AN ABSTRACT

SUBMITTED ON THE TENTH DAY OF OCTOBER 2019
TO THE DEPARTMENT OF CHEMISTRY

IN PARTIAL FULFILLMENT OF THE REQUIREMENT
OF THE SCHOOL OF SCIENCE AND ENGINEERING
OF TULANE UNIVERSITY

FOR THE DEGREE

OF
DOCTOR OF PHILOSOPHY
Youglong xico
YONGLONG XIAO

J.Jれ~

JANARTHANAN JAYAWICKRAMARAJAH, Ph.D.

Abstract

Condensation of 1,8,13-tris(mercaptomethyl)triptycene and tris(bromomethyl)methane yields the in,in-cyclophane $\mathbf{3 0}$ in 8\% yield with two inwardly directed methine groups. The X-ray analysis clearly shows that it is the in,in-isomer. The proton NMR spectrum displays an obvious coupling between the two methine hydrogens, which was proved by selectively irradiation one of the apical methine proton. The coupling constant is 2.0 Hz , which is the largest through-space coupling observed so far. Based on DFT and MP2 calculations, the hydrogen-hydrogen non-bonded contact distance is estimated to be $1.50-1.53 \AA$.

30

31

56

Two in,in-cyclophanes 31 and 56, containing one or two methyl groups in their central cavities, have been synthesized, crystallized and fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, MALDI-TOF mass spectrometry, IR spectroscopy, and X-ray crystallography. Cyclophane $\mathbf{3 1}$ is the first example of an in,in-cyclophane with a methyl group inside the cavity. The IR spectrum clearly shows that the Si-H stretch is blue-shifted from $2177 \mathrm{~cm}^{-1}$ in an acyclic model to $2269 \mathrm{~cm}^{-1}$. Based on computational studies, cyclophane 31 has a very short non-bonded $\mathrm{H}---\mathrm{CH}_{3}$ distance of about $2.30 \AA$. Cyclophane 56 does not have short non-bonded contact distance, but it is the first example of a
macrobicyclic compound that contains two inwardly directed methyl groups.

Three cyclophanes with the formula $\left(\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}\right)_{n}$, where $\mathrm{n}=1$ or 2 , were isolated from the base-promoted macrocyclization of tris(2-mercaptophenyl)phosphine and tris(3-bromopropyl)methane. Spectroscopic and X-ray analysis showed them to be the in,in-isomer 32, the in,out-isomer 60, and a dimeric in,out,in,out-isomer 61. Compounds 32 and 61 display approximately C_{3}-symmetric and C_{i}-symmetric structures, respectively, in the crystal, but compound $\mathbf{6 0}$ adopts two distinct low-symmetry conformations in the solid state. In each case, the observed structures correspond to the lowest energy conformations of their respective isomers as calculated at the B3PW91/6-31G(d) level of theory. The in, in-isomer $\mathbf{3 2}$ displays a close contact between the phosphine in-lone pair and the in-methine group, with through-space spin-spin coupling constants of $J_{\text {PH }}=9 \mathrm{~Hz}$ and $J_{\mathrm{PC}}=24 \mathrm{~Hz}$, the latter of which appears to be the largest reported phosphorus-carbon through-space coupling constant.

32

60

61

Dodecaphenyltetracene (75), the largest perphenylacene yet prepared, was synthesized from known tetraphenylfuran, hexaphenylisobenzofuran, and 1,2,4,5-tetrabromo-3,6-diphenylbenzene in three steps. The X-ray structure of the deep red, highly luminescent 75 shows it to be a D_{2}-symmetric molecule with an end-to-end twist
of 97°. The central acene is encapsulated by the peripheral phenyl substituents, and as a result, the molecule is relatively unreactive and even displays reversible electrochemical oxidation and reduction.

Decaphenylphenanthrene (77), the first nonlinear perphenyl polycyclic aromatic hydrocarbon to be prepared so far, has been made from tetraphenylfuran and 1,2,3,4-tetrabromo-5,6-diphenylbenzene in two steps. The X-ray structure contains two independent molecules of 77, and each of them ppssesses approximate C_{2} symmetry in the crystal.

75

77

CROWDED AROMATIC COMPOUNDS WITH UNUSUAL SHAPES AND STRUCTURES

A DISSERTATION

SUBMITTED ON THE TENTH DAY OF OCTOBER 2019
TO THE DEPARTMENT OF CHEMISTRY
IN PARTIAL FULFILLMENT OF THE REQUIREMENT

OF THE SCHOOL OF SCIENCE AND ENGINEERING
OF TULANE UNIVERSITY

FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

BY
Yonglay lifo
YONGLONG XIAO

APPROVED BY:

J. Dh

JANARTHANAN JAYAWICKRAMARAJAH, Ph.D.

ACKNOWLEDGEMENT

I would like to take this opportunity to thank all of those people who have been so helpful in the pursuit of my Ph.D. at Tulane University. My deepest gratitude goes to my research advisor, Professor Robert A. Pascal, Jr., for his patient guidance, generous stimulation, constant encouragement and enormous understanding that he has given to me during my graduate study. He is one of the most smart and intelligent professors I have ever met so far. It was his intelligence, broad knowledge and enormous enthusiasm that helped me overcome many difficulties in the past three years' research. Not only I learned how to do research from him, also the communication skills and the cultures here. I am sure it will help a lot in the future when I have my independent career.

Many thanks go to Professor Bruce Gibb, Professor Joel Mague, professor Scott Grayson and professor Janarthanan Jayawickramarajah for serving as my committee members and for all the help they have given me. Special thanks also go to Dr. Joel Mague for his hard work, patience and precision in solving the crystal structures of all my compounds, even though some of the crystals were "too small and ugly and disordered". My research work could not have gone smoothly without his expertise in X-ray analysis and his helpful discussions. Thanks also go to Professor Russell H. Schmehl for his help in electrochemistry experiment. I also owe thanks to Dr. Zhao for his assistance in my NMR experiments and patience with my constant questions, and to James Bollinger for his help in mass spectral analyses. I also want to thank Jessica Stephenson and Emelina Sanchez for all the endless help in the past three years and Troy Bryant for all the chemical orders he did for me.

Warm thanks go to all the members of the Pascal group, both in the past and present, who have made my experience in this group enjoyable. I really want to thank Qiuling Song and Xiaoxin Qiao because my two main research projects are similar to their projects. Without their understanding and expanding of those projects, I can't not finish mine in such a short time. I am grateful to Kelly J. Dougherty, Yuchen Du and Dyllan. C. Muller for their help and friendship. Especially to Kelly, she is an amazing friend to me. She helped me a lot in my English too. Thanks also go to my friends here in the Chemistry Department for their support: Dr. Layla N. Qasim (my bestie), Molly E. Payne (my bestie), Antony O. Obanda, Xiaoyang Cai, Wei Yao, Ryan S. Vik, Emin B. Atuk, Noah C. Beltrami, Paolo. Suating, Dr. Matthew Hillyer, Hannah Aziz, Dilanka Dilrukshi, Nicholas Ernst, Jamie Armstrong, Oluwapelumi Kareem, Robert Mackin, Sarah Herschede, Fengqi Zhang, Mohammad Amin Zarandi, McKenna Redding, Tammy Leong, Artem Sribnyi and other friends out of the department: Peisong Peng, Devin Davis, Steven Malott, Eric Fisher, Allen Chighizola, Jeffrey Talbot, Jenna Ibieta, Kaylie McHugh, Erika Hansel and Thomas Betka. You make my life more enjoyable and wonderful outside the lab.

My deepest thanks go to my grandparents, my parents and my brother Yonglai Xiao. They offer me enduring love and support, lastly, to my husband Raymond Cowperthwaite, who shared, is sharing and will share every moment of my sadness and happiness, whose love makes me go forward, and to all my other family members.

Table of Contents

Chapter 1. Cyclophanes with short non-bonded contacts 1
1.1. Short non-bonded contacts 1
1.2. Bridged bicyclic systems. 3
1.3. Synthesis and characterization of an in, in-cyclophane with a very short $\mathrm{H}--\mathrm{H}$ non-
bonded contact distance 10
1.3.1. Synthesis of in,in-cyclophane $\mathbf{3 0}$ 10
1.3.2. Proton NMR spectra of in,in-cyclophane $\mathbf{3 0}$ 12
1.3.3. Molecular structure of in,in-cyclophane $\mathbf{3 0}$ 13
1.3.4. Computational studies of in,in-cyclophane $\mathbf{3 0}$ 14
1.4. Synthesis and characterization of an in, in-cyclophane with a very short $\mathrm{H}--\mathrm{CH}_{3}$ non-bonded contact distance 17
1.4.1. Synthesis of in,in-cyclophane 31 17
1.4.2. Proton NMR spectrum of in,in-cyclophane 31 19
1.4.3. Molecular structure of the in,in-cyclophane $\mathbf{3 1}$ 20
1.4.4. Computational studies of in,in-cyclophane 31 3
1.5. Synthesis and characterization of an in,in-cyclophane with two methyl groups
inside the cavity 24
1.5.1. Synthesis of in,in-cyclophane 56 24
1.5.2. Proton NMR spectrum of in,in-cyclophane $\mathbf{5 6}$ 25
1.5.3. Molecular structure of in,in-cyclophane 56 25
1.6. Synthesis and characterization of multiple isomers of a small, strained
phosphaphane 27
1.6.1. Synthesis of cyclophanes 27
1.6.2. NMR spectrum of in, in-cyclophane 32 28
1.6.3. Molecular structures of cyclophanes 32, 60, 61 29
1.6.4. DFT calculations for all three isomers 32
1.7. Attempted syntheses of other sterically congested in,in-cyclophanes 33
1.8. Conclusion 36
1.9. References 38
Chapter 2. Synthesis and Characterization of Dodecaphenyltetracene and
Decaphenylphenanthrene 42
2.1. Introduction 42
2.2. Twisted acenes 43
2.3. Synthesis of perphenyltetracene 48
2.3.1. Synthesis of perphenyltetracene 48
2.3.2. UV spectrum of perphenyltetracene 49
2.3.3. X-ray structure of the perphenyltetracene 50
2.3.4. Electrochemistry of perphenyltetracene 51
2.3.5. The chirality of perphenyltetracene 52
2.4. Attempted synthesis of perphenylpentacene 54
2.4.1. Synthesis of perphenylpentacene. 54
2.5. Synthesis of perphenylphenanthrene 57
2.5.1. Synthesis of perphenylphenanthrene. 57
2.5.2. X-ray structure of perphenylphenanthrene 58
2.6. Conclusions 60
2.7. References 61
Chapter 3. Experimental Procedures and Selected Spectra 63
Chapter 4. X-ray Analysis for Selected Compounds 120

LIST OF SCHEMES

Scheme 1.1. Synthesis of in, in-cyclophane 30 11
Scheme 1.2. Synthesis of in,in-cyclophane 31 17
Scheme 1.3. Synthesis of in,in-cyclophane 56 24
Scheme 1.4. Synthesis of three isomers 28
Scheme 2.1. Synthesis of perphenyltetracene 75 48
Scheme 2.2. Synthesis of perphenylpentacene 76 54
Scheme 2.3. Synthesis of perphenylphenanthrene 77 57

LIST OF FIGURES

Figure 1.1. Examples of molecules having short non-bonded hydrogen-hydrogen
\qquad
contacts

Figure 1.2. Other examples of molecules with short non-bonded contacts 3

Figure 1.3. In,out isomerization of macrocyclic diamines prepared by Simmons and ParK
\qquad
Figure 1.4. Homeomorphic isomerization of out,out- to in in- and in,out- to out,in-
\qquad

Figure 1.5. Examples of bicyclic compounds with nitrogen bridgeheads .5

Figure 1.6. Examples of macrobicyces with carbon bridgeheads .7

Figure 1.7. Examples of cyclophanes with phosphorus bridgeheads .9

Figure 1.8. Target cyclophanes with their DFT-calculated (B3PW91/cc-pVTZ) non-bonded
\qquad
Figure 1.9. Bottom: Downfield region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$, including the H_{B} doublet ($\delta \mathbf{7 . 1 5})$. Top: Same region with irradiation of $\mathrm{H}_{\mathrm{A}}(\delta 3.94)$.................................. 13

Figure 1.10. Molecular structure of cyclophane 30. Ellipsoids are set at 50% probability

Figure 1.11. Proton NMR spectrum of cyclophane 31 ... 19
Figure 1.12. COSY spectrum of cyclophane 31... 20
Figure 1.13. X-ray structure of cyclophane 31 ... 21
Figure 1.14. X-ray structure of cyclophane 56 ... 26

Figure 1.15. X-ray structure of compounds 32 (up left), 60 (up right), 61 (bottom)........ 31
Figure 1.16. Compound 62 with the shortest known H---Me non-bonded contact 33
Figure 2.1. Twisted acenes.. 42
Figure 2.2. Examples of perphenylacenes.. 43
Figure 2.3. X-ray structures of octaphenylnaphthalene (above) and decaphenylanthracene (below) ... 44

Figure 2.4. Examples of highly twisted acenes .. 44
Figure 2.5. Molecular structure of compound 72 .. 45
Figure 2.6. Three views of the molecular structure of 73 .. 46
Figure 2.7. X-ray crystal structure of compound 74.. 47
Figure 2.8. Perphenylacenes targets.. 47
Figure 2.9. UV spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of a $3.2 \times 10^{-5} \mathrm{M}$ solution of compound 75 50
Figure 2.10. Molecular structure of dodecaphenyltetracene (75). Thermal ellipsoids are
set at 50\% probability ... 51

Figure 2.11. Electrochemistry of dodecaphenyltetracene (75).. 52
Figure 2.12. The racemization of 75 is a four-step process. .. 53
Figure 2.13. Molecular structure of compound 88 .. 56
Figure 2.14. Molecular structure of compound 77 .. 59

LIST OF TABLES

Table 1.1. Experimental and calculated interatomic distances for the axial atoms of cyclophane 30.. 16
Table 1.2. Experimental and calculated interatomic distances for the axial atoms of
cyclophane 31 23
Table 1.3. DFT calculations of cyclophanes 32, 60, 61 32
Table 4.1. Sample and crystal data for compound 31 120
Table 4.2. Data collection and structure refinement for compound 31 120
Table 4.3. Atomic coordinates and equivalent isotropic atomic displacement parameters
$\left(\AA^{2}\right)$ for compound 31 121
Table 4.4. Sample and crystal data for compound $\mathbf{3 0}$. 124
Table 4.5. Data collection and structure refinement for compound $\mathbf{3 0}$. 124
Table 4.6. Atomic coordinates and equivalent isotropic atomic displacement parameters
$\left(\AA^{2}\right)$ for compound 30 125
Table 4.7. Sample and crystal data for compound 56. 128
Table 4.8. Data collection and structure refinement for compound 56 128
Table 4.9. Atomic coordinates and equivalent isotropic atomic displacement parameters
$\left(\AA^{2}\right)$ for compound 56 129
Table 4.10. Sample and crystal data for compound 61 135
Table 4.11. Data collection and structure refinement for compound 61 135
Table 4.12. Atomic coordinates and equivalent isotropic atomic displacement
parameters $\left(\AA^{2}\right)$ for compound 61 136
Table 4.13. Sample and crystal data for compound 32 138
Table 4.14. Data collection and structure refinement for compound 32 138
Table 4.15. Atomic coordinates and equivalent isotropic atomic displacement
parameters $\left(\AA^{2}\right)$ for compound 32 138
Table 4.16. Sample and crystal data for compound 75 141
Table 4.17. Data collection and structure refinement for compound $\mathbf{7 5}$ 141
Table 4.18. Atomic coordinates and equivalent isotropic atomic displacement
parameters $\left(\AA^{2}\right)$ for compound 75 142
Table 4.19. Sample and crystal data for compound $\mathbf{8 8}$ 146
Table 4.20. Data collection and structure refinement for compound $\mathbf{8 8}$ 146
Table 4.21. Atomic coordinates and equivalent isotropic atomic displacement
parameters $\left(\AA^{2}\right)$ for compound 88 147
Table 4.22. Sample and crystal data for compound $\mathbf{6 0}$. 150
Table 4.23. Data collection and structure refinement for compound 60 150
Table 4.24. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 60 151
Table 4.25. Sample and crystal data for compound 77 154
Table 4.26. Data collection and structure refinement for compound 77 154
Table 4.27. Atomic coordinates and equivalent isotropic atomic displacementparameters $\left(\AA^{2}\right)$ for compound 77 ... 155

Chapter 1. Cyclophanes with short non-bonded contacts

1.1. Short non-bonded contacts

Non-covalent interactions and non-bonded contacts differ from covalent bonds in that they do not involve the sharing of electrons, but rather electrostatic interactions or dispersion forces between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order of 1-7 kcal/mol. There are various non-covalent interactions, such as electrostatic interactions, van der Waals forces, and hydrophobic effects.

It is common to find non-bonded contacts in molecules, but to make very short non-bonded contacts is challenging. The pentacyclic half-cage compound $\mathbf{1}$ (Figure 1.1) was first prepared in $1960,{ }^{[1]}$ but in 1985 Ermer showed that it possessed two hydrogen atoms separated by only $1.617(3) \AA$, as measured by low-temperature neutron diffraction (Figure 1). ${ }^{[2]}$ At that time, it was the shortest experimentally determined non-bonded hydrogen-hydrogen contact distance. Later, in 2013, Pascal reported an exceptional steric congestion in the in,in-bis(hydrosilane) 2. ${ }^{[3]}$ A combination of crystallographic and computational data indicated that in compound 2, the central hydrogen-hydrogen nonbonded contact distance was the shortest for any crystallographically characterized compound: approximately 1.56 Å. A later neutron diffraction analysis of compound 2 showed the distance between the central hydrogen atoms to be 1.531(8) $\AA .{ }^{[4]}$ In 2018, Schreiner reported the neutron structure of tris(3,5-tert-butylphenyl)methane (3) at 20 K ,
which revealed an intermolecular C-H $\cdots \mathrm{H}-\mathrm{C}$ distance of only $1.566(5) \AA^{[5]}$ This compound is unique because it crystallizes as a C_{3}-symmetric dimer in an unusual head-to-head fashion. Quantum chemical computations of the solid state structure at the HSE-3c level of theory reproduce the structure and the close contact well (1.555 \AA at 0 K) and emphasize the significance of packing effects.

a) $\mathrm{X}=\mathrm{H}, \mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{Br}$
b) $\mathrm{X}=\mathrm{H}, \mathrm{R}=\mathrm{COCH}_{3}$
c) $\mathrm{X}=\mathrm{D}, \mathrm{R}=\mathrm{COCH}_{3}$

1

2

Figure 1.1. Examples of molecules having short non-bonded hydrogen-hydrogen contacts

In 1990, Pascal et al. reported the synthesis and crystallographic characterization of cyclophane 4 (Figure 1.2). ${ }^{[6]}$ The X-ray structure of compound 4 showed that the phosphine is strongly pyramidalized toward the basal aromatic ring. The average C-P-C bond angle observed in the triarylphosphine is 103°, and the distance from the phosphorus to the ring center is $2.90 \AA$. Later they reported silicon-containing cyclophane 5. ${ }^{[7]}$ In the X-ray structure of compound 5, the distance from the apical silicon to the center of the basal aromatic ring is $3.34 \AA$, which is the shortest non-bonded siliconbenzene distance. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 is characterized by a high-field Si-H resonances ($\delta 1.04,5 \mathrm{ppm}$ upfield from the corresponding resonance in an acyclic model), and the IR spectrum shows a high-frequency Si-H stretching band ($2457 \mathrm{~cm}^{-1}, 280 \mathrm{~cm}^{-1}$
above the acyclic model). In 2005, Song et al. reported the in-methylcyclophane 6 in which the methyl group is forced into the center of the basal aromatic ring, an interesting structural feature. The X-ray structure showed the $\mathrm{C}_{\text {methyl-}}$-ring centroid distance in molecule 6 to be 2.896(5) Å which was the new "world record" (Figure 2). ${ }^{[8]}$

Figure 1.2. Other examples of molecules with short non-bonded contacts

1.2 Bridged bicyclic systems

Bridged bicyclic molecules with small rings always have structures in which the bridgehead substituents point outward, as in, for instance, camphor and bicyclo[1.1.1]pentane. Yet for compounds containing medium and large rings, in/out isomerism is often observed. It was Simmons and Park who first synthesized a series of macrobicyclic diammonium ions in 1968 (Figure 1.3), and it was they who introduced the term in/out stereoisomerism. ${ }^{[9,10,11]}$ They noted that three stereoisomers of the ammonium ions can exist when the number of methylene groups in each linking arm, a, b and c, is greater than six. The different isomers were labeled "out,out", "out,in", or "in,in", depending on the positions of the ammonium hydrogens. Those isomers can
interconvert either by protonation/deprotonation (Figure 1.3) or homeomorphic isomerism, as in the case of methine bridgeheads (Figure 1.4). ${ }^{\text {[12] }}$

Figure 1.3. In,out isomerization of macrocyclic diamines prepared by Simmons and Park

Figure 1.4. Homeomorphic isomerization of out,out- to in in- and in,out- to out,in-isomers

Depending on the size of the bridged bicyclic amine or diamine, the nitrogen may be pyramidal out, essentially flat, or pyramidal in. 1-Azabicyclo[2.2.2]octane (quinuclidine, 7), and 1,4-diazabicyclo[2.2.2]-octane (DABCO, 8) are small ring systems, and the bridgehead atoms point out. 1-Azabicyclo[3.3.3]undecane (manxine, 9) and its corresponding diamine analog, 1,5-diazabicyclo[3.3.3]undecane (10), have nearly flat nitrogen atoms ${ }^{[13,14]}$ and the X-ray structure of naphtho-1,5diazabicyclo[3.3.3]undecane ${ }^{[15]}(11)$ shows that the bridgehead amines are practically flat, with $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles of 118.6°. Even larger ring systems, such as out-6H-1azabicyclo[4.4.4]tetradecane (12) and 1,6-diazabicyclo[4.4.4]tetradecane (13), in which each linking bridge has been expanded by one methylene from 9 and 10 respectively, possess pyramidal in nitrogens. 1-Azabicyclo[4.4.4]tetradec-5-ene (14), with its nitrogen lone pair inside, has a strong lone-pair/ π-bond interaction and readily reacts with acid to form a propellane. ${ }^{[16]}$

7

11

8

9

10

12

13

14

Figure 1.5. Examples of bicyclic compounds with nitrogen bridgeheads

The first bicyclic structures with in-CH bridgeheads were compound 15 and in,inbicyclo[8.8.8]hexacosane (16), synthesized and reported by Gassman and Thummel, ${ }^{[17,18]}$ and by Park and Simmons, respectively. ${ }^{[19]}$ But how can one predict whether or not any particular bicyclic systems will adopt an out,out, out,in or in,in comformation? Out,outisomers are strongly preferred for small (3- and 4-membered) and common (5- and 6membered) rings. The borderlines for the existence of out,in- or in, in-isomers are not so obvious. In an early application of stochastic search procedures, ${ }^{[20,21]}$ Saunders performed molecular mechanics calculations for bicyclic hydrocarbons, ranging from bicyclo[3.2.2]nonane to bicyclo[6.6.6]eicosane. ${ }^{[22]}$ According to these calculations, the most stable geometry goes from out,out to out, in and finally in, in as the rings get larger. Unfortunately, little experimental data exist to verify these predictions. In many respects, symmetrical [3.3.3], [4.4.4] and [5.5.5] bicyclic systems are the most interesting cases. Bicyclo[3.3.3]undecane (17) adopts an out,out structure, ${ }^{[23]}$ and all known derivatives are out,out as well, which is in agreement with Saunders' calculations. However, there is only limited experimental evidence concerning derivatives of bicyclo[4.4.4]tetradecane (18), and bicyclo[5.5.5]heptadecane is unknown. According to Saunders' calculations, the in,out- and in,in-isomers are the most stable conformations for [4.4.4] and [5.5.5] bicyclic alkanes, respectively. McMurry and Hodge ${ }^{[23]}$ prepared in-bicyclo[4.4.4]-1-tetradecene (19) which they were able to hydrogenate to the most stable in,outbicyclo[4.4.4]tetradecane (18). They also found that interesting chemistry resulted because of the strain and proximity of the bridgehead atoms in these ring structures. When 19 was treated with acid, protonation occurred to generate the in-bicyclo[4.4.4]-1-
tetradecyl cation (20), a stable substance with a symmetrical three center, two electron (μ-hydrido) C-H-C bond. The chemical shift of the hydrido hydrogen is $\delta-3.5$, suggesting a $\mathrm{C}^{+} \mathrm{H}^{-} \mathrm{C}^{+}$polarization. This type of intrabridgehead interaction is often entropically favorable and driven by strain relief.

15

16

19

17

18

20

Figure 1.6. Examples of macrobicyces with carbon bridgeheads

Although the literature on in,out-isomers of methine and amine bridgehead compounds is vast, a very limited number of interactions involving other elements have been studied. A series of bicyclic ring systems with phosphorus as bridgeheads has been described. Compounds 21 and 22 have both nitrogen and phosphorus bridgeheads and [3.3.3] bicyclic skeletons. ${ }^{[24,25]}$ The P-N distance in 22 ${ }^{[26,27]}$ varies from 1.9-2.3 Å depending on substituent Y on phosphorus. The geometry of nitrogen atoms varies from pyramidal inward to essentially flat, and the phosphorus bridgehead progresses from trigonal
bipyramidal to tetrahedral outward. Compounds with $\mathrm{Y}=\mathrm{H}$ are very weak acids, showing that the free PN bases are extremely strong.

In addition, a series of dicationic bicyclic ring structures where both bridgeheads are phosphorus has been synthesized (compounds 24 and 25). ${ }^{[24,25]}$ Monocation 23 ${ }^{[28,29]}$ is a nucleophilic adduct to compound $\mathbf{2 4}$. The larger dication $\mathbf{2 4}$ forms at a faster rate than the smaller dication $\mathbf{2 5}$, and the former is also more stable than the latter because the long P-P bond causes more strain in smaller ring systems (25) than in larger ones (24). Compound $\mathbf{2 4}$ is stable in aqueous solution below $\mathrm{pH}=2$, while compound $\mathbf{2 5}$ decomposes with exposure to even a small amount of water.

Pascal's group published a few aromatic macrobicyclic compounds (26-29). ${ }^{[30,31]}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6}$, the central proton resonance is a doublet ($\delta 9.31$, $J_{\text {PH }}=25 \mathrm{~Hz}$) due to coupling with the phosphorus, but in addition there exist easily visible ${ }^{29} \mathrm{Si}$ side bands that yield $J_{\text {SiH }}=248 \mathrm{~Hz}$. Most interesting is the proton-decoupled ${ }^{29} \mathrm{Si}$ NMR spectrum of 26, consisting of a lone doublet with strong coupling to phosphorus ($J_{\text {sip }}=76$ Hz). For compound $\mathbf{2 8}$, the ${ }^{31} \mathrm{P}$ NMR spectrum shows a pair of doublets with $J_{P P}=175 \mathrm{~Hz}$. The X-ray structure of compound $\mathbf{2 8}$ shows P-P contact distances of 3.72 and $3.51 \AA$ in the two independent molecules, both somewhat shorter than the calculated distance of 3.79 Å at the B3PW91/6-31G(d) level. When HCl gas was bubbled into chloroform solutions of compound $\mathbf{2 8}$, protonation occurred as a first-order process to give compound 29. The new proton resonance ($\delta 14.08$) was a doublet of doublets with J_{PH} 's of 584 and 13 Hz . This new proton is bound to the more basic, sulfur-substituted triaryl phosphine ($d_{\mathrm{PH}}=$ $1.29 \AA$ Å) with the second phosphine at a reasonable hydrogen bonded distance (2.59 Å). It
seems that protonation is slow because the in-phosphine lone pair only rarely tips away from the center of the molecule to permit a reaction with an acid.

21

22

23

24

25

26

27

28

29

Figure 1.7. Examples of cyclophanes with phosphorus bridgeheads

Can we use modern computational methods to design aromatic bicyclic molecules which have extremely short non-bonded contacts (Figure 1.8)?

30
$d_{\text {H-H }}=1.497 \AA$
$d_{\mathrm{C}-\mathrm{C}}=3.675 \AA$
out, in isomer $+3.4 \mathrm{kcal} / \mathrm{mol}$

31

$$
\begin{gathered}
d_{\mathrm{Si}-\mathrm{H}}=1.475 \AA \\
d_{\mathrm{CH} 3-\mathrm{H}}=2.419 \AA \\
d_{\mathrm{CH3-C}}=1.503 \AA \\
\text { out, in isomer }+8.6 \mathrm{kcal} / \mathrm{mol}
\end{gathered}
$$

32

$$
\begin{aligned}
& d_{\mathrm{P}-\mathrm{H}}=2.796 \AA \\
& d_{\mathrm{H}-\mathrm{C}}=1,095 \AA
\end{aligned}
$$

$$
\text { out, in isomer }+21.5 \mathrm{kcal} / \mathrm{mol}
$$ in,out isomer $+16.4 \mathrm{kcal} / \mathrm{mol}$

Figure 1.8. Target cyclophanes with their DFT-calculated (B3PW91/cc-pVTZ) non-bonded contacts

1.3. Synthesis and characterization of an in,in-cyclophane with a very short H--H non-bonded contact distance

1.3.1. Synthesis of in,in-cyclophane 30

Cyclophane $\mathbf{3 0}$ might be made by the base-promoted condensation of the tribromide 43 and trithiol 41. Tribromide 43 is $\mathrm{known}^{[32]}$ and the trithiol $\mathbf{4 1}$ can be formed from the known tribromide 39. ${ }^{[33]}$

1,8-Dichloroanthraquinone (33) was reduced by treatment with Al powder and concentrated sulfuric acid, followed by concentrated HCl and isopropanol, to give 1,8dichloroanthracene (35). Methylation of this aryl chloride with AlMe_{3} and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ was then carried out. Twelve equivalents of trimethylaluminum and $25 \% \mathrm{Ni}$ catalyst were required to convert all of the starting material into 1,8-dimethylanthracene (36). The crude product of the methylation can serve as starting material for the subsequent benzyne addition without further purification. When 1,8-dimethylanthracene (36) was treated with 2-amino-6-methylbenzoic acid and isoamyl nitrite in dichloroethane, both the syn and anti trimethyltriptycenes 37 and 38 were obtained in 65% overall yield. Based on NMR analysis, the ratio of the two isomers is 2:1 syn:anti. Bromination of the triptycenes $\mathbf{3 7}$ and $\mathbf{3 8}$ with NBS and light converted them into the corresponding benzylic bromides. Fortunately, the two product isomers could be separated by recrystallization from CHCl_{3} and hexanes. The syn tribromide 39 is more soluble in this solvent combination than the anti-isomer, so the mother liquor was collected and concentrated to give pure

39 as a pale yellow solid. Treatment of tribromide 39 with thiourea followed by alkaline hydrolysis gave the trithiol 41.

Scheme 1.1. Synthesis of in, in-cyclophane 30: (a) Al powder, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) isopropanol, conc. HCl ; (c) $\mathrm{AlMe}_{3}, \mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$, DME, reflux; (d) 2-amino-6-methylbenzoic acid, isoamyl nitrite, 1,2-dichloroethane, reflux; (e) NBS, benzene, light, reflux; (f) thiourea, NaOH ; (g) tris(bromomethyl)methane (43), $\mathrm{KOH}, 2: 1$ benzene- EtOH , reflux

Trithiol 41 and tris(bromomethyl)methane 43 were treated with ethanolic KOH at high dilution in benzene-EtOH (2:1) to give the desired in,in-cyclophane $\mathbf{3 0}$ as a white solid in 8% yield. Since the majority of the byproducts in the crude reaction mixture were polymeric, the desired product was easily isolated due to its comparatively low polarity.

1.3.2. Proton NMR spectra of in, in-cyclophane 30

The ${ }^{1} \mathrm{H}$ NMR spectrum of 30 shows the expected steric deshielding ${ }^{[34]}$ of the inproton resonances. H_{A} and H_{B} are observed at $\delta 3.94$ and $\delta 7.15$, respectively, but the corresponding protons in the precursors 43 and 41 are found at $\delta 2.42$ and $\delta 6.54$, respectively. However, a most unexpected observation is that H_{B} is a doublet with $J_{A B}=$ 2.0 Hz . Selective irradiation of H_{A} collapsed the doublet to a singlet; thus this is a rare case of an easily observed, through-space coupling (TSC) of two hydrogen atoms via a direct, non-bonded contact. This is surprising because the TSC observed for the axial hydrogen atoms in compound $\mathbf{2}$ is no greater than 0.2 Hz .

Indeed, we have been unable to find any other example of so large a TSC via the direct, non-bonded contact of two hydrogen atoms. In Mallory's 1996 review of TSC, ${ }^{[35]}$ he distinguishes between hydrogen-hydrogen TSC mediated by carbon atoms in nonbonded contact ($\mathrm{H}-\mathrm{C} \cdots \mathrm{C}-\mathrm{H}$), which may be large, and the direct TSC of two hydrogen atoms via direct non-bonded contact ($\mathrm{C}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$), which were said to be very small in magnitude. However, he provides no examples of the latter type. More surprisingly, in Hierso's 2014 review of TSC, ${ }^{[36]}$ there is no mention of hydrogen-hydrogen TSCs at all. The largest experimentally determined through-space J_{HH} that we have been able to locate is
0.60 Hz for a pair of protons in 2-methoxy[2.2]paracyclophane reported by Dracinsky et al. ${ }^{[37]}$ They observed several other coupling constants ranging from 0.33 Hz to 0.56 Hz , but noted that because of their small magnitude, the TSCs do not result in line splitting, but only in broadening of the NMR resonances. However, at least some of these TSCs may be transmitted in part via C…C non-bonded contacts. From the line widths in the published ${ }^{1} \mathrm{H}$ NMR spectrum ${ }^{[38]}$ of a 1:1 mixture of compounds $\mathbf{1 b}$ and $\mathbf{1 c}$, the hydrogenhydrogen TSC constant has also been estimated to be 0.6 Hz , but these hydrogen atoms are separated by only five ordinary bonds; thus some through-bond coupling cannot be excluded. From a computational perspective, GIAO calculations at the B3LYP/6$311++G(2 d f, 2 p d)$ level recommended by Dracinsky et al. give a reasonable $J_{A B}=3.1 \mathrm{~Hz}$ for compound 30.

Figure 1.9. Bottom: Downfield region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$, including the H_{B} doublet ($\delta 7.15$). Top: Same region with irradiation of $\mathrm{H}_{\mathrm{A}}(\delta 3.94)$

1.3.3. Molecular structure of in,in-cyclophane 30

It proved unusually difficult to grow X-ray quality crystals of 30, but eventually a small crystal ($0.17 \mathrm{~mm} \times 0.06 \mathrm{~mm} \times 0.02 \mathrm{~mm}$) was obtained from ethyl acetate solution. Subsequent data collection at 150 K , structure solution, and refinement were nonproblematic. Compound $\mathbf{3 0}$ crystallizes in the space group $P 2_{1} 2_{1} 2_{1}$ with $Z=8$; thus there are two crystallographically independent molecules in the asymmetric unit, both possessing approximate C_{3} symmetry. The molecular structure of $\mathbf{3 0}$ is illustrated in Figure 10 , unambiguously confirming the in,in-geometry. Most significantly, the distances between the apical carbon atoms (d_{cc}) in the two independent molecules were found to be $3.667(8)$ Å and $3.683(9) \AA$ (see Table 1), which are $0.1 \AA$ A shorter than the d_{CC} of $3.780(7)$ Å observed in the 100 K X-ray structure of dimer 3.

Figure 1.10. Molecular structure of cyclophane 30. Ellipsoids are set at 50\% probability

1.3.4. Computational studies of in,in-cyclophane 30

The in-hydrogen positions were refined in the X-ray structure, but foreshortening of the C-H distances ${ }^{[39]}$ makes the observed hydrogen-hydrogen distances far too long. For this reason, we must rely on computational methods to estimate d_{HH}. The table below lists the salient interatomic distances calculated by a variety of methods. Among conventional DFT methods, we have observed that the B3PW91 functional ${ }^{[40,52]}$ gives the best contact distances in sterically congested cyclophanes. ${ }^{[4]}$ Geometries obtained with both the modest $6-31 \mathrm{G}(\mathrm{d})$ and much larger cc-pVTZ basis sets ${ }^{[42,43]}$ yield very similar structures with $d_{\mathrm{CC}}=3.69 \AA$ (slightly longer than the average crystallographic d_{CC} of 3.675 \AA A) and $d_{H H}=1.53 \AA$. When dispersion corrections ${ }^{[44]}$ are included, either by adding versions of Grimme's D3 correction ${ }^{[45,46]}$ or by using the M062X functional, ${ }^{[47]}$ the calculated contact distances shorten slightly to $d_{\mathrm{CC}}=3.67-3.68 \AA$ and $d_{\mathrm{HH}}=1.52 \AA . \mathrm{MP} 2$ calculations give d_{cc} similar to the experimental values, but significantly shorter d_{HH} than the DFT methods, owing to less compression of the C-H bonds. Thus for the B3PW91$\mathrm{D} 3 / \mathrm{ccpV} \mathrm{TZ}$ and MP2/cc-pVDZ calculations, both of which yield $d_{\mathrm{cc}}=3.675 \AA$, the former gives axial C-H bond distances of $1.079 \AA$ and $1.075 \AA$, but the latter gives $1.091 \AA$ and 1.087 Å. Interestingly, the neutron structure of $\mathbf{3 0}$ yields a C-H bond distance of $1.093 \AA$ for the compressed methines at 20 K and 100 K , and thus it is possible that the MP2 calculations give more nearly accurate estimates of d_{HH}.

Table 1.1. Experimental and calculated interatomic distances for the axial atoms of cyclophane 30

Method	$\boldsymbol{d}_{\mathrm{cc}}[\AA ̊]$	$\boldsymbol{d}_{\mathrm{HH}}[\AA ̊]$
X-ray diffraction (molecule 1)	$3.667(8)$	$1.76(8)$
X-ray diffraction (molecule 2)	$3.683(9)$	$1.91(8)$
B3PW91/6-31G(d)	3.695	1.532
B3PW91/cc-pVTZ	3.689	1.535
B3PW91-D3/6-31G(d)	3.681	
B3PW91-D3/cc-pVTZ	3.675	1.519
		1.522
B3PW91-D3(BJ)/6-31G(d)	3.675	1.513
B3PW91-D3(BJ)/cc-pVTZ	3.667	1.515
M062X/6-31G(d)	3.683	1.525
M062X/cc-pVTZ	3.673	1.527
M062X-D3/6-31G(d)	3.684	
M062X-D3/cc-pVTZ	3.675	1.526
MP2/6-31G(d)	3.663	1.529
MP2/cc-pVTZ	3.675	1.505

1.4. Synthesis and characterization of an in,in-cyclophane with a very

short $\mathrm{H}-\mathrm{CH}_{3}$ non-bonded contact distance

1.4.1. Synthesis of in,in-cyclophane 31

50

51

31

Scheme 1.2. Synthesis of in,in-cyclophane 31: (a) Al powder, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) MeMgBr , benzene; (c) $\mathrm{AlMe}_{3}, \mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}, \mathrm{DME}$, reflux; (d) 2-amino-6-methylbenzoic acid, isoamyl nitrite, 1,2-dichloroethane, reflux; (e) NBS, benzene, light, reflux; (f) thiourea, NaOH ; (g) tris[2-(chloromethyl)phenyl]silane (52), KOH, 2:1 benzene-EtOH, reflux

Cyclophane 31 might be made by the base-promoted condensation of the trichloride $\mathbf{5 2}$ and trithiol 50. Trichloride $\mathbf{5 2}$ is known ${ }^{[3]}$ and trithiol $\mathbf{5 0}$ can be formed from the known tribromide 48. ${ }^{[8,48]}$

1,8-Dichloroanthraquinone (33) was reduced in the presence of Al powder and concentrated sulfuric acid to give two isomers. Fortunately these two isomers can be separated by recrystallization from CHCl_{3}-hexanes, and anthrone $\mathbf{3 4}$ was obtained in pure form in 79% yield. When anthrone 34 was treated with $\mathrm{MeMgBr}, 1,8$-dichloro-9methylanthracene (44) was afforded in 80% yield. Taking the same reaction conditions as used for the sythesis of 1,8-dimethylanthracene (36), 1,8,9-trimethylanthracene (45) was obtained in 100\% yield from 1,8-dichloro-9-methylanthracene (44). The methylbenzyne addition to trimethylanthracene 45 produced the two tetramethyltriptycenes 46 and 47 in 64% yield. These two isomers could not be separated by silica gel column chromatography, and, from the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture, the ratio of the syn isomer 46 to the antiisomer 47 is 1:2. This is drastically decreased from the 2:1 ratio observed for the syn and anti trimethyltriptycenes in Scheme 2. The bulky 9-methyl group of trimethylanthracene $\mathbf{4 5}$ seems to block the syn addition of the benzyne. The mixture was brominated with NBS and light, and two tribromides were obtained. As before, the two tribromides were purified by recrystallization. Unfortunately, even though the syn tribromide 48 is more soluble in CHCl_{3} and hexanes, no pure 48 was obtained, but the proportion of the syn tribromide 48 was increased in the mixture to a ratio of 2:3. Treatment of tribromide 48 by thiourea followed by alkaline hydrolysis gave the trithiol product 50. Reaction of the trithiol mixture with trichloride $\mathbf{5 2}$ worked well, and, after purification, in,in-cyclophane $\mathbf{3 1}$ was obtained as a white solid in $\mathbf{3 0 \%}$ yield based on the amount of trithiol $\mathbf{5 0}$ in the starting mixture.

1.4.2. Proton NMR spectrum of in, in-cyclophane 31

The ${ }^{1} \mathrm{H}$ NMR spectrum of cyclophane 31 shows it to be conformationally rigid. The protons on the bridging methylene groups are diastereotopic, indicating that the enantiomerization of the molecule is slow on the NMR time scale.

Figure 1.11. Proton NMR spectrum of cyclophane 31

Manifestations of the close contact are less obvious in the NMR spectra. There is no evidence of through-space spin-spin coupling of the silane and methyl protons in the ordinary ${ }^{1} \mathrm{H}$ NMR (Figure 1.11) and COSY (Figure 1.12) spectra of compound 31 because no crossing peaks are founded in the COSY spectrum, nor is there evidence of coupling of the silane proton and methyl carbon in the fully proton-coupled ${ }^{13} \mathrm{C}$ NMR spectrum of 31 . The methyl resonance for compound $\mathbf{5 0}$ is observed at $\delta \mathbf{3 . 7 4}$, while that of compound $\mathbf{3 1}$ is found at $\delta 5.09$, an apparent example of steric deshielding, but this conclusion is undermined by the absence of such deshielding for the silane proton, which is observed at $\delta 6.16$ in precursor 52, but only $\delta 5.21$ in cyclophane 31.

Figure 1.12. COSY spectrum of cyclophane 31

1.4.3. Molecular structure of the in,in-cyclophane 31

Most of the C_{3}-symmetric cyclophanes that we have prepared in the past gave single crystals large enough for X-ray analysis quite easily, but compound $\mathbf{3 1}$ proved more difficult. A wide variety of solvents was examined for compound 31. The usual result was crystals that were twinned. The structures could be solved, and the in, in-geometry could be confirmed, but the refinement was poor. Eventually, the slow crystallization of $\mathbf{3 1}$ from THF gave a very good crystal of its bis(THF) solvate. The structure was solved in the common space group $P 2_{1} / \mathrm{c}$, and it refined to an excellent $R(F)=3.96 \%$. The molecular structure of compound $\mathbf{3 1}$ is illustrated in Figure 1.13.

Figure 1.13. X-ray structure of cyclophane 31

The structure of cyclophane $\mathbf{3 1}$ is extremely unusual: it is a rare case of a hydrogen atom pressed close to the "top" of a methyl group. The observed contact distance ($d_{\text {H1-C21 }}$ using the crystallographic numbering scheme) is $2.55(2) \AA$, but of course, the actual distance must be shorter due to foreshortening of the $\mathrm{Si}-\mathrm{H}$ bond ${ }^{[39]}$ in the X-ray structure. If a standard $\mathrm{Si}-\mathrm{H}$ bond distance of $1.48 \AA$ is assumed, then the true $d_{\mathrm{H} 1-\mathrm{C} 21}$ contact distance
is $2.44 \AA .{ }^{[49]}$ Evidence of steric compression is found in the IR spectrum of compound 31, where the Si-H stretching frequency of $2269 \mathrm{~cm}^{-1}$ is $92 \mathrm{~cm}^{-1}$ higher than the same band in an acyclic model ($2177 \mathrm{~cm}^{-1}$). This is, however, $188 \mathrm{~cm}^{-1}$ less than the Si-H stretch (2457 cm^{-1}) in another very congested in-silaphane. ${ }^{[7]}$

The $\mathrm{C}-\mathrm{CH}_{3}$ bond distance $\left(d_{\mathrm{C} 20-\mathrm{C} 21}\right)$ in cyclophane 31 is also compressed. The average $\mathrm{C}-\mathrm{CH}_{3}$ bond distance for unconstrained, well-determined structures ($R \leq 0.05$) of 9-methyltriptycenes in the Cambridge Structural Database ${ }^{[50,51]}$ is $1.519 \pm 0.004 \AA(n=23)$, which is slightly longer than the experimental bond distance of $1.510(2) \AA$ in 31. Computational studies of cyclophane 31 using a variety of methods invariably yield even shorter $\mathrm{C}-\mathrm{CH}_{3}$ bond distances, ranging from 1.497 to $1.508 \AA$.

1.4.4. Computational studies of in,in-cyclophane 31

Overall, the conventional B3PW91 functional ${ }^{[40,52]}$ gives structures in the best agreement with the experiment, with both the smaller 6-31G(d) basis set ${ }^{[42]}$ and the much larger cc-pVTZ basis set giving very similar results. When dispersion corrections are included, either with variations of Grimme' s D3 correction ${ }^{[45,46]}$ or by employing the M062X functional, ${ }^{[47]}$ the agreement is poorer. This is most apparent in the silicon-methyl carbon distance $\left(d_{\text {Si1-c21 }}\right)$, which is well determined in the X-ray structure at 3.902(2) Å. The B3PW91 functional gives values within 0.01 Å of the experiment, but the dispersioncorrected calculated structures yield values that are too short by 0.08-0.15 Å.

Table 1.2. Experimental and calculated interatomic distances for the axial atoms of cyclophane 31

Method	$d_{\text {H-C }}[A ̊]$	$d_{\text {Si-C }}[$ Å]	$d_{C-C}\left[\AA{ }^{\text {a }}\right.$]
X-ray diffraction	2.55(2)	3.902(2)	1.510(2)
B3PW91/6-31G(d)	2.420	3.895	1.508
B3PW91/cc-pVTZ	2.418	3.894	1.503
B3PW91-D3/6-31G(d)	2.311	3.780	1.503
B3PW91-D3/cc-pVTZ	2.320	3.789	1.498
B3PW91-D3(BJ)/6-31G(d)	2.280	3.748	1.502
B3PW91-D3(BJ)/cc-pVTZ	2.287	3.756	1.497
M062X/6-31G(d)	2.337	3.808	1.506
M062X/cc-pVTZ	2.350	3.818	1.502
M062X-D3/6-31G(d)	2.331	3.801	1.506
M062X-D3/cc-pVTZ	2.345	3.812	1.502
MP2/6-31G(d)	2.309	3.777	1.501

1.5. Synthesis and characterization of an in,in-cyclophane with two

methyl groups inside the cavity

1.5.1. Synthesis of in,in-cyclophane 56

Scheme 1.3. Synthesis of in,in-cyclophane 56: (a) n-BuLi, trichloromethylsilane, dry THF; (b) 1,4-bis(chloromethyl)benzene (57), TEA; (c) compound 54, KOH, 2:1 benzene-EtOH, reflux

Cyclophane 56 might be made by the base-promoted condensation of the trichloride 55 and trithiol 54. The tricholoride 55 can be formed from the trithiol 54 in a benzylic substitution reaction; trithiol 54 is known and easily prepared from thiophenol in one step. ${ }^{[53]}$

Cyclophane 56 is formed in very low yield by the reaction of tris(2mercaptophenyl)methylsilane (54) and commercial 1,4-bis(chloromethyl)benzene (57), but the two-step procedure illustrated in Scheme 3 is far superior, if not high-yielding. Compound 54 was first treated with an excess of 57 to give the triple adduct 55 in $\mathbf{6 0 \%}$
yield after purification, and then condensation of 55 with another molecule of 54 at high dilution gave the dimethyl cyclophane 56 in 5\% yield.

1.5.2. Proton NMR spectrum of in,in-cyclophane 56

The ${ }^{1} \mathrm{H}$ NMR spectrum of in, in-cyclophane $\mathbf{5 6}$ clearly shows that it is a C_{3} symmetric compound. The in-methyl groups on the Si atoms appear as one sharp singlet, which falls at $\delta 0.57,0.4 \mathrm{ppm}$ upfield from the methylsilane in precursor compound 55 ($\delta 1.01$). The methylene groups appear as sharp singlets, and the lack of diastereotopic methylene resonances is indicative of a relatively high degree of conformational mobility.

1.5.3. Molecular structure of in,in-cyclophane 56

In the case of cyclophane 56, which is highly soluble only in chlorinated solvents, it was very difficult to obtain good crystals. Finally, the evaporation of a relatively dilute solution in nitrobenzene over a period of four months gave single crystals of 56 as its bis(nitrobenzene) solvate. The structure was solved in the space group $P-1$. and it refined to $R(F)=5.69 \%$. There are two similar but crystallographically independent molecules of compound $\mathbf{5 6}$ in the structure, and the molecular structure of one of them is illustrated in Figure 14.

Cyclophane 56 does not possess especially close nonbonded contacts (the methyl groups are approximately 5 Å apart), but the presence of two in-methyl groups is, as far as we can tell, unique. Whether a more highly congested in,in-dimethyl cyclophane can be prepared is an open question, but if the two methyls could be brought close enough
to enmesh the hydrogen atoms, then it might be possible to observe correlated rotation of suitably labeled methyl groups.

Figure 1.14. X-ray structure of cyclophane 56

1.6. Synthesis and characterization of multiple isomers of a small, strained phosphaphane

1.6.1. Synthesis of cyclophanes

Cyclophane 32 might be made by the base-promoted condensation of the tribromide 59 and trithiol 58, which are both known compounds. ${ }^{[31,53]}$

Treatment of thiophenol with two equivalents of n-BuLi followed by phosphorus trichloride gives to form tris(2-mercaptophenyl)phosphine (58) in 70% yield. Condensation of trithiol 58 with tris(3-bromopropyl)methane (59) at high dilution gave the cyclophane $\mathbf{3 2}^{[54]}$ in 10% yield. Additionally, in,out-isomer $\mathbf{6 0}$ and the dimeric in,out,in,out-cyclophane 61 were also isolated in 5% and 10% yield, respectively (Scheme 1.4).

Although compounds 60 and 61 have no close non-bonded contacts, their isolation is noteworthy because in no case has Pascal's group isolated two isomers of the same cyclophane from a single macrocyclization. We do not contend that other isomers have never been formed, but they have eluded isolation and proper characterization. This is due in part to a strong preference to form the more stable isomer, but also to the fact that, in most of these syntheses, our approach has been to carry out the macrocyclization and then to isolate the most prominent, low-polarity component of the mixture. This is generally the desired monomeric in- or in,in-isomer, because the oligomers and polymers formed in these reactions are decidedly more polar. However, in the few cases where we have diligently searched for other isomers, they have not been found. We note, however, that when others have reported the syntheses of very large macrobicycles where in and
out isomers do not differ greatly in the degree of ring strain, formation of more than one in/out stereoisomer is sometimes observed. ${ }^{[55,56]}$

In this case, the results are very unusual. In the synthesis of the small in,incyclophane 32 (Scheme 1.4), that would necessarily have a close contact between the inphosphine and the in-hydrogen atom, not only was the desired compound $\mathbf{3 2}$ isolated, but also its in,out-isomer 60 in 5\% yield and the dimeric in,out,in,out-cyclophane 61 in 10\% yield.

32

61

Scheme 1.4. Synthesis of three isomers: (a) n-BuLi, phosphorus trichloride, dry THF; (b) tris(3-bromopropyl)methane (59), KOH, 2:1 benzene-EtOH, reflux

1.6.2. NMR spectrum of in,in-cyclophane 32

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2}$, the in-methine resonance is a complex multiplet at $\delta 3.71 \mathrm{ppm}$. The through-space coupling of the phosphorus and in-hydrogen atom was measured by selective irradiation of methylene protons surrounding the apical methine (see the experimental section). In this case, $J_{P H}=9 \mathrm{~Hz}$, a large value, but not nearly so
large as the $J_{\mathrm{PH}}=25 \mathrm{~Hz}$ observed in an in,in-cyclophane that contained an interacting phosphine and hydrosilane ${ }^{[31]}$ HDFT calculations at the B3LYP/6-311++G(2df,2pd) level of theory ${ }^{[40,42,57]}$ recommended by Dracinsky et al. ${ }^{[37]}$ yield reasonable estimates of these through-space coupling constants. The calculated $J_{P C}$ is 21.6 Hz and the calculated $J_{\text {PH }}$ is 6.8 Hz , both a bit smaller than the observed values.

The ${ }^{13}$ C NMR spectrum of compound 32 proved to be particularly interesting. The $\delta 27.0$ resonance corresponds to the in-methine carbon atom, and it is a doublet with $J_{p C}$ $=24 \mathrm{~Hz}$. This is much larger than any of the other observed $J_{P C}$'s involving aliphatic carbons in cyclophanes $\mathbf{3 2}$ and $\mathbf{6 0}(5-8 \mathrm{~Hz})$. Given that six bonds separate the two atoms, this is clearly an example of through-space spin-spin coupling of the phosphorus and the methine carbon atoms. It is admittedly difficult to search the literature for through-space coupling constants, but a through-space J_{PC} of 24 Hz is much larger than any value cited in the reviews of through-space coupling by the Mallorys ${ }^{[35]}$ and Hierso ${ }^{[33]}$ (largest $J_{\mathrm{PC}} \approx 8$ Hz). Possibly the coupling is enhanced in compound 32 by transmission via the inhydrogen atom.

1.6.3. Molecular structures of cyclophanes 32, 60, 61

Compound 32 crystallized in the common space group $P 2_{1} / c$ (No. 14), and the molecule lies on a general position. It proved to be the in,in-isomer, and, as expected, it adopts a very nearly C_{3}-symmetric conformation, as is invariably the case for the in, incyclophanes that we have been previously characterized. The structure is illustrated in Figure 1.15. Compound $\mathbf{6 0}$ crystallized in the chiral space group $P 2_{1}$ (No. 4) and there are
two crystallographically independent molecules in the asymmetric unit. Both of these molecules are in,out-isomers, but they are distinctly asymmetric, and one of them is illustrated in Figure 1.15. The simplicity of the NMR spectra of compound $\mathbf{6 0}$ is thus the result of rapid dynamic exchange of its various conformations at room temperature.

The dimeric cyclophane 61 crystallized in the space group P-1 (No. 2), but it resides on a special position and possesses crystallographic C_{i} symmetry. There is some disorder in the structure, but the crystal appears to consist entirely of molecules possessing an in, out,in,out-conformation (that is, two in-P's and two out-H's). The structure is illustrated in Figure 1.15. This dimeric C_{i}-symmetric cyclophane is calculated to have an energy about $3 \mathrm{kcal} / \mathrm{mol}$ lower than the monomeric compound $\mathbf{3 2}$ (the comparison is based on half the energy of compound 61; see Table 1.3) as well as the corresponding in,in,in,inconformation, and thus it is not surprising that it is the most abundant cyclophane in the reaction mixture. Indeed, when one considers the relative energies of the three observed isomers, the chief surprise is that in,out-isomer $\mathbf{6 0}$ is formed at all. Of course, these reactions are not under thermodynamic control, and once two carbon-sulfur bonds have been formed, the stereochemical options are limited in the absence of phosphine inversion, which is slow at the temperature of the macrocyclization.

In, in-cyclophane 32 was the primary target of this study, chiefly for the interaction of the inwardly-directed methine and phosphine. The X-ray structure of compound $\mathbf{3 2}$ is quite well determined with an $R(F)$ of 0.042 at 150 K . The observed distance between the phosphorus and the in-hydrogen atoms $\left(d_{P-H 28}\right)$ is $2.87(3) \AA$ and that between the phosphorus and in-carbon atoms ($d_{\text {P-C28 }}$) is $3.877(2)$ Å. Of course, the C-H bond lengths in

X-ray structures are systematically underestimated, but if the crystallographic bond length is "improved" to a standard value of $1.099 \AA$ A for methines, then $d_{\text {P-H28 }}$ is reduced to $2.78 \AA$. The sum of the van der Waals radii of phosphorus and hydrogen is $3.05 \AA \AA^{[58]}$ $0.27 \AA$ A greater than $d_{P-H 28}$. Thus this contact is short, but not exceptionally so: non-bonded contact distances between hydrogen atoms and other elements that are as much as 0.9 Å less than the sum of their respective van der Waals radii have been observed in other in-cyclophanes. ${ }^{[59]}$

Figure 1.15. X-ray structure of compounds 32 (up left), 60 (up right), 61 (bottom)

1.6.5. DFT calculations for all three isomers

Computational studies at the B3PW91/6-31G(d) level of theory ${ }^{[40,42,52]}$ shed some light on the conformational preferences of cyclophanes $\mathbf{3 2}$ and 60 (Table 1.3). The $C_{3^{-}}$ symmetric in, in-isomer 32 appears to be the lowest energy isomer of the monomeric cyclophanes considered here. There exists a C_{3}-symmetric conformation of compound $\mathbf{6 0}$, but the two C_{1}-symmetric conformations observed in the crystal structure, which represent distinct potential minima with nearly the same energy, are at least $8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the C_{3} conformation, but still $7-8 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 32. There also exists a C_{3}-symmetric out,in-isomer (that is, out-P and in-H), and a $C_{3}{ }^{-}$ symmetric out,out-isomer, but both are much higher in energy (22 and $35 \mathrm{kcal} / \mathrm{mol}$, respectively) than the in,in-isomer 32. We have not located any C_{1}-symmetric out,in- or out,out-confomations that have lower energies than these C_{3} conformations, but such structures may exist.

Table 1.3. DFT calculations of cyclophanes 32, 60, 61

Conformation	$\Delta \mathrm{E}[\mathrm{kcal} / \mathrm{mol}]$	$\Delta \mathrm{E}(\mathrm{E}+\mathrm{ZPE})[\mathrm{kcal} / \mathrm{mol}]$	$\mathrm{n}^{[\mathrm{a}]}$
C_{3} in,in (32) ${ }^{[b]}$	0.0	0.0	0
C_{3} out-P, in-H	+22.7	+21.5	0
C_{3} in-P, out-H (60)	+17.1	+16.4	0
C_{1} in-P, out-H \#1 (60-1) ${ }^{[\mathrm{bl}]}$	+9.0	+8.1	0
C_{1} in-P, out-H \#2 (60-2) ${ }^{[6]}$	+7.7	+7.1	0
C_{3} out,out	+35.7	+34.9	0
C_{i} in,in,in, in dimer	+1.3	+0.8	0
C_{i} in,out, in, out dimer (61) ${ }^{[b]}$	-2.4	-2.6	0

[a] Number of imaginary frequencies. [b] Conformations observed in X-ray structures.

1.7. Attempted syntheses of other sterically congested in,in-cyclophanes

The successful syntheses of the congested in,in-cyclophanes above suggest that the use of different known precursors of these cyclophanes (9-substituted triptycenes for example) as building blocks will permit the preparation of a variety of cyclophanes with exceptionally close contacts between functional groups that have so far escaped such "high-pressure" situations. On the following pages the attempted syntheses of cyclophanes with even shorter non-bonded contacts are briefly described.

As described before, we have successfully made the in-H,in-Me cyclophane 31 with a very short non-bonded contact. Unfortunately, the distance between the hydrogen and methyl group is not the shortest ever observed. The shortest H-methyl distance (2.26 Å) known is found in compound 62 (Figure 1.16).

Figure 1.16. Compound 62 with the shortest known H---Me non-bonded contact

However, if we decrease the numbers of atoms in the cyclophane chains, then we should get a shorter distance between the hydrogen atom and the methyl group. For
example, in cyclophane 32, there are nine atoms in the chains. If we can make a molecule with eight atoms or even seven atoms in the chains, we should get much shorter nonbonded contact distances. Based on that idea, we designed molecule 64, in which the number of the atoms in the chain is eight. Both compounds $\mathbf{6 3}$ and 50 are known. After preparing both precursors, we attempted to make the desired cyclophane by the condensation of $\mathbf{6 3}$ with trithiol $\mathbf{5 0}$ at high dilution. Unfortunately, none of the desired compounds were found, nor were the in,out-isomers observed. Only a few very polar compounds were formed in the reaction.

We also tried to make the cyclophanes 65 and 67 which have short non-bonded P-methyl and N -methyl contact distances, respectively, from the tribromide 48 and trithiols 64 and 66. Still, no desired compounds were found. For cyclophane 67, the bridgehead nitrogen atom should be flat and the strain energy is not high. We still do not understand why this synthesis did not succeed.

Cyclophane 68, which might be made from trithiol 50 and its precursor tribromide 48, was especially desirable since only the in, in-isomer is possible and also because DFT calculations predict a very short d_{cc} of $2.747 \AA$. After condensation under the usual benzene-EtOH-KOH high dilution conditions, none of the desired product was found.

63

64

48

66

50

48

48

65

64

67

Scheme 1.5. Attempted syntheses of cyclophanes 64-68: (a) KOH, 2:1 benzene-EtOH, reflux

1.8. Conclusion

Condensation of 1,8,13-tris(mercaptomethyl)triptycene and tris(bromomethyl)methane yields the in,in-cyclophane $\mathbf{3 0}$ in 8% yield with two inwardly directed methine groups. Compound 30 has been fully characterized by ${ }^{1} \mathrm{H} N \mathrm{NR}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, MALDI-TOF mass spectrometry, IR spectroscopy, and X-ray crystallography. The X-ray analysis clearly shows that it is the in,in-isomer. The proton NMR spectrum displays an obvious coupling between the two methine hydrogens, which was proved by selective irradiation of one of the apical methine protons. The coupling constant is 2.0 Hz , which is the largest H---H through-space coupling observed so far. Based on DFT and MP2 calculations, the hydrogen-hydrogen non-bonded contact distance is estimated to be $1.50-1.53 \AA$.

Two in,in-cyclophanes 31 and 56, containing one or two methyl groups in their central cavities, have been synthesized, crystallized and fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, MALDI-TOF mass spectrometry, IR spectroscopy, and X-ray crystallography. Cyclophane $\mathbf{3 1}$ is the first example of an in,in-cyclophane with a methyl group inside the cavity. The IR spectrum clearly shows that the Si-H stretch is blue-shifted from $2177 \mathrm{~cm}^{-1}$ in an acyclic model to $2269 \mathrm{~cm}^{-1}$. Based on computational studies, cyclophane $\mathbf{3 1}$ has a very short non-bonded $\mathrm{H}---\mathrm{CH}_{3}$ distance of about 2.30 Å. Cyclophane 56 does not have short non-bonded contact distance, but it is the first example of a macrobicyclic compound that contains two inwardly directed methyl groups.

Three cyclophanes with the formula $\left(\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}\right)_{n}$, where $\mathrm{n}=1$ or 2 , were isolated from the base-promoted macrocyclization of tris(2-mercaptophenyl)phosphine (58) and
tris(3-bromopropyl)methane (59). Spectroscopic and X-ray analysis showed them to be the in,in-isomer 32, the in,out-isomer 60, and a dimeric in,out,in,out-isomer 61. Compounds $\mathbf{3 2}$ and $\mathbf{6 1}$ display approximately C_{3}-symmetric and C_{i}-symmetric structures, respectively, in the crystal, but compound 60 adopts two distinct low-symmetry conformations in the solid state. In each case, the observed structures correspond to the lowest energy conformations of their respective isomers as calculated at the B3PW91/631G(d) level of theory. The in,in-isomer 32 displays a close contact between the phosphine in-lone pair and the in-methine group, with through-space spin-spin coupling constants of $J_{\text {PH }}=9 \mathrm{~Hz}$ and $J_{\mathrm{PC}}=24 \mathrm{~Hz}$, the latter of which appears to be the largest reported phosphorus-carbon through-space coupling constant.

1.9. References

[1] S. B. Soloway, A. M. Damiana, J. W. Sims, H. Bluestone, R. E. Lidov, J. Am. Chem. Soc. 1960, 82, 5377-5385.
[2] O. Ermer, S. A. Mason, F. A. L. Anet, S. S. Miura, J. Am. Chem. Soc. 1985, 107, 23302334.
[3] J. Zong, J. T. Mague, R. A. Pascal, Jr., J. Am. Chem. Soc. 2013, 135, 13235-13237.
[4] A neutron diffraction structure for compound $\mathbf{2}$ gives $d_{H H}=1.531$ (8) \AA (R. A. Pascal, Jr., C. Hoffmann, J. Zong, unpublished results).
[5] S. Rosel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. CaÇadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 7428-7431.
[6] R. A. Pascal, Jr., A. West, Jr., D. Engen, J. Am. Chem. Soc. 1990, 112, 6406-6407.
[7] R. L’Esperance, A. West, Jr., D. Engen, R. A. Pascal, Jr., J. Am. Chem. Soc. 1991, 113, 2672-2676.
[8] Q. Song, D. M. Ho, R. A. Pascal, Jr., J. Am. Chem. Soc. 2005, 127, 11246-11247.
[9] H. E. Simmons, C. H. Park, J. Am. Chem. Soc. 1968, 90, 2428-2429.
[10] C. H. Park, H. E. Simmons, J. Am. Chem. Soc. 1968, 90, 2429-2431.
[11] C. H. Park, H. E. Simmons, J. Am. Chem. Soc. 1968, 90, 2431-2432.
[12] H. E. Simmons, C. H. Park, R. T. Uyeda, M. F, Habibi, Trans. New York Acad. Sci. 1970, 32, 521-534.
[13] J. C. Coll, D. R. Crist, M. D. C. G. Barrio, N. J. Leonard, J. Am. Chem. Soc. 1972, 94, 7092-7099.
[14] A. H. J. Wang, R. J. Missavag, S. R. Byrn, I. C. Paul, J. Am. Chem. Soc. 1972, 94, 7100-
7104.
[15] R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, J. Chem. Soc., Chem. Comm. 1976, 173-174.
[16] R. W. Alder, R. J. Arrowsmith, C. S. J. Boothby, E. Heilbronner, Z. Z. Yang, J. Chem. Soc., Chem. Comm. 1982, 940-942.
[17] P. G. Gassman, R. P. Thummel, J. Am. Chem. Soc. 1972, 94, 7183-7184.
[18] P. G. Gassman, S. R. Korn, R. P. Thummel, J. Am. Chem. Soc. 1974, 96, 6948-6955.
[19] C. H. Park, H. E. Simmons, J. Am. Chem. Soc. 1972, 94, 7184-7186.
[20] M. Saunders, J. Am. Chem. Soc. 1987, 109, 3150-3152.
[21] M. Saunders, K. N. Houk, Y. D. Wu, W. C. Still, M. Lipton, G. Chang, W. C. Guida, J. Am. Chem. Soc. 1990, 112, 1419-1427.
[22] M. Saunders, J. Comput. Chem. 1989, 10, 203-208.
[23] J. E. Mcmurry, C. N. Hodge, J. Am. Chem. Soc. 1984, 106, 6450-6451.
[24] C. Lensink, S. K. Xi, L. M. Daniels, J. G. Verkade, J. Am. Chem. Soc. 1989, 111, 34783479.
[25] M. A. H. Laramay, J. G. Verkade, J. Am. Chem. Soc. 1990, 112, 9421-9422.
[26] J. G. Verkade, Acc. Chem. Res. 1993, 26, 483-489.
[27] J. G. Verkade, Coordin. Chem. Rev. 1994, 137, 233-295.
[28] R. W. Alderanter, C. J. Harris, A. G. Orpen, J. Chem. Soc., Chem. Comm. 1992, 11721174.
[29] R. W. Alder, D. D. Ellis, A. G. Orpen, P. N. Taylor, Chem. Commun. 1996, 539-540.
[30] J. Zong, J. T. Mague, C. M. Kraml, R. A. Pascal, Jr., Org. Lett. 2013, 15, 2179-2181.
[31] Zong, J., Mague, J. T.; Welch, E. C.; Eckert, I. M. K.; Pascal, R. A., Jr. Tetrahedron 2013, 69, 10316-10321.
[32] R. A. Pascal, Jr., C. G. Winans, D. Van Engen, J. Am. Chem. Soc. 1989, 111, 3007-3010.
[33] Q. Song, Ph.D. Dissertation, Princeton University, 2008, pp 156-159.
[34] B. V. Cheney, J. Am. Chem. Soc. 1968, 90, 5386-5390.
[35] F. B. Mallory, C. W. Mallory in Encyclopedia of Nuclear Magnetic Resonance, Vol. 3 (Eds.: D. M. Grant, R. K. Harris), Wiley, Chichester, 1996, pp. 1491-1501.
[36] J. C. Hierso, Chem. Rev. 2014, 114, 4838-4867.
[37] M. Dracnsky, P. Jansa, P. Bour, Chem. Eur. J. 2012, 18, 981-986.
[38] F. A. L. Anet, A. H. Dekmezian, J. Am. Chem. Soc. 1979, 101, 5449-545
[39] M. R. Churchill, Inorg. Chem. 1973, 12, 1213-1214.
[40] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652
[41] R. A. Pascal, Jr., J. Phys. Chem. A 2001, 105, 9040-9048.
[42] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, 63-100.
[43] D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98, 1358-1371.
[44] S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 51055154.
[45] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[46] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
[47] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
[48] Y. Xiao, J. T. Mague, R. A. Pascal Jr., Org. Lett. 2018, 20, 2576-2579.
[49] E. Lukevics, O. Pudova, R. Sturkovich, Molecular Structure of Organosilicon Compounds; Ellis Horwood Limited: Chichester, 1989; p 12.
[50] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, B72, 171-179.
[51] F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 2002, B58, 380-388.
[52] J. P. Perdew, Y. Wang, Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 1324413249.
[53] E. Block, G. Ofori-Okai, J. Zubieta, J. Am. Chem. Soc. 1989, 111, 2327-2329.
[54] Y. Xiao, J. T. Mague, R. A. Pascal Jr., Eur. J. Org. Chem. 2018, 5706-5710
[55] R. W. Alder, S. P. East, Chem. Rev. 1996, 96, 2097-2111.
[56] I. Bauer, W. D. Habicher, Collect. Czech. Chem. Commun. 2004, 69, 1195-1230.
[57] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
[58] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
[59] R. A. Pascal Jr., Eur. J. Org. Chem. 2004, 3763-3771.

Chapter 2. Synthesis and Characterization of

Dodecaphenyltetracene and Decaphenylphenanthrene

2.1. Introduction

Polycyclic aromatic hydrocarbons have dramatically changed the landscape of carbon-based materials in the past few decades. ${ }^{[1,2]}$ These materials have opened doors to new technologies such as organic semiconductors, with potential applications in many areas of materials science, including catalysis, organic electronics, energy storage, and spintronics. ${ }^{[3]}$ Obtaining access to nanocarbons of defined size and shape allows chemists to tailor their electronic, magnetic, and optical properties.

An important subclass of polycyclic aromatic hydrocarbons are acenes (Figure 2.1), being linearly fused benzenes, which can be considered one-dimensional nanographenes. ${ }^{[4]}$ In contrast to their angularly fused analogs, namely, the helicenes, the parent (unsubstituted) acenes are planar. However, upon substitution, acenes readily twist out of planarity. The definition of "twisted" is the torsion angles ABCD and BADC.

Figure 2.1. Twisted acenes

2.2. Twisted acenes

The conceptually simplest way to deform an acene is to attach several bulky substituents to its periphery by single bonds. In 1933, hexaphenylbenzene (69) was first prepared by the cycloaddition of tetraphenylcyclopentadienone and diphenylacetylene. ${ }^{[5]}$ A natural extension of this work might have been the synthesis of other perphenyl aromatic compounds, but this did not occur for many years. In 1996, Pascal et al. reported the synthesis and characterization of octaphenylnaphthalene and decaphenylanthracene. ${ }^{[6]}$ Octaphenylnaphthalene (70) was synthesized by the addition of tetraphenylbenzyne to tetraphenylcyclopentadienone, and decaphenylanthracene (71) was synthesized by the addition of the same aryne to hexaphenylisobenzofuran followed by deoxygenation of the adduct.

69

70

71

Figure 2.2. Examples of perphenylacenes

X-ray analysis of compound $\mathbf{7 0}$ shows a small $\left(3^{\circ}\right)$ twist of the naphthalene, but all other octaarylnaphthalenes are more highly twisted, with end-to-end twists of up to 35°. ${ }^{[7]}$ However, in compound 71, the anthracene core adopts a longitudinally twisted conformation with a large overall end-to-end twist of 62.8°; the three rings contribute $18.8^{\circ}, 25.2^{\circ}$, and 18.8°, respectively.

Figure 2.3. X-ray structures of octaphenylnaphthalene (above) and decaphenylanthracene (below)

In 1997, Qiao et al. reported a more twisted acene: 9,10,11,12,13,14,15,16octaphenyldibenzo[a, $c]$ naphthacene (72). ${ }^{[8]}$ The X-ray structure shows that compound $\mathbf{7 2}$ possesses an extraordinary end-to-end twist of 105° (Figure 2.4). The main reason for the greater twist in this compound is the inclusion of two sterically demanding benzo groups in place of phenyls at one end (Figure 2.5).

72

73

74

Figure 2.4. Examples of highly twisted acenes

Figure 2.5. Molecular structure of compound 72

In 2004, Lu et al. reported the much more twisted acene $\mathbf{7 3}^{[9]}$ (Figure 2.4): 9,10,11,20,21,22 hexaphenyltetrabenzo[a,c,l,n]pentacene (73) which was prepared by the reaction of 1,3-diphenylphenanthro[9,10-c]furan with bisaryne equivalents generated from 1,2,4,5-tetrabromo-3,6-diphenylbenzene in the presence of n butyllithium, followed by deoxygenation of the double adduct with low-valent titanium. The X-ray structure shows the end-to-end twist of the pentacene nucleus in compound 73 is 143.6°. This compound was the most twisted acene yet prepared. As in compound 72, the four benzo groups force the large twist in compound $\mathbf{7 3}$ (Figure 2.6).

Figure 2.6. Three views of the molecular structure of $\mathbf{7 3}$

Most recently, Clevenger et al. reported a longitudinally twisted hexacene: $9,10,11,12,21,22,23,24$-octaphenyItetrabenzo $[a, c, n, p]$ hexacene (74). ${ }^{[10]}$ Most remarkably, hexacene 74 has C4A-C4B-C16A-C16B torsion angle of 183.5°, and it is the most twisted acene prepared so far (Figure 2.7).

Figure 2.7. X-ray crystal structure of compound $\mathbf{7 4}$

Can we prepare other acenes and related polycycles which are fully phenyl substituted so that the polycycles are highly twisted (Figure 2.8)?

75

76

77

78

79

Figure 2.8. Perphenylacene targets

2.3. Synthesis of perphenyltetracene

2.3.1. Synthesis of perphenyltetracene

Based on the structure of the target molecule 75, a retrosynthetic strategy was proposed in which it can be made by the deoxygenation of compound $\mathbf{8 6}$. Compound $\mathbf{8 6}$ may be made by Diels-Alder reaction of compound 84 and isobenzofuran 85 through a benzyne intermediate. Similarly, compound 84 may be formed by the reaction of compounds $\mathbf{8 2}$ and $\mathbf{8 3}$. Compound $\mathbf{8 2}$ may be easily made by selectively Suzuki coupling of benzeneboronic acid and compound 81, which in turn can be formed through the iodination of commercially available 1,2,4,5-tetrabromobenzene (80).

86

75

Scheme 2.1. Synthesis of perphenyltetracene 75: (a) $\mathrm{I}_{2}, \mathrm{NaIO}_{3}$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) benzeneboronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, acetone, argon, reflux; (c) tetraphenylfuran, n-BuLi, dry toluene, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (d) hexaphenylisobenzofuran, n-BuLi, dry toluene, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (e) $\mathrm{AlCl}_{3}-\mathrm{TiCl}_{3}, n$-BuLi, ether, argon, $-78{ }^{\circ} \mathrm{C}$ to RT

Commercially available 1,2,4,5-tetrabromobenzene (80) was treated with iodine and sodium iodate in concentrated sulfuric acid to make 1,4-diiodo-2,3,5,6tetrabromobenzene (81) in 98% yield. ${ }^{[9]}$ We attempted to synthesize 1,4-diphenyl-

2,3,5,6-tetrabromobenzene (82) from compound 81 by Ullmann coupling with iodobenzene, but the yield was very low. We then tried a Suzuki coupling reaction to make the target compound 82. After examing different Pd catalysts, we found that $\mathrm{Pd}(\mathrm{OAc})_{2}$ plus $\mathrm{Ph}_{3} \mathrm{P}$ is the best catalyst with which to make compound 82. It is formed in 80% yield. ${ }^{[11]}$ To make the key intermediate 84 , we attempted to react compound 82 with tetraphenylfuran (83) by Diels-Alder reaction via generation of an aryne from 82. The amount of n-BuLi used is critical. With a 1:1 ratio of n-BuLi and $\mathbf{8 2}$, some compound $\mathbf{8 2}$ remained. When the ratio was increased to 1.3:1, almost all compound 82 was consumed without formation of debromination side products. We successfully made compound 86 by a second Diels-Alder reaction of compound 84 and hexaphenylisobenzofuran (85) under similar conditions in a fair yield of 31%. In the second reaction, the amount of n BuLi was increased to a $4: 1$ ratio to ensure that all 84 was reacted. After obtaining compound $\mathbf{8 6}$, the oxygen atoms were successfully removed by using $\mathrm{TiCl}_{3}-\mathrm{AlCl}_{3}$ to make target compound 75 as a bright red solid in 32% yield.

2.3.2. UV spectrum of perphenyltetracene

Solutions of dodecaphenyltetracene 75 are magenta with a longest-wavelength absorption at 566 nm , a red shift of about 100 nm with respect to that of tetracene itself. ${ }^{[12]}$ Compound 75 is also strongly luminescent, with a maximum emission at 613 nm and $\Phi=0.12$ (Figure 2.9).

Figure 2.9. UV spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of a $3.2 \times 10^{-5} \mathrm{M}$ solution of compound 75. Inset: luminescence of $75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with excitation at 410 nm . The solid trace is the absorbance (an expansion of part of the full spectrum), and the dotted trace is the luminescence. The intensities of both are in arbitrary units so that the peaks are of roughly the same height

2.3.3. X-ray structure of the perphenyltetracene

Single crystals of compound 75 suitable for X-ray analysis were obtained upon evaporation of a solution in $\mathrm{CHCl}_{3} / E t O A c$. Compound $\mathbf{7 5}$ crystallized in the space group $C 2$ (No. 5) with $Z=4$, and the asymmetric unit contains two independent half molecules of 75. Therefore, the structure contains two crystallographically independent tetracenes, each of which possesses exact C_{2} symmetry and approximate D_{2} symmetry in the crystal. The molecular structure of one of these molecules is illustrated in Figure 2.10. The tetracene core of compound 75 is smoothly twisted, with overall end-to-end twists of $98(1)^{\circ}$ and $96(1)^{\circ}$ for the two independent molecules, and it is obviously the most twisted
perphenylacene so far prepared (Figure 2.10).

Figure 2.10. Molecular structure of dodecaphenyltetracene (75). Thermal ellipsoids are set at 50% probability

2.3.4. Electrochemistry of perphenyltetracene

Compound 75 has a "picket fence" of phenyl substituents, roughly perpendicular to, and out of conjugation with the tetracene, which essentially encapsulates the acene in an inert hydrocarbon sheath. For this reason, compound 75, like decaphenylanthracene, ${ }^{[13]}$ displays fully reversible electrochemistry with oxidation and reduction observed at +0.69 V and -1.50 V , respectively, versus $\mathrm{Ag} / \mathrm{AgCl}$ (Figure 2.11). Nevertheless, compound $\mathbf{7 5}$ is not completely unreactive, and solutions allowed to stand in the presence of air and light undergo slow decomposition to colorless oxidation products, as we have observed previously for other deeply-colored twisted acenes. ${ }^{[14]}$

Figure 2.11. Electrochemistry of dodecaphenyltetracene (75)

2.3.5. The chirality of perphenyltetracene

The conformation of compound 75 is chiral, but it is unlikely to be configurationally stable under ordinary conditions. As with other twisted acenes, racemization is a multistep process with relatively modest barriers, ${ }^{[15]}$ in contrast to the helicenes, where racemization occurs via a single, difficult step. ${ }^{[16]}$ At the AM1 level of theory, ${ }^{[17]}$ a four-step racemization pathway was identified in which the highest barrier $\left(\Delta G^{\neq}\right.$rac $)$is only $17.3 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 2.12). If correct, this corresponds to a half-life of less than a second at room temperature.

Figure 2.12. The racemization of 75 is a four-step process. The pathway includes a pair of enantiomeric C_{1}-symmetric intermediates ($\Delta G_{\mathrm{C} 1}=+10.0 \mathrm{kcal} / \mathrm{mol}$), a C_{i}-symmetric intermediate $\left(\Delta G_{\mathrm{Ci}}=+14.7 \mathrm{kcal} / \mathrm{mol}\right)$, and two pairs of enantiomeric transition state structures $\left(\Delta G_{\mathrm{TS} 1}=+11.8 \mathrm{kcal} / \mathrm{mol}\right.$ and $\left.\Delta G_{\mathrm{TS} 2}=+17.3 \mathrm{kcal} / \mathrm{mol}\right)$

2.4. Attempted synthesis of perphenylpentacene

2.4.1. Synthesis of perphenylpentacene

Based on the structure of the target molecule 76, a retrosynthetic strategy was proposed: pentacene 76 might be made by the deoxygenation of the compound $\mathbf{8 8}$. Compound 88 may be made by Diels-Alder reaction of compound 87 and hexaphenylisobenzofuran (85) through a benzyne intermediate. Similarly, Compound 87 may be formed by the reaction of compounds $\mathbf{8 5}$ and $\mathbf{8 2}$. Compound $\mathbf{8 2}$ may be easily made by selectively Suzuki coupling of benzeneboronic acid and compound 81, which in turn can be formed through the iodation of commercially available 1,2,4,5tetrabromobenzene (80).

Scheme 2.2. Synthesis of perphenylpentacene 76: (a) I_{2}, NaIO_{3}, Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) benzeneboronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(\mathrm{Ph})_{3}, \mathrm{NaCO}_{3}$, acetone, Argon, reflux; (c) tetraphenylfuran, n-BuLi, dry toluene, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (d) hexaphenylbenzofuran, n BuLi, dry toluene, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (e) (1), $\mathrm{AlCl}_{3}-\mathrm{TiCl}_{3}, n$ - BuLi , ether, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (2) Zn , acetic acid, reflux; (3), SnCl_{2}

The synthetic pathway is similar to that for perphenyltetracene 76 and the first two steps are the same. commercially available 1,2,4,5-tetrabromobenzene (80) was treated with iodine and sodium iodate in concentrated sulfuric acid to make 1,4-diiodo-2,3,5,6-tetrabromobenzene (81) in 98% yield, and 1,4-diphenyl-2,3,5,6tetrabromobenzene (82) was formed in 80% yield by the treatment of 81 with benzeneboronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Ph}_{3} \mathrm{P}$. To make the key intermediate 87 , we attempted to react compound $\mathbf{8 2}$ with hexaphenylisobenzenefuran (85) by Diels-Alder reaction by generation an aryne from 82. The amount of n-BuLi used is critical. With a 1:1 ratio of n BuLi and 82, some compound 82 remained. When the ratio was increased to 1.3:1, almost all compound $\mathbf{8 2}$ was consumed without debromination side products. We successfully made compound 88 by a second Diels-Alder reaction of compound 87 and hexaphenylisobenzofuran under similar conditions in a fair yield of 5\%. In the second reaction, the amount of n-BuLi was increased to a $4: 1$ ratio to ensure that all 87 was reacted. After obtaining compound 88 , we first tried to remove the oxygen atoms to make target compound $\mathbf{7 6}$ by using $\mathrm{TiCl}_{3}-\mathrm{AlCl}_{3}$ reagent in the presence of n-BuLi according to the former procedure. Unfortunately, the reaction failed, leaving almost all the starting material unreacted. We then tried to use Zn powder in acetic acid under reflux as a reducing agent to remove the oxygens, but this failed again. Finally, we tried SnCl_{2} as the reducing agent, but the reaction failed yet again. We presume that this may be because the oxygen atoms are surrounded phenyl rings in a highly congested environment, which blocks the reducing agent from approaching the oxygen atoms.

In order to eliminate any doubt about the identity of what we believed to be compound 88, a single crystal was grown. An X-ray analysis of the crystal conformed the structure of compound $\mathbf{8 8}$ which is shown in Figure 13. Thus, the failures to synthesize perphenylpentacene were due to the use of inadequate reducing agents.

Figure 2.13. Molecular structure of compound 88

2.5. Synthesis of perphenylphenanthrene

2.5.1. Synthesis of perphenylphenanthrene

Based on the structure of the target molecule 77, a retrosynthetic strategy was proposed: phenanthrene 77 may be made by the deoxygenation of the compound 93. Compound 93 may be made by Diels-Alder reaction of compound 92 and tetraphenylfuran (83) through a benzyne intermediate. Similarly, compound 92 may be formed by the reaction of compound 91 and tetraphenylfuran (83). At high temperature, compound 91 may be made by the reaction of diphenylacetylene and compound $\mathbf{9 0}$, which in turn can be formed through the oxidation of commercially available tetrabromothiophene (89).

Scheme 2.3. Synthesis of perphenylphenanthrene 77: (a) MCPBA, 1,2-dichloroethne, reflux; (b) diphenylacetylene, dichlorobenzene, reflux; (c) tetraphenylfuran, n-BuLi, dry toluene, argon, $-78{ }^{\circ} \mathrm{C}$ to RT ; (d) trimethylsilane chloride, Nal, acetonitrile : dichloromethane = 9:1, argon, RT

Commercially available 2,3,4,5-tetrabromothiophene (89) was treated with MCPBA in 1,2-dichloroethane under reflux for 3 days to give sulfone 90 in 60% yield. Sulfone $\mathbf{9 0}$ was then reacted with diphenylacetylene in dichlorobenzene under reflux to give 1,2-diphenyl-3,4,5,6-tetrabromobenzene (91) in 80% yield. To make the key intermediate 92, we attempted to react compound 91 with tetraphenylfuran (83) by generation of an aryne from 91. The amount of n-BuLi used is critical. With a 1:1 ratio of n-BuLi and 91, some compound 91 remained. After the ratio was increased to 2.4:1, almost all compound 91 was consumed without the formation of debromonation side products. To our surprise, compound 92 was not the only product. We also isolated compound 93 in 35% yield. After obtaining compound 93 , we first tried to remove the oxygen atoms to make target compound 77 by using $\mathrm{TiCl}_{3}-\mathrm{AlCl}_{3} / n$ - BuLi as before for the preparation of compound $\mathbf{7 5}$. Unfortunately, the reaction failed, leaving almost all the starting material unreacted. We then tried to use Zn powder in acetic acid under reflux as a reducing agent to remove the oxygens, but this failed again. Finally, we tried SnCl_{2} as the reducing agent, but the reaction failed yet again. However, in 2014, Bunz et al. reported a similar reaction which employed trimethylsilane chloride as a reducing agent. ${ }^{[18]}$ This method proved to be successful, deoxygenating compound 93 to give the target compound 77 in 54% yield as a light yellow solid.

2.5.2. X-ray structure of perphenylphenanthrene

Single crystals of compound 77 suitable for X-ray analysis were obtained upon evaporation of a solution in benzene and 2-propanol. Each asymmetric unit contains two independent molecules of 77 (Figure 2.14) and each of them processes approximate C_{2} symmetry in the crystal.

Figure 2.14. Molecular structure of compound 77

2.6. Conclusions

Dodecaphenyltetracene (75) is the largest perphenylacene yet prepared. It has been synthesized, crystallized, and characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy, MALDI-TOF mass spectrometry, UV-vis absorption and emission spectroscopy, cyclic voltammetry, and X-ray crystallography. The X-ray analysis shows compound 75 has an end-to-end twist of 97° making it the most twisted perphenylacene yet prepared. It also displays a fully reversible electrochemistry with oxidation and reduction. Compound $\mathbf{7 5}$ is magenta with a longest-wavelength absorption at 566 nm , a red shift of about 100 nm with respect to that of tetracene itself. It is also strongly luminescent, with a maximum emission at 613 nm and $\Phi=0.12$.

Decaphenylphenanthrene (77) has been made and characterized by NMR and Xray analysis. It is, so far, the only nonlinear perphenyl polycyclic aromatic hydrocarbon.

2.7. References

[1] Y. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem., Int. Ed. 2016, 55, 5136-5158.
[2] A. Hirsch, Nat. Mater. 2010, 9, 868-871.
[3] L. T. Scott, M. A. Petrukhina, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, And Coordination Chemistry; Wiley: Hoboken, N.J., 2011.
[4] J. E. Anthony, Angew. Chem., Int. Ed. 2008, 47, 452-483.
[5] W. Dilthey, W. Schommer, O. Trosken, Chem. Ber. 1933, 66, 1627-1628.
[6] X. Qiao, M. A. Padula, D. M. Ho, N. J. Vogelaar, C. E. Schutt, R. A. Pascal, Jr., J. Am. Chem. Soc. 1996, 118, 741-745.
[7] R. A. Pascal, Jr., Chem. Rev. 2006, 106, 4809-7819
[8] X. Qiao, D. M. Ho, R. A. Pascal, Jr., Angew. Chem. Int. Ed. 1997, 36, 1531-1532.
[9] J. Lu, D. M. Ho, N. J. Vogelaar, C. M. Kraml, R. A. Pascal, Jr., J. Am. Chem. Soc. 2004, 126, 11168-11169.
[10] R. G. Clevenger, B. Kumar, E. M. Menuey, K. V. Kilway, Chem. Eur. J. 2018, 24, 31133116.
[11] Y. Xiao, J. T. Mague , R. H. Schmehl , F. M. Haque and R. A. Pascal Jr , Angew. Chem., Int. Ed., 2019, 58, 2831-2833
[12] J. J. Burdett, A. M. Mgller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506.
[13] J. D. Debad, S. K. Lee, X. Qiao, R. A. Pascal, Jr., A. J. Bard, Acta Chem. Scand. 1998, 52, 45-50.
[14] I. I. Schuster, L. Craciun, D. M. Ho, R. A. Pascal, Jr., Tetrahedron, 2002, 58, 8875-8882.
[15] R. A. Pascal, Jr., Q. Qin, Tetrahedron 2008, 64, 8630-8637.
[16] R. H. Janke, G. Haufe, E. U. Wgrthwein, J. H. Borkent, J. Am. Chem. Soc. 1996, 118, 6031-6035.
[17] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902-3909.
[18] J. U. Engelhart, O. Tverskoy, U. H. F. Bunz, J. Am. Chem. Soc. 2014, 136, 15166-15169.

Chapter 3. Experimental Procedures and Selected Spectra

Synthesis of Compound 41

Following the procedure of Song, ${ }^{[1]}$ a $1: 1$ mixture of $1,8,13$-trimethyltriptycene and 1,8,16-trimethyltriptycene ($1.05 \mathrm{~g}, 3.55 \mathrm{mmol}$) was dissolved in dry benzene (75 mL) under argon. NBS ($2.1 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added, and the solution was heated to reflux and illuminated with a tungsten lamp for 2 h . After cooling, the orange solution was concentrated to dryness, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. This solution was washed five times with water to remove succinimide, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residual solid was recrystallized from CHCl_{3}-hexanes to give 1,8,16tris(bromomethyl)triptycene (the undesired anti isomer) as a white solid. The mother liquor was concentrated and subjected to silica gel column chromatography (solvent, 1:1 hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the 1,8,13-tris(bromomethyl)triptycene (39) as a light yellow solid ($870 \mathrm{mg}, 1.63 \mathrm{mmol}, 46 \%$ yield; but 92% yield based on the amount of $1,8,13-$ trimethyltriptycene in the starting mixture). This material was contaminated with significant amounts of tetrabrominated product, but it was largely free of the anti-isomer, and therefore used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.04(\mathrm{~s}, 6 \mathrm{H})$, 5.46 (s, 1 H), 6.53 (s, 1 H), 7.03 (m, 6 H), 7.36 (dd, J = $6.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 3 \mathrm{H})$.

A mixture of tribromide 39 ($800 \mathrm{mg}, 1.50 \mathrm{mmol}$) and thiourea ($500 \mathrm{mg}, 6.58 \mathrm{mmol}$) in ethanol (40 mL) and THF (40 mL) was heated at reflux with stirring overnight. After cooling, the solution was concentrated to dryness. The residue was dissolved in aqueous $\mathrm{NaOH}(1.21 \mathrm{~g}, 29.8 \mathrm{mmol}$, in 50 mL water), and the solution was heated at reflux under argon for 10 h . The solution was cooled in an ice-water bath, and then $6 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ was added. The solution was extracted three times with CHCl_{3}, and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave a sticky brown product that was purified by silica gel column chromatography (solvent, 1:1 hexanes-benzene, then 1:2 hexanes-benzene) to give white solid 41 ($170 \mathrm{mg}, 0.434 \mathrm{mmol}, 29 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.97$ $(\mathrm{m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.4,42.1,54.9,123.0,125.6,126.0$, 135.3, 142.1, 146.4 (9 of 9 expected resonances); HRMS (ESI) $m / z 415.0593(\mathrm{M}+\mathrm{Na}$), calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaS}_{3}, 415.0619$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 41

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 41

Synthesis of Cyclophane 30

Trithiol 41 ($170 \mathrm{mg}, 0.434 \mathrm{mmol})$ and tris(bromomethyl)methane ${ }^{[2]}(43,128 \mathrm{mg}, 0.434$ $\mathrm{mmol})$ were dissolved in 2:1 benzene-EtOH (600 mL). The solution was purged with argon, and then it was heated to reflux. A solution of $\mathrm{KOH}(97 \mathrm{mg}, 1.7 \mathrm{mmol})$ in EtOH (50 mL) was added dropwise over 1 h , and heating was continued overnight. After cooling, the solution was concentrated to dryness, and the residue was purified by silica gel column chromatography (solvent, $1: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give crude cyclophane 30. Further purification by preparative TLC (silica gel, 1:1 hexanes-benzene) gave pure cyclophane $\mathbf{3 0}$ as a white solid ($16 \mathrm{mg}, 0.036 \mathrm{mmol}, 8 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.70(\mathrm{dd}, \mathrm{J}=14.5$ Hz, $9 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 3 \mathrm{H}) ; 3.94(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}$ $=12.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.1,41.0,41.2,54.6,54.7,123.1,125.0,127.7,132.5,144.1,146.8$ (11 of 11 expected resonances); HRMS (ESI) $m / z 445.1099(\mathrm{M}+\mathrm{H})$, calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~S}_{3}$, 445.1113. Single crystals suitable for X-ray analysis were obtained from ethyl acetate solution.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane $\mathbf{3 0}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane $\mathbf{3 0}$

IR Spectrum (KBr) of Cyclophane $\mathbf{3 0}$

Irradiation of the $\delta 3.94$ Resonance of Cyclophane $\mathbf{3 0}$ (Full Spectrum). Top: Irradiation at $\delta 3.94 ;$ Bottom: No Irradiation.

Synthesis of Compound 50

A mixture of tribromides 48 and $49^{[3]}(800 \mathrm{mg}, 1.46 \mathrm{mmol})$ and thiourea ($503 \mathrm{mg}, 6.62$ mmol) in ethanol (40 mL) and THF (40 mL) was heated at reflux with stirring overnight. After cooling, the solution was concentrated to dryness. The residue was dissolved in aqueous NaOH ($1.21 \mathrm{~g}, 30.2 \mathrm{mmol}$, in 50 mL water), and the solution was heated at reflux for 10 h under argon. The reaction mixture was cooled in an ice bath, and then 6 M HCl $(30 \mathrm{~mL})$ was added. This solution was extracted three times with CHCl_{3}, and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave a sticky, brown, crude product. This was purified by silica gel column chromatography (solvent, 1:1 hexanes-benzene) to give a roughly $2: 3$ mixture of compounds 50 and 51 as a white solid ($338 \mathrm{mg}, 0.831 \mathrm{mmol}$, $57 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 0.6 \mathrm{H}, 5 \mathrm{a}), 1.87(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1.2 \mathrm{H}$, 5a), 1.97 (t, J = $6.5 \mathrm{~Hz}, 1.2 \mathrm{H}, 5$), 3.25 (s, 1.8 H, 5a), 3.74 (s, 1.2 H, 4), 4.00 (d, J = $6.5 \mathrm{~Hz}, 1.2$ H, 5a), 4.16 (dd, J = $13 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1.2 \mathrm{H}, 5$), 4.23 (dd, J = $13 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1.2 \mathrm{H}, 5$), 4.25 (d, J $=6.5 \mathrm{~Hz}, 2.4 \mathrm{H}, 5 \mathrm{a}), 5.25(\mathrm{~s}, 0.4 \mathrm{H}, 5), 5.71(\mathrm{~s}, 0.6 \mathrm{H}, 5 \mathrm{a}), 6.92(\mathrm{~m}, 2.5 \mathrm{H}), 6.99(\mathrm{~m}, 2.5 \mathrm{H})$, $7.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.29(\mathrm{~m}, 1.5 \mathrm{H}), 7.38(\mathrm{~m}, 1.5 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 19.5,21.0,26.3,28.3,29.1,52.0,54.3,57.5,58.3,121.6,123.4$, 123.7, 125.1, 125.6, 125.9, 126.2, 129.7, 130.4, 134.2, 136.8, 137.1, 143.3, 143.5, 143.6, 147.5, 147.6, 148.9 (27 of 27 resonances expected for the two isomers); MS (MALDI-TOF; matrix, graphite- $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 429\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{5 0 / 5 1}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{5 0} / \mathbf{5 1}$

Synthesis of Cyclophane 31

A 5:7 mixture of trithiols 50 and $51(340 \mathrm{mg}, 0.836 \mathrm{mmol})$ and tris[2(chloromethyl)phenyl]silane ${ }^{[4]}(52,338 \mathrm{mg}, 0.833 \mathrm{mmol})$ were dissolved in 2:1 benzeneethanol (150 mL). The solution was purged with argon, and then it was heated to reflux. A solution of $\mathrm{KOH}(187 \mathrm{mg}, 3.35 \mathrm{mmol})$ in 1:3 benzene-ethanol (50 mL) was added dropwise over 1 h , and heating was continued overnight. After cooling, the solution was concentrated to dryness, and the residue was fractionated first by silica gel column chromatography (solvent, 1:1 hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and then by preparative TLC (silica gel; solvent, 1:3 hexanes-benzene) to give pure cyclophane 31 as a white solid ($48 \mathrm{mg}, 0.068$ mmol, 8% yield, but 20% based on the amount of compound 50 in the starting material).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 3 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 3 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=11$ $\mathrm{Hz}, 3 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24(\mathrm{~m}, 6 \mathrm{H}), 7.44(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ 8 18.7, 40.6, 41.0, 56.7, 57.0, $123.4,125.3,127.1,130.1,130.8,131.5,132.1,132.3,137.4,143.7,147.7,147.8$ (17 of 17 expected resonances); HRMS (ESI-TOF) $m / z 703.1972\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calcd for $\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{~S}_{3} \mathrm{Si}^{+}$, 703.1983.

[^0]
${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 31

IR Spectrum of Cyclophane 31

Synthesis of Compound 55

54

57

55

1,4-Bis(chloromethyl)benzene (57, $940 \mathrm{mg}, 5.37 \mathrm{mmol}$) and tris(2mercaptophenyl)methylsilane ${ }^{[5]}(54,200 \mathrm{mg}, 0.540 \mathrm{mmol})$ were mixed in acetonitrile (20 mL), and the solution was purged with argon. Triethylamine ($0.225 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added with vigorous stirring, and the solution was stirred at room temperature for 3 h . Solid salts were filtered away, and these solids were washed with acetonitrile (20 mL). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a sticky, brown, crude product. This material was purified by silica gel column chromatography (solvent, 1:1 hexanes-benzene) to give compound 55 as a colorless oil ($254 \mathrm{mg}, 0.323 \mathrm{mmol}, 60 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 4.41(\mathrm{~s}, 6 \mathrm{H}), 6.96$ and 7.11 ($\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, 12 H), $7.04(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{td}, \mathrm{J}=$ 7.5 Hz, 1.5 Hz, 3 H), $7.31(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.4,40.4,46.0$, $126.2,128.4,128.7,129.4,130.0,131.7,136.3,137.7,138.0,139.8,143.0$ (14 of 14 expected resonances); MS (MALDI-TOF; matrix, $\left.\mathrm{DCTB}^{2}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 809\left(\mathrm{M}+\mathrm{Na}^{+}\right.$ $\left.\left[{ }^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}\right], 100\right)$.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 55

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 55

Synthesis of Cyclophane 56

55

54

56

Compound 55 ($254 \mathrm{mg}, 0.323 \mathrm{mmol}$) and compound 54 ($120 \mathrm{mg}, 0.324 \mathrm{mmol}$) were dissolved in acetonitrile (600 mL). The solution was purged with argon, and then a solution of triethylamine ($0.163 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in acetonitrile (50 mL) was added dropwise over 1 h , and the solution was stirred overnight at room temperature. The solution was concentrated to dryness, and the residue was fractionated by silica gel column chromatography (solvent, 1:1 hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and then by preparative TLC (silica gel; solvent, 1:4 hexanes-benzene) to give pure cyclophane 56 as a white solid ($16 \mathrm{mg}, 0.015$ mmol, 4.6\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.57(\mathrm{~s}, 6 \mathrm{H}), 4.10(\mathrm{~s}, 12 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 6$ H), 7.07 (s, 12 H$), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.9,40.4,125.8,128.7,129.9,130.8,136.7,137.7,139.8$, 143.6 (10 of 10 expected resonances); MS (MALDI-TOF; matrix, graphite- $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}$) m / z $1069\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 56

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 56

Synthesis of Cyclophane 32

Tris(2-mercaptophenyl)phosphine ${ }^{[6]}$ (58, $200 \mathrm{mg}, 0.558 \mathrm{mmol}$) and tris(3bromopropyl)methane ${ }^{[7]}(59,211.5 \mathrm{mg}, 0.558 \mathrm{mmol})$ were dissolved in 2:1 benzene/EtOH $(600 \mathrm{~mL})$. The solution was purged with argon and then heated to reflux. A solution of $\mathrm{KOH}(110 \mathrm{mg}, 1.96 \mathrm{mmol})$ in EtOH (50 mL) was added dropwise over 1 h , and heating was continued overnight. After cooling, the solution was concentrated to dryness, and the residue was fractionated by preparative TLC (solvent, 1:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Three relatively non-polar components were observed with R_{f} of $0.80,0.76$, and 0.58 . The R_{f} 0.80 component proved to be the target compound 32 ($18.3 \mathrm{mg}, 0.0370 \mathrm{mmol}, 6.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 6 \mathrm{H}), 2.99(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{qd}$ with fine structure, $\left.J_{\mathrm{HH}}=10.5, J_{\mathrm{PH}}=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{t}, J=12 \mathrm{~Hz}, 3 \mathrm{H}), 6.77(\mathrm{dt}, J=7,2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.26(\mathrm{~m}, 6 \mathrm{H}), 7.66$ (ddd, $J=7,5 \mathrm{~Hz}, 2 \mathrm{~Hz}){ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.6,27.0$ (d, $\left.J_{\mathrm{PC}}=24 \mathrm{~Hz}\right), 29.1,39.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5 \mathrm{~Hz}\right), 128.9,129.6,135.5,137.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}\right), 141.7(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=36 \mathrm{~Hz}\right), 144.2(\mathrm{~d}, \mathrm{JPC}=13 \mathrm{~Hz})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z} 494.1320\left([\mathrm{M}]^{+}\right)$, calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}{ }^{+}=494.1320$.
${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 32

${ }^{13}$ C NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 32

${ }^{1} \mathrm{H}$ spin decoupling experiments ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) with Cyclophane 32

Top to bottom: irradiation at $\delta 3.71$, irradiation at $\delta 1.95$, irradiation at $\delta 0.96$, no irradiation.

Synthesis of Cyclophane 60

In the same reaction that produced cyclophane $\mathbf{3 2}$, the $R_{f} 0.58$ component was proved to be the cyclophane $60(26.3 \mathrm{mg}, 0.0266 \mathrm{mmol}, 9.5 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~m}$, 3 H [under the $\mathrm{H}_{2} \mathrm{O}$ peak]), $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 9 \mathrm{H}), 3.07(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 3 \mathrm{H}), 6.79$ (dt, J=7.5, 1.5 Hz, 3H), $7.20(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.64$ (ddd, $J=7.5,4 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.4,33.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=8 \mathrm{~Hz}\right.$), 34.9, $40.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}\right), 128.6,129.1,134.0,136.1\left(\mathrm{~d}, J_{P C}=3 \mathrm{~Hz}\right), 141.5\left(\mathrm{~d}, J_{\mathrm{PC}}=34 \mathrm{~Hz}\right), 143.3$ (d, $J_{P C}=10 \mathrm{~Hz}$); HRMS (ESI-TOF) $m / z 494.1300\left([\mathrm{M}]^{+}\right)$, calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}{ }^{+}=494.1320$.
${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 60

${ }^{13} \mathrm{C}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 60

Synthesis of Cyclophane 61

58
$+$

61

In the same reaction that produced cyclophane 32, the $R_{f} 0.77$ component was the cyclophane 61 ($14.5 \mathrm{mg}, 0.0294 \mathrm{mmol}, 5.0 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.0-3.5$ (overlapping broad resonances, 38 H), $6.65(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~m}, 6 \mathrm{H}), 7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C},\left[^{2} \mathrm{H}_{8}\right]\right.$ toluene $) \delta 0.91(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~m}$, $15 \mathrm{H}), 1.69(\mathrm{~m}, 6 \mathrm{H}), 1.88(\mathrm{~m}, 6 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.90(2 \mathrm{H}), 3.02(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H})$, $6.39(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{~m}, \approx 8 \mathrm{H}$ [under a toluene resonance]), $7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.58(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR spectra of 61 at both room temperature and $100^{\circ} \mathrm{C}$ showed both moderately sharp and highly broadened resonances, and were not easily interpretable. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z} 989.2726\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. for $\mathrm{C}_{56} \mathrm{H}_{63} \mathrm{P}_{2} \mathrm{~S}_{6}{ }^{+}=989.2724$.
${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 61

${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C},\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene) of Cyclophane 61

Synthesis of Compound 84

Tetraphenylfuran ${ }^{[8,9]}$ (83, $0.82 \mathrm{~g}, \quad 2.2 \mathrm{mmol}$) and 1,2,4,5-tetrabromo-3,6diphenylbenzene ${ }^{[10]}(82,1.09 \mathrm{~g}, 2.00 \mathrm{mmol})$ were dissolved in dry toluene $(50 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring under argon. n-Butyllithium (2.5 M in hexanes, $1.04 \mathrm{~mL}, 2.6$ mmol) was diluted in dry hexanes (20 mL), and the resulting solution was added dropwise to the cold reaction mixture. The contents were allowed to warm to room temperature with stirring overnight. The reaction was quenched with methanol $(50 \mathrm{~mL})$, and ether $(200 \mathrm{~mL})$ was added. The resulting suspension was washed twice with saturated NaCl and once with water. The remaining organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (solvent, 2:1 hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 84 as a white solid ($0.674 \mathrm{~g}, 0.889 \mathrm{mmol}, 44 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ $(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13}{ }^{1}$ NMR (126 MHz, CDCl_{3}) $\delta 93.7,126.4,126.9,127.13,127.16,127.21,127.34,127.67$, 127.72, 127.9, 129.1, 129.4, 134.3, 134.9, 137.8, 138.7, 150.9, 154.8 (18 resonances observed, 17 are expected for fast phenyl rotation, 23 for slow); HRMS (ESI-TOF) m / z 757.0716 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calcd for $\mathrm{C}_{46} \mathrm{H}_{31}{ }^{79} \mathrm{Br}_{2} \mathrm{O}^{+}$757.0737.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8 4}$

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8 4}$

Synthesis of Compound 86

Compound $84(1.30 \mathrm{~g}, 1.71 \mathrm{mmol})$ and hexaphenylisobenzofuran ${ }^{[11]}(85,1.08 \mathrm{~g}, 1.88$ mmol) were dissolved in dry toluene (50 mL) and cooled to $-78^{\circ} \mathrm{C}$ with stirring under argon. n-Butyllithium (2.5 M in hexanes, $2.74 \mathrm{~mL}, 6.85 \mathrm{mmol}$) was diluted in dry hexanes $(25 \mathrm{~mL})$, and the resulting solution was added dropwise to the cold reaction mixture. The contents were allowed to warm to room temperature with stirring overnight. The reaction was quenched with methanol (50 mL), and ether (200 mL) was added. The resulting suspension was washed twice with saturated NaCl and once with water. The remaining organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (solvent, 1:1 hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 86 as a white solid ($0.193 \mathrm{~g}, 0.164 \mathrm{mmol}, 9.6 \%$). The isolated sample of 86 appears to be a single stereoisomer, probably the trans diepoxide.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.39-6.51(\mathrm{~m}, 14$ H), 6.55-6.61 (m, 7 H), 6.69-6.86 (m, 23 H), 6.92-7.02 (m, 12 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 91.7, 93.5, 124.8, 125.0, 125.7, 125.95, 125.98, 126.02, 126.06, 126.4, 126.5, 126.7, $126.98,127.03,127.2,127.3,127.5,129.15,129.18,130.2,130.6,130.9,131.0,131.3$, 131.9, 134.3, 134.5, 135.1, 135.6, 136.3, 139.1, 140.2, 140.4, 147.2, 148.2, 150.3, 155.4 (37 resonances observed; 33 are expected for fast phenyl rotation, 45 for slow); HRMS (ESI-TOF) $m / z 1173.4678\left(\mathrm{M}+\mathrm{H}^{+}\right)$, calcd for $\mathrm{C}_{90} \mathrm{H}_{61} \mathrm{O}_{2}{ }^{+} 1173.4667$.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8 6}$

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 86

Synthesis of Compound 75

86

75
$\mathrm{TiCl}_{3}-\mathrm{AlCl}_{3}(4.2 \mathrm{~g}, 21 \mathrm{mmol})$ was mixed with ether (50 mL) and cooled to $-78^{\circ} \mathrm{C}$ with stirring under argon. A solution of n-butyllithium (2.5 M in hexanes, $25 \mathrm{~mL}, 62.5 \mathrm{mmol}$) was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , and then it was allowed to warm to room temperature over 0.5 h , yielding a dark green solution. A suspension of compound 86 ($150 \mathrm{mg}, 0.128 \mathrm{mmol}$) in ether (30 mL) was added dropwise. After stirring overnight, the reaction mixture was washed twice with saturated NaCl , and the red ethereal solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by silica gel column chromatography (solvent, $2: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 75 as a red solid ($46.3 \mathrm{mg}, 0.041 \mathrm{mmol}, 32 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11$ (d, J = $8 \mathrm{~Hz}, 4 \mathrm{H}), 6.22(\mathrm{~m}, 8 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.34(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.40(\mathrm{t}, \mathrm{J}=8$ $\mathrm{Hz}, 4 \mathrm{H}), 6.46(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.51(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.64-6.78(\mathrm{~m}, 28 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 124.1,124.8,125.1,125.7,125.9,126.1,126.3,126.5,128.0,130.9,131.6$, 131.8, 132.4, 134.5, 135.0, 136.6, 138.1, 140.4, 141.0, 141.6 (20 resonances observed; 17 are expected for fast phenyl rotation, 23 for slow); MS (MALDI-TOF, DCTB matrix + $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}\right) \mathrm{m} / \mathrm{z} 1249\left(\mathrm{M}+{ }^{109} \mathrm{Ag}^{+}, 3\right), 1249\left(\mathrm{M}+{ }^{107} \mathrm{Ag}^{+}, 2\right), 1141\left(\mathrm{M}^{+}\left[{ }^{13} \mathrm{C}_{1}\right], 100\right), 1140\left(\mathrm{M}^{+}\right.$ $\left[{ }^{13} \mathrm{C}_{0}\right]$, 98). Single crystals, suitable for X-ray analysis, were obtained upon evaporation of a solution in CHCl_{3}-ethyl acetate.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 75

$\begin{array}{llllllllllllllllllllllllll}10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f}{(\mathrm{ppm})} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5\end{array}$
${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 75

$$
\begin{array}{lllllllllllllllllllll}
200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1(\mathrm{ppm})}{100} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}
$$

Synthesis of Compound 87

Hexaphenylisobenzofuran (85, $1.26 \mathrm{~g}, 2.19 \mathrm{mmol}$) and 1,2,4,5-tetrabromo-3,6diphenylbenzene ($\mathbf{8 2}, 1.09 \mathrm{~g}, 2.00 \mathrm{mmol}$) were dissolved in dry toluene $(50 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring under argon. n-Butyllithium (2.5 M in hexanes, $1.04 \mathrm{~mL}, 2.6 \mathrm{mmol}$) was diluted in dry hexanes (20 mL), and the resulting solution was added dropwise to the cold reaction mixture. The contents were allowed to warm to room temperature with stirring overnight. The reaction was quenched with methanol (50 mL), and ether (200 mL) was added. The resulting suspension was washed twice with saturated NaCl and once with water. The remaining organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (solvent, 2:1 hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 2,3-dibromo-9,10-epoxy-9,10-dihydro-1,4,5,6,7,8,9,10-octaphenylanthracene as a white solid ($0.73 \mathrm{~g}, 0.76 \mathrm{mmol}, 38 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (dd, J = 7.5 Hz, 1.5 Hz, 2 H), 6.45 (m, 8 H), $6.59(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~m}, 4 \mathrm{H}), 6.81$ (m, 2 H), $6.87(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{MALDI}-T O F\right.$, DCTB matrix $\left.+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ $983\left(\mathrm{M}+\mathrm{Na}^{+}\left[{ }^{79} \mathrm{Br}^{81} \mathrm{Br}\right]\right)$.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 87

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 87

Synthesis of Compound 88

Compound 87 ($0.72 \mathrm{~g}, 0.75 \mathrm{mmol}$) and hexaphenyl-isobenzofuran ($85,0.48 \mathrm{~g}, 0.84 \mathrm{mmol}$) were dissolved in dry toluene (50 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring under argon. n Butyllithium (2.5 M in hexanes, $1.2 \mathrm{~mL}, 3.00 \mathrm{mmol}$) was diluted in dry hexanes (25 mL), and the resulting solution was added dropwise to the cold reaction mixture. The contents were allowed to warm to room temperature with stirring overnight. The reaction was quenched with methanol (50 mL), and ether (200 mL) was added. The resulting suspension was washed twice with saturated NaCl and once with water. The remaining organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (solvent, 3:2 hexanes$\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give crude compound 88. Further purification by silica gel preparative TLC (solvent, 3:1 hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure compound 88 as a white solid ($0.015 \mathrm{~g}, 0.011$ mmol, 1.5\%; 0.6\% overall from 82). NMR analysis (most obviously, the 91.85 and 91.87 resonances in the ${ }^{13} \mathrm{C}$ NMR spectrum) indicates that this material is a $3: 1$ mixture of the trans and cis diepoxides. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.25(\mathrm{~m}, 8 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2$ H), 6.37 (m, 7 H), 6.41 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 ($\mathrm{m}, 13 \mathrm{H}$), 6.56-6.69 (m, 21 H), 6.79-6.93 ($\mathrm{m}, 15 \mathrm{H}$) , $6.99(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 91.85$ (trans $\mathrm{C}-\mathrm{O}$), 91.87 (cis C-O), 124.7, 125.2, 125.8, 125.94, 125.97, 125.99, 126.0, 126.4, 126.9, 127.1, 128.5, 129.19, $129.22,130.8,130.9,131.1,131.4,131.6,132.3,134.8,135.0,136.7,139.0,140.2,140.5$, 146.9, 148.9; MS (MALDI-TOF, DCTB matrix $\left.+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 1397\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8 8}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 88

Synthesis of Compound 91

Sulfone ${ }^{[12]}(90,3.00 \mathrm{~g}, 6.95 \mathrm{mmol})$ and diphenylacetylene ($94,1.36 \mathrm{~g}, 7.65 \mathrm{mmol}$) were dissolved in to xylenes (5 mL). Then the mixture was heated to $150{ }^{\circ} \mathrm{C}$ overnight. The product mixture was purified by silica gel column chromatography (solvent, hexanes) to give compound 91 as a white solid ($1.32 \mathrm{~g}, 2.42 \mathrm{mmol}, 35 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.92(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 127.2, 127.4, 127.6, 128.7, 129.3, 141.0, 144.1.
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 91

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 91

Synthesis of Compound 93

Tetraphenylfuran ($83,0.90 \mathrm{~g}, 2.42 \mathrm{mmol}$) and 1,2,3,4-tetrabromo-5,6-diphenylbenzene ($91,1.32 \mathrm{~g}, 2.42 \mathrm{mmol}$) were dissolved in dry toluene (70 mL) and cooled to $-78^{\circ} \mathrm{C}$ with stirring under argon. n-Butyllithium (2.5 M in hexanes, $1.94 \mathrm{~mL}, 4.84 \mathrm{mmol}$) was diluted in dry hexanes (30 mL), and the resulting solution was added dropwise to the cold reaction mixture. The contents were allowed to warm to room temperature with stirring overnight. The reaction was quenched with methanol (50 mL), and ether (200 mL) was added. The resulting suspension was washed twice with saturated NaCl and once with water. The remaining organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (solvent, 2:1 hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 93 as a white solid ($0.24 \mathrm{~g}, 0.274 \mathrm{mmol}$, $11 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.65(\mathrm{~m}, 17 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=7.6,7 \mathrm{H}), 6.91(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{t}$, $J=7.6,5 \mathrm{H}), 7.10(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 92.8, 94.0,125.1, 125.9, 126.0, 126.1, 126.5, 126.7, 126.8, 127.2, 127.3, 127.5, 127.6, 127.8, 127.9, 129.1, 129.6, $129.7,130.0,130.2,130.6,134.1,134.3,135.1,135.8,136.4,136.8,143.1,147.1,152.4$, 155.4 (31 resonances observed, 27 are expected for fast phenyl rotation, 37 for slow).
${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 93

${ }^{13} \mathrm{C}$ NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 93

Synthesis of Compound 77

93

77

Under an inert atmosphere compound 93 ($0.24 \mathrm{~g}, 0.274 \mathrm{mmol}$) and sodium iodide (0.246 $\mathrm{g}, 1.64 \mathrm{mmol}$) were suspended in acetonitrile (9 mL) and dichloromethane (1 mL) at room temperature. Upon addition of trimethylsilyl chloride ($0.208 \mathrm{~mL}, 0.178 \mathrm{~g}, 1.64 \mathrm{mmol}$) the mixture changed color to red. TLC monitoring showed full consumption of 93 after 0.5 h . The reaction was diluted with water an extracted with dichloromethane. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (solvent, 2:1 hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 77 as a light yellow solid ($50.4 \mathrm{mg}, 0.054 \mathrm{mmol}$, $20 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 6.26(\mathrm{~d}, \mathrm{~J}=7.6,2 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=7.6,2 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=$ $7.6,2 H), 6.48(\mathrm{~m}, 14 \mathrm{H}), 6.69(\mathrm{~m}, 18 \mathrm{H}), 6.81(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=7.6,4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 124.2,124.5,124.7,125.0,125.4,125.6,125.8,125.9,126.0,126.1,126.2$, 126.3, 126.4, 130.0, 131.1, 131.3, 131.4, 131.5, 132.1, 132.2, 132.6, 134.2, 137.8, 137.9, 138.2, 138.6, 140.2, 140.7, 140.8, 141.5, 141.5, 141.8 (32 resonances observed; 27 are expected for fast phenyl rotation, 37 for slow); MS (MALDI-TOF, graphite matrix + $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 961.9\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. Single crystals, suitable for X -ray analysis, were obtained upon evaporation of a solution in CHCl_{3}-ethyl acetate.

${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 77

${ }^{13}$ C NMR Spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 77

References

[1] Q. Song, Ph.D. Dissertation, Princeton University, 2008, pp 156-159.
[2] R. A. Pascal, Jr., C. G. Winans, D. Van Engen, J. Am. Chem. Soc. 1989, 111, 3007-3010.
[3] Song, Q.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2005, 127, 11246-11247.
[4] Zong, J.; Mague, J. T.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2013, 135, 13235-13237.
[5] Zong, J., Mague, J. T.; Welch, E. C.; Eckert, I. M. K.; Pascal, R. A., Jr. Tetrahedron 2013, 69, 10316-10321.
[6] E. Block, G. Ofori-Okai, J. Zubieta, J. Am. Chem. Soc. 1989, 111, 2327-2329.
[7] R. A. Pascal Jr., J. Zong, K. J. Dougherty, X. Geng, J. T. Mague, Tetrahedron 2014, 70, 7518-7526;
[8] M. Nakano, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008, 10, 1851-1854.
[9] S. Mao, X. Q. Zhu, Y. R. Gao, D. D. Guo, Y. Q. Wang, Chem. Eur. J. 2015, 21, 1133511339.
[10] J. Lu, D. M. Ho, N. J. Vogelaar, C. M. Kraml, S. Bernhard, N. Byrne, L. R. Kim, R. A. Pascal Jr., J. Am. Chem. Soc. 2006, 128, 17043-17050.
[11] W. Ried, K. H. Bönnighausen, Liebigs Ann. Chem. 1961, 639, 61-67.
[12] M. S. Raasch, J. Org. Chem. 1980, 45, 856-867

Chapter 4. X-ray Analysis for Selected Compounds

X-ray data for compound 31

Table 4.1. Sample and crystal data for compound 31

Identification code	RAP 128 c	
Chemical formula	$\mathrm{C}_{53} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~S}_{3} \mathrm{Si}$	
Formula weight	$847.23 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.079 \times 0.100 \times 0.283 \mathrm{~mm}$	
Crystal habit	colorless column	
Crystal system	monoclinic	
Space group	$P 121 / \mathrm{c} 1$	
Unit cell dimensions	$a=25.0223(8) \AA \quad \alpha=90^{\circ}$	
	$b=10.0404(3) \AA \quad B=90.0290(10)^{\circ}$	
	$c=17.1056(5) \AA \quad V=90^{\circ}$	
Volume	$4297.5(2) \AA^{3}$	
Z	4	
Density (calculated)	$1.309 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$2.168 \mathrm{~mm}^{-1}$	
F(000)	1800	

Table 4.2. Data collection and structure refinement for compound 31

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I μ S microfocus source, Cu-K α
Theta range for data collection	3.53 to 72.46°
Reflections collected Independent reflections Coverage of independent reflections	15504
Absorption correction	multi-scan
Max. and min. Mans transmission	0.8470 and 0.5790

Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL (Sheldrick)
Function minimized	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	8443 / 0 / 684
Goodness-of-fit on $\boldsymbol{F}^{\mathbf{2}}$	1.041
$\Delta / \sigma_{\text {max }}$	0.001
Final R indices	$\begin{aligned} & 7498 \\ & \text { data; } R 1=0.0396, \mathrm{w} R 2=0.0985 \\ & 1>2 \sigma(\mathrm{I}) \end{aligned}$
	all data d
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0464 \mathrm{P})^{2}+2.3368 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.543 and -0.347e \AA^{-3}
R.M.S. deviation from mean	$0.052 e^{\AA^{-3}}$

Table 4.3. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 31

	x/a	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	$\mathbf{U (e q)}$
S1	$0.25365(2)$	$0.20800(4)$	$0.37887(2)$	$0.02504(10)$
S2	$0.25500(2)$	$0.58323(4)$	$0.63139(3)$	$0.02565(10)$
S3	$0.27299(2)$	$0.07843(5)$	$0.69637(2)$	$0.02595(11)$
Si1	$0.36997(2)$	$0.28298(5)$	$0.56059(3)$	$0.02103(11)$
C1	$0.14815(7)$	$0.28535(17)$	$0.41191(10)$	$0.0229(3)$
C2	$0.11464(7)$	$0.26279(19)$	$0.34702(10)$	$0.0276(4)$
C3	$0.06103(7)$	$0.2320(2)$	$0.35500(11)$	$0.0306(4)$
C4	$0.03834(7)$	$0.22771(19)$	$0.42904(11)$	$0.0279(4)$
C5	$0.07088(7)$	$0.24648(17)$	$0.49360(10)$	$0.0234(3)$
C6	$0.12603(6)$	$0.26899(17)$	$0.48724(10)$	$0.0209(3)$
C7	$0.12705(7)$	$0.38338(17)$	$0.61730(9)$	$0.0215(3)$
C8	$0.15033(7)$	$0.48247(17)$	$0.66434(10)$	$0.0232(3)$
C9	$0.11609(8)$	$0.57667(19)$	$0.69890(11)$	$0.0294(4)$
C10	$0.06125(8)$	$0.5714(2)$	$0.69120(12)$	$0.0327(4)$
C11	$0.03789(7)$	$0.46620(19)$	$0.65073(11)$	$0.0292(4)$

	x/a	y/b	z/c	U(eq)
C12	0.07096(7)	0.37358(18)	0.61549(10)	0.0234(3)
C13	0.13616(6)	0.14106(17)	0.61116(9)	0.0208(3)
C14	0.16719(7)	0.03817(17)	0.64344(10)	0.0236(3)
C15	0.14108(8)	0.94277(19)	0.68976(11)	0.0296(4)
C16	0.08635(8)	0.9429(2)	0.70110(11)	0.0315(4)
C17	0.05530(7)	0.03749(19)	0.66332(11)	0.0280(4)
C18	0.08018(7)	0.13478(18)	0.61921(10)	0.0228(3)
C19	0.05103(6)	0.24672(18)	0.57742(10)	0.0236(3)
C20	0.15416(6)	0.27093(17)	0.56867(9)	0.0204(3)
C21	0.21404(6)	0.28638(18)	0.56294(10)	0.0225(3)
C22	0.20321(7)	0.33806(19)	0.39160(10)	0.0248(3)
C23	$0.20794(7)$	0.48812(19)	0.69215(10)	$0.0266(4)$
C24	0.22549(7)	0.00883(19)	0.62579(10)	0.0261(4)
C25	0.31320(7)	0.31072(18)	0.39256(10)	0.0234(3)
C26	0.31619(7)	0.51022(19)	0.67213(10)	0.0258(4)
C27	0.33299(7)	0.01544(19)	0.64845(12)	0.0296(4)
C28	$0.36162(6)$	0.22171(17)	0.39662(9)	0.0212(3)
C29	$0.37665(7)$	0.15352(19)	$0.32926(10)$	0.0254(4)
C30	0.41949(7)	0.0664(2)	$0.32931(11)$	0.0284(4)
C31	0.44879(7)	0.0476(2)	0.39721(11)	0.0292(4)
C32	0.43439(7)	0.1162(2)	0.46450(11)	0.0274(4)
C33	0.39084(6)	0.20355(17)	0.46619(10)	0.0219(3)
C34	0.36405(7)	0.54993(18)	0.62408(10)	$0.0248(4)$
C35	0.38550(8)	0.6765(2)	0.63668(12)	0.0320(4)
C36	0.42717(8)	0.7234(2)	0.59102(14)	0.0371(5)
C37	0.44794(8)	0.6450(2)	0.53202(13)	0.0365(5)
C38	0.42846(7)	0.5162(2)	0.52123(12)	0.0305(4)
C39	0.38690(7)	0.46527(18)	0.56722(10)	0.0242(3)
C40	0.38350(7)	0.07952(18)	0.67867(10)	0.0261(4)
C41	0.41022(8)	0.0214(2)	$0.74169(11)$	0.0320(4)
C42	0.45798(8)	0.0742(2)	0.76903(11)	0.0356(5)
C43	0.47993(7)	0.1851(2)	$0.73371(11)$	0.0322(4)
C44	0.45317(7)	0.2451(2)	0.67167(10)	0.0273(4)
C45	$0.40458(7)$	0.19497(18)	0.64347(9)	0.0234(3)
01	0.08642(7)	0.75156(17)	0.36963(10)	0.0500(4)

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	U(eq)
C46	$0.10566(13)$	$0.8685(3)$	$0.40645(17)$	$0.0614(7)$
C47	$0.12105(12)$	$0.8299(3)$	$0.48776(15)$	$0.0646(8)$
C48	$0.12167(15)$	$0.6801(4)$	$0.48587(17)$	$0.0766(9)$
C49	$0.11618(12)$	$0.6452(3)$	$0.40341(17)$	$0.0596(7)$
O2	$0.32821(7)$	$0.73459(19)$	$0.31401(9)$	$0.0502(4)$
C50	$0.27352(9)$	$0.7273(3)$	$0.33533(14)$	$0.0470(5)$
C51	$0.26793(12)$	$0.8042(4)$	$0.4106(2)$	$0.0740(9)$
C52	$0.32392(12)$	$0.8204(3)$	$0.44042(16)$	$0.0631(7)$
C53	$0.35740(11)$	$0.7374(3)$	$0.38476(15)$	$0.0531(6)$

X-ray data for compound 30

Table 4.4. Sample and crystal data for compound $\mathbf{3 0}$

Identification code	RAP 131	
Chemical formula	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~S}_{3}$	
Formula weight	$444.64 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.020 \times 0.055 \times 0.170 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	orthorhombic	
Space group	$P 212121$	
Unit cell dimensions	$a=8.4186(2) \AA$	$\alpha=90^{\circ}$
	$b=19.9288(6) \AA$	$b=90^{\circ}$
	$c=25.3664(7) \AA$	$\nu=90^{\circ}$
Volume	$4255.8(2) \AA^{3}$	
Z	8	
Density (calculated)	$1.388 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$3.262 \mathrm{~mm}^{-1}$	
F(000)	1872	

Table 4.5. Data collection and structure refinement for compound $\mathbf{3 0}$

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I $\mu \mathrm{S}$ microfocus source, $\mathrm{Cu}-\mathrm{K} \alpha$
Theta range for data collection	2.82 to 68.38°
Index ranges	$-10<=\mathrm{h}<=10,-22<=\mathrm{k}<=24,-30<=\mathrm{l}<=29$
Reflections collected	30524
Independent reflections	$7766[R(\mathrm{int})=0.0992]$
Coverage of independent reflections	99.8%
Absorption correction	multi-scan
Max. and min. transmission	0.9380 and 0.6070
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	$S H E L X L(S h e l d r i c k)$
Function minimized	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Data / restraints / parameters	$7766 / 0 / 557$

Goodness-of-fit on $\boldsymbol{F}^{\mathbf{2}}$	1.057
	6482
Final R indices	data; $\quad R 1=0.0545, \mathrm{w} R 2=0.1127$
	$\mathrm{I}>2 \sigma(\mathrm{I})$
	all $\quad R 1=0.0684, \mathrm{w} R 2=0.1192$
	data $\quad \mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0440 \mathrm{P})^{2}+2.4551 \mathrm{P}\right]$
	$\mathrm{where} \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
Weighting scheme	$0.080(14)$
Absolute structure parameter	0.288 and $-0.275 e \AA^{-3}$
Largest diff. peak and hole	$0.067 e \AA^{-3}$
R.M.S. deviation from mean	

Table 4.6. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 30

	$\mathbf{x / a}$	$\mathbf{y / b}$	z/c	U(eq)
S1	$0.29669(18)$	$0.66402(8)$	$0.48401(6)$	$0.0303(3)$
S2	$0.51497(19)$	$0.56444(7)$	$0.33978(6)$	$0.0285(3)$
S3	$0.83782(19)$	$0.66605(8)$	$0.45918(7)$	$0.0321(4)$
C1	$0.5405(7)$	$0.6706(3)$	$0.4107(2)$	$0.0254(13)$
C2	$0.4313(8)$	$0.7145(3)$	$0.4442(3)$	$0.0319(15)$
C3	$0.4701(8)$	$0.6513(3)$	$0.3565(2)$	$0.0320(14)$
C4	$0.7106(8)$	$0.6969(3)$	$0.4064(3)$	$0.0336(15)$
C5	$0.4399(7)$	$0.6386(3)$	$0.5344(2)$	$0.0274(13)$
C6	$0.3649(7)$	$0.5234(3)$	$0.3809(2)$	$0.0261(13)$
C7	$0.8785(8)$	$0.5817(3)$	$0.4333(3)$	$0.0309(14)$
C8	$0.4216(7)$	$0.5686(3)$	$0.5569(2)$	$0.0248(13)$
C9	$0.3408(7)$	$0.5583(3)$	$0.6044(2)$	$0.0278(13)$
C10	$0.3467(7)$	$0.4974(3)$	$0.6307(2)$	$0.0291(14)$
C11	$0.4330(6)$	$0.4445(3)$	$0.6094(2)$	$0.0234(12)$
C12	$0.5076(7)$	$0.4518(3)$	$0.5613(2)$	$0.0233(12)$
C13	$0.4983(7)$	$0.5130(3)$	$0.5345(2)$	$0.0207(12)$
C14	$0.4118(7)$	$0.4568(3)$	$0.4060(2)$	$0.0245(13)$
C15	$0.3480(8)$	$0.3968(3)$	$0.3868(3)$	$0.0298(14)$
C16	$0.3733(8)$	$0.3364(3)$	$0.4107(2)$	$0.0325(15)$
C17	$0.4591(8)$	$0.3331(3)$	$0.4577(2)$	$0.0300(14)$
C18	$0.5221(7)$	$0.3917(3)$	$0.4781(2)$	$0.0231(12)$

	x/a	y/b	z/c	U(eq)
C19	0.5032(7)	0.4527(3)	0.4516(2)	0.0202(11)
C20	0.8876(7)	0.5256(3)	0.4734(2)	0.0264(13)
C21	0.0368(7)	0.5008(3)	0.4896(3)	0.0297(14)
C22	0.0483(7)	0.4442(3)	0.5213(3)	0.0320(14)
C23	0.9144(7)	0.4087(3)	0.5359(2)	0.0290(14)
C24	$0.7656(7)$	0.4320(3)	0.5207(2)	0.0235(12)
C25	0.7540(7)	0.4911(3)	0.4916(2)	0.0222(12)
C26	0.5804(7)	0.5107(3)	0.4811(2)	0.0204(12)
C27	0.6052(7)	0.3993(3)	0.5318(2)	0.0247(13)
S4	0.39393(17)	0.44348(7)	0.25292(6)	0.0275(3)
S5	0.72647(19)	0.35408(8)	0.13162(6)	0.0310(4)
S6	$0.93296(17)$	0.45295(8)	0.27821(7)	0.0298(3)
C28	0.6901(7)	0.4586(3)	0.2029(2)	0.0260(13)
C29	0.5162(7)	0.4829(3)	0.2017(2)	0.0294(14)
C30	0.7547(8)	0.4424(3)	0.1484(2)	0.0300(14)
C31	0.8013(7)	0.5036(3)	0.2365(2)	0.0276(13)
C32	0.3632(7)	0.3600(3)	0.2237(2)	0.0267(13)
C33	0.8822(7)	0.3188(3)	0.1738(3)	0.0302(14)
C34	$0.7870(7)$	0.4270(3)	0.3285(2)	0.0250(13)
C35	0.3625(7)	0.3014(3)	0.2613(2)	0.0256(13)
C36	0.2187(8)	0.2712(3)	0.2753(3)	0.0317(14)
C37	0.2128(8)	0.2117(3)	0.3042(3)	0.0364(16)
C38	0.3525(8)	0.1807(3)	$0.3196(3)$	0.0304(15)
C39	0.4960(7)	0.2100(3)	0.3076(2)	0.0248(13)
C40	0.5019(7)	0.2709(3)	0.2803(2)	0.0218(12)
C41	0.8504(7)	0.2503(3)	0.1977(3)	0.0255(13)
C42	0.7617(6)	0.2428(3)	0.2431(2)	0.0209(12)
C43	0.7525(7)	0.1804(3)	0.2689(2)	0.0235(13)
C44	0.8273(7)	0.1247(3)	0.2476(3)	0.0273(13)
C45	0.9123(7)	0.1322(3)	0.2007(3)	0.0301(14)
C46	0.9242(7)	0.1935(3)	0.1761(3)	0.0284(14)
C47	0.8089(7)	0.3578(3)	0.3505(2)	0.0231(12)
C48	0.7457(7)	0.3006(3)	0.3270(2)	0.0211(12)
C49	0.7444(7)	0.2385(3)	0.3531(2)	0.0222(12)
C50	0.8113(8)	0.2323(3)	0.4026(2)	0.0302(14)

	\mathbf{x} / \mathbf{a}	$\mathbf{y / b}$	z/c	U(eq)
C51	$0.8828(9)$	$0.2886(3)$	$0.4252(3)$	$0.0345(15)$
C52	$0.8811(8)$	$0.3497(3)$	$0.4002(3)$	$0.0318(14)$
C53	$0.6700(7)$	$0.2967(3)$	$0.2725(2)$	$0.0198(12)$
C54	$0.6617(7)$	$0.1838(3)$	$0.3209(2)$	$0.0252(13)$

X-ray data for compound 56

Table 4.7. Sample and crystal data for compound 56

Identification code	RAP 134	
Chemical formula	$\mathrm{C}_{74} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{6} \mathrm{Si}_{2}$	
Formula weight	$1293.81 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.082 \times 0.234 \times 0.254 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=14.9584(5) \AA \quad \alpha=89.066(2)^{\circ}$	
	$b=19.7861(7) \AA$	$B=73.3120(10)^{\circ}$
	$c=23.8710(8) \AA$	$y=75.193(2)^{\circ}$
Volume	$6530.3(4) \AA^{3}$	
Z	4	
Density (calculated)	$1.316 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$2.696 \mathrm{~mm}^{-1}$	
F(000)	2712	

Table 4.8. Data collection and structure refinement for compound 56

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I μ S microfocus source, Cu-K
Theta range for data collection	2.31 to 73.35°
Index ranges	$-18<=h<=18,-24<=k<=22,-29<=1<=28$
Reflections collected	49465
Independent reflections	$24345[R($ int $)=0.0422]$
Coverage of independent reflections	92.7\%
Absorption correction	multi-scan
Max. and min. transmission	0.8090 and 0.5480
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL (Sheldrick)
Function minimized	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	24345 / 304 / 1597

Goodness-of-fit on \boldsymbol{F}^{2}	1.054	
$\boldsymbol{\Delta} / \boldsymbol{\sigma}_{\text {max }}$	0.001	
Final R indices	18895 data;	
	$1>2 \sigma(I) \quad R 1=0.0569, \mathrm{w} R 2=0.1272$	
	all data $\quad R 1=0.0751, \mathrm{w} R 2=0.1402$	
	$\mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0448 \mathrm{P})^{2}+8.2475 \mathrm{P}\right]$	
Weighting scheme	where $\mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$	
	0.653 and $-0.773 e \AA^{-3}$	
Largest diff. peak and hole	$0.064 e \AA^{-3}$	
R.M.S. deviation from mean	0.0	

Table 4.9. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 56

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	z/c	U(eq)
S1	$0.24897(5)$	$0.24761(4)$	$0.23993(3)$	$0.02961(16)$
S2	$0.39002(6)$	$0.33096(4)$	$0.98113(3)$	$0.03526(18)$
S3	$0.50584(5)$	$0.08359(4)$	$0.04951(4)$	$0.03364(17)$
S4	$0.67072(5)$	$0.38296(4)$	$0.14924(3)$	$0.03219(17)$
S5	$0.77890(5)$	$0.48027(4)$	$0.95243(3)$	$0.02954(16)$
S6	$0.95094(6)$	$0.17560(4)$	$0.95219(3)$	$0.03452(17)$
Si1	$0.32246(5)$	$0.22660(4)$	$0.09274(3)$	$0.02266(16)$
Si2	$0.85026(5)$	$0.33900(4)$	$0.01985(3)$	$0.02377(16)$
C1	$0.2124(2)$	$0.29448(14)$	$0.13753(13)$	$0.0256(6)$
C2	$0.1563(2)$	$0.34017(15)$	$0.10714(14)$	$0.0304(6)$
C3	$0.0832(2)$	$0.39819(16)$	$0.13514(15)$	$0.0350(7)$
C4	$0.0624(2)$	$0.41112(16)$	$0.19462(15)$	$0.0361(7)$
C5	$0.1126(2)$	$0.36602(16)$	$0.22674(14)$	$0.0333(7)$
C6	$0.1882(2)$	$0.30844(15)$	$0.19858(13)$	$0.0275(6)$
C7	$0.3084(2)$	$0.22224(15)$	$0.01610(13)$	$0.0260(6)$
C8	$0.2631(2)$	$0.17164(16)$	$0.00625(13)$	$0.0295(6)$
C9	$0.2396(2)$	$0.16531(16)$	$0.95444(14)$	$0.0328(7)$
C10	$0.2585(2)$	$0.21192(17)$	$0.91195(13)$	$0.0329(7)$
C11	$0.3019(2)$	$0.26361(17)$	$0.92023(13)$	$0.0330(7)$
C12	$0.3284(2)$	$0.26871(15)$	$0.97131(13)$	$0.0280(6)$
C13	$0.3212(2)$	$0.13611(15)$	$0.12052(12)$	$0.0252(6)$
C14	$0.2364(2)$	$0.12719(16)$	$0.16033(13)$	$0.0279(6)$
C15	$0.2295(2)$	$0.06367(16)$	$0.18426(14)$	$0.0323(7)$
C16	$0.3083(2)$	$0.00622(16)$	$0.16770(14)$	$0.0317(7)$

	x/a	y/b	z/c	U(eq)
C17	0.3931(2)	0.01151(15)	0.12709(14)	0.0301(6)
C18	0.4002(2)	0.07570(15)	0.10331(12)	0.0250(6)
C19	0.2634(2)	0.30215(17)	$0.29586(13)$	0.0326(7)
C20	0.3458(2)	0.33542(16)	0.27337(12)	0.0286(6)
C21	0.4360(2)	0.30408(17)	0.27968(14)	0.0335(7)
C22	0.5116(2)	0.33500(17)	0.26046(15)	0.0363(7)
C23	$0.4999(2)$	0.39789(16)	$0.23309(13)$	0.0298(6)
C24	0.4098(2)	0.42910(16)	$0.22566(14)$	0.0340(7)
C25	0.3340(2)	0.39844(17)	0.24562(14)	0.0344(7)
C26	0.5817(2)	0.43249(18)	0.21349(14)	0.0356(7)
C27	0.4075(3)	0.37557(19)	$0.91329(16)$	0.0414(8)
C28	0.4855(2)	0.41240(17)	0.90927(13)	0.0332(7)
C29	0.4639(2)	0.48270(17)	0.92652(14)	0.0346(7)
C30	0.5369(2)	0.51508(16)	0.92323(14)	0.0322(7)
C31	0.6336(2)	0.47795(15)	0.90257(13)	0.0282(6)
C32	0.6547(2)	$0.40752(17)$	$0.88559(16)$	0.0382(7)
C33	0.5820(3)	$0.37519(17)$	0.88892(16)	0.0401(8)
C34	0.7129(2)	0.51261(16)	0.89959(15)	0.0342(7)
C35	0.6000(2)	0.00857(16)	0.05822(16)	0.0356(7)
C36	0.6954(2)	0.02453(15)	0.03021(14)	0.0310(6)
C37	0.7399(2)	0.05369(19)	0.06325(15)	0.0416(8)
C38	0.8256(2)	0.07193(19)	0.03730(15)	0.0413(8)
C39	0.8682(2)	0.06199(15)	0.97690 (13)	0.0291(6)
C40	0.8242(2)	0.03109(16)	0.94440 (14)	0.0315(6)
C41	0.7390(2)	0.01262(16)	$0.97039(14)$	0.0328(7)
C42	0.9596(2)	0.08216(16)	$0.94719(14)$	0.0332(7)
C43	0.7527(2)	0.43583(15)	0.12641(13)	0.0275(6)
C44	0.7453(2)	0.49533(16)	0.15992(14)	0.0325(7)
C45	0.8098(2)	0.53570(17)	0.14177(14)	0.0340(7)
C46	0.8828(2)	0.51832(16)	0.08953(13)	0.0310(6)
C47	0.8904(2)	0.45952(16)	0.05577(13)	0.0298(6)
C48	0.8264(2)	0.41671(15)	0.07242(13)	0.0255(6)
C49	0.8835(2)	0.41502(15)	$0.91376(13)$	0.0256(6)
C50	0.9342(2)	0.42143(16)	0.85532(13)	0.0295(6)
C51	0.0239(2)	0.37648(17)	0.82953(13)	0.0333(7)

	x/a	y/b	z/c	U(eq)
C52	0.0667(2)	0.32670(16)	0.86157(14)	0.0327(7)
C53	0.0166(2)	0.31903(15)	0.91905(13)	0.0277(6)
C54	0.9228(2)	0.36063(14)	0.94568(12)	0.0243(6)
C55	0.9652(2)	0.19273(15)	0.02177(13)	0.0278(6)
C56	0.0179(2)	0.14027(16)	0.04853(15)	0.0327(7)
C57	0.0320(2)	0.15458(17)	0.10148(14)	0.0335(7)
C58	0.9955(2)	0.22149(17)	0.12798(14)	0.0338(7)
C59	0.9450(2)	0.27375(16)	0.10089(13)	0.0302(6)
C60	0.9269(2)	0.26197(15)	0.04786(13)	0.0262(6)
C61	0.4296(2)	0.25529(16)	0.09870(14)	0.0294(6)
C62	0.7397(2)	0.31707(17)	0.01175(14)	0.0323(7)
S7	$0.37304(6)$	0.83294(4)	0.49493(3)	0.03429(17)
S8	0.45118(6)	0.58490(4)	0.56369(3)	0.03605(18)
S9	0.23350(5)	0.76676(4)	0.75582(3)	0.02917(16)
S10	$0.77606(5)$	0.98373(4)	0.45092(3)	0.02920(15)
S11	0.91241(6)	0.67888(4)	0.46682(4)	0.03953(19)
S12	0.66979(5)	0.89090(4)	0.65837(3)	0.03231(17)
Si3	0.29332(5)	$0.73766(4)$	0.61095(3)	0.02506(16)
Si4	0.83659(5)	0.84564(4)	0.52561(3)	0.02376(16)
C63	0.2771(2)	0.73233(15)	0.53522(13)	0.0280(6)
C64	0.2276(2)	0.68391(17)	0.52666(14)	0.0339(7)
C65	0.2066(2)	0.67532(18)	0.47470(15)	0.0381(7)
C66	0.2335(2)	0.71710(18)	$0.42952(14)$	0.0378(7)
C67	0.2809(2)	0.76690 (17)	$0.43624(14)$	0.0341(7)
C68	$0.3044(2)$	$0.77415(15)$	0.48809(13)	0.0294(6)
C69	0.2777(2)	0.65135(16)	0.64262(13)	0.0283(6)
C70	0.1933(2)	0.64941(17)	0.68641(14)	0.0330(7)
C71	0.1783(2)	0.58783(18)	0.71121(16)	0.0405(8)
C72	0.2467(3)	0.52531(18)	0.69051(16)	0.0427(8)
C73	0.3293(3)	$0.52438(17)$	0.64608(15)	0.0400(8)
C74	0.3462(2)	0.58661(16)	$0.62248(14)$	0.0316(6)
C75	0.1886(2)	0.81044(15)	$0.65474(13)$	0.0258(6)
C76	0.1291(2)	0.85441(16)	0.62571(14)	0.0321(7)
C77	0.0551(2)	0.91128(17)	0.65400(15)	0.0368(7)
C78	0.0368(2)	0.92581(17)	0.71332(15)	0.0355(7)

	x/a	y/b	z/c	U(eq)
C79	0.0924(2)	0.88276(16)	0.74409(14)	0.0337(7)
C80	0.1676(2)	0.82611(15)	0.71573(13)	0.0272(6)
C81	0.3985(3)	0.87103(19)	0.42381(15)	0.0396(8)
C82	0.4776(2)	0.90652(17)	0.41894(13)	0.0326(7)
C83	0.4573(2)	0.97810(17)	0.43083(14)	0.0331(7)
C84	0.5315(2)	0.01013(16)	0.42507(13)	0.0316(6)
C85	0.6278(2)	0.97193(15)	0.40601(12)	0.0285(6)
C86	0.6479(2)	0.89983(17)	$0.39469(15)$	0.0383(7)
C87	0.5738(2)	0.86779(17)	0.40109(16)	0.0394(8)
C88	0.7083(2)	0.00724(17)	0.39769(14)	0.0324(7)
C89	0.5456(3)	0.5240(2)	0.58698(18)	0.0477(9)
C90	0.6407(2)	0.53977(18)	0.55689(16)	0.0392(8)
C91	0.6991(3)	0.50614(18)	0.50401(18)	0.0443(8)
C92	0.7846(2)	0.52201(17)	0.47570(16)	0.0404(8)
C93	0.8149(2)	0.57226(17)	0.49948(14)	0.0345(7)
C94	0.7557(3)	0.6070(2)	0.55240(17)	0.0525(10)
C95	0.6702(3)	0.5908(2)	0.58066(16)	0.0541(10)
C96	0.9085(3)	0.58792(18)	$0.46634(17)$	0.0434(8)
C97	0.2536(2)	0.82220(17)	0.80860(13)	0.0309(6)
C98	0.3391(2)	0.85210(16)	0.78471(12)	0.0280(6)
C99	0.3469(3)	0.8931(2)	$0.73662(15)$	0.0441(9)
C100	0.4254(3)	0.9211(2)	0.71600(15)	0.0453(9)
C101	0.4980(2)	0.90970(16)	0.74270 (13)	0.0302(6)
C102	0.4912(2)	0.86837(17)	0.79031(14)	0.0348(7)
C103	0.4128(2)	0.83996(17)	0.81076(14)	0.0334(7)
C104	0.5809(2)	0.94269(18)	$0.72109(14)$	0.0357(7)
C105	0.8774(2)	0.91395(15)	0.41569(13)	0.0255(6)
C106	0.9296(2)	0.91641(16)	0.35690 (13)	0.0303(6)
C107	0.0161(2)	0.86722(17)	0.33226(13)	0.0338(7)
C108	0.0018(2)	0.81372(15)	0.42370(13)	0.0295(6)
C109	0.0538(2)	0.81663(17)	0.36590 (14)	0.0344(7)
C110	0.91146(19)	0.86041(15)	0.44975(12)	0.0255(6)
C111	0.9075(2)	$0.76742(15)$	0.55589(13)	0.0270(6)
C112	0.9323(2)	$0.78008(17)$	$0.60645(13)$	0.0305(6)
C113	0.9787(2)	0.72650(19)	0.63488(15)	0.0378(7)

	x/a	y/b	z/c	U(eq)
C114	0.0018(2)	0.65849(18)	0.61331(16)	0.0400(8)
C115	0.9800(2)	0.64339(17)	0.56314(16)	0.0389(8)
C116	0.9338(2)	0.69653(16)	0.53412(14)	0.0313(6)
C117	0.7497(2)	0.94431(15)	0.63117(13)	0.0262(6)
C118	0.7465(2)	0.00371(16)	0.66341(13)	0.0314(6)
C119	0.8093(2)	0.04485(16)	0.64176(14)	0.0318(6)
C120	0.8775(2)	0.02714(16)	0.58768(14)	0.0322(7)
C121	0.8820(2)	0.96759(16)	0.55577(13)	0.0284(6)
C122	0.81915(19)	0.92486(15)	0.57555(12)	0.0248(6)
C123	0.4096(2)	0.75563(17)	0.61253(14)	0.0326(7)
C124	0.7213(2)	0.82885(16)	0.52065(13)	0.0298(6)
01	0.4632(3)	0.8207(2)	$0.25754(19)$	0.1031(14)
02	0.3295(3)	0.79202(19)	0.29395(14)	0.0966(13)
N1	0.3895(3)	0.80828(19)	0.25367(15)	0.0638(10)
C125	0.4446(3)	0.81792(18)	0.14718(17)	0.0480(9)
C126	0.4270(4)	0.8227(2)	0.09375(19)	0.0608(11)
C127	$0.3388(4)$	0.8229(2)	0.0897(2)	0.0685(13)
C128	0.2646(4)	0.8187(2)	0.1383(2)	0.0670(12)
C129	0.2802(3)	0.81360(19)	$0.1936(2)$	0.0536(10)
C130	0.3712(3)	0.81339(17)	0.19576(15)	0.0404(8)
03	0.6578(3)	0.67874(19)	0.22056(14)	0.0854(11)
04	0.5206(3)	0.6550(2)	0.25309(19)	0.0988(13)
N2	0.5927(3)	0.66661(19)	0.26010(17)	0.0626(10)
C131	0.6023(3)	0.66665(18)	0.32013(16)	0.0444(8)
C132	0.6910(3)	0.6658(2)	$0.32657(19)$	0.0540(10)
C133	0.6984(4)	0.6652(2)	0.3835(2)	0.0687(13)
C134	0.6189(4)	0.6659(2)	0.4306(2)	0.0728(14)
C135	0.5325(4)	0.6672(2)	0.4224(2)	0.0665(13)
C136	0.5228(3)	0.6678(2)	0.36667(18)	0.0547(10)
05	0.9390(5)	0.5136(3)	0.6512(3)	0.121(2)
06	0.0233(4)	0.4312(4)	0.6901(3)	0.1100(18)
N3	0.9505(4)	0.4610(3)	0.6781(3)	0.0909(18)
05A	0.0443(10)	0.3772(7)	0.6825(7)	0.121(2)
06A	0.9973(11)	0.2900(8)	$0.7246(7)$	0.1100(18)
N3A	0.9835(5)	0.3454(7)	$0.7018(7)$	0.0909(18)

	\mathbf{x} / a	\mathbf{y} / b	$\mathbf{z / c}$	U(eq)
C137	$0.8725(3)$	$0.4240(2)$	$0.68323(18)$	$0.105(2)$
C138	$0.7917(4)$	$0.44847(17)$	$0.66359(15)$	$0.1001(19)$
C139	$0.7132(3)$	$0.4198(2)$	$0.68278(19)$	$0.105(2)$
C140	$0.7155(3)$	$0.3668(2)$	$0.72161(19)$	$0.104(2)$
C141	$0.7962(3)$	$0.34230(17)$	$0.74126(15)$	$0.0861(16)$
C142	$0.8747(3)$	$0.3709(2)$	$0.72207(18)$	$0.0879(16)$
O7	$0.0072(5)$	$0.8856(3)$	$0.1935(3)$	$0.0899(18)$
O8	$0.0030(5)$	$0.7831(3)$	$0.2214(3)$	$0.0953(17)$
N4	$0.9634(4)$	$0.8412(3)$	$0.2100(3)$	$0.0780(16)$
O7A	$0.9711(6)$	$0.9332(5)$	$0.2025(4)$	$0.0899(18)$
O8A	$0.8682(7)$	$0.0057(4)$	$0.1669(4)$	$0.0953(17)$
N4A	$0.8940(5)$	$0.9547(4)$	$0.1926(4)$	$0.0780(16)$
C143	$0.8579(2)$	$0.8555(2)$	$0.22359(19)$	$0.0985(19)$
C144	$0.8214(3)$	$0.9164(2)$	$0.19858(18)$	$0.0965(18)$
C145	$0.7246(3)$	$0.93545(16)$	$0.19998(16)$	$0.0806(15)$
C146	$0.6644(2)$	$0.8937(2)$	$0.22639(16)$	$0.0822(15)$
C147	$0.7008(3)$	$0.83279(18)$	$0.25140(15)$	$0.0920(17)$
C148	$0.7976(3)$	$0.81372(17)$	$0.25000(16)$	$0.0987(19)$

X-ray data for compound 61

Table 4.10. Sample and crystal data for compound 61

Identification code	RAP 138	
Chemical formula	$\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{P}_{2} \mathrm{~S}_{6}$	
Formula weight	$989.35 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.106 \times 0.162 \times 0.238 \mathrm{~mm}$	
Crystal habit	colorless block	
Crystal system	triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=9.6080(3) \AA \quad \alpha=107.307(2)^{\circ}$	
	$b=10.0386(3) \AA \quad B=93.210(2)^{\circ}$	
	$c=16.0644(6) \AA \quad y=107.3880(10)^{\circ}$	
Volume	$1393.71(8) \AA^{3}$	
Z	1	
Density (calculated)	$1.179 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$3.061 \mathrm{~mm}^{-1}$	
F(000)	524	

Table 4.11. Data collection and structure refinement for compound 61

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	'INCOATEC I μ S microfocus source', Cu
Theta range for data collection	2.92 to 72.16°
Index ranges	$-10<=\mathrm{h}<=11,-12<=\mathrm{k}<=11,-19<=\mid<=17$
Reflections collected	10676
Independent reflections Coverage of independent reflections	$5190[R(\mathrm{int})=0.0284]$
Absorption correction	94.3%
Max. and min. transmission Structure solution technique	multi-scan
Structure solution program	0.7370 and 0.5300
direct methods	
Refinement method	SHELXT 2014/5 (Sheldrick)
Refinement program	Full-matrix least-squares on F^{2}

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	U(eq)
C11	$0.5938(17)$	$0.7381(14)$	$0.3534(7)$	$0.087(3)$
C12	$0.4962(17)$	$0.5795(14)$	$0.3005(7)$	$0.089(3)$
C13	$0.4747(17)$	$0.5473(14)$	$0.2012(7)$	$0.075(3)$
C7A	$0.6337(19)$	$0.211(3)$	$0.3798(7)$	$0.113(4)$
C8A	$0.5015(16)$	$0.201(3)$	$0.4151(10)$	$0.106(4)$
C9A	$0.5260(17)$	$0.291(2)$	$0.5101(11)$	$0.112(4)$
C10A	$0.6080(12)$	$0.7049(15)$	$0.4562(7)$	$0.084(3)$
C11A	$0.5539(17)$	$0.6766(14)$	$0.3655(7)$	$0.087(3)$
C12A	$0.4783(18)$	$0.5155(14)$	$0.3068(8)$	$0.089(3)$
C13A	$0.4535(17)$	$0.4942(14)$	$0.2088(7)$	$0.075(3)$
C14	$0.6334(6)$	$0.3919(6)$	$0.0957(3)$	$0.0609(12)$
C15	$0.5548(7)$	$0.3320(7)$	$0.0093(4)$	$0.0804(17)$
C16	$0.5574(7)$	$0.2010(7)$	$0.9533(4)$	$0.0788(17)$
C17	$0.6411(7)$	$0.1300(7)$	$0.9801(4)$	$0.0775(17)$
C18	$0.7199(7)$	$0.1877(6)$	$0.0653(3)$	$0.0695(14)$
C19	$0.7168(5)$	$0.3190(5)$	$0.1249(3)$	$0.0523(10)$
C20	$0.7423(19)$	$0.723(2)$	$0.477(2)$	$0.079(4)$
C21	$0.878(2)$	$0.783(3)$	$0.472(2)$	$0.069(3)$
C20A	$0.7386(19)$	$0.671(2)$	$0.475(2)$	$0.079(4)$
C21A	$0.897(2)$	$0.804(3)$	$0.466(2)$	$0.069(3)$
C22	$0.0168(6)$	$0.7510(5)$	$0.4939(4)$	$0.0653(13)$
C23	$0.0618(5)$	$0.6310(5)$	$0.3201(3)$	$0.0513(10)$
C24	$0.1814(5)$	$0.7530(6)$	$0.3220(4)$	$0.0660(13)$
C25	$0.2134(6)$	$0.7807(7)$	$0.2454(4)$	$0.0831(19)$
C26	$0.1273(6)$	$0.6920(9)$	$0.1667(5)$	$0.093(2)$
C27	$0.0081(6)$	$0.5705(8)$	$0.1634(4)$	$0.0770(17)$
C28	$0.9726(5)$	$0.5393(5)$	$0.2399(3)$	$0.0523(10)$

X-ray data for compound 32

Table 4.13. Sample and crystal data for compound 32

Identification code	RAP 145	
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}$	
Formula weight	$494.68 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.064 \times 0.167 \times 0.232 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	monoclinic	
Space group	$P 121 / \mathrm{c} 1$	
Unit cell dimensions	$a=10.3116(5) \AA \quad \alpha=90^{\circ}$	
	$b=16.6310(8) \AA \quad b=108.753(2)^{\circ}$	
	$c=14.8890(7) \AA \quad V=90^{\circ}$	
Volume	$2417.8(2) \AA^{3}$	
Z	4	
Density (calculated)	$1.359 \mathrm{~g}^{\circ} \mathrm{cm}^{3}$	
Absorption coefficient	$3.528 \mathrm{~mm}^{-1}$	
F(000)	1048	

Table 4.14. Data collection and structure refinement for compound 32

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I $\mu \mathrm{S}$ microfocus source, $\mathrm{Cu}-\mathrm{K} \alpha$
Theta range for data collection	4.11 to 77.22°
Index ranges Reflections collected Independent reflections Coverage of independent reflections	$-11<=\mathrm{h}<=12,-20<=\mathrm{k}<=20,-17<=\mid<=18$
Absorption correction	36208
Max. and min. transmission	$36208[R(\mathrm{int})=0.0000]$
Refinement method	multi-scan
Refinement program	Full-matrix least-squares on F^{2}
Function minimized	$S H E L X L-2018 / 1$ (Sheldrick)
Data / restraints / parameters	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}$

Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.023	
$\Delta / \sigma_{\text {max }}$	0.001	
Final R indices	$\begin{aligned} & 29544 \text { data; } \\ & \text { l>2б(I) } \end{aligned}$	$R 1=0.0418, \mathrm{w} 2=0.0989$
	all data	$R 1=0.0538, \mathrm{w} 22=0.1066$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0473 \mathrm{P})^{2}+0.3479 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$	
Largest diff. peak and hole	0.376 and -0.400 e \AA^{-3}	
R.M.S. deviation from mean	$0.065 \mathrm{e}^{\text {a }}$ -	

Table 4.15. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 32

	\mathbf{x} / \mathbf{a}	$\mathbf{y / b}$	$\mathbf{z / c}$	$\mathbf{U}(\mathbf{e q})$
S1	$0.57833(6)$	$0.93008(3)$	$0.15015(4)$	$0.01886(14)$
S2	$0.71697(6)$	$0.80999(3)$	$0.47686(4)$	$0.02113(14)$
S3	$0.60797(6)$	$0.63551(3)$	$0.18663(4)$	$0.02044(14)$
P1	$0.77768(5)$	$0.79440(3)$	$0.27817(4)$	$0.01478(14)$
C1	$0.8150(2)$	$0.83891(12)$	$0.17536(15)$	$0.0164(4)$
C2	$0.9239(2)$	$0.81475(13)$	$0.14476(17)$	$0.0195(5)$
C3	$0.9431(2)$	$0.84707(14)$	$0.06389(17)$	$0.0226(5)$
C4	$0.8524(2)$	$0.90409(14)$	$0.01052(17)$	$0.0238(5)$
C5	$0.7426(2)$	$0.92852(13)$	$0.03897(17)$	$0.0215(5)$
C6	$0.7237(2)$	$0.89652(12)$	$0.12032(16)$	$0.0173(4)$
C7	$0.9002(2)$	$0.84744(12)$	$0.37926(16)$	$0.0168(4)$
C8	$0.0223(2)$	$0.88255(13)$	$0.37619(17)$	$0.0195(5)$
C9	$0.1158(2)$	$0.91594(13)$	$0.45676(18)$	$0.0234(5)$
C10	$0.0890(2)$	$0.91520(14)$	$0.54188(18)$	$0.0245(5)$
C11	$0.9672(2)$	$0.88270(14)$	$0.54630(17)$	$0.0222(5)$
C12	$0.8721(2)$	$0.84974(12)$	$0.46561(16)$	$0.0183(4)$
C13	$0.8665(2)$	$0.69634(12)$	$0.28744(16)$	$0.0165(4)$
C14	$0.0059(2)$	$0.68477(13)$	$0.33614(17)$	$0.0196(5)$
C15	$0.0671(2)$	$0.60976(13)$	$0.34074(17)$	$0.0219(5)$
C16	$0.9898(2)$	$0.54409(13)$	$0.29725(17)$	$0.0230(5)$
C17	$0.8510(2)$	$0.55370(13)$	$0.24981(17)$	$0.0208(5)$
C18	$0.7882(2)$	$0.62892(12)$	$0.24509(15)$	$0.0173(4)$
C19	$0.4583(2)$	$0.85275(14)$	$0.08581(17)$	$0.0211(5)$

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	z/c	$\mathbf{U (e q)}$
C 20	$0.3184(2)$	$0.86203(14)$	$0.09961(17)$	$0.0222(5)$
C 21	$0.3219(2)$	$0.86140(14)$	$0.20289(17)$	$0.0209(5)$
C 22	$0.6010(2)$	$0.89171(14)$	$0.42037(18)$	$0.0231(5)$
C 23	$0.4547(2)$	$0.87315(16)$	$0.41825(18)$	$0.0261(5)$
C 24	$0.3924(3)$	$0.79632(15)$	$0.36468(18)$	$0.0252(5)$
C 25	$0.5556(2)$	$0.62888(14)$	$0.29258(17)$	$0.0216(5)$
C 26	$0.4004(2)$	$0.63325(14)$	$0.2686(2)$	$0.0255(5)$
C 27	$0.3327(2)$	$0.70972(13)$	$0.21669(18)$	$0.0230(5)$
C 28	$0.3952(2)$	$0.78942(13)$	$0.26265(16)$	$0.0193(5)$

X-ray data for compound 75

Table 4.16. Sample and crystal data for compound 75

Identification code	RAP 146	
Chemical formula	$\mathrm{C}_{91} \mathrm{H}_{61} \mathrm{Cl}_{3}$	
Formula weight	$1260.74 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.078 \times 0.102 \times 0.119 \mathrm{~mm}$	
Crystal system	monoclinic	
Space group	$C 121$	
Unit cell dimensions	$a=23.1292(11) \AA \quad \alpha=90^{\circ}$	
	$b=17.7226(9) \AA \quad b=121.517(2)^{\circ}$	
	$c=21.4625(11) \AA \quad v=90^{\circ}$	
Volume	$7499.9(7) \AA^{3}$	
Z	4	
Density (calculated)	$1.117 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$1.437 \mathrm{~mm}^{-1}$	
F(000)	2632	

Table 4.17. Data collection and structure refinement for compound 75

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I $\mu \mathrm{S}$ microfocus source, $\mathrm{Cu}-\mathrm{K} \alpha$
Theta range for data collection	3.35 to 73.14°
Index ranges	$-26<=\mathrm{h}<=28,-18<=\mathrm{k}<=21,-24<=\mid<=26$
Reflections collected	27758
Independent reflections	$11421[R($ int $)=0.0548]$
Absorption correction	multi-scan
Max. and min. transmission	0.8960 and 0.8480
Structure solution technique	direct methods
Structure solution program	SHELXT 2014/5 (Sheldrick)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/1 (Sheldrick)
Function minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Data / restraints / parameters	$11421 / 725 / 831$

Goodness-of-fit on $F^{\mathbf{2}}$	1.034
Final \mathbf{R} indices	8685 data; l $2 \sigma(\mathrm{I})$$\quad R 1=0.1108, \mathrm{wR2}=0.2881$
	all data $\quad R 1=0.1352, \mathrm{wR2}=0.3082$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1211 \mathrm{P})^{2}+51.2895 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Absolute structure parameter	0.53(6)
Extinction coefficient	0.0007(1)
Largest diff. peak and hole	0.665 and $-0.510 e^{\circ}{ }^{-3}$
R.M.S. deviation from mean	$0.086 e \AA^{-3}$

Table 4.18. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for compound 75

	$\mathbf{x / a}$	$\mathbf{y / b}$	$\mathbf{z / c}$	$\mathbf{U (e q)}$
C1	0.0	$0.3370(7)$	0.0	$0.028(2)$
C2	$0.0637(4)$	$0.3727(4)$	$0.0453(5)$	$0.0261(17)$
C3	$0.1251(4)$	$0.3343(5)$	$0.0686(5)$	$0.0311(19)$
C4	$0.1908(4)$	$0.3577(5)$	$0.1231(5)$	$0.0274(17)$
C5	$0.2460(4)$	$0.3244(5)$	$0.1265(5)$	$0.0325(19)$
C6	$0.2391(4)$	$0.2713(5)$	$0.0743(5)$	$0.0344(19)$
C7	$0.1768(4)$	$0.2360(5)$	$0.0286(5)$	$0.0321(19)$
C8	$0.1189(4)$	$0.2602(4)$	$0.0329(5)$	$0.0287(18)$
C9	$0.0571(4)$	$0.2192(5)$	$0.0051(5)$	$0.0310(18)$
C10	0.0	$0.2572(7)$	0.0	$0.031(3)$
C11	$0.0669(4)$	$0.4521(4)$	$0.0678(5)$	$0.0307(18)$
C12	$0.0360(4)$	$0.4737(6)$	$0.1065(5)$	$0.040(2)$
C13	$0.0404(5)$	$0.5460(7)$	$0.1324(6)$	$0.060(3)$
C14	$0.0758(5)$	$0.6016(6)$	$0.1192(6)$	$0.049(3)$
C15	$0.1055(6)$	$0.5834(6)$	$0.0797(7)$	$0.062(3)$
C16	$0.1017(5)$	$0.5083(5)$	$0.0532(5)$	$0.042(2)$
C17	$0.2030(4)$	$0.4082(5)$	$0.1839(6)$	$0.037(2)$
C18	$0.1769(4)$	$0.3846(6)$	$0.2275(5)$	$0.039(2)$
C19	$0.1928(6)$	$0.4274(8)$	$0.2904(7)$	$0.059(3)$
C20	$0.2338(6)$	$0.4865(8)$	$0.3126(7)$	$0.061(3)$
C21	$0.2605(5)$	$0.5148(7)$	$0.2675(7)$	$0.053(3)$
C22	$0.2406(4)$	$0.4700(5)$	$0.2037(5)$	$0.037(2)$
C23	$0.3172(4)$	$0.3457(5)$	$0.1885(6)$	$0.039(2)$

	x/a	y/b	z/c	U(eq)
C24	0.3402(5)	$0.3277(7)$	0.2615(6)	0.050(3)
C25	0.4040(5)	0.3473(7)	0.3154(7)	0.059(3)
C26	0.4440(6)	0.3870(8)	0.3026(8)	0.067(3)
C27	0.4250(5)	0.4076(7)	0.2341(8)	0.060(3)
C28	0.3614(4)	0.3841(5)	0.1749(6)	0.041(2)
C29	0.2977(4)	0.2486(5)	0.0680(5)	0.037(2)
C30	0.3515(4)	0.2074(5)	0.1275(6)	0.041(2)
C31	0.4094(5)	$0.1886(6)$	0.1251(6)	0.052(3)
C32	0.4145(4)	0.2129(7)	0.0665(6)	0.051(3)
C33	0.3620(5)	0.2567(7)	0.0080(7)	0.058(3)
C34	0.3047 (4)	0.2719(5)	0.0112(6)	0.040(2)
C35	0.1647(4)	0.1859(5)	0.9668(5)	0.0317(19)
C36	0.2008(5)	0.1178(6)	0.9787(6)	0.044(2)
C37	0.1882(5)	0.0777(6)	0.9152(6)	0.045(2)
C38	0.1409(6)	0.1022(7)	0.8446(6)	0.052(3)
C39	0.1100(5)	0.1690(7)	0.8370(6)	0.052(3)
C40	0.1197(4)	0.2119(6)	0.8940(5)	0.040(2)
C41	0.0529(5)	0.1374(3)	0.9804(5)	0.025(2)
C42	0.0962(5)	0.0850(4)	0.0319(5)	0.031(3)
C43	0.0955(5)	0.0104(4)	0.0115(6)	0.031(3)
C44	0.0513(5)	0.9882(3)	$0.9396(6)$	0.041(3)
C45	0.0079(5)	0.0406(5)	0.8881(5)	0.043(3)
C46	0.0087(5)	0.1152(4)	0.9085(5)	0.030(3)
C41A	0.0629(10)	0.1335(3)	0.0015(10)	0.025(2)
C42A	0.1105(9)	0.0894(7)	0.0592(9)	0.031(3)
C43A	0.1190(9)	0.0141(7)	0.0476(10)	0.031(3)
C44A	0.0799(10)	0.9829(5)	0.9783(12)	0.041(3)
C45A	0.0322(10)	0.0270(8)	0.9205(9)	0.043(3)
C46A	0.0238(9)	0.1023(7)	0.9321(9)	0.030(3)
C47	0.0	0.3795(10)	0.5	0.049(4)
C48	0.0644(5)	0.3392(7)	0.5431(7)	0.054(3)
C49	0.1218(4)	$0.3846(6)$	0.5638(6)	0.041(2)
C50	0.1920(5)	0.3601(7)	0.6218(6)	0.049(3)
C51	0.2481(5)	0.3935(7)	0.6249(6)	0.050(3)
C52	0.2366(5)	0.4472(7)	0.5682(7)	0.057(3)

	x/a	y/b	z/c	U(eq)
C53	0.1728(5)	0.4757(7)	0.5221(7)	0.054(3)
C54	0.1164(5)	0.4526(7)	0.5294(6)	0.051(3)
C55	0.0591(5)	0.4992 (8)	0.5094(7)	0.058(3)
C56	0.0	0.4621(11)	0.5	0.056(4)
C57	0.0671(13)	0.2616(5)	0.5708(14)	0.046(3)
C58	0.0342(11)	0.2453(8)	0.6079(12)	0.054(4)
C59	0.0344(10)	0.1721(10)	0.6313(10)	0.051(4)
C60	0.0676(11)	0.1152(6)	0.6175(11)	0.070(5)
C61	0.1005(9)	0.1314(7)	0.5804(11)	0.050(4)
C62	0.1003(10)	0.2047(9)	0.5570(12)	0.050(4)
C57A	0.0680(16)	0.2575(6)	0.5608(17)	0.046(3)
C58A	0.0410(14)	0.2312(10)	0.6014(15)	0.054(4)
C59A	0.0498(12)	0.1562(11)	0.6235(12)	0.051(4)
C60A	0.0857(13)	0.1075(6)	0.6050(13)	0.070(5)
C61A	0.1126(11)	0.1338(9)	0.5645(13)	0.050(4)
C62A	0.1038(13)	0.2088(11)	0.5423(15)	0.050(4)
C63	0.2016(5)	0.3122(6)	0.6840(6)	0.039(2)
C64	0.1795(5)	0.3355(6)	0.7290(6)	0.046(2)
C65	0.1954(5)	0.3000(7)	$0.7905(6)$	0.051(3)
C66	0.2365(5)	0.2330(7)	0.8089(6)	0.055(3)
C67	0.2581(5)	0.2110(6)	$0.7681(6)$	0.044(2)
C68	0.2438(4)	0.2450(6)	$0.7055(6)$	0.046(2)
C69	0.3166(5)	0.3750(7)	0.6854(7)	0.050(3)
C70	0.3378(5)	0.3990(6)	$0.7539(7)$	0.053(3)
C71	0.4018(6)	0.3787(8)	0.8169(8)	0.069(4)
C72	0.4461(5)	0.3345(8)	0.8003(8)	0.066(3)
C73	0.4261(5)	$0.3115(7)$	$0.7324(7)$	0.057(3)
C74	0.3601(5)	$0.3297(7)$	0.6726(7)	0.053(3)
C75	$0.3497(6)$	0.4217(10)	0.4871(7)	0.057(4)
C76	0.2949(5)	0.4134(9)	0.4964(7)	0.051(4)
C77	0.2939(5)	0.4519(9)	0.5522(8)	0.047(4)
C78	$0.3476(7)$	0.4987(9)	0.5988(8)	0.050(4)
C79	0.4025(6)	0.5069(9)	0.5895(8)	0.056(4)
C80	$0.4035(6)$	0.4684(10)	0.5337(8)	0.062(4)
C75A	0.3602(7)	0.4728(11)	0.5096(8)	0.057(4)

	x/a	y/b	z/c	U(eq)
C76A	$0.3043(6)$	$0.4546(9)$	$0.5146(7)$	$0.051(4)$
C77A	$0.3021(5)$	$0.4768(10)$	$0.5754(8)$	$0.047(4)$
C78A	$0.3557(6)$	$0.5173(10)$	$0.6312(7)$	$0.050(4)$
C79A	$0.4115(5)$	$0.5355(10)$	$0.6261(8)$	$0.056(4)$
C80A	$0.4138(6)$	$0.5133(11)$	$0.5653(9)$	$0.062(4)$
C81	$0.1619(5)$	$0.5274(6)$	$0.4608(6)$	$0.046(2)$
C82	$0.1152(5)$	$0.5114(7)$	$0.3903(6)$	$0.051(3)$
C83	$0.1057(6)$	$0.5555(8)$	$0.3333(7)$	$0.060(3)$
C84	$0.1466(6)$	$0.6223(8)$	$0.3502(7)$	$0.062(3)$
C85	$0.1904(6)$	$0.6387(8)$	$0.4190(7)$	$0.066(3)$
C86	$0.1998(5)$	$0.5957(7)$	$0.4746(7)$	$0.055(3)$
C87	$0.0607(7)$	$0.5836(5)$	$0.4941(7)$	$0.046(4)$
C88	$0.1049(6)$	$0.6323(7)$	$0.5495(6)$	$0.066(5)$
C89	$0.1076(8)$	$0.7080(7)$	$0.5342(8)$	$0.089(6)$
C90	$0.0660(9)$	$0.7350(6)$	$0.4635(10)$	$0.103(8)$
C91	$0.0218(8)$	$0.6864(8)$	$0.4080(7)$	$0.069(5)$
C92	$0.0192(7)$	$0.6107(7)$	$0.4233(6)$	$0.072(5)$
C87A	$0.0371(10)$	$0.5653(8)$	$0.4560(9)$	$0.046(4)$
C88A	$0.0768(9)$	$0.6281(12)$	$0.4917(9)$	$0.066(5)$
C89A	$0.0596(12)$	$0.6981(9)$	$0.4576(13)$	$0.089(6)$
C90A	$0.0027(13)$	$0.7054(8)$	$0.3877(14)$	$0.103(8)$
C91A	$0.9630(10)$	$0.6426(12)$	$0.3520(9)$	$0.069(5)$
C92A	$0.9802(9)$	$0.5726(9)$	$0.3862(9)$	$0.072(5)$
C93	$0.6420(8)$	$0.9892(9)$	$0.8691(8)$	$0.084(4)$
Cl1	$0.6697(3)$	$0.9262(3)$	$0.9353(3)$	$0.1275(19)$
Cl2	$0.7016(3)$	$0.0090(3)$	$0.8430(4)$	$0.135(2)$
Cl3	$0.5678(2)$	$0.9631(4)$	$0.7924(3)$	$0.146(2)$

X-ray data for compound 88

Table 4.19. Sample and crystal data for compound $\mathbf{8 8}$

Identification code	RAP 148	
Chemical formula	$\mathrm{C}_{110} \mathrm{H}_{74} \mathrm{Cl}_{12} \mathrm{O}_{2}$	
Formula weight	$1853.09 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.029 \times 0.095 \times 0.118 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=12.3323(4) \AA$	$\alpha=112.286(2)^{\circ}$
	$b=13.8630(6) \AA$	$B=91.465(2)^{\circ}$
	$c=16.4991(6) \AA$	$\quad \gamma=116.268(2)^{\circ}$
Volume	$2276.03(16) \AA^{3}$	
Z	1	
Density (calculated)	$1.352 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$3.753 \mathrm{~mm}^{-1}$	
F(000)	954	

Table 4.20. Data collection and structure refinement for compound $\mathbf{8 8}$

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I μ S micro--focus source, Cu-K
Theta range for data collection	2.98 to 64.89°
Index ranges	$-14<=h<=14,-15<=k<=16,-19<=1<=19$
Reflections collected	14903
Independent reflections	7447 [R (int) $=0.0537]$
Coverage of independent reflections	96.3\%
Absorption correction	multi-scan
Max. and min. transmission	0.8990 and 0.6660
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/1 (Sheldrick)
Function minimized	$\Sigma w\left(F_{o}{ }^{2}-F_{c}^{2}\right)^{2}$
Data / restraints / parameters	7447/6/559

Goodness-of-fit on $F^{\mathbf{2}}$	1.042
Final R indices	5507 data; $\quad R 1=0.0756, w R 2=0.1892$ $l>2 \sigma(1)$
	all data $\quad R 1=0.1002, \mathrm{wR2}=0.2088$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1103 \mathrm{P})^{2}+2.9079 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.931 and $-0.730 e^{\circ}{ }^{-3}$
R.M.S. deviation from mean	0.090 e \AA^{-3}

Table 4.21. Atomic coordinates and equivalent isotropic atomic displacement parameters
$\left(\AA^{2}\right)$ for compound 88

	\mathbf{x} / a	\mathbf{y} / \mathbf{b}	z / c	$\mathrm{U}(\mathrm{eq})$
O1	$0.6256(2)$	$0.5910(2)$	$0.71308(16)$	$0.0202(5)$
C1	$0.5406(3)$	$0.6222(3)$	$0.5175(2)$	$0.0186(7)$
C2	$0.5428(3)$	$0.5882(3)$	$0.5870(2)$	$0.0177(7)$
C3	$0.5811(3)$	$0.6607(3)$	$0.6912(2)$	$0.0191(7)$
C4	$0.4587(3)$	$0.6210(3)$	$0.7250(2)$	$0.0177(7)$
C5	$0.3885(3)$	$0.6753(3)$	$0.7631(2)$	$0.0191(7)$
C6	$0.2854(3)$	$0.6117(3)$	$0.7923(2)$	$0.0195(8)$
C7	$0.2499(3)$	$0.4947(3)$	$0.7792(2)$	$0.0226(8)$
C8	$0.3155(3)$	$0.4369(3)$	$0.7347(2)$	$0.0188(7)$
C9	$0.4197(3)$	$0.5016(3)$	$0.7095(2)$	$0.0186(7)$
C10	$0.5191(3)$	$0.4730(3)$	$0.6668(2)$	$0.0189(7)$
C11	$0.5032(3)$	$0.4691(3)$	$0.5707(2)$	$0.0188(7)$
C12	$0.5837(4)$	$0.7496(3)$	$0.5369(2)$	$0.0209(8)$
C13	$0.7094(4)$	$0.8295(3)$	$0.5526(3)$	$0.0275(9)$
C14	$0.7489(4)$	$0.9476(4)$	$0.5694(3)$	$0.0354(10)$
C15	$0.6619(5)$	$0.9855(4)$	$0.5710(3)$	$0.0424(12)$
C16	$0.5379(5)$	$0.9081(4)$	$0.5571(3)$	$0.0366(10)$
C17	$0.4977(4)$	$0.7893(4)$	$0.5390(3)$	$0.0284(9)$
C18	$0.6876(4)$	$0.7883(3)$	$0.7367(2)$	$0.0227(8)$
C19	$0.8034(4)$	$0.8103(4)$	$0.7724(3)$	$0.0287(9)$
C20	$0.9045(4)$	$0.9250(4)$	$0.8143(3)$	$0.0388(11)$
C21	$0.8907(4)$	$0.0218(4)$	$0.8212(3)$	$0.0354(10)$
C22	$0.7763(4)$	$0.0013(3)$	$0.7867(3)$	$0.0282(9)$
C23	$0.6753(4)$	$0.8869(3)$	$0.7440(2)$	$0.0234(8)$

	\mathbf{x} / a	y/b	z/c	U(eq)
C24	$0.4069(3)$	$0.7937(3)$	$0.7722(2)$	$0.0204(8)$
C25	$0.3367(4)$	$0.7944(4)$	$0.7058(3)$	$0.0273(9)$
C26	$0.3406(4)$	$0.9013(4)$	$0.7161(3)$	$0.0375(10)$
C27	$0.4124(4)$	$0.0046(4)$	$0.7929(3)$	$0.0405(11)$
C28	$0.4807(4)$	$0.0038(4)$	$0.8592(3)$	$0.0396(11)$
C29	$0.4781(4)$	$0.8988(4)$	$0.8499(3)$	$0.0301(9)$
C30	$0.2121(4)$	$0.6693(3)$	$0.8380(3)$	$0.0240(8)$
C31	$0.2607(4)$	$0.7562(4)$	$0.9269(3)$	$0.0332(10)$
C32	$0.1972(5)$	$0.8143(4)$	$0.9697(3)$	$0.0425(12)$
C33	$0.0834(5)$	$0.7850(5)$	$0.9252(4)$	$0.0446(12)$
C34	$0.0317(5)$	$0.6955(5)$	$0.8379(4)$	$0.0482(13)$
C35	$0.0978(4)$	$0.6392(4)$	$0.7947(3)$	$0.0369(10)$
C36	$0.1417(3)$	$0.4329(3)$	$0.8133(3)$	$0.0224(8)$
C37	$0.1538(4)$	$0.4600(4)$	$0.9044(3)$	$0.0288(9)$
C38	$0.0534(4)$	$0.4054(4)$	$0.9368(3)$	$0.0360(10)$
C39	$0.9384(4)$	$0.3218(4)$	$0.8777(3)$	$0.0383(11)$
C40	$0.9257(4)$	$0.2928(4)$	$0.7876(3)$	$0.0389(11)$
C41	$0.0254(4)$	$0.3472(4)$	$0.7548(3)$	$0.0312(9)$
C42	$0.2655(3)$	$0.3106(3)$	$0.7215(3)$	$0.0221(8)$
C43	$0.2945(4)$	$0.2868(4)$	$0.7912(3)$	$0.0295(9)$
C44	$0.2395(5)$	$0.1703(4)$	$0.7813(3)$	$0.0398(11)$
C45	$0.1581(5)$	$0.0760(4)$	$0.7019(4)$	$0.0432(12)$
C46	$0.1287(4)$	$0.0989(4)$	$0.6323(3)$	$0.0374(10)$
C47	$0.1816(4)$	$0.2153(4)$	$0.6422(3)$	$0.0296(9)$
C48	$0.5507(3)$	$0.3900(3)$	$0.6886(2)$	$0.0219(8)$
C49	$0.4719(4)$	$0.2662(3)$	$0.6533(3)$	$0.0241(8)$
C50	$0.5033(4)$	$0.1966(4)$	$0.6802(3)$	$0.0287(9)$
C51	$0.6122(4)$	$0.2473(4)$	$0.7421(3)$	$0.0404(11)$
C52	$0.6904(5)$	$0.3693(4)$	$0.7777(4)$	$0.0485(13)$
C53	$0.6598(4)$	$0.4397(4)$	$0.7507(3)$	$0.0361(10)$
Cl1	$0.52358(14)$	$0.65980(19)$	$0.97892(13)$	$0.0829(6)$
Cl2	$0.77111(14)$	$0.69381(14)$	$0.97921(9)$	$0.0603(4)$
Cl3	$0.72060(17)$	$0.88381(15)$	$0.99768(10)$	$0.0696(5)$
C54	$0.6599(5)$	$0.7270(5)$	$0.9474(3)$	$0.0510(13)$
	$0.44252(15)$	$0.54615(10)$	$0.0726(5)$	

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	U(eq)
Cl 5	$0.14956(19)$	$0.53133(18)$	$0.42505(15)$	$0.1031(8)$
Cl 6	$0.00013(15)$	$0.28350(14)$	$0.38219(11)$	$0.0741(5)$
C 55	$0.1473(5)$	$0.4096(6)$	$0.4340(4)$	$0.0590(15)$

X-ray data for compound 60

Table 4.22. Sample and crystal data for compound 60

Identification code	RAP144
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{PS}_{3}$
Formula weight	$494.68 \mathrm{~g} / \mathrm{mol}$
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal size	$0.058 \times 0.145 \times 0.239 \mathrm{~mm}$
Crystal system	monoclinic
Space group	P1211
Unit cell dimensions	$a=14.8564(5) \AA \quad \alpha=90^{\circ}$
	$b=11.8098(4) \AA \quad b=110.5300(10)^{\circ}$
	$c=15.1095(5) \AA \quad \gamma=90^{\circ}$
Volume	2482.61(15) \AA^{3}
Z	4
Density (calculated)	$1.323 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$3.436 \mathrm{~mm}^{-1}$
F(000)	1048

Table 4.23. Data collection and structure refinement for compound 60

Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	INCOATEC I μ S microfocus source, Cu-K α
Theta range for data collection	3.12 to 74.46°
Index ranges	$-17<=h<=18,-14<=k<=13,-18<=1<=17$
Reflections collected	19426
Independent reflections	8198 [R (int) $=0.0345$]
Absorption correction	multi-scan
Max. and min. transmission	0.8260 and 0.4940
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL (Sheldrick)
Function minimized	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameter	$8198 / 1 / 578$

Goodness-of-fit on $F^{\mathbf{2}}$	1.051
Final \mathbf{R} indices	$\begin{aligned} & 7560 \text { data; } \\ & \text { I }>2 \sigma(\mathrm{I})\end{aligned} \quad R 1=0.0693, \mathrm{wR2}=0.1757$
	all data $\quad R 1=0.0756, \mathrm{wR2}=0.1829$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0829 \mathrm{P})^{2}+8.5178 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Absolute structure parameter	0.47(4)
Largest diff. peak and hole	2.017 and -1.230 e \AA^{-3}
R.M.S. deviation from mean	$0.106 e \AA^{-3}$

Table 4.24. Atomic coordinates and equivalent isotropic atomic displacement parameters
$\left(\AA^{2}\right)$ for compound 60

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	z/c	$\mathbf{U (e q)}$
S1	$0.70762(13)$	$0.3719(2)$	$0.41468(12)$	$0.0328(5)$
S2	$0.45680(17)$	$0.66422(18)$	$0.24597(14)$	$0.0354(5)$
S3	$0.4811(2)$	$0.3600(3)$	$0.01510(19)$	$0.0561(8)$
P1	$0.51355(12)$	$0.40497(15)$	$0.24075(12)$	$0.0177(4)$
C1	$0.5608(5)$	$0.2632(7)$	$0.2752(6)$	$0.0231(16)$
C2	$0.5198(6)$	$0.1662(7)$	$0.2254(7)$	$0.0317(18)$
C3	$0.5669(7)$	$0.0653(8)$	$0.2380(7)$	$0.041(2)$
C4	$0.6581(8)$	$0.0537(8)$	$0.3055(9)$	$0.047(3)$
C5	$0.6988(6)$	$0.1446(8)$	$0.3573(7)$	$0.034(2)$
C6	$0.6535(5)$	$0.2542(7)$	$0.3459(6)$	$0.0258(17)$
C7	$0.4803(5)$	$0.4565(7)$	$0.3399(5)$	$0.0202(15)$
C8	$0.4804(5)$	$0.3915(7)$	$0.4160(5)$	$0.0229(16)$
C9	$0.4569(5)$	$0.4361(8)$	$0.4900(5)$	$0.0291(19)$
C10	$0.4320(5)$	$0.5492(8)$	$0.4876(5)$	$0.0295(19)$
C11	$0.4307(5)$	$0.6178(8)$	$0.4140(5)$	$0.0289(17)$
C12	$0.4578(5)$	$0.5722(7)$	$0.3409(5)$	$0.0220(15)$
C13	$0.3842(6)$	$0.3734(8)$	$0.0557(5)$	$0.0290(18)$
C14	$0.2907(7)$	$0.3668(10)$	$0.9875(6)$	$0.046(3)$
C15	$0.2104(6)$	$0.3623(10)$	$0.0127(6)$	$0.040(2)$
C16	$0.2219(5)$	$0.3667(9)$	$0.1056(6)$	$0.034(2)$
C17	$0.3114(5)$	$0.3766(7)$	$0.1743(5)$	$0.0201(15)$
C18	$0.3954(5)$	$0.3806(7)$	$0.1522(5)$	$0.0207(15)$
C19	$0.8232(6)$	$0.3822(10)$	$0.3974(8)$	$0.048(3)$

	x/a	y/b	z/c	U(eq)
C20	0.8292(6)	0.4781(11)	0.3338(7)	0.054(3)
C21	0.7584(7)	0.4819(9)	0.2345(7)	0.046(2)
C22	0.5695(8)	0.7416(8)	0.3012(7)	0.045(3)
C23	0.6651(8)	0.6699(13)	$0.3002(8)$	0.071(4)
C24	0.6702(7)	0.6752(9)	0.2049(7)	0.049(2)
C25	0.5372(6)	0.4999(9)	0.0330(7)	0.042(2)
C26	0.6386(6)	0.4858(9)	0.0308(7)	0.043(2)
C27	0.7122(7)	0.5772(10)	0.0753(7)	0.049(2)
C28	0.7408(7)	0.5941(8)	0.1898(9)	0.053(3)
S4	0.20236(13)	0.1220(2)	0.41766(12)	0.0297(5)
S5	0.00484(16)	0.1821(2)	0.04086(16)	0.0401(6)
S6	0.94407(17)	0.8542(2)	0.24038(14)	0.0368(5)
P2	0.01135(12)	$0.10894(16)$	0.24381(12)	0.0174(4)
C29	0.0649(5)	0.2478(7)	0.2857(5)	0.0209(15)
C30	0.0263(6)	0.3498(8)	$0.2395(6)$	0.0341(19)
C31	0.0819(7)	0.4491(7)	0.2628(7)	0.038(2)
C32	0.1730(7)	0.4450(8)	0.3289(7)	0.040(2)
C33	0.2110(6)	0.3473(8)	0.3773(6)	0.0302(18)
C34	0.1574(5)	0.2499(7)	0.3543(5)	0.0257(17)
C35	0.8949(5)	0.1424(7)	0.1518(5)	$0.0196(15)$
C36	0.8079(6)	0.1431(8)	$0.1692(6)$	0.0301(18)
C37	0.7215(6)	0.1571(8)	0.0984(6)	0.035(2)
C38	0.7208(7)	0.1722(10)	0.0027(6)	0.049(3)
C39	0.8070(7)	0.1702(10)	0.9861(5)	0.043(2)
C40	0.8927(6)	0.1573(8)	0.0589(5)	0.0305(18)
C41	0.9736(5)	0.0547(7)	0.3390(5)	0.0211(15)
C42	$0.9756(5)$	0.1219(8)	0.4178(5)	0.0248(16)
C43	0.9544(6)	0.0718(9)	0.4915(5)	0.033(2)
C44	0.9298(6)	0.9580(9)	0.4892(6)	0.034(2)
C45	0.9257(6)	0.8949(8)	0.4109(5)	0.0305(18)
C46	0.9482(5)	0.9400(8)	0.3371(5)	0.0259(17)
C47	$0.3238(6)$	0.1108(9)	0.4153(6)	0.038(2)
C48	0.3357(6)	0.0962(8)	$0.3235(6)$	0.0355(19)
C49	0.3317(6)	0.9766(8)	$0.2796(6)$	0.0389(19)
C50	0.0325(6)	0.0488(9)	0.0000(6)	0.039(2)

	\mathbf{x} / \mathbf{a}	$\mathbf{y / b}$	z/c	U(eq)
C51	$0.0823(6)$	$0.9629(8)$	$0.0738(6)$	$0.039(2)$
C52	$0.1798(6)$	$0.0036(8)$	$0.1407(6)$	$0.0384(19)$
C53	$0.0441(10)$	$0.7595(9)$	$0.2915(8)$	$0.057(3)$
C54	$0.1193(7)$	$0.7739(7)$	$0.2451(6)$	$0.0378(19)$
C55	$0.1769(6)$	$0.8766(9)$	$0.2828(6)$	$0.047(3)$
C56	$0.2362(7)$	$0.9216(9)$	$0.2169(7)$	$0.045(2)$

X-ray data for compound 77

Table 4.25. Sample and crystal data for compound $\mathbf{7 7}$

Identification code	RAP 167	
Chemical formula	$\mathrm{C}_{302} \mathrm{H}_{206}$	
Formula weight	$3834.66 \mathrm{~g} / \mathrm{mol}$	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.080 \times 0.086 \times 0.254 \mathrm{~mm}$	
Crystal habit	pale yellow column	
Crystal system	triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=13.0169(7) \AA \quad \alpha=107.131(3)^{\circ}$	
	$b=18.2147(10) \AA \quad b=95.433(3)^{\circ}$	
	$c=26.7284(15) \AA \quad V=90.816(3)^{\circ}$	
Volume	$6023.0(6) \AA^{3}$	
Z	1	
Density (calculated)	$1.057 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.453 \mathrm{~mm}^{-1}$	
F(000)	2018	

Table 4.26. Data collection and structure refinement for compound 77

Diffractometer	'Bruker D8 VENTURE PHOTON 100 CMOS' Bruker D8 VENTURE PHOTON 100 CMOS
Radiation source	'INCOATEC I μ S microfocus source' ($\mathrm{Cu}, \lambda=1.54178$ Å)
Theta range for data collection	2.54 to 66.77°
Index ranges	$-15<=h<=15,-21<=k<=20,-31<=\mid<=31$
Reflections collected	43881
Independent reflections	$20672[R($ int $)=0.0459]$
Coverage of independent reflections	96.7\%
Absorption correction	multi-scan
Max. and min. transmission	0.9650 and 0.8940
Structure solution technique	direct methods

Structure solution program	SHELXT (Sheldrick)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL 2018/1 (Sheldrick)
Function minimized	$\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	20672 / 0/1360
Goodness-of-fit on $F^{\mathbf{2}}$	1.033
$\Delta / \sigma_{\text {max }}$	0.001
Final R indices	$\begin{aligned} & 14920 \\ & \text { data; } R 1=0.0554, \mathrm{w} R 2=0.1274 \\ & \mathrm{l}>2 \sigma(\mathrm{I}) \end{aligned}$
	$\begin{aligned} & \text { all } \\ & \text { data } \end{aligned} \quad R 1=0.0788, \mathrm{w} R 2=0.1409$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0591 \mathrm{P})^{2}+1.6586 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.332 and -0.237e \AA^{-3}
R.M.S. deviation from mean	0.040 e \AA^{-3}

Table 4.27. Atomic coordinates and equivalent isotropic atomic displacement parameters

(\AA^{2}) for compound 77				
	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
C1	$0.97844(15)$	$0.85136(11)$	$0.69809(8)$	$0.0295(4)$
C2	$0.06077(14)$	$0.82247(11)$	$0.66678(8)$	$0.0294(4)$
C3	$0.05815(15)$	$0.74470(11)$	$0.63879(8)$	$0.0296(4)$
C4	$0.97055(15)$	$0.69687(11)$	$0.63926(7)$	$0.0296(4)$
C5	$0.88082(15)$	$0.72923(11)$	$0.65904(8)$	$0.0300(4)$
C6	$0.88223(15)$	$0.80902(11)$	$0.68660(8)$	$0.0299(4)$
C7	$0.79091(15)$	$0.85268(12)$	$0.70096(8)$	$0.0314(4)$
C8	$0.79828(15)$	$0.92865(12)$	$0.72966(8)$	$0.0321(4)$
C9	$0.89863(15)$	$0.96627(11)$	$0.75390(8)$	$0.0298(4)$
C10	$0.91119(15)$	$0.04126(11)$	$0.79069(8)$	$0.0308(4)$
C11	$0.01038(16)$	$0.07081(11)$	$0.81278(8)$	$0.0318(4)$
C12	$0.09629(16)$	$0.02350(12)$	$0.80561(8)$	$0.0327(4)$
C13	$0.08453(15)$	$0.94847(11)$	$0.77192(8)$	$0.0309(4)$
C14	$0.98806(15)$	$0.92357(11)$	$0.74074(8)$	$0.0293(4)$
C15	$0.13856(15)$	$0.87837(11)$	$0.65884(8)$	$0.0304(4)$
C16	$0.24392(16)$	$0.86471(12)$	$0.65610(8)$	$0.0362(5)$

	x/a	y/b	z/c	U(eq)
C17	$0.31062(17)$	0.91779(13)	0.64637(9)	0.0435(6)
C18	0.27455(19)	0.98521(14)	0.63939(10)	0.0501(6)
C19	0.17084(19)	0.99981(14)	0.64181(10)	0.0471(6)
C20	0.10377(17)	0.94643(12)	0.65098(9)	0.0381(5)
C21	0.14217(15)	0.70738(11)	0.60640(8)	0.0326(5)
C22	0.20869(16)	0.65951(12)	0.62425(10)	0.0410(5)
C23	0.28300(17)	0.62081(13)	0.59324(11)	0.0488(6)
C24	$0.29171(18)$	0.63086(14)	0.54452(11)	0.0508(7)
C25	0.22756(18)	0.67950(15)	0.52709(10)	0.0493(6)
C26	0.15268(16)	0.71788(13)	0.55764(8)	0.0393(5)
C27	0.97190(15)	0.61163(11)	0.61632(8)	0.0323(4)
C28	0.00790(18)	0.56728(13)	0.64752(10)	0.0448(6)
C29	0.0058(2)	0.48732(14)	0.62722(13)	0.0573(7)
C30	0.9658(2)	0.45190(14)	0.57638(12)	0.0554(7)
C31	0.9293(2)	$0.49499(14)$	0.54530(11)	0.0531(7)
C32	0.93322(18)	0.57463(12)	0.56462(9)	0.0416(5)
C33	0.78847(15)	0.67498(11)	0.65250(8)	0.0321(4)
C34	$0.72469(16)$	0.65096(12)	0.60564(8)	0.0358(5)
C35	0.64356(18)	0.59737(13)	0.59878(9)	0.0429(5)
C36	0.62785(19)	0.56566(15)	0.63823(11)	0.0517(6)
C37	0.69107(19)	0.58802(17)	0.68459(11)	0.0556(7)
C38	$0.77176(17)$	0.64264(15)	0.69191(10)	0.0471(6)
C39	0.68569(16)	0.81906(12)	0.67619(9)	0.0369(5)
C40	0.65293(19)	0.82190(13)	0.62552(10)	0.0477(6)
C41	0.5545(2)	$0.79623(15)$	0.60194(12)	0.0620(8)
C42	0.4887(2)	$0.76644(16)$	0.62859(13)	0.0687(9)
C43	0.5175(2)	$0.76198(16)$	$0.67814(13)$	0.0667(9)
C44	0.61753(18)	$0.78919(14)$	0.70276(11)	0.0518(7)
C45	0.69910(15)	$0.96994(12)$	0.73401(9)	0.0358(5)
C46	0.63926(17)	0.97357(13)	0.77513(10)	0.0458(6)
C47	0.5447(2)	0.00739(14)	0.77691(12)	0.0573(7)
C48	0.50758(19)	0.03541(15)	$0.73698(13)$	0.0623(8)
C49	0.5643(2)	0.03201(14)	0.69546(12)	0.0565(7)
C50	0.66107(17)	$0.99924(12)$	0.69402(10)	0.0435(6)
C51	0.82439(16)	0.09183(11)	0.81097(8)	0.0327(5)

	x/a	y/b	z/c	U(eq)
C52	0.79366(18)	0.09598(14)	0.86016(9)	0.0448(6)
C53	0.7185(2)	0.14581(16)	0.88112(10)	0.0545(7)
C54	0.67450(19)	0.19281(14)	0.85360(11)	0.0535(7)
C55	$0.70595(17)$	0.18996(13)	0.80532(10)	0.0454(6)
C56	0.78115(16)	0.14007(12)	0.78414(9)	0.0370(5)
C57	0.02519(16)	0.15195(12)	0.84841(8)	0.0361(5)
C58	0.0333(2)	0.16780(15)	0.90234(10)	0.0566(7)
C59	0.0438(3)	0.24327(17)	0.93507(12)	0.0725(9)
C60	0.0486(2)	0.30295(15)	0.91360(13)	0.0653(8)
C61	0.04303(18)	0.28768(14)	0.86021(12)	0.0547(7)
C62	0.03060(17)	0.21251(13)	0.82730(10)	0.0426(5)
C63	0.19749(16)	0.05636(12)	0.83660(8)	0.0379(5)
C64	0.2328(2)	0.03767(18)	0.88152(10)	0.0600(7)
C65	0.3269(2)	0.0685(2)	0.90913(12)	0.0811(10)
C66	0.3859(2)	0.1180(2)	0.89207(12)	0.0729(10)
C67	0.35089(19)	0.13734(15)	0.84773(12)	0.0595(8)
C68	0.25692(17)	0.10678(13)	0.81971(10)	0.0432(5)
C69	0.16597(16)	0.89232(12)	0.77500(8)	0.0359(5)
C70	0.13706(19)	0.82331(13)	$0.78356(10)$	0.0464(6)
C71	0.2106(2)	0.77284(15)	0.79153(12)	0.0617(7)
C72	0.3146(2)	$0.79000(16)$	$0.79041(12)$	0.0658(8)
C73	$0.34434(19)$	0.85741(15)	0.78150(11)	0.0572(7)
C74	0.27103(16)	0.90765(13)	0.77359(9)	0.0424(5)
C75	0.12674(15)	$0.36925(11)$	0.71104(7)	0.0279(4)
C76	0.20577(14)	0.37385(11)	0.67827(7)	0.0285(4)
C77	0.19439(15)	$0.32855(11)$	0.62575(8)	0.0305(4)
C78	0.10937(15)	$0.27492(11)$	0.60684(7)	0.0296(4)
C79	0.02745(15)	0.27710(12)	0.63719(7)	0.0299(4)
C80	0.03031(15)	$0.33258(11)$	0.68779(7)	0.0280(4)
C81	0.94024(15)	0.35825(12)	$0.71606(7)$	0.0289(4)
C82	0.95112(14)	0.41384(11)	0.76420(7)	0.0285(4)
C83	0.05366(15)	$0.43877(11)$	0.79234(7)	0.0284(4)
C84	0.07249(15)	0.49084(11)	0.84400(8)	0.0295(4)
C85	0.16697(15)	0.49087(11)	0.87359(8)	0.0299(4)
C86	0.24240(15)	0.43850(11)	0.85260(7)	0.0287(4)

	x/a	y/b	z/c	U(eq)
C87	0.23108(14)	$0.39742(11)$	0.79919(7)	0.0278(4)
C88	0.13907(14)	0.40380(11)	0.76769(7)	0.0278(4)
C89	0.29055(15)	$0.43465(12)$	0.69811(7)	0.0306(4)
C90	0.26525(17)	0.51030(12)	0.72089(9)	0.0385(5)
C91	0.3411(2)	0.56843(14)	0.73667(11)	0.0551(7)
C92	0.44386(19)	0.55207(15)	0.73103(11)	0.0554(7)
C93	0.47013(17)	0.47753(14)	0.70896(9)	0.0446(6)
C94	$0.39429(16)$	0.41948(13)	0.69221(8)	0.0352(5)
C95	0.27324(16)	0.33590(12)	0.58980(7)	0.0332(5)
C96	$0.34205(17)$	0.27823(13)	0.57309(8)	0.0394(5)
C97	0.41641(18)	0.28593(16)	0.54085(9)	0.0474(6)
C98	0.4217(2)	$0.35098(16)$	0.52463(10)	0.0536(7)
C99	0.3528(2)	0.40829(15)	0.54049(9)	0.0534(7)
C100	$0.27838(18)$	0.40050(13)	0.57295(8)	0.0422(5)
C101	0.10889(15)	0.21695(12)	0.55398(8)	0.0324(4)
C102	0.10116(16)	$0.23892(13)$	0.50807(8)	0.0362(5)
C103	0.10388(18)	0.18495(14)	0.45955(8)	0.0448(6)
C104	0.1138(2)	0.10855(15)	0.45562(9)	0.0514(6)
C105	0.1212(2)	0.08532(14)	0.50059(10)	0.0526(6)
C106	0.11826(19)	0.13952(13)	0.54932(9)	0.0430(5)
C107	$0.94458(16)$	0.21417(12)	0.61976(8)	0.0344(5)
C108	0.87314(17)	0.20481(14)	0.57617(9)	0.0446(6)
C109	$0.80036(19)$	$0.14344(16)$	0.56157(10)	0.0570(7)
C110	$0.7996(2)$	0.09087(15)	0.58994(11)	0.0579(7)
C111	0.87174(19)	$0.09899(14)$	0.63228(10)	0.0507(6)
C112	$0.94384(17)$	0.16018(12)	0.64735(9)	0.0395(5)
C113	0.83371(15)	$0.33418(12)$	0.68916(8)	0.0323(5)
C114	$0.78862(17)$	0.37309(14)	0.65606(9)	0.0423(5)
C115	0.6884(2)	$0.35194(17)$	0.63175(10)	0.0577(7)
C116	0.63453(18)	0.29135(18)	0.64056(11)	0.0602(8)
C117	0.67880(18)	0.25335(16)	0.67359(10)	0.0507(7)
C118	$0.77721(16)$	0.27491(13)	0.69840(8)	0.0383(5)
C119	0.85447(15)	0.43861(12)	$0.79003(7)$	0.0323(5)
C120	0.81383(16)	$0.39552(13)$	0.81945(8)	0.0362(5)
C121	0.72135(17)	0.41496(15)	0.84132(8)	0.0439(6)

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	$\mathbf{U}(\mathbf{e q})$
C122	$0.67107(17)$	$0.47805(16)$	$0.83498(9)$	$0.0503(7)$
C123	$0.71068(18)$	$0.52115(16)$	$0.80609(9)$	$0.0509(6)$
C124	$0.80164(17)$	$0.50089(14)$	$0.78309(8)$	$0.0408(5)$
C125	$0.99892(16)$	$0.55186(12)$	$0.86538(8)$	$0.0365(5)$
C126	$0.94421(17)$	$0.55246(14)$	$0.90759(9)$	$0.0442(6)$
C127	$0.8814(2)$	$0.61274(18)$	$0.92780(11)$	$0.0626(8)$
C128	$0.8756(2)$	$0.67335(19)$	$0.90711(14)$	$0.0787(10)$
C129	$0.9303(2)$	$0.67396(17)$	$0.86552(15)$	$0.0762(9)$
C130	$0.9915(2)$	$0.61289(14)$	$0.84429(11)$	$0.0519(6)$
C131	$0.18514(15)$	$0.54346(12)$	$0.92881(8)$	$0.0352(5)$
C132	$0.18859(17)$	$0.51405(15)$	$0.97131(8)$	$0.0422(5)$
C133	$0.19969(18)$	$0.56245(17)$	$0.02257(9)$	$0.0525(7)$
C134	$0.2069(2)$	$0.64053(17)$	$0.03191(10)$	$0.0614(8)$
C135	$0.2062(2)$	$0.67076(16)$	$0.99038(12)$	$0.0699(9)$
C136	$0.1959(2)$	$0.62216(14)$	$0.93884(10)$	$0.0545(7)$
C137	$0.33350(15)$	$0.42560(12)$	$0.88723(7)$	$0.0324(5)$
C138	$0.41340(16)$	$0.48131(13)$	$0.90741(8)$	$0.0385(5)$
C139	$0.50045(17)$	$0.46614(15)$	$0.93564(8)$	$0.0457(6)$
C140	$0.50840(18)$	$0.39603(17)$	$0.94526(9)$	$0.0522(7)$
C141	$0.42915(19)$	$0.34094(15)$	$0.92660(9)$	$0.0488(6)$
C142	$0.34154(17)$	$0.35538(13)$	$0.89753(8)$	$0.0393(5)$
C143	$0.30705(15)$	$0.33917(11)$	$0.77651(7)$	$0.0287(4)$
C144	$0.41358(15)$	$0.35663(12)$	$0.78363(8)$	$0.0329(5)$
C145	$0.48221(16)$	$0.30096(13)$	$0.76334(9)$	$0.0392(5)$
C146	$0.44652(18)$	$0.22743(14)$	$0.73605(10)$	$0.0474(6)$
C147	$0.34100(18)$	$0.20866(13)$	$0.72855(9)$	$0.0450(6)$
C148	$0.27244(16)$	$0.26449(12)$	$0.74912(8)$	$0.0343(5)$
C149	$0.4090(3)$	$0.0161(2)$	$0.52272(15)$	$0.0856(10)$
C150	$0.4746(3)$	$0.9632(2)$	$0.53564(15)$	$0.0865(10)$
C151	$0.5662(3)$	$0.9472(2)$	$0.51290(14)$	$0.0809(9)$

[^0]: ${ }^{1} \mathrm{H}$ NMR Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Cyclophane 31

