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Abstract 

Prostheses have enabled many people with bone injuries to achieve a quality of life 

that would be difficult without the advances in biomedical engineering and materials 

sciences. Exploration of alternatives to current methods of prosthetic bone development 

will result in more options from both the physician and patient perspective for the 

replacement of bone and the use of bone substitutes. Thus, new bone prostheses can be 

customized to a patient’s needs. To address rising healthcare costs, 3D printed bone 

substitutes are enabling affordable and customizable bone replacements. In this study, we 

designed a strong yet lightweight structural matrix to substitute bone grafts in cases of 

comminuted fracture of tibial bone. The artificial matrix is inspired by structural 

components called voxels that have been demonstrated to be feasible in the areas of 

aerospace for fixed and morphing wing flight. The basis of this voxel matrix is derived 

from units of hollow eight-sided faces formed from 12 connected struts. In this study, we 

have produced and simulated a lattice that can resemble natural bone performance. This 

bone facsimile has been evaluated using finite element analysis to suggest an optimal voxel 

density and beam width at which the internal structure has a high elastic modulus to relative 

density ratio for use as a scaffold during bone reconstruction. A lattice-based implant was 

designed and evaluated using finite-element analysis for osteosarcoma-afflicted long bones 

such as the tibia. This study should pave the way for bone implants made of strong but 

lightweight structures can help patients regain the faculties of natural bone. Ultimately, this 

structure would be constructed from biocompatible materials that provide nutrients for 

natural bone regeneration processes. With this, the structure would reabsorb completely 

into the healing bone, after providing a matrix upon which osteoblasts can form new bone.  
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Chapter 1: Introduction 

Prostheses have enabled many people with bone injuries to achieve a quality of life 

that would be difficult without the advances in biomedical engineering and materials 

sciences.  Exploration of alternatives to current methods of prosthetic bone development 

will result in more options from both the physician and patient perspective for the 

replacement of bone and the use of bone surrogates; leading to new bone prosthetics that 

can be customized to a patient’s needs. Advancements in bionics and new artificial bone 

treatments are allowing patients to have more control over what types of prosthetic limbs 

they use and how patients can modify their use without having to return to the clinic (“3D-

Printable Prosthetics | e-NABLE”, 2019). To address rising healthcare costs, 3D printed 

bone substitutes are enabling affordable and customizable replacements for fractured bone 

(“3D-Printable Prosthetics | e-NABLE”, 2019). However, design optimization and analysis 

of artificial bone scaffolds, based on a strong structural geometry, implanted as substitutes 

to fractured bones have not yet been done. 

In the United States, trends collected by the Mayo Clinic show that there are over 

300,000 cases annually of tibial or fibular fractures (Amin et al., 2014). In cases of 

comminuted fracture of a long bone, surgeons often implant metallic substitutes to regain 

rigidity and stability in the limb. While these metallic substitutes can be customized to a 

certain extent for various applications, they may not be the most efficient implant 

considering high rates of postoperative pain suffered by patients (Majuta et al., 2015). Most 

prosthetic technology does not intend to mimic natural, internal bone structure which has 

undergone continuous evolutionary selection. Specifically, a study focusing on the design 
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of an artificial replacement, for the diaphysis of long bones, that can interface with the 

secondary ossification centers in fully developed adults would be of value to optimize the 

performance of prosthetics and bone implants. Trabecular bone, especially in the long 

bones, are composed of small strut-like tissue elements that form a complex meshwork that 

is organized to optimally resist loads imposed by physical activities. Many studies exist 

that use finite element analysis to simulate load and responses on trabecular bone, however, 

emulating the trabecular meshwork in an easy to reproduce artificial application for bone 

implants or prototype prosthetics has not yet been done. 

This study explores whether prostheses can be improved by generating a strong, yet 

lightweight lattice substructure for artificial bone. Octahedron shaped unit cells called 

voxels (see operational definition) packed into a lattice structure already have been shown 

to provide a high ultimate compressive strength with a low relative density compared to a 

homogenous sample of the same material (Cheung 2013). These unit cells serve as the 

basis for digital materials that could be used to construct highly customizable structures at 

different scales while maintaining the favorable properties of a high strength to low-density 

ratio. Several case studies for this technology already have been determined and shown to 

be feasible in the areas of aerospace (Jenett, 2016).  

In this study, a computer-generated bone facsimile has been generated with an 

octahedron lattice internal structure based on a 3D scan of a cadaveric tibia. This bone 

facsimile has been tested using finite element analysis to determine a density at which the 

internal structure has favorable properties of ultimate compressive strength for use as a 

scaffold during bone reconstruction. For this study, a cadaveric tibia was dissected and 

cleaned to acquire an accurate 3D model to use as a frame for the generation of an 
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octahedron lattice structure. The resulting custom structure was compressed to obtain a 

structural elastic modulus using a finite element analysis, for comparison against natural 

bone. The lattice densities were modified and tested to determine the optimal model with 

the lowest density that gives the equivalent strength of traditional bone. A cylindrical lattice 

specimen composed of the octahedron lattice internal structure was 3D printed and 

mechanically compressed to verify the accuracy of the simulations. A lattice comparable 

to the 3D printed specimen was digitally generated and simulated with the same parameters 

as the physical experiments. 

Surgical intervention of osteosarcomas often necessitates decimation of the bone 

surrounding the tumor and requires metal implants that reduce the functionality of the 

patient’s lower limb. This study simulates the feasibility of an octahedron lattice implant 

as an alternative in surgical intervention of osteosarcomas. An imitation of a tibia afflicted 

with osteosarcoma was generated through targeted editing of the 3D scan of the cadaveric 

tibia. A methodology was designed to emulate surgical removal of the tumor from the bone. 

The natural geometry of the removed portions of the bone was estimated for generation of 

the structural bounds of the lattice implant. The natural geometry was determined using a 

surface constructed from the shortest straight-line distances between the superior and 

inferior edges of the removed region. An octahedron lattice structure was manually 

designed to be used as a template for the implant. This template was digitally edited to 

conform to the implant’s structural bounds. The structural bounds were further used to form 

a thin outer shell for the lattice implant. The bone geometry remaining after surgical 

intervention was computationally simulated under body-weight loading conditions to 

establish regions from which the lattice implant is intended to alleviate high stresses. The 
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lattice implant was compressed via finite element analysis to determine the distribution of 

stress concentrations throughout the lattice. By comparing the stress distribution to the 

yield strength of the underlying material, this study ascertains the structural viability of the 

lattice implant under typical body-weight loading conditions. 

This study begins to pave the way for the next generation of bone implants or 

scaffolds, where strong but lightweight artificial structures can help patients regain 

comparable functions that natural bone provides due to its strength and density. The bone 

facsimile in this study has been simulated and constructed with the material properties of 

polylactic acid, a biocompatible plastic that previously has been used in bone scaffolds 

(Gregor et al., 2017). Additionally, the bone facsimile in this study has been simulated with 

the material properties of an injected molded thermoplastic tested for aerospace 

applications and that of a titanium alloy commonly used in orthopedic implants. By 

producing and simulating a lattice that can resemble natural bone performance, the 

foundation for future applications can be constructed. 
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Operational Definitions 

Voxel – A hollow eight-sided frame formed from 12 connected struts.  

Lattice - Multiple units of voxels which have been interfaced with one another to form 

complex hollow structures. 

Node – The vertices of the voxel or point at which the struts of a voxel converge. A single 

voxel contains 8 nodes. 

Voxel Pitch - The size of a voxel-based on the distance between opposite nodes 

Beam Width – The thickness of each strut composing a voxel 

Voxel density –In this study, we consider the number of voxels to be a sufficient 

representation of relative density. Relative density is a comparison showing the amount of 

free space within the bounding box of a lattice relative to a solid fill of the same material. 
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Chapter 2: Review of Literature 

2.1 – Inspiration 

Evolution has made sure that the structure of natural bone can be considered one of 

the most complex and high performing materials. Cancellous bones, specifically the 

trabeculae within, are of interest because they are strong and lightweight. Trabeculae are 

composed of strut or rod-like units that result in a series of trabeculae, which creates hollow 

space within cancellous bone to allow vessels to reach the hematopoietic tissue within the 

spongy bone (Meyers and Chen, 2014).  

 The study of digital cellular solids takes inspiration from this natural bone 

phenomenon, to generate an artificial structure that could be used for various engineering 

applications (Cheung, 2012). The primary goals of this artificial structure are to have the 

same base properties of high relative strength for a low relative density. The idea behind 

digital cellular solids is to develop a set of discrete base units like trabeculae, that can be 

assembled into a strong lattice structure (Cheung and Gershenfeld, 2013). Scientists have 

begun to solve the challenge of creating strong yet lightweight materials through a 

collaboration of the Massachusetts Institute of Technology and the NASA Ames Research 

Center. The base units that have been developed are referred to as voxels or volumetric 

pixels. A voxel is a hollow eight-sided frame formed from 12 connecting struts, that can 

easily interface with other voxels to form complex hollow structures. When assembled, 

voxels form a rigid lattice structure, where the strength and rigidity improve as more voxels 

are added to the lattice (Jenett, Cellucci, et al., 2016). The performance of this artificial 

structure compared to traditional materials can be seen in Figure 2.1.1. Voxels can be made 
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from different materials and assembled heterogeneously to match desired proper material 

properties such as increased flexibility in one region. Voxels also can be scaled by 

increasing the component strut lengths or by increasing the strut thickness (Gregg, Kim, 

and Cheung, 2018). Voxel lattice structures have already been applied and tested as part of 

high stress structures on fixed-wing aircraft and morphing wing aircraft (Cheung et al., 

2017). There is unlimited potential for applying this lattice structure for applications 

outside of aerospace due to the broad utility of its high strength to low-density material 

properties.  

 

Figure 2.1.1 – Ashby chart showing strength to weight performance for engineering materials vs cellular 
solids. (Jenett, Calisch, et al., 2016) 

  The concept of generating an artificial structure for regenerative tissue treatments 

is not new. Use of artificial scaffolds has been a cornerstone of biomedical research in 

tissue engineering for decades. Recently, artificial scaffolds for bones have been shown to 
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improve the regeneration process in large segmental bone defects compared to autologous 

bone grafts (Pobloth et al., 2018). Specifically, this study revealed that designing a scaffold 

to optimize stresses and strains on bone fracture regions aids in bone healing. Cellular 

solids inspired the honeycomb-like scaffold structure; by changing the strut diameter 

researchers were able to target various levels of stiffness to test its effect on bone 

regeneration. Researchers tested targeted scaffold configurations in vivo in sheep for a large 

bone defect, resulting in early bridging of the defect, formation of endochondral bone, and 

regeneration of bone at the defect (Pobloth et al., 2018). Other studies have considered 

using artificial scaffolds that have the dual effect of providing nutrients to the healing bone. 

3D-printed scaffolds consisting of a hollow strut structure have been implanted in a rabbit 

radius and used to release bioactive ions from the hollow struts to enhance the growth 

factor delivery and vascular development through osteogenesis and angiogenesis (W. 

Zhang et al., 2017). These studies have demonstrated the regenerative benefits and 

feasibility of implanting lattice scaffolds for the purposes of segmental bone regeneration.  

2.2 – Bone Mechanics  

 As the primary structural components of the human body, bones have functionally 

developed to resist fracture. The material of bone is a ceramic-polymer composite of 

collagen, hydroxyapatite, and water. In different animals, bones have evolved to allow for 

different functionalities. For example, bird bones are lightweight and flexible for flying 

(Meyers and Chen, 2014). The low relative density of the internal structure of bird bones, 

combined with its flexible properties, provide birds a similar functionality that is ideal in 

human-manufactured flight. As a consequence, bird bones helped inspire the application 

of cellular solids to aeronautical applications (Cheung, 2012). The internal structure of 
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human bones is consequently ideal for loading associated with human movement. It 

follows that it is ideal to emulate these natural structures in artificial aids for human 

movement and loading applications. Advances in material manufacturing provide allow 

for complicated structures to be artificially generated and printed in high stiffness materials 

(Pobloth et al., 2018). 

 Bone, unlike manmade materials, constantly remodels itself every 7-10 years over 

the course of one’s life (Kenkre and Bassett, 2018). Initially, during growth, a tissue called 

the primary osteon forms on an existing bone. The secondary osteon forms by absorbing 

the existing bone and replacing it with new bone as a natural response to external loads 

(Meyers and Chen, 2014). Bone-degrading cells called osteoclasts create a cavity in 

existing bone tissue through resorption. On the internal surface of this cavity, bone-forming 

cells called osteoblasts deposit concentric lamellae to form a Haversian canal which 

contains vasculature to support the bone. Bone remodeling is dependent on body region 

and can last from two to four months for human bone (Meyers and Chen, 2014).  

 Due to the complicated nature of bone as a material, its material properties are 

particularly variable. It is said that the elastic modulus of human cortical bone varies from 

7 to 24 GPa, whereas hydroxyapatite on its own has a modulus of 130 GPa. Collagen, a 

non-linear elastic material, has a tangent modulus of 1 to 1.5 GPa. Elaborate models exist 

to determine these properties given specific mineral ratios. The tensile strength of human 

bone varies from 20 MPa to 270 MPa. Individually, collagen has a maximum tensile 

strength of 50 MPa. Experiments show that cortical bone is stronger in the longitudinal 

direction than the transverse direction and that it is stronger in compression compared to 

tension. The variability of bone strength is highly dependent on a myriad of factors ranging 
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from loading stresses and the rate of loading to the condition of bone (Meyers and Chen, 

2014). 

 As opposed to compact bone, which makes up the outer shell of most bones, 

cancellous bone is the porous region enclosed within. The combination of these two regions 

reduces unnecessary weight while maintaining the structural properties needed to handle 

the various loads we must bear. Cancellous bone is a foamlike cellular solid consisting of 

a network of rods and plates which are interconnected. Bones are classified as cancellous 

if they have a relative density of less than 0.7 (Gibson and Ashby, 1997). The network of 

rods is a low density, open cell region while the plates are a higher density, closed cell 

structure. Studies of trabeculae found in loaded bone strongly suggest development along 

the principal stress trajectories (Gibson and Ashby, 1997). The development of plates 

seems to occur in areas of high stress whereas rods tend to form in low-stress regions.  Both 

cancellous bone and compact bone are composed of similar materials. Gibson describes 

that cancellous bone anisotropy is determined from the structure, so the longitudinal 

direction of trabeculae is stiffer and stronger in that alignment (Gibson and Ashby, 1997). 

Gibson and Ashby conclude that Young's modulus for trabecular bone is 12 GPa while the 

compressive strength is said to be 136 MPa with a tensile strength of 105 MPa as per Table 

2.2.1. 

r  

Table 2.2.1 – Properties of Cancellous Bone (Gibson and Ashby, 1997) 
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The experimental results of many cancellous bone studies are shown in Table 2.2.2 that 

shows the modulus of individual trabeculae in the human femur is 13 GPa.  

 
Table 2.2.2 – Modulus of Cancellous Bone under various experiments (Gibson and Ashby, 1997) 

The material properties of wet compact bone are shown in Table 2.2.3. The modulus of 

human wet compact bone is reported to be 17 GPa in the longitudinal direction, and 11.5 

GPa in the radial and tangential direction. The compressive strength of human wet compact 

bone is 193 MPa (Gibson and Ashby, 1997). However, the strength and toughness of wet 

bone value may decrease by loss of fluid due to the interactions between the fluid and the 

structure (Nyman et al., 2006). 

 



12 

 

 

Table 2.2.3 – Compact Bone Properties (Gibson and Ashby, 1997) 

The tissue elastic modulus of trabeculae bone present in the human tibia is reported to be 

14.8 ± 1.4 GPa (Oftadeh et al., 2015). 

Gibson and Ashby conclude that bone tends to form equal cells when loads on 

cancellous bone are equal in all three principal directions. However, when these loads are 

uneven, the cells thicken and align to ensure optimal support, with relative density 

reflecting load magnitude. In osteoporotic patients, bone mass and subsequently bone 

strength decrease over time, increasing the risk of fracture. It is widely accepted that as one 

ages, trabecular bone density decreases. In addition, one study shows that bone volume 
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decreases with age, but trabecular connectedness also decreases. In an earlier study, Hahn 

et al developed a parameter called the Trabecular Bone Pattern factor which describes the 

relation of convex to concave surfaces between the rods and the plates of the trabeculae. 

Hahn considers a well-connected spongy lattice to have many concave surfaces whereas a 

badly connected trabecular lattice consists of many convex surfaces in relation to two-

dimensional bone sections (Hahn et al., 1992). This parameter could be useful in 

quantifying the connectedness of any artificial lattice compared to natural bone. 

Several studies have performed biomechanical testing of various human bones 

including the femur bone. The results of such tests are critical in the comparison of any 

artificial lattice structure to natural bone in determining its feasibility as an alternative or 

supplementary material. The biomechanical testing in these studies consists of impact 

testing and bend testing, with and without bone implants. According to a study by Arun et 

al, the hardness of different femoral region varies with the hardness of the femoral shaft 

generally increasing towards the distal region of the bone. Thus, Arun suggests that the 

femur’s maximum hardness is present at the distal region whereas the minimum hardness 

is located at the proximal region of the femur. This study suggests that bone implants can 

result in improper loading of the bone leading to crack formation and improper healing 

(Arun and Jadhav, 2016). Any artificial bone treatment should consider the necessity of the 

bone to have stresses in certain locations. Table 2.2.3 shows the properties of the femur 

bone under bending in Arun’s study. 

 
Table 2.2.3 – The material properties associated with a three-point bend test performed on a femur (Arun 
and Jadhav, 2016) 
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Another study published in the Journal of Biomechanics tests the shear strength of 

human trabecular bone. In addition, this study analyzes the failure of bones when subjected 

to sudden loading and when an implant is being used. The results of the study suggest that 

trabecular bone is stronger in compression than in shear (Sanyal et al., 2012). Further, the 

trabecular microarchitecture of a bone was the primary factor determining the ratio of shear 

to compressive strength rather than bone volume fraction. The researchers compressed 

their trabecular test specimens along the main trabecular orientation representing the 

primary loading direction. It is of interest to note that the primary failure mode in shear 

was the obliquely oriented trabeculae, while the primary failure mode in compression 

resulted from the yield of horizontal trabeculae and low bone volume fraction specimens. 

Another contributing determinant was the yield of vertical trabeculae and high bone 

volume fraction specimens (Sanyal et al., 2012). This is useful in assigning the orientation 

of any artificial lattice that might be implanted in bone. 

In one study regarding bone remodeling, researchers used a stochastic lattice model 

to simulate the adaptations of living bone to mechanical stimuli over time (Weinkamer et 

al., 2004). These researchers discovered that a network-like structure emerged, with the 

bone volume eventually reaching steady-state. It can be concluded that bone modeling 

favors a lattice geometry to handle necessary loading. However, the researchers neglect 

any bending moment and shear forces present in the trabeculae in their model. 

2.4 – 3D Printing for Bone Treatment Applications 

 The foray of rapid prototyping technologies into the medical research field has 

allowed for more personalized solutions for patients as well as encouraging rapid 

manufacture of customized test models. Doctors have been able to perform bone and joint 
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reconstruction by using 3D printed pieces in a surgical procedure. Although standard mass-

produced prosthetics continue to be the more affordable solution for patients, the 

customization in prosthetics through rapid prototyping is quickly decreasing consumer 

costs. Researchers have had success in developing custom implants using medical imaging 

for bone reconstruction (Lantada and Morgado, 2012). Due to density differences between 

bone tissue and surrounding tissue, software has been developed to extract the detailed 

geometry of bone for the purposes of replication or analysis. With this detail geometry, 

specialized implants can easily be designed (“3D-Printable Prosthetics | e-NABLE”, 2019).  

 One of the most common materials used in 3D printing is Polylactic Acid (PLA). 

The material is also biocompatible with human bone, as shown by prior experiments that 

used it as a bone scaffold. As such, it is an excellent candidate for initial simulations of the 

proposed voxel lattice as a bone scaffold. The MakerBot corporation performed 

compressive strength testing of printed PLA based on ASTM standards D695 as a 

comparison to the thermoplastic polymer Acrylonitrile butadiene styrene (ABS). The 

results of the Makerbot study show a compressive ultimate strength of 93.77 MPa and 

ultimate tensile strength of 65.71 MPa (“PLA and ABS Strength Data”, 2014). A study by 

researchers at MIT puts the yield strength of injection mold grade PLA at 70 MPa and the 

elastic modulus at 3.5 GPa while noting high variability due to PLA manufacture methods 

(Farah, Anderson, and Langer, 2016). The material property aggregator service MatWeb 

describes the typical value tensile yield strength as 37.5 MPa, the typical ultimate tensile 

strength as 46.8 MPa, and the typical modulus of elasticity as 2.79 MPa (“Overview of 

Materials for Polylactic Acid (PLA) Biopolymer”, 2019).  
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 Recent clinical studies have demonstrated 3D printed titanium bone 

implants as a functional alternative to traditionally manufactured implants (Popov et al., 

2018). Additionally, complex geometries 3D printed in titanium for trabecular bone 

reconstruction has been shown in the human femoral head as a potential treatment for 

osteonecrosis (Y. Zhang et al., 2018). This study used the titanium alloy, Ti-6Al-4V, which 

is commonly used for orthopedic implants. The material property aggregator service 

MatWeb describes the titanium alloy, Ti-6Al-4V, as having an elastic modulus of 113.8 

GPa and a Poisson’s ratio of 0.342. The Poisson’s ratio of the titanium alloy represents the 

ratio of transverse strain to axial strain experienced by the alloy such that it undergoes 

lateral expansion equivalent to nearly a third of the axial deformation when under 

compression. 

2.5 – Finite Element Analysis of Bone 

 It becomes useful to run multiple trials of a test for a specimen without having to 

acquire many samples that likely vary in their consistency, composition, and size. Finite 

Element Analysis simulating biomechanical testing of high-detail bone geometry obtained 

from medical images allows for this repeatability and environmental control. Several 

studies have analyzed the performance of trabecular bone in varying conditions as well as 

the performance of artificial bone implants (Samiezadeh et al., 2014). One study describes 

a finite element analysis method that determined the biomechanical properties of an 

intramedullary nail found in femoral shaft fractures (Samiezadeh et al., 2014). In this 

method, the researchers compared a nail made from a carbon fiber/flax/epoxy composite 

against a titanium nail. Their results suggest that a nail made using target material 

properties can aid in bone healing for large fractures because the nail increases the average 
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normal force at fracture sites. Another finite element study simulated the post-yield 

behavior of trabecular bone, demonstrating that changing the element size had a minimal 

effect, whereas changing the material model had a large impact (Verhulp et al., 2008). 

2.6 – Cancers of Bone 

Osteosarcoma is a mesenchymal bone tumor that can occur in the epiphyseal 

growth plate of the femur or tibia. Osteosarcoma has been found to have a high lung 

metastasis rate during the first two decades of life (de Azevedo et al., 2020). It has been 

found that respiratory involvement is responsible for the greatest amount of osteosarcoma-

related deaths, with 80% of cases occurring in the lungs (Lindsey et al., 2016). 

Subsequently, the survival rate over a five-year period for patients with lung metastases is 

20%, in comparison to 65% in patients with only localized bony disease (DeBoer et al., 

2011).  This disease has quickly become the most common malignant primary bone tumor 

in adolescents, with approximately two out of a million individuals diagnosed annually 

(Klen et al., 2006).  Epidemiology studies have shown that osteosarcoma is the eighth most 

prevalent childhood cancer (Ottaviani et al., 2010). The majority of osteosarcoma cases 

have been found in the femur, 75% of cases located distally, as well as the tibia with 80% 

located proximally, which is the same location as primary bone growth and development 

(Ottaviani et al., 2010).  

Osteosarcomas typically develop between the ages of 10 to 20 years old and often 

present as non-metastatic at the time of diagnosis (Wittig et al., 2002). Clinical symptoms 

in patients diagnosed with osteosarcoma vary with each individual but commonly begins 

with weeks to months of chronic pain, causing difficulties even while sleeping or at rest 

(Klein et al., 2006). Other symptoms include a decreased range of motion and muscle 
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atrophy causing loss of function of an affected limb (Klein et al., 2006). Clinical signs most 

commonly present as a firm and tender mass at the affected area, as well as erythema, local 

tenderness, limping, and frequent bone fractures (Wittig et al., 2002).  

In order to diagnose and classify osteosarcomas, several clinical tests can be 

performed, including bone scintigraphy, magnetic resonance imaging (MRI), computed 

tomography (CT) scans, and positron emission tomography (PET) scans. When imaging 

results show potential malignancy, a biopsy is typically performed in order to examine 

samples of bone cells in a pathology laboratory (Wittig et al., 2002). In more severe cases, 

a chest x-ray may also be ordered, due to the common systemic location of metastasis to 

the lungs (Wittig et al., 2002). Collectively, these tests can provide a cancer stage and 

classification in order to better understand treatment options for the osteosarcoma (Klein 

et al., 2006).  

Traditional treatment methods begin with chemotherapy medications in a 

preoperative stage, which induces tumor necrosis prior to surgical intervention, and a 

postoperative stage following surgery. Resection of the tumor aims to achieve a disease-

free outcome, with a secondary goal of preserving limb function (Wittig et al., 2002). In 

2018, Huang et al. examined a group of patients undergoing this multidisciplinary 

treatment approach of the disease specifically affecting the proximal tibia. The study 

concluded that the results were overall positive, with improved or recovered limb function 

postoperatively in 54 out of 69 total cases (Huang et al., 2018).  

Alternatively, Ene et al. (2015) studied seven cases of osteosarcoma in the proximal 

tibia undergoing a similar multidisciplinary treatment in which most patients demonstrated 

a decrease in physical activity postoperatively. However, these cases also reported minimal 
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effects on overall limb functionality, and only lifestyle changes were required. It was 

concluded by the study that while the function of the affected limb does not equal the 

normal limb comparatively, the quality of life does not change after treatment (Ene et al, 

2015).  

Huang et al. (2018) detail the surgical process to remove the tumor and insert the 

rotary hinges used for their patients after several rounds of preoperative chemotherapy. The 

procedure begins by creating an incision in the distal third of the femur and extending to 

the proximal tibia. The patellar ligament was detached proximally, the knee capsule was 

incised adjacent to its tibial insertion, and the biopsy was performed. After resection of the 

tumor, the artificial joint was implanted and attached to the patellar tendon. Muscle tissue 

was used to cover the prosthesis and if inadequate, a rotation flap was used to stabilize the 

area prior to grafting the skin and concluding the procedure (Huang et al., 2018).   

Ene et al. (2015) also discuss the surgical protocol in their limb-sparing procedures, 

which consisted of a resection of the proximal tibial tumor and reconstruction of the knee 

joint and upper tibia. A titanium knee hinge prosthesis was used along with a muscle 

rotation flap to protect the prosthesis and attached patellar tendon. Wittig et al. (2002) 

similarly endorse the use of metallic endoprostheses for tibial reconstruction due to the 

minimal risk for complication, immediate stable fixation, sturdiness to bear weight, and 

quick recovery to regain use of the limb.  

One potential mechanism of the development of osteosarcoma includes alterations 

in the differentiation pathway of mesenchymal stem cells to become mature osteoblasts 

(Yang et al., 2017). Due to a greater bone turnover rate during the bone growth phase, the 

potential for defects to develop throughout the signaling pathway increases significantly 
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(Ottaviani et al., 2010). Mesenchymal stem cells in the stroma of bone marrow are 

undifferentiated, allowing for potential differentiation into bone, muscle, and fat cells. As 

the factors involved in osteogenesis begin to contribute to the formation of osteoblasts, 

deregulation and exposure to pro-inflammatory cytokines can lead to proliferation of the 

malignant cancer cells (de Azevedo et al., 2020).  
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Chapter 3: Materials & Methods 

3.1 – Specimen Acquisition 

 To begin, a cadaveric specimen with no known skeletal conditions was obtained 

from the Tulane University Center for Anatomical and Movement Sciences, and the right 

leg was dissected and disarticulated at the femoral head. The femur, tibia, calcaneus, and 

fibula were acquired. Adipose, muscular, and cartilaginous tissue was removed completely 

through an enzyme bath maceration process disarticulating all joints. The maceration 

solution consisted of 1-part enzymatic detergent and 20-parts water then heated to 180°F 

for 8 hours. The bones were removed from the enzyme bath and allowed to dry before 

being placed in an acetone bath in a steel tray modified to minimize the rate of acetone 

evaporation. Over the course of 24 hours under a fume hood, the acetone completely 

evaporated, leaving behind a layer of oil. This process was repeated to remove any excess 

fat from the bones. From the defatting, the distinctive features of the bone became visible. 

3.2 – 3D Scanning the Specimen  

A handheld 3D scanner (Creaform Go!SCAN 3D, Québec) was used to acquire a 

three-dimensional digital surface point cloud of the tibia at a resolution of 500 microns. 

The scanner uses spectrally-broadband white light illumination on an object to measure the 

surface height of points on the object to construct a digital point cloud. A rotating wooden 

platform was painted matte black and fitted with 5mm reflective markers to be used as a 

stage for each bone to be scanned. Each side of the bone was scanned independently. 

Reflective markers were placed on the target bone to allow the scanner to maintain the 

position of the scan data in 3D space.  
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Figure 3.2.1: Healthy tibia from a cadaveric specimen on the scanning platform with reflective markers 

Creaform’s VXModel software was used to clear any imaging artifacts and 

consolidate scan data. Distinctive features and reference markers that were present on both 

sides of the bone were used to align the two sets of scan data in VXModel, to create a single 

digital surface mesh for the whole bone. A digital surface mesh is a set of faces, edges, and 

vertices that defines a three-dimensional object digitally. This resulting mesh was made 

watertight using VXModel’s hole autofill feature, to compensate for any missing scan data 

due to reflective markers covering the bone surface. The resulting watertight model was 

exported as a standard binary STL mesh file. Then, using Rhino 3D, a mesh editing 

software, a section of the tibia was cut such that the shaft could be simulated between the 

nutrient foramina for the distal and proximal epiphyseal arteries. Using a cadaveric 

specimen rather than a plastic facsimile helped inform the decision regarding where to cut 

the bone in the mesh editing software. Based on the cadaveric specimen, the digitized 

model is 368 mm (the length between the nutrient foramen) and the cross-section at mid 

shaft has a diameter of 32 mm.   
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3.3 – Generation and Analysis of the Custom Lattice  

 To create a file ready for simulation based on our scanned specimen, the STL mesh 

file was imported into a custom program written in Java adapted from code from NASA’s 

Coded Structures Laboratory (Gregg, Kim, and Cheung, 2018). Specifically, the program 

converts the STL mesh file, representing the scanned bone, into a point cloud representing 

voxel locations, generates a voxel lattice with these locations, adds displacement and fixed 

boundary constraints to the proximal and distal ends of the structure respectively, and sets 

the material properties of the voxels. The result is an ABAQUS input file that can be 

imported for simulation.  

The program uses two primary parameters that adjust the density of the voxel lattice 

within the resulting ABAQUS input file. The pitch parameter represents the size of the 

voxel based on the distance between opposite vertices. The beam width parameter 

represents the thickness of each strut that composes a voxel. The code from the Coded 

Structures laboratory was used to generate an ABAQUS compatible lattice from the STL 

mesh file based on these parameters.  

Because, by definition, the STL mesh file is composed of connected triangles called 

facets, the program extracts the facet information from the STL mesh file to store into a 

series of arrays as points while also storing the normal direction of each facet. Based on 

these outer boundary points, the program logically determines locations for the later 

generation of voxels by calculating the center points of the voxels that will fill the lattice. 

Based on these center points, the program then creates a voxel with the pre-designated 

parameters at each point to form a lattice within the boundaries of scanned bone. To 

generate a voxel at a given center point, the vertices of the unit cells are first placed relative 
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to the center point based on a pitch parameter designating the size of the voxel. Then, the 

vertices are connected using beams. The beams are given thicknesses based on a beam 

width parameter. Because this process only produces unlinked individual voxels, the 

program runs through redundant vertices which have the same coordinates in space and 

links them. A representative model of the lattice that results is shown in Figure 3.3.1.   

 
Figure 3.3.1 – Representative model of a lattice encompassing a section of a scanned tibia with a 5 mm 
voxel pitch and 0.1 mm beam width. 

Once the lattice is generated, the program applies boundary conditions, ABAQUS 

step information, material properties, and exports an input file for the ABAQUS 

Computational Element Analysis software using a uniquely generated filename for simple 

post-processing later. Simulated compressive displacements were applied normal to the 

proximal end of the tibial section to mimic the direction to which natural bone would 

typically be subject. Although bone is often subject to multiple forces, we focus on the 

downward force of the torso’s weight due to gravity. Using displacement boundary 

conditions on the vertices that were desired to be loaded keeps consistent applied stress 

when the number of voxels in the mesh increases, as opposed to applying a concentrated 

force at each vertex that would scale the total load. The distal end of the tibial section was 

fully fixed. The program applies the material properties for Polylactic Acid (PLA), a 

common 3D printable material, which assumes an elastic modulus of 2.79 GPa and a 

Poisson’s ratio of 0.35. 
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The pitch of the voxels and their beam widths were varied to determine an optimal 

combination of relative density to effective elastic modulus for the generated lattice 

structure. Specifically, we compare the effective elastic modulus of a lattice given the pitch, 

which determines the number of voxels, and the beam width. To determine this optimal 

combination, a program was written to iterate through 13 different pitches (3, 4, 5, 6, 7, 8, 

9, 10, 13, 16, 19, 22, and 25mm) and 9 beam widths (0.1, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 

1.75, and 2.00 mm) to generate ABAQUS input files with each combination of parameters. 

The pitches were chosen to give more data points to target a wide distribution of simulated 

voxel densities. The simulations were run with 4 GB of available memory allocated and 

parallelized with 4 CPU cores. Simulation run times varied based on the number of voxels 

in the lattice structure but did not exceed 120 seconds for a 16381-voxel lattice. The stresses 

evident in a 4062-voxel lattice after 1 mm compressive displacement are shown in Figure 

3.3.2. Deformation in the figure is exaggerated to represent displacement due to stresses. 

 
Figure 3.3.2 – Representative model of a stressed lattice after a compressive displacement of 1mm. This 
model uses a 5 mm voxel pitch and 0.1 mm beam width.  

A program was written to optimize the extraction of results from each simulation 

to a single file. The maximum von Mises stress and its corresponding element number were 

extracted from the output file of the simulation. The von Mises stress was chosen since it 

is commonly used to predict when a material will reach the yield point based on the 

structural stress exceeding that of the material’s yield strength (Nisbett and G. Budynas, 
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2015). The voxel pitch, beam width, and displacement were each extracted from the output 

file based on the automatically generated filename. The number of voxels for a given pitch 

was outputted and recorded upon initial file generation. We compared the resulting stresses 

to the fracture strength of bone that was determined from the literature as well as the 

average ultimate strength of PLA. The effective elastic modulus of the lattice was 

determined based on the stress and displacement, for better comparison against other 

materials and the various iterations of lattice parameters. Additional simulations were 

performed using the material properties of a titanium alloy, Ti-6Al-4V, which is commonly 

used for orthopedic implants. Further simulations were performed with the properties of an 

injection mold thermoplastic, Ultem 2200, already tested with voxel lattices in aerospace 

applications. The titanium alloy assumes an elastic modulus of 113.8 GPa and a Poisson’s 

ratio of 0.342. The injection mold thermoplastic assumes an elastic modulus of 6.89 GPa 

and a Poisson’s ratio of 0.38. 

3.4 – Verification of Computational Results 

A printable lattice specimen emulating a cylindrical cross-section was generated 

using the Rhino 3D mesh editing software based on a voxel of pitch 8 mm and beam width 

of 1 mm. The structure has a diameter of 40 mm and a height of 40 mm. Four lattice 

specimens were 3D printed at a resolution of 0.1 mm using Fused Deposition Modeling 

(FDM) printing methods with a Prusa i3 MK3S. Due to limitations of 3D printing 

technology available to the researchers, thin strands of printing artifacts were apparent in 

the printed lattice as seen in the leftmost picture of Figure 3.4.1. The mass of each printed 

lattice was recorded, and its solid volume determined using the volume tool in Rhino 3D. 

These specimens were mechanically tested in compression using an ADMET eXpert 8602 



27 

 

Biaxial Testing Machine (Norwood, MA) to compare to simulated models. The setup of a 

lattice specimen in the ADMET is shown in the middle picture of Figure 3.4.1. Initially, 

the ADMET was set to displacement control until 50% strain of the structure to ensure 

failure, but the compressive strain was modified to 25% for later trials. The rightmost 

picture of Figure 3.4.1 shows a lattice specimen after a 25% strain was applied. It was 

determined that compression up to 10% strain of the structure was needed to display the 

linear elastic region and peak stress of the structure. A displacement rate of 4 mm/min was 

chosen to ensure a strain rate of 0.001666 mm/mm/s to be consistent with prior unpublished 

NASA research on voxel lattice compression. The specimen was displaced until failure to 

acquire a stress-strain curve. Using this curve, we determined the effective elastic modulus 

of the printed structure.  

 

Figure 3.4.1 – (Left) 3D printed cylindrical lattice specimen, (Middle) Printed Lattice Experimental Setup, 
(Right) Visible fracture and deformation on printed lattice after 25% strain applied. 
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In conjunction, a comparable lattice was 

digitally generated and simulated with the same 

parameters as the 3D printed specimen, using the 

material properties of PLA, to ensure a direct 

correlation between the physical experiment and the 

computational simulation. Figure 3.4.2 depicts the 

simulated comparable lattice and its affiliated stress 

locations after a displacement of 1 mm, consistent with the displacement used for prior 

simulations in this study. The peak stress for other strains can be extrapolated due to the 

linearity assumption of the stress and displacement in ABAQUS. The effective elastic 

modulus was determined for the computational simulation and compared to the 

experimental results.  

  

Figure 3.4.2 – Digital cylindrical 
lattice specimen simulated to 2.5% 
strain or 1mm displacement. 
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3.5 –Emulation of Osteosarcoma Surgical Intervention 

This study targets the emulation of a surgical 

intervention on the proximal portion of the 

osteosarcoma afflicted tibia. The 3D scan of the 

cadaveric tibia was imported into Meshmixer, a mesh 

editing software, where the inflate and draw brushes 

from the 3D sculpt function was used to artificially 

generate a tumor. The tumor is positioned inferior and 

lateral to the tibial tuberosity. The mesh was exported 

to Autodesk Fusion 360 to reduce the number of mesh 

faces and be compatible with Fusion’s Mesh to BRep 

feature. This feature converted the mesh into a solid 

model.  

Radiology images of afflicted long bones from literature were used to adequately 

gauge the typical size and depth of tumor for resection (McCarthy and Frassica, 2014). The 

afflicted region was first isolated with 100 mm long section of the proximal tibia. In Fusion 

360, a sketch plane was formed to emulate the path of an incision. The sketch was extruded 

to generate a surface with which to cut the tibial solid model. Once the tumor was separated, 

an accurate bounding shape of the remaining section was needed to determine the size of 

the implant.  

Figure 3.5.2 – Incision surface used to cut tumor (yellow) from tibial 
section (red).  

 

Figure 3.5.1 – Left: Original tibia 
scan, Right: Modified tibia with 
artificial osteosarcoma 
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Temporarily ignoring the tibial section previously isolated, an estimation of the 

outer body was formed using the loft function between the disjoined portion containing the 

proximal epiphysis/metaphysis and the portions containing the distal diaphysis. The 

incision surface was then used on the outer body estimation to create a body representing 

the implantable region. The outer surface of this body was converted to a thin surface 

geometry to use later as an incision surface. The surface was also thickened to 0.25 mm, 

chosen to be thinner than the struts of the lattice, to form a thin outer protective shell for 

the interior implant design.  

  

Figure 3.5.3 – From top to bottom, a) generation of the loft outer body estimation, b) 
using incision surface to create implantable region, c) thin outer protective shell for 
implant 

 

a 

b 

c 
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3.6- Implementation of Custom Lattice as an Implant 

 For use as an implant, the octahedron lattice geometry must ideally conform to the 

boundaries of the bone in order to not interfere with surrounding tissue. Each implant must 

have its interior lattice geometry customized to match to the needs of the patient and the 

conditions of the surgery. A single voxel was generated using the Rhino 3D mesh editing 

software based on a voxel of pitch 8 mm and beam width of 1 mm and was converted to a 

solid BRep geometry. This voxel imported into Fusion 360 for assembly into a workable 

lattice structure due to computational constraints when working with complex BRep 

structures in Rhino 3D. In Fusion, the voxel was patterned and merged into a lattice 8 

voxels wide, 6 voxels in length, and 15 voxels in height. The initial size of the lattice is 

customized to exceed the boundaries of the implant to minimize the total number of the 

voxels thus maximizing the computational efficiency of future steps.  

 The center of the lattice structure was positioned to match the center point of the 

implantable region’s bounding box such that the implantable region is completely 

contained within the lattice as shown in Figure 3.6.1. The design of a lattice implant intends 

for multitude of lattice surfaces to be in contact with surfaces of the bone. Due to the 

irregular shape of the implantable region, restricting the design to the use of full voxels 

would minimize the number of contact points and intuitively increase the stress distribution 

Figure 3.6.1 – The lattice structure positioned over the implantable region of the bone 
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on voxel outliers. It is therefore appropriate to split full voxels that intersect with the 

boundary to contour the lattice such that there is more contacting surface area. The current 

iteration of this design opts for the use of bone cement as opposed to screws or pegs to 

adhere the lattice to the interior surfaces of the bone. Thus, overly thin geometries that 

result from the lattice contouring will be coated in cement such that individual struts will 

be fixed to the cement layer, connecting the rest 

of the lattice structure to the bone.    

The incision surface used to resect the 

tumor in Figure 3.5.2 was again employed to 

split the lattice structure to contour to the interior 

of the resected bone as shown in Figure 3.6.2. 

The resulting bodies outside of the incision 

surface or disconnected from the inner lattice 

were removed.  

From the outer body of the implantable 

region, the incision surface that was generated in 

Chapter 3.5 was utilized to contour the 

environment facing surfaces of the lattice 

through an additional split of the lattice body. 

This split shapes the lattice to the bounds of loft 

operation for the estimation of the bone’s outer 

body.  

Figure 3.6.2 – Using incision surface to 
split the lattice body to contour to the 
resected bone.  

Figure 3.6.3 – Using incision surface to 
split the lattice body to contour to the 
estimation of the bone’s outer body.  
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The resulting contoured lattice structure 

demonstrated within the confines of the bone is 

depicted in Figure 3.6.4. As shown in Figure 

3.6.5, the resulting lattice is geometrically 

integrated with the thin outer protective shell 

from Chapter 3.5 so it can be 3D printed homogeneously with the lattice implant design,. 

Figure 3.6.4 – The contoured lattice structure fit within the confines of the bone.  
Anterior view (left) and Perspective view (right) of the lattice bone implementation 

Figure 3.6.5 – The contoured lattice 
structure geometrically integrated with the 
outer protective shell 
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3.7- Estimation of Normal Tibial Behavior 

The unmodified 3D scan of the cadaveric tibia was converted into a workable solid 

model in Fusion 360 in the same process as described for the osteosarcoma model in 

Chapter 3.5. A 100 mm section was split at the same locations and exported to ABAQUS. 

Since the origin of the model was a scanned mesh, the solid model contained many small 

faces that complicated the ABAQUS meshing process. The virtual topology feature present 

in ABAQUS was used to combine all faces and edges in the model except for the edges at 

the top and bottom boundary. The model was duplicated to consider compare two models 

of the normal tibial behavior with the same constraints and loading conditions. 

The first model assumed tibial behavior as a closed, homogenous solid. The model 

was partitioned into cells along the XZ and YZ planes where the length of the model was 

constrained in the Z direction. A linear hexagonal mesh (element type C3D8R) with a seed 

size of 2.5 was used. The second model assumed tibial behavior as a membrane-like shell 

with a given thickness. The model was first converted to a shell from a solid in ABAQUS’s 

part module and the top and bottom faces were removed leaving only the outer surface of 

the tibia. The second model was also partitioned into faces along XZ and YZ planes. The 

normal directions of the faces were inverted such that the material thickness is calculated 

facing inward. A mesh was constructed out of linear quadrilateral-dominated (S4R) 

elements with an element size of 2.5 mm. An average cortical bone thickness of 3.5 mm 

was assumed (Patterson et al., 2016). A shell thickness of 2.5 mm was also simulated. Both 

models used a base material with an elastic modulus of 14.8 GPa, a Poisson’s ratio of 0.35, 

and a density of 1.86 g/cm3 (Li and Aspden, 1997). 
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 Constrained nodes were created at the locations where the proximal and distal 

articular surfaces would be to emulate the boundary effects on the tibial section. The 

proximal node was generated 60 mm from the center of the top surface of the section. The 

distal node was set 225 mm from the bottom surface. Coupling constraints fully connected 

the nodes to the top and bottom surfaces in the case of the solid model. The shell model 

was fully constrained by its top and bottom edges. The bottom node was fully fixed in 

place. Two different loading conditions were simulated on the top node to allow 

conclusions regarding the normal deformation behavior of the tibia under body-weight 

load. The top node was loaded with a concentrated compressive force of 2000 N. This force 

was estimated based on the average body weight of 180 lbs among American adults in 

2016 with a factor of safety of 2.5 as reported by the National Center for Health Statistics 

(Fryar et al., 2018). A compressive force of 1000 N was tested for a factor of safety of 1.25.  

 
  

Figure 3.7.1 – The coupling constraints on the top and bottom edges of the shelled model of the 
normal tibial section. 
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3.8 Analysis of Lattice Implant 

 Validation of the implant design was performed using the ABAQUS Finite Element 

Analysis software. The solid geometry of the 100 mm resected tibial section, the contoured 

lattice structure, and the outer protective shell were imported into ABAQUS as parts. A 

modification of the lattice with a thin shell located at the bone interface was also imported. 

The shell at the interface was generated by thickening the incision surface for the resected 

tumor and cutting the result with the incision surface for the bone’s outer body. The 

thickness of this thin shell is 0.5 mm from the incision surface into the lattice. The lattice 

was the adjusted with an additional body split using a copy of the incision surface offset 

0.3 mm to overlap with the lattice. This process removed small artifacts otherwise apparent 

during any Boolean combinations with the shell. The shell was integrated with the 

geometry of the lattice in order to simplify the simulated interaction with the resected bone. 

The resulting implant was positioned with precise contact between the interior of the 

resected tibia and shell. 

 ABAQUS’s virtual topology feature was used to combine small faces and 

redundant edges on the lattice implant to improve mesh efficiency by reducing import 

artifacts. This functionality was also used to minimize faces and edges on the resected tibial 

section, allowing it to be meshed with linear hexagonal swept elements (C3D8R) and a 

seed size of 2.5. The bone was modeled as a homogeneous solid with an elastic modulus 

of 14.8 GPa, an assumed Poisson’s ratio of 0.35, and a density of 1.86 g/cm3. The lattice 

implant was modeled as a homogeneous solid with the properties of PLA: an elastic 

modulus of 2.78 GPa, Poisson’s ratio of 0.35, and a density of 1.24 g/cm3. The implant was 

meshed with quadratic tetrahedral elements (C3D10) with a seed size of 2.4.  
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The constraints and loading conditions followed those used in Chapter 3.7 for the 

normal tibial section. Coupling constraints were associated with the top and bottom 

surfaces of the resected tibia. A general contact interaction was used to define the behavior 

between the lattice implant and the resected tibia. The normal behavior was defined as hard 

contact (no overlap) pressure-overclosure formulation without separation and the 

tangential behavior was defined with a rough (no-slip) frictional formulation. This 

interaction simulated the implant being fixed to the bone to demonstrate the stress 

distribution throughout the implant. The distal constraint node was fully fixed. Three 

models of the proximal constraint node loading conditions were simulated. Two models 

were defined as compressive concentrated forces of 2000 N and 1000 N as a direct 

comparison to the loading conditions of the normal tibia in Chapter 3.7. Additionally, a 

compressive displacement on the top node of 0.5 mm was tested, because it would allow 

conclusions comparing the stress distribution beyond deformations seen in the body-weight 

loading conditions of the normal tibia in Chapter 3.7. 

A model of the resected tibial section without the lattice implant was simulated as 

a comparison to determine whether the lattice offloads stress and reduces maximum axial 

deformation from the resected bone. The same constraints, geometry, mesh, and element 

types from the integrated lattice simulation were employed without contact interactions or 

the lattice geometry to simulate the resected section under 2000 N of loading.  

Figure 3.8.1 – The coupling constraints on the top and bottom edges of the shelled model of the 
normal tibial section. 
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3.9 Physical Representation of Lattice Implant 

The lattice structure with the integrated outer shell was manufactured in PLA using 

fused filament fabrication with a Prusa Mini 3D Printer. The resected tibia and removed 

tumor were printed in sections separating the proximal epiphysis, the resected section, the 

distal diaphysis, and the distal epiphysis. The sections were adhered together with 

cyanoacrylate except for the removed tumor.  

 

 

 
 

  

Figure 3.9.1 – Views of printed lattice implant: (Left) Perspective view, (Middle) Medial view, 
(Right) Superior View 

Figure 3.9.2 – Printed tibial specimen with detachable osteosarcoma. 
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Chapter 4: Results 

4.1 – Assumption of Linearity 

Figure 4.1 depicts the relationship between voxel pitch and the number of voxels 

the program generates. The change in the number of voxels present in the structure between 

3 mm and 5 mm is greater than the change between 5mm and 7 mm voxel pitches. The 

number of voxels asymptotically converges when voxel pitch is greater than 10 mm. 

 

Figure 4.1.1 – Graph showing the exponential increase of the number of voxels as voxel pitch decreases 

Table 4.1.2 shows the resulting stresses and associated beam number of sample lattices 

with 7- and 10-mm voxel pitches tested at 1 mm and 10 mm displacements.

 

Table 4.1.2 – Table showing maximum Von Mises stress linearly increasing as compressive displacement 
increases for voxel pitches of 7- and 10-mm.   
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4.2 – Maximum Stress Present in Lattice 

Table 4.2.1 shows the resulting maximum Von Mises stress present in the lattice 

given a voxel pitch and beam width combination. Figure 4.2.2 helps visualize the trends 

of each beam width as voxel pitch changes. Stress increases as beam width increases and 

lattices with voxel pitches under 8 mm have higher maximum stresses than those over 8 

mm. 

  
Table 4.2.1 – Table showing the resulting maximum Von Mises stresses present in the lattice comparing 
beam width and voxel pitch. 

 

Figure 4.2.2 – Graph showing maximum Von Mises stress present in the tibial bone fragment lattice, as 
affected by voxel pitch and by beam width.  
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4.3 – Effective Structural Length of the Simulated Lattice  

Table 4.3.1 presents the effective structural length and strain present with 1mm of 

displacement of the lattice with a given voxel pitch. The average effective strain is 0.270%. 

 
Table 4.3.1 – Table showing the effective structural length given a voxel pitch, and the affiliated values that 
determine it. 

4.4 – Effective Elastic Modulus of the Simulated PLA Lattice  

The effective elastic modulus of the simulated lattice composing a tibial bone 

section is shown in Table 4.4.1 and visualized in Figure 4.4.2. The structural modulus of 

an 8 mm voxel lattice is 11.60 GPa with the PLA material, which is 415% greater than the 

solid continuum material modulus of PLA. 

  

Table 4.4.1 – Table showing the effective elastic modulus of the lattice, as affected by voxel pitch and by 
beam width. 
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Figure 4.4.2 – Graph showing the relationship between effective elastic moduli of the lattices simulated, as 
affected by voxel pitch and by beam width. 

It is of importance that we consider the exponential relationship between voxel 

pitch and the number of voxels in the lattice. As such it is of benefit to evaluate the 

relationship between voxel density and elastic modulus that results from a given beam 

width. This relationship is explored in Figures 4.4.3 and 4.4.4. 

 

Figure 4.4.3 – Graph showing the relationship between effective elastic moduli of the lattices simulated, as 
affected by voxel density and by beam width. 
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Figure 4.4.4 – Graph zooming in on the behavior of effective elastic moduli of the lattices simulated due to 
beam width ranging between a voxel pitch of 6 mm (2544 total voxels) and a pitch of 13 mm (369 total 
voxels). 

4.5 –Lattice Simulations using Titanium Alloy 

The lattice was simulated with the material properties of the Titanium alloy Ti-6Al-

4V, which is commonly used in orthopedic implants (Pobloth et al., 2018). The maximum 

stress present in an 8 mm voxel pitch lattice is 1288 MPa. 

 
Table 4.5.1 – For the titanium alloy lattice, table showing the resulting maximum Von Mises stresses 
present based on beam width and voxel pitch. 
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Table 4.5.2 and Figure 4.5.3 display the effective elastic modulus of the simulated 

lattice molded to a tibial bone section with the material properties of a titanium alloy. Note 

that the trends for the lattice with titanium is like that of PLA but with a 4086% increase 

in the magnitude of the modulus. The peak modulus at a pitch of 8 mm is 473.98 GPa. 

 
Table 4.5.2 – For the titanium alloy lattice, table showing the resulting effective elastic modulus based on 
beam width and voxel pitch. 

 
Figure 4.5.3 – For the titanium alloy lattice, graph visualizing the resulting effective elastic modulus based 
on beam width and voxel pitch. 
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4.6 – Lattice Simulations using Ultem 2200 Thermoplastic 

The lattice was simulated with the material properties of the injection mold 

thermoplastic Ultem 2200, which has been tested for voxel lattices in aerospace 

applications (Cramer et al., 2019). The peak stress with an 8 mm voxel pitch is 76.06 MPa.  

 
Table 4.6.1 – For the Ultem 2200 lattice, table showing the resulting maximum Von Mises stresses present 
based on beam width and voxel pitch. 

Table 4.6.2 and Figure 4.6.3 display the effective elastic modulus of the simulated 

lattice molded to a tibial bone section with the material properties of Ultem 2200 

thermoplastic. Note that the trends for the lattice with this thermoplastic is like that of PLA 

but with a 241% increase in the magnitude of the modulus. At higher beam widths greater 

than 1.5 mm and voxel pitches less than 8mm, the modulus is within 5 GPa of the highest 

simulated elastic modulus. The peak modulus with an 8mm pitch is 27.99 GPa. 



46 

 

 

Table 4.6.2 – For the Ultem 2200 lattice, a table showing the resulting effective elastic modulus based on 
beam width and voxel pitch. 

 
Figure 4.6.3 – For the Ultem 2200 lattice, graph visualizing the resulting effective elastic modulus based 
on beam width and voxel pitch. 

Figure 4.6.4 uses a beam width of 2 mm for visualization of the effective elastic modulus 

with different material constructions simulated. The graph uses a log scale to depict the 

consistent trend regardless of material. The scaling effect of using a different construction 

material in the simulation is evident.  
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Figure 4.6.4 – Comparison of the resulting effective elastic modulus with different material constructions, 
different voxel pitches, and a beam width of 2 mm. 
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4.7 – Experimental Testing of Cylindrical Lattice Section 

A cylindrical section, composed of a lattice with 8 mm pitch and 1 mm beam width, 

was 3D printed four times and mechanically compressed. The results were then compared 

to a simulated model of the specimen with the same parameters as shown in Table 4.7.1. 

Note that there exists a 7-12 % error between the ratio of stresses experimentally and the 

linear ratio of stresses assumed in the simulation. The experimental moduli have an average 

of 0.57 ± 0.047 GPa. The experimental moduli are 28.16% ± 2.33% of the simulated 

effective modulus. 

 
Table 4.7.1 – Experimental results 2-5 and comparative simulated result “Sim” 

Figure 4.7.2 depicts the qualitative results of the lattice compression test. Specimen 

2 was taken to 50% strain, specimen 3 to 13% strain, and specimens 4 and 5 to 25% strain. 

Specimen 1 denotes the simulated specimen. Buckling and plastic deformation are both 

noticeable in some beams of the lattice. 

 
Figure 4.7.2 – 3D Printed Specimens after compressive testing.  
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Figure 4.7.3 presents a graph of the stress-strain curves acquired from the 3D-

printed lattice compression experiments. The peak strain before the first structural failure 

is shown to be between 5 and 10% strain. Specimens 2, 4, and 5 are shown to return to 

initial magnitudes of peak stress at strains beyond the first failure point.  

 
Figure 4.7.3 – Stress-Strain Curves showing the experimental results of mechanically compressing four 3D 
printed lattice specimens. 

Figure 4.7.4 zooms in on the stress-strain curve to help visualize the points used 

to determine the modulus of each test specimen. Specimens 2 and 3 portray a modulus of 

0.62 and 0.61 GPa respectively. Specimens 4 and 5 portray a modulus of 0.53 and 0.52 

GPa respectively. 
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Figure 4.7.4 – Linear elastic region of stress-strain curves with moduli line segments overlaid. 

 Figure 4.7.5 depicts the linear relationship between the stresses and strains that 

were found experimentally using a scatter plot. The fit of the linear relationship is 

described using an R-value of 0.9057. 

 

Figure 4.7.5 – Correlation of stress-strain with 4 data points from each sample 
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4.8 – Simulated Deformation and Stress Distribution of Normal Tibia 

Figures 4.8.1, 4.8.2, and 4.8.3 present the von Mises stress distribution and the axial 

deformation along the length of the tibia under 1000 N of load for the 2.5 mm thick shell 

and solid models of the tibia respectively. Note that the visual deformations are unscaled. 

 
Figure 4.8.1 – 2.5 mm thickness shell under 1000 N load: (Left) Distribution of von Mises stress in MPa, 
(Right) Axial Deformation in mm 

 
Figure 4.8.2 – 3.5 mm thickness shell under 1000 N load: (Left) Distribution of von Mises stress in MPa, 
(Right) Axial Deformation in mm 
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Figure 4.8.2 – Solid tibial section under 1000 N load: (Left) Distribution of von Mises stress in MPa, 
(Right) Axial Deformation in mm 

Tables 4.8.3 and 4.8.4 compares the von Mises stress distribution and the axial 

deformation found in each compressive loading model with each shell thickness. Note that 

ABAQUS assumes the model as a linear geometry. 

 
Table 4.8.5 – Table showing the resulting maximum Von Mises stresses present in the simulated normal 
tibia under varying shell thicknesses and compressive loads. 
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Table 4.8.5 – Table showing the resulting maximum axial compressive deformation present in the 
simulated normal tibia under varying shell thicknesses and compressive loads. 

Figure 4.8.5 describes the linear relationship between the stress and strain found in 

the simulated normal tibia. The simulated modulus, depicted by the slope, ranges from 

18.27 GPa for the solid model to 22.23 GPa for the 3.5 mm thick-shelled model. The 

compressive strain was calculated from the quotient of the maximum axial deformation 

with the overall axial length of 100 mm.  

 
Figure 4.8.6 – Stress strain relationship and associated linear relationship for each shell thickness 
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4.9 – Simulated Deformation and Stress Distribution of Lattice Implant 

Figures 4.9.1 and 4.9.2 present the von Mises stress distribution and the axial 

deformation along the length of the tibia under 2000 N of load and 1000 N respectively. 

The von Mises distribution plot was scaled to account for outlier stress values resulting 

from small elements in the model. The visual deformations of these figures are unscaled. 

The highest stress regions are shown to occur within the resected bone.  

 
Figure 4.9.1 – Integrated lattice implant under 2000 N load: (Left) Distribution of von Mises stress in 
MPa, (Right) Axial Deformation in mm 

 
Figure 4.9.2 – Integrated lattice implant under 1000 N load: (Left) Distribution of von Mises stress in 
MPa, (Right) Axial Deformation in mm 
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Figure 4.9.3 presents the von Mises stress distribution and the axial deformation 

along the length of the tibia under 0.5 mm of compressive displacement constrained to the 

superior surface of the tibial section. The von Mises distribution plot was scaled to account 

for outlier stress values resulting from small elements in the model. The resected bone was 

also hidden from the plot to emphasize the distribution across the lattice and its shell. The 

visual deformations of these figures are unscaled. 

 
Figure 4.9.3 – Integrated lattice implant under 0.5 mm of compressive displacement: (Left) Distribution of 
von Mises stress in MPa, (Right) Axial Deformation in mm 

Figure 4.9.4 and 4.9.5 displays the stress and strain for the lattice implant at each 

increment of the compressive load simulations. Figure 4.9.4 focuses on the 1000 N and 

2000 N load models while Figure 4.9.5 focuses on stress for varying deformations up to 

0.5 mm of compressive displacement. The strut with the peak stress typical throughout the 

lattice was consistently used for each strain value. The peak strut stress ignores the outlying 

peak stress that may occurs at the locations of small, thin elements unrepresentative of the 

full lattice behavior. The compressive strain was calculated from the quotient of the 

maximum compressive axial deformation with the overall axial length of 100 mm. 



56 

 

 
Figure 4.9.4 – Compressive loading stress strain relationship and associated linear relationship for each 
loading model of the lattice implant 

 
Figure 4.9.5 – Compressive loading stress strain relationship and associated linear relationship for the 
displacement model of the lattice implant 

The typical median stresses present throughout the struts of the lattice implant 

(depicted in green in Figures 4.9.1 and 4.9.2) were 23.92 MPa for the 1000 N load model, 

50.94 for the 2000 N load model, and 26.10 MPa for the 0.5 mm compressive displacement 

model. This typical value was visually determined based on the peak strut stress and did 

not entail consistent elements chosen between the models. 
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Figure 4.9.6 depicts the peak model stress and axial deformation resulting from the 

2000 N loading condition on the resected section of the tibia without the lattice implant. 

The simulation describes a peak stress of 200.1 MPa and a maximum compressive axial 

deformation of 6.310 mm. The equivalent integrated lattice implant simulation for 2000 N 

loading conditions reports a peak stress of 91.38 MPa and a maximum compressive axial 

deformation of 3.150 mm at the same stress location. 

 

Figure 4.9.6 – Integrated lattice implant under 2000 N of compressive load: (Left) Distribution of von 
Mises stress in MPa, (Right) Axial Deformation in mm 
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4.10 – Lattice Implant Integration with 3D Printed Resected Tibia 

Figure 4.10.1 and 4.10.2 depict the result of the physical representation of the lattice 

implant. The physical representation serves as validation for the rapid manufacturing of 

lattice implant as well as the fit of the implant within the resected tibia. The 3D printed 

lattice implant used 8.5 g of filament compared to 18 g of filament used for a solid implant 

within those boundaries. Thus, the lattice reduces mass by 52.78% compared to a solid 

implant. 

  
Figure 4.10.1 – Physical representation of lattice implant overlaid by the resected tibia 

 
Figure 4.10.2 – Physical representation of lattice implant fit into the resected tibia 
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Chapter 5: Discussion 

5.1 – Assumption of Linearity for Simulated Lattice 

First, we consider the impact of voxel pitch on the number of voxels, based on the 

output information from running the custom program to generate the ABAQUS files. 

Figure 4.1.1 depicts the trend for the number of voxels to increase as voxel pitch decreases. 

The trend fits a power curve with a magnitude of -2.47. As such, the difference in the 

number of voxels between 3- and 10-mm voxel pitches is more than one order of magnitude 

greater than the difference in the number of voxels between 10- and 25-mm voxel pitches. 

We must consider how the compressive displacement affects the simulation results. 

Interpretation of the base code from NASA leads us to an assumption of linearity regarding 

the relationship between the displacement and the resulting peak stress. To use these 

assumptions, linearity first must be verified with several data points. Using voxel pitches 

of 7 mm and 10 mm with a beam width of 1 mm, simulations were run at a compressive 

displacement of 1 mm and at a compressive displacement of 10 mm. Table 4.1.2 shows 

how the stress multiplies by 10 for both voxel pitches tested. Crucially, it also shows that 

this maximum stress is apparent in the exact same beam of the lattice, meaning that the 

structural performance remains the same, albeit higher stresses. 

From the results in Table 4.1.2, we determined that a linear relationship exists 

between stress and displacement, meaning the behavior of the lattice follows the same 

distribution patterns under higher stresses as the compressive displacement increases. 

Thus, a comparison between the resulting maximum stress in the lattice and the yield 

criteria for the material is necessary to determine whether the structure yields. A direct 

result of this phenomenon is that we can use this assumption of linearity to obtain an 
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effective elastic modulus for this lattice to compare against the material performance of 

bone from literature and the performance of PLA as a solid material.  

5.2 – Implications of Stress Analysis for Simulated PLA Lattice 

With linearity verified, it is safe to continue our simulations with 1 mm of 

compressive displacement, because the maximum stress at any multiple of 1 mm 

displacement is the same multiple of maximum stress found at the 1 mm displacement. 

General trends can readily be seen based on Table 4.2.1. A denser lattice (higher number 

of voxels) leads to a higher maximum von Mises stress that results in the structure. 

Similarly, a lattice with a thicker beam width generally increases the maximum Von Mises 

stress that results in the structure. The exceptions to this pattern include the beam width 

trend present in the highest density lattice when there are over 16000 voxels present. The 

phenomena of decreasing stress with increasing beam width occurs when the beam width 

is 1.50 mm or greater. We suggest that the beam width trend is invalidated when the beam 

width increases beyond one-half the voxel pitch due to beam overlap, but this is 

inconclusive because this data set is the only instance in our simulations where this holds 

true. For this combination of parameters, the structural efficiency of the lattice may be 

overtaken by the solid behavior of the material. Other exceptions to the general trends are 

increases in peak stress between a 151-voxel lattice (with a pitch of 19 mm) and an 85-

voxel lattice (with a pitch of 25 mm). Curiously, the performance of a 234-voxel lattice, 

with a voxel pitch of 16 mm, exceeds that of the 13 mm pitch lattice and the 19 mm pitch 

lattice. These two behaviors could result from the methodology used in the lattice 

generation algorithm. In some cases, extra columns and rows of voxels are attached to the 

outer boundaries of the generated lattice due to the irregular shape. This results in floating 
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voxels bounding some regions of the geometry that may contribute to different stress 

distributions.  

Otherwise, the stress quickly increases between beam widths of 0.1 mm and 1 mm, 

before beginning to converge after 1 mm. Throughout the beam width data sets, the stress 

tends to make a large dip between a voxel pitch of 8 mm and a voxel size of 9 mm, also 

representing a dip below the 1000 voxel mark in the structure. It is suggested that the 

performance benefits of higher density voxels begin at a pitch of 8 mm. 

The maximum von Mises stress is typically used as the value to determine whether 

a structure meets the yield and failure criteria of the material used. By comparing the von 

Mises stress to yield strength of the PLA material we used, we can determine whether the 

structure will fail at this maximum stress location. If the structure does not fail, then we 

can compare the von Mises stress to the ultimate compressive stresses and elastic modulus 

of bone.  

Due to our assumption of linearity outlined in section 1 of chapter 4, we can scale 

the stresses to estimate overall strain will cause failure. Because PLA is a brittle material 

and noting that the highest stresses present in Table 4.2.1 are within 5 MPa of tensile yield 

strength, this study compares the unscaled simulated data to that of bone. Given a stronger 

material such as titanium, it would be of interest to scale the stresses to match the strain 

that causes high damage to trabecular bone. A study by Notre Dame researchers suggests 

a range of 2.50% to 4.50% compressive strain for highly damaged trabecular framework 

(Garrison, Gargac, and Niebur, 2011). The average effective strain from our model was 

0.27%. Scaling it by 10 would put the structure with this range and depict von Mises 

stresses as high as 340 MPa, but the limitations of PLcamA would cause the structure to 



62 

 

break first. The Notre Dame paper cites an elastic modulus of trabecular bone of 2.3 GPa 

found with those applied strains, whereas the highest performing voxel lattices simulated 

have an elastic modulus of over five times that amount after being simulated with PLA.  

5.3 – Determining Effective Structural Length of Simulated Lattice 

To better compare our results to bone performance reported in the literature and the 

performance of various materials on the Ashby chart, it is of use to calculate an effective 

elastic modulus based on the results of the study. Due to the verification of linearity, we 

can safely assume, given a stress Y at strain X, that the stress will be 10 Y at strain 10 X. 

Thus, a simplified elastic modulus calculation would be 𝐸𝐸 = 10 𝑌𝑌−𝑌𝑌
10 𝑋𝑋−𝑋𝑋 =  9 𝑌𝑌

9 𝑋𝑋 =  𝑌𝑌𝑋𝑋  such that 

the modulus would be Y divided by X. With our displacement of 1 mm, our strain X is equal 

to 1 mm divided by the effective structural length along the axis of displacement. Thus, 

our structure has an effective strain of 1 mm divided by an effective structural length L. In 

our modulus calculation, this reduces to modulus E = LY.  

The total structural length varies based on the voxel pitch because only so many 

whole units of voxels can evenly divide the imported scan along the axis of displacement. 

In the program, all vertices that have a value greater than 365 mm on the displacement axis 

fully fixed. Thus, we could assume that 365 mm is our effective structural length, the length 

that is compressible. However, this is not accurate because the first set of fixed vertices 

may be located greater than 365 mm on the displacement axis. To account for this, we can 

use our understanding of voxel geometry to calculate an effective structural length 

representing the compressible distance between the first fixed set of vertices in the structure 

and the displaced end of the structure. We recognize that the program begins generating 

sets of voxel center points starting at the one end of the scanned specimen, never surpassing 
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the length of the scanned specimen. The length of the resulting structure is determined by 

the maximum number of center points that can fit within the length of the scanned 

specimen. In addition, a half voxel length is added to either end of the structure. Thus, the 

total length of the structure increases by one whole voxel length. Vertices exist at every 

half-voxel length because a voxel is separated into upper and lower halves of an octagon 

by a set of middle vertices. The position of first vertices on the displacement axis beyond 

365 mm can be calculated by dividing the remainder of the difference, between the total 

length and 365 mm, by the half-voxel length and adding it to 365 mm. Simply put, the 

calculation is  

𝐿𝐿 = 365 𝑚𝑚𝑚𝑚 + [(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ − 365 𝑚𝑚𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ]. 

The results of this calculation can be seen in Table 4.3.1 for the given voxel pitches. The 

lengths were verified using the query tool in the ABAQUS CAE visualization interface. 

5.4 – Effective Modulus of the Simulated PLA Lattice  

Having determined the effective structural length L for the given voxel pitches, we 

understand that the effective structural strain is ε = 1mm / L.  Thus, the effective elastic 

modulus is calculated with E = Y/ε. We divided our modulus by 1000 to get a value in GPa 

for easier comparison to literature. The results of the calculation are shown in Table 4.4.1 

and visualized in Figure 4.4.2. 

The elastic modulus is often noted as the slope of the stress-strain curve or as a 

resistance to elastic deformation. Because this quantity is not dependent on the individual 

strain, it is a good value to use for a comparison of material performance. The calculation 

of modulus was reduced to stress scaled by the effective structural strain, which varied 

slightly between voxel pitches because the change in length was constant. While we could 
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have used a constant of 370 mm to estimate the effective structural length, it was important 

to have an accurate representation of effective strain for future comparisons. As such, we 

found the average effective structural length to be 370.7 mm with a standard deviation of 

about 3.5 mm, resulting in an effective strain of 0.270 % ± 0.0026 %.  

The effective elastic modulus ranges from 2.5 to 12.5 GPa depending on beam 

width and voxel density. The same trends that applied for maximum stress also hold for 

elastic modulus, such that a higher voxel density lattice with a larger beam width results in 

a higher effective elastic modulus. For potential bone repair applications discussed in this 

work, the design goal would be to maximize the hollow space of the object. This minimizes 

voxel density, to improve the feasibility of manufacturing, to improve the structure’s 

strength to weight performance, and to produce enough room for the bioactive ions and 

seeded bone-forming cells to exist. The stress analyses reported in section 5.1 and Figure 

4.4.3 are used to suggest a voxel pitch of 8 mm (1245 total voxels) be used for making a 

scaffold. An 8 mm voxel pitch is suggested because the elastic modulus begins to converge 

after that number of total voxels for all tested beam widths. Additionally, a beam width of 

2.00 mm is suggested for making a scaffold, because there exists a greater surface area for 

any seeded cells or ions to adhere to, increasing the functionality of the lattice beyond its 

strength to weight performance.  

In section 2 of chapter 2, the experimental and averaged values of cancellous bone 

were discussed. Gibson and Ashby (1997) report the elastic modulus of trabeculae to be 12 

GPa. Trabeculae in the human tibia are reported to have an elastic 14.8±1.4 GPa based on 

a Harvard study (Oftadeh et al., 2015). At a voxel pitch of 8 mm and a beam width of 2 

mm, the elastic modulus of the lattice is 11.60 GPa. This means the performance of the 
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lattice constructed from PLA with these parameters is 97% of performance cited by Gibson 

and Ashby and is 78% of performance cited by the Harvard study. It is important to note, 

however, that tested lattice is constructed from the brittle PLA material tested with the 

material’s average elastic modulus. Given a stronger plastic polymer or even a titanium 

alloy, the modulus is assumed to increase. However, ease of manufacturing may decrease, 

and manufacturing cost may increase with these higher performing materials. Early studies 

have shown the viability of titanium metal 3D printing for both bone implants (Popov et 

al., 2018). Additional studies have demonstrated titanium 3D printing for trabecular bone 

reconstruction (Y. Zhang et al., 2018). The performance of the simulated PLA lattice at 

voxel pitches below 4mm surpasses the performance cited by Gibson and Ashby for 

trabecular bone. This study concludes that the engineered lattice can rival the performance 

of trabecular bone.  

5.5 – Simulated Lattice Performance with Other Materials 

Tables 4.5.1 and 4.6.1 as well as Figures 4.5.2, 4.5.3, 4.6.2, and 4.6.3 focus on the 

performance of the simulated lattice when other materials, Titanium alloy Ti-6Al-4V and 

thermoplastic Ultem 2200, are applied. The titanium alloy was considered due to its use in 

orthopedic implants and to demonstrate the performance differences that a metallic 

construction provides compared to plastic. The thermoplastic Ultem 2200 was considered 

due to its demonstrated success with the lattice when injection molded for aerospace 

applications. The application of the thermoplastic is shown to demonstrate the performance 

variations between different plastic materials.  

The metallic construction of the lattice with the titanium alloy implies its use as a 

more permanent scaffold rather than a biodegradable scaffold meant for bone regeneration. 
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However, the titanium lattice could still serve as a cellular scaffold as demonstrated by 

recent studies (Y. Zhang et al., 2018).  For a lattice of pitch 8mm and beam width 2mm, 

the titanium alloy provides a 4086% increase over the modulus simulated for PLA. 

Similarly, the Ultem 2200 thermoplastic provides a 241% increase over the modulus 

simulated for PLA. The highest simulated modulus is 12.5 GPa with PLA, 510.2 GPa with 

titanium, and 30.2 GPa with Ultem 2200. The performance increases that result from 

material choices suggest that further study into the optimal material would be of interest to 

optimize lattice performance. 

A consistent behavioral pattern in Figures 4.2.2, 4.5.2, and 4.6.2 is found. This 

pattern, emphasized in Figure 4.6.4, suggests that the relative structural performance of the 

lattice is independent of the material when compared with lattices of the same material.  

Thus, the performance of the lattice simply scales as an effect of the material. Because the 

simulation focuses on the material properties of elastic modulus, density, and Poisson’s 

ratio, the scaling factor is the ratio of the elastic moduli of the materials. 

5.6 – Experimental Validation of Computational Model 

It was assumed that the stress in the mechanically compressed lattice structure was 

the highest stress present in any beam of the structures. The stress found through simulation 

was the maximum stress present in any single beam. Stress is based on surface area, so we 

determined the effective surface area of the structure to be the solid volume (calculated 

during model generation) divided by the structure’s height. The mass of the simulated 

lattice is based on a simplified model and an assumed density of 1.25 g/cm3 for PLA. 

Modulus was calculated based on the slope formula between points of stress located at 40% 
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and 50% of the strain at peak stress to be consistent regardless of variations of the zero 

position. These points and the resulting moduli are visualized in Figure 4.7.4. 

Catastrophic failure in the beams was expected due to prior lattice compression 

research, but catastrophic failure did not occur in the experiment. This suggests that 

fracture patterns are partially dependent on the lattice’s material. Based on Figure 4.7.3, 

the experimental results were shown to follow a consistent pattern of failure. From 

observation, the first failure is reached when the first strut collapsed. The horizontal plane 

of voxels that contained the failed strut quickly followed in failure. Although one plane 

collapsed, the structure can withstand similar compressive loads before another failure 

occurs. The extended results of specimen 2 beyond 25% strain suggest that this pattern 

continues with each horizontal plane, but this suggestion requires further trials to 50% 

strain to be conclusive.  

The experimental results shown in Table 4.7.1 depict that stresses and moduli are 

consistently below expectations from the simulations with the same points of strain used. 

It is evident that specimens 2 and 3 had similar performance as did specimens 4 and 5. The 

mass of specimens 3 and 4 were less than specimens 2 and 3. It is suggested that 

inconsistencies with the post-processing of the print likely contributed to the mass 

differential and the slight differences in structural integrity. Because the experimental 

moduli are 28.16% of the simulated effective modulus with a standard deviation of 2.33%, 

it is suggested that there is consistent behavior for printed specimens compared to their 

simulated counterparts. The simulation is idealized and assumes a perfect continuum 

material of PLA and does not account for delamination between the thin 3D printed layers. 

The behavior of the lattice may differ when printed in a different orientation, which 
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requires further testing. The experimental results suggest that, at least for a lattice 

constructed from PLA, the experimental modulus of mechanically compressing a 3D 

printed lattice of the tibial bone section will be 28.16% ± 2.33% of the simulated modulus. 

The qualitative results shown in Figure 4.7.2 depict plastic deformation because of the high 

strain. Furthermore, specimen 2 measures 23 mm in height although it was a 40 mm 

structure compressed 20 mm, suggesting some elastic recovery. The deformation behavior 

of the experimental lattice is preferable to catastrophic failure due to the potential bone 

repair applications previously discussed. 

Figure 4.7.5 uses a scatter plot to correlate the relationship between stress and strain 

from 4 data points from each of the tested lattices. The scatter plot depicts a linear trend 

with an R-value of 0.9057, confirming that the assumption of linearity described in section 

5.1 can be demonstrated experimentally. 

5.7 – Structural Behavior of Normal Tibial Model 

The design of an implant based on the lattice structure for the replacement of a 

tumorous bone region assumed the favorable properties demonstrated by the simulated 

bone facsimiles and the printed cylindrical lattices. The lattice implant design was 

implemented for a nonuniform boundary of a small portion of a long bone. Thus, an 

analysis of the stress distribution and the axial deformation of a section of an unafflicted 

tibia was necessary as a point of comparison to the performance of lattice implant. 

 The stress and displacement were found to precisely scale by the compressive 

loading conditions among every instance of the simulated tibia model such that the 2000 

N load exhibited twice the axial displacement and maximum stress than that of the 1000 N 

load. The simulation is idealized such that ABAQUS assumes the model to be a linear 
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geometry which suggests a proportional relationship between load and displacement. 

Tables 4.8.3 and 4.8.4 depict a 26.4% decrease in maximum stress and a 29.9% decrease 

in axial displacement between the 2.5 mm shell and the 3.5 mm shell. There is a 42.87% 

decrease in maximum stress and a 30.52% decrease in axial deformation between the 3.5 

mm shell and the solid model. For the 2000 N model, the maximum axial deformation by 

any of the models was 0.088 mm. Assuming proportional scaling of load and displacement, 

a lattice implant model simulating compressive displacement of 0.5 mm would be 

reasonably sufficient for loads up to 11000 N. The axial modulus of the normal tibia under 

the simulated loading conditions averaged to be 20.61 GPa ± 1.70 GPa, which is greater 

than the material elastic modulus of 14.8 GPa set for this geometry. The greater modulus 

may result from the use of the axial strain in the modulus calculation whereas the load was 

coupled across the superior surface and edges of the irregular geometry of tibial model. 

The tibial geometry is noted to have slight deformations along other axes which can affect 

the modulus calculation. Both the two shell models and solid model produced similar 

distributions of stress and deformation which are shown visually in Figures 4.8.1, 4.8.2, 

and 4.8.3 suggesting that the exterior geometry is the primary factor in the distribution. 

5.8 – Structural Behavior of Integrated Lattice Implant 

The critical analysis of this model is to understand the interaction between the 

lattice implant and the resected tibia. Previous sections of this chapter discussed the 

behavior of the isolated lattice structure in irregular geometry. Specifically, the implant is 

shown to distribute stress from the resected bone across the lattice. As expected from the 

linear relationship of the load and deformation from the simulation of the normal tibia 

section, the stress distribution of the model under 1000 N and 2000 N of load is similar as 
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per Figures 4.9.1 and 4.9.2. The individual stresses from these models are scaled based on 

the load. From Figure 4.9.3, the linear relationship of the incremental stresses and strains 

taken to achieve the desired compressive loading conditions can be seen with an R2 of 1. 

The stress strain relationship for the 1000 N loading condition overlaps with the early 

strains taken to achieve the 2000 N loading condition. The resulting axial modulus of the 

lattice implant is 2.90 GPa under these loading conditions. This modulus is greater than the 

underlying material modulus of PLA of 2.79 GPa.  

Unlike the compressive loading conditions, the simulation of compressive 

displacement compressed the entire superior surface of the integrated lattice model by the 

allotted 0.5 mm. The simulations of compressive loading depicted that the medial aspect 

of the surface will deform in tension while the lateral region with the underlying lattice will 

deform in compression. This behavior is consistent with the loading simulations of the 

normal tibia in Chapter 5.8. Thus, it is evident from Figure 4.9.3 that the stress distribution 

and deformation behavior differ from the loaded simulations. The model evenly deforms 

as the model is squished. The stress distribution is thus focused on the voxels connected to 

the thinnest part of the bone where the resection made the deepest incision. In Figure 4.9.5, 

the linear relationship between the strains and stresses of the compressive displacement 

model is depicted with an R2 of 0.9999. The resulting axial modulus of the lattice implant 

is 8.22 GPa under compressive displacement as opposed to the 2.90 GPa modulus found 

with the compressive load. This phenomenon may result from some tensile forces acting 

on the voxels due to the medial aspect of the bone deforming in tension from the 

compressive load. 
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From Figure 4.9.6, a comparison can be made between the integrated lattice 

implant and the resected tibial section without implant. The maximum stress on the bone 

decreased from 200.1 MPa to 93.38 MPa giving a 54.33% decrease. Maximum axial 

deformation is also shown to decrease from 6.310 mm to 3.150 mm resulting in a decrease 

of 50.07%.  

5.9 – Feasibility of Manufacturing Methodology of Lattice Implant 

 The physical model of the lattice implant manufactured via traditional FDM printed 

was completed in 6 hours at high resolution without support structure. It is estimated that 

the lattice can be printed in under 4 hours with a slightly lower resolution and faster print 

speeds without loss of quality. The outer shell of the lattice had minor fracture issues when 

removing from the print bed due to the shell only being 0.254 mm thick. Future models 

would be improved with an increase of the outer shell thickness to 0.4 mm, which is the 

nozzle diameter of the printer. As per Figure 3.9.1, Small print artifacts shaped like strings 

are apparent between the struts of the lattice due to the lack of interior support material for 

the lattice that complicates post processing. A lattice implant printed with water soluble 

support preventing the strings but required 24 hours of post processing in a circulating 

water bath. It is suggested that future models be printed using stereolithography (SLA) 

printers that provide micron accuracy without the need for support. However, SLA printers 

require some post-processing in the form of ultraviolet treatment. In addition, the 

performance of the underlying resin material with the lattice implant is unknown as 

opposed to PLA. The fit of the lattice implant within the printed tibial specimen is shown 

in Figures 4.10.1 and 4.10.2. The lattice contours to the ideal model of the unafflicted tibia; 

however, the printed implant requires slight tolerance modifications to fit perfectly.  
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5.10 – Future Applications 

The application of this lattice is not limited to bone grafts and prosthetics; an 

intramedullary nail constructed from this lattice with a biocompatible material could 

provide the benefits of this technology to long bone fracture treatments. This lattice 

structure would ultimately be constructed out of biocompatible materials to aid in natural 

bone regeneration processes and be seeded with osteogenic gels to create new bone. 

This study employed a manual method of generating a lattice within the boundaries 

of the implantable structure that requires extensive training in use of the modeling software 

and significant computational resources to process the geometry. Initial investigations were 

undertaken into the implementation of this manual method as an automated model given a 

resected tibial geometry. This automated process would ideally extract the afflicted tibial 

geometry from a CT scan and subtract the cancerous regions to recommend an incision 

curve for tumor removal. Based on this curve, the program would estimate the boundaries 

of a potential implant and consequently generate a lattice structure and outer shell. The 

program would return a geometric model highlighting the tumor and its recommended 

region of resection as well as a 3D printable file of the lattice implant. 

5.11 – Conclusions 

In this study, we have produced and simulated a lattice that can resemble natural 

bone performance. A bone facsimile was generated with an octahedron lattice internal 

structure based on a 3D scan of a cadaveric tibia. This bone facsimile has been tested using 

finite element analysis to suggest an optimal voxel density and beam width at which the 

internal structure has a high elastic modulus to relative density ratio for use as a scaffold 

during bone reconstruction. Comparative simulations of the lattice’s performance with 
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different materials have been shown. Lattice specimens were 3D printed and mechanically 

compressed to verify assumptions present in the simulation, resulting in a behavioral 

pattern for printed lattices compared to simulated lattices. A lattice implant was designed 

for the replacement of an osteosarcoma-afflicted tibia. The lattice implant was simulated 

to validate its structural viability under typical bodyweight loading conditions. The implant 

was 3D printed to verify its feasibility of manufacturing.  

Strong but lightweight artificial structures can help patients regain comparable 

functions that natural bone provides due to its strength and density. Future work on this 

topic would include a concrete placement on the Ashby chart comparing the strength to 

weight of a material as well as the effect of a cortical boundary on the lattice. Additional 

mechanical testing should be done to determine the effect of print orientation on lattice 

performance. Further investigations into automation of lattice implant generation should 

be considered. Alternative 3D biocompatible printing materials to PLA should be tested 

for the manufacturing of the lattice implant. The authors of this study hope to pave the way 

for the next generation of bone implants or scaffolds based on the favorable structural 

properties of voxel lattices.   
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Appendix A: Step Parameters for ABAQUS Simulations 

Note that the following algorithmically appended to the end of the generated input file, 
using notation found in the ABAQUS User’s Manual. 

*Material, name=PLA 
*Elastic 
2.79e3, 0.35 
*Density 
1250 
*Step, name = Step-1, nlgeom=No 
*Static 
1., 1., 1e-05, 1.  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
fixed_nodes, ENCASTRE 
*Boundary 
moved_nodes, 3, 3, -1 
*End Step 
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Appendix B: Custom Code 

Appendix B-1: GenerateAbaqusModelFromSTL.java 

Note that this file is dependent on base code written by the Coded Structures Laboratory at 
NASA Ames Research Center. The following custom codes were written under the 
guidance of Joseph Kim, a researcher at the Coded Structures Laboratory. 

package com.libgdx.voxelbulletsim.Main.boneSim; 
 
import com.libgdx.voxelbulletsim.General.NodeBeamCounter; 
import com.libgdx.voxelbulletsim.General.STLConverter; 
import com.libgdx.voxelbulletsim.Geometry.ABAFileWriter; 
import com.libgdx.voxelbulletsim.Geometry.ABANode; 
import com.libgdx.voxelbulletsim.Geometry.ABAVoxel; 
import com.libgdx.voxelbulletsim.Geometry.Point; 
import java.io.File; 
import java.io.PrintWriter; 
import java.util.ArrayList; 
 
public class GenerateAbaqusModelFromSTL { 
    private String material = "PLA"; 
    private int subdivisions = 1; 
    private String dV = "1"; 
    public ABANode[] refNode; 
 
    private String connectionMaterial = "Carbon"; 
    private double connectionBeamWidth = 0.1; 
 
    private String inputDirectory = System.getProperty("user.dir") + File.separator + "stlInputs" + 
File.separator; 
    private String outputDirectory = System.getProperty("user.dir") + File.separator + "stlOutputs" + 
File.separator; 
 
    String fileName = "TibiaSection180.stl"; 
 
    public void runMain(double size, double beamWidth) { 
        String bW = String.valueOf((int) Math.round(beamWidth*100)); 
        String sW = String.valueOf((int) Math.round(size)); 
        int numNodes = 0; 
 
        // Create and clean output directory 
        PrintWriter out = null; 
        try { 
            // Create output directory if it does not exist 
            File checkDir = new File(outputDirectory); 
            if (!checkDir.exists()) { 
                checkDir.mkdir();   } 
            // Generate output file 
            out = new PrintWriter(outputDirectory + "P_" + sW + "_B_" + bW + "_D_" + dV + ".inp"); 
        } catch (Exception e) { 



81 

 

            e.printStackTrace(); 
            return; 
        } 
 
        STLConverter myConverter = new STLConverter(inputDirectory + fileName, (float)size, false, true, 
false); 
 
        System.out.println("STL converted to voxel points"); 
        Point[] voxelPoints = myConverter.getVoxelPoints(); 
 
        System.out.println("Total of " + voxelPoints.length + " voxel points"); 
        ArrayList<ABAVoxel> voxelList = new ArrayList<>(); 
 
        // Set node thickness for new voxel type 
        ABAVoxel.setNodeMaterialSize("CarbonPlastic_thick", size, beamWidth); 
 
        NodeBeamCounter myCounter = new NodeBeamCounter(); 
        int voxelID = 1; 
 
        for (Point point: voxelPoints) { 
            ABAVoxel newVoxel = new ABAVoxel(point, myCounter, voxelID++, size, beamWidth, 
subdivisions, material, out); 
            voxelList.add(newVoxel); 
        } 
 
        ABAVoxel.connect(voxelList); 
 
        for (ABAVoxel voxel : voxelList) { 
            for (ABANode node : voxel.mainNodes) { 
                if (node.z < 3  ) { 
                    node.nsets.add("moved_nodes"); 
                } 
                if (node.z > 365) { 
                    node.nsets.add("fixed_nodes"); 
                } 
                numNodes += 1; 
            } 
        } 
        System.out.println("Total of " + numNodes + " nodes"); 
        System.out.println("Voxel Size: " + size); 
 
        ABAFileWriter myFile = new ABAFileWriter(voxelList, out); 
        myFile.importMaterialFromFile(inputDirectory + "materialsHeavy.txt"); 
        myFile.importStepFromFile(inputDirectory + "step.txt"); 
        myFile.importLoadsFromFile(inputDirectory + "empty.txt"); 
        myFile.importBCFromFile(inputDirectory + "boneBcs.txt"); 
        myFile.importOutputsFromFile(inputDirectory + "outputs.txt"); 
        myFile.writeDefaultFileCustomElset(); 
        out.close(); 
    } 
} 
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Appendix B-2: bulkStlInputs.java 

This custom code loops through the code in Appendix C-1 to generate input files for any 
combination of desired parameters. 

package com.libgdx.voxelbulletsim.Main.boneSim; 
 
public class BulkStlInputs { 
    public static void main(String[] args) { 
        BulkStlInputs main = new BulkStlInputs(); 
        main.runMain(); 
    } 
 
    public void runMain() { 
        GenerateAbaqusModelFromSTL abaTest = new GenerateAbaqusModelFromSTL(); 
        for (int  i = 3; i < 10; i++) { 
            abaTest.runMain(i,0.1); 
            for (double j = 0.25; j <= 2; j = j + 0.25) { 
                abaTest.runMain(i, j); 
            } 
        } 
        for (int  i = 10; i <= 25; i = i + 3) { 
            abaTest.runMain(i,0.1); 
            for (double j = 0.25; j <= 2; j = j + 0.25) { 
                abaTest.runMain(i, j); 
            } 
        } 
    } 
} 
  



83 

 

Appendix B-3: abaqusCommand.java 

This custom code loops through the files generated by the code in Appendix C-2 to generate 
a single batch file for one click automatic simulation of all desired combinations. 

package com.libgdx.voxelbulletsim.Main.boneSim; 
 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.PrintWriter; 
import java.util.ArrayList; 
import java.util.Iterator; 
 
public class abaqusCommand { 
    private String rootDirectory; 
    public ArrayList<String> fileNames; 
 
    public abaqusCommand() { 
        this.rootDirectory = System.getProperty("user.dir") + File.separator + "stlOutputs" + File.separator; 
        this.fileNames = new ArrayList(); 
    } 
 
    public static void main(String[] args) { 
        abaqusCommand main = new abaqusCommand(); 
        main.runMain(); 
    } 
 
    public void getFiles(File[] files) { 
        File[] var2 = files; 
        int var3 = files.length; 
 
        for(int var4 = 0; var4 < var3; ++var4) { 
            File file = var2[var4]; 
            if (file.isDirectory()) { 
                this.getFiles(file.listFiles()); 
            } else if (file.getName().contains(".inp") && file.getName().contains("D_1")) { 
                this.fileNames.add(file.getName()); 
            } 
        } 
    } 
 
    public void runMain() { 
        PrintWriter out = null; 
 
        try { 
            out = new PrintWriter(this.rootDirectory + "runAbaqus.bat"); 
        } catch (FileNotFoundException var7) { 
            var7.printStackTrace();} 
 
        File[] files = (new File(this.rootDirectory)).listFiles(); 
        this.getFiles(files); 
        int i = 0; 
        Iterator var4 = this.fileNames.iterator(); 
 
        while(var4.hasNext()) { 
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            String fileName = (String)var4.next(); 
            ++i; 
            String[] tokens = fileName.split("[.]"); 
            out.print("call abaqus job="); 
            out.print(tokens[0]); 
            if (i < this.fileNames.size()) { 
                out.print(" interactive cpus=4\n"); 
            } else { 
                out.print(" interactive cpus=4"); 
            } 
        } 
 
        out.close(); 
    } 
 
} 
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Appendix B-4: ProcessModulus.java 

This custom code loops through the output databases generated by running the simulations 
via the code in Appendix C-3 to extract all desired information into a single spreadsheet 
using the code in Appendix C-5. 

package com.libgdx.voxelbulletsim.Main.boneSim; 
 
import java.io.*; 
import java.util.ArrayList; 
import java.util.Iterator; 
 
public class ProcessModulus { 
    private String rootDirectory; 
    public ArrayList<String> fileNames; 
    private PrintWriter out; 
 
    public ProcessModulus() { 
        this.rootDirectory = System.getProperty("user.dir") + File.separator + "stlOutputs" + File.separator; 
        this.fileNames = new ArrayList(); 
    } 
 
    public static void main(String[] args) { 
        ProcessModulus main = new ProcessModulus(); 
        main.runMain(); 
    } 
 
    public void getFiles(File[] files) { 
        File[] var2 = files; 
        int var3 = files.length; 
 
        for(int var4 = 0; var4 < var3; ++var4) { 
            File file = var2[var4]; 
            if (file.isDirectory()) { 
                this.getFiles(file.listFiles()); 
            } else if (file.getName().contains(".dat")) { 
                this.fileNames.add(file.getPath()); 
            } 
        } 
    } 
 
    public void runMain() { 
        PrintWriter out = null; 
        try { 
            // Create output directory if it does not exist 
            File checkDir = new File(rootDirectory); 
            if (!checkDir.exists()) { 
                checkDir.mkdir(); 
            } 
        } catch (Exception e) { 
            e.printStackTrace(); 
            return; 
        } 
        File[] files = (new File(this.rootDirectory)).listFiles(); 
        this.getFiles(files); 
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        try { 
            this.out = new PrintWriter(this.rootDirectory + "processedResults.csv"); 
        } catch (FileNotFoundException var35) { 
            var35.printStackTrace(); 
        } 
 
        CSVOutput csvOutput = new CSVOutput(); 
        Iterator var10 = this.fileNames.iterator(); 
 
        while(var10.hasNext()) { 
            String fileName = (String)var10.next(); 
            String[] fileTokens = fileName.split("[\\\\|/]"); 
            String[] tokens = fileTokens[fileTokens.length - 1].split("[_.]"); 
            Double voxelSize = Double.parseDouble(tokens[1]); 
            Double beamWidth = Double.parseDouble(tokens[3]); 
            Double displacement = Double.parseDouble(tokens[5]); 
 
            try { 
                BufferedReader br = new BufferedReader(new FileReader(fileName)); 
                boolean started = false; 
                boolean timeStarted = false; 
                double stress = 0.0D; 
                double modulus = 0D; 
 
                for(String line = br.readLine(); line != null; line = br.readLine()) { 
                    if (line.contains("ELEMENT  PT SEC FOOT-   MISES")) { 
                        started = true; 
                    } 
 
                    if (started) { 
                        String[] dataTokens; 
                        if (line.contains("MAXIMUM")) { 
                            dataTokens = line.trim().split(","); 
                            dataTokens = dataTokens[0].split(" +"); 
                            stress = Double.parseDouble(dataTokens[1]); 
                            modulus = stress*365; 
                            modulus = Math.floor(modulus*100)/100; 
                            timeStarted = true; 
                        } else if (timeStarted && line.trim().startsWith("ELEMENT")) { 
                            dataTokens = line.trim().split(" +"); 
                            Double maxElement = Double.parseDouble(dataTokens[1]); 
                            csvOutput.addData(voxelSize + "," + beamWidth + "," + displacement + "," + stress + "," 
+ maxElement + "," + modulus); 
                            timeStarted = false; 
                        } 
                    } 
                } 
            } catch (Exception var36) { 
                var36.printStackTrace(); 
            } 
        } 
 
        csvOutput.writeFile(this.out); 
        this.out.close(); 
    }  
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Appendix B-5: CSVOutput.java 

package com.libgdx.voxelbulletsim.Main.boneSim; 
 
import java.io.PrintWriter; 
import java.util.ArrayList; 
import java.util.Iterator; 
 
public class CSVOutput { 
    private String header = "Voxel Size, Beam Width, Displacement (mm), Stress (MPa), Element Number, 
Modulus (MPa)"; 
    private ArrayList<String> data = new ArrayList(); 
 
    public CSVOutput() { 
    } 
 
    public void addData(String dataLine) { 
        this.data.add(dataLine); 
    } 
 
    public void writeFile(PrintWriter out) { 
        out.println(this.header); 
        Iterator var2 = this.data.iterator(); 
 
        while(var2.hasNext()) { 
            String dataLine = (String)var2.next(); 
            out.println(dataLine); 
        } 
 
    } 
} 
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