many times have you called the police in the past year?
 a. 0 times
 b. 1-2 times
 c. 3-4 times
 d. 5+ times

Part II. Personal Information

1. What is your age?
 a. Free response: ___ years

2. What is your gender identity?
 a. Male
 b. Female
 c. Non-binary
 d. Not listed (please specify): _____

3. Are you of Hispanic or Latino origin?
 a. No
 b. Yes

4. What is your race? Please check all that apply.
 a. White
 b. Black or African American
 c. American Indian or Alaska Native
 d. Asian
 e. Native Hawaiian or Other Pacific Islander
 f. Not listed (please specify): ______
5. What is the highest level of education you have completed?
 a. Some high school, no diploma
 b. High school graduate
 c. Bachelor’s degree
 d. Master’s degree or greater
 e. Other (please specify): ______

6. Are you a business owner?
 a. No
 b. I am self-employed
 c. I own a business with employees
 d. Other (please specify): ______

7. What was your household income during the last year?
 a. Under $19,999
 b. $20,000 to $39,999
 c. $40,000 to $59,999
 d. $60,000 to $79,999
 e. $80,000 to $99,999
 f. $100,000 to $119,999
 g. $120,000 to $139,999
 h. $140,000 to $159,999
 i. $160,000 to $179,999
 j. $180,000 to $199,999
 k. $200,000 and over

8. What is your current housing status?
a. Homeowner
b. Renter
c. Other (please specify): ______

9. Since living in your neighborhood, has your homeownership status changed? If yes, please specify the nature of the change.
 a. No
 b. Yes, I was a homeowner but am now a renter
 c. Yes, I was a renter but am now a homeowner
 d. Yes, other (please specify): ______

Thank you for taking the time to complete this survey. Our research team deeply values your input and participation.
Copy of IRB Approval

DATE: January 21, 2021
TO: Katherine Rose
FROM: Tulane University Social-Behavioral IRB
STUDY TITLE: An Intersectoral Case Study of Public Participation in New Orleans
REF #: 2020-1653
SUBMISSION TYPE: Initial Submission
ACTION: EXEMPT

On 1/21/2021, the Tulane University Social-Behavioral IRB provided a review and Exempt determination for the initial submission of this study, in accordance with the appropriate federal regulations.

The following items were submitted as part of the submission:

- Copy of Survey Questions (Data Collection Tool)
- Email Recruitment Materials (Other Recruitment Material)
- Facebook Recruitment Materials (Website Posting)
- IRB Research Protocol FINAL.docx (Study Protocol)
- Survey Cover Letter (Consent Form (Social Behavioral))

This study is approved for the local enrollment of 176 176 registered neighborhood associations in New Orleans.

Exempt studies are subject to institutional oversight including reviews and audits by the Human Research Protection Program. Please submit any proposed changes to the research that could potentially change the exempt status prior to implementation, unless a change is necessary to avoid immediate harm to subjects. If subject safety becomes an issue, please notify the Tulane University Human Research Protection Office (HRPO) as soon as possible.

Please submit any unanticipated problems involving risk to subjects or others, deviations from the approved research, non-compliance, and complaints to the IRB in accordance with Tulane University Human Research Protection Program (HRPP) Standard Operating Procedures (SOPs). Please contact the HRPO via irbmain@tulane.edu or (504) 868-2995 if you have questions and/or concerns regarding reporting events.

If your study is supported in whole or in part by a federal grant, please note that Federal regulations prohibit the use of Federal funds for human subject research that is not conducted under current IRB approval. Loss of IRB approval for this study due to lapse, suspension or termination will be communicated by the Tulane IRB to Tulane’s Office of Grants and Contracts Accounting, which may
result in an administrative hold being placed on the related grant(s). Therefore, to avoid an interruption in research activity, including use of coded, identifiable human data or biospecimens, and access to grant funds it is critical that IRB approval for the study be maintained.

Please notify the IRB within 30 days of completion of all study activities and data analysis by submitting a Study Closure Form.

The Principal Investigator is responsible for being familiar with and complying with Tulane University HRPP SOPs found at https://research.tulane.edu/hrpo. Please do not hesitate to contact our office with any questions or concerns.

Sincerely,

Tulane University Human Research Protection Office

Please note that the actual signature by the IRB Chair(s) is not required for this document to be effective. IRBManager generates this letter pursuant to the IRB Chair’s electronic signature and approval. This process is consistent with Federal Regulations and Tulane Standard Operating Policies with respect to the IRB and Human Research Protection Office, which consider electronically generated documents as official notices to sponsors and others of approval, disapproval or other IRB decisions. Please refer to Tulane's Electronic Signatures and Records Policy by visiting the HRPO website at https://research.tulane.edu/hrpo.