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ABSTRACT 

As satellite imagery has increased in attainability as well as in spatial and temporal 

resolution, there is a growing effort to determine how to best use this imagery to 

automatically detect landslides. The field of automatic landslide detection is still in its 

infancy, however, and many of the proposed workflows require specialized software 

making them inaccessible for many geoscientists. The goal of this study is to use widely 

accessible software and imagery to detect landslides as well as evaluate results using robust 

evaluation metrics. Methods were developed in a 46 km2 training site within the Añasco 

River Watershed in Puerto Rico and then applied across the entire 415 km2 watershed. 

Change-detection and machine-learning classification methods were used to detect 

landslides triggered by Hurricane Maria in September 2017. The results illustrate that 

Sentinel-2 satellite imagery can be used to identify landslides, but detection methods need 

to be further developed and properly evaluated to increase accuracies in mapping high 

density landslide events. We also highlight the need for a shift toward more open and 

accessible means of landslide detection methods for the broader geoscience community to 

fully recognize the benefits of automatic landslide detection. 
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1. INTRODUCTION 

 Mobilization of large amounts of sediment by landsliding in mountainous regions 

can drastically alter river drainage networks and influence the growth of mountain ranges 

(Korup et al., 2010). The amount of material eroded from landslides and the density of 

landslides can vary spatially. This variation can be influenced by a variety of factors, 

including the triggering mechanism as well as lithologic differences (Densmore and 

Hovius, 2000). The climate of a region, in both space and time, can also influence the 

distribution and frequency of landslides. Thus, in areas that are vulnerable to events such 

as tropical cyclones and/or earthquakes, it is most likely that landslides play an important 

and primary role in long term landscape evolution (Hewitt, 1998).  

 One way to better understand the role of landslides in landscape evolution is to 

generate and carefully study landslide inventories. Landslide inventories are catalogs that 

are used to display the location of landslides in the landscape as either points or polygons. 

Knowing the location, shape, and size of previous landslides can help to better understand 

what areas are more prone to failure and inform disaster mitigation efforts (Parise, 2000). 

Additionally, these inventories can be used to assess the damage after a large landslide-

triggering event. Landslide volume, which is the total amount of material removed after a 

mass-wasting event, can also be estimated from an inventory using landslide volume area 

scaling relationships (Larsen et al., 2010; Klar et al., 2011). Landslide volumes can help 

answer questions regarding the impact that mass wasting has on landscape evolution and 

highlights the merit in developing accessible and efficient methods to create landslide 

inventories. This goal of this study was to develop a method to automatically detect 

landslides from the European Space Agency’s (ESA) Sentinel-2 satellite imagery 
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usingobject-based image classification methods. To develop our methods, we tested 

various workflows and their effectiveness at mapping landslides that were triggered by 

Hurricane Maria (September 20, 2017) in Western Puerto Rico. After determining a 

satisfactory workflow, we analyzed the results to determine where future studies should 

focus their efforts. We also propose new robust standards and metrics for assessing 

accuracy in automatic landslide detection studies to address the discrepancy in accuracy 

metrics used in the literature. 

2. BACKGROUND 

 Landslide inventories are traditionally created by either mapping landslides in the 

field (Cardinali et al., 2006; Santangelo et al., 2010) or by visually inspecting satellite 

and/or aerial images (Gao and Maroa, 2010; Coe et al., 2018).  Both techniques are 

generally time consuming and tedious. Manually mapping landslides in this manner is also 

subject to a considerable element of human error and subjectivity. Recent work has aimed 

to map landslides automatically using various remote sensing data and classification 

techniques. Early classification techniques involved mapping landslides using pixel-based 

methods (Keyport et al., 2018). Pixel based methods, however, are not effective at 

capturing the shape and area of landslides (Blaschke, 2010).  These methods also result in 

errors due to the ‘salt and pepper’ effect where individual pixels are incorrectly classified 

(Blaschke, 2010). Thus, object-based techniques have become increasingly popular and the 

standard in automatic landslide detection studies. Incorporation of ancillary information 

such as topography and multi-temporal data has become increasingly common as well 

(Martha et al., 2010; Lyons et al., 2014). 
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  Object-based techniques aim to classify features by first turning the pixels within 

a target image into sets of spectrally homogenous segments or objects (Figure 1). In doing 

so objects can be classified rather than pixels in a way that mimics human interpretation 

(Blaschke, 2010). Object-based classification methods have thus far proven more 

successful than pixel- based methods in being able to automatically detect landslides 

(Moosavi et al., 2014). Despite this improvement, there are still uncertainties regarding the 

best practice(s) for identifying landslides in segmented images.  While there are a wide 

variety of post-segmentation procedures that can be performed to identify landslides, there 

is no clear consensus as to which methods, if any, are versatile and applicable across a wide 

variety of landscapes and scenarios.  

2.1 History of Object-Based Landslide Detection  

 Barlow et al (2003) were the first to use object-based methods to identify landslides. 

In their work they sought to identify landslides in the Cascade Mountains of western North 

America using a Digital Elevation Model (DEM) and multispectral satellite imagery 

Figure 1: Example of mean-shift image segmentation performed on Sentinel-2 image. 

Landslides, mapped by the SLIDES-PR group (Hughes et al., 2019), are outlined in red. 

The left image shows  landslides along a river channel and right image displays the image 

broken down into homogenous segments.  Location of landslides is along highway 109 in 

the Añasco municipality in Western Puerto Rico. The exact location can be seen in figure 

2, symbolized by a yellow triangle. 
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(Landsat, 30-m spatial resolution). They used a classification workflow where they first 

eliminate areas in the image where landslides are least likely to occur, then classify the 

image based on manually determined rules for each class in the image. The authors reported 

an accuracy of 75% in the detection of landslides over 104 m2. While a reported success, 

the workflow presented was not completely automatic as the authors had to define 

individual rulesets for each class specifying how the classifier would identify objects. 

These classes and their defined rulesets were specific to the landscape classified making 

the method not easily transferable to other landscapes. In addition to this, their accuracy 

assessment was performed on only 40 randomly sampled landslides throughout the study 

area, so the reported accuracy may be different than it truly would be if the entire study 

area was assessed. The reported accuracies may also be unreliable as the images used to 

create the manual landslide inventory were taken five years prior to the images used for 

classification. In their follow up work, they used a similar workflow on a higher resolution 

dataset to detect specific mass wasting processes (debris slides, debris flows, and rock 

slides) (Barlow et al., 2006).  They reported accuracies of 90% for detection of debris 

slides, 60% for debris flows and 80% for rock slides. While the higher resolution data was 

proven useful for specific mass-wasting detection, they still relied on the same methods 

previously mentioned and acknowledged that the workflow might not be applicable in arid 

regions with no vegetation. 

  Martha et al (2010) used object-oriented methods to classify landslides in the 

Himalayas. They used topographic data and multispectral imagery to identify landslides 

according to Varnes’ classification scheme (Varnes, 1958). Their work involved first 

segmenting the imagery, thresholding the imagery using a manually determined cutoff 
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value to determine potential landslide candidates and then, using a secondary thresholding 

scheme, to remove false positives (areas incorrectly mapped as landslides). A drawback of 

their study, as mentioned in their follow-up work, is the manual thresholding technique 

used to determine potential landslide candidates (Martha et al., 2011). They chose landslide 

candidates by using the mode of Normalized Difference Vegetation Index (NDVI) values 

in their study area as the cutoff point that differentiates non-vegetated and vegetated areas. 

Thus, landslide candidates would be those areas in the images that are relatively less 

vegetated. This method, while effective in their study, may not be a useful threshold 

method for other landscapes. A data driven approach, which determines this threshold from 

the NDVI data for a particular landscape, is a more appropriate approach and suggested in 

their follow-up work (Martha et al., 2010). Another drawback of their study is that the 

workflow is reliant on commercial software that uses proprietary algorithms not available 

to those without access to Definiens eCognition (Aguilar et al., 2016). Unfortunately, the 

early and successful use of eCognition for the development of automatic landslide 

detection methods has set a precedent, and its use has proliferated in the literature. 

  Stumpf and Kerle (2011) explored using a machine learning classifier to identify 

landslides. Their workflow consisted of segmenting the target images, determining suitable 

classifier metrics, classifying the images and then, through error analysis, determining the 

amount of training samples for each class that resulted in balanced over-prediction and 

under-prediction errors.  Their findings suggest that suitable object-metrics will vary 

considerably by case and suggest that, to improve automatic landslide detection, 

segmentation techniques need to be improved and the incorporation of pre-event imagery 
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would be beneficial. Since then, incorporating multi-temporal data, when pre-event 

imagery is available, has become common practice.  

  In Li et al (2016a) multi-temporal data was used to map landslides after an extreme 

rainstorm triggered landslides in Lantau Island, Hong Kong. In their study they aimed to 

create a workflow that can be universally applied to map landslides. They used change 

detection maps to map the landslides after a two-step thresholding and segmentation 

workflow. While a promising method and premise, they point out that the method chosen 

for final segmentation is prone to resulting in over detection since it has difficulties 

detecting landslides with unclear boundaries. 

 Qin et al (2018) were the first to use change-detection methods to test Sentinel-2 

data for automatic landslide detection. With their methods they achieved reported 

accuracies of 95.93% and 88.03%. Their study area, which was in the Sichuan Province in 

China, however, was only 16.5 km2. Because of their small study area, the images used to 

detect landslides lacked any other features, such as similarly colored river channels, urban 

areas or rock exposures, that may have been mistaken for landslides. These features, which 

present a challenge when mapping, are usually encountered in landscapes at larger scales.  

 In general, the consensus among studies is that object-based methods are more 

successful at automatically detecting landslides from satellite imagery than pixel-based 

methods.  Most work to date has aimed to determine what slight modifiers in thresholding 

and segmentation may lead to more accurate results. Most of the studies, however, are 

undertaken in small training areas and aim to map a small number of landslides with high-

resolution data. While useful in testing out new scenarios, focusing on small training sites 

prevents the discovery of methods that would be successful in events that trigger a large 
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number of landslides at once. In addition to this, the data, software and algorithms 

commonly used are often not readily accessible to many. While the field is continuing to 

test methods on case studies, the means in which they are carrying out these studies does 

not always make the method more accessible to geoscientists or other stakeholders who 

would need to create these landslide inventories.  

2.2 Landslide Inventories and Landscape Evolution Models 

 Current landscape evolution models emphasize fluvial incision as the primary 

erosive mechanism in landscapes. Hillslope processes, such as landslides, are considered 

secondary and reactive to changes in fluvial incision. Yet, stochastic hillslope processes, 

such as hurricane-triggered landslides have been shown to exert a primary control on 

changes in the landscape (Hewitt, 1998; Dadson et al., 2004). After Typhoon Morakat in 

Taiwan, Yanites et al (2018) observed that wider channels occurred where channel 

steepness and erosion rates were higher, an unexpected result as previous models suggest 

a negative relationship between channel width and erosion rate (Yanites et al., 2010). They 

suggest that hillslopes, in this landscape, exert a primary control on the rivers. When 

landslide sediment is delivered to the channels it propagates through the fluvial network 

and aggrades the beds and banks of the river thus decreasing the channel depth and 

increasing the width of the channel across the former floodplain or up the valley walls 

(Yanites et al., 2018). This study is just one example that highlights how our current models 

for channel evolution are lacking important variables and drivers. Thus, gaining a better 

understanding of hurricane-triggered landslides is an important step in developing a better 

understanding of landscape evolution.  
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 One step toward understanding the role of landslides in landscape evolution is to 

quantify the amount of sediment/material eroded in a large, widespread landslide event. 

Doing so can help derive an erosion rate representative of specific events. Hurricane Maria 

is an example of an unprecedented landslide triggering event that is likely to occur again 

as rising sea-surface temperatures (Lim et al., 2018) increase the likelihood of similar 

hurricanes forming. There is evidence to suggest that climate change is contributing to the 

growing intensity of hurricane seasons, as seen in 2017 (Lim et al., 2018). Further, the 

amount of rainfall due to Hurricane Maria was found to have been enhanced by climate 

change related factors (Ramos-Scharrón and Arima, 2019; Keelings and Hernández Ayala, 

2019). Thus, understanding the erosive power of Maria can provide insight into how a 

landscape prone to landsliding will evolve as hurricane-driven erosion is forecasted to 

increase in frequency and magnitude.   

Landslide volumes are an important variable to quantify as the information can be 

used in sediment budget studies to understand watershed dynamics and ultimately 

landscape evolution. An example of the insights provided by quantifying landslide volumes 

can be seen in the study by Larsen (2012), where he used landslide volumes in a sediment 

budget study to determine the influence of mass wasting on erosion rates. Landslides were 

the primary erosive force in each of the four watersheds studied in this investigation. One 

watershed, however, showed higher erosion rates. Closer evaluation of land use within the 

watersheds revealed that landsliding had been exacerbated by human development in the 

watershed with higher erosion rates. In Hovius et al (1997) downstream sediment discharge 

was compared to landslide volume estimates in the Western Southern Alps in New 

Zealand. Through this comparison, it was found that erosion in this region occurs primarily 
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through landsliding.  These studies highlight some of the insights that can be gleaned from 

determining the total volume of material removed in a landscape due to landsliding.   

3. STUDY AREA AND HURRICANE MARIA  

 Puerto Rico lies between the subducting North American and Caribbean plates 

(Masson and Scanlon, 1991)(Figure 2). The island is mountainous with its highest point of 

~1330 m near the geographic center of the island. The basement complex of the island is 

composed of mostly folded and faulted volcanic and sedimentary rocks that are overlain 

by carbonate platform sequences to the north and south (Monroe, 1980). The northwest 

and north central portions of the island are marked by karst topography (Monroe, 1976). 

The topography of the island has an arc like shape with the southern limb of the island 

being steeper than the northern limb. Its location in the Caribbean region and mountainous 

topography leave the island prone to hazardous hurricane-triggered landslides, as made 

evident after Hurricane Maria.  

3.1 Training Site and Añasco Watershed 

Methods were developed in the Añasco river watershed (Figure 2) which is located 

on the west side of Puerto Rico and is approximately 415 km2 in area. The lithologies 

within the Añasco watershed are mostly volcanoclastic rocks and basalts (Baiwec, 1998). 

However, there are some small exposures of granodiorite, diorite and quartz monzonite 

present (Baiwec, 1998). Land within the watershed is mostly undeveloped and used for 

rural purposes (Martinuzzi et al., 2007).  
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3.2 Hurricane Maria  

 Hurricane Maria made landfall as a Category 4 hurricane in Puerto Rico on 

September 20th, 2017. The storm developed on September 12th off the west coast of 

Africa, intensified into a tropical storm on September 16th then, after being upgraded to a 

hurricane, followed a southeast to northwest path across the island of Puerto Rico at 155 

mph while dropping up to 38 inches of rain on the island (Pasch et al., 2018). Rainfall 

estimates are mostly approximate, however, as winds destroyed the San Juan WSR-88D 

Doppler radar before the eye of the hurricane made landfall (Pasch et al., 2018).  In the 

analysis by Ramos-Scharrón and Arima (2019) they estimated that 96% of the island 

Figure 2: Location of the training site and the Añasco river watershed in Puerto Rico. 

Landslide polygons mapped by the SLIDES-PR group at the University of Puerto Rico, 

Mayagüez, shown in red. Locations of landslides in Figure 1 symbolized by a yellow 

triangle. Location of watershed outlet symbolized by blue circle. 
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received more than 7 inches of rainfall and 10% of the island experienced more than 19 

inches of rainfall.  

 The hurricane, which was one of the many devastating storms during the 2017 

hurricane season, resulted in approximately $90 billion in damages for the USA (Lim et 

al., 2018; Smith, 2018). In addition to wind, rain, and flooding, landslides triggered by the 

hurricane posed an additional hazard, causing damage to both structures and roads 

(Bessette-Kirton et al., 2019). More than 70,000 landslides were triggered on the island of 

Puerto Rico due to Hurricane Maria (Hughes et al., 2019). The hurricane is an example of 

an unprecedented landslide- triggering event that might impact the long-term landscape 

evolution of Puerto Rico.  

4. METHODS  

 To semi-automatically detect landslides in the Añasco watershed using Sentinel-2 

satellite imagery, a workflow was developed in ESRI ArcGIS 10.7 (Figure 3). Although  

ArcGIS is proprietary software, the routine incorporates common algorithms that can be 

applied elsewhere, such as in QGIS or Google Earth Engine. Inputs into the routine 

included pre- and post- event multi-spectral images, a 10-m DEM, NDVI maps, and slope 

maps.  

 A small training site was used to develop the workflow and determine a relatively 

successful method. Once a satisfactory workflow was determined, the method was applied 

to the entire watershed.  The routine is as follows:  

1) First, we remove flat areas and areas of no change in the image to be classified.   

2) Then, we segment the image into objects.  



12 

 

 

3) After this, we create a small set of training data.  

4) The training data are input into a machine learning classifier that identifies landslide 

candidates and other features in the image.  

5) The landslide candidates are extracted from the classified scene, and the accuracy is 

assessed using carefully chosen evaluation metrics. 

 

Figure 3: Workflow used in this study to detect landslides. 

4.1 Data 

 The pre- and post-event imagery used in this study are from the European Space 

Agency’s (ESA) Sentinel-2 multispectral instrument (MSI). The acquired images were 

taken on April 8, 2017 and November 11, 2017. These images were chosen on the basis of 

minimal cloud coverage. Ideally, images chosen would be closer to the event date but a 

cloud free image is higher priority for image classification. The MSI, which was launched 

in 2015, and is expected to be operational for 15 years,. collects 13-band multispectral 
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images with spatial resolutions ranging from 10-60 m with a five-day revisit time (Drusch 

et al., 2012). The RGB and Near Infrared (NIR) bands, which we focus on in this study, 

are 10-m in resolution. Images used in this study were atmospherically corrected using the 

SEN2COR processor provided for use in the Sentinel Application Platform (SNAP) by 

ESA (Louis et al., 2016). Atmospherically corrected Sentinel-2 imagery was also 

downloaded from Google Earth Engine.  

 The Normalized Difference Vegetation Index (NDVI) maps used in this study were 

created using pre- and post-event Sentinel-2 imagery. The NDVI calculation relies on the 

red and NIR bands in the multispectral imagery (Deering and Haas, 1980). The NDVI 

values are derived for each of the pixels in the multispectral imagery according to the 

following formula: 

(Eq. 1) NDVI =
NIR−RED

NIR+RED
 

Values for each pixel within the NDVI maps range from -1.0 to 1.0, where 1.0 corresponds 

to highly vegetated areas and -1.0 corresponds to areas of sparse or unhealthy vegetation. 

The resolution of the NDVI maps is maintained at 10-m. 

 Change detection images were calculated using the pre- and post-event NDVI 

maps.  Pixel values within the NDVI maps are simply subtracted from one another to 

determine the amount of change that occurred after Hurricane Maria. Values closer to 0 in 

the change detection map suggest little or no change, where positive values indicate areas 

that changed from vegetated to non-vegetated.  

 The Digital Elevation Model (DEM) used in this study is a 10-m DEM from the 

USGS 3DEP collection (USGS, 2017). Slope maps were created from the DEM using the 
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slope tool in ArcMap 10.7. The slope tool fits a plane to a 3x3 neighborhood of pixels and 

determines the slope, in degrees, of this neighborhood using the average maximum 

technique (Burrough and McDonell, 1998).  

4.2 Thresholding  

 The first step in the routine is to appropriately threshold the satellite images in order 

to minimize the likelihood of incorrectly identifying landslides in the final image. This 

simply means removing areas in the image that are least likely to have experienced 

landslides. To threshold the images the slope map was used to remove flat areas from the 

image by determining which areas consist of slopes less than 15 degrees. This value was 

chosen based on its effectiveness shown in other studies where it was useful in removing 

urban areas and lakes (Barlow et al., 2003). In removing the flat areas from the image, most 

urban areas and the main river channel and flood plain are also effectively removed in the 

study area. This is useful as segments from these areas could be mistakenly identified as 

landslides based on vegetation changes.   

 Then, K-Means clustering was used to divide the change detection image into three 

clusters that correspond to areas that have experienced little to no change, vegetation loss 

and vegetation gain. Previous studies have chosen thresholds related to NDVI manually, 

which makes routines less automatic and prone to human bias (Martha et al., 2010). It is 

difficult to cluster certain data, like NDVI and change detection maps, as their data 

distributions are usually unimodal, meaning there are no obvious groups within the data 

(Figure 4). Using K-Means to cluster our data removes the manual aspect of thresholding 

in relation to NDVI change detection data and gets around the issue of no groups being 

apparent in the data distributions. After specifying the desired cluster amount, the K-Means 
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algorithm begins by selecting random centroids within the data of interest (Hartigan and 

Wong, 1979). The Euclidian distance from each data point to these randomly chosen 

clusters is used to determine which cluster they fall into. After assigning clusters for the 

first iteration, the cluster centroids for the next iteration are then chosen as the mean of the 

determined clusters. This operation is repeated until the centroids become stationary and 

no longer change (Hartigan and Wong, 1979). After the three clusters have been chosen 

the cluster that corresponds to the ‘little or no change’ values is removed from the post-

event image. K-means is chosen as the clustering algorithm in our work as it is easy to 

implement, widely used and allows for the pre-selection of clusters. 

 To summarize, regions that were determined to be flat and/or experienced little to 

no change were removed from the post-event image. Thresholding this way allows for the 

area in which we apply our final classification to be constrained so as to decrease the 

likelihood of incorrectly identifying landslides. 

4.3 Segmentation  

After determining which areas should not be classified (flat areas, areas of no change), and 

removing those areas from the post event image, we then break down the image into objects 

using a segmentation algorithm. For our study we implement the mean-shift segmentation 

algorithm using the Segment Mean Shift tool in ArcMap 10.7. The parameters for the 

mean-shift algorithm are spatial bandwidth (hs), spectral bandwidth (hr) and minimum 

segment size (M). The values of these parameters are chosen by the user. The spatial 

bandwidth is the window size used in the segmentation, and spectral bandwidth is the 

distance between segments in spectral domain. At the chosen window size, the algorithm 

begins at a random pixel in the image as the center. The algorithm then finds the mean of 
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these values in the spectral information within the chosen window and shifts the center of 

the window to this mean until the window is stationary, and the mean has converged. This 

iterative process creates an amalgamation of pixels that have similar spectral 

characteristics.  

Figure 4: NDVI and change detection data for training site. (A) Pre-Maria NDVI map with 

distribution of NDVI values shown in top right corner. (B) Post-Maria NDVI map with 

distribution of NDVI values shown in top right corner. Color bar in B also applies to A. 

White areas in A and B have slopes < 15 degrees. (C) Change detection map with 

distribution of change detection values shown in top right corner.  

The parameters, as previously mentioned, are chosen in our study with the goal of being 

able to delineate landslides as accurately as possible. To do so, we have to assign high 

importance to the hs and hr values and choose an appropriate minimum segment size. In 

ArcMap the hr and hs values are chosen on a scale from 1-20. Higher values for the hs 

parameter are chosen for spatially smoother outputs and are ideal in cases when features of 

interest are clustered together. Higher values for the hr parameter also create spectrally 

smoother outputs and are ideal when there are spectrally similar features that need to be 
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distinguished from one another. For the M parameter the value is simply the minimum 

amount of pixels per segment. For segmentation of our image we choose hs = 20, hr = 20, 

M = 5.  

4.4 Training and Classification  

 After segmenting the image, a small training set needs to be created to subsequently 

classify the image. The training set is simply a small sample of features in the images that 

are classified. There are individual training sets for both the training site and the watershed. 

To create a training set, individual segments that correspond to certain features in the 

landscape are chosen. In the Añasco watershed we create a training set of n = 30 (30 

individual features, comprised of several segments) for the following features: vegetation, 

landslides, clouds, shadows and tree-shed (areas where canopy was bare after Maria). After 

an appropriate training set is chosen, this is used to train a machine learning classifier. The 

classifier chosen, based on its resistance to overfitting and success in other studies, is the 

random forest classifier (Strumpf and Kerle, 2011; Breiman, 2001).  

 Our inputs for the random forest classifier within ArcMap are the segmented image, 

a DEM and training samples. The random forest classifier takes a set of training samples 

provided by the user and uses the information from the training samples to classify the 

image. The training samples are chosen by the user and are portions of the image that 

correspond to different classes that are to be mapped in the landscape. The random forest 

classifier works by taking the training samples and creating a subset from this training data 

to teach the classifier how to map the remaining portions of the image (landslides, 

vegetation, clouds, shadows, tree-shed). In our case, our training samples are the segments 

that correspond to the classes previously mentioned. 
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  The variables associated with each of the segments used in the training sample 

dataset are color (RGB), compactness, rectangularity and elevation. The first three 

variables are associated with the imagery itself and the final variable is associated with 

topography. Once the subset data are created, the classifier uses this data to create multiple 

decision trees are based on randomly selected variables within the data set. Decision trees 

are just flow charts with differing queries at each level. Each decision tree decides which 

class each segment belongs to and once all of the trees have assigned a class to a certain 

segment, majority voting is used to determine what class the segment belongs to.  

4.5 Accuracy Assessment  

After the post event image has been classified and the landslide candidates 

delineated, the accuracy of the workflow is assessed by comparing the automatically 

mapped landslides to those mapped manually by the SLIDES-PR group (Hughes et al., 

2019). Two metrics, known as recall and precision, are used to assess the accuracy of the 

workflow (Davis and Goadrich, 2006).  

(Eq. 2) Recall =
True Positives

True Positives+False Negatives
 

(Eq. 3) Precision =
True Positives

True Positives+False Positives
 

 Where, when mapping landslides automatically, a ‘True Positive’ is a successfully mapped 

landslide, a ‘False Negative’ a landslide not mapped, and a ‘False Positive’ is a non-

existent landslide mapped as one. These two metrics are useful in the case of landslide 

detection because they give us measures of how well our mapping is doing in regard to 

over and under detection of landslides. For recall, the measure identifies the proportion of 
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manually mapped landslides that were correctly identified by automatic mapping methods. 

For precision, the measure identifies the proportion of automatically mapped landslides 

that were correctly identified. We use these accuracy metrics to determine how well our 

method was at both recognizing the location of landslides as well as their extent, or area. 

Thus, we determine recall and precision for both ‘Recognition’ and ‘Extent’.  

Unfortunately, with the amount of landslides present in the Añasco watershed, it is difficult 

to manually determine these metrics. It is made especially challenging when the mapped 

landslides do not quite overlap with the manually mapped landslides (Figure 5). This is a 

common problem in computer vision studies and it is addressed by using the IOU metric 

(Intersection over Union) which is a simple operation to determine the degree of overlap 

between two shapes (Rahman & Wang, 2016).  

(Eq. 4) IOU =
Intersection

Union
 

IOU > 0.20 is designated a true positive in this study. After determining the number of 

landslides that are true positives, we can then determine those with IOU values < 0.20 as 

either being false negatives or false positives. After this, recall and precision values can be 

calculated for recognition and extent. Examples illustrating the accuracy assessment can 

be seen in Figure 5.  

4.6 Frequency-Area and Frequency-Volume distributions  

  It is useful to analyze the area and volume characteristics of landslide inventories 

in terms of their frequency area-distribution (FAD) and frequency volume distribution 

(FVD) statistics. FAD and FVD statistics of landslide inventories allow for the comparison 

of large, landslide triggering events (Malamud et al., 2004). Comparisons of inventories in 
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this regard can lend insight into the magnitude of specific landsliding events as well as the 

underlying processes that may differentiate events (Tanyaş et al., 2019). Landslide area 

and frequency density exhibit a power-law relationship, described below.  

(Eq. 5) p(X) = cX -β 

Where p(X) is the frequency-density of the landslide area (X), c is a normalization constant 

and  β is the power-law exponent (Tanyaş et al., 2018). Landslide inventories typically 

diverge from this power-law behavior below a threshold area. The exact cause of the 

divergence is still unknown and a controversial matter. The value of importance for FADs 

is β, the power law exponent, because it allows for comparison and characterizaion of 

landlide inventory size distributions. Another value of importance, is the Landslide-Event 

Magnitude (mLS), which corresponds to the severity of the landslide event (Tanyaş et al., 

2018). The equation to determine mLS at the threshold area is shown below. In this 

equation c’ is a constant that is determined by dividing the normalization constant  

previously mentioned, by the total number of landslides.  

(Eq. 6) mLS = log10
p(X)

c′X− β 

 

In this study, we use the methods and Matlab code provided by Clauset et al (2009) 

to determine the minimum threshold area (Xmin) for which the frequency distributions 

exhibit power law behavior (http://tuvalu.santafe.edu /~aaronc/powerlaws/). Xmin is 

chosen by determining which value of Xmin results in the least amount of distance between 

the power-law fit and the data. Once an appropriate Xmin value is chosen, the corresponding 

fit is applied to the data and the power-law exponent is determined. The informtaion is then 
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used to plot the FAD and determine the mLs values using the methods of Tanyaş et al 

(2018) and Matlab code provided by the USGS (https://github.com/usgs/landslides-mLS). 

 To determine individual landslide volumes, we use the volume-area scaling 

relationship from Puerto Rico as determined by Larsen and Torres-Sánchez (1998). The 

relationship is shown below, where AL is landslide area and VL is landslide volume. The 

FVD is determined using the same methods previously mentioned.  

(Eq. 7) VL=1.826*AL
0.898

 

 

Figure 5: Example illustrating accuracy assessment metrics. (A) The landslides detected 

automatically are compared to those manually mapped by the SLIDES-PR group. (B) The 

Intersection over Union (IOU) is found for each landslide by merging the auto and manual 

landslides (union) into one shape, finding the intersection of the two landslides and then 

dividing the intersection area by union area. Those automatically mapped landslides with 

an IOU > 0.20 are considered true positives. All else are either false positives or false 

negatives. (C) After determining the count of true positives, false positives, and false 

negatives, recall and precision are calculated for both the recognition and extent of 

landslides. For extent, the individual sums of true positives, false positives and false 

negatives are used to determine recall and precision. 
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5. RESULTS  

 At the training site scale our method resulted in recall and precision values of 18% 

and 17% respectively for the recognition of landslides and 20% and 9% for detecting the 

extent of landslides. At the watershed scale, our method resulted in recall and precision 

values of 12% and 7% for the recognition of landslides and 10% and 2% for detecting the 

extent of landslides. There was a notable decrease in accuracies when mapping the larger 

scale watershed. These accuracies are summarized in Table 1. Examples of mapped 

landslides and their corresponding IOU values  

can be seen in Figure 6. 

 

 

 

 

 

 

 

5.1 Spatial Analysis of Error 

The manually mapped inventory, within the training site, contains 865 landslide 

polygons while the automatic mapping resulted in an inventory with 900 landslide 

Table 1. Accuracies at training site and watershed. 

 Training Site Watershed 

 Recall Precision Recall Precision 

Recognition 18% 17% 12% 7% 

Extent 20% 9% 10% 2% 



23 

 

 

polygons. Within the watershed, the manually mapped inventory contains 7,332 landslides 

while the automatic mapping resulted in an inventory with 12,474 sites identified as 

landslides. Of the landslides automatically mapped in the training site, 160 were true 

positives and 740 were false positives. There were 705 false negatives, or missed 

landslides. This information is summarized in Table 2 for both the training site and 

watershed.  

Density maps for each of these errors, at both the training site and watershed scale, 

were created using a kernel density estimation to create an estimated magnitude per unit 

area map for each result. While not reflective of the true amount of error points at each 

location the maps are an easier way to visually assess their spatial distribution. The large 

distribution of false positives, as seen in Figures 7 and 8, seems to be caused by the 

classifier classifying portions of the river closest to the banks and at the edge of urban areas 

as landslides. The false negatives seem to be the result of the automatic methods failing to 

capture the smaller landslides (Table 3, Figure 9 and 10) and cloud cover masking out areas 

in the image (Figure 9).  

 In order to visually assess the difference in the overall outputs between the 

automatic and manual inventories, landslide density maps, using a kernel density 

estimation, were created at the watershed and training site scales (Figure 11). At the 

training site scale, the spatial distribution of automatically mapped landslide densities is 

roughly consistent with the spatial distribution of landslide densities seen in the manually 

mapped inventory. There are two localized areas of high landslide density on the east and 

west sides of the training site. In addition to this, the automatically mapped landslide 

density map excludes a high-density portion in the east because these landslides are small 
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and thus were undetected by automatic methods.  At the watershed scale, however, there 

is little agreement. There is overestimation of landslides in the North West and central 

portions of the watershed. The southeast portions generally agree, however, and the 

landslide density is low in this region for both the automatically and manually mapped 

landslide inventories.  

 

 

Figure 6: Example of IOU values. 
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Table 2. Details of accuracy assessment for watershed and training site. 

 Training Site Watershed 

No. Automatic Landslides 900 12474 

No. Manual Landslides 865 7332 

True Positives 160 894 

False Negatives 705 6438 

False Positives 740 11580 
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Figure 7: Spatial distribution of false positive results in the watershed. 

 

 

 

Figure 8: Spatial distribution of false negative results in the watershed. 



27 

 

 

 

 

Figure 9:: Spatial distribution of false positive results in the training site. 

 

 

Figure 10: Spatial distribution of false negative results in the training site. 
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Figure 11:  Landslide density maps at the training site and watershed scales for the 

automatically and manually mapped landslide inventories. 
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5.2 Landslide Area and Volume Estimations 

The area and estimated volumes for both inventories are summarized in Table 4 

(Larsen and Torres-Sanchez, 1998).  At the watershed scale the automatic inventory over-

estimates areas by 1.78*107 m2, a factor of four. The overestimation in regard to volume is 

similar since the volume estimates are derived from the scaling relationship, at 1.39*107 

m3, by a factor of more than three. The total area of automatically mapped landslides in the 

training site was overestimated by 8.70*105 m2, resulting in a total area that is more than 

double the true total area.  The total volume of automatically mapped landslides 

overestimated by 6.70*103 m3, similarly resulting in a total  

volume that is more than double the true total volume. 

 

 

 

Table 3. Landslide area statistics for true positives, false negatives.  

True Positives False Negatives  
Watershed Training 

Site 

Watershed Training 

Site 

x̄ (m2) 14436 2490 615 772 

σ (m2) 1049 17537 475 569 
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 Landslide inventories generally follow a power law above a threshold area.  Plotting 

the FAD and FVD for both inventories reveals that the divergence from power-law 

behavior at the threshold point does occur in the manually mapped inventory but does not  

occur in the automatically derived inventory (Figures 12 and 13).  This is most likely due 

to the fact that the automatic inventory, at both the training site and watershed scale, is 

ineffective at capturing small scale landslides due to the low resolution of the imagery used 

in the automatic inventory. In addition to this, our automatic method seems to be 

overestimating the area and volume of landslides, most likely due to the large amount of 

false positives as well as problems with landslide amalgamation (Marc and Hovius, 2015). 

Where the human interpreter can delineate individual landslides the classifier lumps them 

into one large landslide ultimately increasing the estimated areas and volumes for the entire 

inventory.  

 

Table 4. Estimated total area and volume for manual and automatic inventories. 
 

Training Site Watershed  

Manual Automatic Manual Automatic 

Area (m3) 7.24*105 1.59*106  4.23*106  2.21*107 

Volume (m3) 6.28*105 1.30*106  3.86*106  1.78*107 
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Despite the large discrepancies regarding landslide area and volume, the mLS 

values, which corresponds to landslide event magnitude, for the automatic inventories and 

manual inventories seem to be in close agreement. The mLS values for the automatic and 

manual inventories are more similar in the training site than in the watershed, however. 

Summary statistics and the FAD plot can be seen in Table 5 and Figure 12 respectively. 

Results for the frequency volume distribution (FVD) can be seen in Figure 13. Threshold 

points chosen to create power-law fits are shown in Table A2.  

 

 

 

Table 5. Frequency-area distribution information.  
Training Site Watershed 

 
β mLS β mLS 

Auto -2.37 2.72 -3.40 3.45 

Manual -2.75 2.41 -3.29 2.01 
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Figure 12: The frequency-area distributions at the watershed and training site scale for the 

automatic and manually mapped inventories.    

Figure 13: The frequency-volume distributions at the watershed and training site scale for 

the automatic and manually mapped inventories.     
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6. DISCUSSION 

Our results show that using semi-automatic, object-based methods and Sentinel-2 

data can result in large-scale landslide inventory deficiencies. The method failed to capture 

small landslides and overestimated a large number of landslides as well. Because we set 

the lower limit of our segmentation to five pixels, the limit of the smallest mapped 

landslides is 500 m2.  In addition to this, the results show that a large decrease in accuracy 

occurs when attempting to map landslides at larger scales revealing an inherent scaling 

problem that needs to be addressed in future landslide detection studies. Additionally, a 

limitation in this study is that the workflow can only be performed in vegetated landscapes. 

Despite the deficiencies, the automatic method produced landslide inventories that were 

similar to the manual inventory in regard to their frequency area and volume statistics. The 

information that can be gleaned from the FAD and FVD statistics is useful in understanding 

the underlying geomorphic processes for various landslide triggering events. Thus, it is 

promising that the automatic methods can, even when inaccurate in finer detail, produce 

information that may help in understanding the role that landslides play in landscape 

evolution.  

 Landslide inventories can be used to create landslide susceptibility maps and gain 

insight into underlying geomorphic processes as they relate to specific events and 

environments (Galli et al., 2006, Tanyaş et al., 2018). Information regarding the shape, 

size, location and amount of landslides associated with one large triggering event can help 

answer a myriad of scientific questions as well as aid in planning and mitigation efforts 

(Guzzeti et al., 2012). Because of the increasing spatiotemporal resolution of satellite 

imagery, efforts to develop automatic methods to quickly and accurately create landslide 
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inventories have increased. However, the methods proposed have not proven to be widely 

applicable. The methods have also been developed in study areas that are not representative 

of the larger scale landscapes that need to be mapped. Because of this, more robust methods 

need to be developed before methods can be confidently used in creating useful landslide 

inventories. The low accuracies achieved here highlight biases in the literature. If current 

methods are not further developed and applied to real scenarios, they are likely to result in 

erroneous interpretations and estimates. In the next sections the erroneous results in this 

study and their causes are explained. We also explore the implications of the estimates that 

would be derived from the automatic inventory.  Then, we discuss future directions to help 

decrease the errors specific to this study as well as others.  

6.1 Consequences of Inaccuracy: Interpretations from Erroneous Estimates 

  Parker et al (2011) used semi-automatic methods to map landslides after the 

Wenchuan earthquake in China. They then used their inventory to claim that landslide 

erosion was outpacing orogenic growth, as the estimated volume of landslides was greater 

than the amount of orogenic rock uplift. They estimated the total landslide volume to be 5-

15 km3 and the total rock uplift at 2.6 ± 1.2 km3. In a different study, Li et al (2014) created 

a landslide inventory of the same event using supervised and manual classification efforts 

and determined the volume to be 2.8 km3, similar to the estimated volume of rock uplift 

(Figure 13). They attributed the overestimation of landslide volumes in Parker et al (2011) 

to landslide amalgamation due to automatic mapping. This example highlights the infancy 

of automatic detection methods and the need for further development before methods can 

be confidently applied, especially as our overestimation of volumes is similar to that of 

Parker et al (2011). 
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Figure 14: Volumetric estimations associated with the Wenchuan earthquake. Parker et al 

(2011) landslides were automatically mapped whereas Li et al (2014) landslides were 

mapped using manual and supervised classification methods. 

6.2 Errors in this study & their causes 

 Similar to Parker et al (2011), large errors in our inventory and resultant volume 

estimates are due to overestimating the number of landslides as well as landslide areas. The 

overestimation can be attributed to the large amount of landslides in the study area that are 

difficult to distinguish from general tree-destruction and blow down that occurred after 

Hurricane Maria. Our errors in regard to recall are also low because we failed to capture 

small landslides. This may be due to the 10-m resolution of the Sentinel-2 data and lower 

bound on segmentation which only identifies landslides greater than 500 m2. 

While our methods are similar to those proposed in the literature, we attempt to 

map a high-density landslide event within a large study area. Thus, it is likely our large 

errors, despite using common object-based methods, are also due to applying these 
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methods to a scenario that triggered a large amount of landslides. Methods thus far in the 

literature have not been developed in similar scenarios.  

  In performing this case study, several gaps were revealed in regard to method 

developments in the field of automatic landslide detection. First, most studies focus on 

developing methods in small study areas and attempt to map a small number of landslides. 

Our study reveals that there seems to be an inherent scaling problem that has not been 

acknowledged in the context of landslide detection studies. In our study and others, a 

decrease in accuracy has been shown when applying methods at larger scales. Similarly, in 

our study, low accuracies also seem to be attributed to areas where landslide density is 

higher. Secondly, current methods have primarily used proprietary algorithms to develop 

methods, despite the existing myriad of thresholding and segmentation algorithms. Thus, 

a vast amount of potentially useful and widely accessible methods have gone unexplored. 

Lastly, there are discrepancies between accuracy metrics across studies, making it difficult 

to determine which methods are truly versatile and successful.  

6.3 Scaling Problems: Study Area Size and Landslide Densities  

 The scale problem present in this study is not unique and has been observed in a 

myriad of contexts. The problem is officially known as the modifiable areal unit problem 

(MAUP). MAUP arises when choosing different scales at which to analyze data (Hay et 

al., 2003). Results for various analyses tend to vary based on the scale chosen to observe 

the phenomenon and the way the data is aggregated. Object-based methods are sometimes 

suggested as a solution to MAUP as objects, rather than pixels, may be less sensitive to 

MAUP (Hay and Castilla, 2006). However, in our study, the MAUP still seems to arise 
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when performing our classification at a larger scale, which is not a problem with 

aggregation but rather, scale chosen to apply the method. The impact of scale has been 

observed in similar landslide detection studies as well but is never explicitly addressed. For 

example, in Li et al (2016) their larger study area generally underperforms compared to the 

smaller subareas. To make matters worse, landslide detection studies have focused on 

developing methods at scales not representative of the larger landslide impacted regions. 

This suggests that the decrease in accuracy attributed to increasing the study area size may 

occur when implementing all methods proposed in the literature.  

  Not only have methods been developed in small areas, they have also been 

developed in areas that experience a small number of landslides that may not be 

representative of the larger scale landslide event.  In Figure 15 study areas and number of 

landslides are compared for a variety of studies.  This figure illustrates how most studies 

to date have developed methods in small training areas and/or in areas that experienced a 

small number of landslides. Our study reveals this bias and suggests that more case studies 

are needed that apply methods to large landslide events. Additionally, detailed studies 

should be undertaken determining if there is an optimal study area scale to apply methods 

to and determining if automatic methods could benefit by applying methods in a piecewise 

approach.  

6.4 Segmentation and Thresholding 

 Segmentation and thresholding are fundamental steps in object-based image 

classification as they cluster the target image(s) into more easily discernible objects. 

Thresholding operations simply divide images into binary classes that can be used to filter 

out appropriate areas within the image. Segmentation operations seek to delineate 
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homogeneous clusters within an image. Since thresholding operations seek to segment 

images, the following section will use the term segmentation to refer to both operations, 

for the sake of simplicity.  

 

Figure 15: Comparison of number of landslides mapped within study areas across studies, 

shown on a log-log plot. Watershed and training site data points shown in plot. 

 Segmentation operations are used in a myriad of image processing studies and for 

a wide variety of applications.  Unfortunately, within landslide detection studies, it is 

common practice to use software that segments images using a proprietary algorithm. This 

trend  seems to have began in 2000, when the eCognition software was developed for 

remote sensing applications. Before this time, there were not many published papers on 

segmentation techniques performed on remote sensing images (Dey et al., 2010). Since 
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then, studies have been published describing optimal metrics and workflows established 

using the propriety segmentation algorithm in eCognition. These methods and proposed 

optimal parameters, which are available only in the software, are inaccessible to those 

without the eCognition software (Wulder et al., 2008; Hay et al., 2003). Of the studies 

compiled in Table A1 in the appendix, six of 13 use the proprietary segmentation algorithm 

leaving a plethora of more widely accessible methods unexplored. Thus, there is potential 

for accessible segmentation methods to be further explored in the context of automatic 

landslide detection.  

For example, we use the mean-shift segmentation algorithm in our study. No other 

landslide detection studies have used this algorithm, so there is no clear analysis on the 

impact this segmentation algorithm and chosen parameters may have on classification 

output. Future studies could focus on exploring modifications that could be made to the 

mean-shift segmentation algorithm in the context of landslide detection. Additionally, 

other segmentation algorithms, like those summarized in Dey et al (2010), could also be 

carefully explored to determine their impact on accuracies. The most useful pursuit would 

be to compare the results of the classification outputs (in the context of landslide detection) 

using a variety of segmentation algorithms and closely analyzing and quantifying their 

performance to guide further studies. Additionally, different inputs into the machine 

learning classifier could be explored for their effectiveness as well (such as slope, aspect 

or other topographic signatures) (Lyons et al., 2014). Results might suggest that one 

segmentation algorithm or certain topographic data  may not be suited for all landscapes 

but instead certain landscapes. Only a detailed analysis would reveal this and allow future 

developers and mappers to make informed decisions on which segmentation algorithms to 
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implement. Evaluation metrics, which are necessary for this kind of analysis, are discussed 

in the following section. 

6.5 Accuracy Assessments 

 To evaluate the effectiveness of proposed methods, standard accuracy assessments 

should be performed across all studies to make valid comparisons and informed decisions. 

Unfortunately, a careful review of accuracy assessments across automatic landslide 

detection studies reveals that metrics differ widely by study.  Accuracy metrics used and 

reported accuracies across studies are shown in Table A1, located in the appendix. Below, 

these findings are briefly summarized, followed by a description of accuracy metrics 

proposed in this study.  

 Across 13 automatic landslide detection studies, seven unique evaluations were 

found to have been used. Metrics include the Users and Producers Accuracy, Errors of 

Commission and Omission, Completeness, Correctness and Quality, Recall and Precision 

as well as simple area overlap/intersection evaluations. With the large amount of variation 

in the metrics, the reported accuracies are nearly impossible to compare against one 

another. More consistency in how performance is evaluated in future studies will facilitate 

effective comparison and determination of which methods are successful. Below, we 

discuss why we advocate for more broad use of the metrics we applied in this study.  

 For landslide inventories, it is important that the location and the area of the 

landslides are mapped accurately. Thus, it is important to determine the effectiveness of 

methods at both recognizing landslides and mapping them in their proper locations, as well 

as being able to accurately capture the area of the landslide. So, any accuracy metrics 
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should measure the success of the inventory in regard to these two factors. For these two 

factors, it is also important to determine the amount that landslides are overestimated and 

underestimated. When mapping a large amount of landslides, it is nearly impossible to 

manually count the number of true positives, false positives and false negatives manually. 

Effectively determining these counts requires an automated method. In our study, we use 

the IOU metric to determine, on an individual basis, landslides with an appropriate 

agreement with the reference inventory, to determine true positives. Then, once this is 

determined, we determine recall and precision for the inventory in regard to recognition 

and extent. This method is proposed as it determines the effectiveness in recognizing 

landslides as well as their extent. It also evaluates true positives for a large inventory on an 

induvial basis thus providing a more robust threshold for determining true positives. The 

routine was written as a python script that can be used in ArcMap. The code and GitHub 

link to the python script is available in the Appendix (Figure A3). 

7. CONCLUSIONS 

 

In regard to recognition of landslides, our method achieved recall and precision 

values of 18% and 17% in the training site and 12% and 7% in the watershed. In regard to 

the extent of landslides, our method achieved recall and precision values of 20% and 9% 

in the training site and 10% and 2% in the watershed. Our work reveals that currently there 

will be a deficiency in landslide inventories created using the Sentinel-2 data if methods 

are not further developed and appropriately evaluated. One caveat is that accuracies may 

be higher in regions where the landslide triggering mechanism does not result in tree- shed  

(i.e. earthquake triggered landslides). In this case there may be less features that can be 
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mistakenly identified as landslides.  Additionally, the methods proposed here would only 

perform well in highly vegetated landscapes. 

The Sentinel-2 imagery was successful at mapping some landslides but was not 

effective at capturing smaller landslides due to the spatial resolution of the data. The large 

amount of false positives detected were attributed to over detecting along the edges of the 

river channels and urban areas as well as in areas that experienced significant tree-shed 

after Hurricane Maria. Future work could thus focus on more accurately eliminating areas 

along the river banks so as to reduce false positives. In this case, care must be taken so as 

not to exclude those landslides that occur along the banks. Focused work on delineating 

landslides in noisy Sentinel-2 images could also be done to reduce the false positives 

detected in areas impacted by hurricanes. However, this may not be an issue in landscapes 

unlike Puerto Rico.  

Additionally, there is an overall decrease in accuracy when applying methods at a 

larger scale and when attempting to map a large number of landslides. This decrease in 

accuracy is shown in this study and previous work (Li et al., 2016). Since previous studies 

have focused on developing methods in small regions this highlights the need to shift to 

developing methods in study areas that are more representative of the landslide events. 

Current methods, when applied to map landslides at a more realistic scale, may result in 

drastically lower accuracies than previously reported in the literature.  

In previous work, there is no standard evaluation method used, making it difficult 

to compare the effectiveness of proposed methods across studies. We propose using the 

recall and precision evaluation metrics to determine the accuracy of methods in regard to 

identifying individual landslides as well as their areas. The metrics proposed can be used 
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in studies where large landslide inventories need to be assessed, as our method for 

determining true positives (on an individual basis) is also automatically derived using the 

IOU metric. 

Recommendations for future work involves further exploration of segmentation 

and thresholding algorithms in a more methodological approach. This could better inform 

future users of the best practices for automatic landslide detection in differing 

environments. These studies should be carried out in study areas that are more 

representative, in regard to scale and landslide density, of actual landslide events and use 

open source segmentation algorithms. Evaluation metrics should also become standardized 

as well. This should all be done with the goal of shifting method development in a fashion 

that will better inform future mappers. In doing so, the community can then begin to see 

the benefits of being able to automatically create landslide inventories. Essentially, once 

geoscientists have the ability to make more informed decisions on which methods to apply 

in their regions of interest, the methods can become more widely used.  
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APPENDIX 

Figure A1: Google Earth Engine code used to download Sentinel-2 imagery to create 

NDVI and change detection maps. https://github.com/sabrinanicc/GEE-NDVI-Change-

Detection 

1. //Create Desired Extent by Drawing Geometry    
2. //Import Post-Event Imagery and Filer by Cloud Cover if Desired 
3. var image = ee.ImageCollection('COPERNICUS/S2')   
4.    //.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10))   
5.   .filterDate('2017-11-01', '2017-11-05')   
6.   .filterBounds(geometry)   
7. print(image)   
8. var medianpixels = image.median()   
9. var medianpixelsclipped = medianpixels.clip(geometry).divide(1000

0)   
10. Map.addLayer(medianpixelsclipped, {bands: ['B4', 'B3', 'B2'

], max:0.3}, 'Sent-2 After Maria' )   
11. Map.centerObject(medianpixelsclipped, 9);   
12.    
13. //Create Post-NDVI Map   
14. var ndvi = medianpixelsclipped.normalizedDifference(['B4', 

'B8']);   
15. Map.addLayer(ndvi, {min: -

1, max: 1, palette: ['green', 'white']}, 'NDVI After Maria');   
16.    
17. // Import Pre-Event Imagery   
18. var image3 = ee.ImageCollection('COPERNICUS/S2')   
19.    //.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10))   
20.   .filterDate('2017-04-05', '2017-04-09')   
21.   .filterBounds(geometry)   
22. print(image3)   
23. var medianpixels3 = image3.median()   
24. var medianpixelsclipped3 = medianpixels3.clip(geometry).div

ide(10000)   
25. Map.addLayer(medianpixelsclipped3, {bands: ['B4', 'B3', 'B2

'], max:0.3}, 'Sent-2 Before Maria' )   
26. Map.centerObject(medianpixelsclipped3, 9);   
27.    
28. //Create Pre-NDVI Map   
29. var ndvi3 = medianpixelsclipped3.normalizedDifference(['B4'

, 'B8']);   
30. Map.addLayer(ndvi3, {min: -

1, max: 1, palette: ['green', 'white']}, 'NDVI Before Maria');   
31.    
32. // Create NDVI Difference Map   
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33. var diff = ndvi3.subtract(ndvi);   
34. Map.addLayer(diff,   
35.              {min: -

2, max: 2, palette: ['white', 'blue']},   
36.              'NDVI Difference');               
37.                 
38. //Uncomment this to export the image, specifying scale and 

region.Region can be imported geometry or watershed.    
39. //Export.image.toDrive({   
40.   //image: diff,   
41.  // description: 'Difference Map',   
42.  // scale: 10,   
43.   //region: geometry   
44. //});  

 

 

Figure A2: Thresholding and Segmentation Code. 

https://github.com/sabrinanicc/ls_thresholdandsegmentation 

1. import arcpy   
2. from arcpy import env   
3. from arcpy.sa import *   
4.    
5.    
6.    
7. #Allow output file to overwrite any existing file of the same nam

e   
8. arcpy.env.overwriteOutput = True   
9. arcpy.CheckOutExtension("Spatial")   
10. #Inputs   
11. arcpy.env.workspace = arcpy.GetParameter(0)   
12. NDVICD= arcpy.GetParameter(1)   
13. DEM=arcpy.GetParameter(2)   
14. Post_Event= arcpy.GetParameter(3)   
15. classes = 3   
16.    
17. #Outputs   
18. OutIso = 'Iso.tif'   
19. Clip_CD='Clip_CD.tif'   
20. inSQLClause1 = "Value > 15"   
21. inSQLClause2 = "Value <> 2"   
22. IsoEx = "IsoEx.tif"   
23. Slope1 = 'SlopeMap.tif'   
24. SlopeThresh = 'Slope_Thresh.tif'   
25. Clip_Im = 'Post_Fin_Clip.tif'   
26. Seg= 'SEGMENTED_CLIPPED_IMAGE.tif'   
27. dsc = arcpy.Describe(Post_Event)   
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28. #Create Slope Map   
29. outMeasurement = "DEGREE"   
30. zFactor = "1"   
31. outSlope = Slope(DEM, outMeasurement, zFactor)   
32. outSlope.save(Slope1)   
33.    
34. #Remove Slopes Less than 15   
35. RemoveSlopes = ExtractByAttributes(Slope1, inSQLClause1)   
36. RemoveSlopes.save(SlopeThresh)   
37.    
38. #Clip Change Detection, Removing Slopes   
39. arcpy.gp.ExtractByMask_sa(NDVICD,   
40.                           SlopeThresh,   
41.                           Clip_CD)   
42.    
43. #Change Detection Clustering   
44. outUnsupervised = IsoClusterUnsupervisedClassification(Clip

_CD,classes)   
45. outUnsupervised.save(OutIso)   
46. attExtract = ExtractByAttributes(OutIso, inSQLClause2)   
47. attExtract.save(IsoEx)   
48.    
49. #Clip Post Event Image   
50. outExtractByMask = ExtractByMask(Post_Event, IsoEx)   
51. outExtractByMask.save(Clip_Im)   
52.    
53. #Segment Image   
54. arcpy.gp.SegmentMeanShift_sa(Clip_Im,   
55.                              Seg,   
56.                              "20",   
57.                              "20",   
58.                              "5",   
59.                              "")   

 

Figure A3: Accuracy Assessment Code. https://github.com/sabrinanicc/ls_eval 

1. ## =======================SETTING UP PARAMETERS=================================
== ##   

2.    
3. # Import necessary modules   
4. from __future__ import division   
5. import arcpy   
6. from arcpy.sa import *   
7. arcpy.CheckOutExtension("Spatial")   
8. #Allow output file to overwrite any existing file of the same name   
9. arcpy.env.overwriteOutput = True   
10.    
11. #Inputs (shapefiles of the automatically and manually derived inventories)   
12. automatic = arcpy.GetParameter(0)   
13. manual = arcpy.GetParameter(1)   
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14. arcpy.env.workspace = arcpy.GetParameter(2)   
15.    
16. #Outputs (shapefiles created in process to determine accuracy)   
17. intersect = "Intersection.shp"   
18. merge = "Merge.shp"   
19. dissolve = "Dissolve.shp"   
20. spatialjoin = "Spatial_Join.shp"   
21.    
22. #Sets spatial reference to that of the input shapefile.   
23. dsc = arcpy.Describe(manual)   
24. coord_sys = dsc.spatialReference   
25.    
26.    
27. ## ==========================ACCURACY ASSESMENT=================================

== ##   
28.    
29. #Intersect the Manual and Automatic Inventory Shapefiles   
30. arcpy.Intersect_analysis(in_features=[automatic, manual],   
31.                          out_feature_class=intersect,   
32.                          join_attributes="ALL",   
33.                          output_type="INPUT")   
34.    
35. #Determine Area of Intersection (Create an 'Area Field')   
36. arcpy.AddField_management (intersect, "Area_Int", "DOUBLE", "", "", "", "NULLABL

E", "")   
37. geometryField = arcpy.Describe(intersect).shapeFieldName    
38. cursor = arcpy.UpdateCursor(intersect)   
39. for row in cursor:   
40.     AreaValue = row.getValue(geometryField).area    
41.     row.setValue("Area_Int",AreaValue)    
42.     cursor.updateRow(row)   
43. del row, cursor   
44.    
45. #Merge the Manual Inventory and Automatic Inventory Shapefiles   
46. arcpy.Merge_management(inputs=[automatic,manual],   
47.                        output= merge)   
48.    
49. #Dissolve the Merged Shapefile.   
50. arcpy.Dissolve_management(in_features=merge,   
51.                           out_feature_class= dissolve,   
52.                           dissolve_field="",   
53.                           statistics_fields="",   
54.                           multi_part="SINGLE_PART",   
55.                           unsplit_lines="UNSPLIT_LINES")   
56.    
57. #Determine the Area of the Union (Create an 'Area Field')   
58. arcpy.AddField_management (dissolve, "Area_Diss", "DOUBLE", "", "", "", "NULLABL

E", "")   
59. geometryField = arcpy.Describe(dissolve).shapeFieldName    
60. cursor = arcpy.UpdateCursor(dissolve)   
61. for row in cursor:   
62.     AreaValue = row.getValue(geometryField).area    
63.     row.setValue("Area_Diss",AreaValue)    
64.     cursor.updateRow(row)   
65. del row, cursor #Clean up cursor objects   
66.    
67.    
68.    
69. #Create a spatial join of the intersection and the dissolve.   
70.    
71. fieldmappings = arcpy.FieldMappings()   
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72. fieldnamestosum = ["Area_Int"]   
73. fieldmappings.addTable(dissolve)   
74. fieldmappings.addTable(intersect)   
75.    
76. keepers = ["Area_Diss", "Area_Int"]   
77. for field in fieldmappings.fields:   
78.     if field.name not in keepers:   
79.         fieldmappings.removeFieldMap(fieldmappings.findFieldMapIndex(field.name)

)   
80.    
81. for fieldName in fieldnamestosum:     
82.      
83.        
84.     fieldIndex = fieldmappings.findFieldMapIndex(fieldName)         
85.     fieldMap = fieldmappings.getFieldMap(fieldIndex)   
86.     fieldMap.mergeRule = 'Sum'      
87.     fieldmappings.replaceFieldMap(fieldIndex, fieldMap)     
88.    
89.           
90. arcpy.SpatialJoin_analysis(target_features=dissolve,   
91.                            join_features=intersect,   
92.                            out_feature_class=spatialjoin,   
93.                            join_operation="JOIN_ONE_TO_ONE",   
94.                            join_type="KEEP_ALL",   
95.                            field_mapping = fieldmappings,   
96.                            match_option="CONTAINS",   
97.                            )   
98.    
99. #Create a new column in the spatially joined file.   
100. arcpy.AddField_management (spatialjoin, "IoU", "DOUBLE", "", "", "", "NU

LLABLE", "")   
101.    
102. #Calulate the IoU value.    
103. arcpy.CalculateField_management(in_table=spatialjoin,   
104.                                 field="IoU",   
105.                                 expression="[Area_Int] / [Area_Diss]",   
106.                                 expression_type="VB",   
107.                                 code_block="")   
108.    
109. #Count how many landslides are above threshold IoU VALUE.    
110.    
111. fields = "IoU"   
112. count = 0   
113. with arcpy.da.SearchCursor(spatialjoin, fields) as cursor:   
114.     for row in cursor:   
115.         if row[0] > .20:   
116.             count += 1   
117.    
118. #Count True Positives          
119. TP = count   
120. #Count how many landslides in Manual Inventory    
121. NL_MM = int(arcpy.GetCount_management(manual).getOutput(0))   
122. #Count how many landslides are in Automatic Inventory.    
123. NL_AM = int(arcpy.GetCount_management(automatic).getOutput(0))   
124. #Determine False Negatives(TP-NL_MM).    
125. FN = NL_MM - TP   
126. #Determine False Positives.(TP-NL_AM).    
127. FP = NL_AM - TP   
128. #Determine Recall. (TP/(TP+FN)*100)   
129. Recall = (TP/(TP+FN))*100   
130. #Determine Precision. (TP/(TP+FP)*100)   
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131. Precision = (TP/(TP+FP))*100   
132.    
133. # Sum the area of manual inventory landslides.    
134. summed_total = 0   
135. with arcpy.da.SearchCursor(manual, "Shape_Area") as cursor:   
136.     for row in cursor:   
137.         summed_total = summed_total + row[0]   
138.            
139. Area_M = summed_total   
140.    
141. # Sum the area of automatic inventory landslides.    
142. summed_total_A = 0   
143. with arcpy.da.SearchCursor(automatic, "Shape_Area") as cursor:   
144.     for row in cursor:   
145.         summed_total_A = summed_total_A + row[0]   
146.            
147. Area_A = summed_total_A   
148.    
149.    
150. #Sum the area of true positves by summing areas in auto mapping above th

reholds.   
151. field1 = "IoU"   
152. field2 = "Area_Int"   
153. summed_total2 = 0   
154. with arcpy.da.SearchCursor(spatialjoin, [field1, field2]) as cursor:   
155.     for row in cursor:   
156.         if row[0] > .30:   
157.             summed_total2 = summed_total2 + row[1]   
158.            
159.    
160. Area_TP = summed_total2   
161.    
162.    
163. #False Negatives. (Area_FN = Area_M - Area_TP)   
164. Area_FN = Area_M - Area_TP   
165. #False Positives. (Area_FP = Area_A - Area_TP)   
166. Area_FP = Area_A - Area_TP   
167. #Recall. (Area_TP/Area_TP + Area_FN)   
168. Area_Recall = (Area_TP/(Area_TP + Area_FN))*100   
169. #Precision. (Area_TP/Area_TP + Area_FP)   
170. Area_Precision = (Area_TP/(Area_TP + Area_FP))*100   
171.    
172.    
173.    
174. ## ================PRINTS ACCURACY VALUES TO RESULTS WINDOW ============

==== ##   
175.    
176. print arcpy.AddMessage('====RECOGNITION ACCURACY====')   
177. print arcpy.AddMessage('Recall: ')   
178. print arcpy.AddMessage(Recall)   
179. print arcpy.AddMessage('Precision: ')   
180. print arcpy.AddMessage(Precision)   
181.    
182.    
183. print arcpy.AddMessage('====EXTENT ACCURACY====')   
184. print arcpy.AddMessage('Recall: ')   
185. print arcpy.AddMessage(Area_Recall)   
186. print arcpy.AddMessage('Precision: ')   
187. print arcpy.AddMessage(Area_Precision)   
188.    
189.    
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190.    
191. ## =====================================================================

========== ##   

 

Table A1: Compilation of accuracy metrics and reported accuracies used in other studies. 

 

Source Metrics Used Reported Accuracies 

Barlow et al., 

2003 

Error of Omission =
False Negative

False Negative + True Positive
 

 

Error of Comission =
False Positives

False Positives + True Positive
 

EO= 75% EC=77.5% 

Barlow et al., 

2006 

Error of Omission =
False Negative

False Negative + True Positive
 

 

Error of Comission =
False Positives

False Positives + True Positive
 

EO =90%,80%,60% 

EC=80%,80%,80% 

Daneels et 

al., 2007 

Percent Recovered Area, Omitted Area, Commission 

Error 
60%, 40%, 45% 

Martha et al., 

2010 

Recognition = True Positives/ Total Landslides 

Classification = Correctly Recognized and Classified by 

Landslide Type/ Total Landslides 

Error of Omission =
False Negative

False Negative + True Positive
 

 

Error of Comission =
False Positives

False Positives + True Positive
 

Number of Landslides: 

[Recognition =76.4%, 

Classification = 69.1%, 

EO=23.6%, EC=56.4%] 

Extent of Landslides: 

[Recognition =69.9% 

Classification = 69.5%, 

EO=3.7%, EC=9.2%] 

Mondini et 

al., 2011a 

Area Under Receiver Operating Characteristic Curve 

(AROC) 

Training Area:[ AROC 

>860] 

Validation Area:[ AROC 

>.800] 

Mondini et 

al., 2011b 

Percentage of automatically detected landslides that 

intersect manually detected landslides. 
57.43% 

Stumpf and 

Kerle, 2011 

Users Accuracy =
True Positive

False Positive + True Positive
 

 

Producers Accuracy =
True Positive

True Positive + False Negative
 

 

F − Score =
2 ∗ Users Accuracy ∗ Producers Accuracy

Users Accuracy + Producers Accuracy
 

 

Object-Detection:[F-

Scores = 89.7%, 80.5%, 

73% ,76.5%] Areas:[F-

Scores = 87.1%, 81.2%, 

73.7% and 77.9%] 

Lu et al., 

2011 

Users Accuracy =
True Positive

False Positive + True Positive
 

Producers Accuracy =
True Positive

True Positive + False Negative
 

Number of 

Landslides:[UA=75.9%.P

A=69.9%]Spatial 

Extent:[UA=81.8%,PA=69

.5%] 
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Li et al., 

2016a 

Completeness =
𝑃𝑙𝑚

𝑃𝑟

 , Correctness =
𝑃𝑙𝑚

𝑃𝑙

, Quality

=
𝑃𝑙𝑚

𝑃𝑙 + 𝑃𝑟𝑢𝑚

 

Completeness = 73.6%, 

Correctness = 93.8% and 

Quality = 67.1% 

Li et al., 

2016b 

Completeness =
𝑃𝑙𝑚

𝑃𝑟

 , Correctness =
𝑃𝑙𝑚

𝑃𝑙

, Quality

=
𝑃𝑙𝑚

𝑃𝑙 + 𝑃𝑟𝑢𝑚

 

Not Explicitly Reported 

Qin et al., 

2018 

Completeness =
𝑃𝑙𝑚

𝑃𝑟

 , Correctness =
𝑃𝑙𝑚

𝑃𝑙

, Quality

=
𝑃𝑙𝑚

𝑃𝑙 + 𝑃𝑟𝑢𝑚

 

Completeness= 95.93% 

Correctness= 88.03% 

Quality =76.08% 

Yong Lv et 

al., 2018 

Completeness =
𝑃𝑙𝑚

𝑃𝑟

 , Correctness =
𝑃𝑙𝑚

𝑃𝑙

, Quality

=
𝑃𝑙𝑚

𝑃𝑙 + 𝑃𝑟𝑢𝑚

 

Completeness, Correctness 

and Quality Respectively 

for each study 

area:[89.57%, 90.71%, 

82.04%], 

[90.01%,80.15%,73.61%], 

[95.75%,60.06%,58.50]  

[92.25%,89.05%,82.85%] 

Ghorbanzade

h et al., 2019 

Recall =
True Positive

True Positive + False Positive
 

 

Precision =
True Positive

True Positive + False Negative
 

 

F1 − Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
 

 

mIOU = Mean of IOU values 

F1 Measure  

=87.8% 

mIOU = 78.26% 

 

Table A2: Threshold points used to create power-law fit seen in figures 12 and 13. 

 

 

 

 

 

 

 

 

Minimum Area Value Minimum Volume Value 

Training Site Auto 3016.9 Training 

Site 

Auto 2465.6 

Manual 608 Manual 517.4 

Watershed Auto 11999 Watershed Auto 8406 

Manual 1803.4 Manual 1532.7 



52 

 

 

 

LIST OF REFERENCES 

Aguilar, M.A., Aguilar, F.J., Guirado, E., Betlej, M., Cichon, P., Nemmaoui, A., Vallario, 

A., Parente, C., 2016. ASSESSMENT OF MULTIRESOLUTION 

SEGMENTATION FOR EXTRACTING GREENHOUSES FROM 

WORLDVIEW-2 IMAGERY XLI, 12–19. https://doi.org/10.5194/isprsarchives-

XLI-B7-145-2016 

Barlow, J., Franklin, S., Martin, Y., 2006. High Spatial Resolution Satellite Imagery , 

DEM Derivatives , and Image Segmentation for the Detection of Mass Wasting 

Processes 72, 687–692. 

Barlow, J., Martin, Y., Franklin, S.E., 2003. Detecting translational landslide scars using 

segmentation of Landsat ETM + and DEM data in the northern Cascade Mountains , 

British Columbia 29, 510–517. 

Bawiec, W. J. (1998). Geology, geochemistry, geophysics, mineral occurrences, and 

mineral resource assessment for the commonwealth of Puerto Rico. 

Bessette-Kirton, E.K., Cerovski-Darriau, C., Schulz, W.H., Coe, J.A., Kean, J.W., Godt, 

J.W., Thomas, M.A., Hughes, K.S., 2019. Landslides Triggered by Hurricane Maria: 

Assessment of an Extreme Event in Puerto Rico. GSA Today 29, 4–10. 

https://doi.org/10.1130/gsatg383a.1 



53 

 

 

Blaschke, T., 2010. ISPRS Journal of Photogrammetry and Remote Sensing Object based 

image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65, 2–16. 

https://doi.org/10.1016/j.isprsjprs.2009.06.004 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

Burrough, P. A., McDonnell, R., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of 

geographical information systems. Oxford university press. 

Cardinali, M., Galli, M., Guzzetti, F., Ardizzone, F., Reichenbach, P., Bartoccini, P., 

2006. Rainfall induced landslides in December 2004 in south-western Umbria, 

central Italy: Types, extent, damage and risk assessment. Nat. Hazards Earth Syst. 

Sci. 6, 237–260. https://doi.org/10.5194/nhess-6-237-2006 

Clauset, A., Shalizi, C.R., Newman, M.E.J., 2009. Power-law distributions in empirical 

data. SIAM Rev. 51, 661–703. https://doi.org/10.1137/070710111 

Coe, J.A., Bessette-Kirton, E.K., Geertsema, M., 2018. Increasing rock-avalanche size 

and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 

to 2016 Landsat imagery. Landslides 15, 393–407. https://doi.org/10.1007/s10346-

017-0879-7 

Comaniciu, D., Meer, P., 2002. Mean shift: A robust approach toward feature space 

analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619. 

https://doi.org/10.1109/34.1000236 



54 

 

 

Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, 

M.J., Chen, T.C., Milliman, J., Stark, C.P., 2004. Earthquake-triggered increase in 

sediment delivery from an active mountain belt. Geology 32, 733–736. 

https://doi.org/10.1130/G20639.1 

Danneels, G., Pirard, E., 2007. Automatic landslide detection from remote sensing 

images using supervised classification methods. 

https://doi.org/10.1109/IGARSS.2007.4423479 

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC 

curves. Proceedings of the 23rd International Conference on Machine Learning, 

233–240. 

Deering, D.W., Haas, R.H., 1980. USING LANDSAT DIGITAL DATA FOR 

ESTIMATING GREEN BIOMASS. NASA Tech. Memo. 80727. 

Densmore, A.L., Hovius, N., n.d. Topographic fingerprints of bedrock landslides 371–

374. 

Dey, V., Zhang, Y., Zhong, M., Engineering, G., 2010. A Review on Image 

Segmentation Techniques With Remote Sensing Perspective. ISPRS TC VII Symp. 

– 100 Years ISPRS XXXVIII, 31–42. 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., 

Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., 

Bargellini, P., 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES 



55 

 

 

Operational Services. Remote Sens. Environ. 120, 25–36. 

https://doi.org/10.1016/j.rse.2011.11.026 

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, P., 2008. Comparing 

landslide inventory maps. Geomorphology 94, 268–289. 

https://doi.org/10.1016/j.geomorph.2006.09.023 

Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., Aryal, J., 2019. 

Evaluation of Different Machine Learning Methods and Deep-Learning 

Convolutional Neural Networks for Landslide Detection. 

https://doi.org/10.3390/rs11020196 

Guzzetti, F., Malamud, B. D., Turcotte, D. L., & Reichenbach, P. (2002). Power-law 

correlations of landslide areas in central Italy. Earth and Planetary Science Letters, 

195(3), 169–183. https://doi.org/https://doi.org/10.1016/S0012-821X(01)00589-1 

Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T., 

2012. Landslide inventory maps: New tools for an old problem. Earth-Science Rev. 

112, 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001 

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering 

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 

28(1), 100–108. 



56 

 

 

Hay, G. J., Marceau, D. J., Dube, P., & Bouchard, A. (2001). A multiscale framework for 

landscape analysis: object-specific analysis and upscaling. Landscape Ecology, 

16(6), 471–490. 

 Hay, G.J., Blaschke, T., Marceau, D.J., Bouchard, A., 2003. A comparison of three 

image-object methods for the multiscale analysis of landscape structure. ISPRS J. 

Photogramm. Remote Sens. 57, 327–345. https://doi.org/10.1016/S0924-

2716(02)00162-4 

Hay, G.J., Castilla, G., 2006. OBJECT-BASED IMAGE ANALYSIS: STRENGTHS, 

WEAKNESSES, OPPORTUNITIES AND THREATS (SWOT) G.J. Int. Arch. 

Photogramm. Remote Sens. Spat. Inf. Sci. 36, 4. 

Hewitt, K., 1998. Catastrophic landslides and their effects on the Upper Indus streams, 

Karakoram Himalaya, northern Pakistan. Geomorphology 26, 47–80. 

https://doi.org/10.1016/S0169-555X(98)00051-8 

Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt 

derived by landslide mapping. Geology, 25(3), 231–234. 

Hughes, K.S., Bayouth García, D., Martínez Milian, G.O., Schulz, W.H., and Baum, 

R.L., 2019, Map of slope-failure locations in Puerto Rico after Hurricane María: 

U.S. Geological Survey data release, https://doi.org/10.5066/P9BVMD74. 



57 

 

 

Keellings, D., & Hernández Ayala, J. J. (2019). Extreme rainfall associated with 

Hurricane Maria over Puerto Rico and its connections to climate variability and 

change. Geophysical Research Letters, 46(5), 2964–2973. 

 Keyport, R.N., Oommen, T., Martha, T.R., Sajinkumar, K.S., Gierke, J.S., 2018. A 

comparative analysis of pixel- and object-based detection of landslides from very 

high-resolution images. Int. J. Appl. Earth Obs. Geoinf. 64, 1–11. 

https://doi.org/10.1016/j.jag.2017.08.015 

 Klar, A., Aharonov, E., Kalderon-Asael, B., Katz, O., 2011. Analytical and observational 

relations between landslide volume and surface area. J. Geophys. Res. Earth Surf. 

116, 1–10. https://doi.org/10.1029/2009JF001604 

Korup, O., Densmore, A.L., Schlunegger, F., 2010. The role of landslides in mountain 

range evolution. Geomorphology 120, 77–90. 

https://doi.org/10.1016/j.geomorph.2009.09.017 

Larsen, M. C. (2012). Landslides and sediment budgets in four watersheds in eastern 

Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds 

in eastern Puerto Rico. In S. F. Murphy & R. F. Stallard (Eds.), Professional Paper. 

https://doi.org/10.3133/pp1789F 

Larsen, M., & Torres Sanchez, A. J. (1998). The frequency and distribution of Larsen, 

M.C., Torres Sa recent landslides in three montane tropical regions of Puerto Rico. 

Geomorphology, 24309e331, 309–331. 



58 

 

 

Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., & Hilton, R. G. (2014). 

Seismic mountain building: Landslides associated with the 2008 Wenchuan 

earthquake in the context of a generalized model for earthquake volume balance. 

Geochemistry, Geophysics, Geosystems, 15(4), 833–844. 

Li, X., Cheng, X., Chen, W., Chen, G., Liu, S., 2015. Identification of forested landslides 

using lidar data, object-based image analysis, and machine learning algorithms. 

Remote Sens. 7, 9705–9726. https://doi.org/10.3390/rs70809705 

Li, Z., Shi, W., Lu, P., Yan, L., Wang, Q., Miao, Z., 2016. Remote Sensing of 

Environment Landslide mapping from aerial photographs using change detection-

based Markov random field. Remote Sens. Environ. 187, 76–90. 

https://doi.org/10.1016/j.rse.2016.10.008 

Li, Z., Shi, W., Myint, S.W., Lu, P., Wang, Q., 2016. Remote Sensing of Environment 

Semi-automated landslide inventory mapping from bitemporal aerial photographs 

using change detection and level set method. Remote Sens. Environ. 175, 215–230. 

https://doi.org/10.1016/j.rse.2016.01.003 

Lim, Y.K., Schubert, S.D., Kovach, R., Molod, A.M., Pawson, S., 2018. The Roles of 

Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season. Sci. 

Rep. 8, 1–10. https://doi.org/10.1038/s41598-018-34343-5 

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., 

Cadau, E., Gascon, F., 2016. Sentinel-2 SEN2COR: L2A processor for users. Eur. 

Sp. Agency, (Special Publ. ESA SP SP-740, 9–13. 



59 

 

 

Lu, P., Stumpf, A., Kerle, N., Casagli, N., 2011. Object-Oriented Change Detection for 

Landslide Rapid Mapping 8, 701–705. https://doi.org/10.1109/LGRS.2010.2101045 

Lv, Z.Y., 2018. Landslide Inventory Mapping From Bitemporal High-Resolution Remote 

Sensing Images Using Change Detection and Multiscale Segmentation 11, 1520–

1532. https://doi.org/10.1109/JSTARS.2018.2803784 

 Lyons, N.J., Mitasova, H., Wegmann, K.W., 2014. Improving mass-wasting inventories 

by incorporating debris flow topographic signatures. Landslides 11, 385–397. 

https://doi.org/10.1007/s10346-013-0398-0 

Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004. Landslide 

inventories and their statistical properties. Earth Surf. Process. Landforms 29, 687–

711. https://doi.org/10.1002/esp.1064 

Marc, O., Hovius, N., 2015. Amalgamation in landslide maps: Effects and automatic 

detection. Nat. Hazards Earth Syst. Sci. 15, 723–733. https://doi.org/10.5194/nhess-

15-723-2015 

Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., & Kumar, K. V. (2010). 

Characterising spectral, spatial and morphometric properties of landslides for semi-

automatic detection using object-oriented methods. Geomorphology, 116(1–2), 24–

36. 

 Martha, T.R., Kerle, N., Westen, C.J. Van, Jetten, V., Kumar, K.V., 2011. Segment 

Optimization and Data-Driven Thresholding for Knowledge-Based Landslide 



60 

 

 

Detection by Object-Based Image Analysis. IEEE Trans. Geosci. Remote Sens. 49, 

4928–4943. https://doi.org/10.1109/TGRS.2011.2151866 

Martinuzzi, S., Gould, W. A., & Gonzalez, O. M. R. (2007). Land development, land use, 

and urban sprawl in Puerto Rico integrating remote sensing and population census 

data. Landscape and Urban Planning, 79(3-4), 288-297. 

 Masson, D. G., & Scanlon, K. M. (1991). The neotectonic setting of Puerto Rico. 

Geological Society of America Bulletin, 103(1), 144–154. 

Mondini, A. C., Chang, K.-T., & Yin, H.-Y. (2011). Combining multiple change 

detection indices for mapping landslides triggered by typhoons. Geomorphology, 

134(3), 440–451. https://doi.org/https://doi.org/10.1016/j.geomorph.2011.07.021 

 Mondini, A.C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., Ardizzone, F., 

2011. Remote Sensing of Environment Semi-automatic recognition and mapping of 

rainfall induced shallow landslides using optical satellite images. Remote Sens. 

Environ. 115, 1743–1757. https://doi.org/10.1016/j.rse.2011.03.006 

Monroe, W. H. (1975). Geology of the middle Tertiary formations of Puerto Rico (No. 

75-313). US Geological Survey,. 

Monroe, W. H. (1976). The karst landforms of Puerto Rico (No. 899). US Geological 

Survey.  



61 

 

 

Moosavi, V., Talebi, A., Shirmohammadi, B., 2014. Geomorphology Producing a 

landslide inventory map using pixel-based and object-oriented approaches optimized 

by Taguchi method 204, 646–656. 

Murphy, S.F., Stallard, R.F., Larsen, M.C., Gould, W.A., 2012. Physiography, geology, 

and land cover of four watersheds in eastern Puerto Rico. Water Qual. Landsc. 

Process. four watersheds East. Puerto Rico 1–24. 

Parise, M., 2001. Landslide mapping techniques and their use in the assessment of the 

landslide hazard. Phys. Chem. Earth, Part C Solar, Terr. Planet. Sci. 26, 697–703. 

https://doi.org/10.1016/S1464-1917(01)00069-1 

Parker, R.N., Densmore, A.L., Rosser, N.J., De Michele, M., Li, Y., Huang, R., 

Whadcoat, S., Petley, D.N., 2011. Mass wasting triggered by the 2008 Wenchuan 

earthquake is greater than orogenic growth. Nat. Geosci. 4, 449–452. 

https://doi.org/10.1038/ngeo1154 

Pasch, R. J., Penny, A. B., & Berg, R. (2018). National Hurricane center tropical cyclone 

report: Hurricane Maria. TROPICAL CYCLONE REPORT AL152017, National 

Oceanic And Atmospheric Administration and the National Weather Service, 1–48. 

 Qin, Y., Lu, P., Li, Z., 2018. LANDSLIDE INVENTORY MAPPING FROM 

BITEMPORAL 10 m SENTINEL-2 IMAGES USING CHANGE DETECTION 

BASED MARKOV RANDOM FIELD XLII, 7–10. 



62 

 

 

Rahman, M. A., & Wang, Y. (2016). Optimizing intersection-over-union in deep neural 

networks for image segmentation. International Symposium on Visual Computing, 

234–244. 

Ramos-Scharrón, C. E., & Arima, E. (2019). Hurricane Maria’s Precipitation Signature in 

Puerto Rico: A Conceivable Presage of Rains to Come. Scientific Reports, 9(1), 1–7. 

 Santangelo, M., Cardinali, M., Rossi, M., Mondini, A.C., Guzzetti, F., 2010. Remote 

landslide mapping using a laser rangefinder binocular and GPS. Nat. Hazards Earth 

Syst. Sci. 10, 2539–2546. https://doi.org/10.5194/nhess-10-2539-2010 

 Smith, A. B. (2018). 2017 U . S . billion-dollar weather and climate disasters : a historic 

year in context. The Historic U . S . Billion-dollar Disasters of 2017 Hurricane 

Harvey : Hurricane Irma : Hurricane Maria : Looking at the bigger picture. 8816. 

Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. 

Photogrammetric Engineering and Remote Sensing, 52(3), 397–399. 

Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random 

Forests. Remote Sensing of Environment, 115(10), 2564–2577. 

 Tanyaş, H., Allstadt, K.E., van Westen, C.J., 2018. An updated method for estimating 

landslide-event magnitude. Earth Surf. Process. Landforms 43, 1836–1847. 

https://doi.org/10.1002/esp.4359 



63 

 

 

Tanyaş, H., van Westen, C.J., Allstadt, K.E., Jibson, R.W., 2019. Factors controlling 

landslide frequency–area distributions. Earth Surf. Process. Landforms 44, 900–917. 

https://doi.org/10.1002/esp.4543 

Varnes, D.J., 1996. Landslide types and processes. Spec. Rep. - Natl. Res. Counc. 

Transp. Res. Board 247, 36–75. 

Weirich, F., Blesius, L., 2007. Comparison of satellite and air photo based landslide 

susceptibility maps. Geomorphology 87, 352–364. 

https://doi.org/10.1016/j.geomorph.2006.10.003 

Wulder, M.A., White, J.C., Hay, G.J., Castilla, G., 2015. Pixels to objects to information: 

Spatial context to aid in forest characterization with remote sensing, in: Object-

Based Image Analysis. Springer, pp. 345–363. https://doi.org/10.1007/978-3-540-

77058-9_19 

 Yanites, B.J., Mitchell, N.A., Bregy, J.C., Carlson, G.A., Cataldo, K., Holahan, M., 

Johnston, G.H., Nelson, A., Valenza, J., Wanker, M., 2018. Landslides control the 

spatial and temporal variation of channel width in southern Taiwan: Implications for 

landscape evolution and cascading hazards in steep, tectonically active landscapes. 

Earth Surf. Process. Landforms 43, 1782–1797. https://doi.org/10.1002/esp.4353 

Yanites, B.J., Tucker, G.E., Mueller, K.J., Chen, Y.G., Wilcox, T., Huang, S.Y., Shi, 

K.W., 2010. Incision and channel morphology across active structures along the 

Peikang River, central Taiwan: Implications for the importance of channel width. 

Bull. Geol. Soc. Am. 122, 1192–1208. https://doi.org/10.1130/B30035.1 



64 

 

 

 

 

 

BIOGRAPHY 

Sabrina Nicole Martinez was born in Houston, TX on June 12th, 1995. She discovered her passion 

for geology while pursuing her undergraduate degree at the University of Houston. There she 

earned a B.S. in Geology while developing an interest in remote sensing and GIS applications. This 

led her to participate in two internships at NASAs Lunar and Planetary Institute where she studied 

the geology of the Moon and Venus using satellite data. She then attended Tulane University to 

study how satellite imagery can be used to aid landslide hazard mapping.  

 

 

 

 


