

SCHOOL OF MEDICINE Graduate Program in Biomedical Sciences

Final Examination

To the Assistant Dean and/or Co-Director of the Graduate Program in Biomedical Sciences:

This is to certify that Francesca Edgington-Gio	rdano	ID97700	9446	_has stood
Student Name	a/discontation	Tulane II Characterizing t	D number	
and passed the final examination, and the thesi	Thesis Title			
Protein Diet on Offspring Kidney Development and Function				
has been approved by the committee. Therefore	re, he/she is re	commended	for the degree	e of
Check one: 🖪 Doctor of Philosophy	🗆 Maste	er of Science		
in Biomedical Sciences to b	be conferred in	the followin	ng semester:	
□ Spring □ Summer		Fall 2020	C	
Year Year	Year	Year		
12/03/2020				
Date of Examination if applicable				
Tamas Kozicz	Tamas Ko	zicz M.D., Ph.D	Digitally signed by Tamas Ko	zicz M.D., Ph.D.
Dissertation Committee Member Name	Signature	, /	- Date: 2021.02.01 10.30.20 =0	
			Digitally signed by Semir	El Dobr MD
Samir El-Dahr, MD	Samir E	I-Dahr, MD	Date: 2021.02.03 10:33:5	3 -06'00'
Dissertation Committee Member Name	Signature			
Kevin Zwezdaryk	Kevin Z	wezdaryk	Digitally signed by Kevin Zwezdaryk DN: cn=Kevin Zwezdaryk, o=Tutane University, cu=Mice email=Kevezdar@sitane edu, c=US Date: 2021.02.03 13:07:32 -06007	obiology and Immunology,
Dissertation Committee Member Name	Signature			
Sarah Lindsey	S.	uebfinloup	Date: 2021.02.04 14:4	15:00 -06'00'
Dissertation Committee Member Name	Signature			
Prasad Katakam	Prasad	Katakam	Digitally signed by Prasad Katakam DN: cmPrasad Katakam, orTu'ane University School o Pharmacology, email rejkatakam@tuhane.edu, cr/US Darin: 2011.026 (d): 10.3304-04000	Medicine, ou=Department of
Dissertation Committee Member Name	Signature			
Dissertation Committee Member Name	Signature			
	č			

CHARACTERIZING THE EFFECT OF PARENTAL LOW PROTEIN DIET ON OFFSPRING KIDNEY DEVELOPMENT AND FUNCTION

By: Francesca Edgington-Giordano

Zubaida Saifudeen Lab

Tulane School of Medicine:

Biomedical Sciences Doctor of Philosophy

Abstract

The kidney develops from the intermediate mesoderm from E10 to P4 in mice and weeks 5 to 34 in humans. The development relies on the physical and signaling interactions between the nephron progenitor cells (NPCs), the stroma progenitor cells, and the ureteric branching tip cells (UBTCs). Kidney development relies on signals that vary based on location and temporally with NPC recruitment order determining the part of the nephron they will form. Kidney organogenesis and nephrogenesis relies on signals from BMPs, growth factors, Wnt, cytokines, and autonomous and exogenous cell proliferation and survival signals. These signals lead into or are regulated by cell metabolism, environmental signals, and chromatin modifications. IUGR is an environmental condition known to cause hypertension, chronic kidney disease, and kidney failure. We hypothesized that disruption of metabolic homeostasis in the nephron progenitor cells in the IUGR fetus impairs nephrogenesis and is the direct link between the maternal environment and nephron endowment leading to adult hypertension and chronic kidney disease (CDK). IUGR from low protein diet caused small pups, small kidneys, increased kidney/body weight ratio. The changes begin at E13.5 with a 30% decrease in ureteric tip count, disorganized/smaller cap mesenchyme (CM) (37.5% decrease in Six2+ NPCs), and smaller kidneys. P0 NPCs show dysregulation to growth factors, Wnt, cell metabolism, and autonomous and exogenous cell proliferation and survival signals shown by bulk RNA-seq and immunofluorescence. Changes from LPD IUGR persist with delayed postnatal growth of skin, hair, body, and kidneys. P21 and adult IUGR show damage to kidneys and increased risk of developing hypertension, and CDK. IUGR LPD is the first hit in the multi-hit disease causation of CDK. The P0 NPCs had dysregulated metabolism and chromatin; postnatal development continues to be dysregulated despite removal of LPD environment. The LPD IUGR model produces a new tool for the study of multi-hit kidney disease.

Acknowledgements

To start I want to thank my PhD advisor and mentor Dr. Zubaida Saifudeen, who like all advisors took a chance on a young, enthusiastic, and unskilled researcher. Dr. Saifudeen's lab was a place of growth from her leadership and in her selection of amazing lab mates. Jiao Liu, an astounding lab tech and researcher, I thank you for your support and hours of training. I would not be half the researcher I am today without these amazing women supporting me and laying the foundation, studs, and roof of my PhD work. The Saifudeen lab has grown and changed during my time but a constant has been a willingness to lend a hand and guide each other. Dr. Giovane Tortelote, Dr. Tingfeng Li, and Mariel Colon-Leyva all showed a willingness to help in conversations about my project, career plans, and the less glamorous day to day of mouse work. Special thanks to Catie Diepenbrock as an amazing undergraduate who was game to count glomerular for me. The Saifudeen lab is part of a hardworking and collaborative department in Pediatrics. Pediatric Nephrology research at Tulane is a community made up of thoughtful researchers that never hesitated to support anyone. Dr. Samir El-Dahr, Dr. Hongbing Liu, Dr. Yuwen Li, Dr. Sylvia Hillard, Dr. Renfang Song, and Dr. Chao-Hui Chen all contributed with daily advice, encouragement, and a weekly struggle in a darkened lab meeting. Pediatric nephrology created an environment that supported every researcher that entered the space sometimes with food, and other times explaining antibody conditions for the thirtieth time.

It is not just your lab that supports PhD work, but also the institution at which you are trained. Tulane University is filled with talented and helpful people. The Tulane Biomedical Sciences program supports its students and is staffed by people that want us to succeed I thank the Co-chairs of the program, Dr. Diane Blake and Dr. Robert Garry, for leading a program focused on the success of its students, and my cohort for silent and loud encouragement.

Thank you sincerely to my committee. My prospectus helped me refocus on what was feasible and interesting. Every meeting has reminded me of why research is collaborative. Dr. Lindsey: thank you for the assistance in blood pressure calculations, and Dr. Katakam: thank you for the help with the Seahorse machine.

The Tulane Department of Comparative Medicine has helped me from the moment I started my lab work. The staff at the DCM do not just do their jobs they are always willing to go above and beyond for students and the animals. Special thanks to Dr. Andrews, Dr. Dobek, and Lynell Dupepe for your time, expertise, and patience.

For assistance in sample preparation and analysis I thank Hugh Alan Tucker of the Flow Cytometry Core, Dina Gaupp of Histology, Alexander Castillo of Phenotyping Core at Tulane University, and the UAB/UCSD O'Brien Center Core (Grant DK079337). Centers and core facilities are common, but so often I found facilities that were responsive to questions, generous with advice and willing to go the extra mile to make sure precious samples provided every bit of data they could. Thank you especially Alan for staying late and talking through assays, I know Tulane graduate students have much to be grateful for.

I have luckily been supported my entire life by a family that always wanted me to succeed. My entire family has listened to years of biology lectures, mouse breeding ideas, troubleshooting, terrible jokes, and blind panic. I have no doubt their reminders to finish my thesis are more for their benefit than mine. Thank you, Mom, Frederika, Patrick, Lucinda, Alexandra, and Kellen for listening, checking in on me, and telling me to get some sleep. The most exciting part of my next adventure will be the hours I spend telling all of you about it.

Table of Contents

Abstract	ii
Acknowledgements	iii
Chapter 1: Introduction	7
1.1 Kidney Development:	7
Figure 1: Early Germlayer differentiation	7
Figure 2: Early Metanephros Kidney Development	8
Figure 3: Sequential Ureteric Branching	10
1.2 Intermediary metabolism and cell fate decisions:	14
Figure 4: Interaction of Glycolysis with NPC Renewal and differentiation Pathways	15
1.3 Intrauterine Growth Restriction:	19
Figure 5: Diet Comparison for inducing IUGR:	20
1.4 Significance:	22
Chapter 2 Materials and Methods	24
2.1 Mouse Model and Breeding:	24
2.2 IUGR Characterization:	25
2.3 Immunohistochemistry:	25
2.4 Count Data for BrdU Proliferation and PARP Apoptosis:	26
2.5 Magnetic Activated Cell Sorting:	27
2.6 Fluorescence-Activated Cell Sorting:	27
2.7 RNA-Seq:	27
2.8 Kidney Function:	28
2.9 Glomerular Count:	29
2.10 Six2+ Percent by GFP:	29
2.11 Extracellular Flux Measurements of MACs P0 NPCs:	
2.12 Statistics:	
Chapter 3: Results	
3.1a. Physiology and Vital Statistics of newborn pups from dams on a 20% vs 6% prod	t ein diet: 30
3.1b. Morphology and Morphometrics:	31
Figure 6: P0 IUGR Mouse Body Weight and Kidney Weight:	31
Figure 7: Low Protein Impacts Pup Size, Litter Size, and Growth into adolescence:	32
Figure 8: Differences in P21 Body Weight and Kidney Weight	33
Figure 9: IUGR Adult Body Weight and Kidney Weight Changes	

Figure 10: Blood Pressure at 4 months and P21 Blood Sugar Are Unchanged	. 37
3.1b. Blood pressure and kidney function measurements:	. 38
Figure 11: Little Changed in Kidney Function Measures at 4 Months	. 39
Figure 12: Glomeruli Count and Morphology:	.40
Table 1: Structural Changes in IUGR Relative to Control via Immunostaining	.41
Figure 13 Adult Female Histology:	.44
Figure 14 Adult Male Histology:	.45
3.2 Embryonic Kidney Development in IUGR vs. Control Mice:	.46
3.2a Embryonic IUGR Kidneys have decreased Cap Mesenchyme and Ureteric Branching:	.47
Figure 15: Cap Mesenchyme Markers at P0	.47
Figure 16: Embryonic IUGR Kidneys have decreased Cap Mesenchyme and Ureteric Branching	.49
3.2b Impact of IUGR on NPC and Nephrogenesis:	. 50
3.2c Changes in Differentiation Markers Result in Altered Physiology at P0:	.51
Figure 17: Markers of differentiation and mature glomerular structures at PO:	. 52
3.2d Expression of Ureteric Markers in P0 IUGR Kidneys:	. 53
Figure 18: Normal Ureteric Tree Branching:	. 54
Figure 19: Ureteric Branching Tip Cells:	. 56
3.2f Proliferation and Apoptosis in P0 IUGR Kidneys:	. 57
Figure 20: No Change in Cortical Stroma thickness:	. 57
Figure 21: Decreased proliferation in IUGR Six2+ Cap Mesenchyme	. 58
3.3 RNA-Seq Results:	. 59
Figure 22 RNA-Seq Differential Expression STAR Aligner:	.61
Figure 23 RNA-Seq Differential Expression IPA:	. 62
Table 2: Predicted Top Canonical Pathways differentially expressed RNA-seq NPCs by IPA	. 63
Table 3: Predicted Top Causal Networks from differential expression in NPCs by IPA	. 63
Table 4: Predicted Top Upstream Regulators from RNA-seq differential expression in NPCS by IPA	. 63
Figure 24 Glycolysis Increased in IUGR P0 Nephron Progenitor Cells:	. 64
Figure 25 RNA-Seq Differential Expression Up and down regulated ≥1.5:	.66
Figure 26 RNA-seq TPM Trends:	. 68
Figure 27 RNA-Seq Differential Expression iPathway Guide:	.72
Table 5: Top GO Biological Processes RNA-Seq Differential Expression IUGR NPCs by iPathway Analysis	72
Table 6: Top GO Molecular Function RNA-Seq Differential Expression IUGR NPCs By iPathway Analysis	.74
Table 7: Top Altered Pathways RNA-Seq DE Show Energy Sensing and Stress Response	.74

Table 8: Differential Expression Shows Changes throughout the Cell	74
Figure 28 RNA-Seq Differential Expression Gene Track	75
Table 9: Adult Summary	76
Chapter 4 Discussion:	76
Table 10: Summary and Timeline of Physical Changes	77
Figure 29: Epigenetic Reprograming Results in Changes to NPC Cell Fate	79
Figure 30: Proposed Points of Intervention for IUGR Development	96
Supplemental Table 1: RNA-Seq Fold Change in LPD NPCs	97
Bibliography	. 186

Chapter 1: Introduction

1.1 Kidney Development:

Mammalian kidney development is novel in organogenesis by forming three successive structures (pronephros, mesonephros, and metanephros) with each successive stage representing a more complex organ over the course of development. The tissue of origin for each of these structures is the intermediate mesoderm (IM), a germ layer between the paraxial and lateral plate mesoderm. The IM will give rise to the entire urogenital system including the kidneys, gonads, their respective duct systems, and the adrenal cortex (Kastu 2012, Barak 2005, Fluming 2013) [Figure 1]. The IM forms from patterning along the anterior-posterior axis of the embryo with

A) Following gastrulation into the germ layers ectoderm, mesoderm, and endoderm there are successive differentiations into increasingly differentiated stem cells and progenitors. The mesoderm will form into the paraxial, intermediate, and lateral mesoderm. B) The intermediate mesoderm forms between the somatic and paraxial mesoderm in early development regulated by patterned signaling of VG1/Nodal into BMPs. (Edgar, R., Mazor, Y., Rinon, A., Blumenthal, J., Golan, Y., Buzhor, E., Livnat, I., Ben-Ari, S., Lieder, I., Shitrit, A., Gilboa, Y., Ben-Yehudah, A., Edri, O., Shraga, N., Bogoch, Y., Leshansky, L., Aharoni, S., West, M. D., Warshawsky, D., & Shtrichman, R., 2013).

distinct mesoderm types from Vg1/Nodal signaling maintaining dorsal/anterior identity and BMPs promoting ventral/posterior identity. The IM is marked first by the presence of Osr1, which is also present in the lateral plate

D

anterior to the IM, and later by Pax2, Pax8, and Lhx1 (Katsu, K., Tokumori, D., Tatsumi, N.,

Suzuki, A., & Yokouchi, Y., 2012, Barak, H., Rosenfelder, L., Schultheiss, T. M., & Reshef, R., 2005, Fleming, B. M., Yelin, R., James, R. G., & Schultheiss, T. M., 2013) [Figure 1]. The IM will be further divided along the dorsal-ventral axis before kidney development begins. The

dorsal IM experiences increasing restriction in differential potential and forms the nephric duct while the ventral IM remains as undifferentiated mesenchyme of the nephric duct cord. A rostral to caudal wave of signal derived from the nephric duct induces the primitive renal tubules which will later form the pronephros and mesonephros. This represents a loss of differentiation potential in the rostral IM. [Figure 2] At the same time the caudal nephric duct cord forms a bean shaped and undifferentiated IM (Kopan, Chen, & Little 2014, Takasute, M., Little, M.H. 2015). [Figure 2 & Figure 3B]

In amphibian and zebrafish, the functional pronephros forms one single nephron that will filter and drain into the cloaca. The pronephros is not functional in mammals. In vertebrates the nonfunctional pronephros atrophies during development after the mesonephros has formed (Figure 2A & B).

The mesonephros forms on embryonic day 9.0 in mice and week 4 in humans. It branches from the nephric duct into a series of tubules that are induced by the lengthening of the nephric duct towards the tail. The nephric duct, formed from the intermediate mesoderm, connects the pronephros, the mesonephros, and the metanephros kidney to the cloaca. The formation of tubules involves the epithelization of the intermediate mesenchyme (Vize, Seufert, Carroll, Wallingford, 1997, Obara-Ishihara, Kuhlman, Niswander, & Herzlinger, 1999, Vainio, Lehtonen, Jalkanen, Bernfield, & Saxen, 1989, Kispert, Vainio, & McMahon, 1989). The mesonephros functions as a filter during early development. It contains structures similar to the nephrons of the metanephric kidney in the series of tubules off the nephric duct. A glomerulus forms with a bowman's capsule around capillaries off the aorta which is attached to the mesonephric duct that leads back to the posterior cardinal vein and drains into the nephric duct and then to the cloaca

(Zhou, Boucher, Bollig, Englert, & Hildebrandt, 2010, Vainio, Lehtonen, Jalkanen, Bernfield, & Saxen, 1989, Ganesh 2017) (Figure 2A & B).

The metanephros will form the adult mammalian kidney. The mammalian kidney is formed from 3 progenitor cell lineages: the ureteric branching cells of intermediate mesenchyme

A) Figure from Banks 1955 showing the development of the nephric system in vertebrate organogenesis. PR: pronephric duct., ND: nephric duct, NGC: nephrogenic cord, G: gonad, MES: mesonephric units, MET: metanephros, UR: ureter, CL: cloaca. B) The ureteric bud grows from the nephritic duct, both shown in yellow, into the metanephric mesenchyme cells, shown in light blue, at embryonic day 10. The UB cells signal the condensing of metanephric mesenchyme into the cap mesenchymes of nephron progenitor cells, shown in dark blue. At e11.5 two cap mesenchymes will be present at the end of the ureteric branches with two caps at the end of a t-shaped UB. Adapted from Banks 1955, Li 2014, and Dressler 2009.

bud (UB) into the metanephric mesenchyme on embryonic day 10 of the mouse and in week 5 of human development. Kidney development ends in week 34 of human gestation and postnatal day 3 or 4 in the mouse. Thus, human kidney development is fully completed during gestation while mouse kidney development continues postnatally.

The metanephros begins to form at e10 in mice, week 5 in human gestation, with the secretion of GDNF and FGF10 from the MM towards the nephric duct activating receptor tyrosine kinases (RTKs). RTK activation in the nephric duct creates a single UB that migrates

and invades the bean shaped MM. The MM at this point already contains the progenitor cell populations that form all epithelial and stroma tissues and some of the vascular components of

Figure 3: Sequential Ureteric Branching

A) The UB branches sequentially spliting the cap mesenchymes and growing the embryonic kidney. At e11.5 there is a single T shaped UB with two cap mesenchymes. As development progresses the UB branches further forming more cap mesenchymes made up of nephron progenitor cells and expanding the embryonic kidney. B) Crosstalk between the ureteric bud, the cap mesenchyme, and the stroma. The ureteric bud signals for cap maintenance and differentiation. From Short, K. M., & Smyth, I. M. (2016). C) Cross talk and staining of the cap mesenchyme (Sall1), UB (Ecad), CSB (Sall1), SSB (Sall1), differentiating structures. C) Crosstalk maintains the cap mesenchyme, UBTCs, and supports/signals differentiation of the pre-tubular aggregare (PA), the renal vesicly, the comma shaped body (CS), and the S-shaped body (SSB). Marked by NCAM, Sall1 (CM, CS, RV, SSB).

the developed kidney (Kopan, Chen, & Little 2014). Angioblasts form from the mesoderm germ layer and migrate based on angiogenic signals for proliferation, differentiate into endothelial cells, and develop into blood vessels (Gomez, Norwood, Tufro-McReddie, 1997). Angioblasts are endothelial precursors and guided by angiogenic signals. The angiogenic signals for angioblasts are growth factors and cytokines including VEGF, TNF- α , FGF, TGF- β , FGF-2, and PDGF. Angiogenesis is directed by intrinsic and extrinsic factors of the vascular precursor cells and the tissue progenitor cells the vascularization is occurring in. The tissue specific factors include the extra-cellular matrix and its

receptors (Ucuzian, A.A., Gassma, A.A., East, A.T., Greisler, H.P. 2010). The UB will give rise

to the collecting ducts of the developed kidneys. MM cells condense to form cap mesenchymes

(CMs) of NPCs with the interstitial stroma cells above and beside CMs. The CMs surround the UB whose branches are led by UB tip cells.

The UB outgrowth from the nephric duct at e10.5, invades the adjacent MM (Figure 2B). Reciprocal induction is the two-way signaling between neighboring cell types. The epithelialmesenchymal interaction during kidney development is a form of reciprocal induction between tissue types. The UB is an epithelial sheet of polarized cells which will interact with the nonpolarized MM that formed from the nephric cord. The loss of the MM will stop UB branching in an embryonic kidney and UB mutants for induction signals will have arrested differentiation of the MM into epithelial and not form functional structures. The two tissues rely on signals from each other to continue development (Berk, Zipursky, et. al. 2000). Reiterative branching of the UB with differentiation of NPCs expands the kidney and forms the major and minor calves in the UB through e13.5. After this the ureteric branches elongate and form collecting ducts. The elongated ureteric branches produce the medulla at the core of the kidney with the cortex at the periphery filled with the nephrogenic zone made up of UB tips, CM, and the differentiating nascent nephrons, and comma-shaped and s-shaped bodies (CSB and SSB). The normal mouse UB will go through 11 cycles of branching and elongations with branching ending between birth and postnatal day 3 or 4 (Kopan & Costantini 2010, Hartman, Lai, & Patterson 2007) [Figure 3A &B]. Defects in branching can cause fewer cap mesenchymes and smaller kidneys (Carroll & Das 2013, Dressler 2009, Kopan & Costantini 2010).

Lindström et. al. 2018 demonstrated the temporal role in Six2⁺ NPCs as they are recruited into epithelializing in the renal vesicle (RV). Three-dimensional imaging of NPCs in the human CM showed gradients to the expression of NPC markers decreasing along the proximal to distal axis. NPC markers decrease and do not switch off with differentiation. NPCs initiating pre

tubular aggregate formation were directly adjacent to the UB and under the branch tip. NPCs are recruited after a PTA or RV has been established by the first recruits and incorporated into the proximal end of the PTA or RV. Single-cell transcriptome analysis combined with prediction modeling and immunostaining showed that the NPCs that are at the top of the CM are progenitors renewing the NPC pool. A distinct population will be primed to differentiate while remaining mesenchymal. Further along the proximal to distal axis will be the induced cells. The induced cells have been epigenetically reprogrammed and await recruitment into the PTA or RV by those first NPCs. Lindström et. al. adds that the timing of this recruitment determines final cell fate. The final nephron will have 14 distinct cell types and the epithelialized PTA, RV, and SSB already show distinct cell populations with differing cell fates. The first NPC recruits will form the distal precursors and are positive for low Jag1 and low Sox9. These first recruits will connect to the UB and split further into the distal tubule precursors and loop of Henle precursors. The second NPC recruits will be proximal precursors and will not be anchored to the UB instead connecting to the proximal precursors and show no Sox9 expression with high Jag1. The third recruits will be added to the RV and become precursors for the Renal Corpuscle. A proposed source of the expression pattern along the RV and SSB is localized Wnt9b secreted from the UB (Lindström, O., Brandine, G.D., Tran, T., Ransick, A., Suh, G., Guo, J., Kim, A.D., Parvez, R. K., Ruffins, S.W., Rutledge, E. A., Thornton, M. E., Grubbs, B., McMahon, J.A., Smith, A. D., & McMahon, A.P., 2018) (Figure 3B).

The distal part of the polarized RV grows and attaches to the epithelial UB to form CSBs and SSBs (Figure 3B). The proximal, intermediate, and distal sections compose the segmented SSB. SSBs will continue to differentiate and form nephrons, the adult filtering unit of the kidney which contains the glomerulus, the proximal tubule, the loop of Henle, and the distal tubule

which will connect to the collecting duct formed from the UB. The result is the highly specialized structures of the adult kidney.

The glomerulus is dense in capillaries and filters water and solutes out of the blood. The proximal tubule has high surface area to reabsorb and retain necessary substances such as salt, water, glucose, amino acids, potassium, urea, phosphate, and citrate. The proximal tubule also functions in secreting small molecules/drugs and ammonium. The loop of Henle has tightly controlled variation in osmolality, so the descending loop will secrete water and concentrate urea, while the ascending loop of Henle secretes sodium and chloride. This creates concentrated urea and retains water and electrolytes in the body. The distal tubule contains specialized cells to regulate potassium, sodium, calcium and pH in the body and the secreted urea (Carroll & Das 2013, Dressler 2009, Mugford, Spile, McMahon, & McMahon 2008). The function of the adult kidney relies on the proper formation of all these structures in sufficient numbers to allow efficient secretion of waste and the reabsorption of water and solutes as needed.

In both humans and mice nephron formation relies on controlled, induced differentiation of the NPCs to form RVs repeatedly over nephrogenesis while maintaining the NPCs for the entire length of nephrogenesis. The NPC population is maintained by cell survival and proliferation signals. Autonomous cell survival (BMP7, FGF9 and FGF20) and proliferation (Six2, Sall1, Mdm2) along with maintenance signals from the UB (Wnt9b) and survival signals from the UB (FGF2/9) act to maintain the NPC population that makes up the CM (Carroll & Das 2013). Cultured NPCs show decreasing levels of FGF expression over passages with the highest level in freshly isolated NPCs. Introduction of exogenous FGF supported NPC proliferation and stemness (Brown 2011). Wt1 is a regulator of the maintenance signal FGF, the survival signal BMP, and the BMP and MAPK/ERK related signal p-Smad which all regulate NPCs. Motamedi

2014 showed Wt1 as a regulator of FGF, BMP, and p-Smad in kidney development. Chromatin Immunoprecipitation combined with DNA sequencing (ChipSeq) analysis shows the presence of Wt1 binding sites associated with metanephric mesenchyme and kidney development. The Wt1 mutant had no change in Six2, but BMP, FGF, p-Smad, and Wnt/β-catenin were all dysregulated. Supplementing with BMPs and FGFs rescued the Wt1 mutants. Metanephric mesenchyme survival comes partly from a balance of Wt1, BMP/SMAD, and FGF signaling (Motamedi, F. J., Badro, D. A., Clarkson, M., Rita Lecca, M., Bradford, S. T., Buske, F. A., Saar, K., Hübner, N., Brändli, A. W., & Schedl, A., 2014) [Figure 3B & Figure 4].

1.2 Intermediary metabolism and cell fate decisions:

Glucose when metabolized in the cell can be processed by multiple metabolic pathways depending upon conditions and needs of the cell. Glycolysis is the cytosolic conversion of glucose into lactate via phosphorylation and kinase reactions generating metabolites that are participants or substrates of lipid synthesis, amino acid synthesis via serine, and netting 2 pyruvates, 2 NADH, and 2 ATPs. The second stage of glycolysis involving glucose-6-P either continues through glycolysis or into the pentose phosphate pathway and produces instead NADPH, pentose, and 5-Ribose-phosphate. 5-Ribose-phosphate is a precursor for nucleotide synthesis. Or, just before the conversion to lactate the pyruvate from glycolysis can feed into mitochondrial oxidation producing 6 NADH+, 2 FADH₂, 4CO₂, and 2 ATP per Acetyl CoAs (Hamanaka & Chandel 2012). Acetyl CoA made from long chain fatty acids produces mitochondrial oxidation producing the same products in addition to triglycerides, phospholipids, hormones, and ketones (Morino, Peterson, & Shulman 2006). These are major energy pathways of the cell. The hexosamine biosynthetic pathway (HBP) accounts for 2-5% of glucose

metabolism. HBP controls posttranslational modifications of proteins by glycosylation. Most of these reactions occur in the golgi apparatus and produce N and O linked glycosylated proteins.

Glycosylation is part of cell packaging to direct activity, stability, and subcellular localization of proteins (Fardini, Dehennaut, Lefebvre, & Issad 2013 & Fantus, Goldberg, Whiteside, &Topic 2006).

The amino sugar α -linked N-acetylgalactosamine, derived from galactose, is a membrane bound substance along the distal tubules of the kidney. Glycosylation is the enzymatic addition

Figure 4: Interaction of Glycolysis with NPC Renewal and differentiation Pathways

A) NPC cell responding to exogenous signals with glycolysis as an intermediary between MAPK, PI3K/AKT, cMyc, and mTOR1, and the Self-Renewal of NPCs and the inhibition of differentiation signaling. It is when glycolysis is low that differentiation signals are strengthened, and self-renewal signals weakened. B) Glycolysis is not essential for selfrenewal, but its removal primes NPCs for differentiation rather than self-renewal and maintenance. Liu, J., Edgington-Giordano, F., Dugas, C., Abrams, A., Katakam, P., Satou, R., & Saifudeen, Z. (2017).

of oligosaccharides to proteins forming glycoproteins. A-linked Nacetylgalactosamine is a mucin; a highly glycosylated protein that forms physical barriers in epithelial cells lining tubes or body cavities in animal bodies. Mucins are made of α -linked N-acetylgalactosamine linked to a serine or threonine residue. The sugars galactose, N-acetylgalactosamine, fucose, or sialic acid extend the mucin chain structures. The enzymes that produce α -linked Nacetylgalactosamine are involved in mammalian disease, physiology, and development. The hydrophilic O-glycans are usually negatively charged allowing them to bind water and salts. Polysialylation used to

extend the DBA recognized α-linked N-acetylgalactosamine is also present in neural cell adhesion molecule (NCAM) when present in the basolateral membrane bound NCAM in the nascent nephron. Lackie, Zuber, and Roth's 1990 development paper showed differences in NCAM when staining mesenchyme and epithelial structures of the rat kidney. E13 immunostaining showed strong PSA staining of the UB and the condensed MM. E14 showed PSA and NCAM present in both the MM and CSB. The PSA staining was stronger and concentrated at the membrane rather than diffuse through the cell as in the MM at e13 and 14. E18 staining for PSA showed intense PSA staining in multiple CSBs and SSBs except for the lower part of SSBs that give rise to podocytes in the developed kidney. NCAM epithelial staining in the embryonic rat kidney co-stained with polysialic acid in the basolateral membrane. It was noted by Roth e. al. that the PSA staining localized where cell to cell adhesion changed during kidney nephrogenesis. PSA, cell-to-cell adhesion, and NCAM are known to work in concert in neural development (Galuska, Lütteke, & Galuska 2017).

During the roughly twelve embryonic days in mice and 29 weeks in humans of kidney development, the embryonic environment is in constant contact with the maternal environment. Maternal food source determines nutrient availability and thus cell metabolism. This does not just mean caloric restriction as shown by famine studies, but also micronutrients epitomized by the developmental importance of folic acid. Cell fuel sources change cell behavior and character in adult tissue and have staggering impacts on developing tissues. Cancer research shines a light on the likely mechanisms. The Warburg effect theorizes cancer cells not just dependent on ATP production, but also the utilization of all metabolic products. High glycolysis means excess carbon for producing nucleotides, lipids, and proteins to increase biosynthesis, and NADPH as a reducing agent in proliferating cells. Both cancer cells and developing organs exist in a

microenvironment. Tumors find themselves in environments with little oxygen and abundant glucose and must efficiently use the resources they have while competing with other cells (Liberti & Locasale 2017). Metabolism usage changes during development. Zhang et. al. 2014 showed human embryonic stem cells (hESCs) have a unique energy phenotype to adult stem cells. hESCs had higher uncoupled oxygen consumption. hESCs were reliant on glutamine to proliferate in culture, but when partly differentiated the cells lost that reliance and had decreased glutamine metabolism. Chen 2009 showed variation in mitochondria number and function as human mesenchymal stem cells (hMSCs) differentiated. Undifferentiated hMSCs were reliant on glycolytic enzymes and lactate production while the differentiated osteogenic cells had increased mitochondria copy number and increased oxygen consumption showing a shift from glycolysis to oxidative phosphorylation with differentiation.

NPCs rely on glycolysis to renew and maintain the progenitor pool, decreased glycolysis primes NPCs to respond to differentiation signals (Liu, J., Edgington-Giordano, F, Dugas, C., Abrams, A., Katakam, P., Satou, R., & Saifudeen Z., 2017). The balance between maintaining the cap mesenchyme and differentiating into nephrons during development has an internal clock as shown by the Kopan NPC transplant studies (Figure 4). In Chen 2015 a mixture of old (P0/P1) and young (e12.5) NPCs transplanted into young e12.5 niches and cultured for 4 days exited the young CM at different rates. The majority of old NPCs injected exited the young niche while less than 30% of the injected young NPCs exited. This shows that there are intrinsic differences between young and old NPCs that direct cells to self-renewal or differentiation despite new environmental signals. But the extrinsic signals of a young niche did change old cells as shown by the persistence of some old NPCs in young niches. P0/P1 cells following only their internal clock would mass differentiate after a few days at their P3. The presence of old NPCs after their

clock would have run out suggests microenvironment plays a role in NPC fate and can overcome intrinsic cell programing. Old NPCs were more likely to remain in the young niche when associated with young NPCs and had differences in cell-to-cell adhesion. FGF20 co-injection increased the old NPCs that engrafted and remained in the young niche. The signals of the young niche are not a fountain of youth as Kopan showed using single cell RNA-seq that the transcription profiles of NPCs change over development and old Cited1+ NPCs are intrinsically closer to differentiate than young NPCs.

The NPCs have a histone landscape unique from differentiated nascent nephron and further unique histone modification in the epithelial tubules. McLaughlin 2014 showed changes to the histone landscape with differentiation from the CM. Proper histone modification is essential for nephrogenesis as deletion of HDAC 1 and 2 in the NPC population arrests nephrogenesis. HDAC 1 and 2 interact with the NPC regulators Six2, Osr1, and Sall1. HDAC1 and 2 regulate proliferation, differentiation, and p53. Direct interaction between chromatin remodeling molecules and regulators of NPC differentiation shows an entwined relationship between epigenetics and kidney organogenesis. As cells differentiate, they have increased deactivation of parts of their genome through chromatin remodeling. The less differentiated a cell the more of its genome that remains open, with differentiation there is a loss of possibilities in cell fate and a loss in genes available for transcription via chromatin remodeling. This is not a byproduct of differentiation though, it is a part of differentiation as agents of chromatin remodeling are essential in kidney progenitor cell fate (McLaughlin, N., Wang, F., Saifudeen, Z., & El-Dahr, S.S. 2014, Liu, H., Chen, S., Yao, X., Li, Y., Chen, C., Liu, J., Saifudeen, Z., & El-Dahr, S.S. 2018).

Studies in cancer and development have shown that cell behavior is tied to cellular metabolism and their histone landscape. Liu 2017 and Yu 2018 show that changes to cellular metabolism changes cell behavior in kidney development and cancer, respectively. Yu 2018 showed metabolic plasticity of cancer cells allows them to respond to the changing microenvironment by histone modifications that regulate expression of genes involved in proliferation and survival.

De novo nephrogenesis only occurs in utero in humans and up to post-natal day 4 in mice. This is at week 34 of human gestation and P3/4 in mice. Mice have a nephron endowment between 11,000 to 20,000 while humans are from 200,000 to over 2 million with most people having 1 million nephrons at birth. Diminished nephron endowment can be caused by inability to maintain NPCs, inability to differentiate NPCs, and failure to deplete the pool of NPCs at the end of nephrogenesis. As nephrons cannot be regenerated, nephron endowment is set at birth and will only decrease over an organism's lifespan (Keller, Zimmer, Mall, Ritz, & Amann, 2003, Yuan, Tipping, Li, Long, & Woolf, 2002).

1.3 Intrauterine Growth Restriction:

The World Health Organization (WHO) historically defined fetal Intrauterine Growth Restriction (IUGR) as full-term newborns in the 10th percentile of birth weight. WHO abandoned the 10th percentile definition for a set weight based on clinical significance as the 10th percentile body weight in newborns varies over time and between countries. The CDC reports the current 10th percentile body weight of full-term newborns in the United States as 6 lbs., 2 oz. for boys and 6 lbs., 1.2 oz for girls with 8.07% rate of IUGR for all full-term newborns (CDC National Center for Health Statistics and WHO Growth Standards). Worldwide WHO reports IUGR at a rate of 14.6% but that ranges from 2.4% IUGR in Sweden to 27.8% in Bangladesh (UNICEF, Low Birthweight).

The risk factors for IUGR include external environmental conditions (elevation and water quality), placental insufficiency (decreased nutrient absorption by the placenta), maternal health (diabetes, eclampsia, drug addiction), multiple pregnancies (twins etc.), maternal infections (CMV, rubella), and maternal diet including micro and macro-malnutrition (UNICEF, Low Birthweight, CDC, National Center for Health Statistics Statistics). The variety and increasing rate of risk factors for IUGR is a serious public health concern in both the developing and developed world with the same adult health outcomes regardless of gestational cause. Adult

Control Diet		6% Protein Diet			
Ingredient	(g/Kg)		Ingredient	(g/Kg)	
Casein	230)	Casein	69	
DL-Methionine	3	3	DL-Methionine	0.9	
Sucrose	431.7	,	Sucrose	571.8	3
Corn Starch	200)	Corn Starch	200)
Corn Oil	52.3	3	Corn Oil	53.9	
Cellulose	37.86	5	Cellulose	57.82	
Vitamine Mix, Teklad 40060	10)	Vitamine Mix, Teklad 40060	10)
Ethoxyquin, antioxidant	0.01	L	Ethoxyquin, antioxidant	0.01	L
Mineral Mix	13.37	7	Mineral Mix	13.37	,
Calcium Phosphate dibasic	16.66	5	Calcium Phosphate dibasic	21.6	5
Calcium Carbonate	5.1	L	Calcium Carbonate	1.6	5
	% by Weight	% kCal From		% by Weight	% kCal From
Protein	20.3	21.6	Protein	6.1	6.5
Carbohydrate	61.6	65.4	Carbohydrate	75.6	80.4
Fat	5.5	13	Fat	5.5	13.1
Kcal/g	3.8	3	Kcal/g	3.8	3

Figure 5: Diet Comparison for inducing IUGR:

Ingredients for control and 6% protein diet from Envigo diets. Envigo control diet with 20% protein by weight is Envigo 91352 and Envigo with 6% protein by weight is Envigo 90016. Bolded shows the differences between control and experimental diets. Casein is the protein source, sucrose and cellulose are carbohydrate sources used to maintain equal kilocalories per gram of food, calcium phosphate dibasic and calcium carbonate have changed to account for casein changes. The result is a isocaloric diet that has lower protein by weight and kilocalorie, more carbohydrates, and equal fat content.

health outcomes of IUGR offspring include increased rates of obesity, insulin resistance, hypertension, and chronic kidney disease. IUGR models have been done in sheep, pig, guinea pig, monkey, rat, and mouse using multiple methods including maternal diabetes, glucocorticoid

treatments, hypoxia via a chamber or surgery, umbilical artery ligation, uteroplacental

embolization, caruncletomy, bilateral uterine ligation, and macro or micro nutrient deficiency

related to iron, protein, or caloric intake. An iso-caloric low protein maternal diet is an

established model for IUGR in research animals including mice (Sharma, Shastri, Sharma, 2016, Alexandra-Gouabau, Courant, Le Gall, Moyon, Darmaur, Parnet, Coupé, Antignac, 2013).

Previous studies have linked maternal diet and IUGR through amino acid deficiency. Bhasin 2009 used protein restriction to 9% and hypercholesterolemia maternal diets to produce IUGR and found altered maternal plasma amino acid levels. Maternal plasma had reduced levels of phenylalanine, leucine, isoleucine, and valine and increased maternal lysine in the reduced protein model. Jansson 1998 found reduced transport of leucine and lysine across the placenta in human cases of IUGR by studying donated placentas. Intervention studies for IUGR include amino acid supplementation (Jansson, T., Scholtbach, V., & Powell, T.L. 1998, Brown, L. D., Green, A.S., Limesant, S.W., & Rozance, P.J., 2011, Bhasin, K.K.S., Nas, A.V., Martin, L.J., Davis, R.C., Devaskar, S.U., & Lusis, A.J. 2009). The studies took place in human trials before properly characterizing the sharing of nutrients with the developing fetus. Amino acids are actively transported across the placenta from circulation in the maternal plasma. Transport of amino acids relied on relative concentration in maternal plasma and fetus and in the presence and operation of transporters that are specialized based on amino acid structure. The fetus then uses amino acid shuttles reliant on serine and glutamine to retrieve and release the amino acids into circulation. The complex pathways and relationships that result in net transfer of amino acids into the fetus make the pure supplementation with protein an ineffective intervention in IUGR. The result from protein supplementation in pregnancies at high risk for IUGR were then high risk with variable results (Brown, L. D., Green, A.S., Limesant, S.W., & Rozance, P.J., 2011). Amino acids are the building block of proteins and regulate several cell functions including cell signaling, RNA and DNA synthesis, metabolism, stress response, growth, and development. Leucine specifically activates the mTOR pathway known to be related to kidney development,

via regulation of metabolism, proliferation, and growth, and adult kidney injury. Cerqueira et. al. (2019) showed in utero exposure to maternal diabetes impairs nephron progenitor differentiation. Maternal diabetes is a known risk factor for IUGR and nephron deficit in humans. The wildtype offspring of diabetic mice from the $Ins2^{+/C96Y}$ mice had no decrease in birth weight but did have impaired kidney development, with a 20% decrease in nephron formation and increased expression of NPC markers Six2 and Cited1 at P2. The inefficient formation of structurally normal glomeruli occurred with decreased Notch and decreased phosphorylated- β -catenin. Notch and Wnt/ β -catenin signaling pathways are integral to the differentiation of NPCs. The Wnt differentiation signals from the UB changes stroma, MM, and UB as cross talk between these tissues act to maintain and differentiate these cells during development. Wnt and Notch signals prime NPCs for differentiation by decreasing Six2 expression. A loss of Wnt and Notch would leave Six2 unrepressed and maintain NPC Six2 levels and stemness, stopping differentiation and glomeruli formation. This study further supports the importance of studying maternal environment in kidney development.

1.4 Significance:

Dr. David Barker's hypothesis on the developmental origins of health and disease links low-birth weight directly with adult chronic health conditions connecting nutrition during development with adult health including hypertension and chronic kidney disease (Hales, C.N., Barker, D.J., 1992). The CDC reports that 1 in 3 Americans have hypertension and over 1,100 die each day from complications of hypertension such as heart disease and stroke. Impaired filtration from damage or injury over a period of time results in Chronic kidney disease (CKD), affecting approximately 12-14% of the United States. Treatments for CKD include lifestyle changes and pharmaceuticals to prevent further damage, and for severe cases dialysis and kidney

replacement. The projected number of patients receiving dialysis and kidney transplants are expected to double from 2010 to 2030 (American Kidney Fund, 2019, Calkins, Devasker 2011, "The Impact of Kidney Development on the Life Course: A Consensus Document for Action," 2017).

The Dutch famine cohort follows adults that were gestated during WWII where urban daily rations at times fell below 1000 calories. The cohort consists of adults that gestated on low calories at the beginning, middle, end, or for the entirety of pregnancy. This adult population has increased rates of obesity and coronary heart disease when compared to adults born just before or after the famine. The famine cohort had similar life experiences to the control cohort showing a link between caloric intake during gestation and adult health, specifically related to the kidney. Systolic blood pressure was found to increase with the lower birth weight in the famine cohort (Painter, Roseboom, Bleker 2005, Stein, Zybert, Van der Pal-de Bruin, Lumey, 2006).

Moreover, epidemiological studies in humans and ablation of nephron progenitor cells in mice have shown that kidneys of equal size but lower nephron endowment result in hypertensive organisms and chronic kidney disease in adulthood (Cebrian, C., Asai, N., D'Agati, V., & Costantini, F., 2014). Low nephron endowment at the end of kidney development causes hypertension and chronic kidney disease in adults and the maternal and gestational environments drive nephron endowment. The direct link between gestational conditions, nephron endowment, and adult health shows the importance of studying the kidney in IUGR (Cebrian, Asai, D'Agati, Costantini 2014, Wood-Bradley, Barrand, Giot, Armitage 2015). We hypothesized that disruption of metabolic homeostasis in the nephron progenitor cells in the IUGR fetus impairs nephrogenesis and is the direct link between the maternal environment and nephron endowment leading to adult hypertension and Chronic Kidney Disease.

Chapter 2 Materials and Methods

2.1 Mouse Model and Breeding:

Iso-caloric protein restriction to induce intrauterine growth restriction. The protein restricted experimental diet was the Envigo TD 90016 diet that is as percent of weight 6.1% protein, 75.6% carbohydrate, 5.5% fat and 3.8 Kcal/g. The control diet is Envigo TD 91352 that is as percent of weight 20.3% protein, 61.6% carbohydrate, 5.5% fat and 3.8 Kcal/g. The only differences between the two diets are the amount of protein, and the 6% protein diet having more sucrose and cellulose to maintain an iso-caloric formula (Figure 5).

CD1 female mice and SixCreGFP wildtype male mice from a mixed CD1 and C57BL/6J background were used. Male and female mice were put on diet for 3 weeks starting at 6 weeks of age before pairing and diets were continued during all pairing and pregnancy. Timed pregnancies are defined as female mice being paired with male mice overnight where the next day is counted as E0.5. Postnatal day zero (P0) is the day mice are born. Time points after P0 must account for litter size and breastmilk quality. Female mice have 10 nipples for feeding so all growing litters were 10 pups or smaller, in cases of larger litters pups were sacrificed at P0. This controls for postnatal food access. Protein restriction had a noticeable effect on maternal weight gain with the mice remaining slimmer, showing that maternal growth was changed and thus breastmilk quality could be impacted. To account for this, pups from 6% maternal diet grown past P0 were fostered with a CD1 female mouse that had given birth the same day from either the 20% diet population or from normal vivarium diet of 21% protein. Both IUGR and control would have equal access to milk and similar milk quality postnatally.

Six2Cre GFP males are heterozygous for Cre and the Six2+ NPCs have green fluorescent protein. The NPCs have no developmental changes with the presence of GFP. GFP cells can be sorted for using Fluorescence-Activated Cell Sorting (FACS).

The historical definition of IUGR in humans was term infants at the 10th percentile of body weight. Based on this inclusion/exclusion criteria were developed. A 6% maternal diet does not consistently create IUGR mice and IUGR by definition can occur with a normal maternal diet. All mouse pups were weighed at birth and the 10th percentile for control mice was calculated to be 1.42g. This became the threshold for inclusion and exclusion of samples. Control mice below 1.42g were not considered control and to be considered IUGR pups from the 6% maternal protein diet had to be below 1.42g.

2.2 IUGR Characterization:

All mouse pups were weighed at birth for inclusion/exclusion. Kidney weight from harvested P0 kidneys was measured after removal of ureter and capsule for combined kidney weight. Growth curves for P21 samples were done by daily measurement of body weight until sacrificing. Blood sugar from mice was measured using a Freestyle blood sugar meter and Freestyle test strips. P0 blood came from post decapitation pool and P21 blood sugars came from tail snips. At P21 mice were weighed and kidneys harvested with capsule and ureter removed for combined kidney weight at P21. Animals kept for blood pressure measurements were weighed daily from P0 to P30 with weekly measurements after P30.

2.3 Immunohistochemistry:

Paraffin embedded kidneys were sectioned at 5 μ M. Paraffin was removed with xylene and sections were rehydrated using alcohol. Antigen Unmasking with acidic sodium citrate followed by quenching in H₂O₂ (10% solution in TBS). Blocking Buffer for 1 hour at Room Temperature with environmental moisture (TNB (0.5% blocking reagent in TBS) + 10% Normal Donkey Serum + 15µl/ml donkey anti Rabbit Fab anti Mouse Fab).

Primary Antibody mixture is made in Antibody Buffer (TNB (0.5% Blocking Reagent in TBS) + 2% Normal Donkey Serum). Incubated on sections for 1 hour at room temperature or overnight at 4C.

Secondary Antibody at 1:400 with Hoechst nuclear stain at 1:800 in antibody buffer. Lectins are added with secondary antibodies. They are incubated at Room Temperature for 90 minutes.

Samples are then washed and mounted. TBS Washes are used between steps and before mounting. Six2(R) 11562-1-AP 1:200. Mesi1/2 (R) 12744S 1:200+TSA 2 minutes. Mesi1/2/3 (m) MBS605057 1:200+TSA 2 minutes. Sox9 (R) 82630 1:200. Aquaporin 1 (R) 243-261 1:200. Pancytokeratin (m) 1:400. Lhx1 (m) 4F2 1:100. Cleaved PARP (R) 1:200 +TSA 3 minutes. BrdU (m) sc-32323 1:200. E-cadherin (R) ab40772. Sall1 (R) MBS9203689 1:200. P-ATF2 (R) 24329S 1:200. LTA FL-1321 1:400. DBA B-1035 1:400. NCAM (m) C9672 1:400. Calbindin (R) ab108404 1:400. WT1 (R) 1:400.

2.4 Count Data for BrdU Proliferation and PARP Apoptosis:

BrdU is suspended in PBS at a concentration of 10 mg/mL and injected at a dose of 100 mg/kg based on pup weight. Each pup was weighed, injected, and incubated for 3 hours before being sacrificed. The kidneys were fixed with 10% formalin, embedded, and then sectioned at 5 µM for immunohistochemistry. The BrdU mouse antibody thermoFischer B35128 was used at 1:100 with markers for tissues of interest. The immunostaining was imaged at 40X with equal exposure times. All tissue sections were sagittal plane and deep within the kidney showing cortex and ureteric branching to control for part of the CMs and UB tips being counted. CMs and UB tips counted contained a ureteric branch that showed NPCs forming CM on both branches. The staining for Six2, Sall1, and Calbindin was done in consecutive sections Counting was done in NIS Elements 4.5.0. Regions of Interest (ROIs) were selected based on the co-staining and then overlaid on the BrdU channel. The BrdU is then counted by MCH thresholding to create and object count and object catalog. The object catalog is images of each BrdU positive stain. The object catalog was used to check that positive stains have not merged with multiple cells being counted as a single object. The final count for BrdU includes objects manually counted from the object catalog.

PARP counts used the same method with NIS elements. The PARP positive cells were a rare event and object catalog did have merged cells decreasing the count by NIS Elements.

2.5 Magnetic Activated Cell Sorting:

Mice are dissected, and kidneys are isolated with capsule and ureter removed then washed in HBSS. Damaged kidneys are not used. Kidneys are incubated in digestion mixture (Accutase or PBS + Collagenase and Pancreatin) rotating in an incubator at 37C. Digestion is stopped using fetal bovine serum and DNase mixture then incubated for 5 minutes rotating at 37C. Cell suspension is removed and washed using isolation buffer of PBS and bovine serum albumin. Cell suspension is filtered through a Miltinenyl Biotec 30 µM filter. Cells are incubated with PE conjugated primary antibodies: CD105 for endothelial cells, CD140 Foxd1+ stroma cells, CD119 for RBCs and erythroblasts, and CD326 for epithelialized/differentiated cells for 13 minutes on ice. After washing the cells with isolation buffer, the cell suspension is incubated for 18 minutes on ice with Anti-PE beads. After further washing the cell suspension is run through a Miltinenyl Biotec LD column that will collect all cell populations bound to the Anti-PE beads leaving the unbound nephron progenitor cells to flow through the column and isolating them via negative selection. The NPCs are Cited1/Six2 dual positive.

2.6 Fluorescence-Activated Cell Sorting:

Cell suspension is isolated and digested as described in MACS. After filtration, the cell suspension is sorted for GFP+ using a Beckton Dickerson FACS Aria Fusion and the FACS DiVa software v8.02. The isolated population will be Six2+ NPCs.

2.7 RNA-Seq:

NPCs of mouse pups from three independent litters of 6% and 20% maternal diet were isolated as described using MACS. The unexpanded isolated NPCs created 3 biological replicates for experimental and control. Total RNA was isolated using Qiagen RNeasy Mini-kit

(74104) with on column DNase digestion. Samples were sent to Genewiz and passed quality control by them. RNA sequencing was non-strand specific and run-on Illumina-HiSeq 2x150bp per lane. The RNA library was prepared with poly-A tail selection.

Before starting alignment and differential expression FASTQ files are checked for quality control using FASTQC. Alignment of the reads was done using STAR to the mm9 and mm10 genomes, not to provide read counts but to provide the best alignment. This produces wiggle files for visualizing tracts. Wig coverage files can be viewed using UCSC web-based viewer, IGV, or IGB. Junction files show isoforms of RNA reads. RSEM provides read counts and normalizes those counts to create a relative molar concentration for the reads from the FASTQ files. While some programs provide only unique reads, RSEM will look at multiple map locations for reads. Reads in RSEM are normalized based on reads and the exon lengths. RSEM results go into the EBSeq R program to produce what are empirical basian genes showing differential expression data. It uses raw counts, not the normalized ones, to compare groups and show statistically significant differences in expression levels between groups. With a p < 0.05there were 6,036 differentially expressed genes, of those 1,694 had a fold change of +1.5 or greater, 2,114 had a fold change of -1.5 of greater, and 2,228 had a fold change between +1.5 and -1.5. Those up or down regulated by 1.5 were put into Ingenuity Pathway Analysis (IPA). iPathway analysis uses a p < 0.05 and a fold change expression absolute value of at least 0.6.

2.8 Kidney Function:

Blood pressure measurements are from tail-cuff using the Visitech BP-2000 Blood Pressure Analysis System. It takes noninvasive measurements of conscious mice using transmission photoplethysmography to measure light transmission through the tail to measure blood pressure and heart rate. The heartbeat of the mouse pushes out through the vascular system

and the dilation of the blood vessels in the tail correspond to systolic while the end of that pressure wave corresponds to diastolic. Mice where acclimated to the machine with at least 3 trial runs before measurements were taken.

Plasma creatinine is a measure of kidney filtration. Creatinine is a waste product filtered by the kidneys and leaves the body in urine. High serum creatinine shows decreased kidney filtration (CDC: NCCDPHP, 2020). The animal was sacrificed, and blood was collected using heart puncture. At least 500 µL of blood was put into plasma collection tubes which were inverted 10 times to prevent coagulation. Plasma was then spun down and stored at -80 until shipped to the UAB-UCSD O'Brien Center for Acute Kidney Injury to measure creatinine, a marker for filtration, or Blood Urea Nitrogen, another marker for kidney filtration. Urine was also collected from the animals to test for kidney damage by testing for urine albumin.

2.9 Glomerular Count:

Hematoxylin and Eosin stained kidney sections show the glomeruli. A large image grab creates a complete image of the kidney section and NIS elements can count and measure the size of selected structures. Based on the fractionator method described in Aresenault et. al. 2014 glomerular are around 15 μ M thick. When sections are 15 μ M or more apart the glomerular present would be new structures and not a recounting of the same glomerular. Counting 3 or more mid-sagittal sections that are 15 μ M or more apart would represent 3 independent samplings from that kidney and averaging those counts would produce an average count per section for that kidney. Animals were counted at 4 months of age except for 1 IUGR male that was excluded from glomerular count due to poor integrity of sections.

2.10 Six2+ Percent by GFP:

P0 and e13.5 are both counted by kidney pair. Kidney is digested as described in MACS then mechanically broken up by pipetting. Cell suspension is spun down at 350 rpm at 4C to

wash twice in PBS. Then the percent fluorescence is measured using Beckman Colter Gallios Flow Cytometer.

2.11 Extracellular Flux Measurements of MACs P0 NPCs:

NPCs isolated by MACs are not expanded and directly plated on Seahorse Extracellular flux plates. The cellular metabolism is measured in live cultured cells on the XF^e24 Extracellular Flux Analyzer (Agilent Seahorse Technologies). Extracellular cell acidification rate (ECAR) measuring glycolysis, and oxygen consumption rate (OCR) measuring oxidative phosphorylation.

2.12 Statistics:

Body weight, kidney weight, and glomerular counts were compared using a student's ttest. Blood sugar was compared using Mann-Whitney U test. Two-way ANOVA analysis with replication was used for testing the interaction of sex and control versus IUGR in adult samples. A p value cut-off of 0.05 was used for all statistics. Excel and Prism 8 were used for statistical analysis and graph building. Error bars on graphs represent standard error measurements.

Chapter 3: Results

3.1a. Physiology and Vital Statistics of newborn pups from dams on a 20% vs 6% protein diet:

We used a 6% protein maternal diet compared to a 20% protein control diet to produce low birth weight offspring. Figure 5 shows a comparison of the components of the two diets. Casein is the protein used in the diet and is, as expected, lower in the experimental 6% protein diet. DL-Methionine is an essential amino acid found in protein sources; its decrease is part of the restriction of protein. Sucrose and cellulose are both increased to compensate for the loss of kilocalories with decreased protein. The calcium phosphate is increased due to the decreased protein. The casein protein contains phosphorous, with decreased casein the phosphorous levels have decreased, so calcium phosphate is increased in the 6% diet. Calcium carbonate is then decreased to maintain equal amounts of calcium in the isocaloric diets. The result is isocaloric diets that vary in protein and protein related nutrients and increased carbohydrates (Figure 5). There was no variation in blood sugar between the CD1 mothers on control or experimental diet.

3.1b. Morphology and Morphometrics:

Low protein parental diet (LPD, 6% protein) produced full-term mouse pups with decreased

body weight at day of birth Postnatal day zero (P0). The average body weight of P0 pups from

A) PO IUGR have a lower body weight than control p<.0001. B) IUGR mice have decreased kidney weight. p<.0001. C) Kidney weight as percent of body weight is higher in IUGR than control P<.01. D) Kidney and Body weight XY plot. Red line at 1.42 grams is the 10th percentile of control weights at P0. This is the cut off for accepting or rejecting control and IUGR. IUGR n=22, control n=42. These weights were tracked across 5 litters for control and IUGR with control n=26 IUGR n=24.

parents on 20% (control) protein diet was 1.61g, while pups from 6% parental diet weighed at an average 0.869g, a statistically significant decrease of 54% (p<0.0001). Pups from 6% parental diet have significantly smaller kidneys than the control, with an average combined kidney weight of 0.0082g versus 0.0129g, a statistically significant decrease of 37% (p<0.0001). Interestingly, the kidney weight/body weight has increased with 6% parental diet (Figure 6 A-C). Whereas

control kidneys were 0.8% of body weight, 6% LPD (IUGR) pup kidneys were significantly

higher (P<0.01) at 0.95% of body weight. Thus, although IUGR pups have lower body and kidney weight their kidney/body weight ratios are higher than of control pups. These data were

Figure 7: Low Protein Impacts Pup Size, Litter Size, and Growth into adolescence:

A) XY plot of pup weight by litter size of that pup. Graph on the left is only control with the graph on the right only parental protein restricted. Control pup weight at PO decreases with litter size with larger litters trending towards more pups of lower weight. IUGR weights do not change with litter size. The 1.42 gram cut off for inclusion or exclusion as IUGR and control. Note that there are control mice that have IUGR pups. PO pups weighing less than 1 gram is only present in 6% protein litters. Control n= 125 from 10 litters. Low Protein n=72 from 7 litters. B) Growth curves for IUGR and control from postnatal day zero and postnatal day 21. IUGR pups are significantly decreased from PO to P21. All pups tracked were selected using the inclusion/exclusion cut-off of 1.42 grams. These weights were tracked across 5 litters for control and IUGR with control n=26 IUGR n=24. collected from 42 pups from 8 control litters and 24 pups from 5 LPD litters.

Due to the variable penetrance of IUGR by LPD and occurrence of IUGR independent of maternal diet criterion for accepting and rejecting P0 samples was established. IUGR in humans was defined as newborns that were full term and-in the bottom-10th percentile by body weight. Extending these to mouse studies, 10th percentile for 42 control pups across eight litters was determined to be 1.42g. Thus, this weight was used as the

threshold for defining IUGR versus normal birth weight and denoted by the redline in figure 6 D. P0 control pups weighing less than 1.42g were considered as IUGR and not used. Pups from LPD with a less than 1.42g are considered as IUGR were used. This criterion was used for P0 immunostaining, cap size measurements at P0, metabolic profile (Seahorse) at P0, and for pups used for P21 and 4-month analysis. The 1.42g criterion was not used for the P0 bulk RNA-seq

Figure 8: Differences in P21 Body Weight and Kidney Weight

A-C) At postnatal day 21 adolescent IUGR weigh less than control overall, as do male IUGR, female IUGR do not weigh less. D-F) Kidney weight is lower in the IUGR mice overall and in female mice, but not in male mice at the day of weaning postnatal day 21. G-I) Kidney weight as percent of body weight is lower overall and in female IUGR, but not in male IUGR. Showing Male mice are small, with proportionally smaller kidneys at this stage while female mice have caught in body weight with control but have smaller kidneys. At P21 all control n=17, male n=9, female n=8 all IUGR n=10, male n=4, female n=6. samples. The embryonic samples from LPD dams showed no change in weight so there was no sample exclusion for this age groups. The significant decrease in P0 body weight and increase in kidney/body weight found in LPD pups represented all samples not just samples accepted or rejected based on the 1.42g cut-off of IUGR.

Low protein parental diet impacts the growth of the mouse pups and impacts litter size. Control diet produces a large range of litter size from eight to seventeen pups, while low protein diet produces litters with two to twelve pups. Control diet litters also show a relationship between litter size

and pup weight with increasing litter size having lower pup weights. Interestingly, the low protein litters are dissociated from the litter size and pup weight relationship and are small regardless of litter size. This is shown across seven low protein litters and ten control litters,

control n =125 and low protein n=72. This comparison included control pups of low weight and low protein pups of higher weight disregarding inclusion/exclusion criterion at this stage (Figure 7A).

The low birth weight from protein restriction persists to day of weaning (P21), despite controlling for postnatal factors such as milk quality and access. IUGR mice for longitudinal study were fostered by CD1 female mice on normal or control diet that had given birth within a day of IUGR birth. Both IUGR and control litters used for longitudinal study were controlled for size of litter. All longitudinal litters were limited to ten pups to control for access to food as mice possess only ten nipples. This would control for both milk quality and access to milk so that the postnatal environment of IUGR and control pups were similar. Thus, phenotypic differences would be a result of differences in gestational conditions and not postnatal factors. Pups were weighed daily from P0 until postnatal day 21 (P21). The IUGR mice continued to be low weight through P21, at which time they were weaned from their foster mother (Figure 8B). The P0-P21 measurements included IUGR n=24 and control n=26 from five separate litters.

IUGR mice also exhibit differences in postnatal growth and development. At birth IUGR mice were thin with bright red skin and delicate skin. Although the IUGR pups lose the bright red coloring at P2 or P3, they remained more reddish in appearance than the control pups which transitioned from red to pink then a pale white color. The thinness of IUGR pups remained until P9 when some IUGR pups, despite average weight being less than control, looked stouter. Control pups grew a thin but consistent hair cover over their body similar to peach fuzz by P6 with full hair at P9-10. The IUGR pups, however, showed 2-3 days delay in acquiring the peach fuzz at P8-9. Occasionally, the smallest IUGR pups that look like runts until P30 developed the peach fuzz at P10. These pseudo runt mice have shorter bodies and tails with leaner builds. Controls can be

sexed at P8 with prominent nipples on female mice and genital dimorphism being apparent, while IUGR cannot be consistently sexed until P11-12. IUGR mice also showed delayed movement and activity. Whereas at P5 the control mice were active crawlers IUGR pups showed some movement and shift but did not cover great distances until P8 or P9. Therefore, the delayed growth patterns observed in IUGR pups were morphometric and anatomical as well in body weight.

IUGR pups' body weights remained significantly low in males at P21, but not in IUGR

Figure 9: IUGR Adult Body Weight and Kidney Weight Changes

A-C) Adult mice at 3-4 months of age show no difference in body weight overall or for male or female alone. D-F) Shows all IUGR groups have smaller kidneys with sex interaction by ANOVA. G-I) All have a lower kidney weight as percent of body weight. At P21 all control n=17, all IUGR n=10. Control male n=9, IUGR male n=4. Control female n=8, IUGR female n=9. Adult control all n=12 IUGR n=11. Male control n=7 IUGR n=5, female control n=5 IUGR n=6.

females. Averaged combined males plus female body weight at P21 in control pups was 16.23g and 14.49g in IUGR pups. Average weight of control male was 16.66g versus 14.73 in IUGR males. The lowest weight recorded was in one pseudo runt IUGR male that weighed 13.2g. Female offspring did not demonstrate significant weight disparity at P21 (average weight control 15.75g versus IUGR 13.89g) despite the inclusion of two female pseudo runts weighing 10.8g and 11.6g (Figure 8 A-C). Average P21 IUGR kidney weights were lower than control P21 kidney weights particularly in female
offspring. Kidneys from male IUGR offspring did not show significant weight differences from the control. The difference in kidney weight was much smaller than at P0 (Figure 8 D-F). This could come from the mouse kidney continuing through organogenesis postnatally. Mouse kidney development occurs from embryonic day 10 to postnatal day 4 for a total of 16 days with roughly one quarter occurring after birth and removal from the embryonic condition of LPD. But these 4 days of postnatal kidney development were not fully normal despite control and IUGR being under the same conditions postnatally. The lower kidney/body weight ratio persists at P21 in IUGR pups even with female IUGR that have caught up in body weight with control, indicating the lower kidney weight is likely maintained. Furthermore, the kidney/body weight ratio showed differences in kidney development postnatally. The IUGR P0 kidney/body weight ratio was 0.0095 significantly higher than 0.008 in control. At P21 control increased by 75% to 0.0140 while IUGR only increased by 31% to 0.0125. Then at 4 months neither ratio had increased from the P21 ratio (Figure 7C, 8G, 9G). IUGR mice begin with a higher kidney/body weight ratio then by adolescence have a significantly lower kidney/body weight ratio which persists into adulthood. The lower kidney/body weight ratio was present in significantly smaller mice as well (Figure 8 & 9). But the change was from P0 to P21 when control increased their kidney/body ratio while IUGR mice did not. Both had a similar lack of change P21 to 4 months. It was during the 4 days of postnatal kidney development and full 21 days of growth, when control and IUGR were under the same conditions, that IUGR experienced altered kidney development to impact adult kidney/body weight ratio. Thus, despite nearly identical postnatal environment conditions, the IUGR mice maintain morphometric and developmental differences into adolescence. IUGR kidneys retain memory of LPD conditions postnatally and that memory impacts development and growth of the kidney as shown by the changes and sometimes lack of changes from P0 to P21.

At 4 months of age adult IUGR mice (n=11, male n=5 and female n=6), showed no significant difference in body weight from control mice (n=12, male n=7 and female n=5).

Figure 10: Blood Pressure at 4 months and P21 Blood Sugar Are Unchanged

A-C) No change in blood pressure either over all or in a sex specific analysis. A 6% IUGR male has the highest measured blood pressure of 178.06 mmHg. The average blood pressure for control is 128.4 mmHg and the average for IUGR is 134.7 mmHg. D-F) At postnatal day 21 there is no change in blood sugar overall or in the male or female specific adolescent mice. At P21 all control n=17, all IUGR n=10. Control male n=9, IUGR male n=4. Control female n=8, IUGR female n=9. Adult control all n=12 IUGR n=11. Male control n=7 IUGR n=5, female control n=5 IUGR n=6.

Although male IUGR mice trended lower in body weight than the control, the female IUGR mice showed an opposite trend with higher body weights than the control (Figure 9 A-C). Control males weigh more than control females by about 10g while male and female IUGR adults have no difference in body weight. Female IUGR had caught up at P21 and may be headed towards the higher rate of obesity found in IUGR adult humans. Kidney weights, however, remain lower in the 4-month-old IUGR mice.

The IUGR kidneys weigh less when looked at as a group or separated by sex despite male at P21

trending lower in weight with no significance (Figure 9 D-F). Male P21 kidneys not weighing

significantly less may be due to small sample size at P21.

Kidney as percent of body weight in 4-month IUGR mice remains lower when comparing

both male and female mice, and when comparing male mice alone. The adult IUGR had smaller

kidneys in bodies trending towards higher body weight.

3.1b. Blood pressure and kidney function measurements:

Plasma creatinine, urine albumin, and blood urea nitrogen were measured in adult IUGR and control mice as a measure of kidney function. Tail blood was used to measure blood sugar at P21 using a blood sugar meter. These physiological measures are not significantly changed but are of interest. Blood pressure was measured by the tail-cuff method. No significant change in blood pressure was observed in IUGR vs. control mice (Figure 10 A-C). An average blood pressure reading of 128.4 mmHg was recorded in control offspring, with an average reading of 134.7 mmHg in IUGR offspring. The highest blood pressure recorded was 178.06 mmHg from one IUGR male (6.23M1), which contributed to the higher blood pressure trend in IUGR males compared to control males.

Blood sugars were measured at P21 by one-time stick testing on a blood sugar meter. Measurements were done under non-fasting conditions. No changes in levels were observed between control and IUGR mice (Figure 10 D-F).

Plasma creatinine measures kidney function by measuring the waste product of creatine not removed by the kidney. Higher creatinine levels are indicative of decreasing kidney function. Although creatinine levels from adult IUGR mice were not significantly different from control. A strong trend towards increased creatinine was observed, especially when considering values from male mice (figure 11 A-C). The highest plasma creatinine levels were recorded from the adult male 6.23M1 with plasma creatinine of 0.14 mg/dL which is almost 3 times the average creatinine levels of either all controls or control males. The second highest plasma creatinine level of 0.12 mg/dL (Table 9).

Blood urea nitrogen (BUN) test measures the urea nitrogen in the blood. Urea is produced by the liver when digesting protein. The kidney filters urea as a waste product out of

Figure 11: Little Changed in Kidney Function Measures at 4 Months

A-C) Plasma Creatinine is unchanged when comparing all animals and when comparing female, plasma creatinine is higher in male IUGR with the same male with the highest blood pressure having the highest plasma creatinine of 0.14 mg/dL. Control n=12, Control male n=7, female n=5. IUGR n=11, male n=5, female n=6 G-I) Urine albumin is not changed at 4 months, but the male with high blood pressure, and the highest plasma creatinine has the highest urine albumin. An IUGR female with unchanged blood pressure has the second highest urine albumin and the second highest plasma creatinine. This IUGR female and male have high urine albumin of 0.352 g/dL and 0.477 g/dL respectively. Control urine albumin has a mean 0.0744 g/dL. BUN sample sizes are the same, Urine Albumin Control n=10, control male n=5.

renal health. High BUN in humans can be caused by a high protein diet, decreased glomerular filtration (GFR), heart failure, hypovolemia, and increased catabolism. Although, there is no significant change in BUN in IUGR adults at 4 months, there is a trend towards increased BUN in IUGR mice. One male control, 20.23M4, had the highest BUN of 49.27 mg/dL. This mouse was otherwise normal. One IUGR female (6.23F3) with second highest BUN of 42.61 mg/dL also has the second highest plasma creatinine. Excluding the control male 20.23M4, the male with the highest BUN is the previously noted 6.23M1 with a BUN of 40.56 mg/dLalong with his elevated plasma creatinine levels (Anderson, L., Otto, G., Pritchett-

the blood. High urea is a sign of poor

Corning, K., & Whary, M., 2015) (Table 9).

Albumin is a protein found normally in the blood at 36.7 ± 5.2 g/L in males and $46.4 \pm$

7.0 g/L in females (Anderson, L., Otto, G., Pritchett-Corning, K., & Whary, M. 2015).

Functional kidneys prevent the movement of albumin from blood to urine. Albumin is filtered by the glomerulus of the kidney and reabsorbed by the proximal convoluted tubules, the loop of

Figure 12: Glomeruli Count and Morphology:

A-C) Glomeruli area measured on H&E staining using NIS elements. No change in glomeruli area, but there is a trend of larger glomeruli in male mice. The Eqi diameter is the longest diameter through the glomeruli measured. This is larger overall and in female. G-H) Glomeruli counts from 3 h&e tissue sections 20 uM distance from each other. Glomeruli number is decreased in IUGR. The lowest glomeruli number is from male with cysts visible in histology and the highest blood pressure, plasma creatinine and urine albumin. This data is supported by glomeruli counting from three 10X images per animal and counted independently. Adult control all n=12 IUGR n=10. Male control n=7 IUGR n=4, female control n=5 IUGR n=6.

Henle and distal tubules, and the collecting ducts. Elevated urine albumin is a marker of kidney damage and decreased function. IUGR adult mice do not have significantly increased levels of urine albumin, but there is a definite trend to increased albumin driven mainly by three IUGR animals. The highest urine albumin level was 0.477 g/dL found in 6.23M1 showing one animal with the highest plasma creatinine levels, highest urine albumin and elevated BUN. The second highest urine albumin is 0.352 g/dL from 6.23F3 which had the second highest BUN and second highest plasma creatinine levels. Their IUGR male litter mate 6.23M2 has the third highest urine albumin at 0.26 g/dL. For comparison

only four of the 11-control measured had urine albumin over 0.1 g/dL and none of these animals were over 0.14 g/dL. The mean for all control urine albumin was 0.0744 g/dL compared to male IUGR at 0.352 g/dL and 0.477 g/dL for female IUGR (Figure 11 G-I and Table 9).

These physiological measures are not significantly changed but suggest impaired kidney function in offspring from LPD parents. One important consideration here is the genetic background of the mice used – this point is discussed further in the discussion.

There are sex differences in the impact of IUGR. This was first apparent in growth from P0 to P21. ANOVA two-way analysis showed changes to physiology at P21 and adulthood (4 months). There are significant changes in adulthood kidney weight with interaction between sex, IUGR, and kidney weight with IUGR having smaller kidneys than control, IUGR males and females both having smaller kidneys, and IUGR females having the smallest kidneys (p<0.05). Control male n=7, total control n=10 with control female n=5. IUGR total n=11, IUGR male n=5, and IUGR female n=6. The adult measurements for body weight, systolic blood pressure, glomeruli count, plasma creatinine, urine albumin, and plasma BUN all showed no interaction. P21

3.1c. Adult Kidney Histology, Glomerular counts, and Immunofluorescence staining of molecular markers:

All control and IUGR adult kidneys were fixed and sectioned for immunostaining. Tissue sections were stained for hematoxylin and eosin. Hematoxylin stains the cell nuclei blue by marking the basic and cationic parts of the tissue. Eosin stains the acidic and anionic parts red

Table 1: Structural Changes in IUGR Relative to Control viaImmunostaining

Ker NC-1	Six2	Meik1/2/3	i Uhati	Sell	1	DBA	NCA	M	Wei		So	a sti	Calbindin	E-Cadherin	LTAATL		AQ91		AQP2	Pan Cytokeratin
Char +:U -:Do	cap Cap Mesenchyme	Stroma	Nascent Nephron	Cap Mesenchyme	Nascent Nephron	Collecting Duct	Cap Mesenchyme	Nascent Nephron, CSB, SSB	Cap Mesenchyme	Podocyte	UB Tip Cells	S- Shaped Body	Uneteric Branching	Distal Tubule. Collecting Duct	Proximal Tubule	Proximal Tubuk	Descending Loop of Henle	Descending Vasa Recta	Principal Cells Collecting Duct	Collecting Duct
E13	5	NC	-			NC														NC
P13	NC	NC	-	-	NC	-	-	NC	-	-	*	+	NC	NC	-				NC	NC
4 Mo	dh					NC							NC	NC	NC	NC	NC	NC	mislocalized	*

showing the extracellular matrix and cytoplasm. The stains also overlap creating different combinations.

IUGR kidneys showed stronger eosin staining and presence of cysts (Figure 13 and 14 A) which were absent in control. Enlarged glomeruli are a sign of kidney disease as the kidney struggles to filter waste. Glomeruli were counted and size estimated on the H&E stained sections. Ten glomeruli were measured per animal from all control and adult IUGR from random fields of stained kidneys. The glomerular area showed no significant difference between control and IUGR kidneys (Figure 12 A-C). Male kidney glomeruli trend towards larger but the difference is not significant (Figure 12 A-C). The EqiDiameter, the longest point across an area, was also measured on the same glomeruli. A significant increase in the EqiDiameter of glomeruli from the female IUGR mice was recorded, with glomeruli from male mice trending towards an increase (Figure 12 D-F). While glomeruli at 4 months were not significantly larger in IUGR kidneys, the shape of glomeruli had changed.

In a young adult glomerular counts reflect glomerular endowment at birth. Glomerular counts showed decreased glomerular number in IUGR kidneys versus control (Figure 12 G). Kidneys from both male and female mice showed a trend towards decreasing glomerular number. The adult glomerular count is the average total count from 3 sections 20 µM apart per animal. This distance provides counts of unique glomeruli based on the established fractionator method (Buzello, 2000, Weibel, E.R., & Gomez, D.M., 1962). Tissue sections were deep showing the cortex, medulla, and ureter. The counts were confirmed by independent counting of glomeruli from three 10X images from the same sections. Both counting methods show IUGR with a significant decrease in glomeruli number (Table 9 and Figure 12). The IUGR male mouse

6.23M1 kidneys had the lowest glomeruli count. This IUGR male also has elevated plasma creatinine, urine albumin, and plasma BUN, and presence of renal cysts by H&E staining.

Consecutive adult kidney sections were stained with antibodies against E-cadherin (Cdh1), lotus tetragonolobus lectin (LTL), aquaporin 1 (Aqp1), pan cytokeratin 8 (CK8), dolichos biflorus agglutinin (DBA), and aquaporin 2 (Aqp2) (Table 9). E-cadherin is a calcium dependent cell adhesion protein that spans the cellular membrane in epithelial cells (Lee, S.-Y., Han, S. M., Kim, J.-E., Chung, K.-Y., & Han, K.-H., 2013). LTL marks the proximal tubules of the kidney by binding to the α-linked L-fucose containing oligosaccharides (Yallowitz, A. R., Hrycaj, S. M., Short, K. M., Smyth, I. M., & Wellik, D. M., 2011). Aquaporin 1 (AQP1) that stains the basolateral and apical plasma membranes of the proximal tubules, the descending loop of Henle, and the descending portion of the vasa recta. AQP1 is a water channel present in cell membranes (Monzani, E., Bazzotti, R., Prego, C., Laporta, C.A.U., 2009) [Brown, D. (2017)].

Figure 13 Adult Female Histology:

A) Hematoxylin and eosin staining of tissue sections from a control female and all IUGR females. This shows the presence of cysts including fluid filled cysts in 6.23 F3 and F4. B) Low and high magnification of immunofluorescence. E-cadherin stains the distal tubule and collecting ducts of the kidney. LTA lectin stains the proximal tubules. Aquaporin 1 marks the basolateral and apical plasma membrane in the proximal tubules and the descending loop of Henle. The fluid filled cysts that are pink in H&E are positive for E-cadherin. C) Low and high magnification of pan cytokeratin marking distal tubule, DBA lectin marks the distal tubules, and aquaporin2 marks the apical membrane of the collecting ducts. Staining done on Control females n=5, IUGR females n=6.

Figures 13 and 14 B shows at high and low magnification that IUGR adults have normal

distal tubules, collecting ducts, proximal tubules, and loop of Henle. The cells of these structures

are present and normally organized. LTL marking of the proximal tubules was decreased in adult

IUGR kidneys compared to control.

Separate consecutive sections in all adult control and IUGR were stained with Pan

cytokeratin (CK8) marking the collecting ducts. Cytokeratins are proteins found in the

cytoskeleton of epithelial cells, specifically the intermediate filaments. There are 29 types of

Figure 14 Adult Male Histology:

A) Hematoxylin and eosin staining of tissue sections from a control male and all IUGR males. This shows the presence of cysts including fluid filled cysts in 6.23 F3 and F4. B) Low and high magnification of immunofluorescence. E-cadherin stains the distal tubule and collecting ducts of the kidney. LTA lectin stains the proximal tubules. Aquaporin 1 marks the basolateral and apical plasma membrane in the proximal tubules and the descending loop of Henle. The fluid filled cysts that are pink in H&E are positive for E-cadherin. C) Low and high magnification of pan cytokeratin marking distal tubule, DBA lectin marks the distal tubules, and aquaporin2 marks the apical membrane of the collecting ducts. The fluid filled cysts are visibly stained with E-cadherin and pan cytokeratin. Staining done on Control males n=7, IUGR males n=5.

cytokeratins, the antibody used has nonspecific affinity for cytokeratins (Bates, C., Kharzai, S., Erwin, T., Rossant, J., & Parada, L., 2000). DBA marks the collecting ducts by binding the carbohydrate α-linked N-acetylgalactosamine (Holthöfer, H., Schulte, B. A., & Spicer, S. S., 1987). Aquaporin 2 (AQP2) marks the apical membrane of the collecting ducts. AQP2 is a second water transporter essential for water balance maintained by the kidney (Monzani et. al. 2009) [Brown, D. (2017)]. Figures 13 and 14 C confirms the normal formation of distal tubules and the collecting ducts. There was no loss of DBA in adult IUGR.

The 4-month-old IUGR mice had fluid filled cysts visible with H&E staining (13A and 14A). Epithelial cell staining by E-cadherin of the distal tubule and collecting ducts marked the fluid filled cysts in 6.23M1, 6.23F3, and 6.23F4 (Figure 13B & 14B). The cysts were also positive for the collecting duct marker pan cytokeratin (Figure 13C & 14C). DBA, another collecting duct marker, does not stain the cysts and was not changed between control and IUGR. Aqp2 marks the apical membrane of the principal cells of the collecting ducts. IUGR kidneys had more disperse Aqp2 staining not specific to the apical membrane irrespective of sex and presence of cysts.

IUGR adult kidneys were damaged with 6.23M1 showing the worst histology. 6.23M1 had the most and largest cysts and the brightest staining for E-cadherin and pan cytokeratin in the cysts. This damage coincides with markers of kidney function like blood pressure, plasma creatinine, urine albumin, and blood urea nitrogen (Table 9).

3.2 Embryonic Kidney Development in IUGR vs. Control Mice:

E13.5 and P0 kidneys were collected for molecular marker analysis. P0 pups were weighed and exclusion criteria were applied to ensure pups from LPD mothers reflected IUGR by body weight. Embryonic mice were not weighed so there was no cut-off for inclusion of exclusion of the e13.5 samples. These results are summarized in table 1. by body weight. Embryonic mice were not weighed so there was no cut-off for inclusion of the e13.5 samples. These results are summarized in table 1.

3.2a Embryonic IUGR Kidneys have decreased Cap Mesenchyme and Ureteric Branching: Size of CM was explored by FACS, kidney section staining, and whole organ

immunostaining. Six2CreGFP+ kidneys were fully digested and then counted for percent GFP+

Figure 15: Cap Mesenchyme Markers at P0 A) There is no consistent change in CM size by Six2 staining at P0. The CMs of the smaller IUGR kidneys are diffuse in the cortex with more space between CMs. B) Sall1 staining of the CM is dimmer and smaller in IUGR with no change to Sall1 staining of nascent nephrons. C) NCAM staining of the CM is drastically decreased despite the presence of CM, this loss is often but not always accompanied by a loss of DBA staining in the ureteric branching. D) Wt1 staining in the CM is decreased along with a decrease in NCAM. The loss

of Wt1 and NCAM occurs with or without the loss of DBA.

by FACS count to determine the size of the Six2+ CMs. Ureteric branching was determined by kidney section staining, and whole organ immunostaining. Immunostaining of E13.5 organs and sections at the beginning of kidney development shows inconclusive results for cap size. The Six2+ staining in

whole organ appears larger at times in the 10 IUGR and 8 control kidneys stained and imaged. Although the IUGR kidneys are smaller with less UB branching from pan cytokeratin staining (Figure 16 A and B). Sectioned e13.5 kidneys appear to have fewer Six2+ cells that are more dispersed, giving the appearance of more diffuse caps around the ureteric tips, and NPCs that are

not closely aligned with UB tips (Figure 16 B). The lhx1 staining at e13.5 showed no change to nascent nephrons in size, number, or molecular character in section staining (Figure 16 B) [Cirio et. al. 2011].

Unnormalized percent GFP+ of digested kidneys shows the significant decrease in Six2+ NPC at e13.5 in LPD embryos. To quantify Six2+ NPC in IUGR kidneys, Six2+/GFP+ NPC were counted per kidney pair by flow cytometry at P0 (control n=3;IUGR n=5) and e13.5 (control n=3; IUGR n=4). E13.5 IUGR kidneys have 40% less GFP+ Six2 cells compared to control E13.5 kidneys. Over development, a 37.5% decrease in Six2+/GFP+ NPC was observed. This significant decline in Six2+/GFP+ NPC number from e13.5 to P0 in control is expected as the NPC population differentiates during development. An age-related decline in Six2+ NPC was not observed in IUGR kidneys (Figure 16 C).

Ureteric branching of pan cytokeratin positive structures plays a role in organ size, structure, and the maintenance and differentiation of NPCs (Costantini, F., & Kopan, R., 2010). Whole organ staining of 16 kidneys from 10 control embryos and 10 kidneys from 8 IUGR animals for pan cytokeratin showed changes in the branching at e13.5. DBA co-stained with pan cytokeratin was unchanged at e13.5 (Figure 16 A). Counting the UB tips in the organs shows a significant decrease in branching in IUGR embryonic kidneys. There was nearly a 30% decrease in average UB tips in IUGR kidneys at e13.5 (Figure 16 E). At e13.5 overall NPC quantity and UB tip number were decreased showing early development of the kidney had changed with LPD.

3.2b Impact of IUGR on NPC and Nephrogenesis:

Six2 is a transcription factor that regulates the self-renewal and maintenance of the multipotent NPCs that will differentiate into the nephron. Six2 inhibits the Wnt/β-catenin differentiation signal while activating CM maintenance signals including Osr1, Pax2, and Six2 while signaling the branching of the UB (Katsu et. al. 2012, Barak et. al. 2005, Fleming et. al. 2013). Individual CMs were not changed in IUGR at P0 based on Six2 staining. Six2 did show changes to the overall kidney structure at P0. The smaller IUGR kidneys at low magnification have CMs that are more diffuse along the cortex of the kidney with space between CMs (Figure 15 A). The diffuse caps along the cortex could be evidence of changes to branching in the IUGR kidney.

Sall1 is expressed in the NPC and the differentiated structures of the CM including the pre-tubular aggregate, (RV), CSB, and SSB. Sall1 is activated by Wt1 and is active in the initial UB growth into the metanephric mesenchyme and the successive branching of the UB (Kanda, S., Tanigawa, S., Ohmori, T., Taguchi, A., Kudo, K., Suzuki, Y., Sato, Y., Hino, S., Sander, M., Perantoni, A. O., Sugano, S., Nakao, M., & Nishinakamura, R., 2014). Sall1 expression domain appears smaller, and the staining less intense in IUGR kidney sections (Figure 15 B). The Sall1 transcription factor is required for CM maintenance, UB branching, but not for differentiation Nishinakamura, R., & Takasato, M., 2005).

Neural cell adhesion molecule (NCAM) stains similar cell populations of the kidney as Sall1 marking the CMs and remaining during the mesenchymal to epithelial transition as NPCs differentiate. NCAM is a glycoprotein present on the surface of cells acting as a cell-to-cell adhesion molecule. It is present in development playing a role in cell movement and arrangement during morphogenesis and development (Lackie, Zuber, & Roth, 1990). NCAM staining in the CM was consistently decreased in IUGR kidneys despite the obvious presence of the CM based

on structure and staining of the animals. The loss of NCAM occurred with or without the loss of staining by the lectin DBA which marks the distal tubule by binding the glycosylated protein α -linked N-acetyl galactosamine (Figure 15 C). The tumor suppressor gene and transcription factor Wilm's Tumor 1 (Wt1) is active in the metanephric mesenchyme during the invasion of the UB at the start of kidney development. It activates NPC maintenance signals of Sall1, Pax2, and Bmp7 and the proliferation pathway MAPK/PI3K through FGF16/20. Wt1 is active during differentiation and will regulate differentiation pathways. Wt1 staining at P0 will mark the CM and the differentiated podocyte in mature nephrons (Motamedi et. al. 2014, Nishinakamura, R., & Takasato, M., 2005). The IUGR CM shows decreased Wt1 staining despite the clear presence of defined CMs by the also decreased NCAM co-stain. The low Wt1 is present with IUGR kidneys that show a loss of DBA in the distal tubules (Figure 17 D). The lectin DBA which marks the distal tubule by binding the glycosylated protein α -linked N-acetyl galactosamine (Lackie et. al. 1990).

3.2c Changes in Differentiation Markers Result in Altered Physiology at P0:

Lotus tetragonolobus lectin (ltl) marks the proximal tubules of the kidney by binding α linked L-fucose containing oligosaccharides. It then marks differentiated and formed structures of the adult kidney (Yallowitz et. al. 2011). IUGR had decreased ltl staining showing fewer

Figure 17: Markers of differentiation and mature glomerular structures at P0:

A) The diffuse cap mesenchymes (CM) are shown by Six2 and NCAM staining with less proximal tubules in IUGR. Control n=10, IUGR n=11. B) The LTL staining for proximal tubules is low in multiple animals along with decreased Wt1 staining for the precursors for the proximal tubules renal vesicle (RV) and comma shaped body (CSB). Control n=8, IUGR n=11. C) Lhx1 marks the nascent nephrons. IUGR has fewer Lhx1+ nascent nephrons that are smaller, and less organized. Control n=6, IUGR n=6. D) Sox9 stains the ureteric tip cells and the interstitial cells of the s-shaped body (SSB). NCAM stains the CM, the RV, and the SSB. DBA stains the ureteric branches (UB). The ureter remains with loss of DBA staining as shown by Sox9 in the tip cells. Sox9 shows more intense staining in the UB tip cells and disorganization of the SSB. Control n=6, IUGR n=6.

proximal tubules (Figure 18 A-B). Proximal tubules form from the epithelialized NPCs. Figure 18B shows low NCAM and Wt1 in the CM with decreased Wt1 positive podocytes and weakly stained and fewer proximal tubules. IUGR nascent nephrons are decreased in number and size by Lhx1 staining (Figure 17 C). **IUGR** produces disorganized nascent nephrons. The Lhx1 transcription factor is required for the formation of nephrons during

development and is under the regulation of Wnt9b from the UB (Cirio e.t al. 2011). IUGR shows

changes to the CM and differentiating structures from the CM at P0 that can lead to changes in

the adult kidney in the form of structural deficiencies.

Unlike the CM where markers are altered but the CM is unchanged in presence or organization the differentiating structures showed molecular, organizational, and physiological changes. Early markers of differentiation show nascent nephrons, RVs, CSBs, and SSBs are disorganized, smaller, and fewer. This led to a deficit in differentiated structures as shown by decreased in proximal tubules.

3.2d Expression of Ureteric Markers in P0 IUGR Kidneys:

Overall IUGR P0 kidneys have all the structures of ureteric branching with no clear change in the amount and structure of collecting ducts. AQP2 is a water transporter on the surface of principal cells of the collecting duct. Low and high magnification images showed no changes to the presence of AQP2 within the collecting ducts or the amount of collecting duct of the IUGR P0 kidneys (Figure 18 A, C, D). However, AQP2 localizes to the apical membrane and in IUGR it was instead diffuse within the cell (Monzani et. al. 2009) [Brown, D. (2017)]. Diffuse CMs along the cortex shown by Six2 staining is often due to decreased branching of the UB. The diffuse Six2 CMs along the cortex of the kidney with normal AQP2 structures show that while the organization of the CMs at the UB tips has been changed the formation of collecting ducts had not been (Figure 18 A).

E-cadherin is a calcium dependent adhesion molecule present in the distal tubules (Lee et. al. 2013). Figure 18B shows loss of DBA staining with E-cadherin staining present showing a loss of DBA while distal tubule structures are maintained. Figure 18 C confirms normal distal tubule and collecting duct development in IUGR by E-cadherin and AQP2 staining. Pan cytokeratin also marks the collecting ducts of the kidney. Figure 18 D shows no change to the

collecting ducts in overall structure or in the presence of principal cells of the collecting duct. At P0 the ureteric branching of the kidney is not changed in the smaller IUGR kidneys. The branching and structures of

the collecting duct

are not changed in

Figure 18: Normal Ureteric Tree Branching:

A) Shows the normal pattern of collecting duct forming in the smaller IUGR kidney by AQP2 staining of the principal cells of the collecting duct. Control n=5, IUGR n=5. B-C) E-cadherin and DBA mark the distal tubules. Even with loss of DBA E-cadherin and distal tubule staining is unchanged in IUGR. Control n=12, IUGR n=16. D) Pan Cytokeratin marks the collecting ducts of the kidney, AQP2 marks the principal cells of the collecting ducts Control n=12, IUGR n=12. Both are unchanged in IUGR. The collecting ducts show normal cell patterns.

IUGR kidneys at P0, but the UB tip cells are changed. Sox9 is a transcription factor present in the UB tip cells and the intermediate and distal domains of the SSB (Reginensi, A., Clarkson, M., Neirijnck, Y., Lu, B., Ohyama, T., Groves, A. K., Sock, E., Wegner, M., Costantini, F., Chaboissier, M.-C., & Schedl, A., 2011). As shown in Figures 18 A-D Sox9 staining appears qualitatively higher in IUGR P0 kidneys at the UB tips and in the SSB (N control=2; N IUGR=3). IUGR UB tip cells were changed in immunostained e13.5 sections and whole mount, combined with at e13.5. The overall UB tree at e13.5 stained by pan cytokeratin did not show

macroscopic changes to the UB branching, but the UB tip number is significantly decreased (Figure 16 A & E). The IUGR e13.5 kidney also had prominent ampullae formed (Figure 16 B). UB tip development cycles through a t-tip then either into two ampullae or a tri-tip. These have implications for the UB tree formation and for the appearance and organization of the CM. A ttip has two UB tip ends surrounded by a cloud of continuous NPCs from 1 CM, while the two ampullae have two UB tip ends extending with their own distinct CMs surrounding them. The e13.5 characterized by Short et. al. 2014 showed almost half the number of ampullae as T-tip and Tri-tip with the number and proportion of ampullae increasing over development (Short, K.M., Combes, A. N., Lefevre, J., Ju, A.L., Georgas, K.M., Lamberton, T., Cairncross, O., Rumballe,. B.A., McMahon, A.P., Hamilton, N.A., Smyth, I.M., Little, M.H., 2014). The sectioned IUGR e13.5 staining showed more ampullae than control. The increased ampullae could be impacting the elongation step of UB development and be the reason for the significantly less UB tips counted in whole mount e13.5 IUGR kidneys (Figure 16 E). The IUGR UB having elongation rather than branching changes would explain the normal levels of pan cytokeratin, Aqp2, Ecadherin, and calbindin at e13.5 and P0 with smaller kidneys (Figures 16B, 18A-D, & 19D). Further evidence for the changes in UB tips and elongation are the smaller IUGR kidneys at e13.5 and P0, and the higher staining for UB tip cell marker Sox9 (Figure 17D & 18 A-D).

3.2e Expression of Stromal Markers:

The renal stroma cells are a heterogenous cell population present in the cortex surrounding the CMs and through the medulla. Meis1/2/3 marks the stroma cells that provide

structure to the kidney while crosstalk signals with the NPCs of the CM maintain NPC stemness. Stroma cells of the kidney are derived from the same metanephric mesenchyme that gives rise to the NPCs. Stroma cells will give rise to glomerular mesangial cells, pericytes, and vascular smooth muscle cells and vasculature in the adult kidney (Chang-Panesso, M., Kadyrov, F. F.,

Machado, F. G., Kumar,

A
Control
6% Protein -1
6% Protein -2

B
Image: Control
Image: Control
Image: Control
Image: Control

C
Image: Control
Image: Control
Image: Control
Image: Control

D
Control
Image: Control
Image: Control
Image: Control
Image: Control

Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control

Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: Control
Image: C

Figure 19: Ureteric Branching Tip Cells: A-B) Consistent high Sox9 staining in the UB tip cells of IUGR kidneys at P0. Control n=6, IUGR n=6 C) Loss of DBA has no impact on intensity of Sox9 staining.

A., & Humphreys, B. D., 2018). Stroma in the IUGR P0 kidney was unchanged from control with similar thickness of the stroma around the CM (Figure 20).

Figure 20: No Change in Cortical Stroma thickness: Meis1/2/3 staining for the stroma cells of the kidney shows no change in stroma around the cap mesenchyme (CM). There is no thinning or decrease in stroma cells around the CMs.

3.2f Proliferation and Apoptosis in P0 IUGR Kidneys:

Bromodeoxyuridine (BrdU) is an analog for of the nucleotide thymidine. Tissue or cells

will take up BrdU and integrate it into the DNA of replicating cells. BrdU can then be

immunostained in fixed tissue to identify replicating cells (Muskhelishvili, L., Latendresse, J. R.,

Kodell, R. L., & Henderson, E. B., 2003).

By co-staining with markers of regions of interest proliferation rates can be found for cell types (Muskhelishvili et. al. 2003). Four control and three IUGR mice were stained and only CMs and nascent nephrons from above a branched UB were counted. The UB tips counted were also always branched. At least 10 unique regions of the sectioned kidneys were counted per animal. Six2, Sall1, and Calbindin was stained in consecutive sections of the kidney. Proliferation in Six2+ stained CM is decreased in IUGR at P0 when looking per CM across animals or per animal. The average number of proliferating cells is decreased by a third in IUGR Six2+ CMs. This is shown when looking per CM measured and when averaged by animal. The

Figure 21: Decreased proliferation in IUGR Six2+ Cap Mesenchyme

A) Decreased replication in the cap mesenchyme by BrdU positive cells in Six2 staining. Co-staining of BrdU for proliferating cells, Six2 for the cap mesenchyme, and DBA for the ureteric branching. B) No change in cap mesenchyme based on Sall1 marked cap mesenchyme. Staining shows BrdU marking proliferating cells, Sall1 marking the cap mesenchyme and the nascent nephrons, and DBA marking the ureteric branching. C) Sall1 marked nascent nephrons has no change in replication. D) Calbindin marked UB tips has no change in replication. Calbindin marks the ureteric branching, DBA marks the ureteric branching, and BrdU marks the proliferating cells. E) PARP marker for apoptosis shows no change in NCAM marked cap mesenchyme or nascent nephrons. BrdU control n=4, IUGR n=3. PARP n=2 for control and IUGR.

IUGR animals used all showed a loss of DBA staining (Figure 21 A). Sall1+ CMs show a trend towards a decrease in proliferation, but it is not significant when looking per CM or per animal. The Sall1 staining for RVs was selected separately and showed no change in proliferation with no trend when looking per nephron. There was a slight trend in decreased proliferation when looking at average per animal per nephron (Figure 21 B-C). The Sall1 RV showed a greater range in proliferation rates compared to the CM. Calbindin marks the ureteric branching of the kidney. The tips of the UB were selected for counting and showed no significant change in proliferation, but there was a trend towards less proliferation in IUGR P0 UB tips (Figure 21 D).

Poly (ADP-ribose) polymerase (PARP) is related to DNA repair, genomic stability, and apoptosis. Here it was used as a marker for apoptosis in the CM and the nascent nephron based on co-staining with NCAM (Muskhelishvili et. al. 2003). IUGR kidneys had no significant change in PARP in the CM or nascent nephron. PARP remains a rare event as shown by the number of control and IUGR kidney fields that had no PARP present in the counted area. There is a trend towards increased apoptosis in the CM and a decrease in the nascent nephrons. The lack of significance might be due to the small sample size of only two control and two IUGR (Figure 21 E).

In summary, NPC, different structures of the nascent nephron, stromal and ureteric components are present in IUGR kidneys. However, decrease in NPC number and fewer nascent nephrons may explain the nephron deficit observed at birth. Maintenance, proliferation, differentiation, and morphogenesis signals have been downregulated.

3.3 RNA-Seq Results:

Three independent P0 control and IUGR RNA samples from MACS isolated NPCs were sequenced on Illumina-HiSeq 2500 platform. Despite low RNA concentrations for 1 control and

1 IUGR sample all were useable for sequencing (Figure 22 A-B). Figure 18C shows samples had between 57 and 67 million with read lengths of 302 base pairs, with the mouse genome being 2.5 x 10⁹ bp the samples have a read depth of 8-10X for the 3 control and 3 IUGR RNA samples. Figure 22 D is the Principal Component Analysis (PCA) on the RNA-seq samples. PCA simplifies large data sets into smaller components that retains the components of the full data sets. First the data was standardized so that high value items do not dominate the analysis. For RNA-seq this would be a handful of genes with fold changes in the hundreds being given more weight than hundreds of genes with fold changes below 20. Then the covariance matrix was calculated to determine how variables of the data sets are related to each other, principal components are then calculated to determine the similarity and difference of data sets. The data sets were aligned to mouse genome mm10 and analyzed twice for differential expression.

The first analysis was done by STAR aligner and produced 6,036 differentially expressed genes all with a p<0.05. It has 1,694 genes increased by 1.5 or more-fold in IUGR NPCs, 2,114 with a fold change increased or decreased by less than 1.5 but more than 1.005, and 2,228 decreased by more than 1.5-fold in the IUGR NPCs (Figure 22). The genes that are increased or decreased by 1.5-fold or more were then run through Ingenuity Pathway Analysis (IPA) (Supplemental Table 1). IPA by QIAGEN bioinformatics analyzes omics data to arrange it into

Figure 22 RNA-Seq Differential Expression STAR Aligner:

With a p<.05 there were 6,036 differentially expressed sequences with statistical significance. Of those 1,694 had a fold change of +1.5 or greater show as green dots, 2,114 had a fold change of -1.5 of greater shown as red dots, and 2,228 had a fold change between +1.5 and 1.0001 and -1.5 and - 1.0001, shown as yellow dots. All are significant changes. Those up or down regulated by 1.5-fold or more were put into Ingenuity Pathway Analysis (IPA). A) Shows all 6,036 points, B) Y-axis decreased cutting off the 11 points with the largest change. C) Accounting for all points. 28% Upregulated \geq 1.5, 36.9% are downregulated \geq 1.5, 35% are > -1.5 and <1.5, but all 6,036 points are statistically significant.

biological pathways and predict upstream regulators, and downstream outputs including diseases based on published data and biological relationships. IPA related the 3,992 genes up or down regulated by 1.5-fold as related to diseases and biological functions, regions of the cell, top canonical pathways, predicted causal networks, and predicted upstream regulators based on IPA curated

databases and published data. IPA analysis shows development has been altered in the IUGR P0 NPCs. Figure 23 A shows the top diseases and biological functions changed. Diseases and biological functions come from categories of molecular functions from the differentially expressed RNA-seq IPA analysis. Disease and abnormalities at 34% were the most common category with cancer and inflammation the most common subcategories of diseases and

abnormalities. Cell survival was next at 25% of categories including markers of necrosis, cell

survival, and apoptosis. Necrosis and apoptosis categories were both up and down regulated in

A Disease & Biological Functions

Figure 23 RNA-Seq Differential Expression IPA:

A) The 3,992 genes that are up or downregulated by 1.5-fold or more are associated with cell survival, development and morphology, adhesion and morphology. Adhesion and Migration is of note due to the migration and condensing of epithelizing NPCs when they differentiate. Disease and abnormalities are mostly cancers meaning pathways are developmentally related as well. The dependence of NPCs on glycolysis and shift to oxidative phosphorylation as they age shows that all parts are related to development. B) Parts of the cell with significantly changed RNA expression. The changes are from throughout the cell.

IUGR P0 NPCs. Development and morphology were 19% of categories including proliferation, tissue organization, translation, transcription, and posttranslational modification. Cell adhesion and migration represented 14% of categories coming from cell to cell contact and signaling, cell migration, and cell movement of endothelial, epithelial, and mesenchymal cells. Cell adhesion and

migration categories decreased in IUGR. Adhesion and migration are related to NPC

differentiation as NPCs induced into differentiation migrate out of the CM and condense as they

Table 2: Predicted Top CanonicalPathways differentially expressedRNA-seq NPCs by IPA

Table 3: Predicted Top Causal Networksfrom differential expression in NPCs by IPA

Top Canonical Pathways	P-Value			
		Causal	Distant Date	Predicted
EIF2 Signaling	5.95E-19	Networks	Biological Role	Activation
mTOR Signaling	1.27E-08	MYCN	Proto-oncogene/Development. Transcription dysregulation	Activated
		NUPR1	Transcription dysregulation	Activated
Regulation of eIF4 and		SERPINH1	Heat Shock protein 47, Cell Proliferation	Inhibited
p70S6K Signaling	4.13E-06	Alpha Catenin	Cytoskeleton and Cell polarity	Activated
TNFR1 Signaling	8.19E-05	AMBRA1	Cell senescence and mitophagy	Inhibited
Glycolysis I	9.01E-05			

Table 4: Predicted Top Upstream Regulators from RNA-seqdifferential expression in NPCS by IPA

Top Upstream Regulators	Biological Role	Predicted Activation
	Proto-oncogene/Development	
MYCN	Transcription dysregulation	Activated
POLG	Mitochondrial Polymerase	
NUPR1	Transcription Regulator	Activated
Alpha Catenin	Cytoskeleton and Cell polarity	Activated
RRP1B	Ribosomal RNA processing, Serine/Threonine associated	

epithelize and differentiation. Metabolism contains 8% of categories including carbohydrate metabolism, post-translation related biochemistry, and amino acid metabolism. All categories related to nephron development. Figure 23 B shows changes to molecules located throughout the cell meaning the cytoplasm, nuclease, mitochondria, and organelles.

Top canonical pathways by IPA are predicted to be changed based on the significantly changed RNAs in the RNA-seq differential expression analysis. Table 3 shows the top 5 predicted pathways. Eukaryotic initiation factor 2 or EIF2 signaling regulates the inflammatory

and cytokine response of cells. The 88 molecules changed in the EIF2 signaling pathway includes kinases, transcription and translation regulators, and several ribosomal proteins. mTOR signaling is a central regulator of metabolism, growth, proliferation, and survival. The pathway is A

Symbol	Entrez Gene Name	Expression Fold Change	Location	Type(s)
ENO1	enolase 1	2.119	Cytoplasm	enzyme
ENO2	enolase 2	3.084	Cytoplasm	enzyme
GAPDH	glyceraldehyde-3-phosphate dehydrogenase	2.577	Cytoplasm	enzyme
GPI	glucose-6-phosphate isomerase	1.844	Extracellular Space	enzyme
PFKL	phosphofructokinase, liver type	2.153	Cytoplasm	kinase
РҒКР	phosphofructokinase, platelet	1.706	Cytoplasm	kinase
PGAM1	phosphoglycerate mutase 1	1.672	Cytoplasm	phosphatase
PGK1	phosphoglycerate kinase 1	2.152	Cytoplasm	kinase
РКМ	pyruvate kinase, muscle	2.234	Cytoplasm	kinase
TPI1	triosephosphate isomerase 1	2.064	Cytoplasm	enzyme

Figure 24 Glycolysis Increased in IUGR P0 Nephron Progenitor Cells:

A) Top molecules changed glycolysis by RNA-seq analysis of MACSs isolated P0 nephron progenitor cells (N{PC). Multiple glycolytic enzymes have increased expression in IUGR NPCs leading to glycolysis being a top pathway changed as predicted by IPA and iPathway. B) Seahorse extracellular Flux measurement shows increased glycolysis in MACs isolated NPCs. By ECAR or extracellular acidification rate. C) Seahorse measurement of OCR showing no change in oxidative phosphorylation. N=2 litters for Seahorse.

targeted in cancer treatment and is associated with diabetes. The 63 molecules changed identified by IPA as associated with mTOR are ribosomal proteins, AKT3, DNA damage response, translation factors, and vascular endothelial growth factors C & D. Regulation of eIF4 &

p70S6 kinase is part of the control of translation. It responds to stress, energy balance, hypoxia,

hormones, and growth factors. It is regulated by signals from mTORC1, Wnt, and PI3K/AKT.

There are 47 molecules identified by IPA as associated with regulation of eIF4 & p70S6 kinase.

Among the 47 molecules are several ribosomal proteins, AKT3, a number of translation

initiation factors, and insulin receptor substrates. Tumor necrosis factor 1 or TNFR1 signaling

affects inflammatory response impacting lipid metabolism, coagulation, insulin resistance, and endothelial function. TNFR1 signaling can be for both cell survival and cell death. There were 19 molecules changed in TNFR1 signaling with several apoptosis factors heavily downregulated, and Jun proto-oncogene AP-1 is upregulated. Glycolysis I is a top canonical pathway and has multiple kinases upregulated. The increase in glycolysis is confirmed by measurement of extracellular acidification rate (ECAR) using the Seahorse XF analyzer (Figure 25 A and B). NPCs were isolated using MACs and passage 0 cells were cultured and the Seahorse XF analyzer measured the acidification of seahorse culture media. It showed a significant increase in glycolysis in IUGR NPCs at P0. Oxidative phosphorylation, measured by oxygen consumption rate or OCR, is unchanged in the same IUGR NPCs (Figure 25 C).

IPA predicts the top causal networks from the differentially expressed genes (Table 4). MYCN functions in development and transcription dysregulation and is a proto-oncogene. NUPR1 is a second network activated associated with transcription dysregulation. SERPINH1 is also knows as heat shock protein 47 and is active in cell proliferation and collagen biosynthesis. Alpha catenin is a linker protein that functions in the cytoskeleton and cell polarity. AMBRA1 is inhibited in IUGR NPCs and is active in cell senescence, mitophagy, and autophagy by regulating protein turn over. AMBRA1 relates to cell senescence and mitophagy and is involved in neural development.

Table 4 shows the IPA predicted top upstream regulators based on the pathways IPA predicts to be changed based on the differentially expressed RNAs. MYCN was again present as activated, as was NUPR1 and Alpha Catenin. Polymerase G or POLG is the polymerase active in

A		
RNA	-Seq Differential Expression Upregulated ≥1.5	RNA-Seq Differential Expression
p53	Signaling Pathway	Downregulated ≥1.5
mTC	R Signaling Pathway	TNFR1 Signaling Pathway
Soni	c Hedgehog Pathway	Mitochondria Apoptotic Signaling
Oxid	ative Stress Induced Gene Expression Via Nrf2	WNt/LrP6 Signaling
Glyc	olysis/Glucogenesis	Regulation of Pluripotency of Stem Cells
FOX	O Signaling Pathway	P53 Signaling Pathway
В	Control	IUGR
20X Phosho-ATF-2/Cyto		

Figure 25 RNA-Seq Differential Expression Up and down regulated ≥1.5:

A) The 1,694 upregulated genes previously used in IPA were uploaded into The **D**atabase for **A**nnotation, **V**isualization and Integrated **D**iscovery (**DAVID 6.8**) resulting in 1,354 DAVID IDs. The pathways found were P53 Signaling pathway, mTOR signaling pathway, Glycolysis/Glucogenesis, FOXO Signaling Pathway, Sonic Hedgehog Pathway, Oxidative Stress Induced Gene Expression Via Nrf2. B) Phospho-ATF2: stress marker upregulated by immunostaining of P0 tissue at 40X. N=3 for staining. mitochondria during mitochondrial replication. POLG is known to interact with TP53-inducible glycolysis and apoptosis regulator (TIGAR) and superoxide dismutase 2 (SOD2). TIGAR is a regulator of glycolysis, DNA repair, and cellular degradation of organelles. SOD2 clears reactive oxygen species form mitochondria and is active in

oxidative stress and apoptosis. RRP1B is a serine/threonine associated with ribosomal

biogenesis. RRP1B is also a transcription factor cofactor for apoptotic signals in response to

DNA damage.

There were no molecules that are present in all five top canonical pathways from IPA analysis and none of the predicted upstream regulators are present in all five top canonical pathways. Glycolysis I contained the most unique molecules altered with no shared molecules present in the other 4 top canonical pathways. It does contain the upstream regulators of GPI and PKM. EIF2 signaling, mTOR pathway, and regulation of eIF4 & p70S6 kinase pathway had the most similarity with over 40 identical molecules changed in all three pathways, most of which are ribosomal proteins. All three also contain the IPA predicted upstream regulators of EIF3E, IRS1, PIK3CG, and PIK3R1. The only duplicated molecule between the TNFR pathway and EIF2 is the upstream regulator XIAP. TNFR also contains the upstream regulators of FADD, JUN, MAP2K4, and MAP3K1. This shows that the top canonical pathways were not driven by the same molecular changes.

The Database for Annotation, Visualization, and Integrated Discovery (DAVID 6.8) is an analysis tool for functional annotation of large biological data sets. It provides functional interpretation based on large data sets. The uploading tool for DAVID allows only for gene lists, not expression level data unlike IPA analysis. DAVID analysis was done by splitting the significant data by up or down regulation (Figure 26 A). The previously identified 1,694 genes upregulated by RNA-seq were analyzed by DAVID (Supplemental Table 1, Figure 25).

There were six pathways identified from upregulated RNA genes shown in Figure 18A. P53 signaling pathway is a tumor suppressor that controls cell cycle progression and apoptosis. It has previously been described as a control mechanism for cell proliferation in first cancer and then development. Normal p53 function is required for normal embryonic development and balancing NPC differentiation and self-renewal with links to cellular metabolism. P53 was found by DAVID analysis of both down and up regulated genes. mTOR signaling is present again. Sonic hedgehog pathway was not in the IPA analysis but present from DAVID. Sonic hedgehog pathway is a developmental pathway that regulates tissue patterning during multicellular organisms, the formation of complex organs including the kidney, and cell polarity. Oxidative Stress Induced Gene Expression Via Nrf2 is a stress response pathway. Nrf2 signaling is related

A Wnt Differentiation Signal Decreased D Histone Modification

		6% NPCs		20% NPCs			
Gene Name	TPM	TPM	TPM	TPM	TPM	TPM	
Wnt9a	0.48	1.07	0.84	1.63	1.95	1.35	
Wntll	5.49	27.2	9.25	9.4	17.07	7.96	
Wnt5a	0.66	0.86	1.82	2.96	4.32	4.05	
Wnt16	0.73	0.77	2.33	2.55	2.78	1.98	
Wnt5b	7.01	5.3	10.61	19.18	16.46	15.79	
Wnt4	89.11	125.36	100.15	131.24	144.18	110.95	
WintSh	018	012	0.36	3 30	3 7 7	3.44	

B BMP Proliferation Decreased

		6% NPCs		20% N PCs			
Gene Name	TPM	TPM	TPM	TPM	TPM	TPM	
Bmp7	43.55	49.92	56.66	82.63	90.23	64.77	
Bmp4	13.11	13.87	23.81	37.6	43.53	43.07	
Bmp1	109	142.65	92.17	134.55	162.01	141.28	
Bmp 2	9.8	9.03	8.73	17.48	18.13	17.93	
Bmp3	0.62	0.51	1.6	2.91	4.96	2.62	
Bmp2k	11.68	10.09	10.61	7.6	8.04	7.98	
Bmp5	4.92	4.89	7.25	7.29	6.77	7.44	

C Fgf Signal: NPC Maintenance Downward Trend

		6% NPCs		20% N PCs			
Gene Name	TPM	TPM	TPM	TPM	TPM	TPM	
Fgf10	6.22	10.65	9.54	13.2	12.74	10.33	
Fgf9	2.57	0.53	4.68	6.87	4.34	5.61	
Fgf8	29.42	11.31	39.32	48.49	41.58	50.69	
Fgf20	0.69	4.22	2.05	6.96	11.84	5.47	
Fgfl	22.99	24.2	35.57	39.87	56.66	30.17	
Fgf2	0.42	1.81	1.92	3.37	4.32	2.34	
Fgf11	3,43	2.66	5.02	2.95	3.49	3.45	

			6% NPCs		20% NPCs			
I.	Gene Name	TPM	TPM	TPM	TPM	TPM	TPM	
35	Ezhl	24.65	23.36	42.01	29.46	39.85	35.54	
96	EzhZ	54.06	39.96	94	118.27	112.65	118.65	
.05	Hdac5	115.94	128.91	114.97	48.25	54.55	58.74	
98	Hdac2	113.91	114.19	132.85	181.5	171.05	158.5	
79	Hdac7	62.92	69.93	48.83	52.67	55.17	54.39	
95	Hdac3	62.19	65.72	65.96	81.55	79.24	78.33	
44	Hdac4	11.97	12.31	10.86	11.52	11.67	11	
	Hdacl	111.5	116.27	113.39	123.87	129.57	99.13	
	Hdac6	27.68	39.02	31.97	37.68	48.54	35.39	
	Hdacll	16.61	17.33	17.58	17.44	19.94	19.62	
	Hdac10	9.95	8.44	11.64	11.03	11.83	11.04	
	Hdac8	5.48	5.88	7.05	6.84	8.63	8.05	
_	Hdac4	12.51	13.57	9.51	11.11	12.21	9.91	
	Dnmtl	58.35	54.72	81.54	122.25	107.52	107.72	
	Dnmt3a	34.7	40.71	56.01	73.36	74.85	75.83	
77	Dnmt3b	5.22	4.58	6.56	9.65	10.52	9.87	
07	Sirt2	43.49	46.84	48.74	45.76	48.11	50.77	
28	Sirt1	31.27	32.92	28.73	22.57	25.07	26.5	
93	Sirt7	14.25	15.18	13.86	23.74	28.45	23.55	
62	Sirt3	18.57	19.21	19.83	17.9	18.33	18.83	
98	Sirt4	18.72	22.33	20.21	24.23	30.01	29.29	
44	Sirt6	25.21	36.54	34.52	35.94	45.35	44.83	
	Sirt5	1.58	1.82	1.98	3.46	4.74	4.57	
	Trp53	79.24	71.06	133.47	180.9	195.87	193.6	
	SinBa	33.88	26.79	47.5	53.59	53.67	65.67	
	Sin 3b	101.65	102.06	109.91	115.4	125.14	1 10.34	
	Sap130	15.22	16.01	27.28	37.26	38.11	37.35	
	ingl	41.5	53.8	55.43	55.39	56.74	59.8	
	Ing2	36.28	33.36	32.7	23.47	24.93	28.21	
	Mtal	151.35	146.62	161.21	157.88	158.3	155	
22	Mta2	108.77	118.29	111.54	117.91	127.11	120.69	
51	Mta3	34.61	40.91	42.59	41.39	38.53	41.53	
60	Mbdl	26.69	31.42	27.97	31.51	34.55	37.2	
47	MbdZ	48.08	50.73	57.32	75.06	75.35	78	
17	Mbd3	173.22	169.04	174.68	238.85	2 33.94	2 23.55	
2.0	Mbd4	4.33	5.69	7.17	10.34	11.55	11.63	
34	Mbd5	22.57	26.95	17.14	17.68	21.05	19.75	
45	Mbd6	100.75	98.62	61.87	65.93	88.72	76.92	

Figure 26 RNA-seq TPM Trends:

Transcripts Per Kilobase Million (TPM) is normalized RNA read number. Highlighted yellow are significantly changed in differential expression analysis. Shows average for NPCs from the three control and IUGR litters used for RNA-seq analysis.

A) The Wnt differential signal is decreased. B) BMP proliferation signal is decreased. C) Downward trend in Fgf maintenance signal. D) Histone modification signals are changed. HDACs associated with NPC maturation are decreased and HDACs that are associated with NPC differentiation are decreased. Factors changed are related to acetylation, methylation, glycosylation, and chromatin remodeling. Many are significantly changed while others are trends in TPM levels.

to environmental and metabolic stress. Glycolysis is the enzymatic breakdown of glucose producing energy and pyruvic acid while glucogenesis is the formation of glucose from glycolysis products. FOXO signaling pathway regulates apoptosis, cell cycle, glucose metabolism, and oxidative stress resistance. A major down regulator of FOXO signaling is the activation of Akt/PI3K pathways via insulin or growth factor signaling. FOXO is activated by JNK and AMPK, which respond to energy availability and nutrient stress. The activity of these pathways is related to phosphorylation, acetylation, methylation, and ubiquitylation as posttranslational modifications (Figure 25 A).

The 1,354 downregulated genes DAVID analyzed provided five pathways. TNFR1 signaling pathway was also present in the IPA results, confirming changes related to cell death and survival signaling, further confirmed by mitochondria apoptotic signaling. LrP6 is from the Wnt canonical pathway. Wnt canonical pathway feeds into β-catenin, a necessary part of NPC differentiation. Finally, the ability to maintain stemness is changed in the regulation of pluripotency of stem cells. The changes to cell stress are shown by staining of P0 tissue sections. There is an increase in Phospho-ATF2 throughout the kidney, but especially in the cap mesenchyme above the pan cytokeratin staining ureteric branching (Figure 25 B).

The sequencing data before differential expression analysis is shown as Transcripts Per Kilobase Million or TPM. TPM is calculated by read counts divided by the length of each gene in kilobases producing the RPK. The RPK values in a sample are counted up and divided by 1×10^{6} and then divide by a scaling factor to produce a TPM per gene for each sample. This provides a read number that is normalized by gene length. Looking at groups of genes related to development showed significantly changed genes and trends. Figure 26 A shows the differential signal Wnt trends down with three significantly decreased (Wnt5a, Wnt5b, and Wnt8b). The

NPC proliferation signal BMP has multiple molecules significantly down with more trending down without significance (Figure 26B). A second NPC maintenance signal Fgf trends down but with no molecules significantly changed (Figure 26C).

Previous work has shown that NPC differentiation and maintenance is regulated by the histone modification pathways HDAC and their co-factors. HDACs 1-4, 7, and 9 decrease with embryonic maturation. HDAC5, 6, and 8 are constitutively expressed, while HDAC1, 2, and 3 decrease with differentiation in NPCs and HDAC3 is high in podocytes. Histone modifications are known to respond to environmental factors. Figure 26D shows histone associated molecules. Ezh2 is significantly decreased along with Dmnt3a, and Dmnt3b. Ezh2 actively represses differentiation pathways. Hdacs 4, 5, and 7 were all significantly increased in IUGR P0 NPCs. HDACs act with transcription complexes Sin3, Mi-2/NuRD, Co-REST, and SMRT/N-CoR. HDAC/Sin3 complexes regulate cell proliferation, apoptosis, and cell cycle. Mi-2/NuRD is an ATP dependent complex that regulates chromatin remodeling. The Co-REST or RCOR1 complex is downregulated at birth and inhibits neural cell differentiation. SMRT/N-CoR complex is a repressor of cell checkpoint AP-1. The complexes share more components than just HDACs.

Sin3 histone deacetylase complex associated with HDAC 1 and 2, RBBP7 and 4, and SDS3. Sin3a was down regulated 1.27-fold and Sin3b was unchanged. The Sin3 associated growth inhibitor Ing2 is upregulated 1.63-fold. The Mi-2/NuRD complex includes Mta1 and 2 which were both significantly upregulated (1.29 and 1.2). The glycosylation associated Mbd4 was down regulated 1.49-fold with other Mbds trending down. Mbd3 was trending down in IUGR NPCs which inhibits induction of IPSCs. Multiple sirtuins were significantly changed

with IUGR. Sirt1 and 2 were both upregulated (1.62 and 1.27-fold), while Sirt7 is downregulated 1.30-fold while Sirt4-6 have no significant change are all trending down (Figure 26D).

The tumor suppressor gene Trp53 had a fold change of -1.59. Trp53, as previously described, is a link between embryonic development regulating NPC self-renewal and differentiation and metabolism. IUGR P0 NPCs also had significantly decreased Ezh2, Dnmt3a, and Dnmt3b and trending down with no significance were Ezh1 and Dnmt1 (Figure 26D). Ezh2 expression is associated with proliferation in the undifferentiated cells of the embryonic kidney. NPC maintenance and proliferation signals are significantly changed are known intermediaries between environmental signals and transcriptome regulation. This is evidence of changes t histone remodeling, glycosylation, metabolism, and NPC maintenance and differentiation in IUGR P0 NPCs.

The second analysis was by iPathway Guide Analysis. The alignment and differential expression analysis show 3791 differentially expressed genes all with p<0.05. There were 282 upregulated over 1.5-fold, 491 downregulated by 1.5-fold, and 3,018 genes statistically significant between -1.5 and +1.5-fold change (Figure 27). All significant genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology Consortium Database (GO), miRNA analysis from miRibase, and TARGETSCAN databases.

Gene Ontology or GO Analysis with highest FDR selected are in table 5. GO Biological process and molecular function analysis confirmed changes to metabolism and the ribosomal changes found in the IPA RNA-seq analysis. Cellular Macromolecule Metabolic Process are the chemical reactions that process macromolecules. Macromolecules are high molecular mass including proteins, glycoproteins, carbohydrates, polysaccharides, nucleic acids, and lipids. The processing includes metabolic, macromolecule biosynthesis, and methylation. Cellular metabolic

Figure 27 RNA-Seq Differential Expression iPathway Guide:

With a p<.05 there were 3791 differentially expressed sequences with statistical significance. Of 23358 genes measured with expression. These genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene Ontology Consortium database, miRNAs from the miRbase, and TARGETSCAN databases. A total of 90 pathways were found to be significantly impacted with 2182 Gene Ontology (GO) terms, 41 miRNAs, and 46 diseases found to be significantly enriched. A) Shows the differentially expressed genes found by this analysis with 282 upregulated at or above 1.5-fold, 491 genes downregulated at or above 1.5 fold, and 3,018 between +1.5 and +0.6 and -0.6 and -1.5. All points are statistically significant.

Table 5: Top GO Biological Processes RNA-Seq Differential Expression IUGRNPCs by iPathway Analysis

GO Biological Process Pathways	Differentially Expressed Genes	Total Genes	FDR
Cellular Macromolecule Metabolic Process	1707	7423	1.00E-24
Cellular Metabolic Process	2020	9195	1.00E-24
Primary Metabolic Process	1995	9174	1.00E-24
Nitrogen Compound Metabolic Process	1899	8628	1.00E-24
Metabolic Process	2154	10148	1.00E-24
Macromolecule Metabolic Process	1807	8173	1.00E-24
Organic Substance Metabolic Process	2059	9657	1.00E-24
Cellular Nitrogen Compound Metabolic			
Process	1336	5691	1.00E-24
Biosynthetic Process	1257	5324	1.00E-24
Organic Substance Biosynthetic Process	1241	5248	1.00E-24

processes are the reactions and pathways that transform molecules into energy for the cell. Primary metabolic process includes lipid metabolism, carbohydrate metabolism, protein metabolism, cellular amino acid derivative metabolic processes, and the metabolism of nucleobase, nucleoside, nucleotide, and nucleic acids. This includes catabolic, maturation, biosynthesis, metabolic, and regulation of these processes. The rest of the Go biological process pathways are subcategories of the previous processes and are nitrogen compound metabolic process, metabolic process, macromolecule metabolic process, organic substance metabolic process, biosynthetic process, and organic substance biosynthetic process.

The top GO molecular function found by iPathway analysis found a series of compound binding pathways (Table 6). The bonds are related to structures of macromolecules (heterocyclic compounds, nucleic acid, organic cyclic, ribosome, protein, and DNA), and cell activity (transcription regulation, transferase). Transferase activity relates to the movement of functional groups between molecules. Functional groups include methyl, alcohol, and others that change the activity and localization of the molecules being modified. The functions found in P0 IUGR relate to transcription activity, protein binding, and protein synthesis changes.

The top altered pathways were ribosome which process messenger and transfer RNA and synthesize polypeptides and proteins (Table 7). The AGE-RAGE signaling pathway in diabetic complications relates to glycation, MAPKs, NF-κB, Il-1, Il-6, TNF-alpha, JAK-STAT, and PI3K-AKT and signals into proliferation and apoptosis. MAPK signaling pathway is a signaling cascade that responds to environmental signals into the cell. MAPK signals relate to cell proliferation, differentiation, and migration.

Glycosphingolipid biosynthesis- globo and ispglobo series is a metabolic and biosynthesis pathway. The globo and isoglobo series specifically process GalNAca1 into

Table 6: Top GO Molecular Function RNA-Seq Differential ExpressionIUGR NPCs By iPathway Analysis

	Differentially Expressed		
GO Molecular Function Analysis	Genes	Total Genes	FDR
heterocyclic compound binding	1179	5169	1.00E-24
nucleic acid binding	834	3414	1.00E-24
organic cyclic compound binding	1190	5258	1.00E-24
binding	2491	12604	1.00E-24
structural constituent of ribosome	80	147	1.69E-21
DNA binding transcription factor activity	305	1105	2.73E-15
transcription regulator activity	375	1434	4.26E-15
transferase activity	534	2241	1.43E-13
protein binding	1697	8514	2.07E-12
DNA binding	475	1996	8.45E-12

Table 7: Top Altered Pathways RNA-Seq DE Show Energy Sensing and StressResponse

Pathway Name	Pathway ID	P-Value	P- Value(FDR)	P-Value (Bonferroni)
Ribosome*	3010	1.00E-24	1.00E-24	1.00E-24
AGE-RAGE Signaling pathway in diabetic complications	4933	1.34E-05	0.02	0.004
MAPK Signaling Pathway	4010	2.90E-05	0.003	0.009
Glycosphingolipid biosynthesis- globo and ispglobo series*	603	3.88E-05	0.003	0.012
AMPK Pathway	4152	6.85E-05	0.004	0.021

Pro	uning Type	: None		Pruning Type: Elim		Pruning Type: Weight	
GO Term	P-value	P-Value (FDR)	P-Value (Bonferroni)	GO Term	P-value	GO Term	P-value
Intracellular	1.00E-24	1.00E-24	1.00E-24	Cytosolic large Ribosomal Subunit	1.00E-24	Organelle	1.00E-24
Intracellular Part	1.00E-24	1.00E-24	1.00E-24	Cytosolic small Ribosomal Subunit	1.40E-18	Cytosolic Ribosome	1.00E-24
Intracellular Organelle	1.00E-24	1.00E-24	1.00E-24	Nucleus	6.10E-12	Intracellular	3.40E-24
Organelle	1.00E-24	1.00E-24	1.00E-24	Cytosol	6.50E-07	Nuclear Lumen	7.40E-10
Membrane-bounded Organelle	1.00E-24	1.00E-24	1.00E-24	Nucleolus	6.90E-07	Focal Adhesion	1.30E-06

Table 8: Differential Expression Shows Changes throughout the Cell

Figure 28 RNA-Seq Differential Expression Gene Track

Gene sequence tracks showing from GENCODE M14. Reference sequence is for mus musculus. The RNA isolated is from Cited1/Sx2 dual positive NPCs. A-B) NPC Renewal markers Six2 and Sall1. IUGR NPCs have no change in Six2 expression. Sall11 is lower in the IUGR NPCs by track and in both analyses. RNA-seq differential expression analysis has -2.246 fold change in IUGR NPCs. C-D) Jagged1 and Wnt4 are differential genes for NPCs. Jagged1 has much smaller peaks and has a fold change of -2.35. The Wnt4 peaks look a bit smaller but differential expression has no significant fold change. Average of 3 litters.

ceramide. AMPK pathway is a sensor of cellular energy status. It activates when the AMP:ATP

ratio increases from metabolic stress interfering with ATP production or an increase in ATP use.

Top cellular components show not just changes throughout the cell as shown by IPA

analysis but also changes to intracellular components of tissue (Table 8).

NPC renewal genes Six2 and Sall1 tracks show no change to Six2 while Sall1 is

decreased a change confirmed by a significant fold change of -2.25 (Figures 28, 15A & 15B).

The lack of change in Six2 and decrease in Sall1 is confirmed in staining data previous staining

data.

									Plasma Cre	atinine		Plasr	na BUN
Animal	Weight (g)	Kidney Weight (g)	Systolic (mmHg)	Pulse (bpm)	Diastolic (mmHg)	Mean Arterial Pressure (mmHg)	Glomerular Count Average Entire Sections	Glomerular Counts Average 10X Fields	μg/ml	mg/dL (x0.10)	Urine Albumin (g/dL)	Mean urea Conc. (mg/dL)	Mean BUN conc. (mg/dL)
20.7.M.1	48.9	0.99	128.08	711.01	65.8	87.81	183.33	6.67	0.5	0.05		39.66	18.53
20.7.M.2	49.4	0.798	123.43	703.02	67.99	85.89	144.67	6.33	0.8	0.08	0.056	67.15	31.38
20.7.M.3	49.8	0.656	149.07	706.90	83.55	105.12	91.33	6.00	0.8	0.08	0.139	79.30	37.06
20.23.M.1	45.7	0.705	122.33	695.11	72.09	90.75	145.67	6.67	0.4	0.04	0.078	64.24	30.02
20.23.M.2	51.8	0.756	120.83	695.21	68.54	86.17	136.67	5.67	0.3	0.03	0.095	71.18	33.26
20.23.M.3	54.1	0.852	124.46	713.44	67.85	86.66	152.33	7.33	0.6	0.06		52.62	24.59
20.23.M.4	50.3	0.801	130.45	698.29	72.75	92.97	148.33		0.6	0.06	0.12	105.45	49.27
20.7.F.1	43.6	0.456	123.96	561.28	74.01	96.26	115.00	6.67	0.7	0.07	0.034	69.36	32.41
20.7.F.2	43.7	0.475	105.40	546.11	64.79	79.61	125.33	5.33	1.0	0.10	0.059	83.96	39.24
20.7.F.3	40.2	0.545	133.75	658.70	86.54	102.53	122.33	9.00	0.6	0.06	0.05	56.58	26.44
20.23.F.1	34.3	0.4231	121.86	568.15	72.54	92.25	162.00	9.00	0.7	0.07	0.038	78.19	36.54
20.23.F.2	33.4	0.4743	143.88	712.12	85.98	105.33	149.67	6.75	0.7	0.07	0.075	65.31	30.52
6.7.M.1	49.1	0.555	115.65	645.55	59.90	79.45		3.67	0.6	0.06	0.112	70.07	32.74
6.7.M.2	50.1	0.573	127.99	657.41	76.33	94.85	135.00	5.00	0.7	0.07	0.114	60.09	28.08
6.7.M.3	36.9	0.409	131.00	603.15	80.55	98.46	90.00	5.67	0.8	0.08	0.059	81.66	38.16
6.23.M.1	39.5	0.544	178.06	559.92	116.48	137.84	43.33	3.75	1.4	0.14	0.477	86.79	40.56
6.23.M.2	48.5	0.698	120.89	651.66	66.25	86.07	135.67	4.00	0.6	0.06	0.26	65.26	30.49
6.7.F.1	34.9	0.39	119.28	698.58	65.01	84.09	123.67	5.67	0.8	0.08	0.038	73.17	34.19
6.7.F.2	32.7	0.431	130.44	672.87	75.90	95.19	130.33	5.00	0.7	0.07	0.041	65.11	30.43
6.23.F.1	45.8	0.376	130.44	672.87	75.90	95.19	131.33	5.67	0.7	0.07	0.139	83.72	39.12
6.23.F.2	46.6	0.385	119.95	656.74	62.63	79.80	102.67	5.00	0.8	0.08	0.057	70.54	32.96
6.23.F.3	49.7	0.428	112.80	745.05	65.41	83.24	103.67	6.33	1.2	0.12	0.352	91.18	42.61
6.23.F.4	42.9	0.4093	120.37	728.69	71.11	87.21	135.00	5.33	0.6	0.06	0.054	62.04	28.99

Table 9: Adult Summary

Green background are control males, blue are control females, yellow are IUGR males, and orange are IUGR females. Animals come from 4 litters born on 1/7/2019 or 1/23/2019 and are either 20% or 6% parental diet. Systolic pressure has no significance, but IUGR male 6.23.M.1 has the highest systolic and diastolic blood pressure with the highest plasma creatinine and urine albumin levels. The IUGR female 6.23 F.3 has no change to blood pressure but has the second highest Plasma creatinine and urine albumin.

Despite large differences in the number of genes found to be significantly changed by the

two analyses the pathways implicated were very similar. Both show changes throughout the cell

and related to ribosomes, developmental pathways, metabolism, differentiation, proliferation,

and stress responses. The sequencing data itself supports the environmental signals altering

pathways that change cell character and activity.

Chapter 4 Discussion:

IUGR mice from LPD are not just small mice at P0, but mice that continue to have developmental differences from control postnatally and into adulthood (table 10). The kidney is physically smaller before changes in size are apparent in with LPD. The severity of changes to kidney size persists even in adult animals that have caught up in weight with adult male 6.7.M.2 and adult females 6.23.f 1 and 2 (table 9). Kidney size is not just decreased in adulthood, but also shows a sex influenced change with IUGR showing female mice with the smallest kidneys in

adulthood. Sex differences are not found at P21 and could not be looked at earlier time points at sex was not recorded for earlier samples. This would be an important future direction when

Table 10: Summary	and	Timeline	of
Physical Changes			

NC: No					
Change					Kidney/
+:UP	Body	Body	Kidney	Kidney	Body
-: Down	Weight	Size	Weight	Size	Weight
E13.5		NC		-	
PO	-	-	-	-	+
P21	-	-	-	-	-
4 Month	NC	-	-	-	-

looking at kidneys at P0 and even embryonically as epigenetic regulation, which was greatly altered by the LPD, is known to vary with hormones.

Changes to the skin and hair of IUGR

mice postnatally are evidence of changes to cell cycle in stem cells with IUGR. Embryonically the skin begins as a single layer of epidermal stem cells (formed from the ectoderm) which rests on dermis from the paraxial mesoderm (Figure 1). The dermis will form hair follicles, sweat and oil glands, blood capillaries, nerve endings, and lymph vessels. Hair follicles form during embryogenesis from dermal papilla (specialized mesenchymal cells) which experience rapid proliferation postnatally. Hair growth comes from stem cells progressing through cycles of quiescence and activation which lead into proliferation, cell fate choice, differentiation, and apoptosis. This process will continue throughout the life of the organism as hair is lost and regrown. The process is regulated by growth factors, neutrophils, p53, TGF β , and BMPRIa (a repressor of Wnt). This process relies on a stem cell compartment, cell to cell interaction, and interaction/availability of ECM. It is proposed as a model of stem cell quiescence and activation (Blanpain, C., Horsley, V., & Fuchs, E., 2008, Schmidt-Ulrich, R., & Paus, R., 2005, Alonso, L., & Fuchs, E., 2006). The morphological and morphometric changes in IUGR mice are evidence to changes to mesenchymal derived stem cells. The postnatal delayed skin and hair development supports changes to mesenchymal stem cells in IUGR pups from LPD. The germ layer is the same as the kidney and many signaling pathways for maintenance, proliferation, and

differentiation of the stem cells are the same between the kidney and skin development. The changes in IUGR pups come from changes to stem cell cycling and activation which leads to changes in differentiation and development. Unlike with kidney development, delayed skin and hair development has time to occur on a delayed schedule. Delayed kidney development will run into the wall of mass differentiation of NPCs at P4. Skin and hair development do not have that same end point with skin and hair growth continuing throughout adulthood. Changes in skin and hair development were present in all IUGR mice. Changes that persisted after removal from LPD conditions. As IUGR mice mature they lose the differences from control in appearance, but histology of the skin is a future direction for IUGR research.

IUGR embryonic kidneys have a deficit in Six2+ cells that are in poorly organized CMs as shown by FACS counting and immunostaining of whole organ and tissue section. The IUGR Six2+ population at P0 did not change in quantity from control as shown by count and staining (Figure 16 C, D, F). The deficit in embryonic IUGR kidneys has implications for proliferation and expansion of NPC populations. The lack of change in percent Six2+ population size in IUGR during development has implications for differentiation of NPCs and the intermediate and fully differentiated structures that form from the Six2+ NPCs. These changes are the core of why adult IUGR kidneys show damage and why there is a trend towards diminished kidney function. The changes to CM organization, Six2+ quantity, and Six+ as percent of total embryonic IUGR kidney from LPD are significant statistically and developmentally.

NPC balance between expansion/maintenance and differentiation is regulated by multiple pathways and mechanisms. This balance is essential for successful kidney development. The decreased quantity of Six2+ CM at e13.5 without changes to nascent nephron size or number at e13.5 shows changes to expansion and maintenance of the CMs. Changes to the balance of NPC

maintenance and expansion in the CM versus exiting the CM and differentiating would explain the deficit in differentiated structures in the kidney. This has been seen in previous work altering kidney development. IUGR has the addition of not just tipping the balance away from differentiation, but also decreasing expansion of the NPCs in the CM resulting in the smaller cap early in development and a smaller pool of NPCs for differentiation (Figure 29). The result is not just disordered differentiation, but NPCs that have shifted to survival and maintenance of stemness without expanding the CM they are within. The NPCs are then unable to respond to signals to differentiate at the appropriate time resulting in fewer NPCs to create differentiated structures, NPCs fighting the signal to differentiate through the pathways activated to fight apoptosis and differentiating NPCs that are poorly organized as they continue to signal to

Figure 29: Epigenetic Reprograming Results in Changes to NPC Cell Fate

A) Environmental stress, in this case IUGR from low protein diet changes the epigenetics of parents and alters the maternal environment resulting in changes to the embryonic environment during the pregnancy. The changes to inherited epigenetics from both parents exposed to environmental stresses and changes to the embryonic environment will change the embryonic epigenetic programing from the beginning of embryogenesis.

B) Normal nephrogenesis by nephron progenitor cell (NPC) development requires a balance of Self-Renewal/Expansion in the cap mesenchyme (CM) and differentiation. Environmental stress, low protein diet in this case, changes this balance by decreasing the NPCs differentiating and increasing the Self-Renewal and maintenance of stemness in the CM. But the NPCs are not expanding the NPC population in the CM as shown by the smaller NPC pool at E13.5 and the lack of change in NPC pool over the course of development.

maintain stemness when development tries to progress. This is supported by the RNA-seq analysis and the molecular changes found in the IUGR kidneys.

The changes to the NPCs in the CM are at the start of kidney development. The changes in molecular composition to NPCs at P0 are a result of changes during all of kidney organogenesis (Table 1). Wt1 regulates Sall1, both decreased, and the regulators of NPC maintenance and proliferation BMP, FGF, MAP/ERK, and P-SMAD. All shown changed in RNA-seq at P0. Wt1 can be regulated by hypoxia-inducible factor 1α (Hif1 α). Hif1 α is regulated in response to environmental signals by phosphorylation of the protein. Hifla did not change in the RNA-seq, which is expected when regulated on the protein level. Hypoxia-inducible factor 1alpha inhibitor (Hif1na) is also activated by environmental stress signals to the cells, it is upregulated by 2.72-fold in the RNA-seq. The upregulation of Hif1na and pathways downstream of Hifla is evidence of its upregulation. Hifla is an upstream regulator of glucose metabolism, apoptosis, proteolysis, angiogenesis, erythropoiesis, cell proliferation and survival, and pH regulation (Masoud, G. N., & Li, W. 2015). Hifla regulates p38-MAPK, ARK1/2, VEGF, p53, Myc, and metabolism pathways. This makes Hifl α a strong possibility for the upstream regulator that connects environmental signals of LPD to molecular and physical changes in the developing kidney. This would also explain why so many hypoxia related causes of IUGR exist in epidemiology and in IUGR animal models (glucocorticoid treatments, hypoxia via a chamber or surgery, umbilical artery ligation, uteroplacental embolization). Of further note is the expression of Hifl α in the epithelial cells of the ampullae in the collecting ducts of the kidney which are present in e13.5 IUGR kidneys at an unusually high rate. Hif1a is present in the CSB and SSB during glomerular development, but not in the mature glomerular in rats (Bernhardt, W. M., Schmitt, R., Rosenberger, C., Münchenhagen, P. M., Gröne, H. J., Frei, U., Warnecke, C.,

Bachmann, S., Wiesener, M. S., Willam, C., & Eckardt, K. U., 2006). Making it a candidate for changes in the development of first the UB and then collecting duct of the kidney. Hif 2α is also present in the developing kidney and any future work exploring hypoxia inducible signals would need to consider both molecules as candidates for regulators in response to changes in maternal environment.

The pathways changed in the RNA-seq and confirmed in extracellular flux measurements and immunofluorescent staining is likely from epigenetic modifications. Histone modification is a known regulator of NPC maintenance and differentiation. NPCs, nascent nephrons, and epithelial tubules all have unique histone modifications (McLaughlin, et. al. 2014). Old vs. young NPCs show different chromatin landscapes with old NPCs poised for differentiation. The transcription factors Bach2 and AP1 were proposed as a link between renewal signaled by MAPK/AP1 and the Six $2/\beta$ -catenin regulators of NPC differentiation. In ATAC-seq previous work on the binding motifs of Bach2, AP1, and BATF all showed changes in enrichment of binding sites with NPC age. Bach2 is also an active transcription factor in the distal RV. (Hilliard, S., Song, R., Liu, H., Chen, C, Li, Y., Baddoo, M., Flemington, E., Wanek, A., Kolls, J., Saifudeen, Z., & El-Dahr, S.S., 2019). These histone modifications are essential for the formation of mature glomeruli by testing knockouts of HDAC 1 and 2 (Liu, H., Hilliard, S., Chen, S., Yao, C., Li, Y., Chen, C., Liu, J., Saifudeen, Z., & El-Dahr, S.S., 2018). Multiple HDACs associated with differentiation of the NPCs are decreased while HDACs that decreased with NPC maturation are increased in the IUGR NPCs. The massive dysregulation of epigenetic components like HDAC, Ezh, and Dnmt are a potential source of the large changes found in the RNA-seq. The chromatin regulators associated with differentiation are decreased in IUGR NPCs while maintaining high levels of regulators involved in maintaining stemness. Changes to the

histone landscape of NPCs would come from regulation of these factors and the components used in histone modification. The changes to cellular metabolism found in RNA-seq and cellular flux relate to the histone landscape as products from metabolism are essential for histone modifications. Metabolism products such as nicotinamide adenine dinucleotide (NAD), Acetyl-CoA, SAM, α -keotgluterate, and flavin adenine dinucleotide (FAD) are cofactors for methylation, acetylation, and thus the epigenetic landscape (Berger & Sassone-Corsi 2016). The RNA-seq shows changes to the expression level of many enzymes used in metabolism pathways, and the increased glycolysis measured by extracellular flux confirms changes to pathway activity levels. The difference in kidney growth from P0-P21, outside of LPD conditions and in the same environmental conditions of control pups, is strong evidence that these changes are persistent and alter development and growth of IUGR pups even after progenitor cells have differentiated. The physiological changes are not just to the embryonic or P0 CM.

P0 IUGR pups were smaller than control with smaller kidneys (Table 10). These smaller kidneys had changes to structure and differentiation that began early in development. There are significant changes in branch tip number at e13.5 showing early changes to the developing collecting duct from LPD. At P0 the markers for the collecting duct structures and patterns are unchanged, but the gaps between Six2+ caps along the cortex are evidence of changes in the ureteric tree. Kidney size is driven by ureteric development with decreased branching and elongation leading to smaller kidneys (Short & Smyth, 2016). At the advancing end of ureteric branching in the cortex of the kidney there are the P63+ ureteric bud tip cells (UBTC). The proliferating UBTC are the progenitors of all cells in the collecting duct and will lengthen the ureteric branches, expand the kidney, split the CMs, and through crosstalk signal the maintenance, expansion, and differentiation of the NPCs of the CMs. UBTC maintenance and

proliferation are not perfectly characterized, but Wnt/ β -Catenin signaling is known to play a role in the UBTCs that are P63 and Sox9 positive (El-Dahr, et. al. 2017). IUGR at P0 showed increased Sox9 staining at the P63+ UBTCs (Figure 18). P63 is of interest in cancer research where it is known to regulate cell adhesion, movement, and cellular metabolism. P63 maintains proliferative potential of epithelial cells and it activates the transcription of hexokinase 2, the first step in glucose utilization and part of mitochondria function regulating the ADP/ATP ratio. Loss of P63 in transgenic mice causes defects in fatty acid oxidation and obesity (Candi, E., Smirnov, A., Panatta, E., Lena, A. M., Novelli, F., Mancini, M., Viticchiè, G., Piro, M. C., Di Daniele, N., Annicchiarico-Petruzzelli, M., & Melino, G., 2017). P63 in the ureteric branches is temporally and spatially regulated, first being detected in the UBTCs at e15.5 and being lost at P5 (El-Dahr, S. S., Li, Y., Liu, J., Gutierrez, E., Hering-Smith, K. S., Signoretti, S., Pignon, J.-C., Sinha, S., & Saifudeen, Z., 2017). The embryonic branching in IUGR pups and the cells directing that branching were not isolated as the NPCs of the CM were, but they are in a similar microenvironment as the NPCs. The environmental stress signals apparent in the RNA-seq of P0 NPCs will also be interacting with the UBTCs. If P63 regulating metabolism is directing UBTC activity as it does in cancer, then the changes to metabolism found in NPCs is a future direction of study for ureteric branching in normal and IUGR kidneys. Isolating P63+ UBTCs would provide RNA-seq and protein data to show metabolism activity. The branching issues in IUGR could be from increased glycolysis as found in IUGR NPCs as decreasing P63 leads to decreasing glucose metabolism in cancer cells. P63 decreases as UBTCs differentiate to form the ureteric branches behind the UBTCs as the UBs elongate and branch to form first the ureteric tree and then collecting ducts of the kidney. If glycolysis is artificially high the UBTCs would be maintaining a progenitor state and not form the non-progenitor cells that make up the elongating

ureteric branches. Cell adhesion and migration were highly dysregulated in the IUGR P0 NPCs and their products of differentiation. If the stress response pathways are also impacting cell adhesion and migration in the UBTCs, they could be unable to organize and move as needed to elongate the ureteric tree and grow the kidney.

The changes in development across the IUGR mice, the RNA-seq of the P0 NPCs, and the persistence of those changes after exposure to the LPD shows IUGR NPCs and kidneys have changes to the histone landscape. The histone landscape is known to not only change during development of the kidney but to direct and be essential for it. The NPC chromatin landscape changes between young (E13, E16) and old (P0, P2) NPCs via ATAC-seq analysis in Hillard et. al. 2019. The chromatin landscape also varies between high and low GFP NPCs at P0 with GFP varying with level of Six2 as the mice are a Six2CreGFP mouse. The high GFP/Six2 cells are the renewing NPC population while low GFP/Six2 are primed for or beginning the process of differentiation. ATAC-seq analysis of old versus young NPCs showed distinct changes to the chromatin landscape with development. Both NPC populations are Six2+ and yet old NPCs are primed for differentiation and young NPCs are a self-renewing population. There are distinct changes in chromatin accessibility and predicted gene activity with a high presence of stem cell maintenance genes and pathways in young NPCs and high differentiation genes and pathways in old NPCs. Specifically, there is a 2.4-fold increase of Six2 in young versus old NPCs, and a 16fold change in Old NPCs compared to young for Wnt4. Among the changes from young to old NPCs is the increased accessibility of Bach2/AP1 transcription factors. Overall young NPCs have more cell growth and cell cycle while the old NPCs tend towards differentiation functions like cell-to-cell junction and inactivation of the MAPK pathway (Hilliard, S., Song, R., Liu, H., Chen, C., Li, Y., Baddoo, M., Flemington, E., Wanek, A., Kolls, J., Saifudeen, Z., & El-Dahr,

S.S. 2019). Hillard et. al. 2019 shows that the chromatin landscape changes over development and that the regulation of pathways created NPCs poised for the epithelization which occurs with nephrogenesis. These changes are present in old versus young NPCs and the high versus low GFP/Six2 NPCs sourced from the same P0 kidneys. The changes to the character of the CM niche are intrinsic changes to the cells and not environmental signals from the niche. Hillard et. a. 2019 hypothesizes the chromatin remodeling is mediated by epigenetic machinery like NuRD/HDAC, ATP-dependent chromatin remodelers, and DNA methylation. These are found dysregulated in the IUGR P0 NPC RNA-seq. IUGR does not have the same penetrance and severity as the genetic models of chromatin dysregulation, but the chromatin landscape is clearly changed by LPD and chromatin landscape changes direct NPC renewal and differentiation and has caused fatal mouse phenotypes in knockout models who fail to develop functional renal systems.

H3K27me3 is an epigenetic modification associated with downregulation of nearby genes. The presence of the tri methylated H3K27me3 forms heterochromatic regions that are tightly packed making those regions of the DNA inaccessible to translation machinery. It is enriched in NPCs relative to the rest of the nephrogenic zone. Loss of Ezh1, a component of the complex that mediated methylation of H3K27, does not change the relative prevalence of H3Kme27 in the developing kidney. However, loss of Ezh2 resulted in the loss of H3K27me3 in NPCs and their derivates while its presence in the stroma, UB, and CD is normal. Ezh2 knockout causes a decrease in NPC proliferation, a thinner CM, downregulated Cited1, and fewer nascent nephrons with less Lhx1, Pax8, and Wnt4. There is a 30% decrease in GFP+ NPCs with the Ezh2 knockout. Cell cycle is altered along with an increase in apoptosis. Dual inactivation of Ezh1 and 2 caused early activation of Wnt4, and a decrease in Six2 the net result being early

differentiation of the CM but fewer differentiated structures in the final kidneys along with cysts and poorly developed kidneys. The loss of Ezh1 and 2 in NPCs resulted in premature differentiation as they failed to maintain stemness (Liu, H., Hillard, S., Kelly, E., Chen, C., Saifudeen, Z., & El-Dahr, S.S., 2020). Kidney development requires careful balance that utilizes epigenetic regulation to progress properly. Epigenetic changes are susceptible to environmental signals and result in lifelong changes to organisms.

The IUGR adult mice are not significantly changed in measurements of kidney function. Physiological changes are present in adult IUGR mice. The IUGR adult mice have significantly decreased glomeruli and many of the IUGR adults have damaged kidneys. The lack of disease state from just IUGR is explainable from the multi-hit theory of disease in humans. The multi-hit hypothesis is supported in disease progression of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). NAFLD is the accumulation of triglycerides in the liver without excessive alcohol consumption. NAFLD occurs in approximately 30 to 40 percent of adults in the United States, of those 20 percent have NASH with the rest of NAFLD patients having fatty liver disease. NASH occurs in NAFLD patients where the fat build-up leads to inflammation and scarring, fatty liver patients do not have inflammation (CDC: NCCDPHP, 2020). NAFLD patients with fatty liver disease typically do not have further symptoms, while NASH patients can develop cirrhosis and liver failure requiring a liver transplant. The development of NASH and NAFLD is believed to be caused by a multi-hit system where patient's dietary habits, environment, and genetic predispositions, also causing a high comorbidity with insulin resistance, and obesity, lead to the formation and build up triglycerides in the liver. The build-up of fat in the liver is not itself enough to damage the liver. Triglycerides and inflammation from ER stress and ROS cause inflammation, apoptosis, and fibrosis lead to

the more serious NASH. The ER stress and ROS can be caused by a variety of factors from the environment or genetics with many related to metabolic pathways (Buzzetti, E., Pinzani, M., & Tsochatzis, E. A., 2016). There is also a two-hit hypothesis for Alzheimer's disease with oxidative stress and aberrant mitotic signaling both capable of initiating, but Alzheimer's developing only when both occur (Zhu, X., Lee, H. G., Perry, G., & Smith, M. A., 2007). Alzeheimer's, NAFLD, and NASH are linked to a multi-hit model of disease with both neurological and liver diseases associated with metabolic and inflammatory changes. Metabolic and inflammatory changes are found in the IUGR kidney.

The multi-hit hypothesis is key in the current study and understanding of kidney disease. IgA neuropathy (IgAN) is the most common glomerulonephritis worldwide. It is the inflammation of the filtering glomerulus. The majority of IgAN occurs sporadically while 5-10% occur in families, but both familiar and sporadic IgAN are linked to genetic factors. IgAN is an autoimmune disease with pathology caused by a multi-hit system. Unknown upstream factors lead to the formation of galactose deficient IgA1, which is recognized by an autoantigen, this can then lead to inflammation of the kidney in response to antigen complexes, these immune cells form deposits in the kidney and activate the mesangial cells. Mesangial cell activation causes protein build up and lesions in the glomerulus. It is believed that the multiple steps of this process are regulated by environmental and genetic factors. The galactose deficiency comes from improper O-glycan processing in B cells. IgAN patients show deficiencies in glycosyltransferases and an increase in sialyltransferases. These enzymes are under the regulation of interleukins which respond to cell or organism stress. Mesangial activation by inflammatory signals varies based on receptor activity and sensitivity. The IgAN multi-hit hypothesis of disease comes from layers of environmental and genetic factors coming together

rather than single events of causation (Lai, Tang, Schena, Novak, Tomino, Fogo, Glassock 2016). IUGR kidneys also showed evidence of dysregulation of sialylation and glycosyltransferases. The complete loss of DBA staining in five IUGR mice at P0 is of interest as the DBA lectin binds α-linked N-acetylgalactosamine. As co-staining shows the distal tubules are present it is the specific glycosylated amino sugar that is lost. This is supported by expression changes in glycosylation related genes in the RNA-seq of NPCs. All animals that lack DBA staining have decreased NCAM staining in the CSB and SSB with clear NCAM staining in the mesenchymal CMs. The NCAM loss in differentiating structures is also present in animals that have DBA staining. NCAM is a cell adhesion molecule and as NPCs condense and epithelialize during differentiation NCAM localization changes. It has been shown that NCAM staining is colocalized with staining for polysialic acid along the basolateral membrane of the epithelial structure of the differentiating kidney. This co-localization is not present in the mesenchymal staining by NCAM. NCAM is polysialylated during late embryonic development. Polysialylation is a signal for localization within the cell. NCAM can be at the basolateral membrane in CSB and SSB without polysialylation, but it was suspected that it will not be concentrated there without polysialylation (Lackie, Zuber, & Roth, 1990). The dependence of NCAM localization and binding function is supported by its role in neural development where polysiallylation is required for NCAM to NCAM binding during development (Rutishauser, 1988 & Galuska et. al. 2017). IUGR has alterations of molecular modifications that are already known to lead to kidney damage in a multi-hit system.

The separate and combined roles of genetics and environment on nephron endowment and kidney function is supported by research into hypertension. There are genetic components like Pax2 mutations and chromosomal disorders causing oligomeganephronia, or the smaller

kidneys with decreased nephron endowment in p53 mutants and environmental factors, like IUGR and maternal smoking, causing decreased nephron endowment. Extremely low nephron endowment is sufficient to cause hypertension, but this is less common than the wearing down of kidneys born with low endowment. Humans are born with between 250,000 and over 2 million nephrons, with most having 1 million nephrons. Those at the lowest end of the range would have immediate complications when fully one third of the cardiac output is pumped into kidneys with so few structures to process it. But what of those with lower, but more normal nephron endowments? Human nephron endowment is inversely linked to age with an estimated 4500 glomeruli lost per kidney per year through all of adulthood. A person could then expect to lose 450K glomeruli between two kidneys over 5 decades of life. The person starting with 1 million glomeruli and ending with 550K is in much better shape than a person starting with 700K glomeruli and ending with 250K. This level of glomeruli loss comes from the 2010 study Effects of aging on glomerular function and number in living kidney donors by Tan, Busque, Workeneh, Ho, Derby, Blouch, Sommer, Edwars, & Myers. Donors older than 55 compared to those younger than 45 showed the lowest quartile of estimated glomeruli per kidney. Older subjects had nearly a quarter of the median estimated glomeruli per kidney then in the younger group with comparative decrease in kidney function as measured by glomerular filtration rate and increased rates of sclerosis in older subjects.

The multi-hit theory for CDK from IUGR is further supported by a 2011 twin study by Rajan, Barbour, White, and Levin. Where monozygotic twins that are identical in genetics and maternal environment have different kidney disease states as adults with Alport syndrome. The case study traced the more rapid progression of kidney failure to the twin being born with IUGR and decreased nephron endowment at birth. Twin A was 5 lbs. 9.5 ounces at birth and Twin B

was 4 lbs. 9.8 ounces. Twin A just misses the cut off for IUGR in humans, 5 lbs. 8 ounces, while Twin B is clearly IUGR. Both twins have kidney issues as adults, but Twin B has severe problems with kidney function. Both are medicated, but Twin B has had high urine albumin and low estimated glomeruli filtration rate his entire adult life and Twin A has been able to keep urine albumin low and maintained glomeruli filtration into late adulthood. Kidney function is not just genetics or maternal environment as both create a range of outcomes in adulthood. The impact of later challenges to kidney function cannot be ignored in studying kidney disease.

IUGR from LPD alone is not causing hypertension or CDK in adult mice. But given the complexity of disease causation in mice and humans it should not be expected to. IUGR is impacting the developing tissues of the kidney and changing the organ that is formed, but it is not sufficient to cause adult diseases at 4 months. The animals produced would be at high risk if faced with another hit. The next step in IUGR study would be to look at the IUGR model with multiple hits. There are several established genetic models for kidney disease that would serve as a model for populations with genetic predispositions for hypertension combined with an environment of deprivation. This would be of interest for hypertension in African American populations as they have an increased rate of hypertension, CDK, and kidney failure. There are known genetic predispositions in the African American population and the socioeconomic issues faced by the population could easily mimic a genetic predisposition combined with micro or macro malnutrition during development. There are also models for challenging kidney function in adult mice including diet changes, injury, or stress. This would model situations where an adult was gestated during a time of deprivation and faced a challenge to their renal system as an adult by either injury or poor diet. IUGR by parental protein restriction is a sledgehammer to the developing mouse impacting multiple pathways throughout the cell and organism. These

pathways are associated with development and adult renal diseases. For all the changes that occur from IUGR, they are not targeted like genetic models or models of injury in adult mice. The more general harm from these varied changes is of use in further study of ways humans develop hypertension and CDK over a lifetime.

The complexity and severity of the changes in IUGR kidneys means intervention to prevent IUGR can be tested at multiple points and with environmental, drug, and genetic interventions. The first changes with LPD are to the epigenetic programing of the adult mice that will be used for breeding, so changes will be present before fertilization. But a good starting point would be the mesoderm which forms at E6.5 from the primitive streak and further differentiate into many critical organs of the body including the entire urogenital system via the intermediate mesoderm (Figure 1 and 30). The intermediate mesoderm will be marked first by Osr1, then later by Pax2, Pax8, and Lhx1. This offers options for genetic intervention during the development of IUGR mice. Cre-Lox mice can be used to create a knock-in or knock-out genetic model specific to the intermediate mesoderm to rescue partially or completely the pathways impacted by the IUGR signals of stress that re-programmed the developing mouse and its kidneys. Based on the RNA-seq published research into kidney development genetic options include p53, mTOR, one of the changed genes in Glycolysis or a known regulator of Glycolysis. The goal would be to inhibit the stress response of the cells to undo or prevent the epigenetic reprograming caused by IUGR. Intervention at E6 or E6.5 is possible, but difficult and would not model many realities of IUGR. This intervention could work for planned pregnancies for humans with chronic medical conditions, or at high altitude, but would not be useful for humans with other causes of IUGR. Early restriction of calories or micronutrients that was stopped, as in some of the subjects from the Dutch Famine cohort, would the reason for the next potential

intervention point for IUGR. The nephric duct and metanephric mesenchyme have both formed by E10. The development of the metanephros will begin at E10.5 with the growth of the UB out of the nephric duct into the neighboring metanephric mesenchyme and the formation of the cap mesenchyme (Figure 2 and 30). This represents all cells needed to form the adult kidney being in one place for the first time. Embryonic kidneys can be harvested at this time for organ culture providing not just genetic manipulation, but also efficient uptake of drugs as previously used by our lab to change kidney development. Partial glycolysis inhibition, proven to prime NPCs for differentiation under normal conditions, can be done by YN1 and may normalize the IUGR NPCs to create normal differentiation rather than the decreased development found in IUGR. For environmental intervention the maternal diet could be changed to normal at this or other set times, this is unlikely to result in large changes in IUGR as shown by studies like the Dutch Famine cohort and what is known of the long-term changes form epigenetic programing during development. The NPCs at E11.0 are Cited1/Six2 dual positive making genetic models possible either through constitutively active or inducible Cre-Lox systems. These could target known regulators of cellular stress or kidney development. The goal would be to inhibit stress response pathways, and activate cell replication pathways, developmental pathways for the kidney, and to possibly inhibit the stem cell maintenance pathways as maintaining the NPC population is already being done by the IUGR embryos. The smaller pool of NPCs at E13.5 and lack of change in NPC pool over the course of development (Figure 16), shows that stemness is maintained probably to the detriment of the developing kidney and adult structures. Instead Wnt and FGF maintenance signals from the UB and BMP and FGF signals from NPCs should be inhibited so NPCs can be primed for differentiation. Previous work by our lab showed that

partial inhibition of glycolysis will accomplish this priming and it can be done genetically in the Six2 population or by use of many anti-cancer drugs.

Moving into later kidney development an important shift is at E15.5 when NPCs normally change from "young" to "old." At this time their cell metabolism changes from glycolysis dependent to oxidative phosphorylation, epigenetic changes occur showing the NPCs are unique from earlier NPC pools and shifting increasingly into a state primed for differentiation rather than maintenance and expansion of the CM (Liu, 2017). These cells remain Cited1/Six2 dual positive meaning an inducible genetic change is possible at this time. Decreasing glycolysis in the progenitor population, inhibiting p53, or mTOR at this time has the potential to partially rescue the IUGR kidneys as they complete development. A large amount of nephrogenesis occurs at the end of kidney development, with much occurring postnatally in mice. Intervention at this stage is unlikely to fully recue development but would be a realistic model of IUGR in humans when a problem is discovered late in pregnancy. Embryonic organ culture is not an option at this stage, but the isolation of large populations of NPCs either for culturing or analysis is possible. Experiments with NPCs would show a simpler system of the genetic or pharmaceutical changes to developmental pathways and the impact on RNA-seq and the epigenetic landscape from interventions before and at E15.5.

The final time point for intervention is postnatal day zero (P0). There is evidence that subtle intervention at P0 would not improve kidney development as shown by the changes to IUGR in both skin/hair and kidney development despite controlling for breastmilk quality and access in the P21 and adult mouse samples. Despite this it would be easy to access a large number of NPCs for experimentation and easily get drugs or induce genetic mutations at this time point. A large signal to differentiate, either through inhibiting Six2, Sall1, Mdm2,

glycolysis, or the Wnt9b signal from the UB. A combination of these interventions would be possible at P0. This would model late intervention of IUGR in humans which is expected to occur given the lack of access to prenatal care worldwide.

This project focused on the NPCs, CM, and nephrogenesis and did not focus heavily on the UB and the UBTCs. The UBTCs are an important focus in the future of IUGR research not just in relation to the crosstalk with NPCs, but as they are crucial in forming and expanding the kidney. The obviously smaller kidneys with IUGR are strong evidence that UBTCs are changed by IUGR. It is possible to genetically manipulate the UBTCs and any environmental or drug change done in utero would impact the UBTCs. The MACS isolation protocol can be altered to isolate NPCs and UBTCs from the same kidney simultaneously providing an important part of the puzzle. This paper theorized that the changes in the NPCs from environmental stress would be present in the UBTCs as they share a microenvironment and RNA, protein, and epigenetic analysis would easily show not just if the same pathways are changed but provide insight into what those changes have led to in development of the ureteric branching of the IUGR kidney. Any intervention in IUGR must consider the UBTCs neighboring the NPCs explored in this paper.

The interventions also need to consider the appropriate time for determining if the intervention worked. An early indicator are the previously described changes to mouse behavior and delay in growth and development of the skin and hair making the end point around P15. The clearest direction for an end point is having IUGR mice progress to a disease state. Obviously, some IUGR must be grown until they are actually older and not just in the young adult stage of 4 months. IUGR mice grown to 18 - 24 months would provide a model for an elderly IUGR patient and would determine if IUGR alone can cause kidney disease (Hagan, 2017). Models for

the multi-hit theory of disease would likely not need to use mice at that age and would be expected to find disease state much earlier, but still after the 4-month time point used here. The multi-hit model in IUGR could use environmental and genetic as the intervention studies did. High salt and high fat diet have both been used to cause renal injury in mice and could act as a second hit in adult IUGR mice, modeling the poor diet available to many that develop kidney disease. Alternative genetic hits would include the Six2P53 mutants used in the Saifudeen lab, or the combination of diabetic mothers from the *Ins2*^{+/C96Y} mice previously shown in Cerqueira et. al. 2019 to have changes to kidney function in their wild type offspring. The contributing factors for the multi-hit models can be other challenges during development either through genetic changes, or further environmental strain. They could also occur postnatally but during childhood; poor diet post birth using LPD females for poor quality breast milk, low quality diet given to a previously well-fed mouse leading into poor diet then for the IUGR offspring as they wean.

Central to the intervention and multi-hit models for IUGR are the cellular pathways LPD changed to create IUGR. IUGR from LPD adds to kidney research that environmental changes are altering the previously identified metabolic, histone, and cell cycle pathways to change kidney development by early re-programing. Future work with IUGR will be in the exploitation of this, or stopping or re-writing this re-programming.

Figure 30: Proposed Points of Intervention for IUGR Development

IUGR from Low protein diet results in changes from the beginning of embryonic development. Multiple points of intervention must then be explored from early in embryo development up to the very end of kidney development. Potential interventions are diet to compensate for thrifty developmental signals, to genetic manipulation of the pathways changed by low protein IUGR. A) Rescue of Mesenchyme: Mouse development runs to approximately embryonic days 18 to 21. At the very beginning cleavage and blastulation starts before the embryo has even implanted. These steps already begin differentiating into germ layers. The mesoderm, the source of mesenchyme which give rise to the urogenital system, forms on e6.0 after implantation. The primitive streak and formation of the mesenchyme are on e6.5. Intervention at this point would change the programing signals of the mesenchyme from low protein parental diet. B) The mesenchyme does not begin formation of the metanephric kidney until E10.5. An intervention at E10.0 or E10.5 could either reprogram the forming cap mesenchymes, or prevent their reprograming by low protein diet if earlier exposure to low protein diet had yet to change their character. C) NPCs, formed from the metanephric mesenchyme and maintained by the signals of UB, shift from "young" to "old" at E15.5. At this time the cell metabolism, epigenetic regulation, and maintenance versus differentiation signals change. IUGR has shown differences to kidney development between e13.5 and PO, this would-be late intervention for the NPCs that have spent 2 weeks receiving the signal from low protein environment. D) The latest point of intervention would be PO. After birth increasing the signal to mass differentiate NPCs as control mice do would be expected to have only a small change in kidney development. But presents a model for human disease intervention. Modified and using graphic from Xu, Y.H., Barnes, S., Sun, Y., & Grabowski, G.A.. 2010.

Supplemental Table 1: RNA-Seq Fold Change in LPD NPCs				
Ensembl_id	Gene Name	Fold Change in LPD RNA		
ENSMUSG0000048938	Nr1h5	202.46		
ENSMUSG0000078889	Gm14288	142.55		
ENSMUSG0000081516	Gm12470	90.96		
ENSMUSG0000090381	Gm6158	85.57		
ENSMUSG0000078436	Gm4767	84.42		
ENSMUSG0000078284	Cdc73	82.69		
ENSMUSG0000091084	BC065403	43.21		
ENSMUSG0000070979	Actl7a	36.15		
ENSMUSG0000058922	Gm10052	35.24		
ENSMUSG0000083650	Gm13357	23.13		
ENSMUSG0000037887	Dusp8	21.12		
ENSMUSG0000091106	Gm17625	20.61		
ENSMUSG0000073741	4732440D04Rik	20.20		
ENSMUSG0000048153	Olfr49	17.31		
ENSMUSG0000090516	Gm6202	17.03		
ENSMUSG0000072451	Gm10359	16.79		
ENSMUSG0000083207	Gm14780	16.12		
ENSMUSG0000090992	Gm17588	16.02		
ENSMUSG0000087579	1500017E21Rik	15.96		
ENSMUSG0000082686	Gm12961	15.87		
ENSMUSG0000082374	Gm12741	15.33		
ENSMUSG0000091997	Gm6611	14.65		
ENSMUSG0000090885	Gm3944	14.56		
ENSMUSG0000090980	Gm17274	13.98		
ENSMUSG0000054136	Adm2	13.35		
ENSMUSG0000092509	Gm20394	13.22		
ENSMUSG0000089651	Gm16353	13.17		
ENSMUSG0000044352	Sowaha	13.13		
ENSMUSG0000028553	Angptl3	12.59		
ENSMUSG0000079436	Kcnj13	12.38		
ENSMUSG0000018865	Sult4a1	12.01		
ENSMUSG0000089896	Wnk1	11.80		
ENSMUSG0000082265	Gm15547	11.62		
ENSMUSG0000067189	Gm7335	11.28		
ENSMUSG0000070980	Actl7b	11.09		
ENSMUSG0000093717	RP23-345J21.1	11.06		
ENSMUSG0000090278	D130062J21Rik	11.01		
ENSMUSG0000090604	Gm17378	10.95		
ENSMUSG0000058812	0610039K10Rik	10.71		
ENSMUSG0000079906	Gm15846	10.69		

ENSMUSG0000090070	Gm16577	10.65
ENSMUSG0000041062	MsInI	10.61
ENSMUSG0000085335	Gm13684	10.56
ENSMUSG0000076433	BC100451	10.46
ENSMUSG0000086625	Gm11831	10.38
ENSMUSG0000085185	BC028777	10.22
ENSMUSG0000078249	Hmga1-rs1	10.09
ENSMUSG0000086062	Gm16853	9.84
ENSMUSG0000039384	Dusp10	9.76
ENSMUSG0000004902	Slc25a18	9.75
ENSMUSG0000081989	Gm13300	9.50
ENSMUSG0000090447	Gm17652	9.47
ENSMUSG0000081801	Dnmt3l-ps1	9.40
ENSMUSG0000079138	Gm8818	9.38
ENSMUSG0000083796	Gm13369	9.35
ENSMUSG0000085364	Gm16641	9.34
ENSMUSG0000082829	Gm15780	9.30
ENSMUSG0000078373	2010109K11Rik	9.29
ENSMUSG0000085289	Gm15337	9.26
ENSMUSG0000082984	Gm10599	9.21
ENSMUSG0000081289	Gm14857	9.14
ENSMUSG0000084792	1700056N10Rik	9.09
ENSMUSG0000091105	Gm5633	9.00
ENSMUSG0000086167	Gm13827	8.94
ENSMUSG0000087373	Gm15892	8.78
ENSMUSG0000093392	RP23-71G16.1	8.78
ENSMUSG0000082806	Rpl13-ps1	8.68
ENSMUSG0000080957	Gm15739	8.67
ENSMUSG0000090888	Gm17429	8.54
ENSMUSG0000026073	ll1r2	8.52
ENSMUSG0000086484	A630071L07Rik	8.48
ENSMUSG0000086192	Gm13609	8.37
ENSMUSG0000024215	Spdef	8.29
ENSMUSG0000069712	4930444G20Rik	8.26
ENSMUSG0000074213	Gm10642	8.25
ENSMUSG0000055691	Gja6	8.21
ENSMUSG0000089281	Scarna6	8.15
ENSMUSG0000037161	4930583H14Rik	8.12
ENSMUSG0000071552	Tigit	8.12
ENSMUSG0000028214	Gem	8.11
ENSMUSG0000026628	Atf3	8.09
ENSMUSG0000086400	Gm16789	8.09
ENSMUSG0000032715	Trib3	8.03

ENSMUSG0000083014	Gm11764	7.78
ENSMUSG0000085471	4933423P22Rik	7.66
ENSMUSG0000084781	D930015M05Rik	7.59
ENSMUSG0000087101	Gm16953	7.58
ENSMUSG0000022863	Btg3	7.57
ENSMUSG0000091831	Gm4707	7.54
ENSMUSG0000092604	Gm20508	7.45
ENSMUSG0000021319	Sfrp4	7.32
ENSMUSG0000090243	Gm16103	7.30
ENSMUSG0000085088	4931413K12Rik	7.21
ENSMUSG0000070330	Cldn27	7.20
ENSMUSG0000026220	Slc16a14	7.19
ENSMUSG0000083339	Gm11693	7.02
ENSMUSG0000086837	Gm16618	7.01
ENSMUSG0000087280	Gm17557	6.99
ENSMUSG0000021070	Bdkrb2	6.97
ENSMUSG0000041872	ll17f	6.89
ENSMUSG0000081156	Gm14425	6.88
ENSMUSG0000090912	4931403G20Rik	6.87
ENSMUSG0000042828	Trim72	6.86
ENSMUSG0000085884	Gm15342	6.80
ENSMUSG0000043186	Dusp8	6.80
ENSMUSG0000085916	Gm16724	6.79
ENSMUSG0000086407	Gm14123	6.79
ENSMUSG0000069804	Gm10277	6.72
ENSMUSG0000038550	Gm129	6.69
ENSMUSG0000058945	Gm10056	6.64
ENSMUSG0000080237	Gm14239	6.63
ENSMUSG0000031297	Slc7a3	6.63
ENSMUSG0000072244	Trim6	6.62
ENSMUSG0000085031	Gm16982	6.61
ENSMUSG0000092028	Gm17500	6.58
ENSMUSG0000020893	Per1	6.53
ENSMUSG0000078125	Gm10916	6.53
ENSMUSG0000086165	Gm15690	6.47
ENSMUSG0000070999	Ccin	6.45
ENSMUSG0000074252	Gm10654	6.44
ENSMUSG0000069196	Gm3511	6.42
ENSMUSG0000086412	Gm16626	6.35
ENSMUSG0000039661	Dusp26	6.32
ENSMUSG0000079160	Gm17608	6.31
ENSMUSG0000089735	Gm8428	6.25
ENSMUSG0000091838	Gm17316	6.18

ENSMUSG0000028341	Nr4a3	6.17
ENSMUSG0000071862	Lrrtm2	6.10
ENSMUSG0000091810	Gm17442	6.10
ENSMUSG0000078240	Gm3550	6.08
ENSMUSG0000027584	Oprl1	6.08
ENSMUSG0000081974	Gm11960	6.04
ENSMUSG0000082345	Gm13622	6.01
ENSMUSG0000040340	1700019B03Rik	5.97
ENSMUSG0000093673	RP23-333M1.4	5.95
ENSMUSG0000050473	Slc35d3	5.95
ENSMUSG0000055430	Nap1l5	5.92
ENSMUSG0000006542	Prkag3	5.88
ENSMUSG0000049649	Gpr3	5.87
ENSMUSG0000061816	Myl1	5.85
ENSMUSG0000071192	Wfikkn1	5.74
ENSMUSG0000056656	Apol8	5.72
ENSMUSG0000087064	Gm11721	5.69
ENSMUSG0000092140	Gm17451	5.65
ENSMUSG0000087620	5330434G04Rik	5.64
ENSMUSG0000070891	Gm12689	5.56
ENSMUSG0000068742	Cry2	5.56
ENSMUSG0000089924	Gm15689	5.56
ENSMUSG0000091318	Gm5415	5.55
ENSMUSG0000034226	Rhov	5.54
ENSMUSG0000046991	Wdr27	5.47
ENSMUSG0000038393	Txnip	5.42
ENSMUSG0000020256	Aldh1l2	5.40
ENSMUSG0000090548	Gm17489	5.30
ENSMUSG0000078965	Gm12033	5.28
ENSMUSG0000030256	Bhlhe41	5.25
ENSMUSG0000051243	Islr2	5.25
ENSMUSG0000084156	Gm14734	5.23
ENSMUSG0000079965	Gm14853	5.20
ENSMUSG0000092011	Gm9793	5.20
ENSMUSG0000089706	B230216N24Rik	5.20
ENSMUSG0000061702	Tmem91	5.19
ENSMUSG0000090836	Gm17475	5.15
ENSMUSG0000018143	Mafk	5.06
ENSMUSG0000071537	Klrg2	5.01
ENSMUSG0000055494	Gm14168	5.00
ENSMUSG0000037613	Tnfrsf23	4.98
ENSMUSG0000031736	4933436C20Rik	4.88
ENSMUSG0000027073	Prg2	4.88

ENSMUSG0000087436	Gm16156	4.85
ENSMUSG0000068417	Pnp2	4.81
ENSMUSG0000062380	Tubb3	4.80
ENSMUSG0000074569	Gcnt7	4.78
ENSMUSG0000067203	Н2-К2	4.74
ENSMUSG0000002083	Bbc3	4.73
ENSMUSG0000079489	C030013D06Rik	4.72
ENSMUSG0000081339	Gm16044	4.70
ENSMUSG0000062588	Gm6104	4.68
ENSMUSG0000078933	lpo11	4.63
ENSMUSG0000085092	Gm16867	4.56
ENSMUSG0000091333	BC051077	4.54
ENSMUSG0000032988	Slc16a8	4.54
ENSMUSG0000085495	Gm16796	4.53
ENSMUSG0000024030	Abcg1	4.52
ENSMUSG0000092098	Gm17529	4.51
ENSMUSG0000085362	C030034L19Rik	4.50
ENSMUSG0000042622	Maff	4.49
ENSMUSG0000090445	Gm17653	4.49
ENSMUSG0000055216	9430025C20Rik	4.48
ENSMUSG0000021680	Crhbp	4.47
ENSMUSG0000034614	Pik3ip1	4.45
ENSMUSG0000071531	Gprin2	4.44
ENSMUSG0000032584	Mst1r	4.42
ENSMUSG0000088170	7SK	4.42
ENSMUSG0000083396	Gm15542	4.41
ENSMUSG0000090489	Gm17415	4.41
ENSMUSG0000085606	Gm15792	4.39
ENSMUSG0000087306	A230004M16Rik	4.39
ENSMUSG0000082484	Gm16177	4.38
ENSMUSG0000001156	Mxd1	4.34
ENSMUSG0000090311	Gm17327	4.24
ENSMUSG0000070880	Gad1	4.24
ENSMUSG0000089798	1700028K03Rik	4.24
ENSMUSG0000087528	9830144P21Rik	4.21
ENSMUSG0000033949	Trim36	4.20
ENSMUSG0000046404	Yod1	4.19
ENSMUSG0000030303	Far2	4.19
ENSMUSG0000048249	A930001N09Rik	4.16
ENSMUSG0000045053	Kcng3	4.16
ENSMUSG0000029607	Ankrd61	4.12
ENSMUSG0000027202	Slc12a1	4.10
ENSMUSG0000034959	5031414D18Rik	4.10

ENSMUSG0000086351	6230400D17Rik	4.10
ENSMUSG0000091513	4731419I09Rik	4.10
ENSMUSG0000066687	Zbtb16	4.09
ENSMUSG0000062461	Gm5453	4.07
ENSMUSG0000002769	Gnmt	4.07
ENSMUSG0000031286	Glt28d2	4.05
ENSMUSG0000091642	Mocs3	4.04
ENSMUSG0000081142	Gm15497	4.03
ENSMUSG0000048758	Rpl29	4.03
ENSMUSG0000091056	Gm17536	4.03
ENSMUSG0000091219	Gm17254	4.01
ENSMUSG0000053164	Gpr21	3.99
ENSMUSG0000087129	Gm16316	3.98
ENSMUSG0000032311	Nrg4	3.97
ENSMUSG0000049969	Plekhf2	3.96
ENSMUSG0000090656	Gm17559	3.95
ENSMUSG0000050957	Insl6	3.94
ENSMUSG0000032936	Camkv	3.94
ENSMUSG0000047604	Frat2	3.94
ENSMUSG0000024524	Gnal	3.93
ENSMUSG0000000276	Dgke	3.93
ENSMUSG0000090630	Gm17403	3.92
ENSMUSG0000073057	Gm10462	3.91
ENSMUSG0000041165	Spem1	3.89
ENSMUSG0000021898	Asb14	3.89
ENSMUSG0000048521	Cxcr6	3.88
ENSMUSG0000042671	Rgs8	3.87
ENSMUSG0000078919	Dpm1	3.86
ENSMUSG0000022176	Rem2	3.85
ENSMUSG0000043807	Ly6g5b	3.83
ENSMUSG0000082596	Gm14227	3.82
ENSMUSG0000047586	Nccrp1	3.80
ENSMUSG0000093677	RP23-102L5.1	3.79
ENSMUSG0000061451	Tmem151a	3.79
ENSMUSG0000091313	Fth-ps2	3.79
ENSMUSG0000093396	RP23-285E19.5	3.78
ENSMUSG0000030730	Atp2a1	3.77
ENSMUSG0000092325	Gm18284	3.76
ENSMUSG0000092595	Gm20427	3.75
ENSMUSG0000087249	Gm16062	3.74
ENSMUSG0000022686	B3gnt5	3.72
ENSMUSG0000039521	Foxp3	3.70
ENSMUSG0000034209	Rasl10a	3.70

ENSMUSG0000023905	Tnfrsf12a	3.69
ENSMUSG0000090157	Gm16534	3.68
ENSMUSG0000044197	Gpr146	3.66
ENSMUSG0000003282	Plag1	3.63
ENSMUSG0000020275	Rel	3.63
ENSMUSG0000056537	Rlim	3.60
ENSMUSG0000085219	Gm16617	3.59
ENSMUSG0000052374	Actn2	3.58
ENSMUSG0000003949	HIf	3.58
ENSMUSG0000033544	Angptl1	3.57
ENSMUSG0000054556	Gm4876	3.55
ENSMUSG0000038876	Rnf146	3.52
ENSMUSG0000088185	Scarna2	3.51
ENSMUSG0000059229	Gm6802	3.49
ENSMUSG0000032515	Csrnp1	3.48
ENSMUSG0000006218	Fam131c	3.47
ENSMUSG0000038594	Gm9766	3.46
ENSMUSG0000029360	Gm9754	3.46
ENSMUSG0000092837	AC027184.1	3.45
ENSMUSG0000030203	Dusp16	3.45
ENSMUSG0000073102	Ccdc164	3.45
ENSMUSG0000090353	Gm17555	3.44
ENSMUSG0000024186	Rgs11	3.44
ENSMUSG0000085133	B930095G15Rik	3.42
ENSMUSG0000040809	Chi3l3	3.42
ENSMUSG0000091447	Gm17386	3.41
ENSMUSG0000033987	Dnahc17	3.41
ENSMUSG0000085778	Gm16892	3.40
ENSMUSG0000087458	Gm13999	3.39
ENSMUSG0000030268	Bcat1	3.39
ENSMUSG0000091035	Gm17659	3.38
ENSMUSG0000075118	Gpr137b-ps	3.35
ENSMUSG0000079609	Gm17371	3.34
ENSMUSG0000044934	Zfp367	3.33
ENSMUSG0000008686	Zfp955a	3.32
ENSMUSG0000022018	1190002H23Rik	3.31
ENSMUSG0000080885	Gm4167	3.30
ENSMUSG0000072969	Armcx5	3.30
ENSMUSG0000085233	B230208H11Rik	3.30
ENSMUSG0000032262	Elovl4	3.29
ENSMUSG0000079259	Trim71	3.29
ENSMUSG0000054477	Kcnn2	3.26
ENSMUSG0000054999	Naaladl1	3.25

ENSMUSG0000074141	II4i1	3.25
ENSMUSG0000074277	Phldb3	3.23
ENSMUSG0000039545	4930524L23Rik	3.23
ENSMUSG0000051726	Kcnf1	3.22
ENSMUSG0000020889	Nr1d1	3.22
ENSMUSG0000040840	4930579G18Rik	3.21
ENSMUSG0000086950	Gm16907	3.19
ENSMUSG0000071076	Jund	3.19
ENSMUSG0000040424	Hipk4	3.19
ENSMUSG0000074603	Gm10729	3.19
ENSMUSG0000081305	Gm12879	3.19
ENSMUSG0000070803	Cited4	3.17
ENSMUSG0000051455	Gm1564	3.17
ENSMUSG0000068614	Actc1	3.17
ENSMUSG0000039770	Ypel5	3.17
ENSMUSG0000035329	Fbxo33	3.16
ENSMUSG0000032531	Amotl2	3.16
ENSMUSG0000030161	Gabarapl1	3.14
ENSMUSG0000091877	Gm17699	3.14
ENSMUSG0000038132	Rbm24	3.14
ENSMUSG0000053774	Ubxn7	3.14
ENSMUSG0000083907	Plk-ps1	3.13
ENSMUSG0000020282	Rhbdf1	3.13
ENSMUSG0000087359	Gm17478	3.13
ENSMUSG0000037885	Stk35	3.12
ENSMUSG0000000078	Klf6	3.12
ENSMUSG0000024843	Chka	3.11
ENSMUSG0000036840	Siah1a	3.11
ENSMUSG0000086472	Gm16172	3.10
ENSMUSG0000091943	A730099G02Rik	3.10
ENSMUSG0000037638	Zbtb42	3.09
ENSMUSG0000042246	Tmc7	3.09
ENSMUSG0000068105	Tnfrsf13c	3.09
ENSMUSG0000004267	Eno2	3.08
ENSMUSG0000040010	Slc7a5	3.08
ENSMUSG0000012123	Aim1l	3.08
ENSMUSG0000083849	Gm13477	3.06
ENSMUSG0000085964	Gm16983	3.05
ENSMUSG0000084925	1810062O18Rik	3.04
ENSMUSG0000046085	4931422A03Rik	3.03
ENSMUSG0000028681	Ptch2	3.03
ENSMUSG0000085612	Gm15868	3.02
ENSMUSG0000066538	Gm6254	3.02

ENSMUSG0000086143	Gm16685	3.01
ENSMUSG0000029752	Asns	3.01
ENSMUSG0000022280	Rnf19a	3.01
ENSMUSG0000055657	E030030I06Rik	3.00
ENSMUSG0000041025	lffo2	3.00
ENSMUSG0000028836	Slc30a2	3.00
ENSMUSG0000090426	Gm17392	3.00
ENSMUSG0000085950	Gm13589	2.99
ENSMUSG0000082985	Gm14042	2.99
ENSMUSG0000071658	Gng3	2.98
ENSMUSG0000090299	Gm17295	2.98
ENSMUSG0000032285	Dnaja4	2.98
ENSMUSG0000086597	F420014N23Rik	2.97
ENSMUSG0000085246	Gm15893	2.97
ENSMUSG0000032525	Nktr	2.97
ENSMUSG0000067199	Frat1	2.96
ENSMUSG0000090377	Gm8281	2.95
ENSMUSG0000029186	Pi4k2b	2.95
ENSMUSG0000091956	C2cd4b	2.94
ENSMUSG0000051246	A930005I04Rik	2.93
ENSMUSG0000072623	Zfp9	2.92
ENSMUSG0000024486	Hbegf	2.91
ENSMUSG0000038239	Hrc	2.91
ENSMUSG0000074102	Rbm15b	2.89
ENSMUSG0000026788	Zbtb43	2.89
ENSMUSG0000049092	Gpr137c	2.89
ENSMUSG0000024014	Pim1	2.89
ENSMUSG0000033478	Fam160b1	2.89
ENSMUSG0000027071	P2rx3	2.88
ENSMUSG0000063254	B230325K18Rik	2.86
ENSMUSG0000087077	Gm12480	2.86
ENSMUSG0000050240	Hic2	2.86
ENSMUSG0000020482	Ccdc117	2.86
ENSMUSG0000024402	Lta	2.84
ENSMUSG0000092023	Gm17496	2.83
ENSMUSG0000049799	Lrrc19	2.82
ENSMUSG0000080768	Gm12219	2.82
ENSMUSG0000056749	Nfil3	2.82
ENSMUSG0000069053	Ube1y1	2.81
ENSMUSG0000018169	Mfng	2.81
ENSMUSG0000069806	Cacng7	2.80
ENSMUSG0000091833	Gm17317	2.80
ENSMUSG0000051949	2010005H15Rik	2.80

ENSMUSG0000052040	Klf13	2.79
ENSMUSG0000087126	1700109K24Rik	2.79
ENSMUSG0000090986	Gm17275	2.78
ENSMUSG0000049692	4933425O20Rik	2.78
ENSMUSG0000020234	4930404N11Rik	2.78
ENSMUSG0000029314	Agpat9	2.77
ENSMUSG0000093650	RP23-454G7.1	2.76
ENSMUSG0000048732	Klhl11	2.76
ENSMUSG0000006675	P4htm	2.74
ENSMUSG0000039967	Zfp292	2.74
ENSMUSG0000039968	Rsbn1l	2.74
ENSMUSG0000061532	Zfp955b	2.73
ENSMUSG0000008855	Hdac5	2.73
ENSMUSG0000090286	Gm17615	2.73
ENSMUSG0000093470	RP23-164N15.3	2.73
ENSMUSG0000036450	Hif1an	2.72
ENSMUSG0000078859	Gm17491	2.72
ENSMUSG0000025408	Ddit3	2.72
ENSMUSG0000080830	Gm12671	2.72
ENSMUSG0000033107	Rnf125	2.71
ENSMUSG0000048807	Slc35e4	2.70
ENSMUSG0000079615	Hspa14	2.70
ENSMUSG0000031559	4930555F03Rik	2.69
ENSMUSG0000045176	2310047M10Rik	2.69
ENSMUSG0000040423	Rc3h1	2.69
ENSMUSG0000087267	4933427J07Rik	2.69
ENSMUSG0000031266	Gla	2.68
ENSMUSG0000024347	Psd2	2.68
ENSMUSG0000040435	Ppp1r15a	2.68
ENSMUSG0000025515	Muc2	2.67
ENSMUSG0000085328	Gm17131	2.67
ENSMUSG0000028680	Plk3	2.67
ENSMUSG0000085963	Gm15249	2.66
ENSMUSG0000078667	1700094D03Rik	2.66
ENSMUSG0000033998	Kcnk1	2.66
ENSMUSG0000022429	Dmc1	2.66
ENSMUSG0000021752	Kctd6	2.66
ENSMUSG0000027196	4921507L20Rik	2.65
ENSMUSG0000020948	Klhl28	2.65
ENSMUSG0000092279	1500011B03Rik	2.64
ENSMUSG0000006494	Pdk1	2.64
ENSMUSG0000036181	Hist1h1c	2.63
ENSMUSG0000078808	Vmn1r58	2.63

ENSMUSG0000034117	Gpr44	2.63
ENSMUSG0000091944	Gm17517	2.63
ENSMUSG0000006930	Hap1	2.62
ENSMUSG0000064032	Gm10143	2.62
ENSMUSG0000053411	Cbx7	2.62
ENSMUSG0000019558	SIc6a8	2.62
ENSMUSG0000030748	ll4ra	2.62
ENSMUSG0000021770	Samd8	2.61
ENSMUSG0000015312	Gadd45b	2.61
ENSMUSG0000090384	Gm17492	2.61
ENSMUSG0000079254	Itprip	2.61
ENSMUSG0000086782	E130102H24Rik	2.59
ENSMUSG0000029385	Ccng2	2.59
ENSMUSG0000067626	Gm17245	2.59
ENSMUSG0000018427	Ypel2	2.59
ENSMUSG0000007812	Zfp655	2.59
ENSMUSG0000090599	AL626783.1	2.59
ENSMUSG0000073060	Zxda	2.58
ENSMUSG0000084835	Gm12352	2.58
ENSMUSG0000030963	Umod	2.58
ENSMUSG0000090435	Gm6410	2.58
ENSMUSG0000047227	Gm527	2.58
ENSMUSG0000035828	Pim3	2.58
ENSMUSG0000057666	Gapdh	2.58
ENSMUSG0000086607	4930511M06Rik	2.58
ENSMUSG0000062519	Zfp398	2.57
ENSMUSG0000060036	Rpl3	2.57
ENSMUSG0000021678	F2rl1	2.57
ENSMUSG0000050459	Gm17646	2.56
ENSMUSG0000047141	Zfp654	2.56
ENSMUSG0000046962	Zfp295	2.56
ENSMUSG0000020108	Ddit4	2.56
ENSMUSG0000087298	Gm9392	2.55
ENSMUSG0000048794	Ccdc37	2.55
ENSMUSG0000071562	Stfa1	2.54
ENSMUSG0000031770	Herpud1	2.54
ENSMUSG0000070644	Etnk2	2.54
ENSMUSG0000078624	Olfr613	2.53
ENSMUSG0000086878	Miat	2.53
ENSMUSG0000007021	Syngr3	2.52
ENSMUSG0000044068	Zrsr1	2.52
ENSMUSG0000021032	Ngb	2.52
ENSMUSG0000030310	Slc6a1	2.52
ENSMUSG0000025450	Gm9752	2.52
--------------------	---------------	------
ENSMUSG0000035992	Fnip1	2.51
ENSMUSG0000027555	Car13	2.51
ENSMUSG0000085829	Gm4285	2.50
ENSMUSG0000016559	H3f3b	2.50
ENSMUSG0000074925	Ptar1	2.50
ENSMUSG0000030327	Necap1	2.50
ENSMUSG0000056445	5730446D14Rik	2.50
ENSMUSG0000049878	Rlf	2.50
ENSMUSG0000074422	Gm17312	2.50
ENSMUSG0000037214	Thap1	2.49
ENSMUSG0000033933	Vhl	2.49
ENSMUSG0000080850	Gm12439	2.49
ENSMUSG0000022553	Maf1	2.49
ENSMUSG0000044636	Csrnp2	2.48
ENSMUSG0000026977	March7	2.48
ENSMUSG0000028850	Gpatch3	2.48
ENSMUSG0000049800	Sertad2	2.48
ENSMUSG0000025612	Bach1	2.47
ENSMUSG0000085623	Gm16041	2.47
ENSMUSG0000025019	Lcor	2.47
ENSMUSG0000051343	Rab11fip5	2.47
ENSMUSG0000092341	Malat1	2.47
ENSMUSG0000009876	Cox4i2	2.47
ENSMUSG0000038700	Hoxb5	2.46
ENSMUSG0000038894	Irs2	2.46
ENSMUSG0000090673	Gm340	2.46
ENSMUSG0000083594	Gm13722	2.46
ENSMUSG00000048911	Rnf24	2.46
ENSMUSG0000040714	Klc3	2.46
ENSMUSG0000059277	R74862	2.46
ENSMUSG0000085913	Gm15601	2.45
ENSMUSG0000021189	Atxn3	2.45
ENSMUSG0000033883	D3Ertd254e	2.45
ENSMUSG0000086723	Gm16601	2.45
ENSMUSG0000061331	Gm17132	2.45
ENSMUSG0000039452	Snx22	2.45
ENSMUSG0000025025	Mxi1	2.45
ENSMUSG0000078936	2410002O22Rik	2.45
ENSMUSG0000086841	2410006H16Rik	2.44
ENSMUSG0000047115	D330028D13Rik	2.44
ENSMUSG0000047153	Khnyn	2.44
ENSMUSG0000021733	Slc4a7	2.44

ENSMUSG0000084834	4930565N06Rik	2.44
ENSMUSG0000093385	A330044P14Rik	2.44
ENSMUSG0000043415	Otud1	2.44
ENSMUSG0000038646	Fam103a1	2.44
ENSMUSG0000022124	Fbxl3	2.43
ENSMUSG0000032219	Tex9	2.43
ENSMUSG0000090721	Gm17632	2.43
ENSMUSG0000002266	Zim1	2.43
ENSMUSG0000035840	Lysmd3	2.43
ENSMUSG0000052684	Jun	2.43
ENSMUSG0000072566	Pvt1	2.42
ENSMUSG0000020363	Gfpt2	2.42
ENSMUSG0000042501	Сраб	2.42
ENSMUSG0000044519	Zfp488	2.42
ENSMUSG0000091737	Gm17543	2.42
ENSMUSG0000038002	Cramp1l	2.42
ENSMUSG0000044037	Als2cl	2.41
ENSMUSG0000020894	Vamp2	2.41
ENSMUSG0000054178	Gm9938	2.41
ENSMUSG0000025762	Larp1b	2.40
ENSMUSG0000021028	Mbip	2.39
ENSMUSG0000066278	Vps37b	2.39
ENSMUSG0000028933	Xrcc2	2.39
ENSMUSG0000052763	Zfp212	2.39
ENSMUSG0000084364	Gm15801	2.38
ENSMUSG0000089954	Gm8783	2.38
ENSMUSG0000051639	Gm5812	2.38
ENSMUSG0000037857	Nufip2	2.38
ENSMUSG0000079470	Utp14b	2.38
ENSMUSG0000059146	Ntrk3	2.38
ENSMUSG0000020485	Supt4h1	2.38
ENSMUSG0000055926	Gm14137	2.37
ENSMUSG0000090541	Gm17487	2.36
ENSMUSG0000017418	Arl5b	2.36
ENSMUSG0000034686	Prr7	2.36
ENSMUSG0000074909	Ranbp6	2.36
ENSMUSG0000090674	Gm17082	2.36
ENSMUSG0000040167	lkzf5	2.36
ENSMUSG0000043614	Vps37d	2.35
ENSMUSG0000001270	Ckb	2.34
ENSMUSG0000047632	Fgfbp3	2.34
ENSMUSG0000053600	Zfp472	2.33
ENSMUSG0000084845	Gm5151	2.33

ENSMUSG0000091384	Gm17574	2.32
ENSMUSG0000027164	Traf6	2.32
ENSMUSG0000022178	Jub	2.32
ENSMUSG0000038352	Arl5c	2.32
ENSMUSG0000062861	Zfp28	2.32
ENSMUSG0000040302	C030048B08Rik	2.31
ENSMUSG0000048271	Rbm33	2.31
ENSMUSG0000029627	Zkscan14	2.31
ENSMUSG0000017639	Rab11fip4	2.31
ENSMUSG0000052979	6530403G13Rik	2.31
ENSMUSG0000044814	Olfr543	2.30
ENSMUSG0000091784	Gm17022	2.30
ENSMUSG0000033863	KIf9	2.29
ENSMUSG0000033770	Clcnka	2.29
ENSMUSG0000042507	C130039O16Rik	2.29
ENSMUSG0000027896	Slc16a4	2.28
ENSMUSG0000047155	Cyp4x1	2.28
ENSMUSG0000073421	H2-Ab1	2.28
ENSMUSG0000029027	Dffb	2.28
ENSMUSG0000089647	Gm2245	2.28
ENSMUSG0000020525	Ppm1d	2.28
ENSMUSG0000014353	Tmem87b	2.28
ENSMUSG0000062175	Tgif2	2.27
ENSMUSG0000090264	Eif4ebp3	2.27
ENSMUSG0000031340	Gabre	2.27
ENSMUSG0000087696	Gm16957	2.27
ENSMUSG0000028865	Cd164l2	2.27
ENSMUSG0000027427	Polr3f	2.27
ENSMUSG0000048109	Rbm15	2.27
ENSMUSG0000004661	Arid3b	2.27
ENSMUSG0000051316	Taf7	2.26
ENSMUSG0000030672	Mylpf	2.26
ENSMUSG0000028348	Murc	2.26
ENSMUSG0000049907	Rasl11b	2.26
ENSMUSG0000085635	Gm14565	2.26
ENSMUSG0000063730	Hsd3b2	2.26
ENSMUSG0000087566	C920006O11Rik	2.26
ENSMUSG0000024459	H2-M5	2.26
ENSMUSG0000074580	4931440P22Rik	2.25
ENSMUSG0000026289	Atg16l1	2.25
ENSMUSG0000062098	Btbd3	2.25
ENSMUSG0000048216	Gpr85	2.25
ENSMUSG0000035694	Caps2	2.25

ENSMUSG0000048701	Ccdc6	2.24
ENSMUSG0000023707	Ogfod2	2.24
ENSMUSG0000075389	2810410L24Rik	2.24
ENSMUSG0000092086	Gm6793	2.24
ENSMUSG0000028967	Errfi1	2.24
ENSMUSG0000037111	Setd7	2.24
ENSMUSG0000032294	Pkm2	2.23
ENSMUSG0000089736	Gm14378	2.23
ENSMUSG0000023067	Cdkn1a	2.22
ENSMUSG0000027803	Wwtr1	2.22
ENSMUSG0000075701	H47	2.22
ENSMUSG0000048696	Mex3d	2.22
ENSMUSG0000078671	Chd2	2.22
ENSMUSG0000044349	Snhg11	2.22
ENSMUSG0000030695	Aldoa	2.22
ENSMUSG0000042595	Fam199x	2.22
ENSMUSG0000028630	Dyrk2	2.22
ENSMUSG0000063229	Ldha	2.22
ENSMUSG0000017412	Cacnb4	2.21
ENSMUSG0000041096	Tspyl2	2.21
ENSMUSG0000031765	Mt1	2.21
ENSMUSG0000033319	Fem1c	2.21
ENSMUSG0000084903	Gm16624	2.21
ENSMUSG0000017740	Slc12a5	2.21
ENSMUSG0000091909	Gm17282	2.21
ENSMUSG0000042724	Map3k9	2.21
ENSMUSG0000085685	Gm15253	2.21
ENSMUSG0000085988	Gm16896	2.21
ENSMUSG0000085492	Trmt61b	2.20
ENSMUSG0000029449	Rhof	2.20
ENSMUSG0000026094	Stk17b	2.20
ENSMUSG0000042650	Alkbh5	2.20
ENSMUSG0000027660	Skil	2.20
ENSMUSG0000032424	Snhg5	2.20
ENSMUSG0000038526	Car14	2.20
ENSMUSG0000031490	Eif4ebp1	2.19
ENSMUSG0000029001	Fbxo44	2.19
ENSMUSG0000028389	Zfp37	2.19
ENSMUSG0000086537	Nespas	2.19
ENSMUSG0000069114	Zbtb10	2.19
ENSMUSG0000027806	Tsc22d2	2.19
ENSMUSG0000032375	Aph1b	2.19
ENSMUSG0000086859	2810008D09Rik	2.19

ENSMUSG0000051495	lrf2bp2	2.19
ENSMUSG0000028035	Dnajb4	2.19
ENSMUSG0000049723	Mmp12	2.19
ENSMUSG0000050310	Rictor	2.18
ENSMUSG0000038806	BC031781	2.18
ENSMUSG0000022051	Bnip3l	2.18
ENSMUSG0000000942	Hoxa4	2.18
ENSMUSG0000085767	Gm13563	2.18
ENSMUSG0000062044	Lmtk3	2.18
ENSMUSG0000041548	Hspb8	2.17
ENSMUSG0000042675	Ypel3	2.17
ENSMUSG0000052415	Tchh	2.17
ENSMUSG0000034300	Fam53c	2.17
ENSMUSG0000037239	Spred3	2.17
ENSMUSG0000032135	Mcam	2.17
ENSMUSG0000045005	Fzd5	2.17
ENSMUSG0000017754	Pltp	2.17
ENSMUSG0000063652	Slc22a21	2.17
ENSMUSG0000081094	Rpl19-ps11	2.16
ENSMUSG0000054364	Rhob	2.16
ENSMUSG0000085360	Gm11647	2.16
ENSMUSG0000039989	Cbx4	2.16
ENSMUSG0000032238	Rora	2.16
ENSMUSG0000037876	Jmjd1c	2.16
ENSMUSG0000034640	Tiparp	2.16
ENSMUSG0000073761	4933427104Rik	2.16
ENSMUSG0000037474	Dtl	2.15
ENSMUSG0000024924	VldIr	2.15
ENSMUSG0000024570	Rbfa	2.15
ENSMUSG0000020277	Pfkl	2.15
ENSMUSG0000062070	Pgk1	2.15
ENSMUSG0000032251	Irak1bp1	2.15
ENSMUSG0000092400	Gm20469	2.15
ENSMUSG0000031860	Pbx4	2.15
ENSMUSG0000050097	Ces2b	2.15
ENSMUSG0000081471	Gm14735	2.15
ENSMUSG0000086753	Gm15751	2.14
ENSMUSG0000024530	Slmo1	2.14
ENSMUSG0000089940	Gm4117	2.14
ENSMUSG0000023966	Rsph9	2.14
ENSMUSG0000021265	Slc25a29	2.14
ENSMUSG0000038705	Gmeb2	2.13
ENSMUSG0000001864	Aif1l	2.13

ENSMUSG0000086894	Gm15708	2.13
ENSMUSG0000019916	P4ha1	2.13
ENSMUSG0000040943	Tet2	2.13
ENSMUSG0000006262	Mob1b	2.13
ENSMUSG0000087562	Gm16754	2.13
ENSMUSG0000085444	Gm13936	2.12
ENSMUSG0000085795	Zfp703	2.12
ENSMUSG0000023336	Wfdc1	2.12
ENSMUSG0000048429	1810026J23Rik	2.12
ENSMUSG0000084842	Pabpc1l2b-ps	2.12
ENSMUSG0000063524	Eno1	2.12
ENSMUSG0000027829	Ccnl1	2.12
ENSMUSG0000083405	Gm15725	2.12
ENSMUSG0000070858	Gm1673	2.12
ENSMUSG0000028081	Rps3a	2.12
ENSMUSG0000015837	Sqstm1	2.12
ENSMUSG0000040540	Gm9770	2.12
ENSMUSG0000074264	Amy1	2.11
ENSMUSG0000089828	Gm16300	2.11
ENSMUSG0000020653	Klf11	2.11
ENSMUSG0000093412	RP23-103L13.8	2.11
ENSMUSG0000040594	Ranbp17	2.11
ENSMUSG0000084824	Gm16344	2.11
ENSMUSG0000035399	3230401D17Rik	2.11
ENSMUSG0000031837	Necab2	2.11
ENSMUSG0000078599	Skint8	2.11
ENSMUSG0000058906	Zfp353	2.10
ENSMUSG0000030087	Klf15	2.10
ENSMUSG0000029797	Sspo	2.10
ENSMUSG0000031530	Dusp4	2.10
ENSMUSG0000035929	H2-Q4	2.10
ENSMUSG0000006445	Epha2	2.10
ENSMUSG0000046456	Tmem150b	2.10
ENSMUSG0000028701	1520402A15Rik	2.10
ENSMUSG0000042750	Bex2	2.10
ENSMUSG0000042506	Usp22	2.09
ENSMUSG0000029576	Radil	2.09
ENSMUSG0000037108	Zcwpw1	2.09
ENSMUSG0000041779	Tram2	2.09
ENSMUSG0000053666	Gm9917	2.09
ENSMUSG0000062627	Mysm1	2.09
ENSMUSG0000087299	Gm12953	2.09
ENSMUSG0000021460	Auh	2.09

ENSMUSG0000086615	Gm16862	2.09
ENSMUSG0000028521	Slc35d1	2.09
ENSMUSG0000059013	Sh2d3c	2.08
ENSMUSG0000022507	1810013L24Rik	2.08
ENSMUSG0000073433	Arhgdig	2.08
ENSMUSG0000006585	Cdt1	2.08
ENSMUSG0000040918	Slc19a2	2.08
ENSMUSG0000039137	Whrn	2.08
ENSMUSG0000068394	Cep152	2.08
ENSMUSG0000021215	Net1	2.08
ENSMUSG0000022999	Lmbr1l	2.08
ENSMUSG0000022490	Ppp1r1a	2.07
ENSMUSG0000015342	Xk	2.07
ENSMUSG0000002799	Jag2	2.07
ENSMUSG0000029068	Ccnl2	2.07
ENSMUSG0000047976	Kcna1	2.07
ENSMUSG0000048027	Rgmb	2.06
ENSMUSG0000041679	Lrrc29	2.06
ENSMUSG0000031861	Lpar2	2.06
ENSMUSG0000023456	Tpi1	2.06
ENSMUSG0000040929	Rfx3	2.06
ENSMUSG0000047843	Bri3	2.06
ENSMUSG0000028793	Rnf19b	2.06
ENSMUSG0000015202	Cnksr3	2.06
ENSMUSG0000051379	Flrt3	2.06
ENSMUSG0000041040	Fam117b	2.06
ENSMUSG0000090613	Gm17630	2.06
ENSMUSG0000092232	Gm20521	2.06
ENSMUSG0000040715	Rsc1a1	2.06
ENSMUSG0000032593	Amigo3	2.06
ENSMUSG0000067786	Nnat	2.06
ENSMUSG0000066442	Mthfs	2.06
ENSMUSG0000090739	D930016D06Rik	2.05
ENSMUSG0000092149	Gm17453	2.05
ENSMUSG0000001930	Vwf	2.05
ENSMUSG0000040441	Slc26a10	2.05
ENSMUSG0000044617	Zbtb39	2.05
ENSMUSG0000006014	Prg4	2.05
ENSMUSG0000039376	Synpo2l	2.05
ENSMUSG0000053094	0610007L01Rik	2.05
ENSMUSG0000036934	4921524J17Rik	2.05
ENSMUSG0000038738	Shank1	2.05
ENSMUSG0000037993	Dhx38	2.05

ENSMUSG0000091952	Gm17709	2.04
ENSMUSG0000034059	Ypel4	2.04
ENSMUSG0000027961	Lrrc39	2.04
ENSMUSG0000087502	Gm16091	2.04
ENSMUSG0000082894	Gm6480	2.04
ENSMUSG0000062901	Klhl24	2.04
ENSMUSG0000003031	Cdkn1b	2.04
ENSMUSG0000018554	Ybx2	2.04
ENSMUSG0000032599	lp6k2	2.03
ENSMUSG0000073374	C030034I22Rik	2.03
ENSMUSG0000019897	Ccdc59	2.03
ENSMUSG0000029110	Rnf4	2.03
ENSMUSG0000093709	RP23-278M16.2	2.03
ENSMUSG0000033054	Npat	2.03
ENSMUSG0000057914	Cacnb2	2.03
ENSMUSG0000000282	Mnt	2.03
ENSMUSG0000047370	Gm7367	2.03
ENSMUSG0000087231	E230016M11Rik	2.03
ENSMUSG0000087590	2410004N09Rik	2.03
ENSMUSG0000016984	Etaa1	2.03
ENSMUSG0000042032	Mat2b	2.03
ENSMUSG0000029389	Ddx55	2.02
ENSMUSG0000063160	Numbl	2.02
ENSMUSG0000070822	Zscan18	2.01
ENSMUSG0000022619	Mapk8ip2	2.01
ENSMUSG0000074220	Zfp382	2.01
ENSMUSG0000074873	AI606181	2.01
ENSMUSG0000042688	Mapk6	2.01
ENSMUSG0000026457	Adipor1	2.01
ENSMUSG0000004347	Pde1c	2.01
ENSMUSG0000074115	Saa1	2.01
ENSMUSG0000025938	Slco5a1	2.01
ENSMUSG0000038174	Fam126b	2.00
ENSMUSG0000037573	Tob1	2.00
ENSMUSG0000027245	2310003F16Rik	2.00
ENSMUSG0000039789	Zfp597	2.00
ENSMUSG0000036898	Zfp157	2.00
ENSMUSG00000044628	Rnf208	2.00
ENSMUSG0000055725	Paqr3	2.00
ENSMUSG0000042390	Gatad2b	2.00
ENSMUSG0000038572	Bpifb5	1.99
ENSMUSG0000027397	Slc20a1	1.99
ENSMUSG0000037808	Fam76b	1.99

ENSMUSG0000022837	lqcb1	1.99
ENSMUSG0000070424	Art5	1.99
ENSMUSG0000044551	9930012K11Rik	1.99
ENSMUSG0000045466	Zfp956	1.99
ENSMUSG0000024695	Zfp91	1.98
ENSMUSG0000033594	Spata2l	1.98
ENSMUSG0000085936	2610307P16Rik	1.98
ENSMUSG0000049357	4933408B17Rik	1.97
ENSMUSG0000052783	Grk4	1.97
ENSMUSG0000026458	Ppfia4	1.97
ENSMUSG0000074794	Arrdc3	1.97
ENSMUSG0000027324	Rpusd2	1.97
ENSMUSG0000085337	Gm15964	1.97
ENSMUSG0000000531	Grasp	1.97
ENSMUSG0000029290	Zfp326	1.97
ENSMUSG0000046727	0610010012Rik	1.96
ENSMUSG0000020875	Hoxb9	1.96
ENSMUSG0000028654	Mycl1	1.96
ENSMUSG0000021772	Nkiras1	1.96
ENSMUSG0000086627	Gm16702	1.96
ENSMUSG0000038612	Mcl1	1.96
ENSMUSG0000022415	Syngr1	1.96
ENSMUSG0000027954	Efna1	1.96
ENSMUSG0000050628	Fam100b	1.96
ENSMUSG0000009741	Ubp1	1.96
ENSMUSG0000060260	Pwwp2b	1.95
ENSMUSG0000034429	Zfp707	1.95
ENSMUSG0000087026	A230103J11Rik	1.95
ENSMUSG0000038206	Fbxo8	1.95
ENSMUSG0000079036	Alkbh1	1.95
ENSMUSG0000017009	Sdc4	1.95
ENSMUSG0000085373	B130046B21Rik	1.95
ENSMUSG0000035235	Trim13	1.95
ENSMUSG0000069895	Atxn1l	1.95
ENSMUSG0000041731	Pgm5	1.95
ENSMUSG0000082609	Gm15464	1.95
ENSMUSG0000028463	Car9	1.95
ENSMUSG0000060981	Hist1h4h	1.95
ENSMUSG0000074165	Zfp788	1.95
ENSMUSG0000024298	Zfp871	1.94
ENSMUSG0000041483	Zfp281	1.94
ENSMUSG0000068396	Rpl34-ps1	1.94
ENSMUSG0000086189	Gm15462	1.94

ENSMUSG0000078302	Foxd1	1.94
ENSMUSG0000034908	Sidt2	1.94
ENSMUSG0000052656	Rnf103	1.94
ENSMUSG0000032712	2810474O19Rik	1.94
ENSMUSG0000028195	Cyr61	1.94
ENSMUSG0000050192	Eif5a2	1.94
ENSMUSG0000044792	Isca1	1.94
ENSMUSG0000042308	Setd1a	1.94
ENSMUSG0000047417	Rexo1	1.93
ENSMUSG0000043993	2900052L18Rik	1.93
ENSMUSG0000055128	Cgrrf1	1.93
ENSMUSG0000019756	Prl8a1	1.93
ENSMUSG0000023286	Ube2j2	1.93
ENSMUSG0000046999	1110032F04Rik	1.93
ENSMUSG0000045114	Prrt2	1.93
ENSMUSG0000040722	Scamp5	1.92
ENSMUSG0000032641	Gpr19	1.92
ENSMUSG0000021699	Pde4d	1.92
ENSMUSG0000016526	Dyrk3	1.92
ENSMUSG0000028527	Ak4	1.92
ENSMUSG0000026638	Irf6	1.92
ENSMUSG0000049504	2810046L04Rik	1.92
ENSMUSG0000017386	Traf4	1.92
ENSMUSG0000062591	Tubb4a	1.92
ENSMUSG0000050394	Armcx6	1.92
ENSMUSG0000053581	Zfand2a	1.92
ENSMUSG0000042922	D130020L05Rik	1.92
ENSMUSG0000022358	Fbxo32	1.91
ENSMUSG0000022564	Grina	1.91
ENSMUSG0000047514	Tspyl1	1.91
ENSMUSG0000018648	Dusp14	1.91
ENSMUSG0000085008	Gm13399	1.91
ENSMUSG0000042198	Chchd7	1.91
ENSMUSG0000026643	Nmt2	1.91
ENSMUSG0000018322	Tomm34	1.91
ENSMUSG0000028857	Tmem222	1.90
ENSMUSG0000019977	Hbs1l	1.90
ENSMUSG0000024248	Cox7a2l	1.90
ENSMUSG0000026064	Ptp4a1	1.90
ENSMUSG0000028277	Ube2j1	1.90
ENSMUSG0000028134	Ptbp2	1.90
ENSMUSG0000027285	Haus2	1.90
ENSMUSG0000058558	Rpl5	1.90

ENSMUSG0000027739	Rab33b	1.90
ENSMUSG0000015127	Unkl	1.90
ENSMUSG0000061186	Sfmbt2	1.89
ENSMUSG0000019876	Pkib	1.89
ENSMUSG0000020354	Sgcd	1.89
ENSMUSG0000048997	Atxn7l2	1.89
ENSMUSG0000051166	Eml5	1.89
ENSMUSG0000027171	Prrg4	1.89
ENSMUSG0000071253	Slc25a16	1.89
ENSMUSG0000021830	Txndc16	1.89
ENSMUSG0000033618	Map3k13	1.89
ENSMUSG0000072774	Zfp951	1.89
ENSMUSG0000039879	Неса	1.89
ENSMUSG0000055200	Sertad3	1.89
ENSMUSG0000053198	Prx	1.89
ENSMUSG0000031812	Map1lc3b	1.89
ENSMUSG0000021306	Gpr137b	1.88
ENSMUSG0000021948	Prkcd	1.88
ENSMUSG0000038271	lffo1	1.88
ENSMUSG0000034460	Six4	1.88
ENSMUSG0000037826	Ppm1k	1.88
ENSMUSG0000014704	Hoxa2	1.88
ENSMUSG0000025959	Klf7	1.88
ENSMUSG0000036411	9530077C05Rik	1.88
ENSMUSG0000037652	Phc3	1.88
ENSMUSG0000040415	Dtx3	1.88
ENSMUSG0000060550	H2-Q7	1.88
ENSMUSG0000058600	RpI30	1.88
ENSMUSG0000044533	Rps2	1.88
ENSMUSG0000059920	4930453N24Rik	1.87
ENSMUSG0000044864	Ankrd50	1.87
ENSMUSG0000030704	Rab6a	1.87
ENSMUSG0000031450	Grk1	1.87
ENSMUSG0000043843	Tmem145	1.87
ENSMUSG0000090361	Gm17621	1.87
ENSMUSG0000073455	Gm3435	1.87
ENSMUSG0000011179	Odc1	1.87
ENSMUSG0000038909	Myst2	1.87
ENSMUSG0000030815	Phkg2	1.87
ENSMUSG0000013415	lgf2bp1	1.87
ENSMUSG0000039130	Zc3hc1	1.87
ENSMUSG0000089945	Gm20459	1.86
ENSMUSG0000032420	Nt5e	1.86

ENSMUSG0000073557	Ppp1r12b	1.86
ENSMUSG0000020205	Phlda1	1.86
ENSMUSG0000015120	Ube2i	1.86
ENSMUSG0000089989	Flt3l	1.86
ENSMUSG0000087142	Gm12454	1.86
ENSMUSG0000027936	Crtc2	1.86
ENSMUSG0000049804	Armcx4	1.86
ENSMUSG0000050071	Bex1	1.86
ENSMUSG0000021139	Gm20498	1.86
ENSMUSG0000081051	Gm15427	1.85
ENSMUSG0000021477	Ctsl	1.85
ENSMUSG0000024190	Dusp1	1.85
ENSMUSG0000001786	Fbxo7	1.85
ENSMUSG0000057751	Megf6	1.85
ENSMUSG0000052293	Taf9	1.85
ENSMUSG0000042197	Zfp451	1.85
ENSMUSG0000009630	Ppp2cb	1.85
ENSMUSG0000022453	Naga	1.85
ENSMUSG0000036427	Gpi1	1.84
ENSMUSG0000024410	3110002H16Rik	1.84
ENSMUSG0000084315	Vmn1r-ps128	1.84
ENSMUSG0000043085	Tmem82	1.84
ENSMUSG0000087490	A330076H08Rik	1.84
ENSMUSG0000029179	Zcchc4	1.84
ENSMUSG0000020680	Taf15	1.84
ENSMUSG0000051469	Zfp191	1.84
ENSMUSG0000087141	Plcxd2	1.84
ENSMUSG0000038872	Zfhx3	1.84
ENSMUSG0000029279	Brdt	1.84
ENSMUSG0000025723	Nmb	1.83
ENSMUSG0000015377	Fam116b	1.83
ENSMUSG0000021892	Sh3bp5	1.83
ENSMUSG0000025078	NhIrc2	1.83
ENSMUSG0000036478	Btg1	1.83
ENSMUSG0000006127	Inpp5k	1.83
ENSMUSG0000048154	MII2	1.83
ENSMUSG0000030276	Ttll3	1.83
ENSMUSG0000036390	Gadd45a	1.83
ENSMUSG0000031955	Bcar1	1.83
ENSMUSG0000020131	Pcsk4	1.82
ENSMUSG0000073474	A330023F24Rik	1.82
ENSMUSG0000031728	Zfp821	1.82
ENSMUSG0000014905	Dnajb9	1.82

ENSMUSG0000032010	Usp2	1.82
ENSMUSG0000021096	Ppm1a	1.82
ENSMUSG0000026121	Sema4c	1.82
ENSMUSG0000030337	Vamp1	1.82
ENSMUSG0000053293	Pom121	1.82
ENSMUSG0000067235	H2-Q10	1.82
ENSMUSG0000004843	Chmp2b	1.82
ENSMUSG0000074505	Fat3	1.82
ENSMUSG0000037321	Tap1	1.82
ENSMUSG0000038692	Hoxb4	1.82
ENSMUSG0000020561	Twistnb	1.82
ENSMUSG0000019808	Adat2	1.82
ENSMUSG0000024949	Sf1	1.82
ENSMUSG0000023505	Cdca3	1.81
ENSMUSG0000018906	P4ha2	1.81
ENSMUSG0000014602	Kif1a	1.81
ENSMUSG0000016940	Kctd2	1.81
ENSMUSG0000047844	Bex4	1.81
ENSMUSG0000055202	Zfp811	1.81
ENSMUSG0000033917	Gde1	1.81
ENSMUSG0000055436	Srsf11	1.81
ENSMUSG0000010067	Rassf1	1.81
ENSMUSG0000073867	AA474408	1.81
ENSMUSG0000046591	5730590G19Rik	1.81
ENSMUSG0000047648	Fbxo30	1.81
ENSMUSG0000074818	Pdzd7	1.81
ENSMUSG0000031970	Dbndd1	1.81
ENSMUSG0000042659	Arrdc4	1.81
ENSMUSG0000055296	D730040F13Rik	1.81
ENSMUSG0000042185	Nfrkb	1.81
ENSMUSG0000022884	Eif4a2	1.80
ENSMUSG0000044167	Foxo1	1.80
ENSMUSG0000034522	Zfp395	1.80
ENSMUSG0000017716	Birc5	1.80
ENSMUSG0000072960	BC065397	1.80
ENSMUSG0000032239	Rp9	1.80
ENSMUSG0000058779	Tomm20	1.80
ENSMUSG0000024462	Gabbr1	1.80
ENSMUSG0000036057	Ptpn23	1.80
ENSMUSG0000040663	Clcf1	1.80
ENSMUSG0000030059	Tmf1	1.80
ENSMUSG0000016528	Mapkapk2	1.80
ENSMUSG0000089993	Gm5822	1.79

ENSMUSG0000024301	Kifc5b	1.79
ENSMUSG0000029922	Mkrn1	1.79
ENSMUSG0000035293	G2e3	1.79
ENSMUSG0000029823	Luc7l2	1.79
ENSMUSG0000034248	Slc25a37	1.79
ENSMUSG0000047547	Cltb	1.79
ENSMUSG0000040321	Zfp770	1.79
ENSMUSG0000033307	Mif	1.79
ENSMUSG0000040006	BC013529	1.79
ENSMUSG0000003762	Adck4	1.79
ENSMUSG0000026822	Lcn2	1.79
ENSMUSG0000000594	Gm2a	1.79
ENSMUSG0000029022	Miip	1.79
ENSMUSG0000000753	Serpinf1	1.79
ENSMUSG0000064043	Trerf1	1.79
ENSMUSG0000027678	Ncoa3	1.79
ENSMUSG0000073647	Gm10557	1.79
ENSMUSG0000022947	Cbr3	1.78
ENSMUSG0000026436	Elk4	1.78
ENSMUSG0000001909	Trmt1	1.78
ENSMUSG0000040511	Pvr	1.78
ENSMUSG0000030967	Zranb1	1.78
ENSMUSG0000036185	Ng23	1.78
ENSMUSG0000035476	Tab3	1.78
ENSMUSG0000074129	Rpl13a	1.78
ENSMUSG0000036278	Macrod1	1.78
ENSMUSG0000021703	Serinc5	1.78
ENSMUSG0000026930	Gpsm1	1.78
ENSMUSG0000046364	Rpl27a	1.78
ENSMUSG0000000346	Dazap2	1.78
ENSMUSG0000007039	Ddah2	1.78
ENSMUSG0000046589	Lrrc8e	1.78
ENSMUSG0000007122	Casq1	1.78
ENSMUSG0000025034	Trim8	1.78
ENSMUSG0000042599	Jhdm1d	1.78
ENSMUSG0000042743	Sgtb	1.78
ENSMUSG0000035545	Leng8	1.77
ENSMUSG0000037415	Ranbp10	1.77
ENSMUSG0000027999	Pla2g12a	1.77
ENSMUSG0000082286	Pisd-ps1	1.77
ENSMUSG0000020105	Lrig3	1.77
ENSMUSG0000024889	Rce1	1.77
ENSMUSG0000041135	Ripk2	1.77

ENSMUSG0000033713	Foxn3	1.77
ENSMUSG0000064345	mt-Nd2	1.77
ENSMUSG0000031327	Chic1	1.77
ENSMUSG0000034317	Trim59	1.77
ENSMUSG0000038486	Sv2a	1.77
ENSMUSG0000074578	1500012F01Rik	1.77
ENSMUSG0000024002	Brd4	1.77
ENSMUSG0000030124	Lag3	1.77
ENSMUSG0000050299	Gm9843	1.76
ENSMUSG0000050368	Hoxd10	1.76
ENSMUSG0000029328	Hnrpdl	1.76
ENSMUSG0000067274	Rplp0	1.76
ENSMUSG0000056153	Socs6	1.76
ENSMUSG0000056501	Cebpb	1.76
ENSMUSG0000024163	Mapk8ip3	1.76
ENSMUSG0000031762	Mt2	1.76
ENSMUSG0000020978	Klhdc2	1.76
ENSMUSG0000014786	Slc9a5	1.76
ENSMUSG0000038227	Ноха9	1.76
ENSMUSG0000034173	2410018M08Rik	1.76
ENSMUSG0000044258	Ctla2a	1.76
ENSMUSG0000042406	Atf4	1.76
ENSMUSG0000062929	Cfl2	1.76
ENSMUSG0000037174	Elf2	1.76
ENSMUSG0000073702	Rpl31	1.75
ENSMUSG0000042364	Snx18	1.75
ENSMUSG0000045282	Tmem86b	1.75
ENSMUSG0000037243	Zfp692	1.75
ENSMUSG0000020070	Rufy2	1.75
ENSMUSG0000020806	Rhbdf2	1.75
ENSMUSG0000039633	Lonrf1	1.75
ENSMUSG0000020265	Sumo3	1.75
ENSMUSG0000022009	Nufip1	1.75
ENSMUSG0000034953	1700047I17Rik2	1.75
ENSMUSG0000073083	Fam177a	1.75
ENSMUSG0000026426	Arl8a	1.75
ENSMUSG0000082016	Pgam1-ps2	1.74
ENSMUSG0000078429	Ctdsp2	1.74
ENSMUSG0000024608	Rps14	1.74
ENSMUSG0000040794	C1qtnf4	1.74
ENSMUSG0000026655	Fam107b	1.74
ENSMUSG0000020863	Luc7l3	1.74
ENSMUSG0000022974	Gcfc1	1.74

ENSMUSG0000044348	Mcart6	1.74
ENSMUSG0000048769	H1f0	1.74
ENSMUSG0000021661	Ankra2	1.74
ENSMUSG0000005802	Slc30a4	1.74
ENSMUSG0000030744	Rps3	1.74
ENSMUSG0000032595	Cdhr4	1.74
ENSMUSG0000016758	Bik	1.74
ENSMUSG0000048763	Hoxb3	1.74
ENSMUSG0000044912	Syt16	1.74
ENSMUSG0000035173	A630007B06Rik	1.74
ENSMUSG0000020109	Dnajb12	1.73
ENSMUSG0000028057	Rit1	1.73
ENSMUSG0000083705	Gm8624	1.73
ENSMUSG0000023495	Pcbp4	1.73
ENSMUSG0000070002	Ell	1.73
ENSMUSG0000023266	Frs3	1.73
ENSMUSG0000033417	2700078E11Rik	1.73
ENSMUSG0000029634	Rnf6	1.73
ENSMUSG0000029603	Dtx1	1.73
ENSMUSG0000052133	Sema5b	1.73
ENSMUSG0000011257	Pabpc4	1.73
ENSMUSG0000024379	Tslp	1.73
ENSMUSG0000022552	Sharpin	1.73
ENSMUSG0000050373	Snx21	1.73
ENSMUSG0000038520	Tbc1d17	1.72
ENSMUSG0000022389	Tef	1.72
ENSMUSG0000041841	Rpl37	1.72
ENSMUSG0000025872	Thoc3	1.72
ENSMUSG0000037369	Kdm6a	1.72
ENSMUSG0000033658	Ddx19b	1.72
ENSMUSG0000029714	Gigyf1	1.72
ENSMUSG0000029780	Nt5c3	1.72
ENSMUSG0000024112	Cacna1h	1.72
ENSMUSG0000008153	Clstn3	1.72
ENSMUSG0000031532	Tmem66	1.72
ENSMUSG0000050229	Pigm	1.72
ENSMUSG0000083097	Gm14494	1.72
ENSMUSG0000020284	1810043G02Rik	1.72
ENSMUSG0000024791	Cdca5	1.72
ENSMUSG0000034457	Eda2r	1.72
ENSMUSG0000038150	Ormdl3	1.72
ENSMUSG0000080727	C920021L13Rik	1.72
ENSMUSG0000023043	Krt18	1.72

ENSMUSG0000056895	Hist3h2ba	1.71
ENSMUSG0000055531	Cpsf6	1.71
ENSMUSG0000041560	Gltscr2	1.71
ENSMUSG0000041775	Mapk1ip1	1.71
ENSMUSG0000086252	C030044B11Rik	1.71
ENSMUSG0000057933	Gsta2	1.71
ENSMUSG0000039154	Shd	1.71
ENSMUSG0000047675	Rps8	1.71
ENSMUSG0000058838	Rps27a-ps2	1.71
ENSMUSG0000045128	Rpl18a	1.71
ENSMUSG0000039221	Rpl22l1	1.71
ENSMUSG0000084416	Rpl10a-ps1	1.71
ENSMUSG0000025899	Alkbh8	1.71
ENSMUSG0000003273	Car11	1.71
ENSMUSG0000021196	Pfkp	1.71
ENSMUSG0000052291	5330438D12Rik	1.71
ENSMUSG0000029131	Dnajb6	1.70
ENSMUSG0000037742	Eef1a1	1.70
ENSMUSG0000061232	Н2-К1	1.70
ENSMUSG0000049517	Rps23	1.70
ENSMUSG0000069682	Gm10275	1.70
ENSMUSG0000025509	Pnpla2	1.70
ENSMUSG0000043168	4930426D05Rik	1.70
ENSMUSG0000067870	Gm8759	1.70
ENSMUSG0000032449	Slc25a36	1.70
ENSMUSG0000035725	Prkx	1.70
ENSMUSG0000032469	Dbr1	1.70
ENSMUSG0000019254	Ppp1r12c	1.70
ENSMUSG0000008348	Ubc	1.70
ENSMUSG0000023018	Smarcd1	1.70
ENSMUSG0000061167	Rpl15-ps3	1.70
ENSMUSG0000000296	Tpd52l1	1.70
ENSMUSG0000052253	Zfp622	1.70
ENSMUSG0000091171	Gm10060	1.70
ENSMUSG0000028788	Ptp4a2	1.70
ENSMUSG0000040857	Erf	1.70
ENSMUSG0000054150	4831426I19Rik	1.70
ENSMUSG0000064326	Siva1	1.70
ENSMUSG0000032518	Rpsa	1.69
ENSMUSG0000029056	Pank4	1.69
ENSMUSG0000038502	Ptov1	1.69
ENSMUSG0000066838	Zfp772	1.69
ENSMUSG0000028191	Bcl10	1.69

ENSMUSG0000025794	Rpl14	1.69
ENSMUSG0000087370	Tmem170b	1.69
ENSMUSG0000022426	Josd1	1.69
ENSMUSG0000082536	Gm13456	1.69
ENSMUSG0000027811	4930579G24Rik	1.69
ENSMUSG0000072568	Fam84b	1.69
ENSMUSG0000027162	Lin7c	1.69
ENSMUSG0000006333	Rps9	1.69
ENSMUSG0000040111	Gramd1b	1.69
ENSMUSG0000032399	Rpl4	1.69
ENSMUSG0000004952	Rasa4	1.69
ENSMUSG0000051790	Nlgn2	1.69
ENSMUSG0000071286	Sowahc	1.69
ENSMUSG0000066892	Fbxl12	1.69
ENSMUSG0000059811	Atl2	1.69
ENSMUSG0000018899	Irf1	1.69
ENSMUSG0000023904	Hcfc1r1	1.69
ENSMUSG0000045546	Rnf113a2	1.68
ENSMUSG0000034168	6430527G18Rik	1.68
ENSMUSG0000029844	Hoxa1	1.68
ENSMUSG0000026511	Srp9	1.68
ENSMUSG0000045248	Med26	1.68
ENSMUSG0000041895	Wipi1	1.68
ENSMUSG0000025407	Gli1	1.68
ENSMUSG0000025508	Rplp2	1.68
ENSMUSG0000008393	Carhsp1	1.68
ENSMUSG0000090137	Uba52	1.68
ENSMUSG0000045319	5430407P10Rik	1.68
ENSMUSG0000049764	Zfp280b	1.68
ENSMUSG0000029528	Pxn	1.68
ENSMUSG0000004951	Hspb1	1.68
ENSMUSG0000015882	Lcorl	1.68
ENSMUSG0000017390	Aldoc	1.68
ENSMUSG0000090000	ler3ip1	1.67
ENSMUSG0000003131	Pafah1b2	1.67
ENSMUSG0000041642	Kif21b	1.67
ENSMUSG0000042524	Sun2	1.67
ENSMUSG0000011752	Pgam1	1.67
ENSMUSG0000048047	Zbtb33	1.67
ENSMUSG0000030494	Rhpn2	1.67
ENSMUSG0000002728	Naa20	1.67
ENSMUSG0000032041	Tirap	1.67
ENSMUSG0000028653	Trit1	1.67

ENSMUSG0000034994	Eef2	1.67
ENSMUSG0000056952	Tatdn2	1.67
ENSMUSG0000056476	Med12l	1.67
ENSMUSG0000052146	Rps10	1.67
ENSMUSG0000058799	Nap1l1	1.67
ENSMUSG0000005687	Bcas2	1.67
ENSMUSG0000071796	6820431F20Rik	1.67
ENSMUSG0000001248	Gramd1a	1.67
ENSMUSG0000025024	Smndc1	1.67
ENSMUSG0000025035	Arl3	1.67
ENSMUSG0000037563	Rps16	1.67
ENSMUSG0000047215	Rpl9	1.67
ENSMUSG0000031609	Sap30	1.67
ENSMUSG0000031150	Ccdc120	1.67
ENSMUSG0000050708	Ftl1	1.67
ENSMUSG0000028234	Rps20	1.67
ENSMUSG0000060636	Rpl35a	1.67
ENSMUSG0000053552	Ebf4	1.66
ENSMUSG0000027887	Sypl2	1.66
ENSMUSG0000057841	Rpl32	1.66
ENSMUSG0000042814	Mcts2	1.66
ENSMUSG0000006471	Ndor1	1.66
ENSMUSG0000036620	Mgat4b	1.66
ENSMUSG0000044807	Zfp354c	1.66
ENSMUSG0000020460	Rps27a	1.66
ENSMUSG0000030652	Coq7	1.66
ENSMUSG0000028955	Vamp3	1.66
ENSMUSG0000012848	Rps5	1.66
ENSMUSG0000025232	Неха	1.66
ENSMUSG0000093752	RP23-391M18.7	1.66
ENSMUSG0000029684	Wasl	1.66
ENSMUSG0000029249	Rest	1.66
ENSMUSG0000001750	Tcirg1	1.66
ENSMUSG0000010607	Pigyl	1.66
ENSMUSG0000079252	Tor1aip2	1.66
ENSMUSG0000028809	Srrm1	1.66
ENSMUSG0000034928	Rnf44	1.66
ENSMUSG0000092416	Zfp141	1.66
ENSMUSG0000026223	Itm2c	1.66
ENSMUSG0000028381	Ugcg	1.66
ENSMUSG0000041921	Metap1d	1.66
ENSMUSG0000025816	Sec61a2	1.66
ENSMUSG0000052135	Foxo6	1.66

ENSMUSG0000006373	Pgrmc1	1.65
ENSMUSG0000079429	Heatr7b1	1.65
ENSMUSG0000020472	Zkscan17	1.65
ENSMUSG0000031922	Cep57	1.65
ENSMUSG0000079555	Haus3	1.65
ENSMUSG0000035530	Eif1	1.65
ENSMUSG0000072692	Gm13826	1.65
ENSMUSG0000031700	Gpt2	1.65
ENSMUSG0000027257	Pacsin3	1.65
ENSMUSG0000029769	Ccdc136	1.65
ENSMUSG0000048910	2810453I06Rik	1.65
ENSMUSG0000057036	Gm7536	1.65
ENSMUSG0000086583	Gm15500	1.65
ENSMUSG0000061983	Rps12	1.65
ENSMUSG0000072940	Gm10443	1.65
ENSMUSG0000024059	Clip4	1.65
ENSMUSG0000039001	Rps21	1.65
ENSMUSG0000007892	Rplp1	1.65
ENSMUSG0000037434	Slc30a1	1.65
ENSMUSG0000071711	Mpst	1.65
ENSMUSG0000034156	Bzrap1	1.65
ENSMUSG0000054770	Kctd18	1.65
ENSMUSG0000007097	Atp1a2	1.65
ENSMUSG0000021242	Npc2	1.65
ENSMUSG0000047446	Arl4a	1.65
ENSMUSG0000043439	E130012A19Rik	1.65
ENSMUSG0000064354	mt-Co2	1.65
ENSMUSG0000021901	Bap1	1.64
ENSMUSG0000038180	Spag4	1.64
ENSMUSG0000041126	H2afv	1.64
ENSMUSG0000030034	Ino80b	1.64
ENSMUSG0000062647	Rpl7a	1.64
ENSMUSG0000091845	Gm4604	1.64
ENSMUSG0000063457	Rps15	1.64
ENSMUSG0000087153	Gm6483	1.64
ENSMUSG0000026384	Ptpn4	1.64
ENSMUSG0000079547	H2-DMb1	1.64
ENSMUSG0000020633	Dcdc2c	1.64
ENSMUSG0000045294	Insig1	1.64
ENSMUSG0000024052	Lpin2	1.64
ENSMUSG0000021660	Btf3	1.64
ENSMUSG0000040952	Rps19	1.64
ENSMUSG0000031838	Ifi30	1.64

ENSMUSG0000078813	Leng1	1.64
ENSMUSG0000031939	Taf1d	1.64
ENSMUSG0000015745	Plekho1	1.64
ENSMUSG0000021041	2700073G19Rik	1.64
ENSMUSG0000030741	Spns1	1.64
ENSMUSG0000050608	Minos1	1.64
ENSMUSG0000032425	Zfp949	1.64
ENSMUSG0000002578	lkzf4	1.64
ENSMUSG0000029238	Clock	1.64
ENSMUSG0000066798	Zbtb6	1.64
ENSMUSG0000008683	Rps15a	1.63
ENSMUSG0000031880	Rrad	1.63
ENSMUSG0000063049	Ing2	1.63
ENSMUSG0000025290	Rps24	1.63
ENSMUSG0000032324	Tspan3	1.63
ENSMUSG0000025484	Bet1l	1.63
ENSMUSG0000055943	2900064A13Rik	1.63
ENSMUSG0000059291	Rpl11	1.63
ENSMUSG0000020409	Slu7	1.63
ENSMUSG0000061477	Rps7	1.63
ENSMUSG0000003154	Foxj2	1.63
ENSMUSG0000022617	Chkb	1.63
ENSMUSG0000027805	Pfn2	1.63
ENSMUSG0000038085	4921517L17Rik	1.63
ENSMUSG0000055633	Zfp580	1.63
ENSMUSG0000019188	H13	1.63
ENSMUSG0000022500	Litaf	1.63
ENSMUSG0000022971	lfnar2	1.63
ENSMUSG0000049647	Purb	1.63
ENSMUSG0000025351	Cd63	1.63
ENSMUSG0000085396	6720401G13Rik	1.62
ENSMUSG0000022601	Rpl24	1.62
ENSMUSG0000023079	Gtf2ird1	1.62
ENSMUSG0000042073	Abhd14b	1.62
ENSMUSG0000038342	Mlxip	1.62
ENSMUSG0000039756	Dnttip2	1.62
ENSMUSG0000058546	Rpl23a	1.62
ENSMUSG0000030224	Strap	1.62
ENSMUSG0000044600	9130011J15Rik	1.62
ENSMUSG0000029535	Triap1	1.62
ENSMUSG0000058655	Eif4b	1.62
ENSMUSG0000061207	Stk19	1.62
ENSMUSG0000050390	C77080	1.62

ENSMUSG0000029655	N4bp2l2	1.62
ENSMUSG0000045896	Paip2b	1.62
ENSMUSG0000020063	Sirt1	1.62
ENSMUSG0000045106	Ccdc73	1.62
ENSMUSG0000091588	Gm17279	1.62
ENSMUSG0000007783	Cpt1c	1.62
ENSMUSG0000028041	Adam15	1.62
ENSMUSG0000000740	Rpl13	1.62
ENSMUSG0000029208	Guf1	1.62
ENSMUSG0000026158	Ogfrl1	1.61
ENSMUSG0000066440	Zfyve26	1.61
ENSMUSG0000024604	Rbm22	1.61
ENSMUSG0000084883	Ccdc85c	1.61
ENSMUSG0000003778	Brd8	1.61
ENSMUSG0000025417	Pip4k2c	1.61
ENSMUSG0000018537	Pcgf2	1.61
ENSMUSG0000037075	Rnf139	1.61
ENSMUSG0000002550	Uck1	1.61
ENSMUSG0000024206	Rfx2	1.61
ENSMUSG0000069020	Urm1	1.61
ENSMUSG0000036863	Syde2	1.61
ENSMUSG0000002058	Unc119	1.61
ENSMUSG0000030942	Thumpd1	1.61
ENSMUSG0000030432	Rpl28	1.61
ENSMUSG0000003378	Grik5	1.61
ENSMUSG0000032519	Slc25a38	1.61
ENSMUSG0000019856	Fam184a	1.61
ENSMUSG0000060126	Tpt1	1.61
ENSMUSG0000022635	Zcrb1	1.61
ENSMUSG0000028461	Ccdc107	1.61
ENSMUSG0000024191	Bnip1	1.61
ENSMUSG0000050621	Gm9846	1.60
ENSMUSG0000035356	Nfkbiz	1.60
ENSMUSG0000039824	Myl6b	1.60
ENSMUSG0000042331	Specc1	1.60
ENSMUSG0000032384	Csnk1g1	1.60
ENSMUSG0000022034	Esco2	1.60
ENSMUSG0000015087	B230208H17Rik	1.60
ENSMUSG0000074682	Zcchc3	1.60
ENSMUSG0000025967	Eef1b2	1.60
ENSMUSG0000021493	Pdlim7	1.60
ENSMUSG0000057863	Rpl36	1.60
ENSMUSG0000021893	Capn7	1.60

ENSMUSG0000044783	Hjurp	1.60
ENSMUSG0000025366	Esyt1	1.60
ENSMUSG0000019872	Smpdl3a	1.60
ENSMUSG0000085399	9130206I24Rik	1.60
ENSMUSG0000041817	Fam169a	1.60
ENSMUSG0000037295	Ldlrap1	1.60
ENSMUSG0000042712	Wbp5	1.60
ENSMUSG0000091586	Cyp4f17	1.60
ENSMUSG0000018900	Slc22a5	1.60
ENSMUSG0000028936	Rpl22	1.60
ENSMUSG0000029504	Ddx51	1.60
ENSMUSG0000003970	Rpl8	1.60
ENSMUSG0000054717	Hmgb2	1.59
ENSMUSG0000055835	Zfp1	1.59
ENSMUSG0000020385	Clk4	1.59
ENSMUSG0000043342	Hoxd9	1.59
ENSMUSG0000046330	Rpl37a	1.59
ENSMUSG0000039886	Tmem120a	1.59
ENSMUSG0000062116	Zfp954	1.59
ENSMUSG0000020372	Gnb2l1	1.59
ENSMUSG0000044927	H1fx	1.59
ENSMUSG0000039007	Рдср	1.59
ENSMUSG0000061411	8430427H17Rik	1.59
ENSMUSG0000091524	2610020C07Rik	1.59
ENSMUSG0000059895	Ptp4a3	1.59
ENSMUSG0000011114	Tbrg1	1.59
ENSMUSG0000034892	Rps29	1.59
ENSMUSG0000028249	Sdcbp	1.59
ENSMUSG0000057322	Rpl38	1.59
ENSMUSG0000035637	Grhpr	1.59
ENSMUSG0000009291	Pttg1ip	1.59
ENSMUSG0000029390	Tmed2	1.59
ENSMUSG0000038900	Rpl12	1.59
ENSMUSG0000037788	Vopp1	1.59
ENSMUSG0000008206	Lass4	1.59
ENSMUSG0000040165	Cd209c	1.59
ENSMUSG0000042686	Jph1	1.59
ENSMUSG0000040331	Nsmce4a	1.58
ENSMUSG0000045180	Shroom2	1.58
ENSMUSG0000052557	Gan	1.58
ENSMUSG0000023348	Trip6	1.58
ENSMUSG0000084319	Tpt1-ps3	1.58
ENSMUSG0000017404	Rpl19	1.58

ENSMUSG0000003429	Rps11	1.58
ENSMUSG0000040128	Pnrc1	1.58
ENSMUSG0000035722	Abca7	1.58
ENSMUSG0000059070	Rpl18	1.58
ENSMUSG0000004558	Ndrg2	1.58
ENSMUSG0000071103	1700029J07Rik	1.58
ENSMUSG0000007038	Neu1	1.58
ENSMUSG0000013663	Pten	1.58
ENSMUSG0000040649	Rimklb	1.58
ENSMUSG0000040414	Slc25a28	1.58
ENSMUSG0000015759	Cnih	1.58
ENSMUSG0000008682	Rpl10	1.58
ENSMUSG0000028609	Magoh	1.58
ENSMUSG0000034485	Uaca	1.58
ENSMUSG0000022450	Ndufa6	1.58
ENSMUSG0000059866	Tnip2	1.58
ENSMUSG0000063406	Tmed5	1.58
ENSMUSG0000031428	Zcchc18	1.58
ENSMUSG0000083773	Gm13394	1.58
ENSMUSG0000079641	Rpl39	1.58
ENSMUSG0000022312	Eif3h	1.58
ENSMUSG0000028060	2810403A07Rik	1.58
ENSMUSG0000022434	Fam118a	1.58
ENSMUSG0000022336	Eif3e	1.58
ENSMUSG0000035299	Mid1	1.57
ENSMUSG0000064145	Arih2	1.57
ENSMUSG0000022982	Sod1	1.57
ENSMUSG0000038095	Sbno1	1.57
ENSMUSG0000028150	Rorc	1.57
ENSMUSG0000036916	Zfp280c	1.57
ENSMUSG0000060860	Ube2s	1.57
ENSMUSG0000071722	Spin4	1.57
ENSMUSG0000061787	Rps17	1.57
ENSMUSG0000028572	Hook1	1.57
ENSMUSG0000027630	Tbl1xr1	1.57
ENSMUSG0000002043	Тгаррс6а	1.57
ENSMUSG0000009927	Rps25	1.57
ENSMUSG0000025140	Pycr1	1.57
ENSMUSG0000069972	Gm10159	1.57
ENSMUSG0000037845	Fdxacb1	1.57
ENSMUSG0000024121	Atp6v0c	1.57
ENSMUSG0000027079	Clp1	1.57
ENSMUSG0000080875	Gm7332	1.57

ENSMUSG0000039842	Mcph1	1.57
ENSMUSG0000009555	Cdk9	1.57
ENSMUSG0000025237	Parp6	1.57
ENSMUSG0000068876	Cgn	1.57
ENSMUSG0000027680	Fxr1	1.57
ENSMUSG0000032172	Olfm2	1.57
ENSMUSG0000068290	Ddrgk1	1.57
ENSMUSG0000021982	Cdadc1	1.57
ENSMUSG0000053128	Rnf26	1.57
ENSMUSG0000079435	Rpl36a	1.57
ENSMUSG0000005800	Mmp8	1.57
ENSMUSG0000068240	Gm11808	1.56
ENSMUSG0000089944	Gm8292	1.56
ENSMUSG0000034042	Gpbp1l1	1.56
ENSMUSG0000025173	Wdr45l	1.56
ENSMUSG0000029614	Rpl6	1.56
ENSMUSG0000040146	Rgl3	1.56
ENSMUSG0000003380	Rabac1	1.56
ENSMUSG0000031628	Casp3	1.56
ENSMUSG0000026411	Tmem9	1.56
ENSMUSG0000002409	Dyrk1b	1.56
ENSMUSG0000057113	Npm1	1.56
ENSMUSG0000029426	Scarb2	1.56
ENSMUSG0000031751	Amfr	1.56
ENSMUSG0000029863	Casp2	1.56
ENSMUSG0000040865	Ino80d	1.56
ENSMUSG0000070420	Zfp498	1.56
ENSMUSG0000002767	Mrpl2	1.56
ENSMUSG0000071415	Rpl23	1.56
ENSMUSG0000040280	Ndufa4l2	1.56
ENSMUSG0000046432	Ngfrap1	1.56
ENSMUSG0000036989	Trim3	1.56
ENSMUSG0000030530	Furin	1.56
ENSMUSG0000021466	Ptch1	1.56
ENSMUSG0000037197	Rbm17	1.56
ENSMUSG0000021054	Sgpp1	1.56
ENSMUSG0000060935	AI597468	1.56
ENSMUSG0000039218	Srrm2	1.55
ENSMUSG0000034551	Hdx	1.55
ENSMUSG0000006378	Gcat	1.55
ENSMUSG0000003382	Etv3	1.55
ENSMUSG0000029560	Snx8	1.55
ENSMUSG0000006599	Gtf2h1	1.55

ENSMUSG0000069892	9930111J21Rik2	1.55
ENSMUSG0000048142	Nat8l	1.55
ENSMUSG0000021591	Glrx	1.55
ENSMUSG0000017723	Wfdc2	1.55
ENSMUSG0000051278	4930422G04Rik	1.55
ENSMUSG0000081453	Gm6767	1.55
ENSMUSG0000066705	Fxyd6	1.55
ENSMUSG0000028618	Tmem59	1.55
ENSMUSG0000055067	Smyd3	1.55
ENSMUSG0000033701	Acbd6	1.55
ENSMUSG0000028291	Akirin2	1.55
ENSMUSG0000027716	Trpc3	1.55
ENSMUSG0000043716	Rpl7	1.55
ENSMUSG0000039382	Wdr45	1.55
ENSMUSG0000067148	Polr1c	1.55
ENSMUSG0000030083	Abtb1	1.55
ENSMUSG0000046807	AI646023	1.55
ENSMUSG0000021986	Fam123a	1.55
ENSMUSG0000041120	Nbl1	1.55
ENSMUSG0000043510	Hscb	1.55
ENSMUSG0000023092	Fhl1	1.55
ENSMUSG0000032388	Spg21	1.54
ENSMUSG0000030806	Stx1b	1.54
ENSMUSG0000085622	3110056K07Rik	1.54
ENSMUSG0000023972	Ptk7	1.54
ENSMUSG0000022199	Slc22a17	1.54
ENSMUSG0000081406	Gm13654	1.54
ENSMUSG0000039323	lgfbp2	1.54
ENSMUSG0000035236	Scai	1.54
ENSMUSG0000070436	Serpinh1	1.54
ENSMUSG0000025855	Prkar1b	1.54
ENSMUSG0000028834	Trim63	1.54
ENSMUSG0000033684	Qsox1	1.54
ENSMUSG0000028495	Rps6	1.54
ENSMUSG0000002055	Spag5	1.54
ENSMUSG0000025982	Sf3b1	1.54
ENSMUSG0000036707	Cab39	1.54
ENSMUSG0000020190	Mknk2	1.54
ENSMUSG0000034071	Zfp551	1.54
ENSMUSG0000050954	Zfp169	1.54
ENSMUSG0000054648	Zfp869	1.54
ENSMUSG0000023944	Hsp90ab1	1.54
ENSMUSG0000062997	Rpl35	1.54

ENSMUSG0000001419	Mef2d	1.54
ENSMUSG0000026790	Odf2	1.53
ENSMUSG0000045365	Rbm15b	1.53
ENSMUSG0000031029	Eif3f	1.53
ENSMUSG0000007891	Ctsd	1.53
ENSMUSG0000036208	BC027231	1.53
ENSMUSG0000031059	Ndufb11	1.53
ENSMUSG0000013367	Iglon5	1.53
ENSMUSG0000002265	Peg3	1.53
ENSMUSG0000064125	BC068157	1.53
ENSMUSG0000030067	Foxp1	1.53
ENSMUSG0000002732	Fkbp7	1.53
ENSMUSG0000041180	Hectd2	1.53
ENSMUSG0000058317	Ube2e2	1.53
ENSMUSG0000026374	Tsn	1.53
ENSMUSG0000035596	Mboat7	1.53
ENSMUSG0000048495	1110034B05Rik	1.53
ENSMUSG0000020311	Erlec1	1.53
ENSMUSG0000019189	Rnf145	1.53
ENSMUSG0000027408	Cpxm1	1.53
ENSMUSG0000058756	Thra	1.53
ENSMUSG0000024792	Zfpl1	1.53
ENSMUSG0000034685	Fam171a2	1.53
ENSMUSG0000026455	Klhl12	1.53
ENSMUSG0000000787	Ddx3x	1.53
ENSMUSG0000069171	Nr2f1	1.53
ENSMUSG0000027381	Bcl2l11	1.53
ENSMUSG0000022194	Pabpn1	1.53
ENSMUSG0000024217	Snrpc	1.53
ENSMUSG0000034158	Lrrc58	1.53
ENSMUSG0000058569	Tmed9	1.53
ENSMUSG0000022558	Heatr7a	1.53
ENSMUSG0000021486	Prelid1	1.52
ENSMUSG0000049516	Spty2d1	1.52
ENSMUSG0000041995	Zbed3	1.52
ENSMUSG0000059486	Kbtbd2	1.52
ENSMUSG0000035458	Tnni3	1.52
ENSMUSG0000042210	Abhd14a	1.52
ENSMUSG0000064368	mt-Nd6	1.52
ENSMUSG0000028278	Rragd	1.52
ENSMUSG0000025207	Sema4g	1.52
ENSMUSG0000025060	Slk	1.52
ENSMUSG0000034083	C130022K22Rik	1.52

ENSMUSG0000071267	Zfp942	1.52
ENSMUSG0000028464	Tpm2	1.52
ENSMUSG0000031103	Elf4	1.52
ENSMUSG0000067288	Rps28	1.52
ENSMUSG0000002413	Braf	1.52
ENSMUSG0000040749	Siah1b	1.52
ENSMUSG0000029151	Slc30a3	1.52
ENSMUSG0000026489	Adck3	1.52
ENSMUSG0000061315	Naca	1.52
ENSMUSG0000010095	Slc3a2	1.52
ENSMUSG0000071454	Dtnb	1.52
ENSMUSG0000024188	Luc7l	1.52
ENSMUSG0000021731	Mrps30	1.52
ENSMUSG0000021709	Erbb2ip	1.52
ENSMUSG0000083364	Gm14535	1.52
ENSMUSG0000021495	Fam193b	1.52
ENSMUSG0000039841	Zfp800	1.52
ENSMUSG0000033096	2310001A20Rik	1.52
ENSMUSG0000006575	Rundc3a	1.52
ENSMUSG0000073987	Ggh	1.52
ENSMUSG0000020994	Pnn	1.52
ENSMUSG0000056770	Setd3	1.51
ENSMUSG0000030788	Rnf141	1.51
ENSMUSG0000039328	Rnf122	1.51
ENSMUSG0000029348	Asphd2	1.51
ENSMUSG0000035011	Zbtb7a	1.51
ENSMUSG0000035297	Cops4	1.51
ENSMUSG0000039747	Orai2	1.51
ENSMUSG0000020577	Tspan13	1.51
ENSMUSG0000004637	Wwox	1.51
ENSMUSG0000020029	Nudt4	1.51
ENSMUSG0000060671	Atp8b2	1.51
ENSMUSG0000040054	Baz2a	1.51
ENSMUSG0000025200	Cwf19l1	1.51
ENSMUSG0000026958	Dpp7	1.51
ENSMUSG0000060419	Rps16-ps2	1.51
ENSMUSG0000031066	Usp11	1.51
ENSMUSG0000025159	Mms19	1.51
ENSMUSG0000032253	Phip	1.51
ENSMUSG0000015126	0610007P22Rik	1.51
ENSMUSG0000071723	Gspt2	1.51
ENSMUSG0000024943	Smc5	1.51
ENSMUSG0000030539	Sema4b	1.51

ENSMUSG0000008200	Fnbp4	1.51
ENSMUSG0000029404	Arl6ip4	1.51
ENSMUSG0000033106	Slc7a6os	1.51
ENSMUSG0000091207	Purb	1.51
ENSMUSG0000036779	Papd5	1.51
ENSMUSG0000034731	Dgkh	1.51
ENSMUSG0000031320	Rps4x	1.51
ENSMUSG0000036026	Tmem63b	1.50
ENSMUSG0000019854	Reps1	1.50
ENSMUSG0000047407	Tgif1	1.50
ENSMUSG0000023940	Sgol1	1.50
ENSMUSG0000038702	Dsel	1.50
ENSMUSG0000053398	Phgdh	1.50
ENSMUSG0000010110	Stx5a	1.50
ENSMUSG0000028445	Enho	1.50
ENSMUSG0000042903	Foxo4	1.50
ENSMUSG0000054737	Zfp182	1.50
ENSMUSG0000025521	Tmem192	1.50
ENSMUSG0000031447	Lamp1	1.50
ENSMUSG0000073640	Rpl27-ps3	1.50
ENSMUSG0000030609	Aen	-1.50
ENSMUSG0000020808	Fam64a	-1.50
ENSMUSG0000037752	Xkr8	-1.50
ENSMUSG0000036845	Lin37	-1.50
ENSMUSG0000043671	Dpy19l3	-1.50
ENSMUSG0000022064	Pibf1	-1.50
ENSMUSG0000034573	Ptpn13	-1.50
ENSMUSG0000026754	Golga1	-1.50
ENSMUSG0000039031	Arhgap18	-1.50
ENSMUSG0000042066	Tmcc2	-1.50
ENSMUSG0000039145	Camk1d	-1.51
ENSMUSG0000071317	Bves	-1.51
ENSMUSG0000067851	Arfgef1	-1.51
ENSMUSG0000026239	Pde6d	-1.51
ENSMUSG0000048899	Rimkla	-1.51
ENSMUSG0000020439	Smtn	-1.51
ENSMUSG0000049553	Polr1a	-1.51
ENSMUSG0000038217	Tlcd2	-1.51
ENSMUSG0000025133	Ints4	-1.51
ENSMUSG0000051341	Zfp52	-1.51
ENSMUSG0000025575	Cant1	-1.51
ENSMUSG0000025384	2310003H01Rik	-1.51
ENSMUSG0000034487	Kdelc2	-1.51

ENSMUSG0000021981	Cab39I	-1.51
ENSMUSG0000021670	Hmgcr	-1.51
ENSMUSG0000032014	Oaf	-1.51
ENSMUSG0000031657	Heatr3	-1.51
ENSMUSG0000031984	2810004N23Rik	-1.51
ENSMUSG0000031548	Sfrp1	-1.51
ENSMUSG0000005871	Арс	-1.51
ENSMUSG0000033722	BC034090	-1.51
ENSMUSG0000020974	Pole2	-1.51
ENSMUSG0000063808	Gpatch1	-1.51
ENSMUSG0000026623	Lpgat1	-1.51
ENSMUSG0000037010	Apln	-1.51
ENSMUSG0000038280	Ostm1	-1.51
ENSMUSG0000028020	Glrb	-1.51
ENSMUSG0000029782	Tmem209	-1.51
ENSMUSG0000031826	Usp10	-1.51
ENSMUSG0000000958	Slc7a7	-1.51
ENSMUSG0000010554	Mettl16	-1.52
ENSMUSG0000055435	Maf	-1.52
ENSMUSG0000055963	Gm11818	-1.52
ENSMUSG0000074782	4833422C13Rik	-1.52
ENSMUSG0000070425	Trpc2	-1.52
ENSMUSG0000033458	Fan1	-1.52
ENSMUSG0000034152	Exoc3	-1.52
ENSMUSG0000020952	Scfd1	-1.52
ENSMUSG0000029633	Gm5578	-1.52
ENSMUSG0000049493	Pls1	-1.52
ENSMUSG0000031631	4933411K20Rik	-1.52
ENSMUSG0000022773	Ypel1	-1.52
ENSMUSG0000024451	Arap3	-1.52
ENSMUSG0000005672	Kit	-1.52
ENSMUSG0000041741	Pde3a	-1.52
ENSMUSG0000038371	Sbf2	-1.52
ENSMUSG0000024666	Tmem138	-1.52
ENSMUSG0000020288	Ahsa2	-1.52
ENSMUSG0000042851	Zc3h6	-1.52
ENSMUSG0000041245	Wnk3-ps	-1.52
ENSMUSG0000052137	C430048L16Rik	-1.52
ENSMUSG0000027582	Zgpat	-1.52
ENSMUSG0000061650	Med9	-1.52
ENSMUSG0000034320	Slc26a2	-1.52
ENSMUSG0000020843	Timm22	-1.52
ENSMUSG0000040034	Nup43	-1.52

ENSMUSG0000047003	Zfp41	-1.52
ENSMUSG0000027176	Cstf3	-1.52
ENSMUSG0000049680	Urgcp	-1.52
ENSMUSG0000027167	Elp4	-1.52
ENSMUSG0000028703	Lrrc41	-1.52
ENSMUSG0000025860	Xiap	-1.53
ENSMUSG0000020152	Actr2	-1.53
ENSMUSG0000022774	Ncbp2	-1.53
ENSMUSG0000037892	Pcdh18	-1.53
ENSMUSG0000055041	Commd5	-1.53
ENSMUSG0000062646	Ganc	-1.53
ENSMUSG0000055235	Wdr86	-1.53
ENSMUSG0000021756	ll6st	-1.53
ENSMUSG0000014813	Stc1	-1.53
ENSMUSG0000047409	Ctdspl	-1.53
ENSMUSG0000053985	Zfp14	-1.53
ENSMUSG0000023800	Tiam2	-1.53
ENSMUSG0000004266	Ptpn6	-1.53
ENSMUSG0000037216	Lipt1	-1.53
ENSMUSG0000038102	D030016E14Rik	-1.53
ENSMUSG0000038766	Gabpb2	-1.53
ENSMUSG0000039759	Thap3	-1.53
ENSMUSG0000072494	Ppp1r3e	-1.53
ENSMUSG0000035382	Pcsk7	-1.53
ENSMUSG0000031605	Klhl2	-1.53
ENSMUSG0000038732	Mboat1	-1.53
ENSMUSG0000020484	Xbp1	-1.53
ENSMUSG0000039062	Anpep	-1.53
ENSMUSG0000041949	Tmco7	-1.53
ENSMUSG0000036613	Tssc1	-1.54
ENSMUSG0000032977	1810008A18Rik	-1.54
ENSMUSG0000025332	Kdm5c	-1.54
ENSMUSG0000041215	Yeats2	-1.54
ENSMUSG0000030079	Ruvbl1	-1.54
ENSMUSG0000029063	Nadk	-1.54
ENSMUSG0000031171	Ftsj1	-1.54
ENSMUSG0000025171	Ubtd1	-1.54
ENSMUSG0000051674	Dcun1d4	-1.54
ENSMUSG0000042428	Mgat3	-1.54
ENSMUSG0000031634	Ufsp2	-1.54
ENSMUSG0000043015	Tmem194b	-1.54
ENSMUSG0000031367	Ap1s2	-1.54
ENSMUSG0000021540	Smad5	-1.54

ENSMUSG0000070544	Top1	-1.54
ENSMUSG0000033880	Lgals3bp	-1.54
ENSMUSG0000022960	Donson	-1.54
ENSMUSG0000037617	Spag1	-1.54
ENSMUSG0000021065	Fut8	-1.54
ENSMUSG0000026841	Fibcd1	-1.54
ENSMUSG0000032459	Mrps22	-1.54
ENSMUSG0000055652	Klhl25	-1.54
ENSMUSG0000019899	Lama2	-1.54
ENSMUSG0000031099	Smarca1	-1.54
ENSMUSG0000028700	Pomgnt1	-1.54
ENSMUSG0000042389	Tsen2	-1.54
ENSMUSG0000038762	Abcf1	-1.54
ENSMUSG0000021978	Extl3	-1.55
ENSMUSG0000000561	Wdr77	-1.55
ENSMUSG0000074876	Spata5l1	-1.55
ENSMUSG0000033732	Sf3b3	-1.55
ENSMUSG0000029916	Agk	-1.55
ENSMUSG0000034601	2700049A03Rik	-1.55
ENSMUSG0000021257	Angel1	-1.55
ENSMUSG0000025933	Tmem14a	-1.55
ENSMUSG0000026098	Pms1	-1.55
ENSMUSG0000072501	Phf20l1	-1.55
ENSMUSG0000000776	Polr3d	-1.55
ENSMUSG0000022793	B4galt4	-1.55
ENSMUSG0000020876	Snx11	-1.55
ENSMUSG0000031901	Dus2l	-1.55
ENSMUSG0000035829	Ppp1r26	-1.55
ENSMUSG0000026872	Zeb2	-1.55
ENSMUSG0000020590	Snx13	-1.55
ENSMUSG0000032244	Fem1b	-1.55
ENSMUSG0000037315	Phf16	-1.55
ENSMUSG0000054509	Parp4	-1.55
ENSMUSG0000059552	Trp53	-1.55
ENSMUSG0000026810	Dpm2	-1.55
ENSMUSG0000037669	1110057K04Rik	-1.55
ENSMUSG0000015697	Setdb1	-1.55
ENSMUSG0000025224	Gbf1	-1.55
ENSMUSG0000053801	Grwd1	-1.55
ENSMUSG0000046691	Chtf8	-1.55
ENSMUSG0000078143	Gm17344	-1.55
ENSMUSG0000024537	Psmg2	-1.55
ENSMUSG0000042225	Ammecr1	-1.55

ENSMUSG0000003559	As3mt	-1.55
ENSMUSG0000027957	Slc35a3	-1.55
ENSMUSG0000019849	Prep	-1.55
ENSMUSG0000026014	Raph1	-1.55
ENSMUSG0000013736	Trnt1	-1.55
ENSMUSG0000022514	ll1rap	-1.55
ENSMUSG0000001228	Uhrf1	-1.56
ENSMUSG0000015335	Zdhhc12	-1.56
ENSMUSG0000021266	Wars	-1.56
ENSMUSG0000029345	Tfip11	-1.56
ENSMUSG0000035051	Dhx57	-1.56
ENSMUSG0000024947	Men1	-1.56
ENSMUSG0000040549	Ckap5	-1.56
ENSMUSG0000025789	St8sia2	-1.56
ENSMUSG0000026111	Unc50	-1.56
ENSMUSG0000082585	Gm15387	-1.56
ENSMUSG0000026185	lgfbp5	-1.56
ENSMUSG0000021468	Sptlc1	-1.56
ENSMUSG0000034282	Evpl	-1.56
ENSMUSG0000001751	Naglu	-1.56
ENSMUSG0000039826	Trub2	-1.56
ENSMUSG0000005057	Sh2b2	-1.56
ENSMUSG0000019979	Apaf1	-1.56
ENSMUSG0000015971	Actr8	-1.56
ENSMUSG0000020476	Dbnl	-1.56
ENSMUSG0000022760	Thap7	-1.56
ENSMUSG0000016257	Slmo2	-1.56
ENSMUSG0000026027	Stradb	-1.56
ENSMUSG0000018923	Med11	-1.56
ENSMUSG0000072704	2700089E24Rik	-1.56
ENSMUSG0000031349	Nsdhl	-1.56
ENSMUSG0000002455	Prpf6	-1.56
ENSMUSG0000024982	Zdhhc6	-1.56
ENSMUSG0000037896	Rcor1	-1.56
ENSMUSG0000019789	Hey2	-1.56
ENSMUSG0000026784	Pdss1	-1.56
ENSMUSG0000023019	Gpd1	-1.56
ENSMUSG0000062210	Tnfaip8	-1.57
ENSMUSG0000032123	Dpagt1	-1.57
ENSMUSG0000024581	Napg	-1.57
ENSMUSG0000031891	Hsd11b2	-1.57
ENSMUSG0000024816	Frmd8	-1.57
ENSMUSG0000061559	Wdr61	-1.57

ENSMUSG0000026042	Col5a2	-1.57
ENSMUSG0000079605	Zbtb9	-1.57
ENSMUSG0000050931	Sgms2	-1.57
ENSMUSG0000040896	Kcnd3	-1.57
ENSMUSG0000030447	Cyfip1	-1.57
ENSMUSG0000079662	Ntn3	-1.57
ENSMUSG0000032418	Me1	-1.57
ENSMUSG0000026675	Hsd17b7	-1.57
ENSMUSG0000022528	Hes1	-1.57
ENSMUSG0000002820	Atg4d	-1.57
ENSMUSG0000060548	Tnfrsf19	-1.57
ENSMUSG0000049672	Zfp161	-1.57
ENSMUSG0000022951	Rcan1	-1.57
ENSMUSG0000026249	Serpine2	-1.57
ENSMUSG0000025782	Taf3	-1.57
ENSMUSG0000036377	C530008M17Rik	-1.57
ENSMUSG0000067034	Zfp960	-1.57
ENSMUSG0000006705	Pknox1	-1.57
ENSMUSG0000031681	Smad1	-1.57
ENSMUSG0000046947	Adck2	-1.57
ENSMUSG0000010651	Acaa1b	-1.57
ENSMUSG0000040621	Gemin8	-1.57
ENSMUSG0000014606	Slc25a11	-1.57
ENSMUSG0000026439	Rbbp5	-1.57
ENSMUSG0000074166	AW146154	-1.58
ENSMUSG0000031974	Abcb10	-1.58
ENSMUSG0000026443	Lrrn2	-1.58
ENSMUSG0000023066	Rttn	-1.58
ENSMUSG0000035161	Ints6	-1.58
ENSMUSG0000040195	Tmem194	-1.58
ENSMUSG0000063281	Zfp35	-1.58
ENSMUSG0000021597	Ankrd32	-1.58
ENSMUSG0000008763	Man1a2	-1.58
ENSMUSG0000040687	Madd	-1.58
ENSMUSG0000020075	Ddx21	-1.58
ENSMUSG0000020392	Cdkn2aipnl	-1.58
ENSMUSG0000044095	2410075B13Rik	-1.58
ENSMUSG0000031823	Zdhhc7	-1.58
ENSMUSG0000026657	Frmd4a	-1.58
ENSMUSG0000020640	ltsn2	-1.58
ENSMUSG0000031617	Tmem184c	-1.58
ENSMUSG0000022090	Pdlim2	-1.58
ENSMUSG0000028497	Ptplad2	-1.58

ENSMUSG0000035495	Tstd2	-1.58
ENSMUSG0000033906	Zdhhc15	-1.58
ENSMUSG0000040928	S100pbp	-1.58
ENSMUSG0000035845	Alg12	-1.58
ENSMUSG0000020457	Drg1	-1.58
ENSMUSG0000041671	Pyroxd1	-1.58
ENSMUSG0000038024	Dennd4c	-1.58
ENSMUSG0000040774	Cept1	-1.58
ENSMUSG0000071350	Setdb2	-1.59
ENSMUSG0000032952	Ap4b1	-1.59
ENSMUSG0000040383	Aqr	-1.59
ENSMUSG0000035933	Cog5	-1.59
ENSMUSG0000027001	Dusp19	-1.59
ENSMUSG0000028188	Spata1	-1.59
ENSMUSG0000052214	Opa3	-1.59
ENSMUSG0000075227	Znhit2-ps	-1.59
ENSMUSG0000056941	Commd7	-1.59
ENSMUSG0000031072	Oraov1	-1.59
ENSMUSG0000029376	Mthfd2l	-1.59
ENSMUSG0000057098	Ebf1	-1.59
ENSMUSG0000031309	Rps6ka3	-1.59
ENSMUSG0000039242	B3galnt2	-1.59
ENSMUSG0000027286	Lrrc57	-1.59
ENSMUSG0000035109	Shc4	-1.59
ENSMUSG0000066357	Wdr6	-1.59
ENSMUSG0000029474	Rnf34	-1.59
ENSMUSG0000028127	Abcd3	-1.59
ENSMUSG0000042292	Mkl1	-1.59
ENSMUSG0000079444	Prickle4	-1.59
ENSMUSG0000021583	Erap1	-1.59
ENSMUSG0000003062	Stard3nl	-1.59
ENSMUSG0000086040	Wipf3	-1.59
ENSMUSG0000039697	Ncoa7	-1.59
ENSMUSG0000010529	Gm266	-1.59
ENSMUSG0000029141	Slc4a1ap	-1.59
ENSMUSG0000023032	Slc4a8	-1.59
ENSMUSG0000035310	Lin54	-1.59
ENSMUSG0000030084	Plxna1	-1.59
ENSMUSG0000025006	Sorbs1	-1.59
ENSMUSG0000042821	Snai1	-1.59
ENSMUSG0000027822	Slc33a1	-1.59
ENSMUSG0000047821	Trim16	-1.60
ENSMUSG0000031534	AI316807	-1.60

ENSMUSG0000022300	Dcaf13	-1.60
ENSMUSG0000031583	Wrn	-1.60
ENSMUSG0000035239	Neu3	-1.60
ENSMUSG0000033009	Ogfod1	-1.60
ENSMUSG0000033216	Eefsec	-1.60
ENSMUSG0000023961	Enpp4	-1.60
ENSMUSG0000038482	Tfdp1	-1.60
ENSMUSG0000028243	Ubxn2b	-1.60
ENSMUSG0000039115	Itga9	-1.60
ENSMUSG0000030850	Ate1	-1.60
ENSMUSG0000006463	Zdhhc24	-1.60
ENSMUSG0000042569	Dhrs7b	-1.60
ENSMUSG0000036430	Tbcc	-1.60
ENSMUSG0000001823	Hoxd12	-1.60
ENSMUSG0000086780	Gm16707	-1.60
ENSMUSG0000021816	Ppp3cb	-1.60
ENSMUSG0000034379	Wdr5b	-1.60
ENSMUSG0000029502	Golga3	-1.60
ENSMUSG0000026767	Fam188a	-1.60
ENSMUSG0000038668	Lpar1	-1.60
ENSMUSG0000021611	Tert	-1.60
ENSMUSG0000032911	Cspg4	-1.60
ENSMUSG0000054519	Zfp867	-1.60
ENSMUSG0000035133	Arhgap5	-1.61
ENSMUSG0000003623	Crot	-1.61
ENSMUSG0000032571	Pik3r4	-1.61
ENSMUSG0000028436	Dcaf12	-1.61
ENSMUSG0000041605	5730559C18Rik	-1.61
ENSMUSG0000029575	Mmab	-1.61
ENSMUSG0000025184	D19Ertd386e	-1.61
ENSMUSG0000019577	Pdk4	-1.61
ENSMUSG0000027695	Pld1	-1.61
ENSMUSG0000028414	Fktn	-1.61
ENSMUSG0000024135	Srbd1	-1.61
ENSMUSG0000074030	Exoc8	-1.61
ENSMUSG0000029725	Ppp1r35	-1.61
ENSMUSG0000027259	Adal	-1.61
ENSMUSG0000060862	Zbtb40	-1.61
ENSMUSG0000041112	Elmo1	-1.61
ENSMUSG0000078908	Mon1b	-1.61
ENSMUSG0000026589	Sec16b	-1.61
ENSMUSG0000024170	Telo2	-1.61
ENSMUSG0000032026	Rexo2	-1.61
ENSMUSG0000078786	BC024978	-1.61
-------------------	---------------	-------
ENSMUSG0000021532	Fastkd3	-1.61
ENSMUSG0000056131	Pgm3	-1.61
ENSMUSG0000030780	BC017158	-1.61
ENSMUSG0000023330	Dtwd1	-1.62
ENSMUSG0000033799	BC016423	-1.62
ENSMUSG0000039157	Fam102a	-1.62
ENSMUSG0000032058	Ppp2r1b	-1.62
ENSMUSG0000091512	Lamtor3	-1.62
ENSMUSG0000028295	1810030N24Rik	-1.62
ENSMUSG0000029669	Tspan12	-1.62
ENSMUSG0000028212	Ccne2	-1.62
ENSMUSG0000031684	Slc10a7	-1.62
ENSMUSG0000001661	Hoxc6	-1.62
ENSMUSG0000035367	Rmi1	-1.62
ENSMUSG0000036955	2510003E04Rik	-1.62
ENSMUSG0000038495	Otud7b	-1.62
ENSMUSG0000021068	Nin	-1.62
ENSMUSG0000002617	Zfp40	-1.62
ENSMUSG0000035441	Myo1d	-1.62
ENSMUSG0000079450	3110007F17Rik	-1.62
ENSMUSG0000075419	Dolk	-1.62
ENSMUSG0000022106	Rcbtb2	-1.62
ENSMUSG0000034684	Sema3f	-1.62
ENSMUSG0000032849	Abcc4	-1.62
ENSMUSG0000027993	Trim2	-1.62
ENSMUSG0000043065	Spice1	-1.63
ENSMUSG0000024472	Dcp2	-1.63
ENSMUSG0000016181	Diexf	-1.63
ENSMUSG0000020817	Rabep1	-1.63
ENSMUSG0000024483	Ankhd1	-1.63
ENSMUSG0000023277	Twf2	-1.63
ENSMUSG0000027944	Hax1	-1.63
ENSMUSG0000031060	Rbm10	-1.63
ENSMUSG0000041278	Ttc1	-1.63
ENSMUSG0000013646	Sh3bp5l	-1.63
ENSMUSG0000034274	Thoc5	-1.63
ENSMUSG0000027312	Atrn	-1.63
ENSMUSG0000070814	6330408A02Rik	-1.63
ENSMUSG0000090290	Gm17296	-1.63
ENSMUSG0000075703	Ept1	-1.63
ENSMUSG0000001065	Zfp276	-1.63
ENSMUSG0000035311	Gnptab	-1.63

ENSMUSG0000002718	Cse1l	-1.63
ENSMUSG0000020305	Asb3	-1.63
ENSMUSG0000033557	Fam20b	-1.63
ENSMUSG0000021408	Ripk1	-1.63
ENSMUSG0000031924	Cyb5b	-1.63
ENSMUSG0000039103	Nexn	-1.64
ENSMUSG0000021327	Zkscan3	-1.64
ENSMUSG0000041684	Bivm	-1.64
ENSMUSG0000034021	Pds5b	-1.64
ENSMUSG0000026933	Camsap1	-1.64
ENSMUSG0000039047	Pigk	-1.64
ENSMUSG0000030042	Pole4	-1.64
ENSMUSG0000028690	Mmachc	-1.64
ENSMUSG0000026918	Brd3	-1.64
ENSMUSG0000034800	Zfp661	-1.64
ENSMUSG0000078496	Gm13152	-1.64
ENSMUSG0000052299	Ltn1	-1.64
ENSMUSG0000015112	Slc25a13	-1.64
ENSMUSG0000035234	Fam175a	-1.64
ENSMUSG0000025995	Wdr75	-1.64
ENSMUSG0000039050	Osbpl2	-1.64
ENSMUSG0000026799	Med27	-1.64
ENSMUSG0000040836	Gpr161	-1.64
ENSMUSG0000021036	Sptlc2	-1.64
ENSMUSG0000025821	Zfp282	-1.64
ENSMUSG0000032786	Alas1	-1.64
ENSMUSG0000026275	Ppp1r7	-1.64
ENSMUSG0000039275	Foxk2	-1.64
ENSMUSG0000042063	Zfp386	-1.64
ENSMUSG0000041426	Hibch	-1.64
ENSMUSG0000039936	Pik3cd	-1.64
ENSMUSG0000034105	4632415K11Rik	-1.64
ENSMUSG0000028779	Pef1	-1.64
ENSMUSG0000038023	Atp6v0a2	-1.64
ENSMUSG0000046550	Spin2	-1.64
ENSMUSG0000037029	Zfp146	-1.64
ENSMUSG0000024976	Shoc2	-1.64
ENSMUSG0000001785	Pwp1	-1.64
ENSMUSG0000022401	Хрпрер3	-1.65
ENSMUSG0000026627	Tmem206	-1.65
ENSMUSG00000044991	1110034G24Rik	-1.65
ENSMUSG0000055172	C1ra	-1.65
ENSMUSG0000047230	Cldn2	-1.65

ENSMUSG0000020032	Nuak1	-1.65
ENSMUSG0000031616	Ednra	-1.65
ENSMUSG0000004018	Fancl	-1.65
ENSMUSG0000040236	Trappc5	-1.65
ENSMUSG0000029438	Bcl7a	-1.65
ENSMUSG0000027353	Mcm8	-1.65
ENSMUSG0000022197	Pdzd2	-1.65
ENSMUSG0000044442	N6amt1	-1.65
ENSMUSG0000021760	Gpx8	-1.65
ENSMUSG0000023022	Lima1	-1.65
ENSMUSG0000051615	Rap2a	-1.65
ENSMUSG0000029270	Fam69a	-1.65
ENSMUSG0000040521	Tsfm	-1.65
ENSMUSG0000022797	Tfrc	-1.65
ENSMUSG0000078878	Gm14305	-1.65
ENSMUSG0000061536	Sec22c	-1.65
ENSMUSG0000045281	Gpr20	-1.65
ENSMUSG0000004631	Sgce	-1.65
ENSMUSG0000019303	Psmc3ip	-1.65
ENSMUSG0000026663	Atf6	-1.66
ENSMUSG0000070643	Sox13	-1.66
ENSMUSG0000039065	Fam173b	-1.66
ENSMUSG0000059981	Taok2	-1.66
ENSMUSG0000091244	Gm17690	-1.66
ENSMUSG0000057103	Cml1	-1.66
ENSMUSG0000025962	Fastkd2	-1.66
ENSMUSG0000018547	Pip4k2b	-1.66
ENSMUSG0000038046	Rnmtl1	-1.66
ENSMUSG0000032512	Wdr48	-1.66
ENSMUSG0000067430	Zfp763	-1.66
ENSMUSG0000026174	Rqcd1	-1.66
ENSMUSG0000078584	AU022252	-1.66
ENSMUSG0000033624	Pdpr	-1.66
ENSMUSG0000028890	Mtf1	-1.66
ENSMUSG0000025722	Wdr73	-1.66
ENSMUSG0000002227	Mov10	-1.66
ENSMUSG0000042042	Csgalnact2	-1.66
ENSMUSG0000045268	Zfp691	-1.66
ENSMUSG0000031916	Cog8	-1.66
ENSMUSG0000029580	Actb	-1.67
ENSMUSG0000020387	Phf15	-1.67
ENSMUSG0000032177	Pde4a	-1.67
ENSMUSG0000070780	Rbm47	-1.67

ENSMUSG0000025209	Peo1	-1.67
ENSMUSG0000022682	Rrn3	-1.67
ENSMUSG0000026339	Ccdc93	-1.67
ENSMUSG0000086084	2610528B01Rik	-1.67
ENSMUSG0000036291	Mudeng	-1.67
ENSMUSG0000019796	Lrp11	-1.67
ENSMUSG0000028016	Ints12	-1.67
ENSMUSG0000043008	Klhl6	-1.67
ENSMUSG0000034040	Wbscr17	-1.67
ENSMUSG0000000884	Gnb1l	-1.67
ENSMUSG0000068134	Zfp120	-1.67
ENSMUSG0000025050	Pcgf6	-1.67
ENSMUSG0000024969	Mark2	-1.67
ENSMUSG0000038072	Galnt11	-1.67
ENSMUSG0000044513	9930014A18Rik	-1.67
ENSMUSG0000078902	Gm14443	-1.67
ENSMUSG0000028197	Col24a1	-1.67
ENSMUSG0000036850	Mrpl41	-1.67
ENSMUSG0000001119	Col6a1	-1.67
ENSMUSG0000031925	Maml2	-1.67
ENSMUSG0000046079	Lrrc8d	-1.68
ENSMUSG0000036959	Bcorl1	-1.68
ENSMUSG0000022472	Pppde2	-1.68
ENSMUSG0000000127	Fer	-1.68
ENSMUSG0000063683	Glyat	-1.68
ENSMUSG0000034854	Mfsd12	-1.68
ENSMUSG0000031216	Stard8	-1.68
ENSMUSG0000019699	Akt3	-1.68
ENSMUSG00000044707	Ccnjl	-1.68
ENSMUSG0000041199	Rpusd1	-1.68
ENSMUSG0000035045	Zc3h12b	-1.68
ENSMUSG0000029338	Antxr2	-1.68
ENSMUSG0000025076	Casp7	-1.68
ENSMUSG0000039100	March6	-1.68
ENSMUSG0000003184	Irf3	-1.68
ENSMUSG0000032468	Armc8	-1.68
ENSMUSG0000034321	Exosc1	-1.68
ENSMUSG0000027469	Tpx2	-1.68
ENSMUSG0000022299	Slc25a32	-1.68
ENSMUSG0000004609	Cd33	-1.68
ENSMUSG0000021263	Degs2	-1.68
ENSMUSG0000037426	Depdc5	-1.68
ENSMUSG0000005958	Ephb3	-1.68

ENSMUSG0000040389	Wdr47	-1.69
ENSMUSG0000052533	Nup188	-1.69
ENSMUSG0000002147	Stat6	-1.69
ENSMUSG0000003234	Abcf3	-1.69
ENSMUSG0000075254	Heg1	-1.69
ENSMUSG0000030051	Aplf	-1.69
ENSMUSG0000073393	B230354K17Rik	-1.69
ENSMUSG0000051786	Tubgcp6	-1.69
ENSMUSG0000021418	Rpp40	-1.69
ENSMUSG0000029594	Rbm19	-1.69
ENSMUSG0000005225	Plekha8	-1.69
ENSMUSG0000032409	Atr	-1.69
ENSMUSG0000050930	4933403G14Rik	-1.69
ENSMUSG0000022515	Anks3	-1.69
ENSMUSG0000078862	Gm14326	-1.69
ENSMUSG0000027699	Ect2	-1.69
ENSMUSG0000035401	2210018M11Rik	-1.69
ENSMUSG0000029283	Cdc7	-1.69
ENSMUSG0000046096	BC030336	-1.69
ENSMUSG0000072640	1810012P15Rik	-1.69
ENSMUSG0000031093	Dock11	-1.69
ENSMUSG0000018733	Pex12	-1.69
ENSMUSG0000070348	Ccnd1	-1.69
ENSMUSG0000033222	Ttf2	-1.69
ENSMUSG0000041231	Ublcp1	-1.70
ENSMUSG0000071855	Ccdc112	-1.70
ENSMUSG0000029471	Camkk2	-1.70
ENSMUSG0000045312	Lhfpl2	-1.70
ENSMUSG0000036931	Nfkbid	-1.70
ENSMUSG0000035498	Cdcp1	-1.70
ENSMUSG0000074582	Arfgef2	-1.70
ENSMUSG0000068551	Zfp467	-1.70
ENSMUSG0000035504	Reep6	-1.70
ENSMUSG0000045103	Dmd	-1.70
ENSMUSG0000024246	Thumpd2	-1.70
ENSMUSG0000026740	Dnajc1	-1.70
ENSMUSG0000028771	Ptpn12	-1.70
ENSMUSG0000038893	Fam117a	-1.70
ENSMUSG0000006390	Elovl1	-1.70
ENSMUSG0000028683	Eif2b3	-1.70
ENSMUSG0000040616	Tmem51	-1.70
ENSMUSG0000022711	Pmm2	-1.70
ENSMUSG0000026575	Nme7	-1.70

ENSMUSG0000036892	Prodh2	-1.70
ENSMUSG0000074634	Gm7120	-1.70
ENSMUSG0000026806	Ddx31	-1.70
ENSMUSG0000022228	Zfp187	-1.70
ENSMUSG0000025940	Tmem70	-1.70
ENSMUSG0000018599	Smcr7	-1.70
ENSMUSG0000031196	F8	-1.70
ENSMUSG0000031935	Med17	-1.70
ENSMUSG0000045980	Tmem104	-1.70
ENSMUSG0000024236	Svil	-1.71
ENSMUSG0000000194	Gpr107	-1.71
ENSMUSG0000033728	Lrrc14	-1.71
ENSMUSG0000042793	Lgr6	-1.71
ENSMUSG0000026078	Pdcl3	-1.71
ENSMUSG0000046516	Cox17	-1.71
ENSMUSG0000028675	Pnrc2	-1.71
ENSMUSG0000031375	Bgn	-1.71
ENSMUSG0000029657	Hsph1	-1.71
ENSMUSG0000046808	Atp10d	-1.71
ENSMUSG0000036339	6720456H20Rik	-1.71
ENSMUSG0000050619	Zscan29	-1.71
ENSMUSG0000038563	Eftud1	-1.71
ENSMUSG0000056234	Ncoa4	-1.71
ENSMUSG0000018334	Ksr1	-1.71
ENSMUSG0000074807	Gm10762	-1.71
ENSMUSG0000024065	Ehd3	-1.71
ENSMUSG0000042155	Klhl23	-1.71
ENSMUSG0000050132	Sarm1	-1.71
ENSMUSG0000035376	Ptplb	-1.71
ENSMUSG0000068114	Ccdc134	-1.72
ENSMUSG0000025644	Gm7628	-1.72
ENSMUSG0000028088	Fmo5	-1.72
ENSMUSG0000070426	Rnf121	-1.72
ENSMUSG0000022911	Arl13b	-1.72
ENSMUSG0000005501	Usp40	-1.72
ENSMUSG0000027080	Med19	-1.72
ENSMUSG0000030282	Cmas	-1.72
ENSMUSG0000028621	Cyb5rl	-1.72
ENSMUSG0000023959	Clic5	-1.72
ENSMUSG0000008575	Nfib	-1.72
ENSMUSG0000017376	Nlk	-1.72
ENSMUSG0000084867	Enox	-1.72
ENSMUSG0000041406	BC055324	-1.72

ENSMUSG0000025277	Abhd6	-1.73
ENSMUSG0000055228	Zfp935	-1.73
ENSMUSG0000026709	Dars2	-1.73
ENSMUSG0000031864	Ints10	-1.73
ENSMUSG0000029687	Ezh2	-1.73
ENSMUSG0000065979	Cpped1	-1.73
ENSMUSG0000086635	4932415G12Rik	-1.73
ENSMUSG0000030170	Wnt5b	-1.73
ENSMUSG0000033578	Tmem35	-1.73
ENSMUSG0000020605	Hs1bp3	-1.73
ENSMUSG0000042745	ld1	-1.73
ENSMUSG0000041954	Tnfrsf18	-1.73
ENSMUSG0000037458	Azin1	-1.73
ENSMUSG0000027650	Tti1	-1.73
ENSMUSG0000038368	BC057079	-1.73
ENSMUSG0000047867	Gimap6	-1.73
ENSMUSG0000015747	Vps45	-1.73
ENSMUSG0000040105	Ppapdc2	-1.73
ENSMUSG0000024007	Ppil1	-1.73
ENSMUSG0000054640	Slc8a1	-1.73
ENSMUSG0000074384	AI429214	-1.74
ENSMUSG0000041390	Mdfic	-1.74
ENSMUSG0000021185	9030617003Rik	-1.74
ENSMUSG0000040102	Klhdc5	-1.74
ENSMUSG0000032560	Dnajc13	-1.74
ENSMUSG0000037098	Rab11fip3	-1.74
ENSMUSG0000020744	Slc25a19	-1.74
ENSMUSG0000035181	Heatr5a	-1.74
ENSMUSG0000038305	Spats2l	-1.74
ENSMUSG0000040209	Zfp704	-1.74
ENSMUSG0000041729	Coro2b	-1.74
ENSMUSG0000053950	Adnp2	-1.74
ENSMUSG0000042918	Mamstr	-1.74
ENSMUSG0000026585	Kifap3	-1.74
ENSMUSG0000046768	Rhoj	-1.74
ENSMUSG0000078970	Wdr92	-1.74
ENSMUSG0000029851	Fam115c	-1.74
ENSMUSG0000038119	Cdon	-1.74
ENSMUSG0000048481	Mynon	-1.74
	Ινιγρορ	
ENSMUSG0000020003	Pex7	-1.74
ENSMUSG0000020003 ENSMUSG0000037972	Pex7 Snn	-1.74 -1.74
ENSMUSG0000020003 ENSMUSG00000037972 ENSMUSG00000047654	Pex7 Snn Tssk6	-1.74 -1.74 -1.75

ENSMUSG0000031951	Tmem231	-1.75
ENSMUSG0000031539	Ap3m2	-1.75
ENSMUSG0000045725	Prr15	-1.75
ENSMUSG0000056602	Fry	-1.75
ENSMUSG0000090523	Gypc	-1.75
ENSMUSG0000030213	Atf7ip	-1.75
ENSMUSG0000056753	C330011M18Rik	-1.75
ENSMUSG0000033857	Engase	-1.75
ENSMUSG0000027088	Phospho2	-1.75
ENSMUSG0000021850	1700011H14Rik	-1.75
ENSMUSG0000026942	Traf2	-1.75
ENSMUSG0000022684	Bfar	-1.75
ENSMUSG0000018750	Zbtb4	-1.75
ENSMUSG0000007646	Rad51c	-1.75
ENSMUSG0000026004	1110028C15Rik	-1.75
ENSMUSG0000031380	Figf	-1.75
ENSMUSG0000005897	Nr2c1	-1.75
ENSMUSG0000042680	Fam59a	-1.75
ENSMUSG0000041594	Tmtc4	-1.75
ENSMUSG0000033985	Tesk2	-1.76
ENSMUSG0000066880	Zfp617	-1.76
ENSMUSG0000018661	Cog1	-1.76
ENSMUSG0000022144	Gdnf	-1.76
ENSMUSG0000081126	Gm15784	-1.76
ENSMUSG0000029407	Uso1	-1.76
ENSMUSG0000074916	Chst14	-1.76
ENSMUSG0000005514	Por	-1.76
ENSMUSG0000033610	Pank1	-1.76
ENSMUSG0000012076	Brms1l	-1.76
ENSMUSG0000036667	Fam115a	-1.76
ENSMUSG0000026976	Pax8	-1.76
ENSMUSG0000037946	Fgd3	-1.76
ENSMUSG0000075028	Prdm11	-1.76
ENSMUSG0000067928	Zfp760	-1.76
ENSMUSG0000041498	Kif14	-1.76
ENSMUSG0000054252	Fgfr3	-1.76
ENSMUSG0000022195	6030458C11Rik	-1.76
ENSMUSG0000090015	Gm15446	-1.76
ENSMUSG0000046167	Gldn	-1.76
ENSMUSG0000034066	Farp2	-1.77
ENSMUSG0000027357	Crls1	-1.77
ENSMUSG0000010721	Lmbr1	-1.77
ENSMUSG0000063895	Nupl1	-1.77

ENSMUSG0000022575	Gsdmd	-1.77
ENSMUSG0000019832	Rab32	-1.77
ENSMUSG0000024082	2410091C18Rik	-1.77
ENSMUSG0000029263	Pigg	-1.77
ENSMUSG0000032092	Mpzl2	-1.77
ENSMUSG0000033739	Fkbpl	-1.77
ENSMUSG0000042473	Tbc1d8b	-1.77
ENSMUSG0000048000	Gigyf2	-1.77
ENSMUSG0000039063	Echdc3	-1.77
ENSMUSG0000032579	Hemk1	-1.77
ENSMUSG0000004044	Ptrf	-1.77
ENSMUSG0000071653	1810009A15Rik	-1.77
ENSMUSG0000022849	Hspbap1	-1.77
ENSMUSG0000074519	Etohi1	-1.77
ENSMUSG0000062040	Zfp27	-1.77
ENSMUSG0000043162	Pigy	-1.77
ENSMUSG0000046027	Stard5	-1.78
ENSMUSG0000019948	Actr6	-1.78
ENSMUSG0000074024	4632427E13Rik	-1.78
ENSMUSG0000085214	0610005C13Rik	-1.78
ENSMUSG0000038009	Dnajc22	-1.78
ENSMUSG0000045519	Zfp560	-1.78
ENSMUSG0000032757	Bet1	-1.78
ENSMUSG0000078877	Gm14295	-1.78
ENSMUSG0000061353	Cxcl12	-1.78
ENSMUSG0000017446	C1qtnf1	-1.78
ENSMUSG0000049904	Tmem17	-1.78
ENSMUSG0000043419	A030009H04Rik	-1.78
ENSMUSG0000072770	Acrbp	-1.78
ENSMUSG0000001440	Kpnb1	-1.78
ENSMUSG0000016520	Lnx2	-1.78
ENSMUSG0000043964	Orai3	-1.78
ENSMUSG0000027865	Gdap2	-1.78
ENSMUSG0000020962	Gtf2a1	-1.78
ENSMUSG0000029722	Agfg2	-1.78
ENSMUSG0000003680	Taf6l	-1.78
ENSMUSG0000050666	E130203B14Rik	-1.78
ENSMUSG0000031767	Nudt7	-1.79
ENSMUSG0000020441	2310033P09Rik	-1.79
ENSMUSG0000085814	1810014B01Rik	-1.79
ENSMUSG0000056481	Cd248	-1.79
ENSMUSG0000000530	Acvrl1	-1.79
ENSMUSG0000056919	4922501C03Rik	-1.79

ENSMUSG0000034981	Parm1	-1.79
ENSMUSG0000022962	Gart	-1.79
ENSMUSG0000049307	Fut4	-1.79
ENSMUSG0000036412	Arsi	-1.79
ENSMUSG0000042961	Egflam	-1.79
ENSMUSG0000022887	Masp1	-1.79
ENSMUSG0000032537	Ephb1	-1.79
ENSMUSG0000024421	Lama3	-1.79
ENSMUSG0000055334	Snupn	-1.79
ENSMUSG0000018995	Nars2	-1.79
ENSMUSG0000032502	Stac	-1.80
ENSMUSG0000060397	Zfp128	-1.80
ENSMUSG0000040170	Fmo2	-1.80
ENSMUSG0000054517	Trim65	-1.80
ENSMUSG0000020993	Trappc6b	-1.80
ENSMUSG0000030220	Arhgdib	-1.80
ENSMUSG0000075411	Bin2	-1.80
ENSMUSG0000070282	3000002C10Rik	-1.80
ENSMUSG0000059000	Zfp799	-1.80
ENSMUSG0000003228	Grk5	-1.80
ENSMUSG0000032834	Pwp2	-1.80
ENSMUSG0000050945	Zfp438	-1.80
ENSMUSG0000017801	Mlx	-1.80
ENSMUSG0000056216	Cebpg	-1.80
ENSMUSG0000041762	Gpr155	-1.80
ENSMUSG0000025602	Zfp202	-1.80
ENSMUSG0000032000	Birc3	-1.80
ENSMUSG0000033499	Larp4b	-1.80
ENSMUSG0000032580	Rbm5	-1.80
ENSMUSG0000029638	Glcci1	-1.80
ENSMUSG0000057842	Zfp595	-1.80
ENSMUSG0000034853	Acot11	-1.80
ENSMUSG000000093	Tbx2	-1.80
ENSMUSG0000070509	Rgma	-1.80
ENSMUSG0000026245	Farsb	-1.80
ENSMUSG0000052446	Zfp961	-1.80
ENSMUSG0000039286	Fndc3b	-1.80
ENSMUSG0000039519	Cyp7b1	-1.80
ENSMUSG0000020520	Galnt10	-1.80
ENSMUSG0000022742	Срох	-1.80
ENSMUSG0000029047	Pex10	-1.81
ENSMUSG0000022335	Zfat	-1.81
ENSMUSG0000024899	Papss2	-1.81

ENSMUSG0000020638	Cmpk2	-1.81
ENSMUSG0000000142	Axin2	-1.81
ENSMUSG0000036580	Spg20	-1.81
ENSMUSG0000049858	Suox	-1.81
ENSMUSG0000078931	Pdf	-1.81
ENSMUSG0000041632	Mrps27	-1.81
ENSMUSG0000047342	Zfp286	-1.81
ENSMUSG0000042228	Lyn	-1.81
ENSMUSG0000004798	Ulk2	-1.81
ENSMUSG0000018740	Slc25a35	-1.81
ENSMUSG0000041559	Fmod	-1.81
ENSMUSG0000019814	Ltv1	-1.82
ENSMUSG0000039206	Daglb	-1.82
ENSMUSG0000078872	Gm14401	-1.82
ENSMUSG0000005774	Rfx5	-1.82
ENSMUSG0000020272	Stk10	-1.82
ENSMUSG0000022131	Gpr180	-1.82
ENSMUSG0000068566	Myadm	-1.82
ENSMUSG0000030613	Ccdc90b	-1.82
ENSMUSG0000056204	Pgpep1	-1.82
ENSMUSG0000027882	Stxbp3a	-1.82
ENSMUSG0000051671	1810063B05Rik	-1.82
ENSMUSG0000078853	lgtp	-1.82
ENSMUSG0000051351	Zfp46	-1.82
ENSMUSG0000026088	Mitd1	-1.82
ENSMUSG0000025937	Lactb2	-1.82
ENSMUSG0000084128	Esrp2	-1.82
ENSMUSG0000034764	1700006J14Rik	-1.82
ENSMUSG0000030218	Mgp	-1.82
ENSMUSG0000031723	Txnl4b	-1.82
ENSMUSG0000031934	Panx1	-1.82
ENSMUSG0000022560	Slc52a2	-1.82
ENSMUSG0000069713	4933406P04Rik	-1.82
ENSMUSG0000056310	Tyw1	-1.83
ENSMUSG0000037813	D630003M21Rik	-1.83
ENSMUSG0000079469	Pigb	-1.83
ENSMUSG0000022790	lgsf11	-1.83
ENSMUSG0000030752	Jmjd5	-1.83
ENSMUSG0000032470	Mras	-1.83
ENSMUSG0000035704	Alg8	-1.83
ENSMUSG0000000532	Acvr1b	-1.83
ENSMUSG0000036334	lgsf10	-1.83
ENSMUSG0000038080	Kdm1b	-1.83

ENSMUSG0000026180	Cxcr2	-1.83
ENSMUSG0000030264	Thumpd3	-1.83
ENSMUSG0000020706	Ftsj3	-1.83
ENSMUSG0000060090	Rp2h	-1.83
ENSMUSG0000020644	ld2	-1.83
ENSMUSG0000002458	Rgs19	-1.83
ENSMUSG0000021697	Depdc1b	-1.83
ENSMUSG0000061544	Zfp229	-1.84
ENSMUSG0000057982	Zfp809	-1.84
ENSMUSG0000027933	Ints3	-1.84
ENSMUSG0000020652	Cenpo	-1.84
ENSMUSG0000024378	Stard4	-1.84
ENSMUSG0000028678	Kif2c	-1.84
ENSMUSG0000024083	Pja2	-1.84
ENSMUSG0000022952	Runx1	-1.84
ENSMUSG0000079144	A130010J15Rik	-1.84
ENSMUSG0000034453	Polr3b	-1.84
ENSMUSG0000020241	Col6a2	-1.84
ENSMUSG0000068270	Shroom4	-1.84
ENSMUSG0000039116	Gpr126	-1.84
ENSMUSG0000019124	Scrn1	-1.85
ENSMUSG0000026694	Mettl13	-1.85
ENSMUSG0000032342	Mto1	-1.85
ENSMUSG0000035305	Ror1	-1.85
ENSMUSG0000029209	Gnpda2	-1.85
ENSMUSG0000059401	Mamld1	-1.85
ENSMUSG0000079334	Nat6	-1.85
ENSMUSG0000074867	Zfp808	-1.85
ENSMUSG0000045237	1110012L19Rik	-1.85
ENSMUSG0000032478	Nme6	-1.85
ENSMUSG0000040690	Col16a1	-1.85
ENSMUSG0000090125	Pou3f1	-1.85
ENSMUSG0000035351	Nup37	-1.85
ENSMUSG0000025421	Hdhd2	-1.86
ENSMUSG0000074865	Zfp934	-1.86
ENSMUSG0000020864	Ankrd40	-1.86
ENSMUSG0000048960	Prex2	-1.86
ENSMUSG0000022718	Dgcr8	-1.86
ENSMUSG0000030451	Herc2	-1.86
ENSMUSG0000060314	Zfp941	-1.86
ENSMUSG0000073858	Itpripl2	-1.86
ENSMUSG0000032806	Slc10a3	-1.86
ENSMUSG0000050244	Heatr1	-1.86

ENSMUSG0000028688	Toe1	-1.86
ENSMUSG0000027387	Zc3h8	-1.86
ENSMUSG0000020697	Lig3	-1.86
ENSMUSG0000066735	Vkorc1l1	-1.87
ENSMUSG0000037275	Gemin5	-1.87
ENSMUSG0000003198	Zfp959	-1.87
ENSMUSG0000039055	Eme1	-1.87
ENSMUSG0000033111	3830406C13Rik	-1.87
ENSMUSG0000023886	Smoc2	-1.87
ENSMUSG0000051238	2310047B19Rik	-1.87
ENSMUSG0000052085	Dock8	-1.87
ENSMUSG0000037206	Islr	-1.87
ENSMUSG0000032590	Apeh	-1.87
ENSMUSG0000003037	Rab8a	-1.87
ENSMUSG0000074671	Tspyl3	-1.87
ENSMUSG0000008429	Herpud2	-1.87
ENSMUSG0000031652	N4bp1	-1.87
ENSMUSG0000019779	Frk	-1.88
ENSMUSG0000020648	Dus4l	-1.88
ENSMUSG0000042505	Acn9	-1.88
ENSMUSG0000044501	Zfp758	-1.88
ENSMUSG0000005103	Wdr1	-1.88
ENSMUSG0000028007	Snx7	-1.88
ENSMUSG0000022351	Sqle	-1.88
ENSMUSG0000037151	Lrrc20	-1.88
ENSMUSG0000016128	Stard13	-1.88
ENSMUSG0000032883	Acsl3	-1.88
ENSMUSG0000040651	D14Abb1e	-1.88
ENSMUSG0000025326	Ube3a	-1.88
ENSMUSG0000000876	Pxmp4	-1.88
ENSMUSG0000041417	Pik3r1	-1.88
ENSMUSG0000007827	Ankrd26	-1.88
ENSMUSG0000055733	Nap1l3	-1.88
ENSMUSG0000054400	Cklf	-1.88
ENSMUSG0000090935	Synj2bp	-1.88
ENSMUSG0000005470	Asf1b	-1.88
ENSMUSG0000059475	Zfp426	-1.88
ENSMUSG0000040447	Spns2	-1.88
ENSMUSG0000031832	Taf1c	-1.89
ENSMUSG0000028419	Chmp5	-1.89
ENSMUSG0000031781	Ciapin1	-1.89
ENSMUSG0000015405	Ace2	-1.89
ENSMUSG0000037395	Rcor3	-1.89

ENSMUSG0000086158	Gm5918	-1.89
ENSMUSG0000021276	Cinp	-1.89
ENSMUSG0000026856	Dolpp1	-1.89
ENSMUSG0000031561	Odz3	-1.89
ENSMUSG0000051497	Kcnj16	-1.89
ENSMUSG0000021696	Elovl7	-1.90
ENSMUSG0000024906	Mus81	-1.90
ENSMUSG0000048787	Dcun1d3	-1.90
ENSMUSG0000046157	Tmem229b	-1.90
ENSMUSG0000048163	Selplg	-1.90
ENSMUSG0000048222	Mfap1b	-1.90
ENSMUSG0000004665	Cnn2	-1.90
ENSMUSG0000091683	Gm17357	-1.90
ENSMUSG0000028292	Rars2	-1.90
ENSMUSG0000021273	Fdft1	-1.90
ENSMUSG0000042992	Loh12cr1	-1.90
ENSMUSG0000022248	Rad1	-1.90
ENSMUSG0000091747	D17H6S56E-5	-1.90
ENSMUSG0000031774	Fam192a	-1.91
ENSMUSG0000034587	8430429K09Rik	-1.91
ENSMUSG0000044734	Serpinb1a	-1.91
ENSMUSG0000049687	Fam109b	-1.91
ENSMUSG0000031963	Bmper	-1.91
ENSMUSG0000003721	Insig2	-1.91
ENSMUSG0000028995	Fam126a	-1.91
ENSMUSG0000030335	Mrpl51	-1.91
ENSMUSG0000061013	Mkx	-1.91
ENSMUSG0000046567	4930430F08Rik	-1.91
ENSMUSG0000038279	Nop2	-1.91
ENSMUSG0000020887	A230052G05Rik	-1.91
ENSMUSG0000057604	Lmcd1	-1.91
ENSMUSG0000049957	Ccdc137	-1.91
ENSMUSG0000068479	Mfap1a	-1.91
ENSMUSG0000034532	Fbxo16	-1.92
ENSMUSG0000024370	Cdc23	-1.92
ENSMUSG0000024349	Tmem173	-1.92
ENSMUSG0000021047	Nova1	-1.92
ENSMUSG0000021835	Bmp4	-1.92
ENSMUSG0000022973	Synj1	-1.92
ENSMUSG0000022814	Umps	-1.92
ENSMUSG0000045854	Lyrm2	-1.92
ENSMUSG0000039901	9130011E15Rik	-1.92
ENSMUSG0000024096	Ralbp1	-1.92

ENSMUSG0000023832	Acat2	-1.92
ENSMUSG0000043257	Pigv	-1.92
ENSMUSG0000040818	Fam116a	-1.93
ENSMUSG0000056174	Col8a2	-1.93
ENSMUSG0000044676	Zfp612	-1.93
ENSMUSG0000069727	Gm5595	-1.93
ENSMUSG0000033016	Nfatc1	-1.93
ENSMUSG0000058258	Idi1	-1.93
ENSMUSG0000020492	Fam33a	-1.93
ENSMUSG0000021607	Mrpl36	-1.93
ENSMUSG0000092558	Med20	-1.93
ENSMUSG0000053935	Atf7ip	-1.93
ENSMUSG0000021958	Pinx1	-1.93
ENSMUSG0000021706	Zfyve16	-1.93
ENSMUSG0000040412	5330417C22Rik	-1.93
ENSMUSG0000032006	Pdgfd	-1.93
ENSMUSG0000030782	Tgfb1i1	-1.93
ENSMUSG0000052301	Doc2a	-1.93
ENSMUSG0000021613	Hapln1	-1.93
ENSMUSG0000054967	Zfp647	-1.93
ENSMUSG0000053965	Pde5a	-1.93
ENSMUSG0000071285	Zfp87	-1.93
ENSMUSG0000053907	Mat2a	-1.94
ENSMUSG0000025583	Rptor	-1.94
ENSMUSG0000048755	Mcat	-1.94
ENSMUSG0000037349	Nudt22	-1.94
ENSMUSG0000009647	Ccdc109a	-1.94
ENSMUSG0000037820	Tgm2	-1.94
ENSMUSG0000040187	Arntl2	-1.94
ENSMUSG0000022781	Pak2	-1.94
ENSMUSG0000050721	Plekho2	-1.94
ENSMUSG0000020456	Ogdh	-1.94
ENSMUSG0000024645	1700034H14Rik	-1.94
ENSMUSG0000078789	Dph1	-1.94
ENSMUSG0000028289	Epha7	-1.94
ENSMUSG0000087060	2810442I21Rik	-1.94
ENSMUSG0000042590	lpo11	-1.95
ENSMUSG0000030208	Emp1	-1.95
ENSMUSG0000015189	Casd1	-1.95
ENSMUSG0000067150	Хро5	-1.95
ENSMUSG0000026828	Galnt5	-1.95
ENSMUSG0000090093	Gm14399	-1.95
ENSMUSG0000020258	Glyctk	-1.95

ENSMUSG0000002020	Ltbp2	-1.95
ENSMUSG0000021824	Ap3m1	-1.95
ENSMUSG0000037921	Ddx60	-1.95
ENSMUSG0000055884	Fancm	-1.95
ENSMUSG0000033276	Stk36	-1.95
ENSMUSG0000010914	Pdhx	-1.95
ENSMUSG0000020829	Slc46a1	-1.95
ENSMUSG0000084972	9030407P20Rik	-1.95
ENSMUSG0000025083	Afap1l2	-1.95
ENSMUSG0000041301	Cftr	-1.95
ENSMUSG0000091764	Zfp964	-1.95
ENSMUSG0000036636	Clcn7	-1.96
ENSMUSG0000028899	Taf12	-1.96
ENSMUSG0000029804	Herc3	-1.96
ENSMUSG0000059493	Nhs	-1.96
ENSMUSG0000017697	Ada	-1.96
ENSMUSG0000083718	Ccnb2-ps	-1.96
ENSMUSG0000031840	Rab3a	-1.96
ENSMUSG0000028696	Ірр	-1.96
ENSMUSG0000048833	SIc39a9	-1.96
ENSMUSG0000007216	Zfp775	-1.96
ENSMUSG0000048497	Mmgt2	-1.96
ENSMUSG0000021271	Zfp839	-1.97
ENSMUSG0000024069	Slc30a6	-1.97
ENSMUSG0000005836	Gata6	-1.97
ENSMUSG0000049562	Gm962	-1.97
ENSMUSG0000038729	Akap2	-1.97
ENSMUSG0000026826	Nr4a2	-1.97
ENSMUSG0000027963	Extl2	-1.97
ENSMUSG0000034473	Sec22a	-1.97
ENSMUSG0000015133	Lrrk1	-1.97
ENSMUSG0000055184	Fam72a	-1.97
ENSMUSG0000030168	Adipor2	-1.97
ENSMUSG0000049580	Tsku	-1.97
ENSMUSG0000003849	Nqo1	-1.97
ENSMUSG0000040260	Daam2	-1.98
ENSMUSG0000020696	Rffl	-1.98
ENSMUSG0000046447	Camk2n1	-1.98
ENSMUSG0000033965	Slc16a2	-1.98
ENSMUSG0000092286	Gm20448	-1.98
ENSMUSG0000070304	Scn2b	-1.98
ENSMUSG0000047963	Stbd1	-1.98
ENSMUSG0000039662	lcmt	-1.98

ENSMUSG0000035799	Twist1	-1.98
ENSMUSG0000028273	Pdlim5	-1.98
ENSMUSG0000021710	NIn	-1.98
ENSMUSG0000027102	Hoxd8	-1.98
ENSMUSG0000001288	Rarg	-1.98
ENSMUSG0000001123	Lgals9	-1.98
ENSMUSG0000055313	Pgbd1	-1.99
ENSMUSG0000035069	Oma1	-1.99
ENSMUSG0000016477	E2f3	-1.99
ENSMUSG0000037007	Zfp113	-1.99
ENSMUSG0000027076	Timm10	-1.99
ENSMUSG0000049287	A230051G13Rik	-1.99
ENSMUSG0000042340	Ctf1	-1.99
ENSMUSG0000042694	Obfc1	-1.99
ENSMUSG0000031378	Abcd1	-1.99
ENSMUSG0000028108	Ecm1	-1.99
ENSMUSG0000024180	Tmem8	-1.99
ENSMUSG0000074890	Lcmt2	-1.99
ENSMUSG0000028894	Inpp5b	-2.00
ENSMUSG0000027652	Ralgapb	-2.00
ENSMUSG0000024142	Mlst8	-2.00
ENSMUSG0000027254	Mtap1a	-2.00
ENSMUSG0000004356	Utp20	-2.00
ENSMUSG0000028318	Polr1e	-2.00
ENSMUSG0000031753	Cog4	-2.00
ENSMUSG0000042426	Dhx29	-2.00
ENSMUSG0000052934	Fbxo31	-2.00
ENSMUSG0000022765	Snap29	-2.00
ENSMUSG0000022554	Fam203a	-2.00
ENSMUSG0000044341	Gm5601	-2.00
ENSMUSG0000022969	ll10rb	-2.00
ENSMUSG0000092262	Gm20434	-2.01
ENSMUSG0000037419	Endod1	-2.01
ENSMUSG0000018428	Akap1	-2.01
ENSMUSG0000022120	Rnf219	-2.01
ENSMUSG0000001767	Crnkl1	-2.01
ENSMUSG0000027428	Rbbp9	-2.01
ENSMUSG0000021998	Lcp1	-2.01
ENSMUSG0000032487	Ptgs2	-2.01
ENSMUSG0000074178	Gm10638	-2.01
ENSMUSG0000022519	Srl	-2.02
ENSMUSG0000090373	Gm17435	-2.02
ENSMUSG0000035378	Shq1	-2.02

ENSMUSG0000029610	Aimp2	-2.02
ENSMUSG0000034919	Ttc22	-2.02
ENSMUSG0000015468	Notch4	-2.02
ENSMUSG0000022833	Ccdc14	-2.02
ENSMUSG0000030341	Tnfrsf1a	-2.02
ENSMUSG0000031520	Vegfc	-2.02
ENSMUSG0000022123	Scel	-2.02
ENSMUSG0000071660	Ttc9c	-2.02
ENSMUSG0000029661	Col1a2	-2.02
ENSMUSG0000030610	Det1	-2.02
ENSMUSG0000031568	Rwdd4a	-2.02
ENSMUSG0000079002	C030006K11Rik	-2.03
ENSMUSG0000057778	Cyb5d2	-2.03
ENSMUSG0000036273	Lrrk2	-2.03
ENSMUSG0000056069	Fam105a	-2.03
ENSMUSG0000072763	5430403G16Rik	-2.03
ENSMUSG0000032332	Col12a1	-2.03
ENSMUSG0000029790	Tsga14	-2.03
ENSMUSG0000071042	Rasgrp3	-2.03
ENSMUSG0000002343	Armc6	-2.03
ENSMUSG0000021275	Tecpr2	-2.03
ENSMUSG0000093726	RP23-358B23.3	-2.03
ENSMUSG0000037536	Fbxo34	-2.03
ENSMUSG0000028702	Rad54l	-2.03
ENSMUSG0000024222	Fkbp5	-2.04
ENSMUSG0000026395	Ptprc	-2.04
ENSMUSG0000052539	Magi3	-2.04
ENSMUSG0000060568	Fam78b	-2.04
ENSMUSG0000030319	Cand2	-2.04
ENSMUSG0000045629	Sh3tc2	-2.04
ENSMUSG0000021111	Papola	-2.04
ENSMUSG0000031993	Snx19	-2.04
ENSMUSG0000079164	Tlr5	-2.05
ENSMUSG0000026203	Dnajb2	-2.05
ENSMUSG0000060176	Kif27	-2.05
ENSMUSG0000025373	Rnf41	-2.05
ENSMUSG0000020122	Egfr	-2.05
ENSMUSG0000067017	Gm3608	-2.05
ENSMUSG0000038214	Bend3	-2.05
ENSMUSG0000059058	Gm15431	-2.05
ENSMUSG0000068122	Agtr2	-2.05
ENSMUSG0000009733	Tfcp2	-2.05
ENSMUSG0000078863	Gm14325	-2.05

ENSMUSG0000020639	Pfn4	-2.05
ENSMUSG0000066637	Ttc32	-2.05
ENSMUSG0000037085	Trmt12	-2.05
ENSMUSG0000092260	Zfp963	-2.05
ENSMUSG0000036932	Aifm1	-2.05
ENSMUSG0000039153	Runx2	-2.05
ENSMUSG0000000739	Sult5a1	-2.05
ENSMUSG0000005078	Jkamp	-2.05
ENSMUSG0000023885	Thbs2	-2.05
ENSMUSG0000031641	Cbr4	-2.06
ENSMUSG0000027742	Cog6	-2.06
ENSMUSG0000031730	Dhodh	-2.06
ENSMUSG0000028976	Slc2a5	-2.06
ENSMUSG0000024172	St6gal2	-2.06
ENSMUSG0000041482	Fam38b	-2.06
ENSMUSG0000038540	Tmc3	-2.06
ENSMUSG0000024600	Slc27a6	-2.06
ENSMUSG0000028786	Tmem54	-2.06
ENSMUSG0000054920	Klhl5	-2.06
ENSMUSG0000020628	Ttc15	-2.06
ENSMUSG0000073452	Zfp97	-2.06
ENSMUSG0000028772	Zcchc17	-2.06
ENSMUSG0000057594	Arl16	-2.06
ENSMUSG0000058192	Zfp846	-2.07
ENSMUSG0000025759	Mfsd8	-2.07
ENSMUSG0000053091	Lins	-2.07
ENSMUSG0000046679	C87436	-2.07
ENSMUSG0000026029	Casp8	-2.07
ENSMUSG0000028082	Sh3d19	-2.07
ENSMUSG0000031953	Tmem170	-2.07
ENSMUSG0000003534	Ddr1	-2.07
ENSMUSG0000058447	Zfp82	-2.07
ENSMUSG0000039058	Ak5	-2.07
ENSMUSG0000024878	Cbwd1	-2.07
ENSMUSG0000050550	Gm11868	-2.07
ENSMUSG0000038888	Ctu1	-2.07
ENSMUSG0000067942	Zfp160	-2.08
ENSMUSG0000046794	Ppp1r3b	-2.08
ENSMUSG0000063531	Sema3e	-2.08
ENSMUSG0000028069	Gpatch4	-2.08
ENSMUSG0000037169	Mycn	-2.08
ENSMUSG0000074408	Gm10687	-2.08
ENSMUSG0000031931	Ankrd49	-2.08

ENSMUSG0000018362	Kpna2	-2.08
ENSMUSG0000052496	Pkdrej	-2.08
ENSMUSG0000074282	Zfp94	-2.08
ENSMUSG0000078954	Arhgap8	-2.08
ENSMUSG0000022676	Snai2	-2.08
ENSMUSG0000037514	Pank2	-2.08
ENSMUSG0000033352	Map2k4	-2.08
ENSMUSG0000037621	Atoh8	-2.08
ENSMUSG0000041360	D19Bwg1357e	-2.08
ENSMUSG0000024501	Dpysl3	-2.08
ENSMUSG0000047037	Nipa1	-2.09
ENSMUSG0000020774	Aspa	-2.09
ENSMUSG0000045817	Zfp36l2	-2.09
ENSMUSG0000009013	Dynll1	-2.09
ENSMUSG0000024999	Noc3l	-2.09
ENSMUSG0000044794	9330133O14Rik	-2.09
ENSMUSG0000074211	Sdhaf1	-2.09
ENSMUSG0000006638	Abhd1	-2.09
ENSMUSG0000028980	H6pd	-2.09
ENSMUSG0000034617	Mtrr	-2.09
ENSMUSG0000074136	4930513N10Rik	-2.10
ENSMUSG0000074364	Ehd2	-2.10
ENSMUSG0000079057	Cyp4v3	-2.10
ENSMUSG0000059316	Slc27a4	-2.10
ENSMUSG0000078899	Gm4631	-2.10
ENSMUSG0000087189	D130017N08Rik	-2.10
ENSMUSG0000028636	Ppcs	-2.10
ENSMUSG0000021891	Mettl6	-2.10
ENSMUSG0000074207	Adh1	-2.10
ENSMUSG0000032812	Arap1	-2.11
ENSMUSG0000086502	B130055M24Rik	-2.11
ENSMUSG0000051721	BC068281	-2.11
ENSMUSG0000035104	Fam176a	-2.11
ENSMUSG0000021676	lqgap2	-2.11
ENSMUSG0000037278	Tmem97	-2.11
ENSMUSG0000035049	Rrp12	-2.11
ENSMUSG0000039804	Ncoa5	-2.11
ENSMUSG0000042350	1110018G07Rik	-2.11
ENSMUSG0000050010	Shisa3	-2.11
ENSMUSG0000027531	Impa1	-2.11
ENSMUSG0000061371	Zfp873	-2.12
ENSMUSG0000029920	Smarcad1	-2.12
ENSMUSG0000037762	Slc16a9	-2.12

ENSMUSG0000066007	Zfp600	-2.12
ENSMUSG0000052384	Lrrc33	-2.12
ENSMUSG0000032640	Chsy1	-2.12
ENSMUSG0000050866	Clrn3	-2.12
ENSMUSG0000071252	2210408I21Rik	-2.12
ENSMUSG0000042380	BC003266	-2.13
ENSMUSG0000028159	Dapp1	-2.13
ENSMUSG0000023156	Rpp14	-2.13
ENSMUSG0000039725	2810408M09Rik	-2.13
ENSMUSG0000025915	Sgk3	-2.13
ENSMUSG0000026389	Steap3	-2.13
ENSMUSG0000028565	Nfia	-2.13
ENSMUSG0000074579	Lekr1	-2.13
ENSMUSG0000038145	Snrk	-2.13
ENSMUSG0000002603	Tgfb1	-2.13
ENSMUSG0000066720	Cldn9	-2.14
ENSMUSG0000005686	Ampd3	-2.14
ENSMUSG0000031453	Rasa3	-2.14
ENSMUSG0000020785	Camkk1	-2.14
ENSMUSG0000044674	Fzd1	-2.14
ENSMUSG0000026142	Rhbdd1	-2.14
ENSMUSG0000045975	C2cd2	-2.14
ENSMUSG0000022220	Adcy4	-2.14
ENSMUSG0000037531	Mrpl47	-2.14
ENSMUSG0000074064	Mlycd	-2.14
ENSMUSG0000033554	Dph5	-2.14
ENSMUSG0000046245	Pilra	-2.14
ENSMUSG0000030922	Lyrm1	-2.14
ENSMUSG0000066113	Adamtsl1	-2.14
ENSMUSG0000020132	Rab21	-2.14
ENSMUSG0000028550	Atg4c	-2.14
ENSMUSG0000058446	Znrf2	-2.14
ENSMUSG0000031627	Irf2	-2.14
ENSMUSG0000051498	Tlr6	-2.15
ENSMUSG0000085208	4632419I22Rik	-2.15
ENSMUSG0000030871	Ears2	-2.15
ENSMUSG0000021457	Syk	-2.15
ENSMUSG0000028439	2310028H24Rik	-2.15
ENSMUSG0000047996	Prrg1	-2.15
ENSMUSG0000070802	Pnmal2	-2.15
ENSMUSG0000027339	Rassf2	-2.15
ENSMUSG0000023873	1700010I14Rik	-2.15
ENSMUSG0000021991	Cacna2d3	-2.15

ENSMUSG0000024511	Rab27b	-2.15
ENSMUSG0000037104	Socs5	-2.16
ENSMUSG0000039069	Gtpbp5	-2.16
ENSMUSG0000019312	Grb7	-2.16
ENSMUSG0000043279	Trim56	-2.16
ENSMUSG0000022179	4931414P19Rik	-2.16
ENSMUSG0000027323	Rad51	-2.16
ENSMUSG0000022792	Yars2	-2.16
ENSMUSG0000038379	Ttk	-2.16
ENSMUSG0000000148	Baat1	-2.16
ENSMUSG0000087598	Zfp111	-2.16
ENSMUSG0000078580	E430018J23Rik	-2.17
ENSMUSG0000004994	Ccdc130	-2.17
ENSMUSG0000028780	Sema3c	-2.17
ENSMUSG0000042371	Slc5a10	-2.17
ENSMUSG0000038510	Rpf2	-2.17
ENSMUSG0000026946	Nmi	-2.17
ENSMUSG0000024247	Pkdcc	-2.17
ENSMUSG0000028274	Rngtt	-2.17
ENSMUSG0000020679	Hnf1b	-2.18
ENSMUSG0000036983	Tfb1m	-2.18
ENSMUSG0000041644	Slc5a12	-2.18
ENSMUSG0000066026	Dhrs3	-2.18
ENSMUSG0000057060	Slc35f3	-2.18
ENSMUSG0000007908	Hmgcll1	-2.18
ENSMUSG0000026617	Bpnt1	-2.18
ENSMUSG0000055480	Zfp458	-2.18
ENSMUSG0000015943	Bola1	-2.18
ENSMUSG0000001707	Eef1e1	-2.18
ENSMUSG0000021707	Dhfr	-2.18
ENSMUSG0000038058	Nod1	-2.18
ENSMUSG0000048126	Col6a3	-2.18
ENSMUSG0000028907	Utp11l	-2.18
ENSMUSG0000048351	2010305A19Rik	-2.18
ENSMUSG0000024274	Zscan30	-2.18
ENSMUSG0000063888	Rpl7l1	-2.19
ENSMUSG0000034329	Brip1	-2.19
ENSMUSG0000013539	D16H22S680E	-2.19
ENSMUSG0000034037	Fgd5	-2.19
ENSMUSG0000027800	Tm4sf1	-2.19
ENSMUSG0000035184	Fam124a	-2.19
ENSMUSG0000036902	Neto2	-2.20
ENSMUSG0000055660	Mettl4	-2.20

ENSMUSG0000039929	Urb1	-2.20
ENSMUSG0000032718	Mansc1	-2.20
ENSMUSG0000029012	Orc5	-2.20
ENSMUSG0000055493	Epm2a	-2.20
ENSMUSG0000022371	Col14a1	-2.20
ENSMUSG0000054619	Mettl7a1	-2.20
ENSMUSG0000026814	Eng	-2.20
ENSMUSG0000092119	Gm17523	-2.20
ENSMUSG0000045932	lfit2	-2.21
ENSMUSG0000021904	Sema3g	-2.21
ENSMUSG0000030306	Tmtc1	-2.21
ENSMUSG0000053799	Exoc6	-2.21
ENSMUSG0000028629	Dem1	-2.21
ENSMUSG0000017776	Crk	-2.21
ENSMUSG0000004568	Arhgef18	-2.21
ENSMUSG0000002944	Cd36	-2.21
ENSMUSG0000026035	Ppil3	-2.22
ENSMUSG0000050079	Rspry1	-2.22
ENSMUSG0000079376	Gm3383	-2.22
ENSMUSG0000026803	Ttf1	-2.22
ENSMUSG0000026235	Epha4	-2.22
ENSMUSG0000004748	Mtfp1	-2.22
ENSMUSG0000039000	Ube3c	-2.23
ENSMUSG0000039768	Dnajc11	-2.23
ENSMUSG0000010054	Tusc2	-2.23
ENSMUSG0000007877	Тсар	-2.23
ENSMUSG0000025810	Nrp1	-2.23
ENSMUSG0000006386	Tek	-2.23
ENSMUSG0000043535	Setx	-2.23
ENSMUSG0000089824	Rbm12	-2.23
ENSMUSG0000031887	Tradd	-2.23
ENSMUSG0000039414	Heatr5b	-2.23
ENSMUSG0000032583	Mon1a	-2.24
ENSMUSG0000073016	Uprt	-2.24
ENSMUSG0000040795	Іqсс	-2.24
ENSMUSG0000029480	Dhx37	-2.24
ENSMUSG0000042672	Dcst1	-2.24
ENSMUSG0000000159	Igsf5	-2.24
ENSMUSG0000084910	C630043F03Rik	-2.24
ENSMUSG0000039763	Dnajc28	-2.24
ENSMUSG0000026072	ll1r1	-2.24
ENSMUSG0000021392	Nol8	-2.25
ENSMUSG0000022799	Arhgap31	-2.25

ENSMUSG0000048728	Zfp454	-2.25
ENSMUSG0000047040	Prr15l	-2.25
ENSMUSG0000031665	Sall1	-2.25
ENSMUSG0000042229	Rabif	-2.25
ENSMUSG0000080981	Gm12161	-2.25
ENSMUSG0000030725	Lipt2	-2.25
ENSMUSG0000021951	N6amt2	-2.25
ENSMUSG0000031608	Galnt7	-2.25
ENSMUSG0000034810	Scn7a	-2.25
ENSMUSG0000033809	Alg3	-2.25
ENSMUSG0000029999	Tgfa	-2.26
ENSMUSG0000021285	Ppp1r13b	-2.26
ENSMUSG0000045316	Fahd1	-2.26
ENSMUSG0000091002	Tcerg1l	-2.26
ENSMUSG0000078886	Gm2026	-2.27
ENSMUSG0000024620	Pdgfrb	-2.27
ENSMUSG0000023259	Slc26a6	-2.27
ENSMUSG0000005089	Slc1a2	-2.27
ENSMUSG0000047583	Туw3	-2.28
ENSMUSG0000051373	Ppapdc3	-2.28
ENSMUSG0000040548	Tex2	-2.28
ENSMUSG0000030469	Zfp719	-2.28
ENSMUSG0000031673	Cdh11	-2.28
ENSMUSG0000020810	Cygb	-2.28
ENSMUSG0000056091	St3gal5	-2.28
ENSMUSG0000007777	0610009B22Rik	-2.28
ENSMUSG0000045464	2810002D19Rik	-2.28
ENSMUSG0000034744	Nagk	-2.28
ENSMUSG0000018927	Ccl6	-2.28
ENSMUSG0000037405	lcam1	-2.28
ENSMUSG0000024668	Sdhaf2	-2.29
ENSMUSG0000022324	Matn2	-2.29
ENSMUSG0000019988	Nedd1	-2.29
ENSMUSG0000075502	Gm5465	-2.29
ENSMUSG0000026222	Sp100	-2.29
ENSMUSG0000043487	Acot6	-2.29
ENSMUSG0000056220	Pla2g4a	-2.29
ENSMUSG0000041609	Ccdc64	-2.29
ENSMUSG0000034518	Hmgxb4	-2.29
ENSMUSG0000034187	Nsf	-2.29
ENSMUSG0000019975	Ikbip	-2.30
ENSMUSG0000069227	Gprin1	-2.30
ENSMUSG0000022130	Tgds	-2.30

ENSMUSG0000032513	Gorasp1	-2.30
ENSMUSG0000025766	D3Ertd751e	-2.30
ENSMUSG0000049235	Gm7324	-2.31
ENSMUSG0000032344	E330016A19Rik	-2.31
ENSMUSG0000040703	Cyp2s1	-2.31
ENSMUSG0000072582	Ptrh2	-2.31
ENSMUSG0000073427	Gm4924	-2.31
ENSMUSG0000027463	Slc52a3	-2.31
ENSMUSG0000090817	Gm4450	-2.31
ENSMUSG0000035575	Utp6	-2.31
ENSMUSG0000014177	Fam18b	-2.31
ENSMUSG0000021759	Ppap2a	-2.31
ENSMUSG0000046667	Rbm12b	-2.32
ENSMUSG0000023921	Mut	-2.32
ENSMUSG0000028992	Nmnat1	-2.32
ENSMUSG0000028031	Dkk2	-2.32
ENSMUSG0000044702	Palb2	-2.32
ENSMUSG0000053846	Lipg	-2.32
ENSMUSG0000025958	Creb1	-2.32
ENSMUSG0000030614	Tmem126b	-2.32
ENSMUSG0000056492	Gpr116	-2.32
ENSMUSG0000039934	Pion	-2.32
ENSMUSG0000020527	Муо19	-2.32
ENSMUSG0000032235	Narg2	-2.33
ENSMUSG0000039883	Lrrc17	-2.33
ENSMUSG0000058099	Nfam1	-2.33
ENSMUSG0000070583	Fv1	-2.33
ENSMUSG0000052117	D630039A03Rik	-2.33
ENSMUSG0000048970	C1galt1c1	-2.33
ENSMUSG0000045827	Serpinb9	-2.33
ENSMUSG0000064128	Cenpj	-2.33
ENSMUSG0000050188	Lsm10	-2.33
ENSMUSG0000001911	Nfix	-2.34
ENSMUSG0000028655	Mfsd2a	-2.34
ENSMUSG0000078202	Nrarp	-2.34
ENSMUSG0000040429	Mterf	-2.34
ENSMUSG0000044647	Csrnp3	-2.35
ENSMUSG0000049755	Zfp672	-2.35
ENSMUSG0000027276	Jag1	-2.35
ENSMUSG0000038736	Nudcd1	-2.35
ENSMUSG0000053297	AI854703	-2.35
ENSMUSG0000074732	Zfp950	-2.36
ENSMUSG0000020100	Slc29a3	-2.36

ENSMUSG0000034738	Nostrin	-2.36
ENSMUSG0000037991	A630055G03Rik	-2.36
ENSMUSG0000023988	Bysl	-2.36
ENSMUSG0000075585	6330403L08Rik	-2.36
ENSMUSG0000022526	Zfp251	-2.36
ENSMUSG0000049939	Lrrc4	-2.36
ENSMUSG0000093445	Lrch4	-2.36
ENSMUSG0000054939	Zfp174	-2.37
ENSMUSG0000024268	Celf4	-2.37
ENSMUSG0000043190	Rfesd	-2.37
ENSMUSG0000075012	Fjx1	-2.37
ENSMUSG0000022674	Ube2v2	-2.38
ENSMUSG0000047735	Samd9I	-2.38
ENSMUSG0000049112	Oxtr	-2.38
ENSMUSG0000039316	Rftn1	-2.38
ENSMUSG0000036067	Slc2a6	-2.38
ENSMUSG0000017929	B4galt5	-2.38
ENSMUSG0000043518	Rai2	-2.38
ENSMUSG0000034639	Setmar	-2.38
ENSMUSG0000090394	4930523C07Rik	-2.39
ENSMUSG0000040061	Plcb2	-2.39
ENSMUSG0000046909	1110002N22Rik	-2.39
ENSMUSG0000022894	Adamts5	-2.39
ENSMUSG0000054676	1600014C10Rik	-2.39
ENSMUSG0000006362	Cbfa2t3	-2.39
ENSMUSG0000033777	Tlr13	-2.39
ENSMUSG0000052821	Cysltr1	-2.40
ENSMUSG0000015950	Ncf1	-2.40
ENSMUSG0000046603	D9Ertd402e	-2.40
ENSMUSG0000029832	Nfe2l3	-2.40
ENSMUSG0000073771	Btbd19	-2.40
ENSMUSG0000067480	Gm14403	-2.40
ENSMUSG0000050751	Pgbd5	-2.40
ENSMUSG0000032202	Rab27a	-2.40
ENSMUSG0000035407	Kank4	-2.40
ENSMUSG0000022724	Mina	-2.41
ENSMUSG0000042097	Zfp239	-2.41
ENSMUSG0000022325	Pop1	-2.41
ENSMUSG0000089857	Zfp882	-2.41
ENSMUSG0000026354	Lct	-2.41
ENSMUSG0000052917	Senp7	-2.41
ENSMUSG0000021071	Trim9	-2.41
ENSMUSG00000044811	AF251705	-2.41

ENSMUSG0000022639	5330426P16Rik	-2.41
ENSMUSG0000043991	Pura	-2.42
ENSMUSG0000038074	Fkbp14	-2.42
ENSMUSG0000020553	Pctp	-2.42
ENSMUSG0000050668	Ccdc75	-2.42
ENSMUSG0000030800	Prss8	-2.42
ENSMUSG0000001774	Chordc1	-2.42
ENSMUSG0000033900	Mtap9	-2.43
ENSMUSG0000024558	Mapk4	-2.43
ENSMUSG0000026365	Cfh	-2.43
ENSMUSG0000054383	Pnma1	-2.43
ENSMUSG0000024087	Cyp1b1	-2.43
ENSMUSG0000021871	Pnp	-2.43
ENSMUSG0000018604	Tbx3	-2.43
ENSMUSG0000056383	AI987944	-2.44
ENSMUSG0000025993	Slc40a1	-2.44
ENSMUSG0000046610	5330437I02Rik	-2.44
ENSMUSG0000036834	Plch1	-2.44
ENSMUSG0000068407	Rnase12	-2.44
ENSMUSG0000075304	Sp5	-2.44
ENSMUSG0000062545	Tlr12	-2.44
ENSMUSG0000033961	Zfp446	-2.44
ENSMUSG0000024276	Zfp397	-2.45
ENSMUSG0000035878	Agphd1	-2.45
ENSMUSG0000000392	Fap	-2.45
ENSMUSG0000048486	Fitm2	-2.45
ENSMUSG0000022898	Dscr3	-2.45
ENSMUSG0000020621	Rdh14	-2.45
ENSMUSG0000029084	Cd38	-2.46
ENSMUSG0000036461	Elf1	-2.46
ENSMUSG0000034110	Kctd7	-2.46
ENSMUSG0000027859	Ngf	-2.46
ENSMUSG0000034203	Chchd4	-2.46
ENSMUSG0000092534	Gm20418	-2.46
ENSMUSG0000022367	Has2	-2.46
ENSMUSG0000058897	Col25a1	-2.46
ENSMUSG0000029482	Aacs	-2.46
ENSMUSG0000074643	Cpne1	-2.47
ENSMUSG0000022664	Slc35a5	-2.47
ENSMUSG0000024694	Keg1	-2.47
ENSMUSG0000045757	Zfp764	-2.47
ENSMUSG0000034848	Ttc21b	-2.47
ENSMUSG0000022146	Osmr	-2.47

ENSMUSG0000031870	Pgr	-2.47
ENSMUSG0000029163	Emilin1	-2.48
ENSMUSG0000026994	Galnt3	-2.48
ENSMUSG0000050973	D330012F22Rik	-2.48
ENSMUSG0000026241	Nppc	-2.49
ENSMUSG0000037015	Tmem185b	-2.49
ENSMUSG0000048458	6530418L21Rik	-2.49
ENSMUSG0000043140	Tmem186	-2.49
ENSMUSG0000048581	E130311K13Rik	-2.49
ENSMUSG0000074417	Gm14548	-2.49
ENSMUSG0000002885	Cd97	-2.49
ENSMUSG0000030711	Sult1a1	-2.49
ENSMUSG0000028544	SIc5a9	-2.50
ENSMUSG0000027684	Mecom	-2.50
ENSMUSG0000018999	Slc35b4	-2.50
ENSMUSG0000026043	Col3a1	-2.50
ENSMUSG0000091828	5033417F24Rik	-2.50
ENSMUSG0000038527	C1rl	-2.50
ENSMUSG0000068299	1700019G17Rik	-2.50
ENSMUSG0000036327	Qsox2	-2.50
ENSMUSG0000038630	Zkscan16	-2.50
ENSMUSG0000051359	Ncald	-2.51
ENSMUSG0000027962	Vcam1	-2.51
ENSMUSG0000071281	Zfp71-rs1	-2.51
ENSMUSG0000025892	Gria4	-2.51
ENSMUSG0000029919	Hpgds	-2.51
ENSMUSG0000004462	Tbccd1	-2.52
ENSMUSG0000090919	Pabpc4l	-2.52
ENSMUSG0000086877	A230072C01Rik	-2.52
ENSMUSG0000031101	Sash3	-2.52
ENSMUSG0000030616	Sytl2	-2.52
ENSMUSG0000048814	Lonrf2	-2.52
ENSMUSG0000030283	St8sia1	-2.52
ENSMUSG0000019861	Gopc	-2.52
ENSMUSG0000045691	Thtpa	-2.52
ENSMUSG0000022512	Cldn1	-2.52
ENSMUSG0000028546	Elavl4	-2.53
ENSMUSG0000019864	Rtn4ip1	-2.53
ENSMUSG0000044164	Rnf182	-2.53
ENSMUSG0000048100	Taf13	-2.53
ENSMUSG0000024579	Pcyox1l	-2.53
ENSMUSG0000024897	Apba1	-2.53
ENSMUSG0000021716	Srek1ip1	-2.53

ENSMUSG0000028599	Tnfrsf1b	-2.53
ENSMUSG0000038028	9630033F20Rik	-2.54
ENSMUSG0000043602	Zfp3	-2.54
ENSMUSG0000085028	Slc2a4rg-ps	-2.54
ENSMUSG0000032572	Col6a4	-2.54
ENSMUSG0000053025	Sv2b	-2.54
ENSMUSG0000038268	Ovca2	-2.54
ENSMUSG0000075033	Fam55c	-2.55
ENSMUSG0000053062	Jam2	-2.55
ENSMUSG0000038560	Sp6	-2.55
ENSMUSG0000060466	Thap6	-2.56
ENSMUSG0000090622	A930033H14Rik	-2.56
ENSMUSG0000075273	Ttc30b	-2.56
ENSMUSG0000068457	Uty	-2.56
ENSMUSG0000048022	Tmem229a	-2.56
ENSMUSG0000021390	Ogn	-2.56
ENSMUSG0000020053	lgf1	-2.57
ENSMUSG0000015653	Steap2	-2.57
ENSMUSG0000020380	Rad50	-2.57
ENSMUSG0000032035	Ets1	-2.57
ENSMUSG0000044881	Chchd8	-2.57
ENSMUSG0000020752	Recql5	-2.58
ENSMUSG0000034968	Lbx2	-2.58
ENSMUSG0000001506	Col1a1	-2.58
ENSMUSG0000053012	Krcc1	-2.58
ENSMUSG0000034157	2310044G17Rik	-2.58
ENSMUSG0000055373	Fut9	-2.58
ENSMUSG0000046351	Zfp322a	-2.58
ENSMUSG0000033126	Ybey	-2.59
ENSMUSG0000023953	Polh	-2.60
ENSMUSG0000031073	Fgf15	-2.60
ENSMUSG0000060380	C030014I23Rik	-2.60
ENSMUSG0000028479	Gne	-2.60
ENSMUSG0000051506	Wdfy4	-2.61
ENSMUSG0000039680	Mrps6	-2.61
ENSMUSG0000079224	Gm6565	-2.61
ENSMUSG0000091183	Gm3604	-2.61
ENSMUSG0000030016	Zfml	-2.61
ENSMUSG0000051735	Rinl	-2.61
ENSMUSG0000063894	Zfp192	-2.62
ENSMUSG0000055150	Zfp78	-2.63
ENSMUSG0000042579	4632404H12Rik	-2.63
ENSMUSG0000029193	Cckar	-2.63

ENSMUSG0000055319	Sec23ip	-2.63
ENSMUSG0000068196	Col8a1	-2.64
ENSMUSG0000090576	Gm17055	-2.64
ENSMUSG0000037490	Slc2a12	-2.64
ENSMUSG0000057497	Fam136a	-2.64
ENSMUSG0000028864	Hgf	-2.65
ENSMUSG0000029178	KIf3	-2.65
ENSMUSG0000030347	D6Wsu163e	-2.65
ENSMUSG0000028619	2210012G02Rik	-2.65
ENSMUSG0000071256	Zfp213	-2.65
ENSMUSG0000082361	Btc	-2.65
ENSMUSG0000056888	Glipr1	-2.65
ENSMUSG0000075054	1600012F09Rik	-2.66
ENSMUSG0000074283	Zfp109	-2.66
ENSMUSG0000048965	Mrgpre	-2.66
ENSMUSG0000019913	Sim1	-2.66
ENSMUSG0000032802	Srxn1	-2.66
ENSMUSG0000056529	Ptafr	-2.66
ENSMUSG0000026858	Fam73b	-2.67
ENSMUSG0000000378	Ccm2	-2.67
ENSMUSG0000032744	Heyl	-2.67
ENSMUSG0000036298	Slc2a13	-2.67
ENSMUSG0000062382	Gm10116	-2.67
ENSMUSG0000018698	Lhx1	-2.68
ENSMUSG0000085282	Gm15663	-2.68
ENSMUSG0000019838	Slc16a10	-2.68
ENSMUSG0000049922	Slc35c1	-2.69
ENSMUSG0000023994	Nfya	-2.69
ENSMUSG0000092035	Peg10	-2.69
ENSMUSG0000042842	Serpinb6b	-2.70
ENSMUSG0000021711	2410002O22Rik	-2.70
ENSMUSG0000047205	Dusp18	-2.70
ENSMUSG0000012429	2810021B07Rik	-2.70
ENSMUSG0000022510	Trp63	-2.70
ENSMUSG0000043019	Edem3	-2.70
ENSMUSG0000063535	Zfp773	-2.71
ENSMUSG0000022306	Zfpm2	-2.71
ENSMUSG0000031910	Has3	-2.71
ENSMUSG0000027173	Depdc7	-2.71
ENSMUSG0000061742	Slc22a12	-2.71
ENSMUSG0000039958	4833442J19Rik	-2.72
ENSMUSG0000047649	Cd3eap	-2.72
ENSMUSG0000069089	Cdk7	-2.72

ENSMUSG0000047180	Neurl3	-2.73
ENSMUSG0000003418	St8sia6	-2.73
ENSMUSG0000051235	Gen1	-2.73
ENSMUSG0000085615	A330035P11Rik	-2.73
ENSMUSG0000025804	Ccr1	-2.73
ENSMUSG0000001494	Sost	-2.73
ENSMUSG0000021754	Map3k1	-2.73
ENSMUSG0000035681	Kcnc2	-2.73
ENSMUSG0000059173	Pde1a	-2.73
ENSMUSG0000025931	Paqr8	-2.73
ENSMUSG0000029676	Pot1a	-2.74
ENSMUSG0000037262	Kin	-2.74
ENSMUSG0000033233	Trim45	-2.74
ENSMUSG0000018405	Mrm1	-2.74
ENSMUSG0000021906	Oxnad1	-2.74
ENSMUSG0000036295	Lrrn3	-2.75
ENSMUSG0000026674	Ddr2	-2.75
ENSMUSG0000047773	Ankfn1	-2.75
ENSMUSG0000020427	lgfbp3	-2.76
ENSMUSG0000046441	Ftsjd1	-2.76
ENSMUSG0000032252	Glce	-2.76
ENSMUSG0000034308	Sdr42e1	-2.76
ENSMUSG0000036975	Tmem177	-2.77
ENSMUSG0000040133	Gpr176	-2.77
ENSMUSG0000078190	Dnm3os	-2.77
ENSMUSG0000003283	Hck	-2.77
ENSMUSG0000026435	Slc45a3	-2.77
ENSMUSG0000031604	Sc4mol	-2.77
ENSMUSG0000032652	Crebl2	-2.77
ENSMUSG0000073791	Efcab7	-2.77
ENSMUSG0000063239	Grm4	-2.78
ENSMUSG0000089876	Tmem102	-2.78
ENSMUSG0000051256	Jagn1	-2.78
ENSMUSG0000030443	Zfp583	-2.78
ENSMUSG0000022687	Вос	-2.78
ENSMUSG0000036599	Chst12	-2.79
ENSMUSG0000086843	E030013I19Rik	-2.80
ENSMUSG0000024697	Gna14	-2.80
ENSMUSG0000087107	AI662270	-2.81
ENSMUSG0000048582	Gja3	-2.81
ENSMUSG0000048865	Arhgap30	-2.81
ENSMUSG0000045573	Penk	-2.81
ENSMUSG0000038400	Pmepa1	-2.81

ENSMUSG0000044149	Nkrf	-2.81
ENSMUSG0000026786	Apbb1ip	-2.81
ENSMUSG0000053886	Sh2d4a	-2.82
ENSMUSG0000031952	Chst5	-2.82
ENSMUSG0000041757	Plekha6	-2.82
ENSMUSG0000051727	Kctd14	-2.83
ENSMUSG0000091994	E130317F20Rik	-2.83
ENSMUSG0000035455	Fignl1	-2.83
ENSMUSG0000050714	Zbtb26	-2.83
ENSMUSG0000078779	Zfp59	-2.83
ENSMUSG0000050471	Fam118b	-2.83
ENSMUSG0000025185	Loxl4	-2.83
ENSMUSG0000048280	Zfp738	-2.83
ENSMUSG0000057123	Gja5	-2.83
ENSMUSG0000000359	Rem1	-2.84
ENSMUSG0000055148	Klf2	-2.84
ENSMUSG0000026317	Cln8	-2.85
ENSMUSG0000021359	Tfap2a	-2.85
ENSMUSG0000028698	Pik3r3	-2.85
ENSMUSG0000053286	1190005F20Rik	-2.85
ENSMUSG0000026698	Pigc	-2.85
ENSMUSG0000074500	Zfp558	-2.86
ENSMUSG0000089942	Pira2	-2.86
ENSMUSG0000081683	Fzd10	-2.87
ENSMUSG0000068962	Zfp114	-2.87
ENSMUSG0000053684	BC048403	-2.87
ENSMUSG0000034116	Vav1	-2.88
ENSMUSG0000047786	Lix1	-2.88
ENSMUSG0000072962	Gm16401	-2.88
ENSMUSG0000028247	Coq3	-2.88
ENSMUSG0000044921	Rassf9	-2.88
ENSMUSG0000050541	Adra1b	-2.88
ENSMUSG0000063087	Gm10125	-2.89
ENSMUSG0000083246	Gm11839	-2.89
ENSMUSG0000020309	Chac2	-2.89
ENSMUSG0000027750	Postn	-2.89
ENSMUSG0000014763	Fam120b	-2.90
ENSMUSG0000038506	Dcun1d2	-2.90
ENSMUSG0000022244	Amacr	-2.90
ENSMUSG0000045680	Tcf21	-2.90
ENSMUSG0000020614	Fam20a	-2.91
ENSMUSG0000005611	Mrvi1	-2.92
ENSMUSG0000057143	Trim12c	-2.92

ENSMUSG0000006403	Adamts4	-2.92
ENSMUSG0000021903	Galntl2	-2.92
ENSMUSG0000051124	Gimap9	-2.92
ENSMUSG0000026104	Stat1	-2.92
ENSMUSG0000041079	Rwdd2b	-2.92
ENSMUSG0000091596	3110083C13Rik	-2.93
ENSMUSG0000027015	Cybrd1	-2.93
ENSMUSG0000091302	2310043M15Rik	-2.93
ENSMUSG0000018008	Cyth4	-2.93
ENSMUSG0000030247	Kcnj8	-2.93
ENSMUSG0000033579	Fa2h	-2.93
ENSMUSG0000024592	C330018D20Rik	-2.94
ENSMUSG0000043592	Unc5cl	-2.94
ENSMUSG0000025475	Gpr123	-2.94
ENSMUSG0000015652	Steap1	-2.95
ENSMUSG0000079364	Gm3558	-2.95
ENSMUSG0000038582	Pptc7	-2.95
ENSMUSG0000029335	Bmp3	-2.95
ENSMUSG0000056735	A930024E05Rik	-2.96
ENSMUSG0000056025	Clca1	-2.96
ENSMUSG0000004500	Zfp324	-2.97
ENSMUSG0000040003	Magi2	-2.98
ENSMUSG0000060950	Trmt61a	-2.98
ENSMUSG0000025352	Gdf11	-2.98
ENSMUSG0000085379	2310058D17Rik	-2.99
ENSMUSG0000044362	Ccdc89	-2.99
ENSMUSG0000030559	Rab38	-2.99
ENSMUSG0000057137	Tmem140	-2.99
ENSMUSG0000028028	Alpk1	-2.99
ENSMUSG0000024900	Cpt1a	-2.99
ENSMUSG0000026656	Fcgr2b	-2.99
ENSMUSG0000044288	Cnr1	-3.00
ENSMUSG0000055760	Gemin6	-3.00
ENSMUSG0000074676	Foxs1	-3.00
ENSMUSG0000041378	Cldn5	-3.00
ENSMUSG0000050697	Prkaa1	-3.01
ENSMUSG0000047635	2810006K23Rik	-3.01
ENSMUSG0000071456	1110002L01Rik	-3.01
ENSMUSG0000033313	Fbxl8	-3.01
ENSMUSG0000042529	Kcnj12	-3.02
ENSMUSG0000030047	Arhgap25	-3.03
ENSMUSG0000078349	AW011738	-3.04
ENSMUSG0000049536	Tceal1	-3.05

ENSMUSG0000044231	NhIrc1	-3.06
ENSMUSG0000010047	Hyal2	-3.07
ENSMUSG0000025429	Pstpip2	-3.07
ENSMUSG0000048550	Thnsl1	-3.07
ENSMUSG0000020513	Tubd1	-3.07
ENSMUSG0000058883	Zfp708	-3.07
ENSMUSG0000040253	Gbp7	-3.07
ENSMUSG0000085566	A730017L22Rik	-3.07
ENSMUSG0000021895	Arhgef3	-3.07
ENSMUSG0000048920	Fkrp	-3.08
ENSMUSG0000038094	Atp13a4	-3.08
ENSMUSG0000022061	Nkx3-1	-3.09
ENSMUSG0000047759	Hs3st3a1	-3.09
ENSMUSG0000062743	Zfp677	-3.10
ENSMUSG0000041773	Enc1	-3.10
ENSMUSG0000027368	Dusp2	-3.10
ENSMUSG0000031077	Fadd	-3.10
ENSMUSG0000026602	Nphs2	-3.10
ENSMUSG0000091138	E530011L22Rik	-3.11
ENSMUSG0000042460	C1galt1	-3.11
ENSMUSG0000042938	Gm14117	-3.11
ENSMUSG0000052504	Epha3	-3.11
ENSMUSG0000021786	Oxsm	-3.11
ENSMUSG0000027955	Fam198b	-3.11
ENSMUSG0000032446	Eomes	-3.12
ENSMUSG0000037188	Grhl3	-3.12
ENSMUSG0000040229	Gpr34	-3.13
ENSMUSG0000043311	D17H6S53E	-3.13
ENSMUSG0000036078	Sigmar1	-3.14
ENSMUSG0000021245	Mlh3	-3.14
ENSMUSG0000050953	Gja1	-3.14
ENSMUSG0000023017	Accn2	-3.15
ENSMUSG0000043969	Emx2	-3.15
ENSMUSG0000074892	B3galt5	-3.15
ENSMUSG0000028005	Gucy1b3	-3.16
ENSMUSG0000090369	4933411K16Rik	-3.16
ENSMUSG0000054057	A930004D18Rik	-3.18
ENSMUSG0000047728	BC025446	-3.18
ENSMUSG0000042857	Gm9776	-3.18
ENSMUSG0000041781	Cpsf2	-3.19
ENSMUSG0000054435	Gimap4	-3.19
ENSMUSG0000020902	Ntn1	-3.19
ENSMUSG0000033730	Egr3	-3.19

ENSMUSG0000036948	BC037034	-3.20
ENSMUSG0000039005	Tlr4	-3.20
ENSMUSG0000058914	C1qtnf3	-3.21
ENSMUSG0000045569	Mc2r	-3.21
ENSMUSG0000021994	Wnt5a	-3.21
ENSMUSG0000090433	9430037G07Rik	-3.22
ENSMUSG0000048251	Bcl11b	-3.23
ENSMUSG0000005043	Sgsh	-3.24
ENSMUSG0000039253	Fn3krp	-3.24
ENSMUSG0000056418	BC043934	-3.25
ENSMUSG0000063047	Zfp780b	-3.25
ENSMUSG0000021565	Slc6a19	-3.28
ENSMUSG0000085013	4930556M19Rik	-3.28
ENSMUSG0000072915	Gm12258	-3.28
ENSMUSG0000023903	Mmp25	-3.28
ENSMUSG0000054931	Zkscan4	-3.29
ENSMUSG0000039164	Naif1	-3.29
ENSMUSG0000039706	Ldb2	-3.29
ENSMUSG0000040599	Mis12	-3.30
ENSMUSG0000024228	Nudt12	-3.30
ENSMUSG0000039628	Hs3st6	-3.30
ENSMUSG0000023947	Nfkbie	-3.31
ENSMUSG0000070942	ll1rl2	-3.31
ENSMUSG0000027270	6330527006Rik	-3.31
ENSMUSG0000004069	Dnaja3	-3.32
ENSMUSG0000029915	Clec5a	-3.32
ENSMUSG0000056019	Zfp709	-3.32
ENSMUSG0000056258	Kcnq3	-3.32
ENSMUSG0000026051	1500015O10Rik	-3.32
ENSMUSG0000040969	D630013G24Rik	-3.33
ENSMUSG0000030543	Mesp2	-3.33
ENSMUSG0000045551	Fpr1	-3.34
ENSMUSG0000057156	Homez	-3.35
ENSMUSG0000026979	Psd4	-3.35
ENSMUSG0000085261	Gm13814	-3.35
ENSMUSG0000013150	Gfod2	-3.36
ENSMUSG0000041468	Gpr12	-3.37
ENSMUSG0000041797	Abca9	-3.37
ENSMUSG0000029312	Klhl8	-3.37
ENSMUSG0000041623	D11Wsu47e	-3.37
ENSMUSG0000022292	Rrm2b	-3.37
ENSMUSG0000074860	Gm10778	-3.38
ENSMUSG0000023243	Kcnk5	-3.38

ENSMUSG0000061535	C1qtnf7	-3.38
ENSMUSG0000085154	C130046K22Rik	-3.38
ENSMUSG0000017679	Ttpal	-3.39
ENSMUSG0000049285	Mblac1	-3.39
ENSMUSG0000020901	Pik3r5	-3.39
ENSMUSG0000044367	Slc16a13	-3.40
ENSMUSG0000064294	Aox3	-3.41
ENSMUSG0000054988	Agtr1b	-3.43
ENSMUSG0000063488	Zfp167	-3.44
ENSMUSG0000045515	Pou3f3	-3.45
ENSMUSG0000028540	Dph2	-3.45
ENSMUSG0000046731	Kctd11	-3.45
ENSMUSG0000022828	Gtf2e1	-3.45
ENSMUSG0000028331	5830415F09Rik	-3.46
ENSMUSG0000033356	Pus7l	-3.47
ENSMUSG0000046805	Mpeg1	-3.47
ENSMUSG0000055305	Zfp93	-3.47
ENSMUSG0000043572	Pars2	-3.48
ENSMUSG0000049950	Rpp38	-3.48
ENSMUSG0000057457	Phex	-3.48
ENSMUSG0000033634	Cml2	-3.48
ENSMUSG0000020573	Pik3cg	-3.49
ENSMUSG0000085957	Syna	-3.50
ENSMUSG0000034584	Exph5	-3.51
ENSMUSG0000039563	2210406O10Rik	-3.51
ENSMUSG0000038608	Dock10	-3.51
ENSMUSG0000039057	Myo16	-3.52
ENSMUSG0000055782	Abcd2	-3.53
ENSMUSG0000084779	4921504A21Rik	-3.53
ENSMUSG0000000317	Bcl6b	-3.54
ENSMUSG0000027274	Mkks	-3.54
ENSMUSG0000034041	Lyl1	-3.54
ENSMUSG0000028607	Cpt2	-3.55
ENSMUSG0000049717	Lig4	-3.55
ENSMUSG0000040310	Alx4	-3.55
ENSMUSG0000047746	Fbxo40	-3.56
ENSMUSG0000079293	Clec7a	-3.57
ENSMUSG0000037640	Zfp60	-3.57
ENSMUSG0000091018	Rplp2-ps1	-3.57
ENSMUSG0000019295	Tmem129	-3.60
ENSMUSG0000032105	Pdzd3	-3.60
ENSMUSG0000032841	Prr5l	-3.61
ENSMUSG0000078234	Klhdc7a	-3.63
ENSMUSG0000062944	9130023H24Rik	-3.63
-------------------	---------------	-------
ENSMUSG0000074598	Ufm1	-3.63
ENSMUSG0000086568	9130020K20Rik	-3.64
ENSMUSG0000021120	Pigh	-3.65
ENSMUSG0000058794	Nfe2	-3.65
ENSMUSG0000067586	S1pr3	-3.65
ENSMUSG0000078700	D030028A08Rik	-3.66
ENSMUSG0000074766	lsm1	-3.66
ENSMUSG0000049130	C5ar1	-3.66
ENSMUSG0000086515	Gm16292	-3.66
ENSMUSG0000045140	Pigw	-3.67
ENSMUSG0000051444	Bbs12	-3.68
ENSMUSG0000048776	Pthlh	-3.68
ENSMUSG0000026069	ll1rl1	-3.68
ENSMUSG0000078922	Tgtp1	-3.68
ENSMUSG0000038843	Gcnt1	-3.69
ENSMUSG0000054675	Tmem119	-3.69
ENSMUSG0000079554	Aox3l1	-3.69
ENSMUSG0000089862	Gm16039	-3.70
ENSMUSG0000030237	Slco1a4	-3.72
ENSMUSG0000006642	Tcf23	-3.73
ENSMUSG0000032758	Кар	-3.73
ENSMUSG0000085184	4933439K11Rik	-3.74
ENSMUSG0000037523	Mavs	-3.75
ENSMUSG0000084020	Gm12282	-3.76
ENSMUSG0000078994	Zfp429	-3.76
ENSMUSG0000013846	St3gal1	-3.78
ENSMUSG0000090418	Gm17585	-3.78
ENSMUSG0000069874	Irgm2	-3.79
ENSMUSG0000024440	Pcdh12	-3.80
ENSMUSG0000030493	C230052I12Rik	-3.81
ENSMUSG0000028883	Sema3a	-3.82
ENSMUSG0000039238	Zfp750	-3.84
ENSMUSG0000044770	Scml4	-3.85
ENSMUSG0000073779	B230314M03Rik	-3.85
ENSMUSG0000006777	Krt23	-3.86
ENSMUSG0000039182	AW209491	-3.88
ENSMUSG0000025645	Ccdc51	-3.88
ENSMUSG0000092118	Fancf	-3.88
ENSMUSG0000002699	Lcp2	-3.88
ENSMUSG0000054626	XIr	-3.89
ENSMUSG0000084931	1110019D14Rik	-3.89
ENSMUSG0000042190	Cmklr1	-3.90

ENSMUSG0000027300	Ubox5	-3.90
ENSMUSG0000090834	Gm17476	-3.91
ENSMUSG0000069793	Slfn9	-3.92
ENSMUSG0000062961	Gm1568	-3.92
ENSMUSG0000049001	A930038C07Rik	-3.93
ENSMUSG0000039911	Spsb1	-3.94
ENSMUSG0000001983	Taco1	-3.95
ENSMUSG0000049107	Ntf3	-3.96
ENSMUSG0000091641	Gm17593	-3.97
ENSMUSG0000070423	Olfr558	-3.97
ENSMUSG0000089929	Bcl2a1b	-3.97
ENSMUSG0000074971	Fibin	-3.99
ENSMUSG0000036214	Znrd1as	-3.99
ENSMUSG0000043621	Ubxn10	-3.99
ENSMUSG0000025887	Casp12	-4.01
ENSMUSG0000031497	Tnfsf13b	-4.01
ENSMUSG0000022015	Tnfsf11	-4.01
ENSMUSG0000028182	Lrriq3	-4.02
ENSMUSG0000031506	Ptpn7	-4.02
ENSMUSG0000031264	Btk	-4.02
ENSMUSG0000090659	Zfp493	-4.03
ENSMUSG0000030789	Itgax	-4.03
ENSMUSG0000045658	Pid1	-4.03
ENSMUSG0000049608	Gpr55	-4.04
ENSMUSG0000060441	Trim5	-4.06
ENSMUSG0000069184	Zfp72	-4.07
ENSMUSG0000067578	CbIn4	-4.08
ENSMUSG0000011427	Zfp790	-4.08
ENSMUSG0000020707	Rnf135	-4.08
ENSMUSG0000051037	Zfp455	-4.09
ENSMUSG0000021234	Fam161b	-4.10
ENSMUSG0000040710	St8sia4	-4.10
ENSMUSG0000037251	4930444A02Rik	-4.10
ENSMUSG0000050796	B3galt6	-4.10
ENSMUSG0000087676	9230114K14Rik	-4.13
ENSMUSG0000020607	Fam84a	-4.13
ENSMUSG0000014773	DII1	-4.14
ENSMUSG0000053337	Gm9903	-4.18
ENSMUSG0000058661	Gm7452	-4.19
ENSMUSG0000037185	Krt80	-4.19
ENSMUSG0000034333	Zbed4	-4.20
ENSMUSG0000021186	Fbln5	-4.23
ENSMUSG0000029073	Gltpd1	-4.25

ENSMUSG0000085582	3110099E03Rik	-4.25
ENSMUSG0000056592	Zfp658	-4.27
ENSMUSG0000026107	Obfc2a	-4.27
ENSMUSG0000055900	Tmem69	-4.28
ENSMUSG0000050428	Fbxo46	-4.29
ENSMUSG0000054200	O3far1	-4.29
ENSMUSG0000041362	4930506M07Rik	-4.32
ENSMUSG0000005124	Wisp1	-4.34
ENSMUSG0000041481	Serpina3g	-4.35
ENSMUSG0000052435	Cebpe	-4.35
ENSMUSG0000024810	1133	-4.35
ENSMUSG0000085119	Gm13644	-4.37
ENSMUSG0000043496	Tril	-4.37
ENSMUSG0000085596	Gm11476	-4.38
ENSMUSG0000031639	Tlr3	-4.41
ENSMUSG0000043099	Hic1	-4.42
ENSMUSG0000047414	Flrt2	-4.45
ENSMUSG0000033910	Gucy1a3	-4.46
ENSMUSG0000022829	Stxbp5l	-4.48
ENSMUSG0000086496	Gm14204	-4.49
ENSMUSG0000079043	Fastkd5	-4.50
ENSMUSG0000037411	Serpine1	-4.50
ENSMUSG0000041849	Card6	-4.53
ENSMUSG0000020434	4921536K21Rik	-4.53
ENSMUSG0000032564	Cpne4	-4.58
ENSMUSG0000051457	Spn	-4.59
ENSMUSG0000060240	Cend1	-4.59
ENSMUSG0000031847	1700030J22Rik	-4.60
ENSMUSG0000020137	Thap2	-4.63
ENSMUSG0000017713	Tha1	-4.70
ENSMUSG0000034538	Zfp418	-4.70
ENSMUSG0000031253	Srpx2	-4.73
ENSMUSG0000012428	Steap4	-4.73
ENSMUSG0000027424	8430406107Rik	-4.74
ENSMUSG0000028874	Fgr	-4.74
ENSMUSG0000030737	Slco2b1	-4.74
ENSMUSG0000079227	Ccr5	-4.76
ENSMUSG0000078137	Gm1337	-4.77
ENSMUSG0000004709	Cd244	-4.80
ENSMUSG0000085016	Gm11335	-4.83
ENSMUSG0000029231	Pdgfra	-4.83
ENSMUSG0000071661	Zbtb3	-4.83
ENSMUSG0000050234	Gja4	-4.87

ENSMUSG0000031070	Mrgprf	-4.87
ENSMUSG0000050677	Ccdc96	-4.94
ENSMUSG0000045107	1810063B07Rik	-4.95
ENSMUSG0000066170	E230001N04Rik	-4.98
ENSMUSG0000063193	Cd300lb	-4.99
ENSMUSG0000089803	Gm10171	-5.01
ENSMUSG0000045930	Clec14a	-5.04
ENSMUSG0000025597	Klhl4	-5.06
ENSMUSG0000052382	Rnase9	-5.13
ENSMUSG0000046491	C1qtnf2	-5.15
ENSMUSG0000007805	Twist2	-5.18
ENSMUSG0000031461	Myom2	-5.20
ENSMUSG0000066072	Cyp4a10	-5.24
ENSMUSG0000046380	Jrk	-5.26
ENSMUSG0000030157	Clec2d	-5.33
ENSMUSG0000049625	Tifab	-5.36
ENSMUSG0000086942	Gm15489	-5.44
ENSMUSG0000093606	B130034C11Rik	-5.46
ENSMUSG0000079355	Ccrl1	-5.51
ENSMUSG0000026271	Gpr35	-5.56
ENSMUSG0000055489	Ano5	-5.58
ENSMUSG0000054945	Gm9958	-5.60
ENSMUSG0000042549	Gm16516	-5.61
ENSMUSG0000090641	Zfp712	-5.64
ENSMUSG0000039220	Ppp1r10	-5.65
ENSMUSG0000030909	Anks4b	-5.70
ENSMUSG0000054404	Slfn5	-5.70
ENSMUSG0000059555	A830007P12Rik	-5.70
ENSMUSG0000017692	Rhbdl3	-5.72
ENSMUSG0000035759	Bbs10	-5.76
ENSMUSG0000024168	Tmem204	-5.80
ENSMUSG0000022659	Gcet2	-5.85
ENSMUSG0000045871	Slitrk6	-5.90
ENSMUSG0000043795	Gm14492	-5.91
ENSMUSG0000030031	Kbtbd8	-5.98
ENSMUSG0000044055	Otos	-5.98
ENSMUSG0000051682	Treml4	-5.99
ENSMUSG0000054715	Zscan22	-6.05
ENSMUSG0000024691	Fam111a	-6.07
ENSMUSG0000047878	A4galt	-6.07
ENSMUSG0000063234	Gpr84	-6.08
ENSMUSG0000026163	Sphkap	-6.13
ENSMUSG0000056824	Zfp663	-6.17

ENSMUSG0000075271	Ttc30a1	-6.24
ENSMUSG0000002289	Angptl4	-6.25
ENSMUSG0000071470	Ccnb1ip1	-6.28
ENSMUSG0000048988	Elfn1	-6.29
ENSMUSG0000041577	Prelp	-6.31
ENSMUSG0000084127	Gm13169	-6.32
ENSMUSG0000035431	Sstr1	-6.40
ENSMUSG0000038422	Hdhd3	-6.50
ENSMUSG0000063130	Calml3	-6.51
ENSMUSG0000066235	C85492	-6.57
ENSMUSG0000064293	Cntn4	-6.61
ENSMUSG0000016087	Fli1	-6.68
ENSMUSG0000026829	Gbgt1	-6.74
ENSMUSG0000047842	Diras2	-6.91
ENSMUSG0000049396	Gemin4	-6.91
ENSMUSG0000048779	P2ry6	-6.92
ENSMUSG0000068696	Gpr88	-6.94
ENSMUSG0000009670	Tex11	-7.02
ENSMUSG0000066141	Gm11232	-7.03
ENSMUSG0000046561	Arsj	-7.05
ENSMUSG0000021624	Cd180	-7.08
ENSMUSG0000078920	Ifi47	-7.09
ENSMUSG0000057396	Zfp759	-7.09
ENSMUSG0000060735	Rxfp3	-7.27
ENSMUSG0000048001	Hes5	-7.32
ENSMUSG0000045690	Wdr89	-7.32
ENSMUSG0000043461	1110032A04Rik	-7.35
ENSMUSG0000033082	Clec1a	-7.48
ENSMUSG0000021590	Spata9	-7.50
ENSMUSG0000064165	Krt39	-7.59
ENSMUSG0000036362	P2ry13	-7.73
ENSMUSG0000078945	Naip2	-7.88
ENSMUSG0000063727	Tnfrsf11b	-8.03
ENSMUSG0000049241	Gpr81	-8.37
ENSMUSG0000045382	Cxcr4	-8.40
ENSMUSG0000020524	Gria1	-8.49
ENSMUSG0000013523	Bcas1	-8.60
ENSMUSG0000054293	A630033H20Rik	-8.70
ENSMUSG0000040552	C3ar1	-8.97
ENSMUSG0000078650	ббрс	-9.07
ENSMUSG0000022860	Chodl	-9.11
ENSMUSG0000050232	Cxcr3	-9.37
ENSMUSG0000024868	Dkk1	-9.81

ENSMUSG0000051705	Senp8	-10.02
ENSMUSG0000049103	Ccr2	-10.29
ENSMUSG0000050395	Tnfsf15	-10.32
ENSMUSG0000044952	Kctd21	-10.46
ENSMUSG0000070390	Nlrp1b	-10.52
ENSMUSG0000039783	Кто	-11.27
ENSMUSG0000036961	Wnt8b	-11.44
ENSMUSG0000089702	Gm16568	-12.00
ENSMUSG0000052336	Cx3cr1	-12.22
ENSMUSG0000043017	Ptgir	-12.94
ENSMUSG0000079645	Gm17193	-13.28
ENSMUSG0000080935	Got2-ps1	-13.54
ENSMUSG0000024261	Syt4	-27.05
ENSMUSG0000090723	Gm9625	-34.07
ENSMUSG0000078139	AK157302	-40.59
ENSMUSG0000087412	Gm15501	-53.88
ENSMUSG0000046721	Rpl14-ps1	-55.15
ENSMUSG0000085791	Rpl30-ps9	-58.19
ENSMUSG0000083879	Gm14038	-62.68
ENSMUSG0000069011	Gm10254	-108.04
ENSMUSG0000022591	Gm9747	-180.18
ENSMUSG0000021908	Gm6768	-198.63
ENSMUSG0000047676	Rpsa-ps10	-223.21
ENSMUSG0000059751	Gm9000	-375.87
ENSMUSG0000092329	Gm20388	-498.64
ENSMUSG0000062611	Gm10119	-715.53
ENSMUSG0000083061	Gm12191	-1058.90

Bibliography

- Adli, M., Parlak, M., Li, Y., & El-Dahr, S. S. (2015). Epigenetic States of Nephron Progenitors and Epithelial Differentiation. *Journal of Cellular Biochemistry*, *116*(6), 893-902. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.25048. doi:10.1002/jcb.25048
- al-Awqati, Q., & Goldberg, M. R. (1998). Architectural patterns in branching morphogenesis in the kidney. *Kidney Int*, 54(6), 1832-1842. doi:10.1046/j.1523-1755.1998.00196.x
- Alexandre-Gouabau, M.-C., Courant, F., Le Gall, G., Moyon, T., Darmaun, D., Parnet, P., Coupé, B., & Antignac, J.-P. (2011). Offspring Metabolomic Response to Maternal Protein Restriction in a Rat Model of Intrauterine Growth Restriction (IUGR). *Journal of Proteome Research*, 10(7), 3292-3302. Retrieved from https://doi.org/10.1021/pr2003193. doi:10.1021/pr2003193
- Alexandre-Gouabau, M.-C., Courant, F., Le Gall, G., Moyon, T., Darmaun, D., Parnet, P., Coupé, B., & Antignac, J.-P. (2011). Offspring Metabolomic Response to Maternal Protein Restriction in a Rat Model of Intrauterine Growth Restriction (IUGR). *Journal of Proteome Research*, 10(7), 3292-3302. Retrieved from https://doi.org/10.1021/pr2003193. doi:10.1021/pr2003193
- Alonso, L., & Fuchs, E. (2006). The hair cycle. *Journal of Cell Science*, *119*(3), 391-393. Retrieved from https://jcs.biologists.org/content/joces/119/3/391.full.pdf. doi:10.1242/jcs.02793
- American Kidney Fund. (2019). Chronic Kidney Disease. Retrieved from https://www.kidneyfund.org/kidney-disease/chronic-kidney-diseaseckd/#how_is_ckd_treated
- Amu, S., Hahn-Zoric, M., Malik, A., Ashraf, R., Zaman, S., Kjellmer, I., Hagberg, H., Padyukov, L., & Hanson, L. Å. (2006). Cytokines in the Placenta of Pakistani Newborns with and Without Intrauterine Growth Retardation. *Pediatric Research*, 59(2), 254-258. Retrieved from https://doi.org/10.1203/01.pdr.0000196332.37565.7d. doi:10.1203/01.pdr.0000196332.37565.7d
- Arsenault, M. G., Miao, Y., Jones, K., Sims, D., Spears, J., Wright, G. M., & Hartwig, S. (2014).
 Estimation of total glomerular number using an integrated disector method in embryonic and postnatal kidneys. *Canadian journal of kidney health and disease*, 1, 12-12.
 Retrieved from https://pubmed.ncbi.nlm.nih.gov/25780607 doi:10.1186/2054-3581-1-12
- Barak, H., Rosenfelder, L., Schultheiss, T. M., & Reshef, R. (2005). Cell fate specification along the anterior–posterior axis of the intermediate mesoderm. *Developmental Dynamics*, 232(4), 901-914. Retrieved from <u>https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.20263</u>. doi:10.1002/dvdy.20263
- Bard, J. B. L., Gordon, A., Sharp, L., & Sellers, W. I. (2001). Early nephron formation in the developing mouse kidney. *Journal of Anatomy*, 199(4), 385-392. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-7580.2001.19940385.x. doi:10.1046/j.1469-7580.2001.19940385.x
- Bartha, J. L., Romero-Carmona, R., & Comino-Delgado, R. (2003). Inflammatory cytokines in intrauterine growth retardation. *Acta Obstet Gynecol Scand*, 82(12), 1099-1102. doi:10.1046/j.1600-0412.2003.00259.x

- Basgen, J. M., Nicholas, S. B., Mauer, M., Rozen, S., & Nyengaard, J. R. (2006). Comparison of Methods for Counting Cells in the Mouse Glomerulus. *Nephron Experimental Nephrology*, 103(4), e139-e148. Retrieved from https://www.karger.com/DOI/10.1159/000092905. doi:10.1159/000092905
- Basta, J. M., Robbins, L., Kiefer, S. M., Dorsett, D., & Rauchman, M. (2014). Sall1 balances self-renewal and differentiation of renal progenitor cells. *Development*, 141(5), 1047-1058. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/24550112</u> doi:10.1242/dev.095851
- Bates, C., Kharzai, S., Erwin, T., Rossant, J., & Parada, L. (2000). Role of N-myc in the Developing Mouse Kidney. *Developmental Biology*, 222, 317-325. doi:10.1006/dbio.2000.9716
- Beeman, S. C., Cullen-McEwen, L. A., Puelles, V. G., Zhang, M., Wu, T., Baldelomar, E. J., Dowling, J., Charlton, J. R., Forbes, M. S., Ng, A., Wu, Q.-z., Armitage, J. A., Egan, G. F., Bertram, J. F., & Bennett, K. M. (2014). MRI-based glomerular morphology and pathology in whole human kidneys. *Am J Physiol Renal Physiol, 306*(11), F1381-F1390. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/24647716</u> doi:10.1152/ajprenal.00092.2014
- Bernhardt, W. M., Schmitt, R., Rosenberger, C., Münchenhagen, P. M., Gröne, H. J., Frei, U., Warnecke, C., Bachmann, S., Wiesener, M. S., Willam, C., & Eckardt, K. U. (2006). Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. *Kidney Int*, 69(1), 114-122. Retrieved from http://www.sciencedirect.com/science/article/pii/S0085253815513288. doi:https://doi.org/10.1038/sj.ki.5000062
- Bhasin, K. K. S., van Nas, A., Martin, L. J., Davis, R. C., Devaskar, S. U., & Lusis, A. J. (2009).
 Maternal Low-Protein Diet or Hypercholesterolemia Reduces Circulating Essential Amino Acids and Leads to Intrauterine Growth Restriction. *Diabetes*, 58(3), 559-566.
 Retrieved from https://diabetes.diabetesjournals.org/content/diabetes/58/3/559.full.pdf. doi:10.2337/db07-1530
- Blank, U., Brown, A., Adams, D. C., Karolak, M. J., & Oxburgh, L. (2009). BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. *Development*, 136(21), 3557-3566. doi:10.1242/dev.036335
- Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: turning over new leaves. *Cell*, 128(3), 445-458. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/17289566</u> doi:10.1016/j.cell.2007.01.014
- Boergermann, J. H., Kopf, J., Yu, P. B., & Knaus, P. (2010). Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. *Int J Biochem Cell Biol*, 42(11), 1802-1807. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/20691279</u> doi:10.1016/j.biocel.2010.07.018
- Breitwieser, W., Lyons, S., Flenniken, A. M., Ashton, G., Bruder, G., Willington, M., Lacaud, G., Kouskoff, V., & Jones, N. (2007). Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. *Genes Dev*, 21(16), 2069-2082. doi:10.1101/gad.430207
- Brown, A. C., Adams, D., de Caestecker, M., Yang, X., Friesel, R., & Oxburgh, L. (2011).
 FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. *Development*, 138(23), 5099-5112. Retrieved from https://dev.biologists.org/content/develop/138/23/5099.full.pdf. doi:10.1242/dev.065995

- Brown, A. C., Muthukrishnan, S. D., Guay, J. A., Adams, D. C., Schafer, D. A., Fetting, J. L., & Oxburgh, L. (2013). Role for compartmentalization in nephron progenitor differentiation. *Proc Natl Acad Sci U S A*, *110*(12), 4640-4645. doi:10.1073/pnas.1213971110
- Brown, A. C., Muthukrishnan, S. D., & Oxburgh, L. (2015). A synthetic niche for nephron progenitor cells. *Dev Cell*, 34(2), 229-241. doi:10.1016/j.devcel.2015.06.021
- Brown, D. (2017). The Discovery of Water Channels (Aquaporins). *Annals of Nutrition and Metabolism*, 70(*suppl 1*)(Suppl. 1), 37-42. Retrieved from https://www.karger.com/DOI/10.1159/000463061. doi:10.1159/000463061
- Brown, L. D., Green, A. S., Limesand, S. W., & Rozance, P. J. (2011). Maternal amino acid supplementation for intrauterine growth restriction. *Frontiers in bioscience (Scholar edition)*, 3, 428-444. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/21196387</u> doi:10.2741/s162
- Burns, R. (1955). Urogenital System. In B. H. Willier, P. A. Weiss, & V. Hamburger (Eds.), *Analysis of Development* (pp. 462-491). Philadelphia: Saunders.
- Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). *Metabolism*, 65(8), 1038-1048. Retrieved from http://www.sciencedirect.com/science/article/pii/S0026049515003832. doi:https://doi.org/10.1016/j.metabol.2015.12.012
- Cain, J. E., Di Giovanni, V., Smeeton, J., & Rosenblum, N. D. (2010). Genetics of Renal Hypoplasia: Insights Into the Mechanisms Controlling Nephron Endowment. *Pediatric Research*, 68(2), 91-98. Retrieved from https://doi.org/10.1203/PDR.0b013e3181e35a88. doi:10.1203/PDR.0b013e3181e35a88
- Cain, J. E., Islam, E., Haxho, F., Chen, L., Bridgewater, D., Nieuwenhuis, E., Hui, C.-C., & Rosenblum, N. D. (2009). GLI3 Repressor Controls Nephron Number via Regulation of Wnt11 and Ret in Ureteric Tip Cells. *PLOS ONE*, 4(10), e7313. Retrieved from https://doi.org/10.1371/journal.pone.0007313. doi:10.1371/journal.pone.0007313
- Calkins, K., & Devaskar, S. U. (2011). Fetal origins of adult disease. *Current problems in pediatric and adolescent health care*, 41(6), 158-176. Retrieved from https://pubmed.ncbi.nlm.nih.gov/21684471 doi:10.1016/j.cppeds.2011.01.001
- Candi, E., Smirnov, A., Panatta, E., Lena, A. M., Novelli, F., Mancini, M., Viticchiè, G., Piro, M. C., Di Daniele, N., Annicchiarico-Petruzzelli, M., & Melino, G. (2017). Metabolic pathways regulated by p63. *Biochemical and Biophysical Research Communications*, 482(3), 440-444. Retrieved from http://www.sciencedirect.com/science/article/pii/S0006291X16317818.
 - doi:https://doi.org/10.1016/j.bbrc.2016.10.094
- Carroll, T. J., & Das, A. (2013). Defining the Signals that Constitute the Nephron Progenitor Niche. *Journal of the American Society of Nephrology*, 24(6), 873-876. Retrieved from https://jasn.asnjournals.org/content/jnephrol/24/6/873.full.pdf. doi:10.1681/asn.2012090931
- Cebrian, C., Asai, N., D'Agati, V., & Costantini, F. (2014). The Number of Fetal Nephron Progenitor Cells Limits Ureteric Branching and Adult Nephron Endowment. *Cell Reports*, 7(1), 127-137. Retrieved from https://doi.org/10.1016/j.celrep.2014.02.033. doi:10.1016/j.celrep.2014.02.033
- Cebrian, C., Asai, N., D'Agati, V., & Costantini, F. (2014). The Number of Fetal Nephron Progenitor Cells Limits Ureteric Branching and Adult Nephron Endowment. *Cell*

Reports, 7(1), 127-137. Retrieved from https://doi.org/10.1016/j.celrep.2014.02.033. doi:10.1016/j.celrep.2014.02.033

- Cerqueira, D. M., Hemker, S. L., Bodnar, A. J., Ortiz, D. M., Oladipupo, F. O., Mukherjee, E., Gong, Z., Appolonia, C., Muzumdar, R., Sims-Lucas, S., & Ho, J. (2019). In utero exposure to maternal diabetes impairs nephron progenitor differentiation. *American Journal of Physiology-Renal Physiology*, 317(5), F1318-F1330. Retrieved from https://journals.physiology.org/doi/abs/10.1152/ajprenal.00204.2019. doi:10.1152/ajprenal.00204.2019
- Chang-Panesso, M., Kadyrov, F. F., Machado, F. G., Kumar, A., & Humphreys, B. D. (2018). Meis1 is specifically upregulated in kidney myofibroblasts during aging and injury but is not required for kidney homeostasis or fibrotic response. *Am J Physiol Renal Physiol*, *315*(2), F275-F290. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/29592525</u> doi:10.1152/ajprenal.00030.2018
- Charlton, J. R., & Chevalier, R. L. (2018). Developmental Origins of CKD: Big Problems From Small Packages. *American Journal of Kidney Diseases*, 71(1), 3-5. Retrieved from https://doi.org/10.1053/j.ajkd.2017.08.022. doi:10.1053/j.ajkd.2017.08.022
- Chen, S., Brunskill, E. W., Potter, S. S., Dexheimer, P. J., Salomonis, N., Aronow, B. J., Hong, C. I., Zhang, T., & Kopan, R. (2015). Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. *Dev Cell*, 35(1), 49-62. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/26460946</u> doi:10.1016/j.devcel.2015.09.009
- Chen, S., & El-Dahr, S. S. (2013). Histone deacetylases in kidney development: implications for disease and therapy. *Pediatric Nephrology*, 28(5), 689-698. Retrieved from https://doi.org/10.1007/s00467-012-2223-8. doi:10.1007/s00467-012-2223-8
- Chen, Y., Lasaitiene, D., & Friberg, P. (2004). The renin–angiotensin system in kidney development. Acta Physiologica Scandinavica, 181(4), 529-535. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-201X.2004.01327.x. doi:10.1111/j.1365-201X.2004.01327.x
- Chen, Y., & Williams, B. R. (2000). The role of NF-kappaB in the regulation of the expression of wilms tumor suppressor gene WT1. *Gene Expr*, 9(3), 103-114. doi:10.3727/00000001783992614
- Chen, Y. W., Chenier, I., Chang, S. Y., Tran, S., Ingelfinger, J. R., & Zhang, S. L. (2011). High glucose promotes nascent nephron apoptosis via NF-kappaB and p53 pathways. *Am J Physiol Renal Physiol*, 300(1), F147-156. doi:10.1152/ajprenal.00361.2010
- Cheng, H.-T., & Kopan, R. (2005). The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. *Kidney Int*, 68(5), 1951-1952. Retrieved from http://www.sciencedirect.com/science/article/pii/S0085253815510703. doi:https://doi.org/10.1111/j.1523-1755.2005.00627.x
- Choudhry, Z., Rikani, A. A., Choudhry, A. M., Tariq, S., Zakaria, F., Asghar, M. W., Sarfraz, M. K., Haider, K., Shafiq, A. A., & Mobassarah, N. J. (2014). Sonic hedgehog signalling pathway: a complex network. *Annals of neurosciences*, 21(1), 28-31. Retrieved from https://pubmed.ncbi.nlm.nih.gov/25206052 doi:10.5214/ans.0972.7531.210109
- ur). Lhx1 Is Required for Specification of the Renal Progenitor Cell Field. *PLOS ONE*, 6(4), e18858. Retrieved from https://doi.org/10.1371/journal.pone.0018858. doi:10.1371/journal.pone.0018858
- Clemens, M. J. (2001). Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. *Prog Mol Subcell Biol*, 27, 57-89. doi:10.1007/978-3-662-09889-9_3

- Cline, J. M., & Clarkson, T. B. (2015). Chapter 35 Research in Laboratory Animal and Comparative Medicine. In J. G. Fox, L. C. Anderson, G. M. Otto, K. R. Pritchett-Corning, & M. T. Whary (Eds.), *Laboratory Animal Medicine (Third Edition)* (pp. 1535-1541). Boston: Academic Press.
- Combes, A. N., Lefevre, J. G., Wilson, S., Hamilton, N. A., & Little, M. H. (2016). Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. *Developmental Biology*, 418(2), 297-306. Retrieved from http://www.sciencedirect.com/science/article/pii/S0012160616303025. doi:https://doi.org/10.1016/j.ydbio.2016.06.028
- Costantini, F., & Kopan, R. (2010). Patterning a Complex Organ: Branching Morphogenesis and Nephron Segmentation in Kidney Development. *Dev Cell*, *18*(5), 698-712. Retrieved from http://www.sciencedirect.com/science/article/pii/S1534580710002078. doi:https://doi.org/10.1016/j.devcel.2010.04.008
- Cunningham, B. A., Hoffman, S., Rutishauser, U., Hemperly, J. J., & Edelman, G. M. (1983).
 Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. *Proceedings of the National Academy of Sciences*, 80(10), 3116-3120. Retrieved from https://www.pnas.org/content/pnas/80/10/3116.full.pdf. doi:10.1073/pnas.80.10.3116
- Davidson, A. J. (2010). *Mouse kidney development*. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK27080/
- Davies, J. (1994). Control of calbindin-D28K expression in developing mouse kidney. *Dev Dyn*, 199(1), 45-51. doi:10.1002/aja.1001990105
- Deng, S., Yang, B., Ren, Z. J., & Dong, Q. (2018). [Growth Regulation of Factor Inhibiting Hypoxia-Inducible Factor in Renal Carcinoma Cells]. Sichuan Da Xue Xue Bao Yi Xue Ban, 49(1), 29-33.
- Drabovich, A. P., Pavlou, M. P., Dimitromanolakis, A., & Diamandis, E. P. (2012). Quantitative Analysis of Energy Metabolic Pathways in MCF-7 Breast Cancer Cells by Selected Reaction Monitoring Assay. *Molecular & amp; Cellular Proteomics, 11*(8), 422-434. Retrieved from https://www.mcponline.org/content/mcprot/11/8/422.full.pdf. doi:10.1074/mcp.M111.015214
- Dressler, G. R. (2006). The Cellular Basis of Kidney Development. *Annual Review of Cell and Developmental Biology*, 22(1), 509-529. Retrieved from https://www.annualreviews.org/doi/abs/10.1146/annurev.cellbio.22.010305.104340. doi:10.1146/annurev.cellbio.22.010305.104340
- Dressler, G. R. (2009). Advances in early kidney specification, development and patterning. *Development*, 136(23), 3863-3874. doi:10.1242/dev.034876
- Dressler, G. R. (2009). Advances in early kidney specification, development and patterning. *Development*, 136(23), 3863-3874. Retrieved from
- https://dev.biologists.org/content/develop/136/23/3863.full.pdf. doi:10.1242/dev.034876 Drummond-Barbosa, D., & Spradling, A. C. (2001). Stem Cells and Their Progeny Respond to
 - Nutritional Changes during Drosophila Oogenesis. *Developmental Biology*, 231(1), 265-278. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0012160600901350. doi:https://doi.org/10.1006/dbio.2000.0135

Duan, W. R., Garner, D. S., Williams, S. D., Funckes-Shippy, C. L., Spath, I. S., & Blomme, E. A. (2003). Comparison of immunohistochemistry for activated caspase-3 and cleaved

cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. *The Journal of Pathology, 199*(2), 221-228. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/path.1289. doi:10.1002/path.1289

- Edgar, R., Mazor, Y., Rinon, A., Blumenthal, J., Golan, Y., Buzhor, E., Livnat, I., Ben-Ari, S., Lieder, I., Shitrit, A., Gilboa, Y., Ben-Yehudah, A., Edri, O., Shraga, N., Bogoch, Y., Leshansky, L., Aharoni, S., West, M. D., Warshawsky, D., & Shtrichman, R. (2013). LifeMap Discovery[™]: the embryonic development, stem cells, and regenerative medicine research portal. *PLOS ONE*, 8(7), e66629. doi:10.1371/journal.pone.0066629
- El-Dahr, S. S. (2019). DNA methylation links intrauterine stress with abnormal nephrogenesis. *Nature Reviews Nephrology*, *15*(4), 196-197. Retrieved from https://doi.org/10.1038/s41581-019-0114-y. doi:10.1038/s41581-019-0114-y
- El-Dahr, S. S., Li, Y., Liu, J., Gutierrez, E., Hering-Smith, K. S., Signoretti, S., Pignon, J.-C., Sinha, S., & Saifudeen, Z. (2017). p63+ ureteric bud tip cells are progenitors of intercalated cells. *JCI insight*, 2(9), e89996. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28469077 doi:10.1172/jci.insight.89996
- Elias, B. C., Das, A., Parekh, D. V., Mernaugh, G., Adams, R., Yang, Z., Brakebusch, C., Pozzi, A., Marciano, D. K., Carroll, T. J., & Zent, R. (2015). Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. *Journal of Cell Science*, 128(23), 4293-4305. Retrieved from
- https://jcs.biologists.org/content/joces/128/23/4293.full.pdf. doi:10.1242/jcs.164509
- Elumalai, G. (2017). "RENAL ECTOPIA" EMBRYOLOGICAL BASIS AND ITS CLINICAL IMPORTANCE. *Elixir Embryology*, *103*, 45680-46685.
- Etchegaray, J.-P., & Mostoslavsky, R. (2016). Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes. *Molecular Cell*, 62(5), 695-711. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276516301927. doi:https://doi.org/10.1016/j.molcel.2016.05.029
- Fanni, D., Fanos, V., Monga, G., Gerosa, C., Locci, A., Nemolato, S., Van Eyken, P., & Faa, G. (2011). Expression of WT1 during normal human kidney development. *The Journal of Maternal-Fetal & Neonatal Medicine*, 24(sup2), 44-47. Retrieved from https://doi.org/10.3109/14767058.2011.606619. doi:10.3109/14767058.2011.606619
- Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B., & Thomson, A. W. (2016). Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. *Nature reviews. Nephrology*, 12(10), 587-609. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27477490 doi:10.1038/nrneph.2016.108
- Fantus, I. G., Goldberg, H. J., Whiteside, C. I., & Topic, D. (2006). The Hexokinase Pathway. In P. Cortes & C. E. Mogensen (Eds.), *Contemporary Diabtes: The Diabetic Kidney*. Totowa, NJ: Humana Press Inc
- Fleming, B. M., Yelin, R., James, R. G., & Schultheiss, T. M. (2013). A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. *Development*, 140(8), 1819-1829. Retrieved from https://dev.biologists.org/content/develop/140/8/1819.full.pdf. doi:10.1242/dev.093740
- Forbes, M. S., Thornhill, B. A., & Chevalier, R. L. (2011). Proximal tubular injury and rapid formation of a tubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. *Am J Physiol Renal Physiol*, 301(1), F110-F117. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/21429968</u> doi:10.1152/ajprenal.00022.2011

- Fujita, K., & Srinivasula, S. M. (2009). Ubiquitination and TNFR1 signaling. Results Probl Cell Differ, 49, 87-114. doi:10.1007/400_2009_18
- Galuska, C. E., Lütteke, T., & Galuska, S. P. (2017). Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs? *Biology (Basel)*, 6(2). doi:10.3390/biology6020027
- Galuska, C. E., Lütteke, T., & Galuska, S. P. (2017). Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs? *Biology (Basel)*, 6(2), 27. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/28448440</u> doi:10.3390/biology6020027
- Gao, X., Chen, X., Taglienti, M., Rumballe, B., Little, M. H., & Kreidberg, J. A. (2005).
 Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. *Development*, 132(24), 5437-5449. Retrieved from https://dev.biologists.org/content/develop/132/24/5437.full.pdf. doi:10.1242/dev.02095
- Godley, L. A., Kopp, J. B., Eckhaus, M., Paglino, J. J., Owens, J., & Varmus, H. E. (1996).
 Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. *Genes Dev*, 10(7), 836-850. doi:10.1101/gad.10.7.836
- Goldenberg, R. L., & Cliver, S. P. (1997). Small for gestational age and intrauterine growth restriction: definitions and standards. *Clin Obstet Gynecol*, *40*(4), 704-714. doi:10.1097/00003081-199712000-00004
- Gomez, R. A., Norwood, V. F., & Tufro-McReddie, A. (1997). Development of the kidney vasculature. *Microscopy Research and Technique*, 39(3), 254-260. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0029%2819971101%2939%3A3%3C254%3A%3AAID-JEMT5%3E3.0.CO%3B2-K. doi:10.1002/(sici)1097-0029(19971101)39:3<254::Aid-jemt5>3.0.Co;2-k
- Griffin, K. A., Kramer, H., & Bidani, A. K. (2008). Adverse renal consequences of obesity. *American Journal of Physiology-Renal Physiology*, 294(4), F685-F696. Retrieved from https://journals.physiology.org/doi/abs/10.1152/ajprenal.00324.2007. doi:10.1152/ajprenal.00324.2007
- Hagan, C., (2017). When Are Mice Considered Old?. *JAX Blog*. https://www.jax.org/news-andinsights/jax-blog/2017/november/when-are-mice-consideredold#:~:text=Mice%20should%20be%20at%20least%2010%20months%20old,ranging%2 0from%2056%20-%2069%20years%20of%20age.
- Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. *Diabetologia*, *35*(7), 595-601. doi:10.1007/bf00400248
- Hamanaka, R. B., & Chandel, N. S. (2012). Targeting glucose metabolism for cancer therapy. *Journal of Experimental Medicine*, 209(2), 211-215. Retrieved from https://doi.org/10.1084/jem.20120162. doi:10.1084/jem.20120162
- Hasegawa, T., McLeod, D. S., Prow, T., Merges, C., Grebe, R., & Lutty, G. A. (2008). Vascular Precursors in Developing Human Retina. *Investigative Ophthalmology & Visual Science*, 49(5), 2178-2192. Retrieved from https://doi.org/10.1167/iovs.07-0632. doi:10.1167/iovs.07-0632
- Hastie, N. D. (2017). Wilms' tumour 1 (WT1) in development, homeostasis and disease. Development, 144(16), 2862-2872. Retrieved from https://dev.biologists.org/content/develop/144/16/2862.full.pdf. doi:10.1242/dev.153163
- Hayakawa, M., Takemoto, K., Nakayama, A., Saito, A., Sato, Y., Hasegawa, M., Ieda, K., & Mimura, S. (2006). An animal model of intrauterine growth retardation induced by

synthetic thromboxane a(2). *J Soc Gynecol Investig*, *13*(8), 566-572. doi:10.1016/j.jsgi.2006.09.007

- Hilliard, S., Song, R., Liu, H., Chen, C.-h., Li, Y., Baddoo, M., Flemington, E., Wanek, A., Kolls, J., Saifudeen, Z., & El-Dahr, S. S. (2019). Defining the dynamic chromatin landscape of nephron progenitors. *bioRxiv*, 515429. Retrieved from https://www.biorxiv.org/content/biorxiv/early/2019/01/08/515429.full.pdf. doi:10.1101/515429
- Holthöfer, H., Schulte, B. A., & Spicer, S. S. (1987). Expression of binding sites for Dolichos biflorus agglutinin at the apical aspect of collecting duct cells in rat kidney. *Cell and Tissue Research*, 249(3), 481-485. Retrieved from https://doi.org/10.1007/BF00217319. doi:10.1007/BF00217319
- Hoy, W. E., Hughson, M. D., Bertram, J. F., Douglas-Denton, R., & Amann, K. (2005). Nephron Number, Hypertension, Renal Disease, and Renal Failure. *Journal of the American Society of Nephrology*, *16*(9), 2557-2564. Retrieved from https://jasn.asnjournals.org/content/jnephrol/16/9/2557.full.pdf. doi:10.1681/asn.2005020172
- Hsu, P., & Nanan, R. K. H. (2014). Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. *Frontiers in immunology*, 5, 125-125. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/24734032</u> doi:10.3389/fimmu.2014.00125
- Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res*, 37(1), 1-13. doi:10.1093/nar/gkn923
- Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc*, 4(1), 44-57. doi:10.1038/nprot.2008.211
- Ihermann-Hella, A., Hirashima, T., Kupari, J., Kurtzeborn, K., Li, H., Kwon, H. N., Cebrian, C., Soofi, A., Dapkunas, A., Miinalainen, I., Dressler, G. R., Matsuda, M., & Kuure, S. (2018). Dynamic MAPK/ERK Activity Sustains Nephron Progenitors through Niche Regulation and Primes Precursors for Differentiation. *Stem Cell Reports*, *11*(4), 912-928. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/30220628</u> doi:10.1016/j.stemcr.2018.08.012
- Jacob, S., & Bhargava, P. (1962). New method for the preparation of liver cell suspensions. *Experimental cell research*, 27, 453-467. doi:10.1016/0014-4827(62)90011-3
- Jansson, T., Scholtbach, V., & Powell, T. L. (1998). Placental Transport of Leucine and Lysine Is Reduced in Intrauterine Growth Restriction. *Pediatric Research*, 44(4), 532-537. Retrieved from https://doi.org/10.1203/00006450-199810000-00011. doi:10.1203/00006450-199810000-00011
- Jones, A. K., Brown, L. D., Rozance, P. J., Serkova, N. J., Hay, W. W., Jr., Friedman, J. E., & Wesolowski, S. R. (2019). Differential effects of intrauterine growth restriction and a hypersinsulinemic-isoglycemic clamp on metabolic pathways and insulin action in the fetal liver. *Am J Physiol Regul Integr Comp Physiol*, 316(5), R427-r440. doi:10.1152/ajpregu.00359.2018
- Jordan, J. M., Hibshman, J. D., Webster, A. K., Kaplan, R. E. W., Leinroth, A., Guzman, R., Maxwell, C. S., Chitrakar, R., Bowman, E. A., Fry, A. L., Hubbard, E. J. A., & Baugh, L. R. (2019). Insulin/IGF Signaling and Vitellogenin Provisioning Mediate Intergenerational

Adaptation to Nutrient Stress. *Current Biology*, 29(14), 2380-2388.e2385. Retrieved from https://doi.org/10.1016/j.cub.2019.05.062. doi:10.1016/j.cub.2019.05.062

- Kanda, S., Tanigawa, S., Ohmori, T., Taguchi, A., Kudo, K., Suzuki, Y., Sato, Y., Hino, S., Sander, M., Perantoni, A. O., Sugano, S., Nakao, M., & Nishinakamura, R. (2014). Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol, 25(11), 2584-2595. doi:10.1681/asn.2013080896
- Karantzali, E., Lekakis, V., Ioannou, M., Hadjimichael, C., Papamatheakis, J., & Kretsovali, A. (2011). Sall1 regulates embryonic stem cell differentiation in association with nanog. J Biol Chem, 286(2), 1037-1045. doi:10.1074/jbc.M110.170050
- Katsu, K., Tokumori, D., Tatsumi, N., Suzuki, A., & Yokouchi, Y. (2012). BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left–right asymmetry in the chick embryo. *Developmental Biology*, 363(1), 15-26. Retrieved from <u>http://www.sciencedirect.com/science/article/pii/S0012160611014357</u>. doi:<u>https://doi.org/10.1016/j.ydbio.2011.12.015</u>
- Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. *Nature reviews. Cancer*, 12(1), 9-22. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/22169972</u> doi:10.1038/nrc3183
- Keller, G., Zimmer, G., Mall, G., Ritz, E., & Amann, K. (2003). Nephron number in patients with primary hypertension. *N Engl J Med*, *348*(2), 101-108. doi:10.1056/NEJMoa020549
- Kimball, S. R. (1999). Eukaryotic initiation factor eIF2. *Int J Biochem Cell Biol*, *31*(1), 25-29. doi:10.1016/s1357-2725(98)00128-9
- Kobayashi, A., Valerius, M. T., Mugford, J. W., Carroll, T. J., Self, M., Oliver, G., & McMahon,
 A. P. (2008). Six2 defines and regulates a multipotent self-renewing nephron progenitor
 population throughout mammalian kidney development. *Cell stem cell*, 3(2), 169-181.
 doi:10.1016/j.stem.2008.05.020
- Kontou, M., Weidemann, W., Bork, K., & Horstkorte, R. (2009). Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells. *Biol Chem*, *390*(7), 575-579. doi:10.1515/bc.2009.058
- Kopan, R., Chen, S., & Little, M. (2014). Chapter Eleven Nephron Progenitor Cells: Shifting the Balance of Self-Renewal and Differentiation. In M. Rendl (Ed.), *Curr Top Dev Biol* (Vol. 107, pp. 293-331): Academic Press.
- Kopan, R., Chen, S., & Little, M. (2014). Nephron progenitor cells: shifting the balance of selfrenewal and differentiation. *Curr Top Dev Biol, 107*, 293-331. doi:10.1016/b978-0-12-416022-4.00011-1
- Kurien, B. T., & Scofield, R. H. (1999). Mouse urine collection using clear plastic wrap. *Lab Anim*, *33*(1), 83-86. doi:10.1258/002367799780578525
- Lackie, P. M., Zuber, C., & Roth, J. (1990). Polysialic acid and N-CAM localisation in embryonic rat kidney: mesenchymal and epithelial elements show different patterns of expression. *Development*, 110(3), 933-947.
- Lackie, P. M., Zuber, C., & Roth, J. (1990). Polysialic acid and N-CAM localisation in embryonic rat kidney: mesenchymal and epithelial elements show different patterns of expression. *Development*, 110(3), 933-947.
- Lang, K. J., Kappel, A., & Goodall, G. J. (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. *Mol Biol Cell*, 13(5), 1792-1801. doi:10.1091/mbc.02-02-0017

Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. *Journal of Cell Science*, *122*(20), 3589-3594. Retrieved from

https://jcs.biologists.org/content/joces/122/20/3589.full.pdf. doi:10.1242/jcs.051011

- Laugesen, A., & Helin, K. (2014). Chromatin repressive complexes in stem cells, development, and cancer. *Cell stem cell*, 14(6), 735-751. doi:10.1016/j.stem.2014.05.006
- Lee, S.-Y., Han, S. M., Kim, J.-E., Chung, K.-Y., & Han, K.-H. (2013). Expression of Ecadherin in pig kidney. *Journal of veterinary science*, 14(4), 381-386. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/23820247</u> doi:10.4142/jvs.2013.14.4.381
- Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M., Haag, J. D., Gould, M. N., Stewart, R. M., & Kendziorski, C. (2013). EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. *Bioinformatics*, 29(8), 1035-1043. doi:10.1093/bioinformatics/btt087
- Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*, *12*(1), 323. Retrieved from https://doi.org/10.1186/1471-2105-12-323. doi:10.1186/1471-2105-12-323
- Li, Y. (2014). Novel roles of p53 in regulation of nephron progenitor cell renewal and differentiation during kidney development. New Orleans, La.: New Orleans, La.: Tulane University.
- Li, Y., Liu, J., Li, W., Brown, A., Baddoo, M., Li, M., Carroll, T., Oxburgh, L., Feng, Y., & Saifudeen, Z. (2015). p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. *Development*, 142(7), 1228-1241. doi:10.1242/dev.111617
- Li, Y., Liu, J., Li, W., Brown, A., Baddoo, M., Li, M., Carroll, T., Oxburgh, L., Feng, Y., & Saifudeen, Z. (2015). p53 enables metabolic fitness and self-renewal of nephron progenitor cells. *Development*, 142(7), 1228-1241. Retrieved from https://dev.biologists.org/content/develop/142/7/1228.full.pdf. doi:10.1242/dev.111617
- Lin, G., Wang, X., Wu, G., Feng, C., Zhou, H., Li, D., & Wang, J. (2014). Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. *Amino Acids*, 46(7), 1605-1623. Retrieved from https://doi.org/10.1007/s00726-014-1725-z. doi:10.1007/s00726-014-1725-z
- Lindström, Nils O., Carragher, Neil O., & Hohenstein, P. (2015). The PI3K Pathway Balances Self-Renewal and Differentiation of Nephron Progenitor Cells through β-Catenin Signaling. *Stem Cell Reports*, 4(4), 551-560. Retrieved from https://doi.org/10.1016/j.stemcr.2015.01.021. doi:10.1016/j.stemcr.2015.01.021
- Lindström, N. O., De Sena Brandine, G., Tran, T., Ransick, A., Suh, G., Guo, J., Kim, A. D., Parvez, R. K., Ruffins, S. W., Rutledge, E. A., Thornton, M. E., Grubbs, B., McMahon, J. A., Smith, A. D., & McMahon, A. P. (2018). Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis. *Dev Cell*, 45(5), 651-660.e654. Retrieved from http://www.sciencedirect.com/science/article/pii/S1534580718303678. doi:https://doi.org/10.1016/j.devcel.2018.05.010
- Liu, H., Chen, S., Yao, X., Li, Y., Chen, C.-H., Liu, J., Saifudeen, Z., & El-Dahr, S. S. (2018). Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. *Development*, 145(10), dev153619. Retrieved from https://dev.biologists.org/content/develop/145/10/dev153619.full.pdf. doi:10.1242/dev.153619

- Liu, H., Hilliard, S., Kelly, E., Chen, C. H., Saifudeen, Z., & El-Dahr, S. S. (2020). The polycomb proteins EZH1 and EZH2 co-regulate chromatin accessibility and nephron progenitor cell lifespan in mice. *J Biol Chem*. doi:10.1074/jbc.RA120.013348
- Liu, J., Edgington-Giordano, F., Dugas, C., Abrams, A., Katakam, P., Satou, R., & Saifudeen, Z. (2017). Regulation of Nephron Progenitor Cell Self-Renewal by Intermediary Metabolism. *Journal of the American Society of Nephrology*, 28(11), 3323-3335. Retrieved from https://jasn.asnjournals.org/content/jnephrol/28/11/3323.full.pdf. doi:10.1681/asn.2016111246
- Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual review of pharmacology and toxicology, 53, 401-426. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23294312 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680839/. doi:10.1146/annurevpharmtox-011112-140320
- Maeshima, A., Sakurai, H., & Nigam, S. K. (2006). Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. *J Am Soc Nephrol, 17*(1), 188-198. doi:10.1681/asn.2005040370
- Martin, L. J., Meng, Q., Blencowe, M., Lagarrigue, S., Xiao, S., Pan, C., Wier, J., Temple, W. C., Devaskar, S. U., Lusis, A. J., & Yang, X. (2018). Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring. *Frontiers in Genetics*, *9*(642). Retrieved from https://www.frontiersin.org/article/10.3389/fgene.2018.00642. doi:10.3389/fgene.2018.00642
- Masoud, G. N., & Li, W. (2015). HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5(5), 378-389. Retrieved from <u>http://www.sciencedirect.com/science/article/pii/S2211383515000817</u>. doi:<u>https://doi.org/10.1016/j.apsb.2015.05.007</u>
- Maurer, K. J., & Quimby, F. W. (2015). Chapter 34 Animal Models in Biomedical Research. In J. G. Fox, L. C. Anderson, G. M. Otto, K. R. Pritchett-Corning, & M. T. Whary (Eds.), *Laboratory Animal Medicine (Third Edition)* (pp. 1497-1534). Boston: Academic Press.
- McLaughlin, N., Wang, F., Saifudeen, Z., & El-Dahr, S. S. (2014). In situ histone landscape of nephrogenesis. *Epigenetics*, 9(2), 222-235. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/24169366</u> doi:10.4161/epi.26793
- McNeill, H., & Reginensi, A. (2017). Lats1/2 Regulate Yap/Taz to Control Nephron Progenitor Epithelialization and Inhibit Myofibroblast Formation. *Journal of the American Society* of Nephrology, 28(3), 852-861. Retrieved from https://jasn.asnjournals.org/content/jnephrol/28/3/852.full.pdf. doi:10.1681/asn.2016060611
- Menon, R., Otto, E. A., Kokoruda, A., Zhou, J., Zhang, Z., Yoon, E., Chen, Y.-C., Troyanskaya, O., Spence, J. R., Kretzler, M., & Cebrián, C. (2018). Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. *Development*, 145(16), dev164038. Retrieved from https://dev.biologists.org/content/develop/145/16/dev164038.full.pdf.

doi:10.1242/dev.164038

Menshykau, D., Michos, O., Lang, C., Conrad, L., McMahon, A. P., & Iber, D. (2019). Imagebased modeling of kidney branching morphogenesis reveals GDNF-RET based Turingtype mechanism and pattern-modulating WNT11 feedback. *Nature Communications*, *10*(1), 239. Retrieved from https://doi.org/10.1038/s41467-018-08212-8. doi:10.1038/s41467-018-08212-8

- Merrill, A. H., & Sandhoff, K. (2002). Chapter 14 Sphingolipids: metabolism and cell signaling. In *New Comprehensive Biochemistry* (Vol. 36, pp. 373-407): Elsevier.
- Militello, M., Pappalardo, E. M., Ermito, S., Dinatale, A., Cavaliere, A., & Carrara, S. (2009). Obstetric management of IUGR. *Journal of prenatal medicine*, *3*(1), 6-9. Retrieved from https://pubmed.ncbi.nlm.nih.gov/22439031
- Monzani, E., Bazzotti, R., Perego, C., & La Porta, C. A. (2009). AQP1 is not only a water channel: it contributes to cell migration through Lin7/beta-catenin. *PLOS ONE*, 4(7), e6167. doi:10.1371/journal.pone.0006167
- Motamedi, F. J., Badro, D. A., Clarkson, M., Rita Lecca, M., Bradford, S. T., Buske, F. A., Saar, K., Hübner, N., Brändli, A. W., & Schedl, A. (2014). WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. *Nature Communications*, 5(1), 4444. Retrieved from https://doi.org/10.1038/ncomms5444. doi:10.1038/ncomms5444
- Mugford, J. W., Sipilä, P., McMahon, J. A., & McMahon, A. P. (2008). Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. *Developmental Biology*, *324*(1), 88-98. Retrieved from http://www.sciencedirect.com/science/article/pii/S0012160608011950. doi:https://doi.org/10.1016/j.ydbio.2008.09.010
- Mukherjee, E., Maringer, K., Papke, E., Bushnell, D., Schaefer, C., Kramann, R., Ho, J., Humphreys, B. D., Bates, C., & Sims-Lucas, S. (2017). Endothelial marker-expressing stromal cells are critical for kidney formation. *American Journal of Physiology-Renal Physiology*, 313(3), F611-F620. Retrieved from https://journals.physiology.org/doi/abs/10.1152/ajprenal.00136.2017. doi:10.1152/ajprenal.00136.2017
- Munro, D. A. D., Hohenstein, P., Coate, T. M., & Davies, J. A. (2017). Refuting the hypothesis that semaphorin-3f/neuropilin-2 exclude blood vessels from the cap mesenchyme in the developing kidney. *Dev Dyn*, 246(12), 1047-1056. doi:10.1002/dvdy.24592
- Murray, H. C., Swanson, M. E. V., Dieriks, B. V., Turner, C., Faull, R. L. M., & Curtis, M. A. (2018). Neurochemical Characterization of PSA-NCAM(+) Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex. *Neuroscience*, 372, 289-303. doi:10.1016/j.neuroscience.2017.12.019
- Musante, L., Tataruch, D. E., & Holthofer, H. (2014). Use and Isolation of Urinary Exosomes as Biomarkers for Diabetic Nephropathy. *Frontiers in Endocrinology*, 5(149). Retrieved from https://www.frontiersin.org/article/10.3389/fendo.2014.00149. doi:10.3389/fendo.2014.00149
- Muskhelishvili, L., Latendresse, J. R., Kodell, R. L., & Henderson, E. B. (2003). Evaluation of Cell Proliferation in Rat Tissues with BrdU, PCNA, Ki-67(MIB-5)
 Immunohistochemistry and In Situ Hybridization for Histone mRNA. *Journal of Histochemistry & Cytochemistry*, *51*(12), 1681-1688. Retrieved from https://journals.sagepub.com/doi/abs/10.1177/002215540305101212. doi:10.1177/002215540305101212
- Muthukrishnan, S. D. (2016). *Combinatorial growth factor signaling controls nephron* progenitor renewal and differentiation. Retrieved from

http://libproxy.tulane.edu:2048/login?url=https://search.proquest.com/docview/18449667 45?accountid=14437

- Muthukrishnan, S. D., Yang, X., Friesel, R., & Oxburgh, L. (2015). Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. *Nature Communications*, 6(1), 10027. Retrieved from https://doi.org/10.1038/ncomms10027. doi:10.1038/ncomms10027
- Nadell, C. D., Bucci, V., Drescher, K., Levin, S. A., Bassler, B. L., & Xavier, J. B. (2013). Cutting through the complexity of cell collectives. *Proc Biol Sci*, 280(1755), 20122770. doi:10.1098/rspb.2012.2770
- Nagy, I. I., Xu, Q., Naillat, F., Ali, N., Miinalainen, I., Samoylenko, A., & Vainio, S. J. (2016). Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. *BMC developmental biology*, *16*(1), 30-30. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/27582005doi:10.1186/s12861-016-0131-z</u>
- CDC (2020). National Center for Health Statistics. Retrieved from https://www.cdc.gov/nchs/index.htm
- CDC: NCCDPHP (2020). Chronic Kidney Disease. https://www.cdc.gov/chronicdisease/index.htm
- NIH. (2019). Kidney Disease Statistics for the United States. https://www.niddk.nih.gov/healthinformation/health-statistics/kidney-disease
- Nishinakamura, R., & Takasato, M. (2005). Essential roles of Sall1 in kidney development. *Kidney Int, 68*(5), 1948-1950. Retrieved from http://www.sciencedirect.com/science/article/pii/S0085253815510697. doi:https://doi.org/10.1111/j.1523-1755.2005.00626.x
- Nyengaard, J. R. (1999). Stereologic methods and their application in kidney research. J Am Soc Nephrol, 10(5), 1100-1123.
- Nyengaard, J. R., & Bendtsen, T. F. (1992). Glomerular number and size in relation to age, kidney weight, and body surface in normal man. *Anat Rec*, 232(2), 194-201. doi:10.1002/ar.1092320205
- Obara-Ishihara, T., Kuhlman, J., Niswander, L., & Herzlinger, D. (1999). The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. *Development*, *126*(6), 1103-1108.
- O'Brien, L. L., Combes, A. N., Short, K. M., Lindström, N. O., Whitney, P. H., Cullen-McEwen, L. A., Ju, A., Abdelhalim, A., Michos, O., Bertram, J. F., Smyth, I. M., Little, M. H., & McMahon, A. P. (2018). Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. *eLife*, 7, e40392. Retrieved from https://pubmed.ncbi.nlm.nih.gov/30516471 doi:10.7554/eLife.40392
- Oxburgh, L. (2018). Kidney Nephron Determination. *Annual Review of Cell and Developmental Biology*, *34*(1), 427-450. Retrieved from https://www.annualreviews.org/doi/abs/10.1146/annurev-cellbio-100616-060647. doi:10.1146/annurev-cellbio-100616-060647
- Oxburgh, L., Brown, A. C., Fetting, J., & Hill, B. (2011). BMP signaling in the nephron progenitor niche. *Pediatric Nephrology*, *26*(9), 1491-1497. Retrieved from https://doi.org/10.1007/s00467-011-1819-8. doi:10.1007/s00467-011-1819-8
- Pai, S. G., Carneiro, B. A., Mota, J. M., Costa, R., Leite, C. A., Barroso-Sousa, R., Kaplan, J. B., Chae, Y. K., & Giles, F. J. (2017). Wnt/beta-catenin pathway: modulating anticancer

immune response. *Journal of Hematology & Oncology*, *10*(1), 101. Retrieved from https://doi.org/10.1186/s13045-017-0471-6. doi:10.1186/s13045-017-0471-6

- Painter, R. C., Roseboom, T. J., & Bleker, O. P. (2005). Prenatal exposure to the Dutch famine and disease in later life: an overview. *Reprod Toxicol*, 20(3), 345-352. doi:10.1016/j.reprotox.2005.04.005
- Patterson, L. T., & Potter, S. S. (2003). Hox genes and kidney patterning. *Curr Opin Nephrol Hypertens*, *12*(1), 19-23. doi:10.1097/00041552-200301000-00004
- Patterson, L. T., & Potter, S. S. (2004). Atlas of Hox gene expression in the developing kidney. *Dev Dyn*, 229(4), 771-779. doi:10.1002/dvdy.10474
- Pereira, L., Petitt, M., Fong, A., Tsuge, M., Tabata, T., Fang-Hoover, J., Maidji, E., Zydek, M., Zhou, Y., Inoue, N., Loghavi, S., Pepkowitz, S., Kauvar, L. M., & Ogunyemi, D. (2014). Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. *J Infect Dis*, 209(10), 1573-1584. doi:10.1093/infdis/jiu019
- Polyzos, S. A., Kountouras, J., & Zavos, C. (2009). The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in non alcoholic fatty liver disease. *Hippokratia*, 13(2), 127-128. Retrieved from https://pubmed.ncbi.nlm.nih.gov/19561788
- Rajan, T., Barbour, S. J., White, C. T., & Levin, A. (2011). Low birth weight and nephron mass and their role in the progression of chronic kidney disease: a case report on identical twins with Alport disease. *Nephrology Dialysis Transplantation*, 26(12), 4136-4139. Retrieved from https://doi.org/10.1093/ndt/gfr252. doi:10.1093/ndt/gfr252
- Reginensi, A., Clarkson, M., Neirijnck, Y., Lu, B., Ohyama, T., Groves, A. K., Sock, E., Wegner, M., Costantini, F., Chaboissier, M.-C., & Schedl, A. (2011). SOX9 controls epithelial branching by activating RET effector genes during kidney development. *Human molecular genetics*, 20(6), 1143-1153. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/21212101</u> doi:10.1093/hmg/ddq558
- Regnault, T. R. H., Friedman, J. E., Wilkening, R. B., Anthony, R. V., & Hay, W. W. (2005). Fetoplacental transport and utilization of amino acids in IUGR — a review. *Placenta*, 26, S52-S62. Retrieved from http://www.sciencedirect.com/science/article/pii/S0143400405000330. doi:https://doi.org/10.1016/j.placenta.2005.01.003
- Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Moss, J., Graham, L., Burton, N., Hill, B., Rao, J., Baldock, R. A., & Armit, C. (2013). EMAGE mouse embryo spatial gene expression database: 2014 update. *Nucleic Acids Res*, 42(D1), D835-D844. Retrieved from https://doi.org/10.1093/nar/gkt1155. doi:10.1093/nar/gkt1155
- Ross, J. C., Fennessey, P. V., Wilkening, R. B., Battaglia, F. C., & Meschia, G. (1996). Placental transport and fetal utilization of leucine in a model of fetal growth retardation. *Am J Physiol*, 270(3 Pt 1), E491-503. doi:10.1152/ajpendo.1996.270.3.E491
- Ross, M. G., & Beall, M. H. (2008). Adult sequelae of intrauterine growth restriction. Seminars in perinatology, 32(3), 213-218. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18482624 doi:10.1053/j.semperi.2007.11.005
- Rotar, O., Moguchaia, E., Boyarinova, M., Kolesova, E., Khromova, N., Freylikhman, O., Smolina, N., Solntsev, V., Kostareva, A., Konradi, A., & Shlyakhto, E. (2015). Seventy years after the siege of Leningrad: does early life famine still affect cardiovascular risk and aging? *J Hypertens*, 33(9), 1772-1779; discussion 1779. doi:10.1097/hjh.00000000000640

- Rowan, C. J., Sheybani-Deloui, S., & Rosenblum, N. D. (2017). Origin and Function of the Renal Stroma in Health and Disease. In R. K. Miller (Ed.), *Kidney Development and Disease* (pp. 205-229). Cham: Springer International Publishing.
- Safford, S. D., Freemerman, A. J., Langdon, S., Bentley, R., Goyeau, D., Grundy, P. E., & Skinner, M. A. (2005). Decreased E-cadherin expression correlates with higher stage of Wilms' tumors. *Journal of Pediatric Surgery*, 40(2), 341-348. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022346804007092. doi:https://doi.org/10.1016/j.jpedsurg.2004.10.030
- Saifudeen, Z. (2017). Tissue-Specific Functions of p53 During Kidney Development. *Results Probl Cell Differ, 60,* 111-136. doi:10.1007/978-3-319-51436-9_5
- Sassone-Corsi, P. (2013). When Metabolism and Epigenetics Converge. *Science*, *339*(6116), 148-150. Retrieved from https://science.sciencemag.org/content/sci/339/6116/148.full.pdf. doi:10.1126/science.1233423
- Saxén, L., & Sariola, H. (1987). Early organogenesis of the kidney. *Pediatric Nephrology*, 1(3), 385-392. Retrieved from https://doi.org/10.1007/BF00849241. doi:10.1007/BF00849241
- Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. *Bioessays*, 27(3), 247-261. doi:10.1002/bies.20184
- Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. *Bioessays*, 27(3), 247-261. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.20184. doi:10.1002/bies.20184
- Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. *Bioessays*, 27(3), 247-261. doi:10.1002/bies.20184
- Schwarzkopf, M., Knobeloch, K.-P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W., & Horstkorte, R. (2002). Sialylation is essential for early development in mice. *Proceedings of the National Academy of Sciences*, 99(8), 5267-5270. Retrieved from https://www.pnas.org/content/pnas/99/8/5267.full.pdf. doi:10.1073/pnas.072066199
- Sequeira Lopez, M. L. S., & Gomez, R. A. (2011). Development of the renal arterioles. *J Am Soc Nephrol*, 22(12), 2156-2165. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/22052047</u> doi:10.1681/ASN.2011080818
- Sequeira-Lopez, M. L. S., & Torban, E. (2016). New insights into precursors of renal endothelium. *Kidney Int*, 90(2), 244-246. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27418087 doi:10.1016/j.kint.2016.03.043
- Sharma, D., Shastri, S., & Sharma, P. (2016). Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. *Clinical medicine insights. Pediatrics, 10*, 67-83. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27441006 doi:10.4137/CMPed.S40070
- Short, K. M., & Smyth, I. M. (2016). The contribution of branching morphogenesis to kidney development and disease. *Nature reviews. Nephrology*, 12(12), 754-767. doi:10.1038/nrneph.2016.157
- Short, K. M., Combes, Alexander N., Lefevre, J., Ju, Adler L., Georgas, Kylie M., Lamberton, T., Cairncross, O., Rumballe, Bree A., McMahon, Andrew P., Hamilton, Nicholas A., Smyth, Ian M., & Little, Melissa H. (2014). Global Quantification of Tissue Dynamics in the Developing Mouse Kidney. *Dev Cell*, 29(2), 188-202. Retrieved from https://doi.org/10.1016/j.devcel.2014.02.017. doi:10.1016/j.devcel.2014.02.017

- Shrestha, N., Bahnan, W., Wiley, D. J., Barber, G., Fields, K. A., & Schesser, K. (2012). Eukaryotic initiation factor 2 (eIF2) signaling regulates proinflammatory cytokine expression and bacterial invasion. *J Biol Chem*, 287(34), 28738-28744. doi:10.1074/jbc.M112.375915
- Shyh-Chang, N., Daley, G. Q., & Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. *Development*, 140(12), 2535-2547. Retrieved from https://dev.biologists.org/content/develop/140/12/2535.full.pdf. doi:10.1242/dev.091777
- Sirin, Y., & Pavenstädt, H. (2010). FIH1 (factor inhibiting HIF-1) in the kidney: more than an oxygen sensor? *Kidney Int*, 78(9), 836-837. doi:10.1038/ki.2010.282
- Song, X.-F., Ren, H., Andreasen, A., Thomsen, J. S., & Zhai, X.-Y. (2012). Expression of Bcl-2 and Bax in mouse renal tubules during kidney development. *PLOS ONE*, 7(2), e32771e32771. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/22389723</u> doi:10.1371/journal.pone.0032771
- Stein, A. D., Zybert, P. A., van der Pal-de Bruin, K., & Lumey, L. H. (2006). Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. *Eur J Epidemiol*, 21(10), 759-765. doi:10.1007/s10654-006-9065-2
- Takasato, M., & Little, M. H. (2015). The origin of the mammalian kidney: implications for recreating the kidney in vitro. *Development*, 142(11), 1937-1947. Retrieved from https://dev.biologists.org/content/develop/142/11/1937.full.pdf. doi:10.1242/dev.104802
- Takasato, M., & Little, M. H. (2015). The origin of the mammalian kidney: implications for recreating the kidney in vitro. *Development*, 142(11), 1937-1947. doi:10.1242/dev.104802
- Tan, J. C., Busque, S., Workeneh, B., Ho, B., Derby, G., Blouch, K. L., Sommer, F. G., Edwards, B., & Myers, B. D. (2010). Effects of aging on glomerular function and number in living kidney donors. *Kidney Int*, 78(7), 686-692. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/20463656</u> doi:10.1038/ki.2010.128
- Tanner, M. E. (2005). The enzymes of sialic acid biosynthesis. *Bioorg Chem*, 33(3), 216-228. doi:10.1016/j.bioorg.2005.01.005
- Tojo, A., & Kinugasa, S. (2012). Mechanisms of Glomerular Albumin Filtration and Tubular Reabsorption. *International Journal of Nephrology*, 2012, 481520. Retrieved from https://doi.org/10.1155/2012/481520. doi:10.1155/2012/481520
- The Impact of Kidney Development on the Life Course: A Consensus Document for Action. (2017). *Nephron*, *136*(1), 3-49. doi:10.1159/000457967
- UNICEF. (2019). Low Birthweight: A Good Start in Life Begins in the Womb. Retrieved from https://data.unicef.org/topic/nutrition/low-birthweight/
- Vainio, S., Lehtonen, E., Jalkanen, M., Bernfield, M., & Saxén, L. (1989). Epithelialmesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. *Dev Biol*, 134(2), 382-391. doi:10.1016/0012-1606(89)90110-3
- Vainio, S., & Lin, Y. (2002). Coordinating early kidney development: lessons from gene targeting. *Nat Rev Genet*, *3*(7), 533-543. doi:10.1038/nrg842
- Vandenbosche, R. C., & Kirchner, J. T. (1998). Intrauterine growth retardation. *Am Fam Physician*, 58(6), 1384-1390, 1393-1384.

- Vanslambrouck, J. M., Wilson, S. B., Tan, K. S., Soo, J. Y., Scurr, M., Spijker, H. S., Starks, L. T., Neilson, A., Cui, X., Jain, S., Little, M. H., & Howden, S. E. (2019). A Toolbox to Characterize Human Induced Pluripotent Stem Cell-Derived Kidney Cell Types and Organoids. J Am Soc Nephrol, 30(10), 1811-1823. doi:10.1681/asn.2019030303
- Velagapudi, C., Nilsson, R.-P., Lee, M. J., Burns, H. S., Ricono, J. M., Arar, M., Barnes, V. L., Abboud, H. E., & Barnes, J. L. (2012). Reciprocal induction of simple organogenesis by mouse kidney progenitor cells in three-dimensional co-culture. *The American journal of pathology*, 180(2), 819-830. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/22138298</u> doi:10.1016/j.ajpath.2011.11.002
- Vize, P. D., Seufert, D. W., Carroll, T. J., & Wallingford, J. B. (1997). Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. *Dev Biol*, 188(2), 189-204. doi:10.1006/dbio.1997.8629
- Vuguin, P. M. (2007). Animal models for small for gestational age and fetal programming of adult disease. *Horm Res*, 68(3), 113-123. Retrieved from https://pubmed.ncbi.nlm.nih.gov/17351325 doi:10.1159/000100545
- Wagner, K.-D., Wagner, N., Wellmann, S., Schley, G., Bondke, A., Theres, H., & Scholz, H. (2003). Oxygen-regulated expression of the Wilms' tumor suppressor Wt1 involves hypoxia-inducible factor-1 (HIF-1). *The FASEB Journal*, *17*(10), 1364-1366. Retrieved from https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fj.02-1065fje. doi:10.1096/fj.02-1065fje
- Wajant, H., & Siegmund, D. (2019). TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. *Frontiers in Cell and Developmental Biology*, 7(91). Retrieved from https://www.frontiersin.org/article/10.3389/fcell.2019.00091. doi:10.3389/fcell.2019.00091
- Wang, N., Wang, X., Han, B., Li, Q., Chen, Y., Zhu, C., Chen, Y., Xia, F., Cang, Z., Zhu, C., Lu, M., Meng, Y., Chen, C., Lin, D., Wang, B., Jensen, M. D., & Lu, Y. (2015). Is Exposure to Famine in Childhood and Economic Development in Adulthood Associated With Diabetes? *J Clin Endocrinol Metab*, 100(12), 4514-4523. doi:10.1210/jc.2015-2750
- Wang, P., Chen, Y., Yong, J., Cui, Y., Wang, R., Wen, L., Qiao, J., & Tang, F. (2018). Dissecting the Global Dynamic Molecular Profiles of Human Fetal Kidney Development by Single-Cell RNA Sequencing. *Cell Reports*, 24(13), 3554-3567.e3553. Retrieved from http://www.sciencedirect.com/science/article/pii/S2211124718313433. doi:https://doi.org/10.1016/j.celrep.2018.08.056
- Wanner, N., Vornweg, J., Combes, A., Wilson, S., Plappert, J., Rafflenbeul, G., Puelles, V. G., Rahman, R.-U., Liwinski, T., Lindner, S., Grahammer, F., Kretz, O., Wlodek, M. E., Romano, T., Moritz, K. M., Boerries, M., Busch, H., Bonn, S., Little, M. H., Bechtel-Walz, W., & Huber, T. B. (2019). DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. *Journal of the American Society of Nephrology*, *30*(1), 63-78. Retrieved from https://jasn.asnjournals.org/content/jnephrol/30/1/63.full.pdf. doi:10.1681/asn.2018070736
- Watanabe, N., Hiramatsu, K., Miyamoto, R., Yasuda, K., Suzuki, N., Oshima, N., Kiyonari, H.,
 Shiba, D., Nishio, S., Mochizuki, T., Yokoyama, T., Maruyama, S., Matsuo, S.,
 Wakamatsu, Y., & Hashimoto, H. (2009). A murine model of neonatal diabetes mellitus in Glis3-deficient mice. *FEBS Letters*, 583(12), 2108-2113. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0014579309004141. doi:https://doi.org/10.1016/j.febslet.2009.05.039

- Weibel, E. R., & Gomez, D. M. (1962). A principle for counting tissue structures on random sections. *J Appl Physiol*, *17*, 343-348. doi:10.1152/jappl.1962.17.2.343
- Whary, M. T., Baumgarth, N., Fox, J. G., & Barthold, S. W. (2015). Chapter 3 Biology and Diseases of Mice. In J. G. Fox, L. C. Anderson, G. M. Otto, K. R. Pritchett-Corning, & M. T. Whary (Eds.), *Laboratory Animal Medicine (Third Edition)* (pp. 43-149). Boston: Academic Press.
- Wollmann, H. A. (1998). Intrauterine growth restriction: definition and etiology. *Horm Res, 49* Suppl 2, 1-6. doi:10.1159/000053079
- Woolf, A., & Winyard, P. (2015). Oxford Textbook of Clinical Nephrology. In *Human kidney development*: Oxford University Press.
- Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in nutrition (Bethesda, Md.), 1(1), 31-37. Retrieved from https://pubmed.ncbi.nlm.nih.gov/22043449 doi:10.3945/an.110.1008
- Wu, M. Y., Chen, C. S., Yiang, G. T., Cheng, P. W., Chen, Y. L., Chiu, H. C., Liu, K. H., Lee, W. C., & Li, C. J. (2018). The Emerging Role of Pathogenesis of IgA Nephropathy. J Clin Med, 7(8). doi:10.3390/jcm7080225
- Xu, Y-H., Barnes, S., Sun, Y., Grabowsi, G.A., (2010). Multi-system disorders of glycosphingolipid and ganglioside metabolism. *Journal of Lipid Research*, 5i. doi: 10.1194/jlr.R003996
- Yallowitz, A. R., Hrycaj, S. M., Short, K. M., Smyth, I. M., & Wellik, D. M. (2011). Hox10 Genes Function in Kidney Development in the Differentiation and Integration of the Cortical Stroma. *PLOS ONE*, 6(8), e23410. Retrieved from https://doi.org/10.1371/journal.pone.0023410. doi:10.1371/journal.pone.0023410
- You, A., Tong, J. K., Grozinger, C. M., & Schreiber, S. L. (2001). CoREST is an integral component of the CoREST- human histone deacetylase complex. *Proc Natl Acad Sci U S A*, 98(4), 1454-1458. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/11171972</u> doi:10.1073/pnas.98.4.1454
- Yu, X., Ma, R., Wu, Y., Zhai, Y., & Li, S. (2018). Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer. *Frontiers in Genetics*, 9, 394-394. Retrieved from <u>https://pubmed.ncbi.nlm.nih.gov/30283496</u> doi:10.3389/fgene.2018.00394
- Yuan, H. T., Tipping, P. G., Li, X. Z., Long, D. A., & Woolf, A. S. (2002). Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. *Kidney Int*, 61(6), 2078-2089. Retrieved from https://doi.org/10.1046/j.1523-1755.2002.00381.x. doi:10.1046/j.1523-1755.2002.00381.x
- Zhu, X., Lee, H. G., Perry, G., & Smith, M. A. (2007). Alzheimer disease, the two-hit hypothesis: an update. *Biochim Biophys Acta*, *1772*(4), 494-502. doi:10.1016/j.bbadis.2006.10.014

Figures created with BioRender.com

Biography

The author was born June 22, 1990 in Woonsocket, Rhode Island, United States. They attended Montrose Area jr/sr High School in Montrose, PA, United States from 2004 to 2008 before going to Emory University in Atlanta, GA, United States (2008-2012). At Emory they majored in Biology and minored in Global Health, Society, and Culture and studying abroad in London for a summer to explore sociology and compare the clinical and public health systems of the United States and United Kingdom. They worked for three years of undergrad as a lab technician in the Fridovich-Keihl genetics lab. After completing a Bachelor of Science in Biology they attended the Tulane School of Public Health and Tropical Medicine in New Orleans, LA, United States (2012-2014) receiving a Master's in Public Health in Global Environmental Health Sciences specializing in Disaster Management. The author then continued at Tulane in the Tulane School of Medicine doctoral program in Biomedical Sciences starting classes in 2014 and in the Saifudeen lab in 2015. While in the Saifudeen lab the author contributed as second author to one publication, and presented abstracts at the American Society of Nephrology, the Southern Region AFMR/SSCI for Regional Meeting winning a Trainee Travel award and being selected for an oral presentation in 2016, and several abstracts at the Tulane Health Science Research Days poster presentations wining the Michael A. Gerber Prize for Research in Molecular and Cellular Biology award (2017), and winning outstanding morning speaker at the BMS Student Retreat for presentation of their preliminary thesis data. The author has just begun a job as a Regulatory Compliance Specialist at the Tulane HRPO.