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Categorizing the movement of organelles, nanoparticles, and other vesicles inside

living cells is an important research problem for scientists conducting fluorescence mi-

croscopy and quantum dot experiments. Particle trajectories in these complex biological

systems are incredibly diverse. The relative proportions of each movement type present in

a dataset can be useful to making experimental conclusions. We focus on two of the main

movement patterns: free diffusion, where the particle is passively fluctuating, and anchored

diffusion, which exhibits similar fluctuations but is tethered to a fixed point. We model

both movement types by approximations of a stochastic differential equation and use their

properties to explore rigorous model selection methods in statistics and information theory.

In particular, we analyze the performance of the Akaike Information Criterion (AIC) and

Bayes Factor approaches. Conducting numerical simulation allows us to determine how

well these methods work at identifying each movement type. We further characterize and

compare the distribution of the AIC on a given trajectory of each movement type. In cases

where the true and likelihood models disagree, this presents a challenge. We derive the

expression for these mismatched cases, including maximum likelihood estimators. This

allows us to determine the form of a likelihood ratio test between the two models.
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1. INTRODUCTION

At the intersection of nanoscience and biology lies the question of precisely how

particles move within cells. Recent developments in cellular imaging, including quantum

dots and semiconductor nanoparticles, have made it possible for researchers to peek be-

neath the surface of living cells, tracking individual particles over significant timescales

[21]. Within this research area, the use of mathematics has led to novel revelations about

the heterogeneity that exists within cells. In contrast to in vitro particle tracking experi-

ments, wherein there are great controls on particle and environmental homogeneity, live

cell (in vivo) tracking exhibits tremendous diversity in particle movement. This is exem-

plified in a wide range of contexts, including Adenovirus-2 trajectories in live cells [13],

endosome transport trajectories in HeLa cells [5], and actin dependent chromosome trans-

port in starfish oocytes [12].

Before individual particle trajectories could be observed directly, mathematicians

have worked with biologists under the assumption that the behavior of every particle could

be modeled well by Brownian motion. Brownian motion is a random passive process: the

particle just moves in response to thermal fluctuations and collisions with other molecules

in the fluid. This process was discovered and named after Robert Brown, a Scottish botanist

in the 19th century that was well respected for his work in classifying plants in Australia [2].

He first observed this behavior in pollens suspended in water. Curious if this observation

extended beyond living matter, he suspended particles of dead pollen, rocks, and metals.

Brown observed that it was the size of the material, and not the nature of the material,

that mattered for these movement patterns. Unfortunately, he was not able to uncover the
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precise reason why the particles were behaving in this manner. It was not until 1905 -

annus mirabilis, miracle year in theoretical physics - that the puzzle was finally solved by

Albert Einstein [9]. From a statistical mechanics point of view, Einstein proposed the idea

that the particles are so small that they are subjected to thermal fluctuations and individual

collisions with water molecules. In 1908, Langevin was able to explain these phenomena

in terms of Newtonian physics, essentially writing the first stochastic differential equation

[18].

Modern microscopy has revealed a much greater variety of movement within cells.

Particle movement in cells can also exhibit other motion characteristics. In what we refer

to as directed transport, biomolecules called molecular motors simultaneously bind to in-

tracellular cargo and to individual filaments in the cytoskeleton called microtubules. These

motors literally step along microtubules, producing directed motion that moves as much as

1 or 2 microns per second. By contrast, we observe many particles that do not appear to

be moving much at all. We refer to these particles as experiencing “anchored diffusion”

because they behave as though they are bound by a motor to a microtubule, but the mo-

tor is not stepping. Such particles behave as though they are tethered to a fixed location

by a Hookean spring. In yet another behavior, there is no binding to the microtubule, yet

where the particle can move is constrained by the environment. Such movement is called

corralled diffusion. The scientific objective is to determine the statistical signatures of dif-

ferent movement types, and, given any particular path, to determine which of the different

biophysical mechanisms is mostly to have produced the behavior.

This thesis is motivated by recent single particle tracking experiments by our col-

laborators, in which we must differentiate between free and anchored diffusion. In certain

2



conditions and when using techniques currently in common practice, these movement types

can be hard to distinguish from one another. This is further complicated by experimental

limits. In fluorescence microscopy, a popular method used in particle tracking experiments,

one can only gather a certain number of data points before the fluorescent tag becomes

overexposed. This leads to the questions “How many observations do we need to reliably

tell the difference between these two movement types?” and “What is the frequency of

observations that yields the most informative data?”

There have been several categories of proposed methods for differentiating between

movement types. The first focuses on qualitative visual inspection. One example is mean

squared displacement (MSD), which is often used to determine the movement pattern of a

single particle trajectory [22]. Others have extended this and conducted Bayesian model

selection on MSD curves [12, 19, 20, 21] or categorized based upon the slope of the mo-

ment scaling spectrum (MSS), a generalization of the MSD [10, 11, 23]. However, distinct

stochastic processes can yield very similar MSD curves. There is not a standard way to

determine if the trajectories are long enough, when to cut them off, and what deviations

from a slope of one are statistically significant [25].

We use well-established tools from statistics and information theory to provide an

alternative, more rigorous method for differentiating between biophysical models. One ap-

proach focuses on information criteria. Examples include the Akaike Information Criterion

(AIC) [1] and the more general Watanabe–Akaike Information Criterion (WAIC) [24]. For

these methods, a model receives a score for how likely that model is to produce the ob-

served data, and that score is then penalized for complexity of the model. With scores that
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can be computed for each candidate model, we can pick a “winner” for each path. How-

ever, a difficulty arises in deciding how large of a difference in scores is meaningful, and

what kinds of differences can arise by chance alone.

This issue of determining what is a significant difference between models is natu-

rally addressed by statistical techniques. From a frequentist viewpoint, this is accomplished

via a likelihood ratio test [8]. Since we cannot express one model in terms of another by

parameter choice, we call the models that we are considering non-nested. There is not a

universal theory for applying likelihood ratio test methodology to non-nested models [7], so

we will investigate this approach in our dichotomy. The Bayesian viewpoint uses a method

called Bayes Factors for the goal of determining significant differences between models

[4, 6, 17]. The trade-off we face is that the information criteria are easy to compute and

analyze “by hand,” but the statistical methods give more context. We will investigate the

methods’ relative effectiveness and attempt to determine which have the best combination

of being easy to communicate to the engineering community while also being accurate in

their assessments.
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2. MODELS OF MOVEMENT TYPES

We propose two models for a vector of position observations ~X = (X0, X1, ..., XN)

at times~t = (t0, t1, ...tN). We assume ti = i∆ for some time increment size ∆> 0.

2.1. Free Diffusion. Our model for free diffusion is Brownian motion, denoted as model

1. In this model, increments are independent and identically distributed. Let increments

for i = 0,1, ...,n be represented as ξi = X i − X i−1, where ξi ∼ N(0,2D∆) for diffusivity

parameter, D. Define σ2
1 = 2D∆. The likelihood for this model is

L1(σ2
1;~ξ)=

( 1
2πσ2

1

) N
2 e

− 1
2σ2

1

∑N
i=1 ξ

2
i . (1)

For the methods in this thesis, we will typically use the log-likelihood:

`1(σ2
1;~ξ)=−N

2
ln(σ2

1)− N
2

ln(2π)− 1
2σ2

1

N∑
i=1

ξ2
i . (2)

2.2. Anchored Diffusion. For anchored diffusion, we imagine that the particle is tethered

to some anchor point. As detailed in Appendix A, we can use Langevin dynamics to model

with a stochastic differential equation (SDE). By taking two of the parameters to zero, we

obtain the following model. We approximate the behavior of that stochastic differential

equation by taking every location of the particle as being drawn as independent and iden-

tically distributed samples from a Gaussian centered at the anchor point. We will denote

this as model 2. In this model, the observed positions of the particle are independent and

identically distributed. Let X i ∼ N(0,σ2
2) for i = 0,1, ..., N, where X0 = 0. The likelihood

5



for this model is

L2(σ2
2;~X )=

( 1
2πσ2

2

) N
2 e

− 1
2σ2

2

∑N
i=0 X2

i . (3)

For the methods in this thesis, we will typically use the log-likelihood:

`2(σ2
2;~X )=−N

2
ln(σ2

2)− N
2

ln(2π)− 1
2σ2

2

N∑
i=1

X2
i . (4)
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3. MODEL SELECTION METHODS

We define information criterion, likelihood ratio test, and Bayesian approaches for

our models for Free and Anchored Diffusion. Further, we numerically compare the relative

performance of the model selection techniques for simulated Free and Anchored Diffusion

trajectories.

3.1. Information Criterion Approach. Information criterion approaches account for how

well a model fits the observed data and balances this with the complexity of the model, rep-

resented by a numerical score. After calculating the scores for candidate models, the one

that maximizes or minimizes the score will be selected.

The Akaike Information Criterion (AIC) is one such method, named after its devel-

oper, Hirotugu Akaike [1]. This method chooses the model that minimizes

AIC=−2`(θ̂MLE;~X )+2(number of parameters) , (5)

where `(θ̂MLE;~X ) is the log-likelihood of observing the data given that the maximum like-

lihood estimate is the correct choice for the parameter θ.

Before we apply this method to our models, we must determine the maximum like-

lihood estimator (MLE) for σ2
1 and σ2

2. Differentiating the log-likelihood equation for

model 1, Equation 2, with respect to σ2
1 yields `′1(σ2

1;~X ) = −N
2σ2

1
+ 1

2(σ2
1)

2
∑∞

i=1 ξ
2
i . Setting

`′1(σ2
1;~X )= 0 and solving for σ2

1 results in the estimator

σ̂2
1 =

∑∞
i=1 ξ

2
i

N
. (6)

7



Using the First Derivative Test, we can confirm that this estimator is indeed a maximum:

`′1

(
1
2
σ̂2

1;~X
)
= −N

21
2 σ̂

2
1

+ 1

2
(1

2 σ̂
2
1
)2

∞∑
i=1

ξ2
i

= −N2∑∞
i=1 ξ

2
i
+ 2N2∑∞

i=1 ξ
2
i

= N2∑∞
i=1 ξ

2
i
> 0 ,

`′1
(
2 σ̂2

1;~X
)
= −N

4 σ̂2
1
+ 1

2
(
2 σ̂2

1
)2

∞∑
i=1

ξ2
i

= −N2

4
∑∞

i=1 ξ
2
i
+ N2

8
∑∞

i=1 ξ
2
i

= −N2

8
∑∞

i=1 ξ
2
i
< 0 .

Since `′1 changes from positive to negative at σ̂2
1, then `1 has a maximum at σ̂2

1.

We can similarly determine the MLE for σ2
2 in model 2. Differentiating Equation 4

with respect to σ2
2 yields `′2(σ2

2;~X )= −N
2σ2

2
+ 1

2(σ2
2)

2
∑∞

i=1 ξ
2
i . Setting `′2(σ2

2;~X )= 0 and solving

for σ2
2 gives us the estimator

σ̂2
2 =

∑∞
i=1 X2

i

N
. (7)

Again, using the First Derivative Test, we can confirm that this estimator is indeed a max-

imum. The derivation is identical to the previous case. Since `′2 changes from positive to

negative at σ̂2
2, then `2 has a maximum at σ̂2

2.

With these estimators, we are able to determine the AIC for our models, which both

have just one parameter:

AIC1 = Nln(σ̂2
1)+Nln(2π)+ 1

σ̂2
1

∞∑
i=1

ξ2
i +2 , (8)
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AIC2 = Nln(σ̂2
2)+Nln(2π)+ 1

σ̂2
2

∞∑
i=1

X2
i +2 . (9)

We can use the MLE and these equations to compute the AIC assuming both models for

the observed data.

3.2. Connection Between Information Criterion and Likelihood Ratio Test. The Neyman-

Pearson Lemma tells us that the likelihood ratio test (LRT) is the most powerful method

that could be used to reject a simple null model. Since our models are non-nested, in our

case we cannot apply such a theorem. However, we can make a connection between the

AIC and LRT.

Suppose we are testing the null hypothesis, H0, of free diffusion with σ2 ∈ θ0,

versus the alternative hypothesis, H1, of anchored diffusion with σ2 ∈ θC
0 . Then, using the

framework of the generalized LRT, we would reject the null model if

supσ2∈θ0
L(σ2|~X )≤ ksupσ2∈θC

0
L(σ2|~X ) ,

where k is a positive number. Note that this is equivalent to

L(σ̂2
1 |~X )≤ kL(σ̂2

2 |~X ) .

Taking the natural logarithm of both sides we attain

lnL(σ̂2
1 |~X )≤ ln(k)+ ln

(
L(σ̂2

2 |~X )
)

.

9



Adding and subtracting the appropriate terms yields

−2`(σ̂2
1 |~X )+2≥−2ln(k)+

(
−2`(σ̂2

2 |~X )+2
)

,

which by definition is

AIC1 ≥−2ln(k)+AIC2 .

So altogether, the form of a rejection region for a likelihood ratio test would be

{
~X : AIC1(~X )−AIC2(~X )≥ C

}
, (10)

for some appropriately chosen critical value, C.

If the AIC assuming free diffusion is bigger than the AIC assuming anchored diffu-

sion (by a margin greater than some critical value), then we will reject the null hypothesis

that the diffusion is free.

This is consistent with the notion that the AIC method chooses the model that min-

imizes the score. In order to determine the critical value, C, we would need to understand

the distribution of the test statistic AIC1−AIC2. Our investigation in Chapter 5 proceeds

with this as motivation.

3.3. Bayesian Approach. Hypothesis testing seeks to evaluate if the observations are sig-

nificant evidence for rejecting a null hypothesis. By contrast, the Bayesian approach allows

a way of evaluating if there is significant evidence in favor of a hypothesis. This general

framework allows for the comparison of non-nested models, and was introduced by Jeffreys

[14, 15].
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log10(B21) Evidence Against Model 1
< 1/2 Poor

1/2 to 1 Substantial
1 to 2 Strong
> 2 Decisive

TABLE 1. Criteria for determining significance when using Bayes Factors.
We use evidence against a model, as it is more familiar, but we could refor-
mulate these values easily in terms of evidence in favor of a model.

Bayes Factors are the standard method for this approach, expressing the likelihood

of seeing the data for the model weighted by the prior distribution [17]. In other words:

posterior odds = Bayes Factor × prior odds. For simplifying the integral evaluation, we

rewrite our models equivalently in terms of other parameters, ηD and ησ. For free diffusion,

define ηD = D−1. The likelihood for this model is then L1(ηD ;~ξ) = (ηD
π∆ )

n
2 e−

ηD
2

∑∞
i=1 ξ

2
i . We

assume a prior distribution of ηD ∼ Gamma(α1,β1). For anchored diffusion, define ησ = 1
σ2

2
.

The likelihood for this model is then L2(ησ;~X ) = (ησ2π )
n
2 e−

ησ
2

∑∞
i=0 X2

i . We assume a prior

distribution of ησ ∼ Gamma(α2,β2).

This yields the following equation for the Bayes Factor based upon models 1 and 2

B21 =
∫ ∞

0 L2(ησ;~X )π2(ησ)dησ∫ ∞
0 L1(ηD ;~X )π1(ηD)dηD

:= I2

I1
, (11)

where π2(ησ) and π1(ηD) refer to the prior distribution of each parameter. Statistical sig-

nificance can be determined using log10(B21) based upon the criteria in Table 1 [17].

11



In some cases, the integrals can be solved directly. The models we consider are one

of these special cases. First, we evaluate the numerator of the Bayes Factor:

I2 =
∫ ∞

0
L2(ησ;~X )π2(ησ)dησ

=
∫ ∞

0
(
ησ

2π
)

n
2 e−

ησ
2

∑∞
i=0 X2

i
β
α2
2

Γ(α2)
ηα2−1
σ e−β2ησdησ

= (
1

2π
)

n
2
β
α2
2

Γ(α2)

∫ ∞

0
η

n
2 +α2−1
σ e−ησ( 1

2
∑∞

i=0 X2
i +β2)dησ

= (
1

2π
)

n
2
β
α2
2

Γ(α2)
Γ(α2 + n

2 )

(β2 + 1
2
∑∞

i=0 X2
i )α2+ n

2

∫ ∞

0

(β2 + 1
2
∑∞

i=0 X2
i )α2+ n

2

Γ(α2 + n
2 )

η
n
2 +α2−1
σ e−ησ( 1

2
∑∞

i=0 X2
i +β2)dησ

= (
1

2π
)

n
2
β
α2
2

Γ(α2)
Γ(α2 + n

2 )

(β2 + 1
2
∑∞

i=0 X2
i )α2+ n

2
.

We can similarly evaluate the denominator of the Bayes Factor:

I1 =
∫ ∞

0
L1(ηD ;~ξ)π1(ηD)dηD

= (
ηD

π∆
)

n
2 e−

ηD
2

∑∞
i=1 ξ

2
i
β
α1
1

Γ(α1)
η
α1−1
D e−β1ηD dηD

= (
1
π∆

)
n
2
β
α1
1

Γ(α1)

∫ ∞

0
η

n
2 +α1−1
D e−ηD ( 1

∆

∑∞
i=1 ξ

2
i +β1)dηD

= (
1
π∆

)
n
2
β
α1
1

Γ(α1)
Γ(α1 + n

2 )

(β1 + 1
∆

∑∞
i=1 ξ

2
i )α1+ n

2

∫ ∞

0

(β1 + 1
∆

∑∞
i=1 ξ

2
i )α1+ n

2

Γ(α1 + n
2 )

η
n
2 +α1−1
D e−ηD ( 1

∆

∑∞
i=1 ξ

2
i +β1)dηD

= (
1
π∆

)
n
2
β
α1
1

Γ(α1)
Γ(α1 + n

2 )

(β1 + 1
∆

∑∞
i=1 ξ

2
i )α1+ n

2
.

Notice that the numerator depends on the position observations, X i, while the denominator

depends on the increments, ξi. This is because the model for anchored diffusion, model 2,

has normally distributed observed positions while in the model for free diffusion, model 1,

the increments are normally distributed.
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After combining the numerator and denominator, and simplifying, the analytical

solution for the Bayes Factor of our models is

B21 =
(
∆

2

) n
2 β

α2
2

β
α1
1

Γ(α1)
Γ(α2)

Γ(α2 + n
2 )

Γ(α1 + n
2 )

(β1 + 1
∆

∑∞
i=1 ξ

2
i )α1+ n

2

(β2 + 1
2
∑∞

i=0 X2
i )α2+ n

2
. (12)

We can use this equation to compute the Bayes Factor for a trajectory of observed particle

positions. When α=α1 =α2 and β=β1 =β2, notice that this reduces to

B21 =
(
∆

2

) n
2 (β+ 1

∆

∑∞
i=1 ξ

2
i )α+

n
2

(β+ 1
2
∑∞

i=0 X2
i )α+

n
2

. (13)

3.4. Numerical Analysis. We conduct numerical analysis using R, an open source pro-

gramming language developed for statistical computing. We simulate trajectories from

both models for three different lengths of observations: 100 points, 50 points, and 10

points. Sample trajectories are pictured in Figure 1. Notice that as the path length de-

creases, the free and anchored diffusion trajectories seem more similar. These simulated

trajectories allow us to evaluate the performance of the AIC and Bayes Factor methods on

detecting the “true” model and investigate how many observations are needed to reliably

tell the difference between the two movement types.

For each number of observations, we simulate 100 of each model. In both models,

we set ∆ = 1. For free diffusion, our model 1, we select D = 1, and thus ηD = 1
D = 1. We

simulate the independent and identically distributed increments from a normal distribution.

Then, we set an initial position and take the cumulative sum of the increments at each time

step to yield the observed position of the particle. For anchored diffusion, our model 2, we

13
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FIGURE 1. Sample free and anchored diffusion trajectories simulated at
different lengths of observations. Notice that as the path length decreases,
the free and anchored diffusion trajectories seem more similar.

14



select σ2
2 = 1, and thus ησ = 1

σ2
2
= 1. We then simulate the independent and identically dis-

tributed positions from a normal distribution. We take the differences between the positions

at each time step to record the increments. We use both the increments and the positions in

our calculations.

We calculate the AIC for each trajectory twice - once assuming that model 1 is

the underlying “true” model, and once assuming model 2. Taking the minimum of the

two calculations determines which model has been selected as the best fit by the AIC.

In Figure 2, we plot the AIC score assuming model 1 (free diffusion) and the AIC score

assuming model 2 (anchored diffusion) for each trajectory at each observation length. The

trajectories simulated from model 1 are in black, while the trajectories simulated from

model 2 are in blue. What qualifies as a significant difference between the AIC values for

distinct models is debated. The closer the values are, the more difficult it is for the AIC

to distinguish between the models. On our plots in Figure 2, the closer the AIC score is

for the two models, the closer the point is to the diagonal line. Notice that as the number

of observations decreases, the AIC for each group becomes closer to the diagonal, and it

becomes harder to determine which model is the correct one. Additionally, in each plot,

it is relatively easier for the AIC to correctly identify trajectories simulated from model 1

compared to those simulated from model 2.
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(C) 10 observations

FIGURE 2. The AIC evaluated for 100 freely diffusing (model 1, black)
and anchored diffusing (model 2, blue) trajectories at different lengths of
observations.

We also compute the Bayes Factor for each trajectory, choosing our priors with α1 =

α2 = 1,β1 = β2 = 1. Since Bayes Factors evaluate if there is significant evidence in favor

of a hypothesis, as opposed to evidence for rejecting a null hypothesis, we do not have to

perform multiple calculations where we assume that each model is the null model. We use

the analytical solution from Equation 12 to determine the Bayes Factor for each trajectory,

taking the log so that we may use Table 1 to determine significance. We have plotted the
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numerator and the denominator of the Bayes Factors for simulations at each observation

length in Figure 3. The trajectories simulated from model 1 (free diffusion) are in black,

while the trajectories simulated from model 2 (anchored diffusion) are in blue. The X axis

represents the denominator of the Bayes Factor while the Y axis represents the numerator.

Note that both axes are on log scale. We expect points below the diagonal to favor model

1, while points above the diagonal favor model 2. The dashed lines indicate the Bayes

Factor needed to have significant, decisive evidence for model selection based upon Table

1. For 100 and 50 observations, the free diffusion trajectories correctly show that there is

poor evidence to reject model 1. Similarly, the Bayes Factors for the anchored diffusion

trajectories correctly represent decisive evidence against model 1. For 10 observations, we

see performance deteriorate for the Bayes Factors. For the free diffusion paths, 97 percent

are still showing poor evidence against model 1. This is only a minor dip. However, for the

anchored diffusion trajectories, we drop from 100 to 32 percent that have decisive evidence

against model 1, with 18 percent even indicating poor evidence against model 1.
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FIGURE 3. The Bayes Factors evaluated for 100 free diffusion (model
1, black) and anchored diffusion (model 2, blue) trajectories at different
lengths of observations. The X axis represents the denominator of the Bayes
factor while the Y axis represents the numerator.

Table 2 summarizes Figures 2 and 3. For each path length, it gives the percentage

of the simulated paths that were on the correct side of the diagonal line for both movement

types in the AIC and Bayes Factors cases. For the shortest path length, the AIC is more

accurate than the Bayes Factors on true Anchored Diffusion paths. For Free Diffusion

paths, the Bayes Factors are slightly more accurate than the AIC.
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Path Length AIC on Free Diffusion AIC on Anchored Diffusion BF on Free Diffusion BF on Anchored Diffusion
10 92% 81% 98% 66%
50 100% 100% 100% 100%
100 100% 100% 100% 100%

TABLE 2. Numerical analysis of performance of AIC and Bayes Factors
(BF) on simulated data. The AIC outperforms BF on Anchored Diffusion
trajectories, while BF is slightly more accurate than the AIC for Free Diffu-
sion trajectories.

Path Length AIC on Free Diffusion AIC on Anchored Diffusion BF on Free Diffusion BF on Anchored Diffusion
10 93.4% 85.0% 98.6% 72.6%
20 97.3% 97.4% 98.5% 94.7%
30 99.4% 99.6% 99.9% 99.5%
40 99.9% 99.8% 100% 99.6%
50 100% 100% 100% 100%

TABLE 3. Numerical analysis of performance of AIC and Bayes Factors
(BF) on simulated data with shorter simulated trajectories. 1000 trajectories
of each... smaller path lenghts...

We support that observation for the shortest path length by conducting further nu-

merical analysis. We simulate 1000 free diffusion and 1000 anchored diffusion trajectories

with the same parameters as before, but this time with path lengths 10, 20, 30, 40, and 50.

The results are summarized in Table 3 Again, we observe that for shorter path lengths, the

AIC is more accurate than the Bayes Factors on true anchored diffusion paths, while the

Bayes Factors are slightly more accurate than the AIC on true free diffusion paths. For path

lengths around 30 and above, there is not a significant difference in performance.

3.5. Discussion. We expect that it would be harder to differentiate between movement

types with fewer data points. For both AIC and Bayes Factors, we see a general decrease in

performance with fewer position observations for each trajectory. Both perform effectively

for 100 observations, still well for 50 observations, and in some cases poorly at 10 obser-

vations. This decline is significantly faster for the anchored diffusion movement types. In

other words, as the paths become shorter, it is harder to determine the model that best fits
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an anchored diffusion trajectory than it is in the case of a free diffusion trajectory. We see

this with both the AIC and Bayes Factor methods.

Neither method is without its limitations. Bayes Factors can be sensitive to the

choice of prior, which is not information that you have to know or specify for the AIC.

Thus, a full investigation of Bayes Factors would involve an analysis of sensitivity to the

prior. On the other hand, Bayes Factors are able to convey a notion of significance and level

of uncertainty that are not as intuitive for AIC. It is hard to determine what a significant

difference in AIC values for different models should be, and to what extent a greater differ-

ence reflects increased confidence in the model chosen. This is further complicated by the

fact that the multiplier on the number of parameters, 2, is fixed regardless of the parameters

of interest. Other information criterion approaches, such as the Watanabe–Akaike Infor-

mation Criterion (WAIC), have different penalties for complexity. This could be a topic of

exploration in future work.
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4. AN EXPLORATION OF AKAIKE INFORMATION CRITERION (AIC) ASSUMING

MODEL PARAMETERS ARE KNOWN

In the numerical analysis from the previous chapter, we saw that as the trajecto-

ries become shorter, it is harder to determine the model that best fits an anchored diffusion

trajectory than it is in the case of a free diffusion trajectory. In this chapter, we seek to in-

vestigate this more rigorously using theoretical methods. In particular, we want to answer:

• For a free diffusion trajectory, what is the expected difference between AIC1 and

AIC2?

• For an anchored diffusion trajectory, what is the expected difference between AIC1

and AIC2?

We can answer these questions by determining the distribution of the AIC in four cases:

• Case 1: The trajectory is truly free diffusion and we use free diffusion as the likeli-

hood model

• Case 2: The trajectory is truly anchored diffusion and we use free diffusion as the

likelihood model

• Case 3: The trajectory is truly free diffusion and we use anchored diffusion as the

likelihood model

• Case 4: The trajectory is truly anchored diffusion and we use anchored diffusion as

the likelihood model

Cases 1 and 3 are relevant to that first question, while Cases 2 and 4 can provide insight for

the second question.
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We first compute the expected value of the AIC, denoted E(AIC), with the simplifi-

cation that σ2
1 and σ2

2 are known. Notice that in Cases 2 and 3, we have model misspecifi-

cation. Here, we need to re-express the trajectory in the language of the other model.

Case 1: True Free Diffusion, Likelihood Free Diffusion

Recall our model for free diffusion, where increments for i = 0,1, ..., N are repre-

sented as ξi = X i − X i−1 and ξi ∼ N(0,σ2
1). For this model, E1(ξi) = 0 and Var1(ξi) = σ2

1 =

E1(ξ2
i )−E1(ξi)2 = E1(ξ2

i ). Our log-likelihood model for free diffusion is Equation 2. Thus,

AIC1 =−2`1(σ2
1;~ξ)+2= N ln(σ2

1)+N ln(2π)+ 1
σ2

1

N∑
i=1

ξ2
i +2 ,

as in Equation 8. Taking the expected value:

E1(AIC1)= E1(N ln(σ2
1)+N ln(2π)+ 1

σ2
1

N∑
i=1

ξ2
i +2)

= N ln(σ2
1)+N ln(2π)+ 1

σ2
1

N∑
i=1

E1(ξ2
i )+2

= N ln(σ2
1)+N ln(2π)+ 1

σ2
1

Nσ2
1+2

= N ln(σ2
1)+N ln(2π)+N +2

Case 4: True Anchored Diffusion, Likelihood Anchored Diffusion

Recall our model for anchored diffusion, where the observed positions are dis-

tributed as X i ∼ N(0,σ2
2) for i = 0,1, ..., N. For this model, E2(X i) = 0 and Var2(X i) = σ2

2.

Our log-likelihood model for anchored diffusion is Equation 4. Thus,

AIC2 =−2`2(σ2
2;~X )+2= Nln(σ2

2)+Nln(2π)+ 1
σ2

2

N∑
i=1

X2
i +2 ,

22



as in Equation 9. Taking the expected value:

E2(AIC2)= E2(N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N∑
i=1

X2
i +2)

= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N∑
i=1

E2(X2
i )+2

= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

Nσ2
2+2

= N ln(σ2
2)+N ln(2π)+N +2 .

Case 2: True Anchored Diffusion, Likelihood Free Diffusion

In this case, we again have the anchored diffusion model, X i ∼ N(0,σ2) for i =

0,1, ..., N, coupled with the free diffusion log-likelihood model, Equation 2, and AIC,

Equation 8. Taking the expected value yields

E2(AIC1)= E2(N ln(σ2
1)+N ln(2π)+ 1

σ2
1

N∑
i=1

ξ2
i +2)

= N ln(σ2
1)+N ln(2π)+ 1

σ2
1

N∑
i=1

E2(ξ2
i )+2 .

In order to evaluate E2(
∑N

i=1 ξ
2
i ), we need to re-express

∑N
i=1 ξ

2
i in terms of the positions, X i

for i = 0,1, ..., N, rather than the increments, ξi, for i = 1, ..., N. We evaluate E2(
∑N

i=1 ξ
2
i )

for several small values of N, and then use these to determine a general solution.

N=1: Expanding ξ1 as X1 − X0, we have

ξ2
1 = (X1 − X0)2 = (X1 −0)2 = X2

1 .
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So

E2(ξ2
1)= E2(X2

1)=σ2
2 .

N=2: Expanding the increments, ξ1 and ξ2, in terms of the positions X0, X1, and X2, gives

ξ2
1 +ξ2

2 = (X1 − X0)2 + (X2 − X1)2 = X2
1 + (X2 − X1)2 = 2X2

1 −2X1X2 + X2
2 .

Taking the expected value, we attain

E2(ξ2
1 +ξ2

2)= E2(2X2
1 −2X1X2 + X2

2)= 2E2(X2
1)−2E2(X1X2)+E2(X2

2)

= 2σ2
2−2E2(X1)E2(X2)+σ2

2

= 3σ2
2−2(0)(0)

= 3σ2
2 .

N=3: Again, we expand the increments in terms of the positions to determine

ξ2
1 +ξ2

2 +ξ2
3 = (X1 − X0)2 + (X2 − X1)2 + (X3 − X2)2

= 2X2
1 −2X1X2 + X2

2 + (X3 − X2)2

= 2X2
1 −2X1X2 +2X2

2 −2X2X3 + X2
3 .
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Taking the expected value yields

E2(ξ2
1 +ξ2

2 +ξ2
3)= E2(2X2

1 −2X1X2 +2X2
2 −2X2X3 + X2

3)

= 2E2(X2
1)−2E2(X1)E2(X2)+2E2(X2

2)−2E2(X2)E2(X3)+E2(X2
3)

= 2σ2
2+2σ2

2+σ2
2

= 5σ2
2 .

N=4: We expand the increments in terms of the positions to see that

ξ2
1 +ξ2

2 +ξ2
3 +ξ2

4 = (X1 − X0)2 + (X2 − X1)2 + (X3 − X2)2 + (X4 − X3)2

= 2X2
1 −2X1X2 +2X2

2 −2X2X3 +2X2
3 −2X3X4 + X2

4 .

We take the expected value to determine

E2(ξ2
1 +ξ2

2 +ξ2
3 +ξ2

4)= E2(2X2
1 −2X1X2 +2X2

2 −2X2X3 +2X2
3 −2X3X4 + X2

4)

= 2E2(X2
1)−2E2(X1)E2(X2)+2E2(X2

2)−2E2(X2)E2(X3)

+2E2(X2
3)−2E2(X3)E2(X4)+E2(X2

4)

= 2σ2
2+2σ2

2+2σ2
2+σ2

2

= 7σ2
2 .

The results for these values of N are summarized in Table 4. This pattern suggests that

E2(
∑N

i=1 ξ
2
i )= (2N −1)σ2

2. We can prove this using induction. We have already shown that

this is true for the base case of N = 1. Assume the pattern holds for any given case N = k.
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N E2(
∑N

i=1 ξ
2
i )

1 σ2
2

2 3σ2
2

3 5σ2
2

4 7σ2
2

TABLE 4. Summary of E2(
∑N

i=1 ξ
2
i ) for Case 2, where σ2

2 is known.

We must show the pattern holds for N = k+1:

E2

(
k+1∑
i=1

ξ2
i

)
= E2

(
k∑

i=1
ξ2

i +ξ2
k+1

)

= E2

(
k∑

i=1
ξ2

i

)
+E2(ξ2

k+1)

= (2k−1)σ2
2+E2(ξ2

k+1)

= (2k−1)σ2
2+E2((Xk+1 − Xk)2)

= (2k−1)σ2
2+E2(X2

k+1 −2Xk Xk+1 + X2
k)

= (2k−1)σ2
2+E2(X2

k+1)−2E2(Xk Xk+1)+E2(X2
k)

= (2k−1)σ2
2+E2(X2

k+1)−2E2(Xk)E2(Xk+1)+E2(X2
k)

= (2k−1)σ2
2+σ2

2+σ2
2

= (2k−1+2)σ2
2

= (2(k+1)−1)σ2
2 .
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Thus, we have proven by induction that E2(
∑N

i=1 ξ
2
i ) = (2N −1)σ2

2. We can substitute this

in to evaluate the expected value of the AIC,

E2(AIC1)= N ln(σ2
1)+N ln(2π)+ 1

σ2
1

N∑
i=1

E2(ξ2
i )+2

= N ln(σ2
1)+N ln(2π)+ 1

σ2
1

(2N −1)σ2
2+2 .

Case 3: True Free Diffusion, Likelihood Anchored Diffusion

We use the free diffusion model, where increments for i = 0,1, ..., N are repre-

sented as ξi = X i − X i−1 and ξi ∼ N(0,σ2
1) in conjunction with the anchored diffusion

log-likelihood model, Equation 4, and AIC, Equation 9. Taking the expected value yields

E1(AIC2)= E1(N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N∑
i=1

X2
i +2)

= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N∑
i=1

E1(X2
i )+2 .

In order to evaluate E1(
∑N

i=1 X2
i ), we need to re-express

∑N
i=1 X2

i in terms of the increments,

ξi, for i = 1,2, ..., N, rather than the positions, X i, for i = 0,1,2, ..., N. In doing so, we need

to use the fact that X i = ∑i
j=1 ξ j. We evaluate E1(

∑N
i=1 X2

i ) for several small values of N,

and then use these to determine a general solution.

N=1: Here, X0 = 0 and we rewrite the position X1 as ξ1:

X2
1 + X2

0 = (ξ1)2 +0= ξ2
1 .

So the expected value is

E1(X2
1 + X2

0)= E1(ξ2
1)=σ2

1 .
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N=2: Rewriting the positions in terms of the increments and expanding gives

X2
2 + X2

1 + X2
0 = (ξ1 +ξ2)2 + (ξ1)2 +0= 2ξ2

1 +2ξ1ξ2 +ξ2
2 .

Then, we take the expected value to see that

E1(X2
2 + X2

1 + X2
0)= E1(2ξ2

1 +2ξ1ξ2 +ξ2
2)

= 2E1(ξ2
1)+2E1(ξ1ξ2)+E1(ξ2

2)

= 2σ2
1+2E1(ξ1)E1(ξ2)+σ2

1

= 2σ2
1+0+σ2

1

= 3σ2
1 .

N=3: We expand the positions in terms of their increments to give

X2
3 + X2

2 + X2
1 + X2

0 = (ξ1 +ξ2 +ξ3)2 + (ξ1 +ξ2)2 + (ξ1)2 +0

= ξ2
1 +2ξ1ξ2 +2ξ1ξ3 +ξ2

2 +2ξ2ξ3 +ξ2
3 +2ξ2

1 +2ξ1ξ2 +ξ2
2

= 3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3 .
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This means the expected value is

E1(X2
3 + X2

2 + X2
1 + X2

0)= E1(3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3)

= 3E1(ξ2
1)+4E1(ξ1)E1(ξ2)+2E1(ξ1)E1(ξ3)+2E1(ξ2

2)

+2E1(ξ2)E1(ξ3)+E1(ξ2
3)

= 3σ2
1+2σ2

1+σ2
1

= 6σ2
1 .

N=4: Expanding the positions in terms of their increments yields

X2
4 + X2

3 + X2
2 + X2

1 + X2
0 = (ξ1 +ξ2 +ξ3 +ξ4)2 + (ξ1 +ξ2 +ξ3)2 + (ξ1 +ξ2)2 + (ξ1)2 +0

= ξ2
1 +2ξ1ξ2 +2ξ1ξ3 +2ξ1ξ4 +ξ2

2 +2ξ2ξ3 +2ξ2ξ4 +ξ2
3 +2ξ3ξ4 +ξ2

4

+3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3

= 4ξ2
1 +6ξ1ξ2 +4ξ1ξ3 +2ξ1ξ4 +3ξ2

2 +4ξ2ξ3 +2ξ2ξ4 +2ξ2
3 +2ξ3ξ4 +ξ2

4 .
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N E1(
∑N

i=1 X2
i )

1 σ2
2

2 3σ2
2

3 6σ2
2

4 10σ2
2

TABLE 5. Summary of E1(
∑N

i=1 X2
i ) for Case 3, where σ2

1 is known.

So taking the expected value gives

E1(X2
4 + X2

3 + X2
2 + X2

1 + X2
0)= E1(4ξ2

1 +6ξ1ξ2 +4ξ1ξ3 +2ξ1ξ4 +3ξ2
2 +4ξ2ξ3 +2ξ2ξ4 +2ξ2

3 +2ξ3ξ4 +ξ2
4)

= 4E1(ξ2
1)+6E1(ξ1)E1(ξ2)+4E1(ξ1)E1(ξ3)+2E1(ξ1)E1(ξ4)+3E1(ξ2

2)

+4E1(ξ2ξ3)+2E1(ξ2)E1(ξ4)+2E1(ξ2
3)+2E1(ξ3)E1(ξ4)+E1(ξ2

4)

= 4σ2
1+3σ2

1+2σ2
1+σ2

1

= 10σ2
1 .

The results for these values of N are summarized in Table 5. This pattern suggests that

E1(
∑N

i=1 X2
i ) = N(N+1)

2 σ2
1. We can prove this using induction. We have already shown that

this is true for the base case of N = 1. Assume the pattern hold for any given case N = k.

We must show the pattern holds for N = k+1:
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E1

(
k+1∑
i=1

X2
i

)
= E1

(
k∑

i=1
X2

i + X2
k+1

)

= E1

(
k∑

i=1
X2

i

)
+E1(X2

k+1)

= k(k+1)
2

σ2
1+E1(X2

k+1)

= k(k+1)
2

σ2
1+E1((ξ1 +ξ2 + ...+ξk +1)2)

= k(k+1)
2

σ2
1+E1(ξ2

1 +2ξ1ξ2 +2ξ1ξ3 + ...+2ξ1ξk+1 +ξ2
2 + ...+ξ2

k+1)

= k(k+1)
2

σ2
1+E1

(
ξ2

1 +ξ2
2 + ...+ξ2

k+1 +2
k+1∑

j=i+1

k∑
i=1

ξiξ j

)

= k(k+1)
2

σ2
1+E1(ξ2

1)+E1(ξ2
2)+ ...+E1(ξ2

k+1)+E1

(
2

k+1∑
j=i+1

k∑
i=1

ξiξ j

)

= k(k+1)
2

σ2
1+E1(ξ2

1)+E1(ξ2
2)+ ...+E1(ξ2

k+1)+2
k+1∑

j=i+1

k∑
i=1

E1(ξi)E1(ξ j)

= k(k+1)
2

σ2
1+(k+1)σ2

1

= k(k+1)
2

σ2
1+

2(k+1)
2

σ2
1

= k(k+1)+2(k+1)
2

σ2
1

= (k+1)(k+2)
2

σ2
1 .
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Case True Model Likelihood Model E(AIC)

1 Free Free N ln(σ2
1)+N ln(2π)+N +2

2 Anchored Free (2N −1)
(
σ2

2
σ2

1

)
+N ln(σ2

1)+N ln(2π)+2

3 Free Anchored N2+N
2

(
σ2

1
σ2

2

)
+N ln(σ2

2)+N ln(2π)+2

4 Anchored Anchored N ln(σ2
2)+N ln(2π)+N +2

TABLE 6. Expected value of the AIC based upon the specified true model
and likelihood model for each case.

Thus, as proved by induction, E1(
∑N

i=1 X2
i )= N(N+1)

2 σ2
1. We can substitute this in to evalu-

ate the expected value of the AIC,

E1(AIC2)= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N∑
i=1

E1(X2
i )+2

= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

(N(N +1)
2

)
σ2

1+2

= N ln(σ2
2)+N ln(2π)+ 1

σ2
2

N2 +N
2

σ2
1+2 .

Discussion

Table 6 summarizes the expected value of the AIC in all four cases. We have deter-

mined the expected value of the difference between AIC1 and AIC2 in both cases:

E1 (AIC2−AIC1)= N2 +N
2

(σ2
1

σ2
2

)
+N ln

(σ2
2

σ2
1

)
−N ,

E2 (AIC1−AIC2)= (2N −1)
(σ2

2

σ2
1

)
+N ln

(σ2
1

σ2
2

)
−N .

While the forms are similar, note that the expected value of the difference in the AIC’s as-

suming model 1 (free diffusion) has an additional power of N in the leading term. Further,

the "true" values for both σ2
1 and σ2

2 are in the expressions. This is due to our simplifying
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assumption that the values of σ2
1 and σ2

2 are known, but in conducting model selection on

a trajectory, we would only have one “true value,” which will be unknown. This inconsis-

tency is addressed in the next section.
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5. MAIN RESULT: CONVERGENCE OF THE AIC FOR ESTIMATED MODEL

PARAMETERS

We seek to understand the distribution of the AIC for estimated values of σ2
1 and σ2

2,

because the trajectories we analyze will only have one of these values, and the true value

will be unknown. We use maximum likelihood estimation on the observed increments or

positions from the particle trajectories to estimate σ2
1 and σ2

2 as σ̂2
1 and σ̂2

2 respectively.

From these estimators, we can determine the expected value and variation of the AIC in

each case.

We use the MLE for each case to revisit the AIC and better understand its distribu-

tion. Specifically, we will focus on 1
N AIC1 and 1

N AIC2. We rescale by 1
N in this manner

for a stable outcome:

1
N

AIC1 = ln
(
σ̂2

1
)+ ln(2π)+ 1

N σ̂2
1

N∑
i=1

ξ2
i +

2
N

, (14)

1
N

AIC2 = ln
(
σ̂2

2
)+ ln(2π)+ 1

N σ̂2
2

N∑
i=1

X2
i +

2
N

. (15)

Using these equations, we arrive at the following results:

Theorem 5.1 (Case 1). Let X0, X1, X2, ..., XN be the position observations of a free diffu-

sion trajectory at times t0, t1, t2, ..., tN , where ti = ∆i. Define increments ξ1,ξ2, ...,ξN as

ξi = X i − X i−1 for i = 1, ..., N. Then

p
N

(
1
N

AIC1−
[
ln(σ2

1)+ ln(2π)+1
])→ N (0,2)

in distribution.

34



Theorem 5.2 (Case 4). Let X0, X1, X2, ..., XN be the position observations of an anchored

diffusion trajectory at times t0, t1, t2, ..., tN , where ti =∆i. Then

p
N

(
1
N

AIC2−
[
ln(σ2

2)+ ln(2π)+1
])→ N (0,2)

in distribution.

Theorem 5.3 (Case 2). Let X0, X1, X2, ..., XN be the position observations of an anchored

diffusion trajectory at times t0, t1, t2, ..., tN , where ti =∆i. Then

p
N

(
1
N

AIC1−
[
ln(2)+ ln(σ2

2)+ ln(2π)+1
])→ N (0,8)

in distribution.

We prove these theorems in the sections that follow, and make some remarks on

why it is hard to make a similar statement for Case 3.

5.1. Proof of Theorem 5.1 for Case 1: True Free Diffusion, Likelihood Model Free

Diffusion. Let X0, X1, X2, ..., XN be the position observations of a free diffusion trajectory

at times t0, t1, t2, ..., tN , where ti = ∆i. Define increments ξ1,ξ2, ...,ξN as ξi = X i − X i−1

for i = 1, ..., N.

Note that

s2
1 =

1
N −1

N∑
i=1

ξ2
i
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is an unbiased estimator of σ2
1, meaning that E1(s2

1)=σ2
1 . We can further express s2

1 as

s2
1 =

N
N −1

σ̂2
1 ,

where σ̂2
1 is the MLE estimator for Case 1 from Table 9. This implies that

σ̂2
1 =

N −1
N

s2
1 .

Since regularity conditions are met (refer to Appendix C), by the asymptotic effi-

ciency of MLE’s, Theorem B.5,

p
N

(
σ̂2

1−σ2
1

)
→ N

(
0,ν

(
σ2

1
))

,

where ν
(
σ2

1
)

is the Cramér-Rao Lower Bound for a single observation from Theorem B.4.

Applied to our case of iid ξ1,ξ2, ...ξN , Corollary B.1 gives

ν
(
σ2

1
)= 1

I
(
σ2

1
) , (16)
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where I
(
σ2

1
)

is the Fisher Information. Since f (ξ|σ2
1) is an exponential family, by Lemma

B.2,

I
(
σ2

1
)= Eσ2

1

((
∂

∂σ2
1

ln f
(
ξ|σ2

1
))2)

=−Eσ2
1

(
∂2

∂σ2
1

2 ln f
(
ξ|σ2

1
))

=−Eσ2
1

(
1

2
(
σ2

1
)2 − 1(

σ2
1
)3 ξ

2

)

= −1

2
(
σ2

1
)2 + 1(

σ2
1
)3 σ

2
1

= 1

2
(
σ2

1
)2 .

Thus,

p
N

(
σ̂2

1−σ2
1
)→ N

(
0,2

(
σ2

1
)2

)
,

in distribution.

Next, we can apply the Delta Method, Theorem B.3. For a differentiable function

A1:

p
N

[
A1

(
σ̂2

1
)− A1

(
σ2

1
)]→ N

(
0,2

(
σ2

1
)2 [

A′
1
(
σ2

1
)]2

)
.

Suppose A1(σ2
1)= ln(σ2

1). Then A′
1(σ2

1)= 1
σ2

1
, and thus

p
N

[
ln

(
σ̂2

1
)− ln

(
σ2

1
)]→ N (0,2) ,
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in distribution.

Let YN = ln(2π)+1+ 2
N . Observe that YN → ln(2π)+1 in probability. Then, by

Theorem B.2, Slutsky’s Theorem,

p
N

(
1
N

AIC1−
[
ln(σ2

1)+ ln(2π)+1
])→ N (0,2)

in distribution, as desired.

5.2. Proof of Theorem 5.2 for Case 4: True Anchored Diffusion, Likelihood Model

Anchored Diffusion. Recall that in our model for Free Diffusion, the increments are in-

dependently and identically distributed: ξi ∼ N(0,σ2
1), where i = 1,2, ..., N. Our model for

Anchored Diffusion differs in that it is the positions, not the increments, that are indepen-

dently and identically distributed: X i ∼ N(0,σ2
2), where i = 0,1,2, ..., N and X0 = 0. Due

to the way we have written the parameters of the models and their similar normal distribu-

tions, the logic of the proof of Theorem 5.2 is identical to the proof of Theorem 5.1. We

simply replace the ξi terms with X i terms, σ2
1 with σ2

2, and σ̂2
1 with σ̂2

2.

5.3. Lemma: Maximum Likelihood Estimation (MLE) in Model Misspecification Cases.

Recall that the Maximum Likelihood Estimators for the free diffusion and anchored diffu-

sion models are:

σ̂2
1 =

1
N

N∑
i=1

ξ2
i ,

σ̂2
2 =

1
N

N∑
i=1

X2
i .
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These estimators can be applied directly to Case 1 (True Free Diffusion, Likelihood Free

Diffusion) and Case 4 (True Anchored Diffusion, Likelihood Anchored Diffusion). How-

ever, for Cases 2 and 4, where we have model misspecification, we need to re-express these

estimators.

Case 2: True Anchored Diffusion, Likelihood Free Diffusion

We need to re-express η̂D =
(

1
N

∑N
i=1 ξ

2
i

)−1
in terms of our positions X0, X1, X2, ..., XN .

We rewrite
∑N

i=1 ξ
2
i for several small values of N, and then use these to determine a general

solution.

N=1: We rewrite the first increment, ξ1 in terms of the positions, X1 − X0, where X0 = 0,

which yields

ξ2
1 = (X1 − X0)2 = (X1 −0)2 = X2

1 .

N=2: Rewriting increments in terms of positions and expanding gives

ξ2
1 +ξ2

2 = (X1 − X0)2 + (X2 − X1)2 = X2
1 + (X2 − X1)2

= 2X2
1 −2X1X2 + X2

2 .
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N=3: We expand the increments in terms of the positions to see that

ξ2
1 +ξ2

2 +ξ2
3 = (X1 − X0)2 + (X2 − X1)2 + (X3 − X2)2

= 2X2
1 −2X1X2 + X2

2 + (X3 − X2)2

= 2X2
1 −2X1X2 +2X2

2 −2X2X3 + X2
3 .

N=4: Expanding the increments in terms of the positions gives

ξ2
1 +ξ2

2 +ξ2
3 +ξ2

4 = (X1 − X0)2 + (X2 − X1)2 + (X3 − X2)2 + (X4 − X3)2

= 2X2
1 −2X1X2 +2X2

2 −2X2X3 +2X2
3 −2X3X4 + X2

4 .

The results for these values of N are summarized in Table 7.

N
∑N

i=1 ξ
2
i

1 X2
1

2 2X2
1 −2X1X2 + X2

2

3 2X2
1 −2X1X2 +2X2

2 −2X2X3 + X2
3

4 2X2
1 −2X1X2 +2X2

2 −2X2X3 +2X2
3 −2X3X4 + X2

4

TABLE 7. Rewriting
∑N

i=1 ξ
2
i in terms of positions, X i, for Case 2.

This pattern suggests that

N∑
i=1

ξ2
k = X2

N +2
N−1∑
i=1

X2
i −2

N−1∑
j=1

X j X j+1 .
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We can prove this using induction. We have already shown that this is true for the base case

of N = 1. Assume the pattern holds for any given case N = k. We must show the pattern

holds for N = k+1:

k+1∑
i=1

ξ2
i =

k∑
i=1

ξ2
i +ξ2

k+1

= X2
k +2

k−1∑
i=1

X2
i −2

k−1∑
j=1

X j X j+1 +ξ2
k+1

= X2
k +2

k−1∑
i=1

X2
i −2

k−1∑
j=1

X j X j+1 + (Xk+1 − Xk)2

= X2
k +2

k−1∑
i=1

X2
i −2

k−1∑
j=1

X j X j+1 + X2
k+1 −2Xk Xk+1 + X2

k

= X2
k+1 +2X2

k +2
k−1∑
i=1

X2
i −2

k−1∑
j=1

X j X j+1 −2Xk Xk+1

= X2
k+1 +2

k∑
i=1

X2
i −2

k∑
j=1

X j X j+1 .

Thus, we have proven by induction
∑k

i=1 ξ
2
k = X2

N +2
∑N−1

i=1 X2
i −2

∑N−1
j=1 X j X j+1.

Substituting this into the expression for σ̂2
1 yields

σ̂2
1 =

1
N

N∑
i=1

ξ2
i =

1
N

[
X2

N +2
N−1∑
i=1

X2
i −2

N−1∑
j=1

X j X j+1

]
(17)

as the MLE for the free diffusion likelihood on true anchored diffusion.

Case 3: True Free Diffusion, Likelihood Anchored Diffusion
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We need to re-express σ̂2
2 = 1

N
∑N

i=1 X2
i s in terms of our increments ξ1,ξ2, ...,ξN . We

rewrite
∑N

i=1 X2
i for several small values of N, and then use these to determine a general

solution.

N=1: We write the positions X1 and X0 in terms of the increment between them, ξ1, to give

X2
1 + X2

0 = (ξ1)2 +0= ξ2
1 .

N=2: Re-expressing the positions in terms of increments and expanding yields

X2
2 + X2

1 + X2
0 = (ξ1 +ξ2)2 + (ξ1)2 +0= 2ξ2

1 +2ξ1ξ2 +ξ2
2 .

N=3: We expand the positions in terms of the increments to determine that

X2
3 + X2

2 + X2
1 + X2

0 = (ξ1 +ξ2 +ξ3)2 + (ξ1 +ξ2)2 + (ξ1)2 +0

= ξ2
1 +2ξ1ξ2 +2ξ1ξ3 +ξ2

2 +2ξ2ξ3 +ξ2
3 +2ξ2

1 +2ξ1ξ2 +ξ2
2

= 3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3 .
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N=4: Again, we rewrite the positions as sums of the proceeding increments and expand to

give

X2
4 + X2

3 + X2
2 + X2

1 + X2
0 = (ξ1 +ξ2 +ξ3 +ξ4)2 + (ξ1 +ξ2 +ξ3)2 + (ξ1 +ξ2)2 + (ξ1)2 +0

= ξ2
1 +2ξ1ξ2 +2ξ1ξ3 +2ξ1ξ4 +ξ2

2 +2ξ2ξ3 +2ξ2ξ4 +ξ2
3 +2ξ3ξ4 +ξ2

4

+3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3

= 4ξ2
1 +6ξ1ξ2 +4ξ1ξ3 +2ξ1ξ4 +3ξ2

2 +4ξ2ξ3 +2ξ2ξ4 +2ξ2
3 +2ξ3ξ4 +ξ2

4 .

The results for these values of N are summarized in Table 8.

N
∑N

i=1 X2
i

1 ξ2
1

2 2ξ2
1 +2ξ1ξ2 +ξ2

2

3 3ξ2
1 +4ξ1ξ2 +2ξ1ξ3 +2ξ2

2 +2ξ2ξ3 +ξ2
3

4 4ξ2
1 +6ξ1ξ2 +4ξ1ξ3 +2ξ1ξ4 +3ξ2

2 +4ξ2ξ3 +2ξ2ξ4 +2ξ2
3 +2ξ3ξ4 +ξ2

4

TABLE 8. Rewriting
∑N

i=1 X2
i in terms of increments, ξi, for Case 3.

This pattern suggests that, for N > 1,

N∑
i=1

X2
i =

N∑
p=1

(N − p+1)ξ2
p +2

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j .

We can prove this using induction. We have already shown that this is true for the base case

of N = 2. Assume the pattern holds for any given case N = k. We must show the pattern
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holds for N = k+1:

k+1∑
i=1

X2
i =

k∑
i=1

X2
i + X2

k+1

=
k∑

p=1
(k− p+1)ξ2

p +2
k∑

j=i+1

k−1∑
i=1

(k− j+1)ξiξ j + X2
k+1

=
k∑

p=1
(k− p+1)ξ2

p +2
k∑

j=i+1

k−1∑
i=1

(k− j+1)ξiξ j + (ξ1 +ξ2 + ...+ξk+1)2

=
k∑

p=1
(k− p+1)ξ2

p +2
k∑

j=i+1

k−1∑
i=1

(k− j+1)ξiξ j +ξ2
1 +2ξ1ξ2 +2ξ1ξ3 + ...+2ξ1ξk+1 +ξ2

2 + ...+ξ2
k+1

=
k∑

p=1
(k− p+1)ξ2

p +2
k∑

j=i+1

k−1∑
i=1

(k− j+1)ξiξ j +ξ2
1 +ξ2

2 + ...+ξ2
k+1 +2

k+1∑
j=i+1

k∑
i=1

ξiξ j

=
k∑

p=1
((k+1)− p+1)ξ2

p +2
k∑

j=i+1

k−1∑
i=1

((k+1)− j+1)ξiξ j +ξ2
k+1 +2ξkξk+1

=
k+1∑
p=1

((k+1)− p+1)ξ2
p +2

k+1∑
j=i+1

k∑
i=1

((k+1)− j+1)ξiξ j .

Thus, we have proven by induction that
∑N

i=1 X2
i =

∑N
p=1(N−p+1)ξ2

p+2
∑N

j=i+1
∑N−1

i=1 (N−

j+1)ξiξ j for N > 1. Substituting this into the expression for σ̂2
2 yields

σ̂2
2 =

1
N

N∑
i=1

X2
i

= 1
N

[ N∑
p=1

(N − p+1)ξ2
p +2

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

]

as the MLE for the anchored diffusion likelihood on true free diffusion.

Table 9 summarizes the MLE in all four cases. Note that in each case, the estimator

is in terms of the observations from the trajectory itself - the observed increments in Case

1 and Case 3 for true free diffusion paths, and the observed positions in Case 2 and Case
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Case True Model Likelihood Model MLE

1 Free Free σ̂2
1 = 1

N
∑N

i=1 ξ
2
i

2 Anchored Free σ̂2
1 = 1

N

[
X2

N +2
∑N−1

i=1 X2
i −2

∑N−1
j=1 X j X j+1

]
3 Free Anchored σ̂2

2 = 1
N

[∑N
p=1(N − p+1)ξ2

p +2
∑N

j=i+1
∑N−1

i=1 (N − j+1)ξiξ j

]
4 Anchored Anchored σ̂2

2 = 1
N

∑N
i=1 X2

i

TABLE 9. Maximum Likelihood Estimator (MLE) based upon the specified
true model and likelihood model for each case.

4 for true anchored diffusion paths. Computing these estimators allows us to explore the

distributions of 1
N AIC in the model misspecification cases.

5.4. Proof of Theorem 5.3 for Case 2: True Anchored Diffusion, Likelihood Model

Free Diffusion. Let X0, X1, X2, ..., XN be the position observations of an anchored diffu-

sion trajectory at times t0, t1, t2, ..., tN , where ti = ∆i. Define increments ξ1,ξ2, ...,ξN as

ξi = X i − X i−1 for i = 1, ..., N. We will be working with 1
N AIC1 from Equation 14, but we

need to determine its expected value in terms of the true parameter, σ2
2. To accomplish this,

we focus on ln
(
σ̂2

1
)
.
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We begin with the MLE for this case from Table 9:

σ̂2
1 =

1
N

N∑
i=1

ξ2
i

= 1
N

[
X2

N +2
N−1∑
i=1

X2
i −2

N−1∑
j=1

X j X j+1

]

= 1
N

[
X2

N
]+ 2

N

[
N−1∑
i=1

X2
i

]
− 2

N

[
N−1∑
j=1

X j X j+1

]

= 1
N

[
X2

N
]+ 1

N
[
X2

N
]− 1

N
[
X2

N
]+ 2

N

[
N−1∑
i=1

X2
i

]
− 2

N

[
N−1∑
j=1

X j X j+1

]

= 2
N

[
X2

N
]+ 2

N

[
N−1∑
i=1

X2
i

]
− 1

N
[
X2

N
]− 2

N

[
N−1∑
j=1

X j X j+1

]

= 2
N

[
N∑

i=1
X2

i

]
− 1

N
[
X2

N
]− 2

N

[
N−1∑
j=1

X j X j+1

]

= 2 σ̂2
2−

1
N

[
X2

N
]− 2

N

[
N−1∑
j=1

X j X j+1

]
.
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Taking the expected value yields

Eσ2
2

(
σ̂2

1
)= Eσ2

2

(
2 σ̂2

2−
1
N

[
X2

N
]− 2

N

[
N−1∑
j=1

X j X j+1

])

= 2Eσ2
2

(
σ̂2

2
)− 1

N
Eσ2

2

(
X2

N
)− 2

N

N−1∑
j=1

Eσ2
2

(
X j

)
Eσ2

2

(
X j+1

)
= 2Eσ2

2

(
N −1

N
s2

2

)
− 1

N
σ2

2

= 2
(

N −1
N

)
Eσ2

2

(
s2

2
)− 1

N
σ2

2

= 2
(

N −1
N

)
σ2

2−
1
N
σ2

2

=
(
2N −3

N

)
σ2

2

=
(
2− 3

N

)
σ2

2 .

Let ZN = 1
N

[
X2

N
]+ 2

N

[∑N−1
j=1 X j X j+1

]
. By Chebyshev’s Inequality, Theorem B.1,

since

Eσ2
2

(
Z2

N
)= 1

N2 Eσ2
2

(
X4

N
)+ 2

N2 Eσ2
2

(
X2

N

[
N−1∑
j=1

X j X j+1

])
+ 4

N2 Eσ2
2

(
N−1∑
j=1

X2
j X2

j+1

)

= 1
N2 Eσ2

2

(
X4

N
)+ 2

N2 Eσ2
2

(
X2

N
) N−1∑

j=1
Eσ2

2

(
X j

)
Eσ2

2

(
X j+1

)+ 4
N2

N−1∑
j=1

Eσ2
2

(
X2

j

)
Eσ2

2

(
X2

j+1

)

= 3
(
σ2

2
)2

N2 + 4N
(
σ2

2
)2

N2

= 3
(
σ2

2
)2

N2 + 4
(
σ2

2
)2

N
,

then ZN → 0 in probability.
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Recall that

p
N

(
σ̂2

2−σ2
2
)→ N

(
0,2

(
σ2

2
)2

)
,

from the Proof of Theorem 5.2. Then, since ZN → 0 in probability, by Theorem B.2 (Slut-

sky’s Theorem),

p
N

(
σ̂2

1−2σ2
2
)→ N

(
0,8

(
σ2

2
)2

)
.

Applying the Delta Method, Theorem B.3, for a differentiable function A2:

p
N

[
A2

(
σ̂2

1
)− A2

(
2σ2

2
)]→ N

(
0,8

(
σ2

2
)2 [

A′
2
(
2σ2

2
)]2

)
.

Suppose A2(2σ2
2)= ln(2σ2

2). Then A′
2(2σ2

2)= 1
σ2

2
and

p
N

[
ln

(
σ̂2

1
)− ln

(
2σ2

2
)]→ N (0,8)

in distribution. Let YN = ln(2π)+1+ 2
N . Observe that YN → ln(2π)+1 in probability. Then,

by Theorem B.2 (Slutsky’s Theorem),

p
N

(
1
N

AIC1−
[
ln(2)+ ln(σ2

2)+ ln(2π)+1
])→ N (0,8)

in distribution, as desired.

5.5. Remarks about Case 3: True Free Diffusion, Likelihood Model Anchored Diffu-

sion. Let X0, X1, X2, ..., XN be the position observations of a free diffusion trajectory at
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times t0, t1, t2, ..., tN , where ti =∆i. Define increments ξ1,ξ2, ...,ξN as ξi = X i − X i−1 for

i = 1, ..., N. We will be working with 1
N AIC2 from Equation 15, but we need to determine

its expected value in terms of the true parameter, σ2
1. To accomplish this, we focus on

ln
(
σ̂2

2
)
.

We begin with the MLE for this case from Table 9:

σ̂2
2 =

1
N

N∑
i=1

X2
i

= 1
N

[
N∑

p=1
(N − p+1)ξ2

p +2
N∑

j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

]

= 1
N

[
N∑

k=1
ξ2

k +
N∑

p=1
(N − p)ξ2

p +2
N∑

j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

]

= 1
N

N∑
k=1

ξ2
k +

1
N

N∑
p=1

(N − p)ξ2
p +

2
N

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

= σ̂2
1+

1
N

N∑
p=1

(N − p)ξ2
p +

2
N

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j .
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Taking the expected value yields

Eσ2
1

(
σ̂2

2
)= Eσ2

1

(
σ̂2

1+
1
N

N∑
p=1

(N − p)ξ2
p +

2
N

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

)

= Eσ2
1

(
σ̂2

1
)+Eσ2

1

(
1
N

N∑
p=1

(N − p)ξ2
p

)
+Eσ2

1

(
2
N

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

)

= Eσ2
1

(
N −1

N
s2

1

)
+ 1

N

N∑
p=1

(N − p)Eσ2
1

(
ξ2

p
)+ 2

N

N∑
j=i+1

N−1∑
i=1

(N − j+1)Eσ2
1
(ξi)Eσ2

1

(
ξ j

)
= Eσ2

1

(
N −1

N
s2

1

)
+ 1

N

N∑
p=1

(N − p)Eσ2
1

(
ξ2

p
)

=
(

N −1
N

)
σ2

1+
1
N

[
(N −1)Eσ2

1

(
σ̂2

N−1
)+ (N −2)Eσ2

1

(
σ̂2

N−2
)+ ...+Eσ2

1

(
σ̂2

1
)]

=
(

N −1
N

)
σ2

1+
1
N

[
(N −1)Eσ2

1

(
1

N −1

N−1∑
i=1

ξ2
i

)
+ (N −2)Eσ2

1

(
1

N −2

N−2∑
i=1

ξ2
i

)
+ ...+Eσ2

1

(
ξ2

1
)]

=
(

N −1
N

)
σ2

1+
1
N

[
(N −1)Eσ2

1

(
ξ2

1
)+ (N −2)Eσ2

1

(
ξ2

1
)+ ...+Eσ2

1

(
ξ2

1
)]

=
(

N −1
N

)
σ2

1+
1
N

[
(N −1)σ2

1+(N −2)σ2
1+...+σ2

1
]

=
(

N −1
N

)
σ2

1+
1
N

[
σ2

1

N−1∑
i=1

i

]

=
(

N −1
N

)
σ2

1+
1
N

[
σ2

1
(N −1)((N −1)+1)

2

]
=

(
N −1

N

)
σ2

1+
1
N

[
σ2

1
(N −1)(N)

2

]
=

(
N −1

N

)
σ2

1+
(

N −1
2

)
σ2

1

= 2(N −1)+N(N −1)
2N

σ2
1

= N2 +N −2
2N

σ2
1

=
(
1
2

N + 1
2
− 1

N

)
σ2

1 .
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Due to the N term in the expression for Eσ2
1

(
σ̂2

2
)
, we are not able to use the same methods

as in proving Theorem 5.3. While we were not able to determine the distribution of 1
N AIC2

in this case, we were able to make a contribution by unpacking the MLE to determine the

above pattern.
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6. CONCLUSION

We focused on two specific movement types - free diffusion and anchored diffusion-

and used well-established tools from statistics and information theory to perform rigorous

model selection. We developed models for both movement types based upon independent

and identically distributed increments and positions respectively. We have shown that it is

more difficult for these methods to discern the true model when the truth is an anchored

diffusion trajectory in two ways. First, we numerically compared the performance of the

AIC and Bayes Factors on simulated trajectories. Then, we explored the distribution for the

AIC more in depth, analyzing four cases which paired different true and likelihood models.

While we were not able to determine the distribution of the test statistic for the

likelihood ratio test, AIC1−AIC2, we do know the (preconvergence) form. For true free

diffusion trajectories (Cases 1 and 3):

AIC1−AIC2 =−(AIC2−AIC1)

=−N

[
ln

(
σ̂2

1+
1
N

N∑
p=1

(N − p)ξ2
p +

2
N

N∑
j=i+1

N−1∑
i=1

(N − j+1)ξiξ j

)
− ln

(
σ̂2

1
)]

=−N ln

(
σ̂2

1+ 1
N

∑N
p=1(N − p)ξ2

p + 2
N

∑N
j=i+1

∑N−1
i=1 (N − j+1)ξiξ j

σ̂2
1

)

=−N ln

(
1+

1
N

∑N
p=1(N − p)ξ2

p

σ̂2
1

+
2
N

∑N
j=i+1

∑N−1
i=1 (N − j+1)ξiξ j

σ̂2
1

)

=−N ln

(
1+

∑N
p=1(N − p)ξ2

p∑N
k=1 ξ

2
k

+
2

∑N
j=i+1

∑N−1
i=1 (N − j+1)ξiξ j∑N

k=1 ξ
2
k

)
.
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So altogether, rewriting Equation 10, the form of a rejection region for a likelihood ratio

test would be

{
~X :

∑N
k=1(N −k)ξ2

k∑N
k=1 ξ

2
k

+
2

∑N
j=i+1

∑N−1
i=1 (N − j+1)ξiξ j∑N

k=1 ξ
2
k

≥ C1

}
, (18)

for some appropriately chosen critical value, C1.

For true anchored diffusion trajectories (Cases 2 and 4):

AIC1−AIC2 = N ln

(
2 σ̂2

2−
1
N

[
X2

N
]− 2

N

[
N−1∑
j=1

X j X j+1

])
−N ln

(
σ̂2

2
)

= N ln

2 σ̂2
2− 1

N
[
X2

N
]− 2

N

[∑N−1
j=1 X j X j+1

]
σ̂2

2



= N ln

2−
1
N

[
X2

N
]

σ̂2
2

−
2
N

[∑N−1
j=1 X j X j+1

]
σ̂2

2



= N ln

2− X2
N∑N

k=1 X2
i

−
2

[∑N−1
j=1 X j X j+1

]
∑N

k=1 X2
i

 .

So altogether, rewriting Equation 10, the form of a rejection region for a likelihood ratio

test would be ~X :
X2

N∑N
k=1 X2

i

+
2

[∑N−1
j=1 X j X j+1

]
∑N

k=1 X2
i

≤ C2

 , (19)

for some appropriately chosen critical value, C2.

6.1. Future Work. One direction of future work would be to continue the in-depth anal-

ysis of the AIC, try to find a lower bound for Case 3, and take further steps towards un-

derstanding the distribution of the test statistic AIC1−AIC2. Further, a similar theoretical
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analysis of other information criterion methods, such as the Watanabe-Akaike Information

Criterion (WAIC), or Bayesian methods, like Bayes Factors, could be explored.

The authors hope that one day this analysis may be useful to include in comple-

mentary work, an automated dashboard to categorize different types of particle movement

in cells. In that work, we developed six statistical features and used them as inputs to a

supervised machine learning algorithm that had been trained on simulated data. Statistics

like the AIC are candidates for improved statistical feature extraction. However, one would

need to explore their performance on movement types beyond free and anchored diffusion.

A natural next step would be to expand this investigation to compare free diffusion (where

the particle is not attached to a molecular motor) to directed motion (where the particle is

attached to a molecular motor that is stepping along a microtubule with some velocity).
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APPENDIX A. JUSTIFICATION OF MODELING CHOICES

The following argument was provided by my advisor, Prof. Scott A. McKinley. It

will appear in a forthcoming paper, but we have included the text here for reader conve-

nience:

In both active transport and anchored diffusion models it is assumed that the particle

is bound to some other structure and its movement is dictated by the properties of that

biophysical interaction. It is natural to model the response of a Brownian particle to external

force through the Langevin equation. Let {V (t)}t∈R+ denote the velocity of the particle at

time t. Suppose that the particle is subjected to an external force that is well-modeled by

a time-dependent potential energy well Φ(X (t), t). Then the Newton’s second law implies

that

mdV (t)=−γV (t)−∇Φ(X (t), t)dt+
√

2kBTγdW(t) . (20)

It is common to take the mass m of the microparticle to be small compared to other pa-

rameters, which allows us to reduce the system to a stochastic differential equation (SDE)

depending only on the position X (t). This is called the overdamped Langevin equation:

γdX (t)=−∇Φ(X (t), t)dt+
√

2kBTγdW(t) . (21)

In the context of molecular-motor-based intracellular transport, it is useful to write

the external force in terms of the location where the molecular motor is bound to a mi-

crotubule. We denote this “anchor location” by {Z(t)}t∈R+ . If we further assume that the

microparticle is bound by a tether that is well-modeled by a Hookean spring, then the po-

tential energy can be written Φ(X (t), Z(t)) = κ
2 |X (t)− Z(t)|2. The dynamics can then be
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expressed as a linear SDE

dX (t)=−κ̃(X (t)−Z(t))dt+
p

2DdW(t) , (22)

where κ̃ = κ/γ is the ratio of the spring and fluid drag forces, and D = kBT/γ is the diffu-

sivity of the particle. Of course, observations of the microparticle occur at discrete times.

Suppose that the location of a particle at time 0 is X (0) = x and the location of the anchor

through the next time step is {Z(t) ; 0 ≤ t ≤ ∆}. (We remind the reader, though, that that

for current experimental techniques, the location of the anchor is unknown and must be

inferred.) Then the solution to (22) is [16]

X (t)= e−κ̃tx+
∫ t

0
e−κ̃(t−s)Z(s)ds+

p
2D

∫ t

0
e−κ̃(t−s)dW(s) . (23)

If we take the anchor movement to be a straight line with speed v (taking Z(t) = z), then

this can be written

X (t)= (z+vt)+ (x− z)e−κ̃t − v
κ̃

(
1− e−κ̃t)+p

2D
∫ t

0
e−κ̃(t−s)dW(s) . (24)

We can take one final limit, now assuming the fluid drag γ is small compared to the time

increment that has elapsed and κ. In this limit κ̃→∞, which sends the terms (x−z)e−κ̃t and

v
κ̃
(1−e−κ̃t) to zero. Meanwhile, since stochastic integral term has a deterministic integrand,

it is normally distributed with mean zero and variance

Var
(p

2D
∫ t

0
e−κ̃(t−s)dW(s)

)
= 2D

∫ t

0
e−2κ̃(t−s)ds = D

κ̃

(
1− e−2κ̃t

)
. (25)
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Noting that γ appears in both the diffusivity D and the constants κ̃, we have D/κ̃= kBT/κ.

Taking γ→ 0 rest of the equation yields a normal random variable with mean 0 and variance

kBT/κ. It follows that as a numerical scheme or a statistical inference scheme, we can think

of the cargo positions (x0, x1, . . . , xn) at times t0, t1, . . . , tn as

xn = z+vtn +
√

kBT
κ

ηn (26)

where the {ηn} are independent and identically distributed standard normal random vari-

ables.

Our model for anchored diffusion simply has v = 0.
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APPENDIX B. STATISTICAL BACKGROUND

We refer to George Casella and Roger Lee Berger’s Statistical Inference text for

relevant statistical background [3]. The following concepts and theorems were used in the

Honors Thesis.

Theorem B.1 (Chebychev’s Inequality). Let X be a random variable and let g(x) be a

nonnegative function. Then, for any r > 0,

P(g(X )≥ r)≤ E g(X )
r

.

Theorem B.2 (Slutsky’s Theorem). If Xn → X in distribution and Yn → a, where a is

constant, in probability, then

• YnXn → aX in distribution.

• Xn +Yn → X +a in distribution

Theorem B.3 (Delta Method). Let Yn be a sequence of random variables that satisfies

p
n(Yn − θ) → N(0,σ2) in distribution. For a given function g and specific value of θ,

suppose that g′(θ) exists and is not 0. Then
p

n(g(Yn)− g(θ)) → N(0,σ2[g′(θ)]2) in distri-

bution.

Theorem B.4 (Cramér-Rao Inequality). Let X1, X2, ..., Xn be a sample with pdf f (x|θ) ,

and let W(X)=W(X1, X2, ..., XN) be any estimator satisfying

d
dθ

EθW(X)=
∫
χ

∂

∂θ
[W(X) f (x|θ)]dx
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and VarθW(X)<∞. Then

VarθW(X)≥
(

d
dθ EθW(X)

)2

Eθ

((
∂
∂θ

log f (X|θ)
)2

)
Corollary B.1 (Cramér-Rao Inequality, iid case). If the assumptions of Theorem B.4 are

satisfied and, additionally, if X1, X2, ..., Xn are iid with pdf f (x|θ), then

VarθW(X)≥
(

d
dθ EθW(X)

)2

nEθ
((

∂
∂θ

log f (X |θ)
)2

) .

Lemma B.2. If f (x|θ) satisfies

d
dθ

Eθ

( ∂
∂θ

log f (X |θ)
)
=

∫
∂

∂θ

[( ∂
∂θ

log f (x|θ)
)
f (x|θ)

]
dx

(true for an exponential family), then

Eθ

(( ∂
∂θ

log f (X |θ)
)2

)
=−Eθ

( ∂2

∂θ2 log f (X |θ)
)

.

Regularity Conditions:

Assumption 1. We observe X1, ..., Xn, where X i ∼ f (x|θ) are iid.

Assumption 2. The parameter is identifiable; that is, if θ 6= θ′, then f (x|θ) 6= f (x|θ′).

Assumption 3. The densities f (x|θ) have common support, and f (x|θ) is differentiable in

θ.

Assumption 4. The parameter spaceΩ contains an open set ω of which the true parameter

value θ0 is an interior point.
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Assumption 5. For every x ∈ χ, the density f (x|θ) is three times differentiable with respect

to θ, the third derivative is continuous in θ, and
∫

f (x|θ)dx can be differentiated three times

under the integral sign.

Assumption 6. For any θ0 ∈Ω, there exists a positive number c and a function M(x) (both

of which may depend on θ0) such that

∣∣∣ ∂3

∂θ3 log f (x|θ)
∣∣∣≤ M(x)

for all x ∈ χ, θ0 − c < θ < θ0 + c, with Eθ0[M(x)]<∞.

These conditions are sufficient to prove the following theorem.

Theorem B.5 (Asymptotic Normality and Efficiency of MLEs). Let X1, X2, ..., Xn be iid

f (x|θ), let θ̂ denote the MLE of θ, and let τ(θ) be a continuous function of θ. Under the

regularity conditions above on f (x|θ), and hence, L(θ|~x),

p
n[τ(θ̂)−τ(θ)]→N(0,ν(θ)),

where ν(θ) is the Cramér-Rao Lower Bound. That is, τ(θ̂) is a consistent and asymptotically

efficient estimator of τ(θ).
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APPENDIX C. CHECKING REGULARITY CONDITIONS FOR PROOF OF THEOREM 5.1

The following is a check of the regularity conditions for applying Theorem B.5,

Asymptotic Normality and Efficiency of MLEs, in the proof of Theorem 5.1.

Checking Assumption 1: The random variables, ξ1,ξ2, ...,ξN , are iid.

Checking Assumption 2: Recall that

f
(
ξ|σ2

1
)= (

1
σ2

1 2π

) 1
2

e
− ξ2

2σ2
1 .

Suppose there exists a σ̃2
1 such that σ̃2

1 6=σ2
1, then

f
(
ξ|σ̃2

1
)= (

1
σ̃2

12π

) 1
2

e
− ξ2

2σ̃2
1 6= f

(
ξ|σ2

1
)

.

Checking Assumption 3: Since e
− ξ2

2σ2
1 6= 0 for any value of ξ or σ2

1, then f
(
ξ|σ2

1
) 6= 0 for

any value of ξ or σ2
1, and f

(
ξ|σ2

1
)

has common support. Further, f
(
ξ|σ2

1
)

is differentiable

in σ2
1:

∂

∂σ2
1

f
(
ξ|σ2

1
)= 1

2
p

2π

(
σ2

1
)−3

2 e
−ξ2
2σ2

1 + ξ2

2
p

2π

(
σ2

1
)−5

2 e
−ξ2
2σ2

1 .

Checking Assumption 4: We assume σ2
1 > 1. This means the parameter space, Ω, is the

positive real line, and there is always an open set of which the true parameter value is an

interior point.
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Checking Assumption 5: The density, f
(
ξ|σ2

1
)

is three times differentiable with respect

to σ2
1:

f
(
ξ|σ2

1
)= (

1
σ2

1 2π

) 1
2

e
− ξ2

2σ2
1 ,

f ′
(
ξ|σ2

1
)= 1

2
p

2π

(
σ2

1
)−3

2 e
−ξ2
2σ2

1 + ξ2

2
p

2π

(
σ2

1
)−5

2 e
−ξ2
2σ2

1 ,

f ′′
(
ξ|σ2

1
)= 1

4
p

2π

(
σ2

1
)−5

2 e
−ξ2
2σ2

1

[
3−6ξ2 (

σ2
1
)−1 +ξ4 (

σ2
1
)−2

]
,

f (3) (ξ|σ2
1
)= 1

8
p

2π

(
σ2

1
)−7

2 e
−ξ2
2σ2

1

[
−15+45ξ2 (

σ2
1
)−1 −15ξ4 (

σ2
1
)−2 +ξ6 (

σ2
1
)−3

]
.

Since we assume σ2
1 is strictly positive, f

(
ξ|σ2

1
)

and each derivative are continuous in σ2
1.

Next, we check that
∫

f
(
ξ|σ2

1
)
dx can be differentiated three times under the integral

sign. By the Leibniz Integral Rule, for arbitrary region a ≤σ2
1 ≤ b,ξa ≤ ξ≤ ξb:

∂

∂σ2
1

(∫ b

a
f
(
ξ|σ2

1
)
dx

)
=

∫ b

a

∂

∂σ2
1

f
(
ξ|σ2

1
)
dx .

Further, since the derivatives are continuous, you can repeatedly apply this rule for the

integral on the right hand side. Thus,
∫

f
(
ξ|σ2

1
)
dx can be differentiated three times under

the integral sign.
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Checking Assumption 6: First, determine ∂3

∂σ2
1

3 ln f
(
ξ|σ2

1
)
:

f
(
ξ|σ2

1
)= (

1
σ2

1 2π

) 1
2

e
− ξ2

2σ2
1 ,

ln f
(
ξ|σ2

1
)=−1

2
ln(σ2

1)− 1
2

ln(2π)− ξ2

2σ2
1

,

∂

∂σ2
1

ln f
(
ξ|σ2

1
)=− 1

2σ2
1
+ ξ2

2
(
σ2

1
)2 =−1

2
(
σ2

1
)−1 + ξ2

2
(
σ2

1
)−2

,

∂2

∂σ2
1

2 ln f
(
ξ|σ2

1
)= 1

2
(
σ2

1
)−2 −ξ2 (

σ2
1
)−3

,

∂3

∂σ2
1

3 ln f
(
ξ|σ2

1
)=−(

σ2
1
)−3 +3ξ2 (

σ2
1
)−4 = −1(

σ2
1
)3 + 3ξ2(

σ2
1
)4 .

Then, for a given value of σ2
1 and positive number c,

∣∣∣∣∣ −1(
σ2

1
)3 + 3ξ2(

σ2
1
)4

∣∣∣∣∣≤ 3ξ2(
σ2

1−c
)4 = M(ξ) ,

and Eσ2
1
[M(ξ)] is finite since Eσ2

1

(
ξ2)=σ2

1, which is finite.
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