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1 Comparing optimization algorithms

Scientists, engineers, and mathematicians have developed hundreds of al-

gorithms for solving numerical optimization problems [21, 20, 22, 16, 18, 17].

With such a diversity of methods available, researchers are left to choose which

method will be the most e↵ective for their applications. However, not all op-

timization algorithms work equally well on all problems [26]. Thus researchers

must be prudent in which algorithms they choose for a given optimization prob-

lem to achieve satisfactory results in an e�cient and timely manner. The issue

is that comparing algorithms across a range of problems that are representative

of common optimization problems is di�cult and time-consuming.

1.1 The challenge of comparing optimization methods

Outwardly, the task of comparing whether one algorithm performs better

than another seems like a simple task. It would appear that all we need to

do is run a select number of algorithms on a problem of interest and compare

each algorithm’s performance. However, performance is a multifaceted subject,

and we can assess it by multiple metrics, such as computational cost, conver-

gence rate, and many more measures [1]. Further complicating matters is that

”no free lunch” theorems [26] imply that an algorithm with better performance

on one class of problems necessitates worse performance on another class of

problems. Therefore, the performance of an optimization algorithm depends

on the problem it is solving. As such, what performance metric we use to

compare algorithms can alter our conclusions of which algorithm is better than

another. Because of the looseness of the term ”performance,” we must take

careful consideration to obtain fair and unbiased comparisons of methods [1].

Without consistent and objective experiments to test comparable performance
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metrics, comparing the performance of algorithms can be di�cult and subjec-

tive. Consequently, comparing optimization algorithms through benchmarking

experiments is a significant research problem and provides researchers with the

necessary information to choose an appropriate algorithm for their applications.

1.2 Optimization benchmarking libraries

Due to the tediousness and di�culty of comparing optimization algorithms

on a large variety of problems, researchers have developed software libraries

for automating the benchmarking process [11, 13, 3, 8]. These libraries usually

have suites of test functions and provide di↵erent quantitative and qualitative

performance metrics to evaluate algorithms. The primary goal of such software

is to e�ciently test algorithms across hundreds or even thousands of test prob-

lems and aggregate their performance data into summary statistics that can we

can use to compare algorithms.

1.3 Comparing iterative optimization methods

One class of optimization methods that have had a considerable and lasting

impact on science, engineering, and applied mathematics is iterative methods.

Iterative methods begin with an initial solution and repeatedly update that

solution, with the hope that the sequence of iterates that are generated by the

algorithm will converge to a satisfactory solution [16].

In this work, we compare the prototypical iterative methods, gradient de-

scent (also known as steepest descent) and the BFGS (Broyden, Fletcher, Gold-

farb, Shanno) algorithm, one of the original quasi-Newton methods. Our goal

is to determine which types of problems the methods succeed or fail on. Bench-

marking these prototypical methods will not only allow us to predict which

kinds of problems these algorithms will perform well on, but also give us insight

into when and why they underperform so that we can design new algorithms

that remediate the deficiencies of these algorithms.



4

Though optimization practitioners do not often use gradient descent and

quasi-Newton methods in their original formulation, these methods form the

basis for many of the improved variants in current use. For example, algorithms

derived from gradient descent, like stochastic gradient descent, have become a

popular choice for solving many statistical and machine learning optimization

problems [23, 4].

We begin this work by laying out the basic theory required to implement

optimization algorithms in section 2, followed by the formulation and discus-

sion of the methods we benchmarked in section 3. We then describe the types

of problems that we benchmarked each optimization method on and some of

their di�culties in section 4. In section 5, we give the details of the benchmark-

ing software we used and describe the types of results it provides. We outline

the experimental procedure we conducted using the benchmarking software in

section 6, and we compiled the results of our experiments in section 7. We con-

clude this work with a discussion of our results and their practical implications

in sections 8 and 9.
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2 Optimization background

Optimization is the maximization or minimization of a function, where the

global minimum is denoted

min
x

f(x),

where f : Rn ! R is a continuous function referred to as the objective function,

and x 2 Rn is a real vector with n real elements. Finding the global optimum

of a nonconvex function is typically an NP-hard problem. Therefore, in this

work we consider the task of finding local minimums of f . Our goal is to find

a local minimizer, x⇤ such that

f(x⇤)  f(x) for all x near x⇤.

Often there are constraints on the problem we wish to solve, however the prob-

lems we discuss here are unconstrained, so there is no conditions on x and f

is defined for all x. Though [18, 16, 17] are the primary references used for

sections 2 and 3, for consistency we tend to stick to the notation of [18].

2.1 Scaling

Before we begin solving an optimization problem, an important step is to

scale x. We scale x because large di↵erences in the scale of variables can

cause f to be more sensitive to changes in some variables than others. Poor

scaling often manifests in x
⇤ lying in the center of a narrow, elliptical valley

in the objective function. Additionally, if we measured variables in di↵erent

units, then they could have a large di↵erence in their magnitudes. Algorithms

that fail to account for poor scaling tend to converge slowly in these valleys.
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While some algorithms are scale-invariant, many others, are not [18]. Thus, it

is usually best practice to scale variables before applying an algorithm.

2.2 Overview of algorithms

The class of numerical optimization algorithms we investigate is called it-

erative methods. Iterative methods start at an initial solution and iteratively

improve on that solution until a stopping criterion is satisfied. The primary

di↵erence in the behavior of di↵erent iterative methods is how they move from

one iterate to the next. Di↵erences in the update of the iterate may include

using more or less information about the function at the current point, or in-

corporating previous information from previous iterates into the update step.

Though there are countless variations of iterative methods, in general, we want

our algorithms to have have certain properties to ensure they perform well.

2.2.1 Properties of a useful algorithm

Though the performance of an algorithm is problem dependent, we seek

algorithms that are:

• E�cient: we prefer algorithms with low computational cost (be it floating-

point operations or memory use) over algorithms with high computational

cost

• Robust: we want algorithms to perform well on a broad class of problems

• Accurate: we want our algorithm to converge to a valid solution with a

high degree of precision

• Scalable: We would like our algorithms to perform well in both high and

low dimensional spaces

• Interpretable: Ideally, we favor algorithms whose behavior is easy to

understand, because it makes debugging and improving them less di�cult
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Often, when we design optimization algorithms, the balance of these prop-

erties is a zero-sum game. For example, an algorithm with high accuracy may

have low interpretability, or an algorithm with high e�ciency might scale poorly

into higher dimensions.

2.3 Line search methods

The class of optimization algorithms we study in this work are called line

search methods [16]. For line search methods, the next iteration is given by

xk+1 = xk + ↵kpk, (1)

where the step length, ↵k, is the distance an iterate will travel along the search

direction, pk if ||pk|| = 1. In the methods we address, the search direction takes

the form

pk = �B
�1
k rfk, (2)

where Bk is a symmetric, nonsingular matrix. In the line search strategy, the

search direction of iterate k, pk, is solved for first, then the step length, ↵k is

found afterward by solving the one-dimensional minimization subproblem

↵⇤ = min
↵>0

f(xk + ↵kpk). (3)

We call solving for the optimal ↵⇤ an exact line search. However, in practice,

we often do not want to solve for the optimal step length because it can be

prohibitively expensive if we find it at each iteration. Instead, we perform an

inexact line search, which looks for a step length that satisfies conditions that

promote general movement towards a minimum without incurring the cost of

a performing an exact line search.
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2.3.1 Wolfe conditions

To perform an inexact line search we require conditions for choosing an ↵

that approximately solves 3. The Wolfe conditions ([25]) are a set of conditions

that ↵ is commonly required to satisfy when choosing the current iterate’s step

length. The first condition is su�cient decrease, also known as the Armijo

condition. Su�cient decrease is satisfied if

f(xk + ↵pk)  f(xk) + c1↵krfT
k pk, (4)

where the constant c1 2 (0, 1). This condition requires that changes in f be

proportional to the step length and directional derivative, rfT
k pk. If ↵k is small

enough the su�cient decrease condition will always be satisfied, however the

convergence of the algorithm will also be slow for small ↵k, thus we require

another condition to penalize conservative values of ↵k.

The second Wolfe condition is the su�cient curvature condition, which stip-

ulates that ↵k satisfy

rf(xk + ↵kpk)
T
pk � c2rfT

k pk, (5)

where c2 2 (c1, 1) is a constant. The su�cient curvature condition is met when

rfT
k pk is large and negative, which indicates that moving in this direction will

give a significant decrease in f , however if rfT
k pk is small then f will not

change much along this direction, and therefore we should end the line search

in this direction.

2.3.2 Backtracking

In practice, we can drop the second Wolfe condition (5) by using a strategy

called backtracking. In backtracking, we choose the next step length by testing

(4) for some initial step length, and if the reduction in f does not satisfy

the su�cient decrease condition, we contract the step length by some factor ⇢
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until the su�cient decrease condition is met. We provide the pseudo-code in

algorithm 1.

Algorithm 1 Backtracking pseudo-code
Choose ↵initial > 0
⇢ 2 (0, 1)
c 2 (0, 1)
Set ↵ = ↵initial

while f(xk + ↵pk)  f(xk) + c↵rfT
k pk do

↵ = ⇢↵
end while
Terminate with ↵k = alpha

2.3.3 Cubic polynomial line search

While backtracking is an improvement over a fixed step size, we can do

better than simply reducing ↵ repeatedly by some constant factor ⇢ as in al-

gorithm 1. Instead, we can make educated guesses for the optimal ↵ by using

polynomial interpolation. We layout the necessary information to implement a

cubic line search, and the details can be found in [16] and [18])

We would like to start a line search by modeling

⇠(↵) = f(xk � ↵p)

with a cubic polynomial. However, initially we only have three pieces of infor-

mation: ⇠(0) = f(xk), ⇠0(0) = rf(xk)Tp < 0, and ⇠(1) = f(xk + p), which is

only enough information to form a quadratic model

q(↵) = ⇠(0) + ↵⇠0(0) + ↵2(⇠(1)� ⇠(0)� ⇠0(0)).

If we let the initial ↵ 2 [⇢low, ⇢high] ⇢ (0, 1) then the global minimum of q is

given by

↵⇤ =
�⇠0(0)

2(⇠(1)� ⇠(0)� ⇠0(0))
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If ↵ fails to satisfy (4), using ⇠(0), ⇠0(0), ↵i and ↵i�1 (the most recent values

of ↵ that did not satisfy 4), we can construct a cubic polynomial

q(↵) = ⇠(0) + ⇠0(0)↵ + c2↵
2 + c3↵

3

The local minimum of which is given by

↵⇤ =
�c2 +

p
c22 � 3c3⇠0(0)

3c3

Usually a line search terminates when an ↵ is found that satisfies (4), how-

ever in practice, it can take many reductions to find a suitable ↵. Therefore,

in the implementation of a cubic line search, once we have chosen ↵⇤ we check

it against the conditions

↵new =

8
>>>>>><

>>>>>>:

⇢low, ↵⇤  ⇢low

↵⇤, ⇢low < ↵⇤ < ⇢high

⇢high, ↵⇤ � ⇢high

This is called safeguarding and prevents the line search from stagnating [16].

2.4 The gradient and Hessian

In this work, we investigate algorithms that choose their search direction

by using higher order information of f , namely the gradient and Hessian of f .

The gradient is a vector of n partial derivatives defined as

rf(x) =

✓
@f

@x1
,
@f

@x2
, . . . ,

@f

@xn

◆T

.
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x

f(x)

Quadratic
Cubic
Data points
Minimums

Figure 1: In a cubic polynomial line search, a quadratic is tested first using
two points and a derivative. If the minimum of the quadratic does not satisfy
the su�cient decrease condition, a cubic polynomial is fit by using the previous
information and the minimum of the quadratic. Then, the minimum of the
cubic polynomial is solved for.

The Hessian, r2f(x), is a symmetric matrix of second partial derivatives of f

and is defined as

r2f(x)ij =
@2f

@xi@xj
for i = 1, ..., n, j = 1, ..., n.

Informally, the gradient gives the direction in which f(x) increases most rapidly,

and the Hessian tells us the local curvature of f(x), that is, the rate of change

of the gradient.

2.4.1 Finite di↵erence approximation

In order to use a gradient, we must compute it. If we are lucky, there is an

analytical gradient for our objective function, such as in the case of linear least

squares, but in practice obtaining an analytical derivative is di�cult. Therefore,

we often need to estimate the gradient numerically, which can be accomplished

by a finite di↵erence approximation [10]. In one dimension, the second-order
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central di↵erence approximation for the derivative is given by

rf(xi) ⇡
f(xi+1)� f(xi�1)

2h

where h is the distance between each xi. This scheme of approximating deriva-

tives with function values generalizes to higher dimensions and is the method

we use for calculating numerical gradients.

2.5 Solutions and stopping criteria

In the optimization of f , we require a way to tell if a point is a local mini-

mizer so that we can terminate an algorithm when it has reached a satisfactory

solution. If we assume that f is twice continuously di↵erentiable, then we can

examine the gradient and Hessian of f(x⇤) to determine if x⇤ is a local mini-

mizer. For x⇤ to be a local minimizer, the following two conditions must hold

for a local minimizer

Theorem 2.1 (First-order necessary conditions). If x⇤ is a local minimizer and

f is continuously di↵erentiable in an open neighborhood of x⇤, then rf(x⇤) = 0.

Theorem 2.2 (Second-order necessary conditions). If x⇤ is a local minimizer

of f and r2f exists and is continuous in an open neighborhood of x
⇤, then

rf(x⇤) = 0 and r2f(x⇤) is positive semidefinite.

Theorem 2.1 tells us if x⇤ is a stationary point, that is rf(x⇤) = 0, and

theorem 2.2 tells use whether x⇤ is a local minimizer of f . For example, if the

Hessian of f(x⇤) is positive-semidefinite then x
⇤ is a minimum, whereas if it is

negative semidefinate then it is a maximum.
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3 Optimization methods

We begin our investigation of iterative optimization methods by considering

one of the simplest descent methods, namely, gradient descent. We then discuss

some of the problems with the method. Following gradient descent, we explore

Newton’s method, which improves on gradient descent by correcting some of

its deficiencies. Lastly, we cover a quasi-Newton method, the BFGS (Broyden,

Fletcher, Goldfarb, Shanno) algorithm, which emulates properties of Newton’s

method but avoids some of its shortcomings.

3.1 Gradient descent

Gradient descent, also known as steepest descent, chooses the search di-

rection at each iteration that has the largest negative change in f . The idea

is intuitive; if we wish to reach a minimum quickly, we should proceed in the

direction that f decreases most rapidly. We begin with the derivation of the

gradient descent search direction used in the algorithm’s update step and then

discuss some of the properties of the algorithm.

To derive steepest descent search direction we can expand with a Taylor

series about the point xk

f(xk + ↵p) = f(xk) + ↵pTrf(xk) +
1

2
↵2

p
Trf(xk + tp)p, for some t 2 (0,↵).

This tells us that the rate of change of f in the search direction p at the point

xk is pTrf(xk). Then the unit direction that has the largest rate of negative

change is the solution to

min
p

p
Trf(xk), subject to ||p|| = 1.
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Because p
Trf(xk) = ||pT ||||rf(xk)|| cos(✓) = ||rf(xk)|| cos(✓) we obtain the

minimizer when cos(✓) = �1 and p = �rf(xk)||rf(xk)||.

The search direction that gradient descent uses is

p = �rf(xk),

which gives the update step

xk+1 = xk �rf(xk).

This is equal to (1) when Bk is the identity matrix, I. We provide the psuedo-

code for gradient descent in algorithm 2.

Algorithm 2 Gradient descent pseudo-code
Choose x0

Choose tolerance
k = 0
while ||rf(xk)|| > tolerance do

p = �rf(xk)
find ↵k with a line search
xk+1 = xk + ↵kpk

k = k + 1
end while

3.1.1 Properties of gradient descent

Intuitively, the direction of steepest descent seems like the best direction to

move in if we want to minimize a function as fast as possible. However, there

are scenarios when the direction of the largest negative partial derivative (the

gradient) is a lousy search direction. Consider when the objective function is

a shallow, wide surface with low curvature. In this case, a small derivative will

decrease our step size when we would rather have larger step sizes. Alterna-

tively, if the objective function is steep with high curvature, a large derivative

may give large step sizes that are too large and cause instability [24]. The

underlying problem is that the gradient scales with f , thus gradient descent re-
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quires a way to moderate the step size (such as a line search) at each iteration

to ensure good performance [16]. If we choose proper step lengths, Gradient

descent has a linear convergence rate [17].

The following theorem (provided in [18]) can give us some insight into how

we can expect gradient descent to perform on ill-conditioned problems.

Theorem 3.1. Suppose that f : Rn �! R is twice continuously di↵erentiable,

and that gradient descent with exact line search converges to a point x⇤ where

r2f(x⇤) is positive definite. Let r be a scalar that satisfies

r 2 (
�n � �1

�n + �1
, 1).

where �1 and �n are the smallest and largest eigenvalues of r2f(x⇤), respec-

tively. Then 8k su�ciently large

f(xk+1)� f(x⇤)  r2[f(xk)� f(x⇤)].

This theorem tells us that the convergence of gradient descent depends

on the ratio of the largest to the smallest eigenvalue of the Hessian of the

objective function. Heuristically, what this tells us is that if the ratio is large,

the curvature at the point xk is highly ellipsoidal. If the ratio is substantial,

then the gradient direction can lie nearly orthogonal to the minimum, and thus

steps in that direction will progress towards the minimum exceptionally slowly.

We can see this phenomenon in the zig-zag search path of figure 3.1.1.

In theorem 3.1, it is assumed that an exact line search is used. Therefore,

it is an optimistic estimate of convergence, and inexact line searches (which

we used for our experiments) may have even slower convergence. Though, the

underlying cause is di↵erent, ill-conditioning and poor scaling cause similar

pathological behavior for algorithms like gradient descent. This is because, in

both scenarios, the objective function tends to be ellipsoidal and decreases the

e�ciency of the gradient as a search direction.
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Gradient descent search path
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BFGS search path
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Figure 2: The search paths of the iterates for gradient descent and BFGS.
Notice that the ellipsoidal contours of the objective function cause the gradient
descent search direction to be nearly orthogonal to the minimum and slows
convergence, whereas the BFGS algorithm accounts for the rate of change of
the gradient and converges in fewer steps.

Historically, gradient descent has not favored over more advanced methods

because of its comparatively slower theoretical convergence rate [16, 18]. How-

ever, recently variants of gradient descent, such as stochastic gradient descent

([21]), have seen a resurgence in popularity for large scale applications due to

the relatively inexpensive computational cost of the algorithm [4].

3.2 Newton’s method

The idea behind Newton’s method is to account for the local curvature

of f by using second-order information contained in the Hessian, r2f . By

incorporating the Hessian into the update step, we can correct both the search

direction and step length by accounting for the rate of change of the gradient.

To derive the method, we begin by assuming that xk is the argument that

minimizes the local quadratic model of f , which we denote m. We can express

m as a second-order Taylor expansion about x.

m(x) = f(xk) +rf(xk)
T (x� xk) +

1

2
(x� xk)

Tr2f(xk)(x� xk) (6)
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If we take the gradient of our local model m and set it equal to zero we get

rm(x) = rf(xk) +r2f(xk)(x� xk) = 0

Thus, the system we need to solve for Newton’s method is

r2f(xk)(x
(k+1) � xk) = �rf(xk) (7)

Which leads to

0 = rf(xk) +r2f(xk)x
(k+1) �r2f(xk)xk

r2f(xk)x
(k+1) = �rf(xk) +r2f(xk)xk

Solving for the next iteration x
(k+1) we obtain the Newton update step

x
(k+1) = xk �r2f(xk)

�1rf(xk). (8)

Though the problem is formulated this way, we always try to avoid computing

the inverse of the Hessian r2f(xk)�1. Instead we solve the system (7) for the

shift vector (x(k+1) � xk).

The second term in the Newton update step (8) is

↵pk = �(r2f(xk))
�1rf(xk).

In a sense, this vector shifts the current point x by the direction and step size

that minimizes the error in the local quadratic model of f at x.

3.2.1 Properties of Newton’s method

Newton’s method has a quadratic convergence rate when an iterate is near

local minimums; however, when the current iterate is far away from a local
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minimum, there is no guarantee that the Newton direction will be a descent

direction [18]. One of the benefits of Newton’s method is that it has an implicit

step size, ↵ = 1, which obviates the need to find a new step size at each iteration

as we did in gradient descent. In practice, the biggest shortcoming of Newton’s

method is that we must solve a linear system (7) at each iteration, which is

expensive to compute in high dimensions.

3.3 Quasi-Newton methods

Quasi-Newton methods were developed to improve the search direction of

gradient descent and reduce the computational cost of Newton’s method. In-

stead of evaluating the full Hessian (as in Newton’s method), we construct an

approximation of the Hessian, that we iteratively update using changes in the

gradient. Like gradient descent, Quasi-newton methods use only function and

gradient evaluations to compute the current iterate. The aim is to replicate the

fast convergence properties of Newton’s method by incorporating second-order

information of f without incurring the cost of solving the Newton equation (7)

at each iteration. The critical step in these algorithms is updating the Hessian

approximation, so we devote the following subsection to describing the formula

that allows us to accomplish this update.

3.3.1 Sherman-Morrison formula

The Sherman-Morrison formula computes the sum an an invertible matrix

A and a rank-one matrix uv
T .

(A+ uv
T )�1 = A

�1 � A
�1uvT

A
�1

1 + vA
�1
u

. (9)

If we already know the inverse of the matrix A, then this formula allows us to

correct the inverse by a rank-one update. This update takes O(n2) operations,

as opposed to the O(n3) operations that are required to compute the inverse
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of A. We shall see that this formula is central computing the update step of

quasi-Newton methods in an e�cient manner.

3.3.2 The BFGS algorithm

In what follows, we provide the necessary information required to under-

stand and implement the BFGS [5, 6] algorithm. The update step of the BFGS

algorithm has the same structure of the other iterative methods we have dis-

cussed, only now the search direction is

p = Bkrfk

where Bk is an approximation of the Hessian, rfk. The fundamental step in

the BFGS algorithm is the update of Bk; therefore, we provide its derivation

here.

We can derive the BFGS Hessian update by using a quadratic model of f

at iterate xk

mk(p) = fk +rfT
k p+

1

2
p
T
Bkp,

where Bk is symmetric positive definite. The minimizer pk of this model is

pk = �B
�1
k rfk,

where pk is the search direction of (1). As in Newton’s method, we avoid

computing the inverse of Bk and instead solve the system

Bkpk = �rfk.

In order to measure the curvature in the previous step we construct a quadratic
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model at the next iteration as

mk+1(p) = fk+1 +rfT
k+1p+

1

2
p
T
Bk+1p.

For Bk+1 to be a good approximation of the Hessian, we require that the

gradient of mk+1 is a good approximation of the gradient of f at xk and xk+1,

which we state as

rmk+1(�↵kpk) = rfk+1 � ↵kBk+1pk = rfk.

This gives

↵kBk+1pk = rfk+1 �rfk.

Using the simplifying notation

sk = xk+1 � xk = ↵kpk, yk = rfk+1 �rfk,

we arrive at

Bk+1sk = yk, (10)

where sk is the displacement between the current and previous iterate and yk

is the di↵erence between the current and previous gradients. Equation (10)

is called the secant equation. The BFGS update step is derived by imposing

conditions on B
�1
k+1 rather than Bk+1 such that the secant equation becomes

B
�1
k+1yk = sk.

The secant equations necessitates that B�1
k+1 maps sk into yk which is occurs
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when

s
T
k yk > 0, (11)

which is called the curvature condition. If the curvature condition is met the

secant equation has an infinite number of solutions for Bk+1 [18]. To make the

solution to unique, we stipulate that the di↵erence between Bk+1 and Bk is

minimized under the Frobenius norm. Stated mathematically, we say

min
B�1

||B�1 �B
�1
k ||,

subject to the constraints that (11) and B
�1 = (B�1)T . The unique solution

to (11) is given by

B
�1
k+1 = (I � ⇢ksky

T
k )B

�1
k (I � ⇢ksky

T
k ) + ⇢ksky

T
k , (12)

where ⇢k =
1

yT
k sk

. Finally, using the Sherman-Morrison formula (9) this expres-

sion becomes

Bk+1 = Bk �
Bksks

T
kBk

sTkBksk
+

yky
T
k

y
T
k sk

.

The second and third terms in this expression are rank-one matrices, therefore,

Bk undergoes a rank-two update. The reason that we update the inverse of

B
�1
k instead of recalculating the inverse is that it only requires O(n2) operations

rather than the O(n3) operations that would be required to recompute the

inverse. We provide the pseudo-code for BFGS in algorithm (3).

3.3.3 Properties of BFGS

The BFGS algorithm enjoys super-linear convergence [18]. However, this

fast convergence comes with the extra cost of updating the Hessian approxi-

mation with the Sherman-Morrison formula (9). Though the Hessian approx-
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imation saves computations, it is still an O(n2) operation that we perform at

each iterate. Therefore, we might predict that as n grows, the expense of this

approximation outweighs the benefit of its fast convergence.

One advantage of the BFGS algorithm is that if Bk is a poor approxima-

tion of the local curvature, the Hessian update tends to correct itself in future

iterates. However, this self-correcting property is only exhibited by the method

if we use a line search with Wolfe conditions (4) to choose the step size [18].

Algorithm 3 BFGS pseudo-code
Choose x0

Choose tolerance
Choose H0

k = 0
while ||rf(xk)|| > tolerance do

p = �B
�1
k rf(xk)

find ↵k with a line search
xk+1 = xk + ↵kpk

sk = xk+1 � xk

yk = rf(xk+1)�rf(xk)
update B

�1
k using (12)

k = k + 1
end while
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4 Optimization problems

To perform a fair and useful benchmarking experiment, we need to test

algorithms on a batch of test problems that are representative of the kinds of

issues we would face in practical optimization problems. To this end, the COCO

platform provides the Black-Box Optimization Benchmarking (BBOB) suite of

24 noiseless test functions [15] that the COCO developers broadly classified into

five categories:

• separable functions

• functions with good or moderate conditioning

• unimodal functions with poor conditioning

• multi-modal functions with an adequate global structure

• multi-modal functions with a weak global structure

We describe the characteristics of these problem classes in the following sections.

The global optimum is in [�4, 4]d for the majority of the test problems. In

the following sections, we provide a general description of each of these 5 test

function groups. All test functions are defined everywhere in Rd, and their

global optimum is in [�5, 5]d.

4.1 Separable functions

Separable functions are functions that can be expressed as a composition of

single variable functions. This implies solving a separable problem can be bro-

ken down into d one-dimensional optimization problems where each dimension
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can be optimize individually. For instance, the sphere function is separable

f(x) = ||z||2 + fopt, (13)

where the location of the optimum is x
opt, fopt = f(xopt), and z = x � x

opt.

Presumably, the group of separable functions should be the easiest to solve.

4.2 Functions with reasonable, moderate, and poor con-

ditioning

Conditioning is an essential property of numerical problems. Generally,

a problem is well-conditioned if small perturbations in the data do not have

a strong e↵ect on the problem’s solution. Conversely, the solution to ill-

conditioned problems can be significantly a↵ected by small changes in the data.

Poor conditioning can introduce numerical errors [19] as well as stall the con-

vergence [18] of many algorithms. The BBOB suite includes problems with

reasonable, moderate, and poor conditioning.

Figure 3: An ill-conditioned function (left) and a highly multimodal function
(right). Notice that the contours of the left plot are highly ellipsoidal and thus
the gradient would be a poor search direction. In the right plot, most descent
algorithms would git immediate stuck in one of the many local minimums.
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x

Globally nonconvex

Figure 4: The robustness of an algorithm can be determined by testing it on
problems with local and global structure, as well as problems without structure.

4.3 Multi-modal functions with adequate global struc-

ture

In the context of optimization, the modality refers to the number of minima

the objective function has. For example, the sphere function (13) is unimodal,

whereas the Rastrigin function

f(x) = 10

 
d�

dX

i=1

cos(2⇡zi) + ||z||2 + fopt

!
. (14)

has 10d local minima.

One of the general classes of problems in the BBOB suite is multi-modal

functions with an adequate global structure. These functions tend to have a

convex global structure, but their local structure is more irregular (see figure

4).

4.4 Multi-modal functions with weak global structure

The last class of problems in the BBOB suite is multi-modal functions with

a weak global structure. In this case, the problems are nonconvex and irregular

on both a local and global level, though some semblance of global convexity is

often maintained.
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5 Optimization benchmark software

The Comparing Continuous Optimizers (COCO, [13]) is a black-box bench-

marking software for numerical optimization algorithms that provides auto-

mated testing of algorithms on suites of test problems and produces evaluation

metrics that allow the comparison of methods.

5.1 Terminology

We now present the terminology for the COCO platform that we use through-

out the remainder of this work.

• function: the objective function with input space n � 2.

• instance: a function that has been translated or shifted by some trans-

formation. The COCO platform tests algorithms on multiple randomized

instances of a function to make performance metrics more robust [15]

• problem: a particular function instance. A problem is solved when an

algorithm has reached the smallest target value (e.g., 10�8)

• target value: particular f -values that algorithms are compared at for a

given problem. Typically, smaller target values are harder to reach.

• runtime: the number of function evaluations required to reach a target

value for a given problem instance

5.2 Evaluation metrics

The simplest way to compare methods is to compare the number of function,

gradient, or Hessian evaluations in their search. Additionally, algorithms are
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only comparable if they reach similar values of f before terminating. Hence,

the need for standardized ways to compare algorithms.

5.2.1 Fixed-target and fixed-cost measures

Fixed-target measures compare how long each algorithm takes to reach a

specific target value for a function. In contrast, fixed-cost measures allow each

algorithm to have a constant number of function evaluations. Then the lowest

function value reached by each algorithm is compared (see figure 5.2.1).

Evaluations

f

Fixed-cost

Fixed-target

algorithm 1
algorithm 2

Figure 5: Comparison of fixed-cost and fixed-target scenarios. For fixed-cost
measures, algorithms are compared based on the function value reached after
a fixed number of function evaluations. For fixed-target measures, algorithms
are compared after they reach a fixed target value of the function. Algorithms
are compared at the points where they intersection the fixed-cost or fix-value
line.

The COCO developers advocate fixed-target experiments [13], and all eval-

uation metrics provided by the COCO platform are fixed-target metrics.

5.2.2 Runtime

The single performance metric that COCO provides (and aggregates into

plots and tables) is the algorithm runtime, as measured by function evalua-
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tions [12]. The developers of COCO advocate for this runtime as their sole

performance metric because it is

• we typically generate higher-order information (gradients and Hessians)

from function evaluations

• independent of the hardware and software used for experiments

• easily interpretable

• independent of the function we are evaluating

• easy to aggregated into summary statistics

Though simple, runtime does not take into account other overheads that the

algorithm may incur beyond function evaluations. Thus, a major assumption

is that the primary computational expense of an optimization algorithm is the

number of function evaluations.

5.2.3 Expected running time

The COCO library also provides the expected running time (ERT, CITE

Price 1997 and Auger 2005). ERT is a fixed-target measure and is defined as

the expected number of evaluations that are required to reach a target function

value for a particular problem. ERT is calculated as

ERT (ftarget) = RTs +
1� ps
ps

RTus

=
psRTs + (1� ps)RTus

ps

=
number of FEs(fbest in all trials � ftarget)

number of successful trials

whereRTs is successful trials andRTus is unsuccessful trials. A trial is successful

if it reaches ftarget and fbest is the lowest value of f reached. The fraction of

successful trials is ps. ERT is dependent on the termination criteria of an

algorithm. ERT is a single measure from a sample set of Ntrial optimization
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runs. To get an estimate of the uncertainty of the ERT of an algorithm, COCO

uses bootstrapping [9] to generate dispersion measures.

5.2.4 Problem instances and independent restarts

To increase the robustness of comparison metrics, COCO creates variations

of a particular test function by applying transformations (such as rotations or

shifts) to the function. These function varients are called problem instances. In

doing so, summary statistics can be computed by aggregating data from each

algorithm run on each problem instance.

In practice, all optimization algorithms must terminate. However, if an al-

gorithm that we are benchmarking terminates, we can restart the algorithm

from an independent point in the domain to try and reach a lower function

value. Independent restarts to not a↵ect the runtime calculation of an algo-

rithm for a given problem instance because we only compare the number of

function evaluations it takes algorithms to reach the same target value. How-

ever, independent restarts do increase the chance of reaching more target values

and therefore allow us to compare di↵erent algorithms more reliably.

5.2.5 Empirical cumulative distribution functions

An empirical cumulative distribution function (ECDF) is a distribution

function that is associated with an empirical measure of a sample. ECDFs

are step functions, and for each N data points in the sample, the function in-

creases by 1
N . In the context of the COCO software, we use ECDFs to report

the proportion of problems solved within a specified number of function evalu-

ations, where we plot the total budget used on the x-axis. Each value on the

x-axis is the fraction of runtimes that are less than or equal to that value. After

m trial runs of an algorithm on a set number of instances of a test problem,

the software records the number of function evaluations needed to reach each

target value. Then, the number of targets reached for a given run is recorded
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(see figure 5.2.5 for an illustration of this process).
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Figure 6: Am illustrative example of how an empirical cumulative distribution
function (ECDF) is used with the COCO software to tabulate the number
of function evaluations required to reach target values for a given algorithm.
ECDFs tell us the relationship between computational cost (number of function
evaluations) and performance (fraction of targets reached). The results are
aggregated across each function, dimension, and problem instance.
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6 Benchmark experiments

We now provide the specific setup we used for the benchmark experiments.

Table 6.1 has a full list of parameters for each of the algorithms used in the

experiments.

The benchmarking software we use to compare algorithms is the Comparing

Continuous Optimizers (COCO, [13]) library. We compare the performance of

gradient descent and BFGS on the single objective suite of small scale (1-

40 dimensions) test functions. We also benchmarked a random search of the

domain to establish a baseline. We conducted the benchmarking experiments

in MATLAB ver. R2019b. The gradient descent, BFGS, cubic polynomial line

search algorithms were taken from [16]. We used our implementation of finite

di↵erences.

6.1 Cubic polynomial line search parameters

The step length, ↵, for both the gradient descent and quasi-Newton method

was chosen via a cubic polynomial line search with su�cient decrease (Armijo)

condition. As recommended in [16], to prevent extremely long step lengths, the

initial ↵ for each line search was determined by

↵0 = min

✓
1,

100

1 + ||rf(x)||

◆
.

This check also protects the step length against poor scaling. Additionally,

we used the safeguarding procedure described in section 2.3.3, but limited the

number of reductions in ↵ to 10 reductions, and terminated the run otherwise.
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Algorithm Parameter Description Value
Finite di↵erence h step size between each xi 10�4

Cubic line search ⇢high upper bound for ↵ 0.5
⇢low lower bound for ↵ 0.1
↵max maximum allowed ↵ 1
c1 algorithmic parameter for (4) 10�4

maxback max number of backtracks 10
Gradient descent tolerance termination criteria 10�5

max iterations termination criteria d ⇥ budget multiplier
x0 initial solution random vector

BFGS tolerance termination criteria 10�5

max iterations termination criteria d ⇥ budget multiplier
x0 initial solution random vector
H0 initial Hessian I

Table 1: Parameter values for each algorithm used in the experiments. Budget
multiplier is a factor that increases the allowed number of function evaluations
per run and d is the problem dimension.

6.2 COCO software parameters

We now list out the parameters used for the experiments that are specific to

the COCO platform and are independent of the specific optimization algorithm

that we benchmarked. The function evaluation budget that each optimization

algorithm was given for each problem instance was (budget multiplier) ⇥ d �

(CFE), where d is the dimension of the problem, the budget multiplier was 100,

and CFE is the cumulative function evaluations used so far before a restart.

There were 51 function target values for each test problem chosen between 102

and 10�8.

We benchmarked each optimization algorithm for dimensions 2, 3, 5, 10,

20, and 40 for each of the 24 functions in the COCO noiseless test function

suite. The number of instances of each test function was 15. A total of 2160

problem instances were tested for each algorithm. On each instance of the 24

test functions, there were 51 function target values evenly distributed on a log

scale between 102 and 10�8. The number of allowed independent algorithm

restarts was 109.



33

7 COCO benchmark results

We present the results of our experiments on the 24 objective functions in

the Black-Box Optimization-Benchmarking (BBOB) test suite.

7.1 Algorithm performance aggregated by problem di-

mension

When we assimilated the performance of each algorithm for all 24 test func-

tions across all functions dimensions tested (2, 3, 5, 10, 20, and 40) and 15

problem instances, BFGS reached a larger fraction of the 51 target values than

gradient descent for each dimension at the maximum number of function eval-

uations (figure 8). However, a larger fraction of gradient descent runs reached

smaller target values in fewer function evaluations compared to BFGS (figure

3).

Figure 7: Bootstrapped empirical cumulative distribution functions of aggre-
gated results across all test problems, problem instances, and dimensions: 2,
3, 5, 10, 20, and 40. Notice that gradient descent reaches a larger fraction of
target values in fewer function evaluations than BFGS, but with more function
evaluations, BFGS reaches a larger fraction of target values
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Figure 8: Bootstrapped empirical cumulative distribution functions of the run-
time (function evaluations divided by dimension) versus fraction of 51 logspaced
function target values (from 102 to 10�8) reached for gradient descent and BFGS
for all 24 test functions in the BBOB test suite and all dimensions. Notice that
the fraction of function target values reached decays with the dimension of the
problem.

7.2 Algorithm performance aggregated by test function

type

BFGS outperformed gradient descent for the smallest target value reached

for each problem group except the moderate conditioning group, where they

reached a roughly equal fraction of target values. Additionally, gradient descent

outperformed BFGS in the multimodel with a global structure problem group

(see figure 9). The trend of gradient descent reaching a higher fraction of target

values when the number of function evaluations is moderate or low held for each

function group. BFGS did significantly exceed gradient descent on problems

with poor conditioning. However, for the other function groups, BFGS reached

a roughly equal number of target values as gradient descent at the maximum

number of function evaluations, except on multimodel problems with global

structure, where gradient descent outperformed BFGS.
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Figure 9: All 24 test functions in the small-scale noiseless COCO test suite
divided into six groups based on the properties of the test problem. The di-
mension of each test function was 40. Notice the performance of the algorithms
depends on the class of functions
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8 Discussion

The results of our benchmarking experiments show that there are quanti-

tative di↵erences between the performance of the gradient descent and BFGS

methods. We found that The performance of the methods varied across dimen-

sions, problem class, e�ciency, and accuracy of the final solution. The following

subsections discuss the details of these results and o↵er recommendations for

researchers when choosing between optimization methods.

8.1 Comparison of gradient descent and BFGS

Across all dimensions and all problem groups, BFGS achieved a higher level

of accuracy than gradient descent, for larger function evaluations budgets 3.

However, gradient descent reached less accurate function targets more often

in fewer function evaluations. This result implies that, if we have a limited

function evaluation budget for a particular application, gradient descent will

perform better by providing a more accurate solution for a smaller number of

evaluations.

Hence, we recommend that when researchers must choose between gradient

descent and BFGS, if they require and can a↵ord highly accurate solutions,

use BFGS. However, if we have a constraint on the number of function evalu-

ations and only require a decent solution, use gradient descent. For example,

in many statistical and machine learning applications, function evaluations can

become extremely expensive when the number of model parameters grows large

[4]. Furthermore, we often do not want highly accurate solutions because they

can lead to model overfitting [27], so gradient descent would be preferred over

BFGS. This trend of cheap approximate solutions for gradient descent is likely

the reason that it has risen in popularity for statistical and machine learning
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Figure 10: A proposed hybrid gradient descent-BFGS scheme for decreasing the
number of function evaluations required to reach accurate solutions by starting
an optimization run with gradient descent then switching to BFGS when near
a minimum.

applications recently.

This e�ciency-accuracy trade-o↵ between gradient descent and BFGS sug-

gests an alternative strategy for obtaining an accurate solution in fewer function

evaluations. That is, begin a run with gradient descent for an approximate so-

lution, then switch to BFGS afterward by starting from the final xk of the

sequence of gradient descent iterates. This would provide a more accurate so-

lution while saving computations by not using BFGS for the whole run (see

figure 10 for an illustrative example).

A general, and unsurprising, result was that a smaller fraction of each al-

gorithm instances reached fewer target values as the dimension of the problem

increased (figures 8 and 3). This outcome was particularly noticeable for the

random search algorithm. What was surprising, however, was that random

search performed almost as well as the more sophisticated algorithms when the

problem dimension was low (e.g. 2 or 3, see figure 3). Nevertheless, as the di-

mension grew, and consequently, the search space, we can see that the strategy
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of choosing a random search direction broke down rapidly.

8.2 Algorithm performance on function groups

Gradient descent and BFGS performed best on the separable functions,

like the sphere function, which generally only had one or a few minima. In

contrast, their worst performance was on multimodel functions such as the

Rastrigin function with its abundance of local minima (figure 9). This behavior

is expected for these descent algorithms because they are designed to converge if

an iterate is in the neighborhood of a local minimum. Additionally, the stopping

criteria (terminate if tolerance < ||rf ||) that we used for both algorithms

guarantees that, if it finds a local minimizer, it will not explore beyond it.

Gradient descent reached considerably more target values than BFGS on

the multimodel functions with global structure. The likely reason is that when

the BFGS iterate begins to approach a local minimum, because of its use of the

Hessian approximation to choose the search direction and step size, it follows

the curvature of f more accurately than gradient descent and is thus pulled

into the local minimum more rapidly. Though the gradient descent iterate still

finds local minima readily, it is indi↵erent to the local curvature in f , since it

neglects second-order information in its update step. Therefore it is more likely

not to be as attracted towards local minima as the BFGS iterate is and may

even pass by them on its way to a lower minimum.

For the group of problems with poor conditioning, BFGS performed far

better than gradient descent, nearly reaching all target function values for the

given budget 9. When the conditioning was moderate, the smallest function

target value reached was similar for both gradient descent and BFGS. However,

gradient descent reached all other (larger) targets in fewer function evaluations.

This result suggests that for problems with moderate conditioning of up to at

least 40 dimensions, gradient descent may be preferable to BFGS because it is

less computationally expensive.
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8.3 Random search and the explore-exploit trade-o↵

Optimization can be roughly divided into two phases, an exploration phase

and an exploitation phase [7]. The goal of the exploration phase is to search for

novel regions in the search space to find promising values of f . In contrast, the

goal of the exploitation phase is to search in the neighborhood of the promising

regions found by the exploration phase to find locally optimal values of f .

A trade-o↵ arises because we must divide our budget of function evaluations

between exploring or exploiting. If we spend too much of our budget in the

exploration phase, we often get diminishing returns on promising regions of

the search space. However, if we do not spend enough of our budget in the

exploration phase when we start the exploitation phase, we will likely converge

to a poor local solution that is far away from the global optimum.

We can see the e↵ects of the explore-exploit trade-o↵ in expected runtime

tables in the appendix A. Random search often hit the large (and presumably

easy) target values in far shorter average run times than BFGS and gradient

descent. The likely reason is that in the exploration phase when we only desire

a course grain estimate of the search space, we gain more benefit from the

cheapness of randomly sampling the search space. Again, as in the ECDF

results, we can also see that in high dimensions, we get less payo↵ from random

search because the search space explodes exponentially due to the ”curse of

dimensionally” [2].
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9 Conclusion

By benchmarking the quintessential iterative optimization methods, namely

gradient descent and BFGS, we were able to provide empirical data on what

classes of problems the methods succeed and failed on as well as how they

performed in comparison to one another. Generally, BFGS obtained highly

accurate solutions but required more function evaluations, whereas gradient

descent found adequate solutions in fewer function evaluations, but often failed

to obtain highly accurate solutions. In light of this finding, we proposed strate-

gies for finding more accurate solutions in fewer function evaluations by using

a hybrid gradient descent-BFGS scheme. This work demonstrates that bench-

marking optimization algorithms can provide actionable insights for researchers

when they must choose between iterative optimization algorithms.
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A Appendix

A.1 Notation

Symbol Description
f The objective function we wish to minimize
n Dimension of f
x Vector in Rn we optimize to minimize f
x0 Initial solution for an iterative algorithm
x
⇤ a local minimizer of f
k Iteration counter
rf Gradient of the objective function
r2f Hessian of the objective function
p search direction of an iterate
↵ Step length of an iterate
↵⇤ Minimum of a line search
⇠ Polynomial model used in line search
⇠0 Derivative of ⇠
⇢ Factor that reduces ↵ in a line search

⇢high Upper bound for ↵ in cubic line search reduction
⇢low Lower bound for ↵ in cubic line search reduction
↵max Maximum allowed ↵ for line search
c1 Algorithmic parameter for (4)
h Step size between each xi in finite di↵erence
I The identity matrix
A An invertible matrix
sk Di↵erence between xk+1 and xk

yk Di↵erence between the current and next gradient
B SPD matrix that approximates the Hessian

Table 2: Symbol definitions used in this thesis.

A.2 COCO supporting information

For a full list of all of the COCO problems in the BBOB test suite visit:

https://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctionsdef.pdf

For the details of the COCO platform visit:

http://coco.lri.fr/downloads/download15.03/bbobdocexperiment.pdf
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A.3 Average runtime tables

Table 3: Average runtimes of gradient descent (GD), BFGS, and random search
(RS) to reach 5 equidistant target values on a log scale for functions with poor
conditions (f6-f9) and multimodal with global structure (f10-f14). #succ is the
number of runs that reached the smallest target value. #FEs/D is the number
of function evaluations divided by the dimension of the problem. The top row
are reference values of the average runtime of the best algorithm at the BOBB
2009 conference [14].
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Gradient descent

BFGS

Figure 11: BFGS and Gradient descent average runtime (aRT) loss ratio over
function evalutations (FEvals/dimension) on a log scale. The loss ratio is the
ratio between the number of function evaluations for an algorithm and the ERT
of the best algorithm from the BBOB 2009 conference [14]. The trend line is
the geometric mean and the vertical line is the maximum number of function
evaluations in a single run. Notice that the loss ratio increases with the number
of function evaluations for gradient descent, where as it is relatively constant
for BFGS.
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Tušar. Coco: Performance assessment. arXiv preprint arXiv:1605.03560,

2016.

[13] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo

Brockho↵. Coco: A platform for comparing continuous optimizers in a

black-box setting. arXiv preprint arXiv:1603.08785, 2016.



45

[14] Nikolaus Hansen, Anne Auger, Raymond Ros, Ste↵en Finck, and Petr
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